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We show that local-global compatibility (at split primes) away from p holds
at all points of the p-adic eigenvariety of a definite n-variable unitary group.
We do this by interpolating the local Langlands correspondence for GLn

across the eigenvariety by considering the fibers of its defining coherent
sheaf. We employ techniques of Chenevier and Scholze used in Scholze’s
proof of the local Langlands conjecture for GLn.
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1. Introduction

The goal of this paper is to study the interpolation the local Langlands correspon-
dence across eigenvarieties of definite unitary groups, in the spirit of earlier works
[Paulin 2011; Bellaïche and Chenevier 2009; Chenevier 2009]. Our approach
is based on the construction of eigenvarieties in [Emerton 2006c] and utilizes
techniques from Scholze’s proof [2013b] of the local Langlands conjecture for GLn .
In the next few paragraphs we introduce notation in order to state our main result
(Theorem 1.1 below).
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Let p > 2 be a prime, and fix an unramified CM extension F/F+ which is split
at all places v of F+ above p. Suppose U/F+ is a unitary group in n variables which
is quasisplit at all finite places and compact at infinity (see 2A for more details).
Throughout 6 is a finite set of finite places of F+ containing 6p = {v : v | p}, and
we let 60 =6\6p. We assume all places v ∈6 split in F and we choose a divisor
ṽ|v once and for all, which we use to make the identification U (F+v )−→∼ GLn(Fṽ).
We consider tame levels of the form K p

= K60 K6 , where K6
=
∏
v /∈6 Kv is a

product of hyperspecial maximal compact subgroups, and K60 =
∏
v∈60

Kv.
Our coefficient field is a sufficiently large finite extension E/Qp with integers

O and residue field k = kE , and we start off with an absolutely irreducible1 Galois
representation r̄ : GalF → GLn(k) which is automorphic of tame level K p. We let
m = mr̄ be the associated maximal ideal, viewed in various Hecke algebras (see
Sections 2C and 2D for more details). In Sections 2E and 3B we introduce the
universal deformation ring Rr̄ and the deformation space X r̄ = Spf(Rr̄ )

rig. Each
point x ∈ X r̄ carries a Galois representation rx , which is a deformation of r̄ , and
we let px ⊂ Rr̄ be the associated prime ideal. The Banach representation of p-adic
automorphic forms Ŝ(K p, E)m inherits a natural Rr̄ -module structure, and we
consider its px -torsion Ŝ(K p, E)m[px ] and its dense subspace of locally analytic
vectors Ŝ(K p, E)m[px ]

an, see Section 2B.
The eigenvariety Y (K p, r̄) ⊂ X r̄ × T̂ equals the support of a certain coherent

sheaf M on X r̄ × T̂ . Here T̂ denotes the character space of the p-adic torus
T ⊂U (F+⊗Qp) isomorphic to

∏
v | p TGL(n)(Fṽ), see Section 3C below. We have

T̂ 'W×(Grig
m )

n|6p|, where W is weight space (parametrizing continuous characters
of the maximal compact subgroup of T ) which is a disjoint union of finitely many
open unit balls of dimension n[F+ :Q]. By definition a point y = (x, δ) ∈ X r̄ × T̂
belongs to the eigenvariety Y (K p, r̄) if and only if the fiber My is nonzero. If y is
E-rational the E-linear dual of My can be described as

M′

y ' J δB(Ŝ(K
p, E)m[px ]

an),

where JB denotes Emerton’s [2006a] locally analytic variant of the Jacquet functor
and J δB means the δ-eigenspace. Morally our main result states that lim

−−→K60
M′

y
interpolates the local Langlands correspondence for GLn across the eigenvariety.
In our formulation below we let πx,v be the irreducible smooth representation of
U (F+v ) −→∼ GLn(Fṽ) associated with rx |GalFṽ

via the local Langlands correspon-
dence, i.e.,

WD(rx |GalFṽ
)F−ss

' rec
(
BCṽ|v(πx,v)⊗ | det |(1−n)/2)

1This is mostly for convenience. The automorphic O-lifts of r̄ then arise from cusp forms on
GLn(AF ), see Lemma 3.3.



LOCAL LANGLANDS CORRESPONDENCE IN RIGID FAMILIES 67

with rec( ·) normalized as in [Harris and Taylor 2001]. The notation BCṽ|v(πx,v) sig-
nifies local base change, which simply amounts to viewing πx,v as a representation
of GLn(Fṽ) via its identification with U (F+v ).

Here is the precise formulation of our main result.

Theorem 1.1. Let y = (x, δ) ∈ Y (K p, r̄) be an arbitrary point on the eigenvariety.

(1) lim
−−→K60

M′
y has finite length as a U (F+60

)-representation, and every irreducible
subquotient thereof has the same supercuspidal support as

⊗
v∈60

πx,v.

(2) If y is a point such that rx is strongly generic at every v ∈60 (see Definition 9.4
in the main text), then there is an m y ∈ Z>0 such that up to semisimplification

lim
−−→K60

M′
y

ss
'
(⊗

v∈60
πx,v

)⊕m y
.

When
⊗

v∈60
πx,v is supercuspidal lim

−−→K60
M′

y is semisimple.

(3) If y is any point which appears at Iwahori level (i.e., where the factors of
K p at places in 60 are all Iwahori subgroups) then

⊗
v∈60

π
gen
x,v is the only

generic irreducible subquotient of lim
−−→K60

M′
y — and it does appear — where

π
gen
x,v denotes the generic representation with the same supercuspidal support

as πx,v.

Before proceeding we remark that part (1) is also know due to work of Bellaïche
and Chenevier [2009] (finiteness) and Chenevier [2009] (compatibility with local
Langlands).2 A more detailed discussion of these works in relation to ours can
be found in Section 10. Moving on, we note that part (1) of the theorem implies,
in particular, that lim

−−→K60
M′

y lies in the Bernstein component Rs(U (F+60
)) for the

inertial class s determined by y (see Section 9A). Our methods are based on p-adic
interpolation of traces and do not give us any information about the monodromy
operator.

The control of generic constituents in the case where K60 is a product of Iwahori
subgroups (part (3) of the main theorem) is the most novel aspect of our paper;
it employs a genericity criterion of Barbasch–Moy, recently generalized by Chan
and Savin [2019]. In part (2) of Theorem 1.1 when y = (x, δ) is a point for which
πx,v is supercuspidal for all v ∈60 we can remove the “ss” since there are no self-
extensions with central character that of πx,v (see Remark 9.6) by the projectivity
and/or injectivity of πx,v in this category — this requires some attention to how the
central character varies on the eigenvariety, see Section 8.

We expect that the length m y of lim
−−→K60

M′
y as a U (F+60

)-representation can
be > 1 at certain singular points. If y is a classical point of noncritical slope
(automatically étale by [Chenevier 2011, Theorem 4.10]) m y=1, see Proposition 4.2

2The latter part is [Chenevier 2009, Remarque 3.13], which the authors were unfortunately unaware
of when making this paper public. We thank Chenevier for pointing it out to us.
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below. Under certain mild nondegeneracy assumptions, m y should be closely
related to dimE J δB(5(%x)

an), which is finite by [Emerton 2007, Corollary 0.15].
Here %x := {rx |GalFṽ

}v∈6p and 5(%x) :=
⊗̂

v | p 5(rx |GalFṽ
), where 5(·) is the p-

adic local Langlands correspondence for GLn(Fṽ)— as defined in [Caraiani et al.
2016] say, to fix ideas.3 This expectation is based on the strong local-global
compatibility results of [Emerton 2011; Chojecki and Sorensen 2017], which
also seem to suggest that lim

−−→K60
M′

y should in fact be semisimple — for generic
points (otherwise the “generic” local Langlands correspondence gives a reducible
indecomposable representation). We are not sure if this is an artifact of the n=2 case,
or if it is supposed to be true more generally. It is certainly not true for trivial reasons
since πx,v does admit nontrivial self-extensions. For example, by [Orlik 2005,
Corollary 2] we have dim ExtiGLn

(St,St) =
(n

i

)
. Even when πx,v is parabolically

induced from a supercuspidal it does happen that Ext1GLn(Fṽ)(πx,v, πx,v) 6= 0 (see
Remark 9.6.).

We briefly outline the overall strategy behind the proof of Theorem 1.1: For
classical points y = (x, δ) (i.e., those corresponding to automorphic represen-
tations) local-global compatibility away from p essentially gives an inclusion⊗

v∈60
πx,v ↪→ lim

−−→K60
M′

y which is an isomorphism if δ moreover is of noncritical
slope. We reinterpret this using ideas from Scholze’s proof [2013b] of the local
Langlands correspondence: he works with certain elements fτ in the Bernstein
center of GLn(Fw), associated with τ ∈WFw , which act on an irreducible smooth
representation5 via scaling by tr(τ | rec(5)); here and throughout this paragraph we
ignore a twist by | det |(1−n)/2 for simplicity. For each tuple τ = (τṽ) ∈

∏
v∈60

WFṽ
we thus have an element fτ :=

⊗
v∈60

fτṽ of the Bernstein center of

U (F+60
)−→∼

∏
v∈60

GLn(Fṽ),

which we know how to evaluate on all irreducible smooth representations. In par-
ticular fτ acts on lim

−−→K60
M′

y via scaling by
∏
v∈60

tr
(
τṽ| rec(BCṽ|v(πx,v))

)
— still

assuming y is classical and noncritical. Those points are Zariski dense in Y (K p, r̄),
and using this we interpolate this key scaling property to all points y as follows.
By mimicking the standard proof of Grothendieck’s monodromy theorem one can
interpolate WD(rx |GalFṽ

) in families. Namely, for each Sp(A)⊂ X r̄ we construct a
Weil–Deligne representation WDr̄ ,ṽ over A which specializes to WD(rx |GalFṽ

) for
all x ∈ Sp(A). Around the point y we find a neighborhood � ⊂ Sp(A)× T̂ and
use the weight morphism ω : Y (K p, r̄)→W , or rather its restriction ω|�, to view
0(�,M) as a finite type projective module over OW(ω(�)), which allows us to
show that fτ acts on lim

−−→K60
0(�,M) via scaling by

∏
v∈60

tr(τṽ|WDr̄ ,ṽ). This is

3At least for the choice of R∞→O in [Caraiani et al. 2016] compatible with x : Rr̄ →O via the
projection R∞� Rr̄ .
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the most technical part of our argument; in fact we glue and get the scaling property
on the sheaf M itself. By specialization at y we deduce that fτ acts on lim

−−→K60
M′

y
via scaling by

∏
v∈60

tr
(
τṽ| rec(BCṽ|v(πx,v))

)
as desired. This result tells us that

every irreducible constituent
⊗

v∈60
πv of lim

−−→K60
M′

y has the same supercuspidal
support as

⊗
v∈60

πx,v, and therefore is isomorphic to it if x is a strongly generic
point. We also infer that lim

−−→K60
M′

y has finite length since dimM′
y <∞ and the

constituents
⊗

v∈60
πv have conductors bounded by the conductors of WD(rx |GalFṽ

).
Before finishing this introduction by discussing the structure of the paper, we

wish to mention that Theorem 1.1 was motivated in part by the question of local-
global compatibility for the Breuil–Herzig construction 5(ρ)ord, see [Breuil and
Herzig 2015, Conjecture 4.2.5]. The latter is defined for upper triangular p-adic
representations ρ of GalQp , and is supposed to model the largest subrepresentation
of the “true” p-adic local Langlands correspondence built from unitary continu-
ous principal series representations. We approach this problem starting from the
inclusion (for unitary δ)

(1-2) J δB(Ŝ(K
p, E)m[px ]

an) ↪→ ordδB(Ŝ(K
p,O)m[px ])[1/p]an,

as shown in [Sorensen 2017, Theorem 6.2]. Here ordB is Emerton’s functor of
ordinary parts [Emerton 2010], which is right adjoint to parabolic induction IndB .
If y = (x, δ) lies on Y (K p, r̄) the source of (1-2) is nonzero, and we deduce the
existence of a nonzero map IndB(δ)→ Ŝ(K p, E)m[px ]. If one could show that
certain Weyl-conjugates yw = (x, wδ) all lie on Y (K p, r̄) one would infer that
there is a nontrivial map socGLn(Qp)5(ρ)

ord
→ Ŝ(K p, E)m[px ] which one could

hope to promote to a map 5(ρ)ord
→ Ŝ(K p, E)m[px ] using [Breuil and Herzig

2015, Corollary 4.3.11]. Here we take ρ = rx |GalFṽ
(up to a twist which we ignore

here) for some v | p such that Fṽ = Qp, and x is a point where rx |GalFṽ
is upper

triangular with δṽ on the diagonal. In light of these speculations it is conceivable
that Theorem 1.1 can be used to show strong local-global compatibility, in the sense
that there is an embedding

⊗v∈60πx,v ↪→ lim
−−→
K60

HomGLn(Qp)(5(ρ)
ord, Ŝ(K p, E)m[px ]).

