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We obtain the global well-posedness and scattering for the radial solution
to the defocusing conformal invariant nonlinear wave equation with initial
data in the critical Besov space Bil X Bil(Rs). This is the 5-dimensional
analogue of Dodson’s result (2019), which was the first on the global well-
posedness and scattering of the energy subcritical nonlinear wave equa-
tion without the uniform boundedness assumption on the critical Sobolev
norms employed as a substitute of the missing conservation law with respect
to the scaling invariance of the equation. The proof is based on exploit-
ing the structure of the radial solution, developing the Strichartz-type esti-
mates and incorporation of Dodson’s strategy (2019), where we also avoid a
logarithm-type loss by employing the inhomogeneous Strichartz estimates.

1. Introduction

We consider the solutions u to
O — Au+ plulPu=0, (t,x)eRxRY,
(0), du(0)) = (uo, u1), xR,

where u = +1,d > 1, and p > 0. If u =1, (1-1) is described as defocusing,
otherwise focusing. There is a natural scaling symmetry for (1-1), i.e., if we let
un(t, x) = A¥Pu(rt, rx) for A > 0, then u, is also a solution to (1-1) with initial
data (A% Pug(rx), A®/PH1y, (hx)) preserving the HS» x H*~'(R?) norm of the

% — 2 At least, the
)4

(1-1)

initial data, where we define the critical regularity as s, =
solutions to (1-1) formally conserve the energy

(1-2)  E(u(t), u(r)) = %/Ri Veu(n)]* dx

l 2 _H p+2
+ 3 /RS |0:u(t)|”dx + 42 ./I;S lu(t)| dx,
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which is also invariant under the scaling if s, = 1. In view of this, we say the
Cauchy problem (1-1) is energy critical when s, = 1, subcritical for s, < 1 and
supercritical when s, > 1.

Lindblad and Sogge [1995] proved the local theory of the Cauchy problem (1-1)
in the minimal regularity spaces. In fact, if d >2 and p > (d+3)/(d —1), the Cauchy
problem (1-1) with initial data in the critical spaces H* x H 1 (RY) is locally well-
posed. The global theory for the Cauchy problem (1-1) with 4 =1 and 5, <1 has
been studied extensively. While for the focusing case, even the solution with smooth
initial data may blow up at finite time. For more related results see [Sogge 1995].

We will consider global existence and scattering of the solutions to (1-1). In
general, a solution u is said to be scattering if it is a global solution and approaches
a linear solution as t — =£o00. In the cases of d > 2 and p > (d + 3)/(d — 1), the
solution to (1-1) with small initial datum in the critical Sobolev spaces is globally
well-posed and scattering; see [Lindblad and Sogge 1995].

For the defocusing energy critical wave equation (1-1), Grillakis [1990] first
established the global existence theory for classical solution when d = 3. The
results for other dimensions are proved in [Grillakis 1992; Shatah and Struwe 1993].
Scattering results for large energy data are proved in [Bahouri and Gérard 1999;
Bahouri and Shatah 1998; Nakanishi 1999] by establishing variants of the Morawetz
estimates [1968]

ju| 2
(1-3) dxdt <CyE(up,uy),
R1+d |X |
where C, is a constant depending on d. While in focusing energy critical cases,
the Morawetz estimates (1-3) fails. The scattering results do not hold in general,
since (1-1) has a ground state

_ aP N
wo=(1+zgo5)

In the cases of 3 < d < 5, Kenig and Merle [2008] proved the scattering result
for solution with initial data such that E(ug, u1) < E(W,0) and |Jug|| H R <
Wl g1 ey In their proofs, the main ingredient is the concentration compact-
ness/rigidity theorem method introduced by [Kenig and Merle 2006]. This method
is powerful and plays an important role in study of many other nonlinear dispersive
equations. We refer to [Killip and Visan 2013; Koch et al. 2014; Kenig 2015].

For the defocusing subcritical equation (1-1), the global existence has been
proved for solution with initial data in the energy space H' x L?(R?) by Ginibre
and Velo [1985; 1989]. However, there are no scattering results even for solutions
with initial datum in (H' N H*) x (L2 N H»~1)(RY).
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Recently, Dodson [2019] proved scattering results for the defocusing cubic wave
equation with the initial datum belonging to the space B} | x B| | (R®), which is
a subspace of H'/2 x H~Y/2(R%). We remark that this is the ﬁrst Work that gives
scattering results for large data in the critical Sobolev space without any a priori
bound on the critical norm of the solution. Dodson’s strategy consists of three steps:

(1) By establishing some new Strichartz-type estimates, one can show that the
solution is in the energy space H' x L?(R?) up to some free evolutions. Then this
decomposition enables one to prove the global well-posedness of the solution.

