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We show that local-global compatibility (at split primes) away from p holds
at all points of the p-adic eigenvariety of a definite n-variable unitary group.
We do this by interpolating the local Langlands correspondence for GL,
across the eigenvariety by considering the fibers of its defining coherent
sheaf. We employ techniques of Chenevier and Scholze used in Scholze’s
proof of the local Langlands conjecture for GL,,.
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1. Introduction

The goal of this paper is to study the interpolation the local Langlands correspon-
dence across eigenvarieties of definite unitary groups, in the spirit of earlier works
[Paulin 2011; Bellaiche and Chenevier 2009; Chenevier 2009]. Our approach
is based on the construction of eigenvarieties in [Emerton 2006¢] and utilizes
techniques from Scholze’s proof [2013b] of the local Langlands conjecture for GL,,.
In the next few paragraphs we introduce notation in order to state our main result
(Theorem 1.1 below).
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Let p > 2 be a prime, and fix an unramified CM extension F/F* which is split
at all places v of F* above p. Suppose U, p+ is a unitary group in n variables which
is quasisplit at all finite places and compact at infinity (see 2A for more details).
Throughout ¥ is a finite set of finite places of F* containing X p=1{v:v|p}, and
we let ¥p = X\ X,. We assume all places v € X split in F' and we choose a divisor
v|v once and for all, which we use to make the identification U (szr ) = GL,(Fy).
We consider tame levels of the form K? = KgOKE, where K% = Hv¢2 K,isa
product of hyperspecial maximal compact subgroups, and Ky, =[], e, Ko-

Our coefficient field is a sufficiently large finite extension E/Q, with integers
O and residue field k = kg, and we start off with an absolutely irreducible' Galois
representation 7 : Galyp — GL,, (k) which is automorphic of tame level K7. We let
m = m; be the associated maximal ideal, viewed in various Hecke algebras (see
Sections 2C and 2D for more details). In Sections 2E and 3B we introduce the
universal deformation ring R; and the deformation space X; = Spf(R;)"¢. Each
point x € X carries a Galois representation r,, which is a deformation of r, and
we let p, C R; be the associated prime ideal. The Banach representation of p-adic
automorphic forms S (K?, E)y inherits a natural Ry-module structure, and we
consider its p,-torsion S (K?, E)mlpy] and its dense subspace of locally analytic
vectors .§'(Kp, E)wlp,]*, see Section 2B.

The eigenvariety Y (K?,r) C X5 X T equals the support of a certain coherent
sheaf M on X7 x T. Here T denotes the character space of the p-adic torus
T CU(F* ® Q) isomorphic to Hvlp TGLn) (F5), see Section 3C below. We have
T ~W x (Gp$)"®»!, where W is weight space (parametrizing continuous characters
of the maximal compact subgroup of T') which is a disjoint union of finitely many
open unit balls of dimension n[ F* : Q). By definition a point y = (x, §) € X7 x T
belongs to the eigenvariety Y (K7, r) if and only if the fiber M, is nonzero. If y is
E-rational the E-linear dual of M, can be described as

My~ TE(S(KP, E)mlp:]™),

where Jp denotes Emerton’s [2006a] locally analytic variant of the Jacquet functor
and J g means the §-eigenspace. Morally our main result states that lim Kz, M’y
interpolates the local Langlands correspondence for GL,, across the eigenvariety.
In our formulation below we let m , be the irreducible smooth representation of
U(F,") = GL,(Fjy) associated with rX|G211FE via the local Langlands correspon-

dence, i.e.,

WD (rx |Gl )"~ 2 rec(BCy (x,) © | det |1 /2)

I This is mostly for convenience. The automorphic O-lifts of 7 then arise from cusp forms on
GL, (AFf), see Lemma 3.3.
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with rec(-) normalized as in [Harris and Taylor 2001]. The notation BCj),, (7 ) sig-
nifies local base change, which simply amounts to viewing 7, , as a representation
of GL, (Fj) via its identification with U (F,").

Here is the precise formulation of our main result.

Theorem 1.1. Let y = (x,8) € Y(K?, r) be an arbitrary point on the eigenvariety.

(1) lim lim /\/l has finite length as a U (Fy, iy ,)-representation, and every irreducible

subquottent thereof has the same supercuspzdal support as @), ez TTx,v-

(2) Ify is a point such that r, is strongly generic at every v € Xy (see Definition 9.4
in the main text), then there is an my € Z- such that up to semisimplification

. N P m,
h—n>1K:0M/y = (®UEEQ ﬂx,v) E

. . . ;. ..
When Q) TTx.v IS supercuspidal lim K, M is semisimple.

(3) If y is any point which appears at Iwahori level (i.e., where the factors of
K7 at places in X are all Iwahori subgroups) then &), 5, 7§ is the only
genertc irreducible subquotient of lim M; and it does appear — where

£ denotes the generic representation with the same supercuspidal support

as Ty y.

UEEO

Before proceeding we remark that part (1) is also know due to work of Bellaiche
and Chenevier [2009] (finiteness) and Chenevier [2009] (compatibility with local
Langlands).> A more detailed discussion of these works in relation to ours can
be found in Section 10. Moving on, we note that part (1) of the theorem implies,
in particular, that lim lim ./\/l’ lies in the Bernstein component R*(U (Fy, iy )) for the
inertial class s determined by y (see Section 9A). Our methods are based on p-adic
interpolation of traces and do not give us any information about the monodromy
operator.

The control of generic constituents in the case where K5, is a product of Iwahori
subgroups (part (3) of the main theorem) is the most novel aspect of our paper;
it employs a genericity criterion of Barbasch—Moy, recently generalized by Chan
and Savin [2019]. In part (2) of Theorem 1.1 when y = (x, §) is a point for which
7y 18 supercuspidal for all v € £y we can remove the “ss” since there are no self-
extensions with central character that of , , (see Remark 9.6) by the projectivity
and/or injectivity of m, , in this category — this requires some attention to how the
central character varies on the eigenvariety, see Section 8.

We expect that the length my of lim, M/y asaU (F;O )-representation can
be > 1 at certain singular points. If y is a classical point of noncritical slope
(automatically étale by [Chenevier 2011, Theorem 4.10]) m, =1, see Proposition 4.2

2The latter part is [Chenevier 2009, Remarque 3.13], which the authors were unfortunately unaware
of when making this paper public. We thank Chenevier for pointing it out to us.
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below. Under certain mild nondegeneracy assumptions, m, should be closely
related to dimg Jg(l'[(g ), which is ﬁn/i:[e by [Emerton 2007, Corollary 0.15].
Here 0, = {rxlcais, hoez, and [1(ex) = &), , (rslcaly, ). where T1(-) is the p-
adic local Langlands correspondence for GL, (Fy) — as defined in [Caraiani et al.
2016] say, to fix ideas.> This expectation is based on the strong local-global
compatibility results of [Emerton 2011; Chojecki and Sorensen 2017], which
also seem to suggest that lim M’y should in fact be semisimple — for generic
points (otherwise the “generic” focal Langlands correspondence gives a reducible
indecomposable representation). We are not sure if this is an artifact of the n =2 case,
or if it is supposed to be true more generally. It is certainly not true for trivial reasons
since m, , does admit nontrivial self-extensions. For example, by [Orlik 2005,
Corollary 2] we have dim ExtiGLn (St, St) = (}). Even when . , is parabolically
induced from a supercuspidal it does happen that ExtéLn( Fﬁ)(ﬂx,v, Tyv) 7 0 (see
Remark 9.6.).

We briefly outline the overall strategy behind the proof of Theorem 1.1: For
classical points y = (x, 8) (i.e., those corresponding to automorphic represen-
tations) local-global compatibility away from p essentially gives an inclusion
X, ez v > lim Ks, /\/l’} which is an isomorphism if § moreover is of noncritical
slope. We reinterpret this using ideas from Scholze’s proof [2013b] of the local
Langlands correspondence: he works with certain elements f; in the Bernstein
center of GL, (F,,), associated with T € W, , which act on an irreducible smooth
representation I via scaling by tr(t| rec(IT)); here and throughout this paragraph we
ignore a twist by | det|!="/2 for simplicity. For each tuple T = (t5) € [[,ex. WF,
we thus have an element f; := &)y, fr; of the Bernstein center of

UGEO

UFS) = [] GLa(Fy),
vEX)
which we know how to evaluate on all irreducible smooth representations. In par-
ticular f; acts on lim Kz, M, via scaling by [, ¢y, tr(zs] rec(BCyy (77x.,,)) ) —still
assuming y is classical and noncritical. Those points are Zariski dense in Y (K7, r),
and using this we interpolate this key scaling property to all points y as follows.
By mimicking the standard proof of Grothendieck’s monodromy theorem one can
interpolate WD (ry|Gai,. ) in families. Namely, for each Sp(A) C X; we construct a
Weil-Deligne represerftation WD; ; over A which specializes to WD(ry|Gal,. ) for
all x € Sp(A). Around the point y we find a neighborhood 2 C Sp(A4) x T and
use the weight morphism w : Y (K7, r) — W, or rather its restriction w|q, to view
(2, M) as a finite type projective module over Oy (w(£2)), which allows us to
show that f; acts on lln;KZO I'(2, M) via scaling by Huezo tr(ry| WD; 5). This is

3 At least for the choice of Roo — O in [Caraiani et al. 2016] compatible with x : Rz — O via the
projection Roo — Rj.
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the most technical part of our argument; in fact we glue and get the scaling property
on the sheaf M itself. By specialization at y we deduce that f; acts on lim i, M’
via scaling by [, ex, I (‘L’v| rec(BCy, (7ry, v))) as desired. This result tells us that
every irreducible constituent ), .5, 7y of lim Ky ./\/l has the same supercuspidal
support as ), ex, Tx,v» and therefore is 1sornorpfnc to it if x is a strongly generic
point. We also infer that lim lim M, has finite length since dim M, < 0o and the
constituents ), ey o have conductors bounded by the conductors of WD(r¢|Gal Py ).