Finally, we make a few remarks on the structure of the paper. In our first (rather
lengthy) Section 2 we introduce in detail the notation and assumptions in force
throughout; the unitary groups U/F+ , automorphic forms Ŝ(K p, E), Hecke algebras,
Galois representations and their deformations. Section 3 then defines the eigenva-
rieties Y (K p, r̄) and the sheaves MK p , essentially following [Breuil et al. 2017]
and [Emerton 2006c]. In Section 4 we recall the notion of a noncritical classical
point, and prove Theorem 1.1 for those. Section 5 interpolates the Weil–Deligne
representations across reduced Sp(A) ⊂ X r̄ by suitably adapting Grothendieck’s
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argument. We recall Scholze’s characterization of the local Langlands correspon-
dence in Section 6, and introduce the functions fτ in the Bernstein center. The goal
of Section 7 is to show Proposition 7.9 on the action of fτ on lim

−−→K60
0(�,MK p),

where � is a neighborhood of y as above. Finally in Section 9 we put the pieces
together; we introduce the notion of a strongly generic point, and prove our main
results. Section 9B focuses on the case where K60 is a product of Iwahori subgroups;
we recall and use the genericity criterion of Chan–Savin to show the occurrence of⊗

v∈60
π

gen
x,v .

2. Notation and terminology

We denote the absolute Galois group Gal(F sep/F) of a field F by GalF .

2A. Unitary groups. Our setup will be identical to that of [Breuil et al. 2017]
although we will adopt a slightly different notation, which we will introduce below.

We fix a CM field F with maximal totally real subfield F+ and Gal(F/F+)=
{1, c}. We assume the extension F/F+ is unramified at all finite places, and split
at all places v | p of F+ above a fixed prime p.

Let n be a positive integer. If n is even assume that n
2 [F
+
:Q] ≡ 0 mod 2. By

[Clozel et al. 2008, §3.5] this guarantees the existence of a unitary group U/F+ in n
variables such that

• U ×F+ F −→∼ GLn ,

• U is quasisplit over F+v (hence unramified) for all4 finite places v,

• U (F+⊗Q R) is compact.

We let G = ResF+/Q U be its restriction of scalars.
If v splits in F the choice of a divisor w|v determines an isomorphism iw :

U (F+v ) −→∼ GLn(Fw) well-defined up to conjugacy. Throughout we fix a finite
set 6 of finite places of F+ such that every v ∈ 6 splits in F , and 6 contains
6p = {v : v | p}. We let 60 =6\6p. We emphasize that unlike [Clozel et al. 2008]
we do not assume the places in 60 are banal.

For each v ∈6 we choose a divisor ṽ|v once and for all and let 6̃ = {ṽ : v ∈6}.
We also choose an embedding GalFṽ ↪→GalF for each such v. Moreover, we choose
isomorphisms iṽ which we will tacitly use to identify U (F+v ) with GLn(Fṽ). For
instance the collection (iṽ)v | p gives an isomorphism

(2-1) G(Qp)=U (F+⊗Q Qp)−→
∼

∏
v | p

GLn(Fṽ).

4Convenient in Lemma 3.3 when considering local base change from U (F+v ) to GLn(Fṽ)— for
unramified representations.
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Similarly U (F+6 )−→
∼

∏
v∈6 GLn(Fṽ) and analogously for U (F+60

). When there is
no risk of confusion we will just write G instead of G(Qp). We let B ⊂ G be the
inverse image of the upper-triangular matrices under (2-1). In the same fashion T
corresponds to the diagonal matrices, and N corresponds to the unipotent radical.
Their opposites are denoted B and N̄ .

Below we will only consider tame levels K p
⊂G(Ap

f ) of the form K p
=
∏
v - p Kv ,

where Kv⊂U (F+v ) is a compact open subgroup which is assumed to be hyperspecial
for v /∈6. Accordingly we factor it as K p

= K60 K6 , where K6
=
∏
v /∈6 Kv is a

product of hyperspecials, and K60 =
∏
v∈60

Kv.

2B. Automorphic forms. We work over a fixed finite extension E/Qp, which we
assume is large enough in the sense that every embedding F+v ↪→Qp factors through
E for all v | p. We let O denote its valuation ring, $ is a choice of uniformizer, and
k = O/($) ' Fq is the residue field. We endow E with its normalized absolute
value |·| for which |$ | = q−1.

For a tame level K p
⊂ G(Ap

f ) we introduce the space of p-adic automorphic
forms on G(A) as follows (see Definition 3.2.3 in [Emerton 2006c]). First let

Ŝ(K p,O)= C
(
G(Q)\G(A f )/K p,O

)
= lim
←−−

i
C∞
(
G(Q)\G(A f )/K p,O/$ iO

)
.

Here C is the space of continuous functions, C∞ is the space of locally constant
functions. Note that the space of locally constant functions in Ŝ(K p,O) is $ -
adically dense, so alternatively

Ŝ(K p,O)= C∞
(
G(Q)\G(A f )/K p,O

)∧
= lim
←−−

i
C∞
(
G(Q)\G(A f )/K p,O

)
⊗O O/$ iO.

These two viewpoints amount to thinking of Ŝ(K p,O) as H̃ 0(K p) or Ĥ 0(K p)

respectively in the notation of [Emerton 2006c], see (2.1.1) and Corollary 2.2.25
there. The reduction modulo $ is the space of mod p modular forms on G(A),

S(K p, k)= C∞
(
G(Q)\G(A f )/K p, k

)
' Ŝ(K p,O)/$ Ŝ(K p,O),

which is an admissible (smooth) k[G]-module with G = G(Qp) acting via right
translations. Thus Ŝ(K p,O) is a $ -adically admissible G-representation over O,
i.e., an object of Mod$−adm

G (O) (see Definition 2.4.7 in [Emerton 2010]). Since it
is clearly flat over O, it is the unit ball of a Banach representation

Ŝ(K p, E)= Ŝ(K p,O)[1/p] = C
(
G(Q)\G(A f )/K p, E

)
.

Here we equip the right-hand side with the supremum norm‖ f ‖= supg∈G(A f )
| f (g)|,

and Ŝ(K p, E) thus becomes an object of the category BanG(E)≤1 of Banach
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E-spaces (H, ‖·‖) for which ‖H‖ ⊂ |E | endowed with an isometric G-action.
Ŝ(K p, E) is dubbed the space of p-adic automorphic forms on G(A).

The connection to classical modular forms is through locally algebraic vectors
as we now explain. Let V be an absolutely irreducible algebraic representation of
G ×Q E . Thus V is a finite-dimensional E-vector space with an action of G(E),
which we restrict to G(Qp). If K p ⊂ G(Qp) is a compact open subgroup we let it
act on V and consider

SV (K p K p, E)= HomK p(V, Ŝ(K p, E)).

If we assume E is large enough that EndG(V )= E , the space of V -locally algebraic
vectors in Ŝ(K p, E) can be defined as the image of the natural map

lim
−−→
K p

V ⊗E SV (K p K p, E)−→∼ Ŝ(K p, E)V−alg ↪→ Ŝ(K p, E)

(see Proposition 4.2.4 in [Emerton 2017]). Then the space of all locally algebraic
vectors decomposes as a direct sum Ŝ(K p, E)alg

=
⊕

V Ŝ(K p, E)V−alg. Letting Ṽ
denote the contragredient representation, one easily identifies SV (K p K p, E) with
the space of (necessarily continuous) functions

f : G(Q)\G(A f )/K p
→ Ṽ , f (gk)= k−1 f (g), for all k ∈ K p.

In turn, considering the function h(g) = g f (g) identifies it with the space of
right K p K p-invariant functions h : G(A f )→ Ṽ such that h(γ g)= γ h(g) for all
γ ∈ G(Q). If we complexify this space along an embedding ι : E ↪→ C we obtain
vector-valued automorphic forms. Thus we arrive at the decomposition

(2-2) SV (K p K p, E)⊗E,ι C'
⊕
π

mG(π) ·π
K p
p ⊗ (π

p
f )

K p

with π running over automorphic representations of G(A) with π∞ ' V ⊗E,ι C.
It is even known by now that all mG(π) = 1, see [Mok 2015] and “the main
global theorem” [Kaletha et al. 2014, Theorem 1.7.1, p. 89] (both based on the
symplectic/orthogonal case [Arthur 2013]). Multiplicity one will be used below in
Lemma 3.3.

Remark 2.3. For full disclosure we will only use multiplicity one for representa-
tions π whose base change 5= BCF/F+(π) to GLn(AF ) is cuspidal (see the proof
of Lemma 3.3 below). Since 5∞ is V -cohomological the Ramanujan conjecture
holds in this case, i.e., 5 is tempered. Therefore the packets in [Kaletha et al.
2014, Theorem 1.7.1] do not overlap and consist of irreducible representations; in
particular mG(π)= 1. Some of the authors of [Kaletha et al. 2014] have informed
us that multiplicity one even holds for nontempered representations π , the point
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being that the groups S\ψv in [loc. cit.] are abelian. As mentioned in the introduction
to [loc. cit.], the nontempered case is the topic of a sequel.

2C. Hecke algebras. At each v - p we consider the Hecke algebra H(U (F+v ), Kv)

of Kv-biinvariant compactly supported functions φ : U (F+v ) → O (with Kv-
normalized convolution). The characteristic functions of double cosets [KvγvKv]

form an O-basis.
Suppose v splits in F and Kv is hyperspecial. Choose a place w|v and an isomor-

phism iw which restricts to iw :Kv−→
∼ GLn(OFw). Then we identify H(U (F+v ), Kv)

with the spherical Hecke algebra for GLn(Fw). We let γw, j ∈ U (F+v ) denote the
element corresponding to

iw(γw, j )= diag($Fw , . . . ,$Fw︸ ︷︷ ︸
j

, 1, . . . , 1).

Then let Tw, j = [Kvγw, j Kv] be the standard Hecke operators; H(U (F+v ), Kv) =

O[Tw,1, . . . , T±1
w,n].

For a tame level K p as above, the full Hecke algebra is the restricted tensor
product relative to the characteristic functions charKv

(below V runs over all finite
sets of places v - p):

H(G(Ap
f ), K p)=

⊗′

v - p

H(U (F+v ), Kv)= lim
−−→

V

(⊗
v∈V

H(U (F+v ), Kv)

)
.

It acts on Ŝ(K p, E) by norm-decreasing morphisms, and hence preserves the unit
ball Ŝ(K p,O). This induces actions on S(K p, k) and SV (K p K p, E) as well given
by the usual double coset operators. Let

H(K60)=
⊗
v∈60

H(U (F+v ), Kv), Hs(K6)=
⊗

v /∈6 split

H(U (F+v ), Kv)

be the subalgebras of H(G(Ap
f ), K p) generated by Hecke operators at v ∈ 60,

respectively Tw,1, . . . , T±1
w,n for v /∈ 6 split in F and w|v (the subscript s is for

“split”). In what follows we ignore the Hecke action at the nonsplit places v /∈6.
Note that Hs(K6) is commutative, but of course H(K60) need not be.