(2) To obtain the scattering result, a conformal transformation is applied to show
that the energy part of the solution has finite energy in hyperbolic coordinates.
Then from the conformal invariance of the equation and a Morawetz-type inequal-
ity, one can deduce that ||u||L4 (RXR) < C(|I(uo, ul)llBs X B2 (R5)> 81), where the
parameter §; relies on the scahng and spatial profiles of the 1n1t1a1 data.

(3) Finally, one can remove the dependence of §; by employing the profile decom-
position, which completes the proof.

Let S(¢)(f, g) be the solution of Cauchy problem to the free wave equation
{8,,v—Av=O, (t,x) e Rx R,
W, 0v)|i=0 = (f(x), g(x)), xeR.

For the sake of statement, we introduce the following notation as
S((f,8) 2 8,S1)(f,8), and SO)(f, ) 2 (SO, ), SIN(F, 2)).
We consider the Cauchy problem of nonlinear wave equation

Ot — Au~+|ulu=0, (t,x) e R x R,
(0), 3u(0)) = (ug, u1), xe€R9,

(1-4)

(1-5)

Our main result can be stated as:

Theorem 1.1. For any radial initial data (ug, u1) € B 11X B 1([F\R ), the solu-

tion u to (1-5) is globally well-posed and scattering, i.e., there exists (u(jf, ut) e
H'Y/2x H- 172(R3Y such that

(1-6) im [ G(), du () — ST, U g2y go12@s) = 0-
Furthermore, there is a function A : [0, c0) — [0, 00), such that
(1‘7) ”u”L?J.(RxRS) =< A(”(“O, u1)||313’1X312’1(R5))-

Remark 1.2. (1) This theorem extends the results of [Dodson 2019] to the 5-
dimension case. The proof will utilize the strategy given in [Dodson 2019], but it is
highly nontrivial.
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(2) Unlike the 3-dimensional case, the dispersive estimate (see (2-20)) gives a decay
in time of order —2, which may cause a logarithmic failure when one estimates

3/4
||u”Lf/3L4(J><R5)+Su£’(I/ ||u||Li(R5))’
X tE

where 0 € J is a local time interval. We circumvent this difficulty by using the
inhomogeneous Strichartz estimates in [Taggart 2010] and prove the global well-
posedness of u.

(3) For the scattering result, by reductions, we need to bound the L? . of w on the
light cone {|x| <t + 3}. We will define the hyperbolic energy by rewriting (1-5)
as the form

A (r*w) — 3, (r*w) = —2w — r|w|w.

Observing that the additional term 2w and the nonlinear term r%|w|w enjoy the same
sign, we can bound the L?’x norm of w by applying a Morawetz-type inequality, if
we assume the hyperbolic energy of w is bounded.

(4) To certify the above assumption, we will make full use of (2-19) for radial
solution and the sharp Hardy inequality. In contrast to the 3-dimensional case, some
terms in (2-19) seem more difficult to dealt with. However, the integration domains
of these terms are symmetric about the radius r, which is also consistent with
the Huygens principle. This fact allows us apply the Hardy-Littlewood maximal
functions to verify the assumption.

Now, we give the outline of the proof. By the Strichartz estimates and a standard
fix point argument, for initial data (u¢, u;), there exists a maximal time interval
I C R such that there exists a unique solution u (see Definition 2.9 in Section 2)
to (1-5) on I x R3. We consider the global well-posedness by developing some
Strichartz-type estimates (3-30). Utilizing the standard blowup criterion, we can
show the global well-posedness of u.

Next, we claim the following proposition:

Proposition 1.3. For every radial initial data (ug, uy) € 313’1 X Blz’l(lR{S), let u be
the corresponding solution to (1-5). Then there exists a parameter 6| depending the
initial data (ug, u1) and a function A : [0, 00)% — [0, 00) such that

(1-8) il oy < Ao, w0133 2 sy B1)-

We prove Theorem 1.1 by employing this and establishing Proposition 4.2, where
the proof provides an alternate proof of Lemma 6.2 in [Dodson 2019].

Finally, we need to prove Proposition 1.3. From the partition ¥ = v + w, it
suffices to show the boundedness of Li . norm of w. We prove the hyperbolic
energy of w is uniformly bounded. Then, a Morawetz-type inequality yields that

the L], norm of w is bounded in the cone, which finishes the proof.
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This paper is organized as follows: Section 2 gives some tools from harmonic
analysis and basic properties for the wave equation. In Section 3 we give the
decomposition of u and prove its global well-posedness. The existence of the
function A in (1-7) is shown in Section 4 based on the Proposition 1.3. Finally, in
Section 5, we complete the proof by showing Proposition 1.3.