Before finishing this introduction by discussing the structure of the paper, we
wish to mention that Theorem 1.1 was motivated in part by the question of local-
global compatibility for the Breuil-Herzig construction I1(p)°", see [Breuil and
Herzig 2015, Conjecture 4.2.5]. The latter is defined for upper triangular p-adic
representations p of Galg,, and is supposed to model the largest subrepresentation
of the “true” p-adic local Langlands correspondence built from unitary continu-
ous principal series representations. We approach this problem starting from the
inclusion (for unitary &)

(1-2) J(S(KP, E)mlp ™) < ord%(S(KP, O)mlp DI/ p1™,

as shown in [Sorensen 2017, Theorem 6.2]. Here ordp is Emerton’s functor of
ordinary parts [Emerton 2010], which is right adjoint to parabolic induction Ind .
If y = (x,d) lies on Y(K?, r) the source of (1-2) is nonzero, and we deduce the
existence of a nonzero map Indz(8) — S(K P E)mlpy]. If one could show that
certain Weyl-conjugates y,, = (x, wé) all lie on Y (K?,r) one would infer that
there is a nontrivial map SOCGL,(@,) l'[(,o)Orcl — S(K P E)m[p,] which one could
hope to promote to a map M(p)°d — S(Kl’ E)m[px] using [Breuil and Herzig
2015, Corollary 4.3.11]. Here we take p = ry|Gal,. (up to a twist which we ignore
here) for some v|p such that F; = Q,,, and x isva point where ry|Gal,. 1S upper
triangular with 85 on the diagonal. In light of these speculations it is conceivable
that Theorem 1.1 can be used to show strong local-global compatibility, in the sense
that there is an embedding

I g_gnHomGL,l(@p)(n(p)"fd, S(K?, E)nlps]).
Zo

Finally, we make a few remarks on the structure of the paper. In our first (rather
lengthy) Section 2 we introduce in detail the notation and assumptions in force
throughout; the unitary groups U, r+, automorphic forms S(KP, E), Hecke algebras,
Galois representations and their deformations. Section 3 then defines the eigenva-
rieties Y (K7, r) and the sheaves Mg, essentially following [Breuil et al. 2017]
and [Emerton 2006c¢]. In Section 4 we recall the notion of a noncritical classical
point, and prove Theorem 1.1 for those. Section 5 interpolates the Weil-Deligne
representations across reduced Sp(A) C X5 by suitably adapting Grothendieck’s



70 CHRISTIAN JOHANSSON, JAMES NEWTON AND CLAUS SORENSEN

argument. We recall Scholze’s characterization of the local Langlands correspon-
dence in Section 6, and introduce the functions f; in the Bernstein center. The goal
of Section 7 is to show Proposition 7.9 on the action of f; on lim K, ', Mgpr),
where €2 is a neighborhood of y as above. Finally in Section 9 we put the pieces
together; we introduce the notion of a strongly generic point, and prove our main
results. Section 9B focuses on the case where Kz, is a product of Iwahori subgroups;
we recall and use the genericity criterion of Chan—Savin to show the occurrence of

® ez, Trv-
2. Notation and terminology

We denote the absolute Galois group Gal(F*?/F) of a field F by Galg.

2A. Unitary groups. Our setup will be identical to that of [Breuil et al. 2017]
although we will adopt a slightly different notation, which we will introduce below.

We fix a CM field F with maximal totally real subfield F* and Gal(F/F™) =
{1, c}. We assume the extension F/F* is unramified at all finite places, and split
at all places v|p of FT above a fixed prime p.

Let n be a positive integer. If n is even assume that 5[ F *T:Q] =0 mod 2. By
[Clozel et al. 2008, §3.5] this guarantees the existence of a unitary group U,r+ in n
variables such that

° U XF+ F ;) GLn,
e U is quasisplit over F," (hence unramified) for all* finite places v,
e U(FT ®qR) is compact.

We let G = Resp+/g U be its restriction of scalars.

If v splits in F the choice of a divisor w|v determines an isomorphism iy, :
U(F) = GL,(F,) well-defined up to conjugacy. Throughout we fix a finite
set ¥ of finite places of F* such that every v € X splits in F, and ¥ contains
Y, ={v:v|p}. Welet Xy = X\X,. We emphasize that unlike [Clozel et al. 2008]
we do not assume the places in X are banal.

For each v € X we choose a divisor v|v once and for all and let = {v:ve X}
We also choose an embedding Gal g, < Galr for each such v. Moreover, we choose
isomorphisms i which we will tacitly use to identify U (F;r ) with GL,,(F3). For
instance the collection (i3)y|, gives an isomorphism

@2-1) G(Q,) =UF* @qQ,) = [ [ CLa(Fy).
vlp

4Convenient in Lemma 3.3 when considering local base change from U (Fv+ ) to GL,, (F) —for
unramified representations.
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Similarly U(F;) = [[,ex GL.(F5) and analogously for U(F;O). When there is
no risk of confusion we will just write G instead of G(Q,). We let B C G be the
inverse image of the upper-triangular matrices under (2-1). In the same fashion T’
corresponds to the diagonal matrices, and N corresponds to the unipotent radical.
Their opposites are denoted B and N.

Below we will only consider tame levels K7 C G(A ) of the form K7 =T, ip Ko,
where K, C U (F,") is a compact open subgroup Wthh is assumed to be hyperspecial
for v ¢ X. Accordingly we factor it as K” = K5, K*, where K* = vazz K,isa
product of hyperspecials, and Ky, =[] K.

veEX)

2B. Automorphic forms. We work over a fixed finite extension £/Q,, which we
assume is large enough in the sense that every embedding F,} — Q p factors through
E for all v| p. We let O denote its valuation ring, z is a choice of uniformizer, and
k=0/(w) ~ [, is the residue field. We endow E with its normalized absolute
value |-| for which |&| =¢ .

For a tame level K7 C G(A;ﬁ) we introduce the space of p-adic automorphic
forms on G (A) as follows (see Definition 3.2.3 in [Emerton 2006c¢]). First let

S(KP,0) = C(G@\G(Af)/KP,0) = @cw(G(@)\G(Af)/KP, O/w'0).

Here C is the space of continuous functions, C* is the space of locally constant
functions. Note that the space of locally constant functions in S(K?, O) is w-
adically dense, so alternatively

S(K?,0) =C®(G@\GA)/K?, 0)"
— @COO(G(@)\G(Af)/KP, 0) ®o O/ 0.

These two viewpoints amount to thinking of S (K?,0) as H O(KP) or H O(KP)
respectively in the notation of [Emerton 2006c], see (2.1.1) and Corollary 2.2.25
there. The reduction modulo @ is the space of mod p modular forms on G (A),

S(K?, k) =C®(G@\G(A;)/K?, k) = 8K, 0)/m S(K?, 0),

which is an admissible (smooth) k[G]-module with G = G(Q),,) acting via right
translations. Thus S(K?, O) is a w-adically admissible G-representation over O,
i.e., an object of Modg_adm((’)) (see Definition 2.4.7 in [Emerton 2010]). Since it
is clearly flat over O, it is the unit ball of a Banach representation

S(K?, E)=8(K?,0)[1/p] =C(G@\G(A;)/K?, E).

Here we equip the right-hand side with the supremum norm || f|| = sup ¢cG(A) |f(2)l,
and S(Kp E) thus becomes an object of the category Bang (E)=!' of Banach
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E-spaces (H, ||-||) for which |H| C |E| endowed with an isometric G-action.
S (K?, E) is dubbed the space of p-adic automorphic forms on G(A).

The connection to classical modular forms is through locally algebraic vectors
as we now explain. Let V be an absolutely irreducible algebraic representation of
G xqg E. Thus V is a finite-dimensional E-vector space with an action of G(E),
which we restrict to G(Q,). If K, C G(Q,) is a compact open subgroup we let it
act on V and consider

Sv(K,K", E) = Homg,(V, (K", E)).

If we assume E is large enough that Endg (V') = E, the space of V-locally algebraic
vectors in S(K 7, E) can be defined as the image of the natural map

limV ®g Sv(K,K”, E) = S(K?, E)" "¢ < §(K?, E)

K,
(see Proposition 4.2.4 in [Emerton 2017]) Then the space of all locally algebralc
vectors decomposes as a direct sum S (KP, E)¥2 = Dy S (KP, E)V~42, Letting 1%
denote the contragredient representation, one easily identifies Sy (K ,K?, E) with
the space of (necessarily continuous) functions

f:G@\GA)/K? >V, f(gh)y=k"'f(g), forallkeKk,.

In turn, considering the function h(g) = gf(g) identifies it with the space of
right K, K P-invariant functions & : G(Ay) — V such that h(yg) = yh(g) for all
y € G(Q). If we complexify this space along an embedding ¢ : E < C we obtain
vector-valued automorphic forms. Thus we arrive at the decomposition

(2-2) Sv(KpK?, E)®p, C= Pme) -7, & (x))~’

with 7 running over automorphic representations of G(A) with 7, ~ V @, C.
It is even known by now that all mg () = 1, see [Mok 2015] and “the main
global theorem” [Kaletha et al. 2014, Theorem 1.7.1, p. 89] (both based on the
symplectic/orthogonal case [Arthur 2013]). Multiplicity one will be used below in
Lemma 3.3.

Remark 2.3. For full disclosure we will only use multiplicity one for representa-
tions 7 whose base change IT = BCr,p+ () to GL,(AF) is cuspidal (see the proof
of Lemma 3.3 below). Since I1 is V-cohomological the Ramanujan conjecture
holds in this case, i.e., IT is tempered. Therefore the packets in [Kaletha et al.
2014, Theorem 1.7.1] do not overlap and consist of irreducible representations; in
particular mg (;r) = 1. Some of the authors of [Kaletha et al. 2014] have informed
us that multiplicity one even holds for nontempered representations 7, the point
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being that the groups SFI,U in [loc. cit.] are abelian. As mentioned in the introduction
to [loc. cit.], the nontempered case is the topic of a sequel.

2C. Hecke algebras. At each v{p we consider the Hecke algebra H(U (F,"), K,)
of K,-biinvariant compactly supported functions ¢ : U(F,) — O (with K,-
normalized convolution). The characteristic functions of double cosets [ Ky, K]
form an O-basis.

Suppose v splits in F and K, is hyperspecial. Choose a place w|v and an isomor-
phism i,, which restricts to iy, : K, = GL, (OF, ). Then we identify H(U(FU*), K,
with the spherical Hecke algebra for GL,,(F,,). We let y,, ; € U (F,) denote the
element corresponding to

iw(Yw,j) = diag(op,, ..., D, L....D.
J
Then let Ty, j = [KyYw,j Ky] be the standard Hecke operators; H(U (F,}), K,) =
OlTy1..... T
For a tame level K7 as above, the full Hecke algebra is the restricted tensor
product relative to the characteristic functions charg, (below V runs over all finite
sets of places v{p):

HGAD), K = Q) HWU(F)), K,) = li_I,n<® HU(F)), KU>).

vip vV \pev

It acts on S(K?, E) by norm-decreasing morphisms, and hence preserves the unit
ball S(K?, O). This induces actions on S(K7”, k) and Sy (K ,K?”, E) as well given
by the usual double coset operators. Let

H(Ksy)) = Q) HUFH, K,), H(K™) = Q) HUF), K)
VE X v ¢ X split

be the subalgebras of H(G(A?), K?) generated by Hecke operators at v € X,
respectively Ty 1, ..., T, for v ¢ X split in F and w|v (the subscript s is for
“split”). In what follows we ignore the Hecke action at the nonsplit places v ¢ X.
Note that H, (K *) is commutative, but of course H(K x,) heed not be.