We define the Hecke polynomial Pw(X) ∈Hs(K6)[X ] to be

Pw(X)= Xn
+· · ·+(−1) j (Nw) j ( j−1)/2Tw, j Xn− j

+· · ·+(−1)n(Nw)n(n−1)/2Tw,n,

where Nw is the size of the residue field OFw/($Fw).
We denote by TV (K p K p,O) the subalgebra of End

(
SV (K p K p, E)

)
generated

by the operators Hs(K6). This is reduced and finite over O. In case V is the
trivial representation we write T0(K p K p,O). As K p shrinks there are surjective
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transition maps between these (given by restriction) and we let

T̂(K p,O)= lim
←−−
K p

T0(K p K p,O),

equipped with the projective limit topology (each term being endowed with the
$ -adic topology). We refer to it as the “big” Hecke algebra. T̂(K p,O) clearly acts
faithfully on Ŝ(K p, E) and one can easily show that the natural map Hs(K6)→

T̂(K p,O) has dense image, see the discussion in [Emerton 2011, 5.2].
A maximal ideal m ⊂ Hs(K6) is called automorphic (of tame level K p) if it

arises as the pullback of a maximal ideal in some TV (K p K p,O). Shrinking K p if
necessary we may assume it is pro-p, in which case we may take V to be trivial
(“Shimura’s principle”). In particular there are only finitely many such m, and
we interchangeably view them as maximal ideals of T̂(K p,O) (and use the same
notation), which thus factors as a finite product of complete local O-algebras

T̂(K p,O)=
∏
m

T̂(K p,O)m.

Correspondingly we have a decomposition Ŝ(K p, E)=
⊕

m Ŝ(K p, E)m, and simi-
larly for Ŝ(K p,O). This direct sum is clearly preserved by H(K60).

2D. Galois representations. If R is an O-algebra, and r : GalF → GLn(R) is an
arbitrary representation which is unramified at all places w of F lying above a split
v /∈6, we associate the eigensystem θr :Hs(K6)→ R determined by

det(X − r(Frobw))= θr (Pw(X)) ∈ R[X ]

for all suchw. Here Frobw denotes a geometric Frobenius. (Note that the coefficients
of the polynomial determine θr (Tw, j ) since Nw ∈O×; and θr (Tw,n) ∈ R×.) We say
r is automorphic (for G) if θr factors through one of the quotients TV (K p K p,O).

When R = O this means r is associated with one of the automorphic repre-
sentations π contributing to (2-2) in the sense that Tw, j acts on πKv

v by scaling
by ι(θr (Tw, j )) for all w|v /∈ 6 as above. Conversely, it is now known that to
any such π (and a choice of isomorphism ι : Qp −→

∼ C) one can attach a unique
semisimple Galois representation rπ,ι : GalF → GLn(Qp) with that property, see
[Thorne 2012, Theorem 6.5] for a nice summary. It is polarized, meaning that
r∨π,ι ' r c

π,ι⊗ ε
n−1, where ε is the cyclotomic character, and one can explicitly write

down its Hodge–Tate weights in terms of V .
When R= k we let mr = ker(θr ) be the corresponding maximal ideal of Hs(K6).

Then r is automorphic precisely when mr is automorphic, in which case we tacitly
view it as a maximal ideal of TV (K p K p,O) (with residue field k) for suitable V
and K p. In the other direction, starting from a maximal ideal m in TV (K p K p,O)
(whose residue field is necessarily a finite extension of k) one can attach a unique
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semisimple representation

r̄m : GalF → GLn(TV (K p K p,O)/m)

such that θr̄m(Tw, j )= Tw, j +m (and which is polarized), see [Thorne 2012, Propo-
sition 6.6]. We say m is non-Eisenstein if r̄m is absolutely irreducible. Under this
hypothesis r̄m admits a (polarized) lift

rm : GalF → GLn(TV (K p K p,O)m)

with the property that θrm(Tw, j )= Tw, j ; it is unique up to conjugation, see [Thorne
2012, Proposition 6.7], and gives a well-defined deformation of r̄m. If we let K p

shrink to a pro-p subgroup we may take V to be trivial, i.e., m ⊂ T1(K p K p,O).
Passing to the inverse limit yields a lift of r̄m with coefficients in T̂(K p,O)m which
we will denote by r̂m. Throughout [Thorne 2012] it is assumed that p > 2; we
adopt that hypothesis here.

All the representations discussed above (rπ,ι, r̄m, rm etc.) extend5 to continuous
homomorphisms GalF+ → Gn(R) for various R, where Gn is the group scheme
(over Z) defined as a semidirect product {1, j}n (GLn ×GL1), see [Thorne 2012,
Definition 2.1]. We let ν : Gn → GL1 be the natural projection. Thus ν ◦ r̄m =
ε1−nδ

µm

F/F+ (and similarly for rm), where δF/F+ is the nontrivial quadratic character
of Gal(F/F+) and µm ∈ {0, 1} is determined by the congruence µm≡ n mod 2 (see
[Clozel et al. 2008, Theorem 3.5.1; Bellaïche and Chenevier 2011, Theorem 1.2]).

2E. Deformations. Now start with r̄ : GalF+ → Gn(k) such that its restriction
r̄ : GalF → GLn(k) is absolutely irreducible and automorphic, with corresponding
maximal ideal m = mr̄ , and ν ◦ r̄ = ε1−nδ

µm

F/F+ . In particular r̄ is unramified
outside 6.

We consider lifts and deformations of r̄ to rings in CO, the category of complete
local Noetherian O-algebras R with residue field k −→∼ R/mR , see [Thorne 2012,
Definition 3.1]. Recall that a lift is a homomorphism r : GalF+→ Gn(R) such that
r reduces to r̄ mod mR , and ν ◦ r = ε1−nδ

µm

F/F+ (thought of as taking values in R×).
A deformation is a (1+mR Mn(R))-conjugacy class of lifts.

For each v ∈ 6 consider the restriction r̄ṽ = r̄ |GalFṽ
and its universal lifting

ring R�r̄ṽ . Following [Thorne 2012] we let R�r̄ṽ denote its maximal reduced p-torsion
free quotient, and consider the deformation problem

S =
(
F/F+, 6, 6̃,O, r̄ , ε1−nδ

µm

F/F+, {R
�
r̄ṽ }v∈6

)
.

The functor DefS of deformations of type S is then represented by an object Runiv
S

of CO, see [Thorne 2012, Proposition 3.4] or [Clozel et al. 2008, Proposition 2.2.9].

5Once a choice of γ0 ∈ GalF+ −GalF is made, see [Clozel et al. 2008, Lemma 2.1.4]. See also
Proposition 3.4.4 therein.
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In what follows we will simply write Rr̄ instead of Runiv
S , and keep in mind the

underlying deformation problem S. Similarly, R�r̄ is the universal lifting ring of
type S (which is denoted by R�S in [Thorne 2012, Proposition 3.4]). Note that
R�r̄ is a power series O-algebra in |6|n2 variables over Rr̄ ([Clozel et al. 2008,
Proposition 2.2.9]); a fact we will not use in this paper.

The universal automorphic deformation rm is of type S, so by universality it
arises from a local homomorphism

ψ : Rr̄ → TV (K p K p,O)m.

These maps are compatible as we shrink K p. Taking V to be trivial and passing to
the inverse limit over K p we obtain a map ψ̂ : Rr̄ → T̂(K p,O)m which we use to
view Ŝ(K p, E)m as an Rr̄ -module.

3. Eigenvarieties

3A. Formal schemes and rigid spaces. In what follows (·)rig will denote Berth-
elot’s functor (which generalizes Raynaud’s construction for topologically finite
type formal schemes X over Spf(O), see [Raynaud 1974]). Its basic properties are
nicely reviewed in [de Jong 1995, Chapter 7]. The source FSO is the category of
locally Noetherian adic formal schemes X which are formally of finite type over
Spf(O) (i.e., their reduction modulo an ideal of definition is of finite type over
Spec(k)); the target RigE is the category of rigid analytic varieties over E , see
Definition 9.3.1/4 in [Bosch et al. 1984]. For example, B = (SpfO{y})rig is the
closed unit disc (at 0); U= (SpfO[[x]])rig is the open unit disc. For a general affine
formal scheme X= Spf(A), where

A =O{y1, . . . , yr }[[x1, . . . , xs]]/(g1, . . . , gt),

Xrig
⊂ Br

×Us is the closed analytic subvariety cut out by the functions g1, . . . , gt ,
see [Bosch et al. 1984, 9.5.2]. In general Xrig is obtained by gluing affine pieces
as in [de Jong 1995, §7.2]. The construction of Xrig in the affine case is actually
completely canonical and free from coordinates: If I ⊂ A is the largest ideal of
definition, A[I n/$ ] is the subring of A⊗O E generated by A and all i/$ with
i ∈ I n . Let A[I n/$ ]∧ be its I -adic completion (equivalently, its$ -adic completion,
see the proof of [de Jong 1995, Lemma 7.1.2]). Then A[I n/$ ]∧⊗O E is an affinoid
E-algebra and there is an admissible covering

Xrig
= Spf(A)rig =

∞⋃
n=1

Sp
(

A[I n/$ ]∧⊗O E
)
.

In particular Arig
:= O(Spf(A)rig) = lim

←−−n A[I n/$ ]∧ ⊗O E . The natural map
A⊗O E → Arig factors through the ring of bounded functions on Spf(A)rig; the
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image of A lies in O0(Spf(A)rig), the functions whose absolute value is bounded
by 1, see [de Jong 1995, 7.1.8].

3B. Deformation space. We let X r̄ = Spf(Rr̄ )
rig (a subvariety of Us for some

s). For a point x ∈ X r̄ we let κ(x) denote its residue field, which is a finite
extension of E , and let κ(x)0 be its valuation ring; an O-algebra with finite residue
field k(x). Note the different meanings of κ(x) and k(x). The evaluation map
Rr̄ →O0(X r̄ )→ κ(x)0 corresponds to a deformation

rx : GalF+→ Gn(κ(x)0)

of r̄ ⊗k k(x). (We tacitly choose a representative rx in the conjugacy class of lifts.)
We let px = ker(Rr̄ → κ(x)0) be the prime ideal of Rr̄ corresponding to x , see the
bijection in [de Jong 1995, Lemma 7.1.9]. We will often assume for notational
simplicity that x is E-rational, in which case κ(x)= E and k(x)= k; so that rx is
a deformation of r̄ over κ(x)0 =O.

3C. Character and weight space. Recall our choice of torus T ⊂ G(Qp), and let
T0 be its maximal compact subgroup. Upon choosing uniformizers {$Fṽ }v | p we
have an isomorphism T ' T0×Zn|6p | of topological groups. Moreover,

T0 '
∏
v | p

(O×Fṽ )
n
'

(∏
v | p

µ∞(Fṽ)n︸ ︷︷ ︸
µ

)
×Zn[F+:Q]

p .

Let T̂ :=W × (Grig
m )

n|6p|, where W :=
(
Spf(O[[T0]])

)rig. The weight space W is
isomorphic to |µ| copies of the open unit ball Un[F+:Q]. From a more functorial
point of view T̂ represents the functor which takes an affinoid E-algebra to the set
Homcont(T, A×), and similarly for W and T0. See [Emerton 2017, Proposition 6.4.5].
Thus T̂ carries a universal continuous character δuniv

: T →O(T̂ )× which restricts
to a character T0→O0(W)× via the canonical morphism T̂ →W . Henceforth we
identify points of T̂ with continuous characters δ : T → κ(δ)× for varying finite
extensions κ(δ) of E (and analogously for W).

3D. Definition of the eigenvariety. We follow [Breuil et al. 2017, §4.1] in defining
the eigenvariety Y (K p, r̄) as the support of a certain coherent sheaf M =MK p

on X r̄ × T̂ . This is basically also the approach taken in Section (2.3) of [Emerton
2006c], except there X r̄ is replaced by Spec of a certain Hecke algebra. We define
M as follows.

Let (·)an be the functor from [Schneider and Teitelbaum 2003, Theorem 7.1].
It takes an object H of Banadm

G (E) to the dense subspace H an of locally analytic
vectors. H an is a locally analytic G-representation (over E) of compact type
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whose strong dual (H an)′ is a coadmissible D(G, E)-module, see [Schneider and
Teitelbaum 2003, p. 176].

We take H = Ŝ(K p, E)m and arrive at an admissible locally analytic G-represen-
tation Ŝ(K p, E)an

m which we feed into the Jacquet functor JB defined in [Emerton
2006a, Definition 3.4.5]. By Theorem 0.5 of [loc. cit.] this yields an essentially
admissible locally analytic T -representation JB(Ŝ(K p, E)an

m ). See [Emerton 2017,
Definition 6.4.9] for the notion of essentially admissible (the difference with admis-
sibility lies in incorporating the action of the center Z , or rather viewing the strong
dual as a module over O(Ẑ) ⊗̂ D(G, E)).