We end the introduction with some notations used throughout this paper. We use
S (Rd ) to denote the space of Schwartz functions on R4, For 1 < p < oo, we define
LP(R%) by the spaces of Lebesgue measurable functions with finite L” (R?)-norm,
which is defined by

1/p
e = ( [ 1700 dx) ", for1 < p<c.
R

and || f || poo(ray = €SS sup, cga | f(x)|. We let £7 be the spaces of complex number
sequences {a,},cz such that {a,},cz € [? if and only if

1/p
landlga 2 (D lanl”) " <o, forl=p <o
n

and |{an}llex(z) = sup, |an| < co. We use X < Y to mean that there exists a
constant C > 1 such that X < CY, where the dependence of C on the parameters
will be clear from the context. We use X ~ Y todenote X <Y andY <X. ALK B
denotes there is a sufficiently large number C such that A < C~!B.

2. Basic tools and some elementary properties for the wave equation

In this section, we recall some tools from harmonic analysis and useful results for
the wave equation.

2A. Some tools from harmonic analysis. Recall the Fourier transform of f €
S(R?) is defined by

F&) = @m)-r? /I;{ F@e i dx,

which can be extended to Schwartz distributions naturally. We will make frequent
use of the Littlewood—Paley projection operators. Specifically, we let ¢ be a radial
smooth function supported on the ball |£| <2 and equal to 1 on the ball |§] < 1.
For j € Z, we define the Littlewood—Paley projection operators by
P<if(§):=9(E/2) &),
P f(€) = (1-9E/2) f(©),
Pif (€)= (p/2)) —0/2 N ] ).
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The Littlewood—Paley operators commute with derivative operators and are
bounded on the general Sobolev spaces. These operators also obey the following
standard Bernstein estimates:

Lemma 2.1 (Bernstein estimates). For 1 <r <g <ooands >0,

V=Pl gy ~ 257 1P g

1191 P<if ] 1 oy S 27 1P<; £l oy
1P~ fllgmey S 27 [IVE P £ 1 oy
1P<; oy S 2 4DIN Poj fll 1 ey

where the fractional derivative operator |V|° is defined by W(S) =& |"f($),
foro eR.

Definition 2.2 (homogeneous Besov spaces). Let s be a real number and let
1 < p,r < o0o. We denote the homogeneous Besov norm by

(2-1) ”f”B_;”(Rd) = H {2JS||ij||Lp(Rf’)} 2y

for f € S(R?). Then the Besov space B;’,(Rd) is the completion of the Schwartz
function under this norm.

We shall give the following radial Sobolev-type inequalities, which are analogous
to the 3-dimensional cases established in [Dodson 2019]. We denote radial derivative
by 9, f(x) = (Ii_\ - V) f (x) for any function f defined on R>.

Lemma 2.3 (radial Sobolev-type inequalities in Besov spaces). For any radial
function f € S(R>), we have

2
(2-2) Hx1” fllLoms) S 11 5272 sy -

Let (ug, uy) € 313 | X 312 1([R§5) be a radial function; then we have

1 1
(2-3) H_zar”()(x) + H_arrMO(x)
|x] |x]

L(IY(RS) LL(RS)
1
_|_H_u0(x) + 15 P30 o sy S Nuollzs gs)s
x| LIRS ” i e
1 1
(2-4) H_arm(x) + [ () [ Pur (] e sy S Maaillzz sy
x| L) ¥l L} (R%) ' '
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Proof. We first consider (2-2). Since f is radial, using polar coordinates, we have
(2-5) Py f(lx]) = P f(x) = / BT ds
=/ / ij(r)r4e’rm do(w)dr.
0 S4

Recall the decay estimates of Fourier transform of the surface measure on the sphere

dosi(§) < C(1+1E) 2,
which, with Holder’s inequality, yields

o0
(2-6) |ij<|x|>|§/ 1P ()P x| 2 dr S (x)7222 || P f .
0

Then the inequality (2-2) follows from (2-6) and the definition of the Besov space.
Next, we consider (2-3) and (2-4). By the density of Schwartz functions in
313,1 X BIZ’I(RS), we may assume that ug, u; € S(R?). We claim it suffices to show

1 1
(2-7) “_zarMO(x) H—lAMO(X)| + ‘ —Uo(x)
|x] LL(RS) Liws) N1l LL(RS)
< ””0”313‘]([}@5)5
1
(2-8) “—3 uy(x) + | —5u1(x) Slutllze ws-
LI ®S) |x|2 L) Bi | (®)

To see this, by using the fact Af = 0, f + éa, f for radial function f(x) on R>,
we have

1
“marruO(x) H x |23 1o (X) + | —Auo(x)]

(2-9) LL(RS) LL(RS) ' |x| LL(RS)

S ||u0||3i31([};g5)

From the fundamental theorem of calculus and polar coordinates, for y RS\{O},

o0
(2-10) P10 S / f4r3|arruo(r>|do<w>dr
S
H_arruo(x) S ||u0||3?1([r@5)
LL(RY) '
and
o0
(2-11) |y|3|u1(y>|5/ /4r3|arru1<r)|do<w)dr
lyl JS

H—a up(x)