We define the Hecke polynomial Py, (X) € H(K X)[X] to be

Py(X)=X"+- -+ (=D (Nw) V=D2T, i X" o (=) (Nw)" "=V,

where Nw is the size of the residue field Of, /(@ F, ).
We denote by Ty (K,K?, O) the subalgebra of End (SV(KPKI’, E)) generated
by the operators H,(K ¥). This is reduced and finite over @. In case V is the

trivial representation we write To(K,K?”, O). As K, shrinks there are surjective
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transition maps between these (given by restriction) and we let
T(K?,0) =1limTo(K,K?, 0),
KI’
equipped with the projective limit topology (each term being endowed with the
w-adic topology). We refer to it as the “big” Hecke algebra. TT(K P Q) clearly acts
faithfully on S (KP, E) and one can easily show that the natural map H,(K*) —
TAT(K P ) has dense image, see the discussion in [Emerton 2011, 5.2].

A maximal ideal m C H,(K¥) is called automorphic (of tame level K P) if it
arises as the pullback of a maximal ideal in some Ty (K,K?”, ©O). Shrinking K, if
necessary we may assume it is pro-p, in which case we may take V to be trivial
(“Shimura’s principle”). In particular there are only finitely many such m, and
we interchangeably view them as maximal ideals of TAT(K 7 ) (and use the same
notation), which thus factors as a finite product of complete local O-algebras

T(k?,0)=[[T(K", O)u.

Correspondingly we have a decomposition S(KP,E) = D.. S(KP, E)q, and simi-
larly for S(K?, O). This direct sum is clearly preserved by H(Kx,).

2D. Galois representations. If R is an O-algebra, and r : Galp — GL,(R) is an
arbitrary representation which is unramified at all places w of F lying above a split
v ¢ X, we associate the eigensystem 6, : H;(K*) — R determined by

det(X — r(Froby,)) = 6,(Py, (X)) € R[X]

for all such w. Here Frob,, denotes a geometric Frobenius. (Note that the coefficients
of the polynomial determine 6, (T, ;) since Nw € O*; and 6,(T, ,) € R*.) We say
r is automorphic (for G) if 6, factors through one of the quotients Ty (K ,K?, O).

When R = O this means r is associated with one of the automorphic repre-
sentations 7 contributing to (2-2) in the sense that T, ; acts on 7K by scaling
by 1(6,(Ty,;)) for all wlv ¢ X as above. Conversely, it is now known that to
any such 7 (and a choice of isomorphism ¢ : @ » = C) one can attach a unique
semisimple Galois representation ry, : Galp — GL, @ ») with that property, see
[Thorne 2012, Theorem 6.5] for a nice summary. It is polarized, meaning that
ry e, ® €"~!, where e is the cyclotomic character, and one can explicitly write
down its Hodge—Tate weights in terms of V.

When R =k we let m, = ker(6,) be the corresponding maximal ideal of H, (K z).
Then r is automorphic precisely when m, is automorphic, in which case we tacitly
view it as a maximal ideal of Ty (K ,K?, O) (with residue field k) for suitable V
and K ,. In the other direction, starting from a maximal ideal m in Ty (K ,K?, O)
(whose residue field is necessarily a finite extension of k) one can attach a unique
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semisimple representation
’m 1 Galp — GL,(Ty (K,K?, O)/m)

such that 67 (T, ;) = Ty, ; +m (and which is polarized), see [Thorne 2012, Propo-
sition 6.6]. We say m is non-Eisenstein if 7y, is absolutely irreducible. Under this
hypothesis 7, admits a (polarized) lift

rm : Galp — GL,(Ty(K,K?, O)m)

with the property that 6, (T, ;) =T, ;; it is unique up to conjugation, see [Thorne
2012, Proposition 6.7], and gives a well-defined deformation of 7y,. If we let K,
shrink to a pro-p subgroup we may take V to be trivial, i.e., m C T{(K,K?, O).
Passing to the inverse limit yields a lift of r,, with coefficients in fF(K P O)n which
we will denote by 7. Throughout [Thorne 2012] it is assumed that p > 2; we
adopt that hypothesis here.

All the representations discussed above (1, Fm, 'm €tc.) extend’ to continuous
homomorphisms Galg+ — G, (R) for various R, where G, is the group scheme
(over Z) defined as a semidirect product {1, j} x (GL, x GL;), see [Thorne 2012,
Definition 2.1]. We let v : G, — GL, be the natural projection. Thus v ory, =
e“"&}ﬁ‘/"“ (and similarly for ry,), where 87/ F+ is the nontrivial quadratic character
of Gal(F/F™) and u, € {0, 1} is determined by the congruence py, =n mod 2 (see
[Clozel et al. 2008, Theorem 3.5.1; Bellaiche and Chenevier 2011, Theorem 1.2]).

2E. Deformations. Now start with r : Galgp+ — G, (k) such that its restriction
r : Galp — GL, (k) is absolutely irreducible and automorphic, with corresponding
maximal ideal m = my, and vor = 61_”6@‘“. In particular r is unramified
outside X.

We consider lifts and deformations of r to rings in Cp, the category of complete
local Noetherian (0-algebras R with residue field k = R/mg, see [Thorne 2012,
Definition 3.1]. Recall that a lift is a homomorphism r : Galp+ — G, (R) such that
r reduces to ¥ mod mg, and vor = e“”é‘l?j‘F+ (thought of as taking values in R™).
A deformation is a (1+mg M, (R))-conjugacy class of lifts.

For each v € T consider the restriction 75 = 7|Gal P, and its universal lifting
ring R;Dﬁ. Following [Thorne 2012] we let R;Eﬁ| denote its maximal reduced p-torsion
free quotient, and consider the deformation problem

S=(F/F*, £,%,0,7, €78, (R Jex)-

The functor Defs of deformations of type S is then represented by an object Rgni"
of Co, see [Thorne 2012, Proposition 3.4] or [Clozel et al. 2008, Proposition 2.2.9].

50nce a choice of vo € Galp+ — Gal is made, see [Clozel et al. 2008, Lemma 2.1.4]. See also
Proposition 3.4.4 therein.
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In what follows we will simply write R; instead of Rgni", and keep in mind the
underlying deformation problem S. Similarly, RFD is the universal lifting ring of
type S (which is denoted by RE in [Thorne 2012, Proposition 3.4]). Note that
R;Ij is a power series (0-algebra in |2 |n? variables over R; ([Clozel et al. 2008,
Proposition 2.2.9]); a fact we will not use in this paper.

The universal automorphic deformation ry, is of type S, so by universality it
arises from a local homomorphism

ViR = Ty(K,K?, O)m.

These maps are compatible as we shrink K,. Taking V to be trivial and passing to
the inverse limit over K, we obtain a map ¢ : R; — T(K?, O),, which we use to
view S(K?, E)y as an Ry-module.

3. Eigenvarieties

3A. Formal schemes and rigid spaces. In what follows (-)"¢ will denote Berth-
elot’s functor (which generalizes Raynaud’s construction for topologically finite
type formal schemes X over Spf(O), see [Raynaud 1974]). Its basic properties are
nicely reviewed in [de Jong 1995, Chapter 7]. The source FSp is the category of
locally Noetherian adic formal schemes X which are formally of finite type over
Spf(O) (i.e., their reduction modulo an ideal of definition is of finite type over
Spec(k)); the target Rig, is the category of rigid analytic varieties over E, see
Definition 9.3.1/4 in [Bosch et al. 1984]. For example, B = (Spf O{y})"¢ is the
closed unit disc (at 0); U = (Spf O[[x]1D)"¢ is the open unit disc. For a general affine
formal scheme X = Spf(A), where

A=0{y, ...,y Hxt, ..., x1/(81, - -, 81,

X"2 c B" x U is the closed analytic subvariety cut out by the functions g1, ..., g,
see [Bosch et al. 1984, 9.5.2]. In general X" is obtained by gluing affine pieces
as in [de Jong 1995, §7.2]. The construction of X"i¢ in the affine case is actually
completely canonical and free from coordinates: If I C A is the largest ideal of
definition, A[/" /e ] is the subring of A ®» E generated by A and all i /o with
iel" Let A[I"/w]” be its -adic completion (equivalently, its @ -adic completion,
see the proof of [de Jong 1995, Lemma 7.1.2]). Then A[I" /@ |" Qo E is an affinoid
E-algebra and there is an admissible covering

o0
X" = Spf(A)™e = ] Sp(AlI"/w]" ®0 E).
n=1
In particular A" := O(Spf(A)"€) = lim, A[I"/w]" ®o E. The natural map
A®p E — A" factors through the ring of bounded functions on Spf(A)"#; the
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image of A lies in o0 (Spf(A)rig), the functions whose absolute value is bounded
by 1, see [de Jong 1995, 7.1.8].

3B. Deformation space. We let X; = Spf(R;)"2 (a subvariety of U* for some
s). For a point x € X; we let x(x) denote its residue field, which is a finite
extension of E, and let k (x)” be its valuation ring; an O-algebra with finite residue
field k(x). Note the different meanings of «(x) and k(x). The evaluation map
R; — 0%X;) — k(x)° corresponds to a deformation

ry s Galps = Gk (x)?)

of ¥ ® k(x). (We tacitly choose a representative r, in the conjugacy class of lifts.)
We let p, = ker(R; — Kk (x)?) be the prime ideal of R; corresponding to x, see the
bijection in [de Jong 1995, Lemma 7.1.9]. We will often assume for notational
simplicity that x is E-rational, in which case x(x) = E and k(x) = k; so that r, is
a deformation of 7 over x (x)? = O.

3C. Character and weight space. Recall our choice of torus T C G(Q),), and let
Ty be its maximal compact subgroup. Upon choosing uniformizers {wr;},|, we
have an isomorphism T ~ Ty x Z"/*»! of topological groups. Moreover,

To~[]©5)" ~ (1‘[ ;m(Ff,)") x 2,
vlp vlp
N ——

n
Let 7 :=W x (Gyp®)¥rl where W := (Spf((’)[[To]]))ng. The weight space W is
isomorphic to |u| copies of the open unit ball U"F @l From a more functorial
point of view T represents the functor which takes an affinoid E-algebra to the set
Homcom(T A>), and similarly for W and Ty. See [Emerton 2017, Proposition 6.4.5].
Thus 7 carries a universal continuous character 8" : T — (’)(T)X which restricts
to a character Ty — O°(W)* via the canonical morphism T — W. Henceforth we
identify points of T with continuous characters § : T — «(8)* for varying finite
extensions « (§) of E (and analogously for W).

3D. Definition of the eigenvariety. We follow [Breuil et al. 2017, §4.1] in defining
the eigenvariety Y (K7, r) as the support of a certain coherent sheaf M = Mg»
on X;7 x 7. This is basically also the approach taken in Section (2.3) of [Emerton
2006c], except there X7 is replaced by Spec of a certain Hecke algebra. We define
M as follows.

Let (-)®" be the functor from [Schneider and Teitelbaum 2003, Theorem 7.1].
It takes an object H of Banadm(E ) to the dense subspace H?" of locally analytic
vectors. H®" is a locally analytic G-representation (over E) of compact type
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whose strong dual (H*") is a coadmissible D(G, E)-module, see [Schneider and
Teitelbaum 2003, p. 176].