We recall [Emerton 2006c, Proposition 2.3.2]: If F is a coherent sheaf on T̂ , see
[Bosch et al. 1984, Definition 9.4.3/1], its global sections 0(T̂ ,F) is a coadmissible
O(T̂ )-module. Moreover, the functor F  0(T̂ ,F) is an equivalence of categories
(since T̂ is quasi-Stein). Note that 0(T̂ ,F) and its strong dual both acquire a
T -action via δuniv. Altogether the functor F 0(T̂ ,F)′ sets up an antiequivalence
of categories between coherent sheaves on T̂ and essentially admissible locally
analytic T -representations (over E).

As pointed out at the end of Section 2E, Ŝ(K p, E)m is an Rr̄ -module via ψ̂ ,
and the G-action is clearly Rr̄ -linear. Thus JB(Ŝ(K p, E)an

m ) inherits an Rr̄ -module
structure. By suitably modifying the remarks of the preceding paragraph (as in
Section 3.1 of [Breuil et al. 2017] where they define and study locally Rr̄ -analytic
vectors, see Definition 3.2 in [loc. cit.]) one finds that there is a coherent sheaf
M=MK p on X r̄ × T̂ for which

JB(Ŝ(K p, E)an
m )' 0(X r̄ × T̂ ,M)′.

The eigenvariety is then defined as the (schematic) support of M, see [Bosch et al.
1984, Proposition 9.5.2/4]. I.e.,

Y (K p, r̄) := sup(M)= {y = (x, δ) :My 6= 0} ⊂ X r̄ × T̂ .

Thus Y (K p, r̄) is an analytic subset of X r̄ × T̂ with structure sheaf OX r̄×T̂ /I,
where I is the ideal sheaf of annihilators of M. That is I(U )= AnnO(U )0(U,M)

for admissible open U . One can show that Y (K p, r̄) is reduced, see part (3) of
Lemma 7.7 below for precise references.

The fiberMy=
(
lim
−−→U3y 0(U,M)

)
⊗OY (K p ,r̄),yκ(y) is finite-dimensional over κ(y).

Suppose κ(y) ' E solely to simplify the notation. Then the full E-linear dual
M′

y = HomE(My, E) has the following useful description.

Lemma 3.1. Let y = (x, δ) ∈ (X r̄ × T̂ )(E) be an E-rational point. Then there is
an isomorphism

(3-2) M′

y ' J δB(Ŝ(K
p, E)m[px ]

an).
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(Here J δB means the δ-eigenspace of JB , and [px ] means taking px -torsion.)

Proof. First, since X r̄×T̂ is quasi-Stein, My is the largest quotient of 0(X r̄×T̂ ,M)

which is annihilated by px and on which T acts via δ, see [Breuil et al. 2017, §5.4].
Thus M′

y is the largest subspace of JB(Ŝ(K p, E)an
m ) with the same properties,

i.e., J δB(Ŝ(K
p, E)an

m )[px ], as observed in Proposition 2.3.3(iii) of [Emerton 2006c].
Now,

J δB(Ŝ(K
p, E)an

m )[px ] = J δB(Ŝ(K
p, E)m[px ]

an)

as follows easily from the exactness of (·)an and the left-exactness of JB (using that
px is finitely generated to reduce to the principal case by induction on the number
of generators), see the proof of [Breuil et al. 2017, Proposition 3.7]. �

The space in (3-2) can be made more explicit: Choose a compact open subgroup
N0 ⊂ N and introduce the monoid T+ = {t ∈ T : t N0t−1

⊂ N0}. Then by [Emerton
2006a, Proposition 3.4.9],

J δB(Ŝ(K
p, E)m[px ]

an)' (Ŝ(K p, E)m[px ]
an)N0,T+=δ,

where T+ acts by double coset operators [N0t N0] on the space on the right. Observe
that y lies on the eigenvariety Y (K p, r̄) precisely when the above space M′

y is
nonzero.

Note that the Hecke algebra H(K60) acts on JB(Ŝ(K p, E)an
m ), and therefore on

M and its fibers My (on the right since we are taking duals). The isomorphism (3-2)
is H(K60)-equivariant, and our first goal is to describe M′

y as a H(K60)-module.

3E. Classical points. We say that a point y= (x, δ)∈Y (K p, r̄)(E) is classical (of
weight V ) if the following conditions hold (see [Breuil et al. 2017, Definition 3.14]
or the paragraph before [Emerton 2006c, Definition 0.6]):

(1) δ = δalgδsm, where δalg is an algebraic character which is dominant relative
to B (i.e., obtained from an element of X∗(T ×Q E)+ by restriction to T ),
and δsm is a smooth character of T . In this case let V denote the irreducible
algebraic representation of G×Q E of highest weight δalg.

(2) There exists an automorphic representation π of G(A) such that

(a) (π p
f )

K p
6= 0 and the Hs(K6)-action on this space is given by the eigen-

system ι ◦ θrx ,
(b) π∞ ' V ⊗E,ι C,
(c) πp is a quotient of IndG

B
(δsmδ

−1
B ).

These points comprise the subset Y (K p, r̄)cl. Note that condition (a) is equivalent
to the isomorphism rx ' rπ,ι (both sides are irreducible since rx is a lift of r̄). In
(c) δB denotes the modulus character of B; the reason we include it in condition (c)
will become apparent in the proof of Proposition 4.2 below.
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Lemma 3.3. There is at most one automorphic π satisfying (a)–(c) above; and
mG(π)= 1.

Proof. Let 5= BCF/F+(π) be a (strong) base change of π to GLn(AF ), where we
view π as a representation of U (AF+)=G(A). For its existence see [Labesse 2011,
§5.3]. Note that 5 is cuspidal since rπ,ι is irreducible. In particular 5 is globally
generic, hence locally generic. By local-global compatibility, see [Barnet-Lamb
et al. 2012; 2014; Caraiani 2014] for places w|p; [Taylor and Yoshida 2007; Shin
2011] for places w - p,

ιWD(rπ,ι|GalFw
)F−ss

' rec(5w⊗ | det |(1−n)/2)

for all finite places w of F , with the local Langlands correspondence rec(·) normal-
ized as in [Harris and Taylor 2001]. This shows that 5w is completely determined
by rx at all finite places w. Moreover, we have5w =BCw|v(πv) whenever the local
base change on the right is defined, i.e., when either v splits or πv is unramified.
Our assumption that 6 consists of split places guarantees that BCw|v(πv) makes
sense locally everywhere. Furthermore, unramified local base change is injective
according to [Mínguez 2011, Corollary 4.2]. We conclude that πf is determined by
rx , and π∞ ' V ⊗E,ιC. Thus π is unique. Multiplicity one was noted earlier at the
end of Section 2B above, see Remark 2.3. �

4. The case of classical points of noncritical slope

Each point x ∈ X r̄ carries a Galois representation rx : GalF → GLn(κ(x)) which
we restrict to the various decomposition groups GalFṽ for v ∈ 6. When v ∈ 60

there is a corresponding Weil–Deligne representation, see Section (4.2) in [Tate
1979], and we let πx,v be the representation of U (F+v ) (over κ(x)) such that

(4-1) WD(rx |GalFṽ
)F−ss

' rec
(
BCṽ|v(πx,v)⊗ | det |(1−n)/2)

Note that the local base change BCṽ|v(πx,v) is just πx,v thought of as a representation
of GLn(Fṽ) via the isomorphism iṽ :U (F+v )−→∼ GLn(Fṽ). We emphasize that πx,v

is defined even for nonclassical points on the eigenvariety. If y = (x, δ) happens
to be classical, πx,v ⊗E,ι C ' πv, where π is the automorphic representation in
Lemma 3.3. Below we relate

⊗
v∈60

πx,v to the fiber M′
y .

Proposition 4.2. Let y = (x, δ) ∈ Y (K p, r̄)(E) be a classical point. Then there
exists an embedding of H(K60)-modules

⊗
v∈60

πKv
x,v ↪→M′

y which is an isomor-
phism if δ is of noncritical slope, (see [Emerton 2006a, Definition 4.4.3], which is
summarized below).

Proof. According to (0.14) in [Emerton 2006a] there is a closed embedding

JB
(
(Ŝ(K p, E)m[px ]

an)V−alg) ↪→ JB
(
Ŝ(K p, E)m[px ]

an)V N
−alg

.
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Note that V N
' δalg so after passing to δ-eigenspaces we get a closed embedding

(4-3) J δB
(
(Ŝ(K p, E)m[px ]

an)V−alg) ↪→ J δB
(
Ŝ(K p, E)m[px ]

an).
The target is exactly M′

y by (3-2). On the other hand

(Ŝ(K p, E)m[px ]
an)V−alg

'

⊕
π

(V ⊗E πp)⊗E (π
p
f )

K p

with π running over automorphic representations of G(A) over E with π∞ ' V
and such that θrx gives the action of Hs(K6) on (π p

f )
K p

. As noted in Lemma 3.3
there is precisely one such π which we will denote by πx throughout this proof
(consistent with the notation πx,v introduced above). Note that

⊗
v /∈6 π

Kv
x,v is a line

so
(Ŝ(K p, E)m[px ]

an)V−alg
' (V ⊗E πx,p)⊗E

(⊗
v∈60

πKv
x,v
)
.

Since JB is compatible with the classical Jacquet functor, see [Emerton 2006a,
Proposition 4.3.6], we identify the source of (4-3) with

(V N
⊗E (πx,p)N )

T=δ
⊗E

(⊗
v∈60

πKv
x,v
)
.

Now V N
' δalg is one-dimensional, and so is (πx,p)

T=δsm
N . Indeed, by Bernstein

second adjointness,

(πx,p)
T=δsm
N ' HomG

(
IndG

B
(δsmδ

−1
B ), πx,p

)
.

The right-hand side is nonzero by condition (c) above, and in fact it is a line
since IndG

B
(δsmδ

−1
B ) has a unique generic constituent (namely πx,p, see the proof of

Lemma 3.3) which occurs with multiplicity one; this follows from the theory of
derivatives [Bernstein and Zelevinsky 1977, Chapter 4]. From this observation we
immediately infer that HomG

(
π̃x,p, IndG

B
(δ−1

sm δB)
)

is one-dimensional. To summa-
rize, (4-3) is an embedding

⊗
v∈60

πKv
x,v ↪→M′

y . Finally, since Ŝ(K p, E)m[px ]
an

clearly admits a G-invariant norm (the sup norm), Theorem 4.4.5 in [Emerton
2006a] tells us that (4-3) is an isomorphism if δ is of noncritical slope. �

To aid the reader we briefly recall the notion of noncritical slope: To each
δ ∈ T̂ (E) we assign the element slp(δ) ∈ X∗(T ×Q E) defined as follows, see
[Emerton 2006a, Definition 1.4.2]. First note that there is a natural surjection
T (E)� X∗(T ×Q E); the cocharacter µt ∈ X∗(T ×Q E) associated with t ∈ T (E)
is given by 〈χ,µt 〉 = ordEχ(t) for all algebraic characters χ (here ordE is the
valuation on E normalized such that ordE($E) = 1). Then the slope of δ is the
algebraic character slp(δ) satisfying 〈slp(δ), µt 〉 = ordEδ(t) for all t ∈ T .

Definition 4.4. Let % = 1
2

∑
α>0 α. We say that δ = δalgδsm is of noncritical slope

if there is no simple root α for which the element sα(δalg+%)+ slp(δsm)+% lies in
the Q≥0-cone generated by all simple roots.
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5. Interpolation of the Weil–Deligne representations

Our goal in this section is to interpolate across deformation space X r̄ , the Weil–
Deligne representations WD(rx |GalFṽ

), for a fixed v ∈60. More precisely, for any
affinoid subvariety Sp(A)⊂ X r̄ we will define a rank n Weil–Deligne representation
WDr̄ ,ṽ over A such that

(5-1) WD(rx |GalFṽ
)'WDr̄ ,ṽ ⊗A,xκ(x)

for all points x ∈ Sp(A). The usual proof of Grothendieck’s monodromy theorem
(see [Tate 1979, Corollary 4.2.2]) adapts easily to this setting, and this has already
been observed by other authors. See for example [Bellaïche and Chenevier 2009,
7.8.3–7.8.14; Paulin 2011, 5.2; Emerton and Helm 2014, 4.1.6]. To make our article
more self-contained (and to point out the “usual” assumption that A is reduced is
unnecessary) we give the details for the convenience of the reader.