S ||”1||Bl21(R5)-
LL(R) ‘
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Hence, we are reduced to proving (2-7) and (2-8). We just give the estimate for
the first term on the left-hand side of (2-7), since others can be handled similarly.
For j € Z, utilizing Bernstein’s estimates and polar coordinates, we obtain

o0
5/ / r28,Pju0(r)d0(a))a’r
Liwsy Jo Jst

27/ 1 o0 l
S f 510, (Pjuo)|r* dr+ / 310: (Pjuo)lr*dr
0 2-J

S2738,(Pjuo) | Lee ) +2% 10 (Pjuo) | 11 sy
S22 Pjuoll 1 gs).-

(2-12) H#arpjuo(x)

Thus, we have [|(1/|x )10 ()1 @ws) < 1ol g7 | @s)- O
As a direct consequence of Lemma 2.3, we have
2-13) [ 1x1"2810000) | 2 sy + 1617200 | L2 sy + [ 1612001 GO | 2 s,
S o, w)ll g3 i o)

Lemma 2.4. Suppose x(x) € CZ° (RY). Let R = 2¥ be a dyadic number fork € 7
and denote xr(x) = x (%). Then we have

(2_14) ”XR(x)f”Bl/z(RS) ~ ||f||Bl/2(|Ri)’
2-15) R8sy S 181 g1

where the bound is independent of R. Furthermore, if x(x) =1 on |x| < 1, then for
(f.8) € By} x By >(R%), we have

@16)  lim 0= RGO Fl s, + 1= XRCOIE s, =0

Proof. By scaling, to prove the inequalities (2-14) and (2-15), it suffices to prove
the cases for R = 1, which follows from a similar proof of Lemma 2.2 in [Dodson
2019]. On the other hand, (2-16) follows from (2-14), (2-15), and the fact that
C>X x COO([RS) is dense in 32/12 X B_l/z(RS). O

Finally, we need the following chain rule estimates for later use.

Lemma 2.5 (C!-fractional chain rule [Christ and Weinstein 1991]). Suppose G €
C'(C),s€(0,1],and 1 < q,q1,q2 < 00 satisfying é =14 qiz. Then

q1

(2-17) [VFGWI Loy S 16" @] Lar gy [1VF 8] oz
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2B. Fundamental properties of the wave equations. Throughout the paper, by
abuse of notations, we often write u(t) = u(z, x) for simplicity and u(t, r) = u(t, x)
when u (¢, -) is radially symmetric.

Recall the explicit formula for solution to the linear wave equation in 5 dimensions,

sin(¢|V])

(2-18) S()(f. &)(x) =cos(t|V]) f(x) + —=— v — 8w

_ 1 3
%3{ atj| (t |y|=1f(x+ty)d0(y)>

1 1
+——0 t3/ gx+ty)do(y) ],
3ws t Iyl=1

where ws is the surface area of the unit sphere in R>. When ( f, &) is radially
symmetric, for ¢t > 0, (2-18) can be rewritten as

219 SO(f, 9)(r) = [(r—t) fr=D+0+0fr+0]
r+t r+t

1
53 sf(s)ds+— s(sz—i-rz—tz)g(s) ds.
2 Jir—| 4r3 Jir—a

See also [Rammaha 1987; Lindblad and Sogge 1996; Colzani et al. 2002] for the
radial solutions to general dimensions linear wave equation. From the explicit
formula (2-18), we can obtain the following dispersive estimate.

Proposition 2.6 (dispersive estimate).

1
(2-20) 1S (o, u)ll Loomsy S —Z[IIV woll sy + Vw11l sy )
Proof. We give the proof for completeness. A similar proof for the 3-dimensional

case can be found in [Killip and Visan 2011]. By (2-18), the free solution S(¢) (1o, u1)
can be rewritten as

1 5t
(2-21) —/H 1Mo(erty)dG(y)Jr—/l 1y(VMo)(erty)dG(y)
y ly

ws 3ws
12 5 t
+3— y(Vup)(x +ty)ydo(y) + — uy(x+ty)do(y)
Ws Jiyl=1 w5 Jiy|=1
t2
+— y(Vup)(x +ty)do(y),
3ws Jiyi=1

which, with the fundamental theorem of calculus, yields (2-20). For instance, using
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polar coordinates, we can estimate the first term of (2-21) as

1
(2-22) —f uo(x—i-ty)do(y)‘
@5 Jy|=1
1 00 pOO OO d3
=[] st enido oy dpdras
ws J¢ s T [y|=1 dp
o0 [e.¢] o0
<[] Vwletmdomdpazas
t K T lyl=1
o o 1
sf / — dvds||V3uoll L gs)
t N 7:4
1 o3
S t_ZHV uoll L1 (ws)-
The other terms can be dealt with similarly. ]

We recall the Strichartz estimates of the wave equation in R>. Let I C R be an
interval. We denote the spacetime norm L W (I x R>) of a function u(z, x) on
I x R’ by

leell Lowgr sy 2= [t D wer @y [ o -
fors eR, 1 <g, r <oc. We denote that a pair (g, ) of exponents is admissible, if

2

(2-23) 2<g<oo, 2<r<co, and ql+;51,

Moreover, we say (g, r) is wave acceptable, provided

(2-24) l<g<oo, 2srsoo, +<4(3-1),
q 2 r

or (q,r) = (00, 2).