We take H = S(K?, E), and arrive at an admissible locally analytic G-represen-
tation S (K?, E)3 which we feed into the Jacquet functor Jp defined in [Emerton
2006a, Definition 3.4.5]. By Theorem 0.5 of [loc. cit.] this yields an essentially
admissible locally analytic T -representation J, B(S‘ (K?, E)al). See [Emerton 2017,
Definition 6.4.9] for the notion of essentially admissible (the difference with admis-
sibility lies in incorporating the action of the center Z, or rather viewing the strong
dual as a module over (9(2) ® D(G, E)).

We recall [Emerton 2006¢, Proposition 2.3.2]: If F is a coherent sheaf on YA”, see
[Bosch et al. 1984, Definition 9.4.3/1], its global sections F(f", F) is a coadmissible
O(T)-module. Moreover, the functor F ~» I'(T, ) is an equivalence of categories
(since T is quasi-Stein). Note that (T, F) and its strong dual both acquire a
T -action via 8", Altogether the functor F ~- (T, F) sets up an antiequivalence
of categories between coherent sheaves on T and essentially admissible locally
analytic T -representations (over E).

As pointed out at the end of Section 2E, S (K?, E)y is an RrF-module via xﬁ,
and the G-action is clearly Rj-linear. Thus Jp (S‘ (K7, E)3) inherits an Rz-module
structure. By suitably modifying the remarks of the preceding paragraph (as in
Section 3.1 of [Breuil et al. 2017] where they define and study locally R7-analytic
vectors, see Definition 3.2 in [loc. cit.]) one finds that there is a coherent sheaf
M= Mgpr on X; x T for which

Je(S(KP, E)™ ~T'(X; x T, M)’

The eigenvariety is then defined as the (schematic) support of M, see [Bosch et al.
1984, Proposition 9.5.2/4]. Le.,

Y(K?,Fr) :=sup(/\/l)={y=(x,8):My;éO}CX;xf".

Thus Y(K?,r) is an analytic subset of X; x T with structure sheaf Oyx.#/T,
where 7 is the ideal sheaf of annihilators of M. That is Z(U) = Annp)I"(U, M)
for admissible open U. One can show that Y (K7, r) is reduced, see part (3) of
Lemma 7.7 below for precise references.

The fiber M, = (li_r)nU9y r'wu, M)) Q®0y k7., (¥) s finite-dimensional over k().
Suppose k(y) =~ E solely to simplify the notation. Then the full E-linear dual
M/y = Hompg (M, E) has the following useful description.

Lemma 3.1. Let y = (x, ) € (X5 X YA")(E) be an E-rational point. Then there is
an isomorphism

(3-2) My~ TR (S(KP, E)mlpe]™).
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(Here Jg means the §-eigenspace of Jp, and [p, ] means taking p,-torsion.)

Proof. First, since Xj x T is quasi-Stein, M is the largest quotient of I" (X x T, M)
which is annihilated by p, and on which T acts via §, see [Breuil et al. 2017, §5.4].
Thus Mﬁ’} is the largest subspace of J 3(S(KP, E )al) with the same properties,
ie., Jg(S(Kp, E)iN[px], as observed in Proposition 2.3.3(iii) of [Emerton 2006c].
Now,

TR(SK?, EYaDp] = Jp(S(KP, E)mlps]™

as follows easily from the exactness of (-)*" and the left-exactness of Jp (using that
p, is finitely generated to reduce to the principal case by induction on the number
of generators), see the proof of [Breuil et al. 2017, Proposition 3.7]. U

The space in (3-2) can be made more explicit: Choose a compact open subgroup
Ny C N and introduce the monoid 7+ = {t € T : t Not ! € No}. Then by [Emerton
2006a, Proposition 3.4.9],

TSR, EYalpal™) = S(K?, E)ulpa ™™=,

where T acts by double coset operators [ Not Ny] on the space on the right. Observe
that y lies on the eigenvariety Y (K?, r) precisely when the above space M’y is
nonzero.

Note that the Hecke algebra H(Kx,) acts on J B(S (K?, E)3), and therefore on
M and its fibers M, (on the right since we are taking duals). The isomorphism (3-2)
is H(Kx,)-equivariant, and our first goal is to describe M/y as a H(Kx,)-module.

3E. Classical points. We say that a point y = (x, §) € Y(K?, r)(E) is classical (of
weight V) if the following conditions hold (see [Breuil et al. 2017, Definition 3.14]
or the paragraph before [Emerton 2006c, Definition 0.6]):

(1) & = 8aigdsm» Where 8, is an algebraic character which is dominant relative
to B (i.e., obtained from an element of X*(T xg E)* by restriction to T),
and &gy, is a smooth character of T'. In this case let V denote the irreducible
algebraic representation of G xq E of highest weight §,.

(2) There exists an automorphic representation 7 of G (A) such that
(a) (7‘[;7 yk? # 0 and the H, (K *)-action on this space is given by the eigen-
system to 0, ,
() Too =2V ®E, C,
(c) mp is a quotient of Indg (85m81§1).

These points comprise the subset Y (K?, r).. Note that condition (a) is equivalent
to the isomorphism r, >~ r;, (both sides are irreducible since r, is a lift of 7). In
(c) 65 denotes the modulus character of B; the reason we include it in condition (c)
will become apparent in the proof of Proposition 4.2 below.
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Lemma 3.3. There is at most one automorphic w satisfying (a)—(c) above; and
mg(w) = 1.

Proof. Let I1 = BCr/p+ (i) be a (strong) base change of 7 to GL,,(Afr), where we
view 7 as a representation of U (Ag+) = G(A). For its existence see [Labesse 2011,
§5.3]. Note that IT is cuspidal since ry, is irreducible. In particular IT is globally
generic, hence locally generic. By local-global compatibility, see [Barnet-Lamb
et al. 2012; 2014; Caraiani 2014] for places w|p; [Taylor and Yoshida 2007; Shin
2011] for places w1p,

L WD(rz |Gaty, ) F ™ ~ rec(I1,, ® | det |1 /%)

for all finite places w of F, with the local Langlands correspondence rec(-) normal-
ized as in [Harris and Taylor 2001]. This shows that IT,, is completely determined
by r, at all finite places w. Moreover, we have IT,, = BC,,, (7r,) whenever the local
base change on the right is defined, i.e., when either v splits or 7, is unramified.
Our assumption that 3 consists of split places guarantees that BC,,, (77,) makes
sense locally everywhere. Furthermore, unramified local base change is injective
according to [Minguez 2011, Corollary 4.2]. We conclude that 7 is determined by
Ty, and moo >~ V @, C. Thus 7 is unique. Multiplicity one was noted earlier at the
end of Section 2B above, see Remark 2.3. |

4. The case of classical points of noncritical slope

Each point x € X; carries a Galois representation r, : Galp — GL, (« (x)) which
we restrict to the various decomposition groups Galg, for v € ¥. When v € Xy
there is a corresponding Weil-Deligne representation, see Section (4.2) in [Tate
1979], and we let 7, ,, be the representation of U (Fv+ ) (over k (x)) such that

(4-1) WD(re|Gay, )" ™ = rec(BCijy () @ | det |1 /2)

Note that the local base change BCj, (7r,,) is just 7y, thought of as a representation
of GL, (Fj) via the isomorphism i; : U (F,") = GL,(F;). We emphasize that 7, ,,
is defined even for nonclassical points on the eigenvariety. If y = (x, §) happens
to be classical, m, , ®fg, C >~ m,, where 7 is the automorphic representation in
Lemma 3.3. Below we relate X) 7Ty, to the fiber M;

Proposition 4.2. Let y = (x,6) € Y(K?,7)(E) be a classical point. Then there
exists an embedding of H(Kx,)-modules ®U€ZO vy <> M, which is an isomor-
phism if § is of noncritical slope, (see [Emerton 2006a, Deﬁmtlon 4.4.3], which is
summarized below).

veEX)

Proof. According to (0.14) in [Emerton 2006a] there is a closed embedding

Ts (SR, Eyulps ™" ~€) <> J5(S(K?, Eymlpsl™)” .
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Note that VV ~ Jdaig SO after passing to §-eigenspaces we get a closed embedding
(4-3) T3 (K, Eynlpa]™™) ) < J3(S(KP, EDmlpa]™).
The target is exactly /\/l/} by (3-2). On the other hand

(S(K?, E)ulp ")V~ ~ PV @5 7)) @ (x))*’

with 7 running over automorphic representations of G (A) over E with mo, >~ V
and such that 6, gives the action of H,(K %) on (71;J yK”. As noted in Lemma 3.3
there is precisely one such w which we will denote by m, throughout this proof
(consistent with the notation m, , introduced above). Note that ), ¢¥ nf;'} is a line
SO

SK?, E)ulps ™Y~ = (V ®p 7x.p) O (R s, T5)-

Since Jp is compatible with the classical Jacquet functor, see [Emerton 2006a,
Proposition 4.3.6], we identify the source of (4-3) with

(VN RF (7Tx,p)N)T:(S QF (®v620 ﬂf;})

Now VN ~ Jalg 18 one-dimensional, and so is (7, p)IT\,Zasm. Indeed, by Bernstein
second adjointness,

(T p)y ™ = Homg (Ind$ (8smd5 "), 7 ).

The right-hand side is nonzero by condition (c) above, and in fact it is a line
since Indg (8sm8§l) has a unique generic constituent (namely 7y ,, see the proof of
Lemma 3.3) which occurs with multiplicity one; this follows from the theory of
derivatives [Bernstein and Zelevinsky 1977, Chapter 4]. From this observation we
immediately infer that Homg (ﬁx, s Indg ((SS_H} 1) 3)) is one—dimensiAonal. To summa-
rize, (4-3) is an embedding ®U€ZO nxlf; > M/y Finally, since S(K?, E)n[p.]*"
clearly admits a G-invariant norm (the sup norm), Theorem 4.4.5 in [Emerton
2006a] tells us that (4-3) is an isomorphism if § is of noncritical slope. U

To aid the reader we briefly recall the notion of noncritical slope: To each
6 € f“(E) we assign the element slp(§) € X*(T xg E) defined as follows, see
[Emerton 2006a, Definition 1.4.2]. First note that there is a natural surjection
T(E) — X.(T xg E); the cocharacter ; € X,(T xq E) associated with r € T (FE)
is given by (x, u;) = ordg x (¢) for all algebraic characters x (here ordg is the
valuation on E normalized such that ordg (zwg) = 1). Then the slope of § is the
algebraic character slp(8) satisfying (slp(8), u;) = ordgé(¢) forallt € T.