Proposition 5.2. Let w be a place of F not dividing p, and let A be an affinoid E-
algebra. For any continuous representation ρ : GalFw → GLn(A) there is a unique
nilpotent N ∈ Mn(A) such that the equality ρ(γ )= exp(tp(γ )N ) holds for all γ in
an open subgroup J ⊂ IFw . (Here tp : IFw � Zp is a choice of homomorphism as
in Section (4.2) of [Tate 1979].)

Proof. Choose a submultiplicative norm ‖·‖ on A relative to which A is complete
(if A is reduced one can take the spectral norm, see [Bosch et al. 1984, 6.2.4]). Let
A◦ be the (closed) unit ball. Then I + pi Mn(A◦) is an open (normal) subgroup
of GLn(A◦) for i > 0, so its inverse image ρ−1(I + pi Mn(A◦))= GalFi for some
finite extension Fi of Fw. Note that Fi+1/Fi is a Galois extension whose Galois
group is killed by p. Let us fix an i > 0 and work with the restriction ρ|GalFi

. Recall
that wild inertia PFi ⊂ IFi is the Sylow pro-` subgroup where w|`. Since ` 6= p we
deduce that PFi ⊂ GalF j for all j ≥ i . That is ρ factors through the tame quotient
IFi /PFi '

∏
q 6=` Zq . For the same reason ρ factors further through tp : IFi � Zp.

Therefore we find an element α ∈ I + pi Mn(A◦) (the image of 1 ∈ Zp under ρ)
such that ρ(γ )= αtp(γ ) for all γ ∈ IFi . We let N := log(α). If we choose i large
enough (i > 1 suffices, see the discussion in [Schneider 2011, p. 220]) all power
series converge and we arrive at ρ(γ ) = exp(tp(γ )N ) for γ ∈ IFi . We conclude
that we may take J := IF2 . (The uniqueness of N follows by taking log on both
sides.)

To see that N is nilpotent note the standard relation ρ(w)Nρ(w)−1
= ‖w‖N

for w ∈ WFi . If we take w to be a (geometric) Frobenius this shows that all
specializations of N n at points x ∈ Sp(A) are 0 (by considering the eigenvalues
in κ(x) as usual). Thus all matrix entries of N n are nilpotent (by the maximum
modulus principle [Bosch et al. 1984, 6.2.1]). Therefore N itself is nilpotent since
A is Noetherian. �
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If we choose a geometric Frobenius 8 from WFw (keeping the notation of the
previous Proposition) we can thus define a Weil–Deligne representation (ρ̃, N ) on
An by the usual formula [Tate 1979, 4.2.1]:

ρ(8sγ )= ρ̃(8sγ ) exp(tp(γ )N ),

where s ∈Z and γ ∈ IFw . With this definition ρ̃ :WFw→GLn(A) is a representation
which is trivial on the open subgroup J ⊂ WFw (so continuous for the discrete
topology on A).

As already hinted at above we apply this construction to runiv
|GalFṽ

for a fixed
place v ∈60, and an affinoid Sp(A)⊂ X r̄ . We view the universal deformation runiv

:

GalF→GLn(Rr̄ ) as a representation on An by composing with Rr̄→O(X r̄ )→ A.
This gives a Weil–Deligne representation WDr̄ ,ṽ over A with the interpolative
property (5-1).

6. The local Langlands correspondence for GLn after Scholze

Scholze [2013b] gave a new purely local characterization of the local Langlands
correspondence. His trace identity (see Theorem 1.2 in [loc. cit.]) takes the following
form. Let 5 be an irreducible smooth representation of GLn(Fw), where w is an
arbitrary finite place of F . Suppose we are given τ =8sγ with γ ∈ IFw and s ∈Z>0,
together with a Q-valued “cut-off” function h ∈ C∞c (GLn(OFw)). First Scholze
associates a Q-valued function φτ,h ∈ C∞c (GLn(Fw,s)), where Fw,s denotes the
unramified degree s extension of Fw. The function φτ,h is defined by taking the trace
of τ×h∨ on (alternating sums of) certain formal nearby cycle sheaves à la Berkovich
on deformation spaces of $ -divisible OFw -modules; and h∨(g) = h(t g−1

). See
the discussion leading up to [Scholze 2013b, Theorem 2.6] for more details. Next
one selects a function fτ,h ∈ C∞c (GLn(Fw)) which is associated with φτ,h in the
sense that their (twisted) orbital integrals match. More precisely, with suitable
normalizations one has the identity TOδ(φτ,h)= Oγ ( fτ,h) for regular γ =N δ, see
[Clozel 1987, Theorem 2.1]. With our normalization of rec(·), Scholze’s trace
identity reads

tr( fτ,h|5)= tr
(
τ | rec(5⊗ | det |(1−n)/2)

)
· tr(h|5).

We will make use of a variant of fτ,h which lives in the Bernstein center of GLn(Fw).
We refer to Section 3 of [Haines 2014] for a succinct review of the basic properties
and different characterizations of the Bernstein center. This variant fτ has the
property that tr( fτ,h|5)= tr( fτ ∗ h|5) and is defined for all τ ∈WFw by decreeing
that fτ acts on any irreducible smooth representation 5 via scaling by

fτ (5)= tr
(
τ | rec(5⊗ | det |(1−n)/2)

)
.



84 CHRISTIAN JOHANSSON, JAMES NEWTON AND CLAUS SORENSEN

For the existence of fτ see the proofs of [Scholze 2013b, Lemma 3.2; 2013a,
Lemma 6.1; 2011, Lemma 9.1]. These fτ also appear in [Chenevier 2009, Proposi-
tion 3.11], see Section 10 below for a more thorough discussion.

We apply this construction to each of the places ṽ with v ∈60. Now τ = (τṽ)

denotes a tuple of Weil elements τṽ ∈WFṽ . Via our isomorphisms iṽ we view fτṽ
as an element of the Bernstein center of U (F+v ), say Z(U (F+v )), and consider the
element fτ :=

⊗
v∈60

fτṽ ∈
⊗

v∈60
Z(U (F+v )).

Lemma 6.1. Let x ∈ X r̄ be arbitrary. Then fτ acts on
⊗

v∈60
πx,v via scaling by

fτ (⊗v∈60πx,v)=
∏
v∈60

tr(τṽ|WD(rx |GalFṽ
)).

Proof. If {πv}v∈60 is a family of irreducible smooth representations, fτ acts on⊗
v∈60

πv via scaling by

fτ (⊗v∈60πv)=
∏
v∈60

tr
(
τṽ| rec(BCṽ|v(πv)⊗ | det |(1−n)/2)

)
.

Now use the defining property (4-1) of the representations πx,v attached to the
point x . �

7. Interpolation of traces

As above let Z(U (F+v )) denote the Bernstein center of U (F+v ), and Z(U (F+v ), Kv)

the center of the Hecke algebra H(U (F+v ), Kv). There is a canonical homo-
morphism Z(U (F+v ))→ Z(U (F+v ), Kv) obtained by letting the Bernstein center
act on C∞c (Kv\U (F+v )), see [Haines 2014, 3.2]. We let f Kv

τṽ
be the image of

fτṽ under this map, and consider f
K60
τ :=

⊗
v∈60

f Kv
τṽ

belonging to Z(K60) :=⊗
v∈60

Z(U (F+v ), Kv) which is the center of H(K60). In particular this operator
f

K60
τ acts on the sheaf M and its fibers My .

If y = (x, δ) ∈ Y (K p, r̄)(E) is a classical point of noncritical slope, and we
combine Proposition 4.2 and Lemma 6.1, we deduce that f K60

τ acts on M′
y '⊗

v∈60
πKv

x,v via scaling by ∏
v∈60

tr(τṽ|WD(rx |GalFṽ
)).

The goal of this section is to extrapolate this property to all points y. As a first
observation we note that the above factor can be interpolated across deformation
space X r̄ . Indeed, let Sp(A)⊂ X r̄ be an affinoid subvariety and let WDr̄ ,ṽ be the
Weil–Deligne representation on An constructed after Proposition 5.2.
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Lemma 7.1. For each tuple τ = (τṽ) ∈
∏
v∈60

WFṽ , the element

aτ :=
∏
v∈60

tr(τṽ|WDr̄ ,ṽ) ∈ A

satisfies the following interpolative property: For every point x ∈ Sp(A) the function
aτ specializes to

aτ (x)=
∏
v∈60

tr(τṽ|WD(rx |GalFṽ
)) ∈ κ(x).

Proof. This is clear from the interpolative property of WDr̄ ,ṽ by taking traces
in (5-1). �

Our main result in this section (Proposition 7.9 below) shows that aτ extends
naturally to a function defined on the whole eigenvariety Y (K p, r̄) in such a way
that f K60

τ :M→M is multiplication by aτ .
First we need to recall a couple of well-known facts from rigid analytic geometry.

Lemma 7.2. Let X be an irreducible rigid analytic space (over some unspecified
nonarchimedean field) and let Y ⊂ X be a nonempty Zariski open subset (see [Bosch
et al. 1984, Definition 9.5.2/1]). Then Y is irreducible.

Proof. Let X̃→ X be the (irreducible) normalization of X . The pullback of Y to
X̃ is a normalization Ỹ → Y and it suffices to show that the Zariski open subset
Ỹ ⊂ X̃ is connected (see [Conrad 1999, Definition 2.2.2]). Suppose Ỹ = U

∐
V

is an admissible covering with U, V proper admissible open subsets of Ỹ . By
Bartenwerfer’s Hebbarkeitssatz [1976, p. 159] the idempotent function on Ỹ which
is 1 on U and 0 on V extends to an analytic function on X̃ , which is necessarily a
nontrivial idempotent by the uniqueness in Bartenwerfer’s theorem “Riemann I.”
This contradicts the irreducibility of X̃ (by [Conrad 1999, Lemma 2.2.3]), so Ỹ
must be connected. �

Definition 7.3. A Zariski dense subset Z of a rigid space X is called very Zariski
dense (or Zariski dense and accumulation, see [Chenevier 2011, Proposition 2.6])
if for z ∈ Z and an affinoid open neighborhood z ∈U ⊂ X , there is an affinoid open
neighborhood z ∈ V ⊂U such that Z ∩ V is Zariski dense in V .

Lemma 7.4. Let X be a rigid space and let Z ⊂ X be a very Zariski dense subset.
Let Y ⊂ X be a Zariski open subset which is Zariski dense. Then Y ∩ Z is very
Zariski dense in Y .

Proof. We first note that it suffices to prove that Y ∩ Z is Zariski dense in Y . Very
Zariski density then follows immediately from very Zariski density of Z in X . We
show that Z is Zariski dense in every irreducible component of Y . By [Conrad
1999, Corollary 2.2.9] these irreducible components are given by the subsets Y ∩C ,
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where C is an irreducible component of X . Denote by C◦ the Zariski open subset
of X given by removing the intersections with all other irreducible components
from C . Then Y ∩C◦ is irreducible by Lemma 7.2 and meets Z since it is Zariski
open in X . It follows from very Zariski density of Z in X that Z is Zariski dense
in Y ∩C◦. We deduce that Z is Zariski dense in Y ∩C , as desired. �

In order to deal with the non étale points below, the following generic freeness
lemma will be crucial.

Lemma 7.5. Let X be a reduced rigid space and let M be a coherent OX -module.
Then there is a Zariski open and dense subset XM ⊂ X over which M is locally
free.

Proof. We follow an argument from the proof of [Hansen 2017, Theorem 5.1.2]:
The regular locus X reg of X is Zariski open and dense, by the excellence of affinoid
algebras. If U ⊂ X is an affinoid open M is locally free at a regular point x ∈U if
and only if x is not in the support of

⊕dim U
i=1 ExtiO(U )(M(U ),O(U )). This shows

that M is locally free over a Zariski open subset XM which is the intersection
of X reg and another Zariski open subset of X — the complement of the support.
Namely, if U ⊂ X reg is a connected affinoid open (so O(U ) is a regular domain)
then the support of

⊕dim U
i=1 ExtiO(U )(M(U ),O(U )) in Spec(O(U )) has dimension

< dim(U ), by [Bruns and Herzog 1993, Corollary 3.5.11(c)] and therefore its
complement is dense. We deduce that XM is dense in X . �

The following observation lies at the heart of our interpolation argument.