Proposition 2.7 (Strichartz estimates [Lindblad and Sogge 1995; Ginibre and Velo
1995; Keel and Tao 1998]). Let (ug, u1) € H'? x H-Y2(RY) and (q, r), (§, F) be
two admissible pairs. If u is a weak solution to the wave equation oy u — Au =
F (¢, x) with initial data (ug, uy), then we have

@25 119V g5y + S0P, 0
S o, ud)ll gy g-12@s) + H|V|_MFHL;;’L;/(1XR5),

provided that

5

(2-26) p= +;—2 and =

N

Q| =
Q| =
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Proposition 2.8 (inhomogeneous Strichartz estimates [Taggart 2010]). Suppose
that the exponent pairs (q1, r1) and (41, 1) are wave acceptable, and satisfy the
scaling condition

l+i=2—2(l+~l)

q 4 rn.-n

and the conditions ! 1 o
~+z<l, s=<<2
q9 q 27 n

Letr >ry, ¥ =711, p €R be such that
1 1 1 ~ 1 1 1
/’*5(5‘;)‘5—1‘(“5(5‘?)‘5)-

If F(t,x)isin L?/(R; B;g(RS)) and u is a weak solution to the inhomogeneous
wave equation

(2-27) —%u+Au=F(t, x), u0)=u/(0)=0,
then
(2-28) ||”||L?(R;B£2(R5)) SIF(, x)”L?/(R;B;é(W))'

Next, we recall the well-posedness theory and the perturbation theory of the
Cauchy problem (1-5).

Definition 2.9 (solution). Let / be a time interval such that 0 € 1. We say function
u:I xR —>Risa (strong) solution to the Cauchy problem (1-5) in [ if it satisfies

(u, ur)(0) = (uo, ur),
u,u) e C(I; H'» x HT'2(R) N L] (I xR),

and the integral equation

(2-29) M(I)ZS(I)(MO,M)—/ S —1)(0, [ulu(r)) dt
0

forall t € I.

Theorem 2.10 (local well-posedness [Lindblad and Sogge 1995; Rodriguez 2017]).
Let (ug, u1) € H'? x H™V2(R%) with

o, )l g1y g-12wsy < A
There exists § = §(A) > 0 such that, if
(2-30) IS o, u)ll 3 o,71xms) <8, for some T >0,
then there exists a unique solution u to (1-5) in [0, T x R, such that

(2-31) OSUPTH(M, ul gz g-12msy F1ull3 o, 71xmsy < C(A).
<t< '
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In addition, if A > 0 is small enough, we can take T = oc.

We define T, (ug, u1) := sup I, where [ is the maximal interval of existence of
the solution u.

Lemma 2.11 (standard blowup criterion). Suppose u is the solution to the Cauchy
problem (1-5) with initial data (ug, uy) € HY? x H_]/Z(RS) and Ty (ug, uy) < oQ.
Then we have

(2-32) ”u”L?vx([O,T_,_(uo,ul))XRs) = 0.

The proof is standard and similar to the energy critical case in [Kenig 2015].

We end this section by recalling the stability lemma for the Cauchy problem (1-5),
which plays an important role in the Theorem 4.1.

Theorem 2.12 (perturbation theory [Rodriguez 2017]). Let I C R be a time interval
with 0 € I Let (ug, u;) € H'/? x H=1/2(R>) and some constants M, A, A’ > 0 be
given. Let ii be defined on I x R and satisfy

(2-33) Stlel?H(ﬁ, QW gy g-12wsy < A,

(2:34) il 2 sy < M.

Assume that 3,01 — Aii = —|ii|ii +e on I x R,

GED (0 = 7001 = O -1y < A

and that

236) el g sy + [ SO[GO), 8,30) = o, u0)]| 15 gms) <&

Then, there exist B > 0 and g9 = e9(M, A, A") > 0 such that, for 0 < ¢ < g, there
exists a solution u to (1-5) in I such that (u(0), 0,u(0)) = (ug, uy), with

(2_37) ||u||Li/\(I><R5) S C(M’ As A/),
(2-38) supll (@i (1), (1)) — (ut, ()| gy o1voqasy) < COM, A, AY(A +P).

tel
3. Decomposition of the solution and global well-posedness

In this section, we will prove that for any given initial data (ug, u;) € Bi] x B 12’1 (R3),
the corresponding solution u to (1-5) is globally well-posed. To prove this, we first
show the solution u belongs to some suitable Strichartz-type spaces on a local time
interval. Then, we split it into two parts: © = v + w. Based on the inhomogeneous
Strichartz estimates (2-28), we will derive a decay property for v and prove that w
is in the energy space H' x L>(R%). We remark that the constants in “ < ” in this
section depend upon ||(ug, u1) ||1_g3|3’1 X B? | (RS)"
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For the sake of simplicity, we denote F(u) = |u|u. Recall that u, is also a
solution to the Cauchy problem (1-5) with initial data (A%uo(Ax), A3u;(Ax)), where

(3-1) u; (t, x) = A2u(rt, Ax).