Definition 4.4. Let o = % Y a0 We say that § = 8,158sm is of noncritical slope
if there is no simple root « for which the element s (8a1g + ©) + SIp(dsm) + € lies in
the (>o-cone generated by all simple roots.
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5. Interpolation of the Weil-Deligne representations

Our goal in this section is to interpolate across deformation space X;, the Weil—
Deligne representations WD (7 |Gal F)s for a fixed v € ¥y. More precisely, for any
affinoid subvariety Sp(A) C X7 we will define a rank n Weil-Deligne representation
WD; ; over A such that

(5-D WD(rxlGaiy,) = WDz 5 ®a,xk (x)

for all points x € Sp(A). The usual proof of Grothendieck’s monodromy theorem
(see [Tate 1979, Corollary 4.2.2]) adapts easily to this setting, and this has already
been observed by other authors. See for example [Bellaiche and Chenevier 2009,
7.8.3-7.8.14; Paulin 2011, 5.2; Emerton and Helm 2014, 4.1.6]. To make our article
more self-contained (and to point out the “usual” assumption that A is reduced is
unnecessary) we give the details for the convenience of the reader.

Proposition 5.2. Let w be a place of F not dividing p, and let A be an affinoid E-
algebra. For any continuous representation p : Galg, — GL, (A) there is a unique
nilpotent N € M,,(A) such that the equality p(y) = exp(t,(y)N) holds for all y in
an open subgroup J C Ir,. (Here t, : Ir, — Z, is a choice of homomorphism as
in Section (4.2) of [Tate 1979].)

Proof. Choose a submultiplicative norm |- || on A relative to which A is complete
(if A is reduced one can take the spectral norm, see [Bosch et al. 1984, 6.2.4]). Let
A° be the (closed) unit ball. Then I + piM,l (A°) is an open (normal) subgroup
of GL, (A°) for i > 0, so its inverse image p~ NI+ P'M,(A°)) = Galf, for some
finite extension F; of F,,. Note that F;,/F; is a Galois extension whose Galois
group is killed by p. Let us fix an i > 0 and work with the restriction p|gal, . Recall
that wild inertia Pr, C IF, is the Sylow pro-¢ subgroup where w|{. Since £ # p we
deduce that Pr, C Galp, for all j >i. That is p factors through the tame quotient
I,/ Pr, > [1,4¢ Z4- For the same reason p factors further through 7, : I, = Z,,.
Therefore we find an element o € I + p'M,,(A°) (the image of 1 € Z,, under p)
such that p(y) = a'r() for all y € Ir,. We let N :=log(w). If we choose i large
enough (i > 1 suffices, see the discussion in [Schneider 2011, p. 220]) all power
series converge and we arrive at p(y) = exp(t,(y)N) for y € Ir,. We conclude
that we may take J := Ir,. (The uniqueness of N follows by taking log on both
sides.)

To see that N is nilpotent note the standard relation p(w)N, p(w) ' = ||w||N
for w € Wg,. If we take w to be a (geometric) Frobenius this shows that all
specializations of N" at points x € Sp(A) are 0 (by considering the eigenvalues
in x(x) as usual). Thus all matrix entries of N" are nilpotent (by the maximum
modulus principle [Bosch et al. 1984, 6.2.1]). Therefore N itself is nilpotent since
A is Noetherian. O
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If we choose a geometric Frobenius ¢ from Wr, (keeping the notation of the
previous Proposition) we can thus define a Weil-Deligne representation (o, N) on
A" by the usual formula [Tate 1979, 4.2.1]:

p(®%y) = p(P°y) exp(t,(yY)N),

where s € Z and y € I,. With this definition p : Wr, — GL, (A) is a representation
which is trivial on the open subgroup J C Wp, (so continuous for the discrete
topology on A).

As already hinted at above we apply this construction to 7"™| gy P for a fixed
place v € Xy, and an affinoid Sp(A) C X;7. We view the universal deformation puniv .
Galr — GL, (R5) as a representation on A" by composing with Ry — O(X;) — A.
This gives a Weil-Deligne representation WDy ; over A with the interpolative
property (5-1).

6. The local Langlands correspondence for GL, after Scholze

Scholze [2013b] gave a new purely local characterization of the local Langlands
correspondence. His trace identity (see Theorem 1.2 in [loc. cit.]) takes the following
form. Let IT be an irreducible smooth representation of GL, (F,), where w is an
arbitrary finite place of F. Suppose we are given 1 =®*y withy € Ir, and s € Z-,
together with a Q-valued “cut-off” function & € C2°(GL,(OF,)). First Scholze
associates a Q-valued function ¢, € C°(GL,(Fy,)), where F,, ; denotes the
unramified degree s extension of F,,. The function ¢ j is defined by taking the trace
of T xh" on (alternating sums of) certain formal nearby cycle sheaves a la Berkovich
on deformation spaces of @ -divisible Of, -modules; and %" (g) = h(’ g_l). See
the discussion leading up to [Scholze 2013b, Theorem 2.6] for more details. Next
one selects a function f;, € C2°(GL,(F,)) which is associated with ¢ ;, in the
sense that their (twisted) orbital integrals match. More precisely, with suitable
normalizations one has the identity TOs(¢: ) = O, (fr5) for regular y = N6, see
[Clozel 1987, Theorem 2.1]. With our normalization of rec(-), Scholze’s trace
identity reads

tr( fr T = tr(r| rec(I @ | det |1 772)) - tr(h|TD).

We will make use of a variant of f; ; which lives in the Bernstein center of GL,, (Fy,).
We refer to Section 3 of [Haines 2014] for a succinct review of the basic properties
and different characterizations of the Bernstein center. This variant f; has the
property that tr( f7 |IT) = tr(f7 * 2|I1) and is defined for all T € W, by decreeing
that f; acts on any irreducible smooth representation IT via scaling by

fo(ID) = tr(z| rec(IT @ | det |1 772)).
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For the existence of f; see the proofs of [Scholze 2013b, Lemma 3.2; 2013a,
Lemma 6.1; 2011, Lemma 9.1]. These f; also appear in [Chenevier 2009, Proposi-
tion 3.11], see Section 10 below for a more thorough discussion.

We apply this construction to each of the places v with v € ¥y. Now 7 = (13)
denotes a tuple of Weil elements 7; € Wg,. Via our isomorphisms i we view fz;
as an element of the Bernstein center of U (F,"), say 3(U(F,")), and consider the

element fr := @5, fr; € Rpex, 3(U(F))).

Lemma 6.1. Let x € X; be arbitrary. Then f; acts on ), ex, Tx,v Via scaling by

fr@®vezymen) = [ | ezl WD lGay,))-

vEX)

Proof. If {my}yex, 1s a family of irreducible smooth representations, f; acts on
@ yex, T via scaling by

Sr(®uex, ) = l—[ tl‘(‘L’gl rec(BCj), (7r,) ® | det |(1*")/2))‘

VE X

Now use the defining property (4-1) of the representations 7, , attached to the
point x. ([

7. Interpolation of traces

As above let 3(U (F,")) denote the Bernstein center of U (F,), and Z(U (F,}), K,)
the center of the Hecke algebra H(U (FUJr ), K). There is a canonical homo-
morphism 3(U(F,})) — Z(U(F;"), K,) obtained by letting the Bernstein center
act on C2°(K,\U(F;")), see [Haines 2014, 3.2]. We let frfv be the image of
fr, under this map, and consider fTK20 = Qyes, fgv belonging to Z(Kyx,) =
X, eso 2 (U(F,"), K,) which is the center of H(K,). In particular this operator
fTKE0 acts on the sheaf M and its fibers M.

If y=(x,8) € Y(KP,r)(E) is a classical point of noncritical slope, and we
combine Proposition 4.2 and Lemma 6.1, we deduce that fTKZO acts on M/y ~
Rrex, Ky via scaling by

X,V

[ ] tr(zsl WDl ).

VE X

The goal of this section is to extrapolate this property to all points y. As a first
observation we note that the above factor can be interpolated across deformation
space Xr. Indeed, let Sp(A) C X7 be an affinoid subvariety and let WDy ; be the
Weil-Deligne representation on A" constructed after Proposition 5.2.
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Lemma 7.1. For each tuple T = (t3) € [ | WE;, the element

veX

a; .= H tr(z;| WDs 5) € A

veEYX)

satisfies the following interpolative property: For every point x € Sp(A) the function
a; specializes to

ar(x) = [ | te(zsl WD(rt[Gai, ) € K (x).

VE X

Proof. This is clear from the interpolative property of WDy ; by taking traces
in (5-1). ]

Our main result in this section (Proposition 7.9 below) shows that a; extends
naturally to a function defined on the whole eigenvariety Y (K7, r) in such a way
that fIKZO : M — M is multiplication by a-.

First we need to recall a couple of well-known facts from rigid analytic geometry.

Lemma 7.2. Let X be an irreducible rigid analytic space (over some unspecified
nonarchimedean field) and let Y C X be a nonempty Zariski open subset (see [Bosch
et al. 1984, Definition 9.5.2/1]). Then Y is irreducible.

Proof. Let X — X be the (irreducible) normalization of X. The pullback of Y to
X is a normalization ¥ — Y and it suffices to show that the Zariski open subset
Y C X is connected (see [Conrad 1999, Definition 2.2.2]). Suppose Y=U |18%
is an admissible covering with U, V proper admissible open subsets of Y. By
Bartenwerfer’s Hebbarkeitssatz [1976, p. 159] the idempotent function on Y which
is 1 on U and 0 on V extends to an analytic function on X, which is necessarily a
nontrivial idempotent by the uniqueness in Bartenwerfer’s theorem “Riemann 1.”
This contradicts the irreducibility of X (by [Conrad 1999, Lemma 2.2.3]), so Y
must be connected. O

Definition 7.3. A Zariski dense subset Z of a rigid space X is called very Zariski
dense (or Zariski dense and accumulation, see [Chenevier 2011, Proposition 2.6])
if for z € Z and an affinoid open neighborhood z € U C X, there is an affinoid open
neighborhood z € V C U such that Z NV is Zariski dense in V.

Lemma 7.4. Let X be a rigid space and let Z C X be a very Zariski dense subset.
Let Y C X be a Zariski open subset which is Zariski dense. Then Y N Z is very
Zariski dense in Y.

Proof. We first note that it suffices to prove that Y N Z is Zariski dense in Y. Very
Zariski density then follows immediately from very Zariski density of Z in X. We
show that Z is Zariski dense in every irreducible component of Y. By [Conrad
1999, Corollary 2.2.9] these irreducible components are given by the subsets Y N C,
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where C is an irreducible component of X. Denote by C° the Zariski open subset
of X given by removing the intersections with all other irreducible components
from C. Then Y N C° is irreducible by Lemma 7.2 and meets Z since it is Zariski
open in X. It follows from very Zariski density of Z in X that Z is Zariski dense
in Y N C°. We deduce that Z is Zariski dense in ¥ N C, as desired. (]

In order to deal with the non étale points below, the following generic freeness
lemma will be crucial.

Lemma 7.5. Let X be a reduced rigid space and let M be a coherent Ox-module.
Then there is a Zariski open and dense subset X s C X over which M is locally

free.