Lemma 7.6. Letw : X→W be a map of reduced equidimensional rigid spaces and
let M be a coherent OX -module. We assume that X admits a covering by affinoid
opens V such that

(1) w(V )⊂W is affinoid open,

(2) The restriction w|V : V → w(V ) is finite,

(3) M(V ) is a finite projective O(w(V ))-module.

Let Z ⊂ X be a very Zariski dense subset, and suppose φ ∈ EndOX (M) induces the
zero map φz = 0 on the fibers Mz =M⊗OX κ(z) for all z ∈ Z. Then φ = 0.

Proof. First we restrict to the Zariski open and dense set XM from Lemma 7.5.
Since M is locally free over XM, the locus in XM where φ vanishes is a Zariski
closed subset. By Lemma 7.4, this locus also contains a Zariski dense set of points
(namely Z ∩ XM) so we infer that φ|XM = 0.

Now we let V ⊂ X be an affinoid open forming part of the cover described in
the statement. Let w(V )0 ⊂ w(V ) be the (Zariski open and dense — since W is
reduced) locus where the map V → w(V ) is finite étale.
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Since X\XM ⊂ X is a Zariski closed subset of dimension < dim X , the set
W1 := w(V ∩ (X\XM)) is a Zariski closed subset of w(V ) with dimension <
dim X = dim W . So w(V )\W1 is Zariski open and dense in w(V ).

We deduce thatw(V )0∩(w(V )\W1) is a Zariski dense subset ofw(V ). Moreover,
φ induces the zero map on the fibers M(V )⊗O(w(V )) κ(y) for all y in this dense
intersection: Use that w|V is étale at y, so if x1, . . . , xr are the preimages of y in V ,
then

M(V )⊗O(w(V )) κ(y)'
r⊕

i=1

M(V )⊗O(V ) κ(xi )

and we know that φ acts as zero on each M(V ) ⊗O(V ) κ(xi ) since xi ∈ XM
(otherwise y = w(xi ) ∈ W1), as observed in the first paragraph of the proof. We
conclude that φ=0 on M(V ): Indeed M(V ) is a finite projective O(w(V ))-module
so the points y ∈ w(V ) where φ vanishes on the fiber form a Zariski closed subset
which contains w(V )0∩ (w(V )\W1). Since W is reduced φM(V ) = 0. Since V was
arbitrary, we must have φ = 0 on M as desired. �

We now return to the notation of Section 3. We have defined the eigenvariety
Y (K p, r̄) to be the (scheme-theoretic) support of the coherent sheaf M over X r̄× T̂ .
It comes equipped with a natural weight morphism ω : Y (K p, r̄)→W defined as
the composition of maps

Y (K p, r̄) ↪→ X r̄ × T̂
pr
→ T̂

can
→W.

The following lemma summarizes some important facts about Y (K p, r̄) and ω.

Lemma 7.7. The eigenvariety Y (K p, r̄) satisfies the following properties.

(1) Y (K p, r̄) has an admissible cover by open affinoids (Ui )i∈I such that for all i
there exists an open affinoid Wi ⊂W which fulfills (a) and (b) below:

(a) The weight morphism ω : Y (K p, r̄)→W induces, upon restriction to each
irreducible component C ⊂Ui , a finite surjective map C→Wi .

(b) Each O(Ui ) is isomorphic to an O(Wi )-subalgebra of EndO(Wi )(Pi ) for
some finite projective O(Wi )-module Pi .

(2) The classical points of noncritical slope are very Zariski dense in Y (K p, r̄).

(3) Y (K p, r̄) is reduced.

Proof. These can be proved in a similar way to the analogous statements in [Breuil
et al. 2017]. More precisely, we refer to Proposition 3.11, Theorem 3.19 and
Corollary 3.20 of that paper. (Note that in the proof of Corollary 3.20 we can, in
our setting, replace the reference to [Caraiani et al. 2016] with the well-known
assertion that the Hecke operators at good places act semisimply on spaces of
cuspidal automorphic forms.) �
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Remark 7.8. In [Breuil et al. 2017, p. 1610] there is a “neatness” assumption on
the tame level K p. Namely that (in our notation) G(Q)∩ hK p K ph−1

= {1} for all
h ∈ G(A f ), which can always be ensured by shrinking K p. This assumption is
necessary for the patching argument of [Caraiani et al. 2016]. However, to avoid
future potential confusion, we stress that neatness is not essential in the context of
eigenvarieties — such as [Breuil et al. 2017, Proposition 3.11] which we cited in
the proof of Lemma 7.7 above. This observation is crucial in Section 9B below,
where the level is hyperspecial/Iwahori at all places and therefore not neat.

Since Y (K p, r̄) projects to X r̄ , its ring of functions O(Y (K p, r̄)) becomes an
Rr̄ -algebra via the natural map Rr̄ → O0(X r̄ ). Pushing forward the universal
deformation of r̄ (with a fixed choice of basis) then yields a continuous representation

r : GalF → GLn
(
O(Y (K p, r̄))

)
.

In particular, for every open affinoid U ⊂ Y (K p, r̄) we may specialize r further
and arrive at a continuous representation r : GalF → GLn(O(U )). We may in fact
take O0(U ) here (the functions bounded by one), but we will not need that.

It follows from Proposition 5.2 that for v ∈60, an open affinoid U ⊂ Y (K p, r̄),
and a fixed choice of lift of geometric Frobenius 8 = 8ṽ in WFṽ , we obtain a
Weil–Deligne representation WDr̄ ,ṽ(U ) over O(U ). Moreover, this construction is
obviously compatible as we vary U in the sense that if U ′ ⊂ U , then WDr̄ ,ṽ(U )
pulls back to WDr̄ ,ṽ(U ′) over U ′ (by the uniqueness in Proposition 5.2). To be
precise, there is a natural isomorphism of Weil–Deligne representations over O(U ′),

WDr̄ ,ṽ(U ′)'WDr̄ ,ṽ(U )⊗O(U )O(U ′).

Now, for a tuple of Weil elements τ = (τṽ) ∈
∏
v∈60

WFṽ we obtain functions

aτ,U :=
∏
v∈60

tr(τṽ|WDr̄ ,ṽ(U )) ∈O(U ),

as defined above in Lemma 7.1. By the compatibility just mentioned, aτ,U ′ =
resU,U ′(aτ,U ) when U ′⊂U . It follows that we may glue the aτ,U and get a function
aτ = aτ,Y (K p,r̄) on the whole eigenvariety Y (K p, r̄) with the interpolation property
in Lemma 7.1.

Proposition 7.9. The operator f K60
τ acts on M via scaling by aτ , for every τ ∈∏

v∈60
WFṽ .

Proof. We must show the endomorphism φ := f K60
τ −aτ of M equals zero. By the

discussion at the beginning of this section (just prior to 7.1) we know φ induces the
zero map on the fibers of M at classical points of noncritical slope. We are now
done by Lemma 7.6 (together with Lemma 7.7). �
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By specialization at any point y = (x, δ) ∈ Y (K p, r̄) we immediately find that
f K60
τ acts on the fiber My (and hence its dual M′

y) via scaling by aτ (x). We
summarize this below.

Corollary 7.10. Let y ∈ Y (K p, r̄) be an arbitrary point. Then f K60
τ acts on M′

y
via scaling by ∏

v∈60

tr(τṽ|WD(rx |GalFṽ
)).

Proof. This is an immediate consequence of Proposition 7.9. �

8. Interpolation of central characters

In this section we will reuse parts of the argument from the previous Section 7
to interpolate the central characters ωπx,v across the eigenvariety. We include it
here mostly for future reference. It will only be used in this paper in the very last
paragraph of Remark 9.6 below.

For v ∈60 we let Z(U (F+v )) be the center of U (F+v ) (recall that its Bernstein
center is denoted by Z). There is a natural homomorphism

Z(U (F+v ))→ Z(U (F+v ), Kv)
×

which takes ξv to the double coset operator [KvξvKv]. Taking the product over
v ∈ 60 we get an analogous map Z(U (F+60

))→ Z(K60)
× which we will denote

ξ = (ξv)v∈60 7→ hK60
ξ =

⊗
v∈60
[KvξvKv]. Thus hK60

ξ operates on M and its fibers.
If y = (x, δ) ∈ Y (K p, r̄)(E) is a classical point of noncritical slope the action of

hK60
ξ on M′

y '
⊗

v∈60
πKv

x,v is clearly just multiplication by
∏
v∈60

ωπx,v (ξv). This
property extrapolates to all points y by mimicking the proof in Section 7, as we
will now explain.

For Sp(A)⊂ X r̄ we have the Weil–Deligne representation WDr̄ ,ṽ on An . Consider
its determinant det(WDr̄ ,ṽ) as a character F×

ṽ
→ A× via local class field theory.

Note that Z(U (F+v )) ' Z(GLn(Fṽ)) ' F×
ṽ

which allows us to view the product∏
v∈60

det(WDr̄ ,ṽ) as a character ω : Z(U (F+60
))→ A×. Clearly the specializa-

tion of ω at any x ∈ Sp(A) is ωx =
⊗

v∈60
ωπx,v : Z(U (F+60

))→ κ(x)× by the
interpolative property of WDr̄ ,ṽ.

By copying the proof of Proposition 7.9 almost verbatim, one easily deduces the
following.

Proposition 8.1. There is a homomorphism ω : Z(U (F+60
))→O(Y (K p, r̄))× such

that hK60
ξ :M→M is multiplication by ω(ξ) for all ξ . In particular, for any point

y = (x, δ) ∈ Y (K p, r̄), the action of hK60
ξ on M′

y is scaling by
∏
v∈60

ωπx,v (ξv).
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9. Proof of the main result

We now vary K60 and reinstate the notation MK p (instead of just writing M) to
stress the dependence on K p

= K60 K6 . Suppose K ′60
⊂ K60 is a compact open

subgroup, and let K ′p= K ′60
K6 . Recall that the global sections of MK p is the dual

of JB(Ŝ(K p, E)an
m ). Thus we find a natural transition map MK ′p�MK p of sheaves

on X r̄ × T̂ . Taking their support we find that Y (K p, r̄) ↪→ Y (K ′p, r̄). Passing to
the dual fibers at a point y ∈ Y (K p, r̄) yields an embedding M′

K p,y ↪→M′

K ′p,y
which is equivariant for the Hecke action (i.e., compatible with the map H(K ′60

)�
H(K60) given by eK60

? ( ·) ? eK60
). The limit lim

−−→K60
M′

K p,y thus becomes an
admissible representation of U (F+60

)−→∼
∏
v∈60

GLn(Fṽ) with coefficients in κ(y).
Subsequently we will use the next lemma to show it is of finite length.

Lemma 9.1. Let y ∈ Y (K p, r̄) be any point. Let
⊗

v∈60
πv be an arbitrary irre-

ducible subquotient6 of lim
−−→K60

M′

K p,y . Then for all places v ∈ 60 we have an
isomorphism

WD(rx |GalFṽ
)ss
' rec

(
BCṽ|v(πv)⊗ | det |(1−n)/2)ss

.

(Here ss means semisimplification of the underlying representation ρ̃ of WFṽ , and
setting N = 0.)

Proof. By Corollary 7.10 we know that fτ acts on lim
−−→K60

M′

K p,y via scaling by
aτ (x). On the other hand, by the proof of Lemma 6.1 we know what fτ

(⊗
v∈60

πv
)

is. By comparing the two expressions we find that∏
v∈60

tr(τṽ|WD(rx |GalFṽ
))=

∏
v∈60

tr
(
τṽ| rec(BCṽ|v(πv)⊗ | det |(1−n)/2)

)
for all tuples τ . This shows that WD(rx |GalFṽ

) and rec
(
BCṽ|v(πv)⊗ | det |(1−n)/2

)
have the same semisimplification for all v ∈60 by “linear independence of charac-
ters.” �

We employ Lemma 9.1 to show lim
−−→K60

M′

K p,y has finite length (which for
an admissible representation is equivalent to being finitely generated by Howe’s
Theorem, see [Bernšteı̆n and Zelevinskiı̆ 1976, 4.1]).