Given (1o, uy) € Bfl X Bf’l(RS), for any n > 0, there exists jo = jo(uo, u1, n) < 00
such that

(3-2) > 221 Pjuoll i gs) < -
J=Jo
Replace u by u; for A =27/, then we have
(3-3) Y 2N Puollp sy + D 2V 1P sy < -
j=0 j=0

Lemma 3.1. Let €y > 0 be a small constant and n < €y. If the initial data (ug, u) €
313,1 X Blzy1 (RY) satisfies (3-3) and u is the solution to (1-5) with initial data (ug, uy)
given by Theorem 2.10, then there exists

8 =38(eo, o, un)ll g i ) = 0

such that

(3-4) etz -s.01xm5) = Z”PJ’””L%X([—«S,MxRS) < €0,
jez

(3_5) ||M ||LIOO([_5,3];3521./12(|R5)) 5 Z” Pju ”L,OOI-']]/Z([—B,S]XRS) S 1.
jez

Proof. By Strichartz’s estimates in Proposition 2.7 and (3-3), we obtain
(3-6) I1S() P=o(uo, u)ll 13 (mxrs) < 1e€o.

On the other hand, for every ¢ € R, by Bernstein, we have

(3-7) I1S(#) P<o(uo, u) | 3@y S 1-

Hence, taking § small enough, we have,

(3-8) 1S o, wn)ll 2 (s 51c85) < €0-

Then, by the Strichartz estimates, we have

(-9 Nl osoiumsy S NSO @0, w12 (s sy + 10173 (s 51m5:
from which, by a standard continuity argument, we deduce that

(3-10) leell 23 (—5.51xR) S €0
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Let
G-1D)  ar = 1Peull 3 —s5.1xr5)
+ 225 Pt o215 1) + 25 I Pt o125 s 51
(3-12) by =22 Panoll 2 +27 | Peany 2
By Young’s inequality, it suffices to show there is a recurrence relation
(3-13) ar Sbiteo Y 271 g,

J
To prove this, making use of the Strichartz estimates, we have

(3-14) @i S b+ 2N PF @I 1219 .

First, we consider the low frequency part of the second term in the right-hand
side of (3-14). By Lemma 2.5 and Holder, we have

1k
S 2728 PV |2F(u<k)||Lz 43 _5.5]xR5)

S2° : ||u||L3Y( 88]><[R5)“|v| V2 (P<k”)||L6 12/5 1 _s,51xR5)

(k* )
S Ml (—s.51xm5) E :2 ! IPjull pop 12 (s s1xms)»
j<k

from which it follows that

L4 _le—iyAli
(3-16) 28 PeF (=)l 245 (s gpemsy S €002+ D28 1Pjutll oy 25 (s 51,0,
J<k

1 .
Sy 2

<k
On the other hand, by Holder’s inequality,

1
(G-17) 25 PP @) = F@=) 255 51a)

S el s —s 8]><[R5)24 P>kl oy 125 5 515
_Llicpali _lgi
<€ Z 2=3(=k) 1 1Pl o 255 s 1) < e Z 23Uk,
J=k+1 J=k+1
Then the recurrence relation (3-13) follows from (3-16) and (3-17). O
Note that by the inequality (3-5), the inequalities (3-16) and (3-17) yield that

1
(3-18) D 2N PACF @) 2,95 0. 51m5) S €0
kezZ



5D DEFOCUSING CONFORMAL INVARIANT NLW IN A CRITICAL BESOV SPACE 265

As an application of Lemma 3.1 and the radial Sobolev inequality (2-2), we
will see that the solution u possesses some space decay property in the region
{|x| > |t|+ C} for some large constant C > (. Let x (x) be a smooth cutoff function
such that x (x) =1 for |x| < 1 5 and x (x) =0for |x| > 1. By Lemma 2.4, there exists a
dyadic integer R = R(ug, u1, eo) such that ||(1 — X( ) (uo, I/t])”Bl/Z 172
Then by scaling, we have

®s) = < €.

(3-19)  ||(1 = x(2x)((2R)*uo(2Rx), 2R)*u; (2Rx))

1/2

”B 2By 12 ®) = €0

By abuse of notations, we will still use (ug, #;) to represent the initial data
(2R)?uo(2Rx), 2R)*u1(2Rx)). Then we have,

(3-20) 10— X @) wo. )l g1, o1 sy < 0.
In addition, by Lemma 3.1, we have

(3-21) ||L‘||L3 ([=8/(2R), 8/ 2R)]xR%) < €o,

i <
(3-22) Wl oo 1 —s/2R), 572R0: By (®S)) ~ L.