Proof. We follow an argument from the proof of [Hansen 2017, Theorem 5.1.2]:
The regular locus X™2 of X is Zariski open and dense, by the excellence of affinoid
algebras. If U C X is an affinoid open M is locally free at a regular point x € U if
and only if x is not in the support of @?IZHIU Extég(U)(/\/l(U ), O(U)). This shows
that M is locally free over a Zariski open subset X s which is the intersection
of X™¢ and another Zariski open subset of X — the complement of the support.
Namely, if U C X™2 is a connected affinoid open (so O(U) is a regular domain)
then the support of @?;"}U Extég(U)(M(U ), O(U)) in Spec(O(U)) has dimension
< dim(U), by [Bruns and Herzog 1993, Corollary 3.5.11(c)] and therefore its
complement is dense. We deduce that X is dense in X. (]

The following observation lies at the heart of our interpolation argument.

Lemma 7.6. Let w: X — W be a map of reduced equidimensional rigid spaces and
let M be a coherent Ox-module. We assume that X admits a covering by affinoid
opens V such that

(1) w(V) C W is affinoid open,
(2) The restriction w|y : V — w(V) is finite,
(3) M(V) is a finite projective O(w(V'))-module.

Let Z C X be a very Zariski dense subset, and suppose ¢ € Endp, (M) induces the
zero map ¢, = 0 on the fibers M; = M Qo, «(z) forall z € Z. Then ¢ = 0.

Proof. First we restrict to the Zariski open and dense set X », from Lemma 7.5.
Since M is locally free over X a4, the locus in X »; where ¢ vanishes is a Zariski
closed subset. By Lemma 7.4, this locus also contains a Zariski dense set of points
(namely Z N X pq) so we infer that ¢|x,, = 0.

Now we let V C X be an affinoid open forming part of the cover described in
the statement. Let w(V)o C w(V) be the (Zariski open and dense — since W is
reduced) locus where the map V — w(V) is finite étale.
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Since X\ X ¢ C X is a Zariski closed subset of dimension < dim X, the set
Wi = w(V N (X\ X)) is a Zariski closed subset of w(V) with dimension <
dim X =dim W. So w(V)\ W, is Zariski open and dense in w(V).

We deduce that w(V)oN(w(V)\ W) is a Zariski dense subset of w(V'). Moreover,
¢ induces the zero map on the fibers M(V) @ ow(vy) k () for all y in this dense
intersection: Use that w|y is étale at y, so if x1, ..., x, are the preimages of y in V,
then

MV) ®ow(vy k(¥) = MV) ®o) K (xi)
i=1
and we know that ¢ acts as zero on each M(V) ®o(v) k(x;) since x; € X g
(otherwise y = w(x;) € Wj), as observed in the first paragraph of the proof. We
conclude that =0 on M(V): Indeed M (V) is a finite projective O(w(V))-module
so the points y € w(V) where ¢ vanishes on the fiber form a Zariski closed subset
which contains w(V)o N (w(V)\Wj). Since W is reduced ¢ rq(v) = 0. Since V was
arbitrary, we must have ¢ = 0 on M as desired. U

We now return to the notation of Section 3. We have defined the eigenvariety
Y (K?, r) to be the (scheme-theoretic) support of the coherent sheaf M over X; x T.
It comes equipped with a natural weight morphism w : Y (K?, r) — W defined as
the composition of maps

Y(KP, 7)) X: xT 5 75w,
The following lemma summarizes some important facts about Y (K?, r) and w.

Lemma 7.7. The eigenvariety Y (K?, r) satisfies the following properties.

(1) Y(K?,r) has an admissible cover by open affinoids (U;);cy such that for all i
there exists an open affinoid W; C W which fulfills (a) and (b) below:

(a) The weight morphism w: Y (K?,r) — W induces, upon restriction to each
irreducible component C C U, a finite surjective map C — W;.

(b) Each O(U;) is isomorphic to an O(W;)-subalgebra of Endpw,)(P;) for
some finite projective O(W;)-module P;.

(2) The classical points of noncritical slope are very Zariski dense in Y (K7, 1).
(3) Y(K?,r) is reduced.

Proof. These can be proved in a similar way to the analogous statements in [Breuil
et al. 2017]. More precisely, we refer to Proposition 3.11, Theorem 3.19 and
Corollary 3.20 of that paper. (Note that in the proof of Corollary 3.20 we can, in
our setting, replace the reference to [Caraiani et al. 2016] with the well-known
assertion that the Hecke operators at good places act semisimply on spaces of
cuspidal automorphic forms.) (]
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Remark 7.8. In [Breuil et al. 2017, p. 1610] there is a “neatness” assumption on
the tame level K”. Namely that (in our notation) G(Q) Nh K ,K?” h~=! = {1} for all
h € G(Ay), which can always be ensured by shrinking K”. This assumption is
necessary for the patching argument of [Caraiani et al. 2016]. However, to avoid
future potential confusion, we stress that neatness is not essential in the context of
eigenvarieties — such as [Breuil et al. 2017, Proposition 3.11] which we cited in
the proof of Lemma 7.7 above. This observation is crucial in Section 9B below,
where the level is hyperspecial/Iwahori at all places and therefore not neat.

Since Y (K7, r) projects to X7, its ring of functions O(Y (K7, r)) becomes an
R;z-algebra via the natural map R; — O°(X;). Pushing forward the universal
deformation of 7 (with a fixed choice of basis) then yields a continuous representation

r: Galp — GL, (O(Y(K?, 7))).

In particular, for every open affinoid U C Y (K7, r) we may specialize r further
and arrive at a continuous representation r : Galp — GL,,(O(U)). We may in fact
take O°(U) here (the functions bounded by one), but we will not need that.

It follows from Proposition 5.2 that for v € ¥y, an open affinoid U C Y (K7, r),
and a fixed choice of lift of geometric Frobenius ® = ®; in Wg;, we obtain a
Weil-Deligne representation WD; 5(U) over O(U). Moreover, this construction is
obviously compatible as we vary U in the sense that if U’ C U, then WD; ;(U)
pulls back to WD; ;5(U’) over U’ (by the uniqueness in Proposition 5.2). To be
precise, there is a natural isomorphism of Weil-Deligne representations over O(U’),

WD; 5(U") ~ WDj 5(U) Qo) OU").

Now, for a tuple of Weil elements t = (73) € [ | Wr, we obtain functions

VEX

ary = || (x| WDr3(U)) € OU),

UEE()

as defined above in Lemma 7.1. By the compatibility just mentioned, a, y» =
resy.y(ar.y) when U’ C U. Tt follows that we may glue the a; iy and get a function
ar = ary(kr,7) on the whole eigenvariety Y (K7, r) with the interpolation property
in Lemma 7.1.

Proposition 7.9. The operator fTKZO acts on M via scaling by a., for every t €
nveEo WFG'

Proof. We must show the endomorphism ¢ := er %0 —a, of M equals zero. By the
discussion at the beginning of this section (just prior to 7.1) we know ¢ induces the
zero map on the fibers of M at classical points of noncritical slope. We are now
done by Lemma 7.6 (together with Lemma 7.7). (]
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By specialization at any point y = (x, §) € Y (K?, r) we immediately find that
fTKZO acts on the fiber M, (and hence its dual /\/l/y) via scaling by a.(x). We
summarize this below.

Corollary 7.10. Let y € Y(K?, r) be an arbitrary point. Then erEO acts on M’)
via scaling by

1_[ tr(t5| WD(r|Gatr, )-

UEE()

Proof. This is an immediate consequence of Proposition 7.9. ]

8. Interpolation of central characters

In this section we will reuse parts of the argument from the previous Section 7
to interpolate the central characters wy, , across the eigenvariety. We include it
here mostly for future reference. It will only be used in this paper in the very last
paragraph of Remark 9.6 below.

For v € £ we let Z(U (F,})) be the center of U (F,") (recall that its Bernstein
center is denoted by 3). There is a natural homomorphism

Z(UF)) — Z(UF)), K™

which takes &, to the double coset operator [K,&,K,]. Taking the product over
v € X we get an analogous map Z(U(F;o)) — Z(Kx,)* which we will denote
§=(v)ves, hgzo = ®v€20[KU"§UKU]. Thus hgio operates on M and its fibers.

If y=(x,8) e Y(K?,r)(E) is a classical point of noncritical slope the action of
hgzo on M{ >~ @Q),x, Xy is clearly just multiplication by [1,es, @, (&v). This
property extrapolates to all points y by mimicking the proof in Section 7, as we
will now explain.

For Sp(A) C X7 we have the Weil-Deligne representation WD; ; on A”. Consider
its determinant det(WDj; ;) as a character FﬁX — A* via local class field theory.
Note that Z(U (F,")) ~ Z(GL,(Fj)) =~ F.* which allows us to view the product
l_[veEo det(WDy ;) as a character w : Z(U (F;0 )) = A*. Clearly the specializa-
tion of w at any x € Sp(A) is wy = Q) Or,, * Z(U(F;O)) — k(x)* by the
interpolative property of WD .

By copying the proof of Proposition 7.9 almost verbatim, one easily deduces the
following.

veXy

Proposition 8.1. There is a homomorphism w : Z(U(F;O)) — O(Y(KP,r))* such
that h?zﬂ : M — M is multiplication by w (&) for all §&. In particular, for any point
y=(x,8) € Y(K?,F), the action ofhgxo on M; is scaling by HveZo wr, ,(&).
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9. Proof of the main result

We now vary Ky, and reinstate the notation Mg, (instead of just writing M) to
stress the dependence on K? = K5, K *. Suppose K5 , C K=, is a compact open
subgroup, andlet K'7? = K K ¥ Recall that the global sectlons of Mk is the dual
of Jp (S (K PoE)a. Thus We find a natural transition map M g» — Mg of sheaves
on X; x T. Taking their support we find that Y(K?, r) < Y(K'?, r). Passing to
the dual fibers at a point y € Y(K”, r) yields an embedding M’K,,’y — M’K,,,’y
which is equivariant for the Hecke action (i.e., compatible with the map H (K QZO) —»
H(Ksx,) given by €Ky, * (-) % €Ky, ). The limit hmkZ M’ Kry thus becomes an
admissible representation of U (Fy, + ) = I1, %o GL, (F ) with coefﬁcients in k(y).
Subsequently we will use the next 1emma to show it is of finite length.

Lemma 9.1. Let y € Y(K?,r) be any point. Let ®v€20 m, be an arbitrary irre-
ducible subquotient® of lim K, M/Kp’y. Then for all places v € g we have an
isomorphism

WD(erGalFﬁ)ss = reC(BCﬁlv(nv) Q® | det |(1—n)/2)Ss'

(Here ss means semisimplification of the underlying representation p of W, and
setting N =0.)

Proof. By Corollary 7.10 we know that f; acts on lim lim g, M, ) via scaling by
a;(x). On the other hand, by the proof of Lemma 6.1 we know what f; ((X)v % nv)
is. By comparing the two expressions we find that

[ ] tr(xsl WD (e lGaiy ) = [ ] tr(wsl rec(BCiyy (1) @ | det |1 /%))

vEX) vEX)
for all tuples . This shows that WD(rx|Ga1Fﬁ) and rec(BC5|U(nv) ® | det |(1_”)/2)
have the same semisimplification for all v € £ by “linear independence of charac-
ters.” ]

We employ Lemma 9.1 to show th My .y has finite length (which for
an admissible representation is equivalent to being finitely generated by Howe’s
Theorem, see [Bernstein and Zelevinskii 1976, 4.1]).