Lemma 9.2. The length of lim
−−→K60

M′

K p,y as a U (F+60
)-representation is finite, and

uniformly bounded in y on quasicompact subvarieties of Y (K p, r̄).

Proof. We first show finiteness. Any admissible smooth representation contains a
simple subrepresentation. Therefore, if lim

−−→K60
M′

K p,y is of infinite length we can
write down an infinite proper ascending chain of U (F+60

)-invariant subspaces

0= V0 ⊂ V1 ⊂ V2 ⊂ V3 ⊂ · · · ⊂ lim
−−→
K60

M′

K p,y, Vi+1/Vi 6= 0 simple.

6Such exist by Zorn’s lemma; any finitely generated subrepresentation admits an irreducible
quotient.
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Taking K60-invariants (which is exact as charE = 0) we find an increasing chain
of H(K60)-submodules V K60i ⊂M′

K p,y . The fiber is finite-dimensional so this
chain must become stationary. I.e., Vi+1/Vi has no nonzero K60-invariants for
i large enough. If we can show that every irreducible subquotient

⊗
v∈60

πv of
lim
−−→K60

M′

K p,y has nonzero K60-invariants, we are done. We will show that we can
find a small enough K60 with this last property.

The local Langlands correspondence preserves ε-factors, and hence conductors.
(See [Jacquet et al. 1981] for the definition of conductors in the GLn-case, and [Tate
1979, p. 21] for the Artin conductor of a Weil–Deligne representation.) Therefore,
for every place v ∈60 we get a bound on the conductor of BCṽ|v(πv):

(9-3) c(πv) := c(BCṽ|v(πv))

= c
(
rec(BCṽ|v(πv)⊗ | det |(1−n)/2)

)
≤ c

(
rec(BCṽ|v(πv)⊗ | det |(1−n)/2)ss)

+ n
9.1
= c

(
WD(rx |GalFṽ

)ss)
+ n.

In the inequality we used the following general observation: If (ρ̃,N ) is a Weil–
Deligne representation on a vector space S, its conductor is

c(ρ̃)+ dim S I
− dim(kerN )I ,

where I is shorthand for inertia; c(ρ̃) is the usual Artin conductor, which is clearly
invariant under semisimplification: c(ρ̃) only depends on ρ̃|I which is semisimple
because it has finite image. This shows c(πv) is bounded in terms of x . If we take
K60 small enough, say K60 =

∏
v∈60

Kv, where

Kv = i−1
ṽ

{
g ∈ GLn(OFṽ ) : (gn1, . . . , gnn)≡ (0, . . . , 1) mod$ N

Fṽ

}
with N greater than the right-hand side of the inequality (9-3), then every constituent⊗

v∈60
πv as above satisfies πKv

v 6= 0 as desired. This shows the length is finite.
To get a uniform bound in K p and r̄ we improve on the bound (9-3) using [Livné

1989, Proposition 1.1]: Since rx |GalFṽ
is a lift of r̄ |GalFṽ

, that proposition implies
that

c(WD(rx |GalFṽ
))≤ c(r̄ |GalFṽ

)+ n.

(One can improve this bound but the point here is to get uniformity.) Taking K60 as
above with N greater than c(r̄ |GalFṽ

)+ 2n the above argument guarantees that the
U (F+60

)-length of lim
−−→K60

M′

K p,y is the same as the H(K60)-length of M′

K60 K6 ,y ,
which is certainly at most dimE M′

K60 K6 ,y . This dimension is uniformly bounded
when y is constrained to a quasicompact subspace of Y (K p, r̄). �
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9A. Strongly generic representations. Fix a place v ∈60 and recall the definition
of πx,v in (4-1). We call x a generic point if πx,v is a generic representation (i.e.,
when it has a Whittaker model) for all v ∈ 60. For instance, all classical points
are generic (see the proof of Lemma 3.3). We will impose a stronger condition on
rx |GalFṽ

which ensures that πx,v is fully induced from a supercuspidal representation
of a Levi subgroup (thus in particular is generic, see [Bernstein and Zelevinsky
1977]). This rules out that πx,v is Steinberg for instance, and bypasses difficulties
arising from having nonzero monodromy.

Definition 9.4. Decompose WD(rx |GalFṽ
)ss
' ρ̃1⊕· · ·⊕ρ̃t into a sum of irreducible

representations ρ̃i : WFṽ → GLni (Qp). We say rx |GalFṽ
is strongly generic if

ρ̃i � ρ̃ j ⊗ ε for all i 6= j , where ε : GalFṽ → Z×p is the cyclotomic character.

For the rest of this section we will assume rx is strongly generic at each v ∈60.
In the notation of Definition 9.4, each ρ̃i corresponds to a supercuspidal represen-
tation π̃i of GLni (Fṽ). More precisely WD(ρ̃i )= rec(π̃i ⊗ | det |(1−ni )/2). Letting
IndGLn

Pn1,...,nt
denote normalized parabolic induction from the upper block-triangular

parabolic subgroup with Levi GLn1 × · · ·×GLnt , we have

πx,v ⊗ | det |(1−n)/2
' IndGLn

Pn1,...,nt

(
(π̃1⊗ | det |(1−n1)/2)⊗ · · ·⊗ (π̃t ⊗ | det |(1−nt )/2)

)
since the induced representation is irreducible, see [Bernstein and Zelevinsky 1977].
Indeed π̃i � π̃ j (1) for all i 6= j . (The twiddles above ρi and πi should not be
confused with taking the contragredient.)

By Lemma 9.1, for any irreducible subquotient
⊗

v∈60
πv of lim

−−→K60
M′

K p,y , the
factor πv has the same supercuspidal support as πx,v. Since the latter is fully
induced from Pn1,...,nt they must be isomorphic. In summary we have arrived at
this result:

Corollary 9.5. Let y = (x, δ) ∈ Y (K p, r̄) be a point at which rx is strongly generic
at every v ∈ 60. Then lim

−−→K60
M′

K p,y has finite length, and every irreducible
subquotient is isomorphic to

⊗
v∈60

πx,v.

Altogether this proves Theorem 1.1 in the Introduction.

Remark 9.6. Naively one might hope to remove the “ss” in Theorem 1.1 by showing
that πx,v has no nonsplit self-extensions; Ext1GLn(Fṽ)(πx,v, πx,v)= 0. However, this
is false even if we assume πx,v ' IndGLn

P (σ ) with σ =
⊗t

j=1 π̃ j supercuspidal (as
above). Let us explain why. For simplicity we assume σ is regular, which means
wσ 'σ⇒w=1 for all block-permutationsw∈ Sn . In other words π̃i 6' π̃ j for i 6= j
with ni = n j . Under this assumption the “geometric lemma” (see [Casselman 1995,
Proposition 6.4.1]) gives an actual direct sum decomposition of the N -coinvariants:

(πx,v)N '
⊕

w wσ
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with w running over block-permutations as above. The usual adjointness property
of (·)N is easily checked to hold for Exti (see [Prasad 2013, Proposition 2.9]).
Therefore

Ext1GLn
(πx,v, πx,v)' Ext1M((πx,v)N , σ )'

∏
w

Ext1M(wσ, σ )' Ext1M(σ, σ ).

In the last step we used [Casselman 1995, Corollary 5.4.4] to conclude that
Ext1M(wσ, σ ) = 0 for w 6= 1. However, Ext1M(σ, σ ) is always nontrivial. For
example, consider the principal series case where P = B and σ is a smooth
character of T . Here Ext1T (σ, σ )' Ext1T (1, 1)' Hom(T, E)' En . In general, if
σ is an irreducible representation of M with central character ω, there is a short
exact sequence

0→ Ext1M,ω(σ, σ )→ Ext1M(σ, σ )→ Hom(Z M , E)→ 0

(see [Paškūnas 2010, Proposition 8.1] whose proof works verbatim with coefficients
E instead of Fp). If σ is supercuspidal it is projective and/or injective in the
category of smooth M-representations with central character ω, and vice versa
(see [Casselman 1995, Theorem 5.4.1; Adler and Roche 2004]). In particular
dimE Ext1M(σ, σ )= dim(Z M).

By Proposition 8.1 all the self-extensions of πx,v arising from lim
−−→K60

M′

K p,y
actually live in the full subcategory of smooth representations with central charac-
ter ωπx,v . As we just pointed out, supercuspidal is equivalent to being projective
and/or injective in this category. Thus at least in the case where

⊗
v∈60

πx,v is
supercuspidal we can remove the “ss” in Theorem 1.1.

Remark 9.7. We comment on the multiplicity m y in the analogous case of GL(2)/Q.
Replacing our unitary group U with GL(2)/Q, and replacing Ŝ(K p, E)with the com-
pleted cohomology of modular curves Ĥ 1(K p)E with tame level K p

⊂ GL2(A
p
f ),

a statement analogous to Theorem 1.1 is a consequence of Emerton’s local–global
compatibility theorem [Emerton 2011, Theorem 1.2.1], under the assumption that
r̄ |GalQp

is not isomorphic to a twist of
(

1 ∗
0 1

)
or
(

1 ∗
0 ε̄

)
. With this assumption, the

multiplicities m y are (at least predicted to be) equal to 2 (coming from the two-
dimensional Galois representation rx ), and the representations of GL2(Q60) which
appear are semisimple.

Indeed, it follows from [loc. cit.] that we have m y = 2 dimE J δB(5(%x)
an), where

%x := rx |GalQp
. When %x is absolutely irreducible, it follows from [Dospinescu 2014,

Theorems 1.1 and 1.2] (see also [Colmez 2014, Theorem 0.6]) that J δB(5(%x)
an) has

dimension at most 1. If %x is reducible, then [Emerton 2006b, Conjecture 3.3.1(8),
Lemma 4.1.4] predicts that J δB(5(%x)

an) again has dimension at most 1, unless %x

is of the form η⊕ η for some continuous character η : GalQp → E×.
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In the exceptional case with %x ' η⊕ η scalar, where [Emerton 2011, Theo-
rem 1.2.1(2)] does not apply, we have

dimE J δB(5(%x)
an)= 2, when δ = η|·| ⊗ ηε|·|−1,

and therefore [Emerton 2011, Conjecture 1.1.1] predicts that we have m y = 4 for
y = (x, η|·| ⊗ ηε|·|−1). Again the representation of GL2(Q60) which appears is
predicted to be semisimple.

9B. The general case at Iwahori level. In this section we assume r̄ is automorphic
of tame level K p

= K60 K6 , where K60 =
∏
v∈60

Kv is a product of Iwahori
subgroups. This can usually be achieved by a solvable base change; i.e., by replacing
r̄ with its restriction r̄ |GalF ′

for some solvable Galois extension F ′/F (see the
“Skinner–Wiles trick” [Skinner and Wiles 2001]). We make this assumption to
employ a genericity criterion of Barbasch and Moy [1994], which was recently
strengthened by Chan and Savin [2018; 2019].

9B1. Genericity and Iwahori-invariants. The setup of [Chan and Savin 2018] is
the following. Let G be a split group over a p-adic field F , with a choice of Borel
subgroup B = T U . We assume these are defined over O =OF , and let I ⊂ G(O)
be the Iwahori subgroup (the inverse image of B over the residue field Fq). The
Iwahori–Hecke algebra H has basis Tw = [Iw I ], where w ∈ Wex runs over the
extended affine Weyl group Wex = NG(T )/T (O). The basis vectors satisfy the
usual relations

Tw1 Tw2 = Tw1w2, when `(w1w2)= `(w1)+ `(w2),

(Ts − q)(Ts + 1)= 0, when `(s)= 1.

Here ` :Wex→ Z denotes the length function defined by q`(w) = |Iw I/I |. Inside
of H we have the subalgebra HW of functions supported on G(O), which has basis
{Tw}w∈W where W is the (actual) Weyl group. The algebra HW carries a natural
one-dimensional representation sgn : HW → C which sends Tw to (−1)`(w), and
we are interested in the sgn-isotypic subspaces of H-modules.