Lemma 3.2. Let J C R be an interval such that u is a solution to (1-5) on J. Then
2
(3-23) ||”||L3,X({(z,x)eJxR5;|x|z|t|+%}> +§g’” |x[u(z, X)HL;O({xeRS: | [el+3D) S €0

Proof. Let U (t, x) be the solution to (1-5) with initial data (1—x (2x)) (uo(x), u1(x)).
Employing Theorem 2.10 and arguing by similar arguments in Lemma 3.1, one can
deduce (3-14) when u is replaced by U and [—4, §] is replaced by R. Thus

(3-24) 1T L3, mxrs) + I U||L;>032‘{12(qu@5) S o

Due to the finite propagation speed property of the wave equation (1-5), we have
u(t,x) = U(t, x) when |x| > |t| + % Then (3-23) follows from (3-24) and the
radial Sobolev inequality (2-2). U

Next, we want to show the following local properties, which will play an im-
portant role in Section 3B. Unlike the case of three dimensions in [Dodson 2019],
we will make use of the inhomogeneous Strichartz estimates (2-28) to conquer the
difficulties caused by the higher order decay of time.

Lemma 3.3. If ¢ is sufficiently small and § is as given in Lemma 3.1, then, for
3 <r <4, we have

2r—5
(3-25) sup 14wl @)l 37,2508 10 pywms) S 1

25 <I<25

We remark that for 3 < r < oo, the space L;/(Zr_S)L; (R x RY) is H'/?-critical
but not admissible.
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Proof. First, we consider the estimates for the linear part. Utilizing dispersive
estimate (2-20), we have

1 . .
(3-26)  IS@)Pj(wo, un)lz@s) S (27 I1PjuollLis) + 22 I1Pjur i) ]

By Bernstein, we have

. I1S@) Pj(uo, u)llz2@ms) S I Pjuoll 2 @s) +2_‘/||PjM1||L§(R5)
- 5 3
S22 Piuoll sy +227 (| Pjutll L1 ges) -

Interpolating this inequality with the estimate (3-26) yields that,

(1 =2y~ i i
(3-28) 1S(0) Py o, un)ll sy St 277277 [2% [ Pjuo | 1 sy 2% 1 Pjunll o sy ).

On the other hand, for r > % employing Bernstein’s estimates, we have

11y
(3-29) IIS@) Pj(uo, un)ll . ws) <20 ’”llS(l)Pj(uo,M1)||L§(R5>
5y . .

S 2072 Pjull sy + 2% | Pju 1 sy )

This estimate and (3-28) yield that, for r > %

(3-30) §2£r<2’—5>/’ 1S (@) o, un)ll sy + 1S@ o, w) 15,1 )

S o, w)llgs 2, o)

By the reversal property of the wave equation, it suffices to prove (3-25) for
t > 0. Using the inhomogeneous Strichartz estimates (2-28), Lemmas 2.5, 3.1, and
Holder, we have

(3-31) ”/Ot S(t — 1)(0, F(u(r)))dt‘

SIVIAE@) | o 00097

5/4,25/6
LA L2510, 2 1xRS)

(10, £ 1xR)

< 12, 11/2 1/2
Sivi u”L?OL,%([O,%]XRS)”u”Livx([O,%]xRS)”u”Lf“LiS/G([O,%]XRS)'
This estimates together with the estimate (3-30) yields

(3-32) <1,

”l/l ||L[5/4L§5/6([0,%]><R5) ~

provided 0 < €9 < min(1, || (u, M1)||551X3121(R5))-
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Let ¢ € (0, 1) to be chosen later. First, employing the dispersive estimate (2-20),
Lemma 2.5, and interpolation, for r € (3, 4), we have

(3-33)  sup tZSH/I )S(t—f)(O,F(u(r)))dr

S
rel0, 2 L7 (RS)

ws 7 1 6
< sup tv Tnm TF ()| v gs) dT
1€[0, 21 l-or (t—1)777
ws ! 1
< sup 1 f —||u(r>||L,(Rs)
[E[O,%] (1—c)t (l‘ — ‘L’) v
(12 r l
X ”M(T)” 1/2(R5)”u(7)” S/Z(RS) dt
2r=5 =L 412
g( Supa o ||bt(l‘)”Lr(|R{5))2 > lu ||L°°H1/2([0 2 xRS
1€[0, 5]

(2p_r=L t 1 1_4
X [lul] 007 5/2 — dt
L®LY ([0 LIxRS) (=0 (t —1)> %

2r—5 r=1
S (Csup 1 Ul gsy) T
1[0, 21
For the remainder part, we utilize the dispersive estimate (2-20), Lemma 2.5, the
Holder inequality, and interpolation to obtain

aa [

S(t — )0, F(u(1)))dr HU(RS)

dt

s [0 1
St / ———— IV Fu(o))|
0 (t—1)r

L’ (R5)