Lemma 9.2. The length of lim lim g, er yasalU (Fy. iy ,)-representation is finite, and
uniformly bounded in y on quaszcompact subvartettes of Y(KP?,r).

Proof. We first show finiteness. Any admissible smooth representation contains a

simple subrepresentation. Therefore, if lim M, y is of infinite length we can
Z9

write down an infinite proper ascending chain of U (Fy; iy ,)-invariant subspaces

0O=VyCcVvVicVv,CcVsC--- Ch_n)l./\/l,(p,y, Vie1/ Vi # 0 simple.
Ks,
6Such exist by Zorn’s lemma; any finitely generated subrepresentation admits an irreducible
quotient.
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Taking K, -invariants (which is exact as charg = 0) we find an increasing chain
of H(Ky,)-submodules VX% c M) k»y- The fiber is finite-dimensional so this
chain must become stationary. Le., V,+ 1/ Vi has no nonzero Ky -invariants for
i large enough. If we can show that every irreducible subquotient ®U620 7, of
lim lim My, has nonzero Kz -invariants, we are done. We will show that we can
find a small enough Ky, with this last property.

The local Langlands correspondence preserves e-factors, and hence conductors.
(See [Jacquet et al. 1981] for the definition of conductors in the GL,-case, and [Tate
1979, p. 21] for the Artin conductor of a Weil-Deligne representation.) Therefore,

for every place v € £y we get a bound on the conductor of BCj, (7r,):

(9-3) c(my) = c(BCyy(7y))
= c(rec(BCy|, (1,) ® | det | 1/2))
< (rec(BCglv(nv) ® | det |(1—n)/2)ss) tn

9.1
(WD(rx|Galp )**) +n.

In the inequality we used the following general observation: If (o, N) is a Weil-
Deligne representation on a vector space S, its conductor is

c(p) +dim S’ — dim(ker V'),

where / is shorthand for inertia; c(p) is the usual Artin conductor, which is clearly
invariant under semisimplification: ¢(p) only depends on p|; which is semisimple
because it has finite image. This shows c(ir,) is bounded in terms of x. If we take
Ky, small enough, say Ky, =[] K,, where

UEEO
K,=i;'{g € GL,(OF,) : (gn1. .- gun) = (0, ..., 1) mod w} }

with N greater than the right-hand side of the inequality (9-3), then every constituent
@yes, Tv as above satisfies nKv £ 0 as desired. This shows the length is finite.

To get a uniform bound in K” and r we improve on the bound (9-3) using [Livné
1989, Proposition 1.1]: Since rxl(;alpﬁ is a lift of F|G31Fﬁ, that proposition implies
that

c(WD(rxlGalr, ) < ¢(rlGais,) + 1.

(One can improve this bound but the point here is to get uniformity.) Taking Ky, as

above with N greater than c(7|ga P ) + 2n the above argument guarantees that the

U(F*) length of lim MKI, is the same as the H(Kx,)-length of ./\/lK KTy
Zo

which is certainly at most dim E ./\/l This dimension is uniformly bounded

Ky KE,y"
when y is constrained to a quaswompact subspace of Y(K?,r). (]
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9A. Strongly generic representations. Fix a place v € ¥ and recall the definition
of m, , in (4-1). We call x a generic point if 7, , is a generic representation (i.e.,
when it has a Whittaker model) for all v € (. For instance, all classical points
are generic (see the proof of Lemma 3.3). We will impose a stronger condition on
rx|Galp, which ensures that 7, , is fully induced from a supercuspidal representation
of a Levi subgroup (thus in particular is generic, see [Bernstein and Zelevinsky
1977]). This rules out that 7, , is Steinberg for instance, and bypasses difficulties
arising from having nonzero monodromy.

Definition 9.4. DeCOInpOSC WD(I’X |GalFl~} S ~ ﬁl @D--- @[)’t into a sum of irreducible
representations p; : Wr, — GL,,(Q,). We say r,|gal r is strongly generic if
pi =~ pj @€ foralli # j, where € : Galp, — Z; is the cyclotomic character.

For the rest of this section we will assume ry is strongly generic at each v € X.
In the notation of Definition 9.4, each p; corresponds to a supercuspidal represen-
tation 77; of GL,, (F5). More precisely WD(p;) = rec(; ® | det |(1=n)/2)  Letting
Ind%ff..,n, denote normalized parabolic induction from the upper block-triangular
parabolic subgroup with Levi GL,, x -- - x GL,,, we have
Ty ® | det |(1—n)/2 ~ Ind%{:" ((7?1 ® | det |(1—n1)/2) ®---® (7 ® | det |(1—n,)/2))

AAAAA ny

since the induced representation is irreducible, see [Bernstein and Zelevinsky 1977].
Indeed 7; ~ 7;(1) for all i # j. (The twiddles above p; and m; should not be
confused with taking the contragredient.)

By Lemma 9.1, for any irreducible subquotient ), ex, o Of limy My Py the
factor m, has the same supercuspidal support as m, ,. Since the latter is fully
induced from P,, ., they must be isomorphic. In summary we have arrived at
this result:

.....

Corollary 9.5. Let y = (x,8) € Y(K?,r) be a point at which r, is strongly generic
at every v € Xg. Then lin»llfzo ./\/t/Kp’y has finite length, and every irreducible

subquotient is isomorphic to Qs Tx.v-

Altogether this proves Theorem 1.1 in the Introduction.

Remark 9.6. Naively one might hope to remove the ““ss” in Theorem 1.1 by showing
that 7, , has no nonsplit self-extensions; Extg}Ln( Fﬁ)(nx,v, 7y ,v) = 0. However, this

tj: | 7j supercuspidal (as
above). Let us explain why. For simplicity we assume o is regular, which means
wo >~ o = w = 1 for all block-permutations w € S,,. In other words 71; % 7; fori # j
with n; =n ;. Under this assumption the “geometric lemma” (see [Casselman 1995,

Proposition 6.4.1]) gives an actual direct sum decomposition of the N-coinvariants:

is false even if we assume 7, , ~ Ind¢" (o) with 0 = ®

(nx,v)N i @w wo
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with w running over block-permutations as above. The usual adjointness property
of () is easily checked to hold for Ext (see [Prasad 2013, Proposition 2.9]).
Therefore

ExthLn (Tx vy Ty p) = Ext}w((nx,v)N, o)~ HExt}w(wo, o)~ Ext}w (0,0).
w

In the last step we used [Casselman 1995, Corollary 5.4.4] to conclude that
Ext/lw(wa, o) = 0 for w # 1. However, Ext}w(o, o) is always nontrivial. For
example, consider the principal series case where P = B and o is a smooth
character of 7. Here ExtlT (0,0) >~ ExtlT(l, 1) ~ Hom(T, E) >~ E". In general, if
o is an irreducible representation of M with central character w, there is a short
exact sequence

0 — Exty, , (0, 0) — Ext), (0, 0) - Hom(Zy, E) — 0

(see [Paskiinas 2010, Proposition 8.1] whose proof works verbatim with coefficients
E instead of F p). If o is supercuspidal it is projective and/or injective in the
category of smooth M -representations with central character w, and vice versa
(see [Casselman 1995, Theorem 5.4.1; Adler and Roche 2004]). In particular
dimg Ext}, (0, o) = dim(Zy).

By Proposition 8.1 all the self-extensions of 7y, arising from lim Ks, My Py
actually live in the full subcategory of smooth representations with central charac-
ter wy, . As we just pointed out, supercuspidal is equivalent to being projective
and/or injective in this category. Thus at least in the case where ®U620 Ty 1S
supercuspidal we can remove the “ss” in Theorem 1.1.

Remark 9.7. We comment on the multiplicity m, in the analogous case of GL(2) q.
Replacing our unitary group U with GL(2) g, and replacing S(KP, E) with the com-
pleted cohomology of modular curves H L(KP)E with tame level K? C GL, (A?),
a statement analogous to Theorem 1.1 is a consequence of Emerton’s local-global
compatibility theorem [Emerton 2011, Theorem 1.2.1], under the assumption that
Fl(;al@p is not isomorphic to a twist of ((1) ’lk) or ((1) g) With this assumption, the
multiplicities m, are (at least predicted to be) equal to 2 (coming from the two-
dimensional Galois representation r,), and the representations of GL,(Qx,) which
appear are semisimple.

Indeed, it follows from [loc. cit.] that we have m, =2 dimg J g(l’l(gx)a“), where
Ox =Ty |Gal@p . When g, is absolutely irreducible, it follows from [Dospinescu 2014,
Theorems 1.1 and 1.2] (see also [Colmez 2014, Theorem 0.6]) that Jg(l'l(gx)a“) has
dimension at most 1. If g, is reducible, then [Emerton 2006b, Conjecture 3.3.1(8),
Lemma 4.1.4] predicts that Jg(l'[(gx)a“) again has dimension at most 1, unless oy
is of the form n & n for some continuous character n : Galg, — E™.
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In the exceptional case with o, >~ n @ n scalar, where [Emerton 2011, Theo-
rem 1.2.1(2)] does not apply, we have

dimg J3(M(0,)™) =2, when 8 =n|-|®nel|-|~",

and therefore [Emerton 2011, Conjecture 1.1.1] predicts that we have m, = 4 for
y=(x,n]-|®nel-|7H. Again the representation of GL,(Qy,) which appears is
predicted to be semisimple.

9B. The general case at Iwahori level. In this section we assume 7 is automorphic
of tame level K? = KEOKE, where Ky, = ]_[UE):0 K, is a product of Iwahori
subgroups. This can usually be achieved by a solvable base change; i.e., by replacing
r with its restriction 7|gal,, for some solvable Galois extension F "/F (see the
“Skinner—Wiles trick” [Skinner and Wiles 2001]). We make this assumption to
employ a genericity criterion of Barbasch and Moy [1994], which was recently
strengthened by Chan and Savin [2018; 2019].

9B1. Genericity and Iwahori-invariants. The setup of [Chan and Savin 2018] is
the following. Let G be a split group over a p-adic field F, with a choice of Borel
subgroup B = TU. We assume these are defined over © = Op, and let I C G(O)
be the Iwahori subgroup (the inverse image of B over the residue field [,). The
Iwahori—-Hecke algebra # has basis T,, = [[wI], where w € W runs over the
extended affine Weyl group Wex = Ng(T)/ T (O). The basis vectors satisfy the
usual relations

Ty, Ty = T ws» when £(wiws) = £(wy) + £(wn),
(Ty —g)(Ts+1) =0, when £(s) = 1.
Here £ : W.x — Z denotes the length function defined by ¢*™) = |ITwI/I|. Inside
of H we have the subalgebra Hy of functions supported on G (O), which has basis
{Tw}wew Wwhere W is the (actual) Weyl group. The algebra Hy carries a natural

one-dimensional representation sgn : Hy — C which sends T, to (— D™ and
we are interested in the sgn-isotypic subspaces of H-modules.