Definition 9.8. For a smooth G-representation π (over C) we introduce the follow-
ing subspace of the Iwahori-invariants

S(π)=
⋂
w∈W

(
π I )Tw=(−1)`(w)

.

In other words the (possibly trivial) subspace of π I where HW acts via the sgn-
character.

Fix a nontrivial continuous unitary character ψ : F→C× and extend it to a char-
acter of U as in [Chan and Savin 2018, Section 4]. For a smooth G-representation
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π we let πU,ψ be the “top derivative” of ψ-coinvariants (whose dual is exactly the
space of ψ-Whittaker functionals on π ).

Theorem 9.9 (Barbasch–Moy, Chan–Savin). Let π be a smooth G-representation
which is generated by π I . Then the natural map S(π) ↪→ π � πU,ψ is an isomor-
phism.

Proof. This is [Chan and Savin 2018, Corollary 4.5] which is a special case of
[Chan and Savin 2019, Theorem 3.5]. �

In particular, an irreducible representation π with π I
6= 0 is generic if and only

if S(π) 6= 0, in which case dim S(π)= 1. This is the genericity criterion we will
use below.

9B2. The S-part of the eigenvariety. We continue with the usual setup and notation.
We run the eigenvariety construction with Ŝ(K p, E)m replaced by its S-subspace.
More precisely, for each v ∈ 60 we have the functor Sv (Definition 9.8) taking
smooth GLn(Fṽ)-representations to vector spaces over E . We apply their composi-
tion S= ◦v∈60Sv to lim

−−→K60
Ŝ(K p, E)m. I.e., we take

5 :=
⋂
v∈60

⋂
w∈Wv

(Ŝ(K p, E)m)Tw=(−1)`(w) .

Clearly 5 is a closed subspace of Ŝ(K p, E)m, and therefore an admissible Banach
representation of G = G(Qp). As a result JB(5

an)′ is coadmissible (see [Breuil
et al. 2017, Proposition 3.4]) and hence the global sections 0(X r̄ × T̂ ,M5) of a
coherent sheaf M5 on X r̄ × T̂ . We let

Y5(K p, r̄)= sup(M5)

be its schematic support with the usual annihilator ideal sheaf. Mimicking the proof
of Lemma 3.1 we obtain the following description of the dual fiber of M5 at a
point y = (x, δ) ∈ Y5(K p, r̄);

M′

5,y ' J δB(5[px ]
an)'

⋂
v∈60

⋂
w∈Wv

J δB(Ŝ(K
p, E)m[px ]

an)Tw=(−1)`(w) .

This clearly shows Y5(K p, r̄) is a closed subvariety of Y (K p, r̄). Our immediate
goal is to show equality.

Lemma 9.10. Y5(K p, r̄)= Y (K p, r̄).

Proof. Since the classical points are Zariski dense in Y (K p, r̄) we just have to
show each classical y = (x, δ) in fact lies in Y5(K p, r̄). Let π be an automorphic
representation such that rx ' rπ,ι. This is an irreducible Galois representation
(since r̄ is) and thus BCF/F+(π) is a cuspidal and therefore generic automorphic
representation of GLn(AF ). In particular the factors of

⊗
v∈60

πv are generic.
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Taking Tw-eigenspaces of the embedding
⊗

v∈60
πKv
v ↪→M′

y from Proposition 4.2
yields a map

⊗
v∈60

Sv(πv) ↪→M′

5,y . Finally, by Theorem 9.9 we conclude that⊗
v∈60

Sv(πv) 6= 0 so that M′

5,y 6= 0. �

9B3. Conclusion. Now let y ∈ Y (K p, r̄) be an arbitrary point. By Lemma 9.10
we now know M′

5,y 6= 0. Note that M′

5,y = S(lim
−−→K60

M′
y) and we immediately

infer that lim
−−→K60

M′
y does have some generic constituent (by Theorem 9.9).

Suppose
⊗

v∈60
πv is any generic constituent of lim

−−→K60
M′

y . Lemma 9.1 tells
us πv and πx,v have the same supercuspidal support. By the theory of Bernstein-
Zelevinsky derivatives IndGLn

Pn1,...,nt
(π̃1⊗ · · ·⊗ π̃t) has a unique generic constituent

(where the π̃i are supercuspidals, or rather twists π̃i⊗| det |(1−ni )/2 as in Section 9A).
Consequently, there is a unique generic representation πgen

x,v with the same supercus-
pidal support as πx,v , and πv ' π

gen
x,v . Of course, under the Iwahori assumption the

π̃i are unramified characters, so here πgen
x,v is the generic constituent of an unramified

principal series. Note however that this does not mean πgen
x,v is necessarily a twisted

Steinberg representation (when the principal series is reducible). For instance, for
GL(3) one could have an induced-from-Steinberg representation χ1 StGL(2)×χ2

and so on, see [Sorensen 2006, Table A, p. 1757].
We summarize our findings:

Theorem 9.11. Let y = (x, δ) ∈ Y (K p, r̄) be an arbitrary point, where K60 is a
product of Iwahori subgroups. Then the following holds:

(1)
⊗

v∈60
π

gen
x,v occurs as a constituent of lim

−−→K60
M′

y (possibly with multiplicity).

(2) Every generic constituent of lim
−−→K60

M′
y is isomorphic to

⊗
v∈60

π
gen
x,v .

Here πgen
x,v is the generic representation of GLn(Fṽ) with the same supercuspidal

support as πx,v.

It would be interesting to relax the assumption that Kv is Iwahori for v ∈ 60.
In [Chan and Savin 2019] they consider more general s in the Bernstein spectrum
of GLmr (where the Levi is GLr × · · ·×GLr and the supercuspidal representation
is τ ⊗ · · · ⊗ τ ). For such an s-type (J, ρ) one can identify the Hecke algebra
H(J, ρ) with the Iwahori–Hecke algebra of GLm — but over a possibly larger p-
adic field. This is used to define the subalgebra HSm ⊂H(J, ρ) which carries the
sgn-character. If π ∈Rs(GLmr ) is an admissible representation, [Chan and Savin
2019, Theorem 3.5] shows that a certain adjunction map Sρ(π)→ πU,ψ is an
isomorphism, where Sρ(π) denotes the sgn-isotypic subspace of HomJ (ρ, π). (In
the case r = 1 and τ = 1 this recovers Theorem 9.9 above; the type is (I, 1).) In-
stead of considering Ŝ(K60 K6, E)m in the eigenvariety construction one could take
K60=

∏
v∈60 Jv and ρ=

⊗
v∈60

ρv for certain types (Jv, ρv) and consider the space
HomK60

(ρ, Ŝ(K6, E)m) which would result in an eigenvariety Yρ(K60 K6, r̄)
which of course sits as a closed subvariety of Y (K ′60

K6, r̄) for K ′60
⊂ ker(ρ).
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If we take an arbitrary point y ∈ Yρ(K60 K6, r̄) we know lim
−−→K60

M′
y lies in the

sv-component (for each v ∈ 60) and it is at least plausible the above arguments
with S replaced by Sρ would allow us to draw the same conclusion: lim

−−→K60
M′

y
admits

⊗
v∈60

π
gen
x,v as its unique generic irreducible subquotient (up to multiplicity).

The inertial classes s considered in [Chan and Savin 2019] are somewhat limited.
However, Savin has communicated to us a more general (unpublished) genericity
criterion — without restrictions on s.

10. A brief comparison with work of Bellaïche and Chenevier

As noted in the introduction, the papers [Bellaïche and Chenevier 2009; Ch-
enevier 2009] contain results of the nature of those of this paper. In particular,
Theorem 1.1(1) appears as [Chenevier 2009, remarque 3.13]. This section is an
attempt to give a slightly more detailed comparison. The theory of eigenvarieties
used by Bellaïche and Chenevier are those constructed in [Chenevier 2004]. In
[Bellaïche and Chenevier 2009, §7.4], they construct, on an eigenvariety X , a
sheaf 5S of admissible G(AS)-representations, where S is a finite set of places
away from p. As in our paper, this sheaf is constructed using the natural coherent
sheaf coming from their construction.7 Bellaïche and Chenevier then study how
the fibers 5S,x vary with x ∈ X , and in particular show the finiteness property
stated in Theorem 1.1(1). Each point x has an associated Hecke eigensystem
ψx :H→ κ(x) and one considers a certain generalized eigenspace Sψx of p-adic
automorphic forms; 5ψx

S is then the G(AS)-representation over OX,x/mω(x)OX,x

generated by Sψx . A rough “dictionary” between this paper and [Bellaïche and
Chenevier 2009] is

G(AS)!U (F+60
), 5S,x ! lim

−−→
K60

M′

y, 5
ψx
S !⊗v∈60πx,v.

We remark that the eigenvarieties used in [Bellaïche and Chenevier 2009] are
isomorphic to those used here (when one uses the same input data in terms of
groups, Hecke operators and so forth) by work of Loeffler [2011]. In fact even more
is true, the coherent sheaves produced by the two different constructions agree.8

Let us now discuss the local-global compatibility of [Chenevier 2009]. Both
his and our approach rely on the use of Bernstein center elements. Chenevier’s
very elegant approach is to build the elements he needs into his eigenvariety; this
new eigenvariety is then an open and closed subset of the original eigenvariety. By
contrast, we use the action on the coherent sheaf on an eigenvariety without any
Hecke operators at ramified places.

7Recall that all known eigenvariety constructions equip the eigenvariety with a coherent sheaf that
remembers the finite slope part of the spaces used to construct it.

8This is presumably well known to experts, and can be deduced from an extension of the method
of [Loeffler 2011], though as far as we know this result does not currently appear in the literature.



98 CHRISTIAN JOHANSSON, JAMES NEWTON AND CLAUS SORENSEN

We now go into slightly more detail. In this paragraph we work locally and let
GLn denote GLn(Fṽ) for some v ∈60. For a fixed Bernstein component Rs(GLn)

with center Zs Chenevier defines a continuous n-dimensional pseudocharacter

T s
:WFṽ → Zs

uniquely characterized by the following property (see [Chenevier 2009, Proposi-
tion 3.11]): For every irreducible π in Rs(GLn), on which Zs acts via the character
zπ : Zs

→ E , one has the identity

(zπ ◦ T s)(τ )= tr
(
τ | rec(π ⊗ | det |(1−n)/2)

)
for all τ ∈ WFṽ . (Note the different normalizations of the local Langlands corre-
spondence; Chenevier takes the trace of τ on LW (π)= rec(π ⊗| det |(1−n)/2)ss.) In
particular our Bernstein center element fτ coincides with T s(τ ) on representations
in Rs(GLn).

As mentioned earlier, in [Chenevier 2009] the eigenvariety Y comes with a
choice of Bernstein components (sv)v∈60 and a homomorphism

H=H6
⊗
(⊗

v∈60
Zsv
)
→O(Y )

(where H6 is the product of the spherical Hecke algebras away from 6). For
each v ∈ 60 one composes T sv with Zsv → O(Y ) and gets a pseudocharacter
T ′v :WFṽ →O(Y ). On the other hand, one can restrict the Galois pseudocharacter
T : GalF → O(Y ) to the Weil group. By [Chenevier 2009, Lemma 3.12] they
coincide:

T |WFṽ
= T ′v.

Consequently, to any τ ∈WFṽ one can attach a function aτ ∈O(Y ) which specializes
to tr

(
rx(τ )

)
for any y = (x, δ) ∈ Y . (Simply take aτ to be the image of T sv (τ )

under the map Zsv →O(Y ).)
The goal of [Chenevier 2009] is to use the p-adic deformation arguments above

to remove a regularity assumption on the weight, and attach Galois representations
rπ,ι to any automorphic representation π of G(A). Théorème 3.3 in [loc. cit.]
achieves this goal and proves local-global compatibility (up to semisimplification):

(10-1) WD(rπ,ι|GalFṽ
)ss
' rec

(
BCṽ|v(πv)⊗ | det |(1−n)/2)ss

.

In fact Bellaïche and Chenevier can prove a stronger result and even compare the
monodromy operators with respect to the usual partial order on partitions, see
[Chenevier 2009, Theorem 3.5]. With our definition of πx,v , (10-1) amounts to πx,v

and πv having the same supercuspidal support, for classical points y = (x, δ).
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