Definition 9.8. For a smooth G-representation 7 (over C) we introduce the follow-
ing subspace of the Iwahori-invariants

S(r) = m (nl)Tw:(,l)e(w)‘
weW

In other words the (possibly trivial) subspace of 7/ where Hy acts via the sgn-
character.

Fix a nontrivial continuous unitary character ¢ : F — C* and extend it to a char-
acter of U as in [Chan and Savin 2018, Section 4]. For a smooth G-representation
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m we let Ty y be the “top derivative” of v/-coinvariants (whose dual is exactly the
space of y-Whittaker functionals on ).

Theorem 9.9 (Barbasch—Moy, Chan—Savin). Let w be a smooth G-representation
which is generated by . Then the natural map S(w) — m —» Ty, IS an isomor-
phism.

Proof. This is [Chan and Savin 2018, Corollary 4.5] which is a special case of
[Chan and Savin 2019, Theorem 3.5]. U

In particular, an irreducible representation 7 with 7w/ % 0 is generic if and only
if S(r) # 0, in which case dim S(;r) = 1. This is the genericity criterion we will
use below.

9B2. The S-part of the eigenvariety. We continue with the usual setup and notation.
We run the eigenvariety construction with S(KP, E)m replaced by its S-subspace.
More precisely, for each v € ¥y we have the functor S, (Definition 9.8) taking
smooth GL,, (Fy)-representations to vector spaces over E. We apply their composi-
tion S = oyex, Sy to li_n)l,(20 3’([(1’, E)y. Le., we take

m=[) () S&”. E)g) ="

veXy weW,

Clearly IT is a closed subspace of S (K?, E)n, and therefore an admissible Banach
representation of G = G(Q,). As a result Jp(IT*")" is coadmissible (see [Breuil
et al. 2017, Proposition 3.4]) and hence the global sections I' (X; x f’, Mip) of a
coherent sheaf M on X; x 7. We let

Yn(K?, r) = sup(Mn)

be its schematic support with the usual annihilator ideal sheaf. Mimicking the proof
of Lemma 3.1 we obtain the following description of the dual fiber of M at a
point y = (x,8) € Y (K”, 7);

~ —(_1\{(w)
oy X I > () () T3GKP, E)ulp =0
veXy weW,
This clearly shows Y (K7, r) is a closed subvariety of Y (K7, r). Our immediate
goal is to show equality.

Lemma 9.10. Yn(K?,7) =Y (K?, 7).

Proof. Since the classical points are Zariski dense in Y (K?,r) we just have to
show each classical y = (x, §) in fact lies in Y (K7, r). Let & be an automorphic
representation such that ry >~ r;,. This is an irreducible Galois representation
(since r is) and thus BCr,p+ () is a cuspidal and therefore generic automorphic
representation of GL,(Ar). In particular the factors of ®v€20 7T, are generic.
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Taking T,-eigenspaces of the embedding ), €% ko M/y from Proposition 4.2
yields a map ), ey Sv(Ty) = /\/l/l-l ,- Finally, by Theorem 9.9 we conclude that
Ry, Sv(my) # 0 so that My | #0. O

9B3. Conclusion. Now let y € Y(K?,r) be an arbitrary point. By Lemma 9.10
we now know My ;é 0. Note that /\/l’ = S(lim Ks, M y) and we immediately
infer that lim /\/l/ does have some generlc constituent (by Theorem 9.9).
Suppose ®U620 7, is any generic constituent of th2 M Lemma 9.1 tells
us m, and 7, , have the same supercuspldal support. By the theory of Bernstein-
Zelevmsky derivatives IndGL” (m ® - ® n,) has a umque generlc constltuent

Consequently, there is a umque generic representation ¥, with the same supercus-

pidal support as 7, ,, and 7, =~ nfi? . Of course, under the Iwahori assumption the

~ . en . . . .
7r; are unramified characters, so here nfyv is the generic constituent of an unramified

principal series. Note however that this does not mean 7¥, is necessarily a twisted
Steinberg representation (when the principal series is reducible). For instance, for
GL(3) one could have an induced-from-Steinberg representation x; StgL) X X2
and so on, see [Sorensen 2006, Table A, p. 1757].

We summarize our findings:

Theorem 9.11. Let y = (x,8) € Y(K?, 1) be an arbitrary point, where Kx, is a
product of Iwahori subgroups. Then the following holds:

1) , e 7§%) oceurs as a constituent of lim Kz, M’y (possibly with multiplicity).

gen

(2) Every generic constituent of h—r>nl<>:o M/y is isomorphic to Q) 5y

Here mi') is the generic representation of GL,(F;) with the same supercuspidal

SUpPpOTt as Ty 4.

veXy

It would be interesting to relax the assumption that K, is Iwahori for v € X.
In [Chan and Savin 2019] they consider more general s in the Bernstein spectrum
of GL,,, (where the Levi is GL, x - - - x GL, and the supercuspidal representation
is T ®---® t). For such an s-type (J, p) one can identify the Hecke algebra
‘H(J, p) with the Iwahori—-Hecke algebra of GL,, — but over a possibly larger p-
adic field. This is used to define the subalgebra Hs, C H(J, p) which carries the
sgn-character. If 7 € R°(GL,,,) is an admissible representation, [Chan and Savin
2019, Theorem 3.5] shows that a certain adjunction map S, () — 7y, is an
isomorphism, where S, (r) denotes the sgn-isotypic subspace of Homy (p, 7). (In
the case r = 1 and T =1 this recovers Theorem 9.9 above; the type is (I, 1).) In-
stead of considering S‘(K n, K ¥ E)n in the eigenvariety construction one could take

Huezo Jyand p = ®U€ZO 0y for certain types (J, p,) and consider the space
Hosz (o, S (K*, E)n) which would result in an eigenvariety Y,(Ks,K 5
which of course sits as a closed subvariety of Y (K%, K X 7) for Ky ., C ker(p).
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If we take an arbitrary point y € Y, (K5 K X 7) we know lim Ks /\/l’y lies in the
sy-component (for each v € ) and it is at least plausible the above arguments
with S replaced by S, would allow us to draw the same conclusion: lim M/y
admits &), €% 7§ as its unique generic irreducible subquotient (up to multiplfcity).
The inertial classes s considered in [Chan and Savin 2019] are somewhat limited.
However, Savin has communicated to us a more general (unpublished) genericity
criterion — without restrictions on s.

10. A brief comparison with work of Bellaiche and Chenevier

As noted in the introduction, the papers [Bellaiche and Chenevier 2009; Ch-
enevier 2009] contain results of the nature of those of this paper. In particular,
Theorem 1.1(1) appears as [Chenevier 2009, remarque 3.13]. This section is an
attempt to give a slightly more detailed comparison. The theory of eigenvarieties
used by Bellaiche and Chenevier are those constructed in [Chenevier 2004]. In
[Bellaiche and Chenevier 2009, §7.4], they construct, on an eigenvariety X, a
sheaf Il of admissible G (Ag)-representations, where S is a finite set of places
away from p. As in our paper, this sheaf is constructed using the natural coherent
sheaf coming from their construction.” Bellaiche and Chenevier then study how
the fibers Il , vary with x € X, and in particular show the finiteness property
stated in Theorem 1.1(1). Each point x has an associated Hecke eigensystem
¥y : H — k(x) and one considers a certain generalized eigenspace SYx of p-adic
automorphic forms; H?“ is then the G (Ay)-representation over Oy /My, x)Ox x
generated by S¥*. A rough “dictionary” between this paper and [Bellaiche and
Chenevier 2009] is

G(Ag) e U(F5h ), gy s ImM),  TIE" e @pex, Ty o
Ky
We remark that the eigenvarieties used ino[Bellaiche and Chenevier 2009] are

isomorphic to those used here (when one uses the same input data in terms of
groups, Hecke operators and so forth) by work of Loeffler [2011]. In fact even more
is true, the coherent sheaves produced by the two different constructions agree.’

Let us now discuss the local-global compatibility of [Chenevier 2009]. Both
his and our approach rely on the use of Bernstein center elements. Chenevier’s
very elegant approach is to build the elements he needs into his eigenvariety; this
new eigenvariety is then an open and closed subset of the original eigenvariety. By
contrast, we use the action on the coherent sheaf on an eigenvariety without any
Hecke operators at ramified places.

TRecall that all known eigenvariety constructions equip the eigenvariety with a coherent sheaf that
remembers the finite slope part of the spaces used to construct it.

8This is presumably well known to experts, and can be deduced from an extension of the method
of [Loeffler 2011], though as far as we know this result does not currently appear in the literature.
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We now go into slightly more detail. In this paragraph we work locally and let
GL,, denote GL, (F3) for some v € X. For a fixed Bernstein component R°(GL,,)
with center 3° Chenevier defines a continuous n-dimensional pseudocharacter

T* : WF,; — 35

uniquely characterized by the following property (see [Chenevier 2009, Proposi-
tion 3.11]): For every irreducible 7 in R*(GL,,), on which 3° acts via the character
7z : 3° — E, one has the identity

(zz 0 T°)(7) = tr(z| rec(r ® | det |1 7/2))

for all T € Wg,. (Note the different normalizations of the local Langlands corre-
spondence; Chenevier takes the trace of T on Ly () =rec(7r ® | det |(1=m)/2yss ) Tn
particular our Bernstein center element f; coincides with 7°(t) on representations
in R*(GL,).

As mentioned earlier, in [Chenevier 2009] the eigenvariety ¥ comes with a
choice of Bernstein components ($,)yex, and a homomorphism

H=H"®(Qex,37) > O)

(where HZ* is the product of the spherical Hecke algebras away from X). For
each v € Xy one composes T with 3> — O(Y) and gets a pseudocharacter
T, : Wg, — O(Y). On the other hand, one can restrict the Galois pseudocharacter
T : Galp — O(Y) to the Weil group. By [Chenevier 2009, Lemma 3.12] they
coincide:

Tlw,, = T,.
Consequently, to any T € W, one can attach a function a, € O(Y) which specializes
to tr (rx(t)) for any y = (x,§) € Y. (Simply take a, to be the image of T° (1)
under the map 3% — O(Y).)

The goal of [Chenevier 2009] is to use the p-adic deformation arguments above
to remove a regularity assumption on the weight, and attach Galois representations
rr.. to any automorphic representation w of G(A). Théoréme 3.3 in [loc. cit.]
achieves this goal and proves local-global compatibility (up to semisimplification):

(10-1) WD(r |Gl )** == rec(BCy, () ® | det |1 7772)™,

In fact Bellaiche and Chenevier can prove a stronger result and even compare the
monodromy operators with respect to the usual partial order on partitions, see
[Chenevier 2009, Theorem 3.5]. With our definition of my ,, (10-1) amounts to 7y ,
and m, having the same supercuspidal support, for classical points y = (x, §).
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