S 2|V F )l

L} (RxR)
4 412 3
< 72
Scr ||u||L;./(2r75)L;(RXRS) ||u||L°°H1/2([RxR5) [|u ||L3 L(RxRS)
4 15939
S C7—2€07r 7 ,

where in the last step we used the fact that

) -3)
lluel 5 lluel A

1 <e
Ltr/(zrfs)L;qo,%]XRS ~ ” ||L3x([0 KX b 1 xRS) 5/4 25/6([0 5 b 1xS) ™ 0

Hence, by (3-30) and (3-32)—(3-34), taking ¢ > 0 small enough and using a continuity
method, there exists €9 = €p(]| (uo, u1)||313 | X3|21) > 0 such that

(3-35) sup tg”””L; <1, for3<r<4. ]

1[0, 21
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We denote §; = 5% for s1mphclty Let ¢ € COO(RS) be supported in x| < 3
and ¥ (x) = 1 when |x| < 4+ Then we can assume that [(Vi/)(x)| S 5. For ¢t > 81,
we split u(t, x) = v(t, x) —|— w(t x), where

81/10
(3-36) v(t) = S(t)(Yuo, lﬂul)—/o St —1)0, Yy F(u(r)))dr.

We will prove that v has a decay property and w has finite energy.

3A. The decay part of the solution u.

Lemma 3.4. Fort > 81, we have

(3-37) IO oo rsy S 87212
In addition, we have

—1 2
(3-38) 1l 322y + 10123, sy S 87

Proof. We first estimate the linear part of v. By the Huygens principle, the radial
Sobolev inequality (2-2) and Lemma 2.4, we have, for t > §;

1 1
(3-39) IS@) Wruo, Yun)lloms) S t—zll(uo, un)ll iz, g1 S ok

For the second part of v and ¢ > §;, using the Radial Sobolev inequality (2-2),
the Huygens principle and the Strichartz estimates, we obtain

81/10
[ s o0 v e a]

L;O(RS)
1 81/10
;_ZH/ S(t—1)(0, X F(u(x))) dt

l”/ D ey e
M

H/51/10 cos(t|V])
VI

By} (R%)

(3-40) o
2 1

— o WF@u(r)dr

1/2

1 1
(3-41) N 2 272/ PJ[VIF(”(T))]”L}L;([o,m/m]xRS)
j<0
1 .
(3-42) + p5] Z 23/ | Pi[¥ F(u(r))] ||L,2Lﬁ/3([0,31/101xR5)
Jj=0

For the low frequency part (3-41), by Bernstein’s estimates and Holder’s inequality,
we have

. 1
2 i 30,02
(3-43) £ (B-41) < Y 25 F @l 1y 13210 5, pogesy S 81 14073 10 50 10pcms) S 1
j<0
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For (3-42), it suffices to estimate

(3-44) > 24Py W IF (u(r) | 2222 0.5, 101x8)
j=0

(3-45) + Z 23/ [P F(u(o)| L2037 (10.6,/10]xR5)*
j=0

For (3-44), by commutator estimates, Young’s inequality, the Sobolev embedding
and Lemma 3.1, we have

I
(3-46) (3-44) < Zz is 1||QjF(u(r))||L%Li/3([oyal/lo]XR5)
Jj=0
-1 _3iaL5
S 9 22 4]24J”F(”(t))||L3L§/4([0,81/101xR5)
j=0
1 < 7%
61 lu ”LO"LS/Z([O,B./IO]XRS)N81 ’

where

Q;f(x)=2% /R Y1627 )| fl(x — y)dy

and in the first inequality we used the mean value theorem. For (3-45), by the
estimate (3-18), we have

(3-47) (3-45) < 23| P F @)l 2,00 S .
j=0

Hence, by (3-39)—(3-47), we have ||v(t)||L00(Rs) K Zt -2,

Now we consider (3-38). For simplicity, we write
”v”S(R) = “v”L?,x(RXRS) + “v”L?C(R,BZI/IZ(RS))
For the linear part, by the Strichartz estimates and Lemma 2.4, we have
(3-48) I1S@) (Wruo, vunlsw < Nl (uo, ”1)||lef12x1}2j}/2(u@5) SL

By the Strichartz estimates and repeating the arguments that deal with (3-40),
81/10
St =)0, ¥ F () dr |
[ se—oowraema|

51/10 v
s|[ P e Famyds
0 VI

I/2(R )

+”/(;al/10 COS|(;||V|)WF( (t )))dr” ) 55]—%.

This completes the proof. (]
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3B. The energy part of the solution u.

Lemma 3.5. We have

(3-49) 1@l 12 S 07

Proof. By the definition of w, for # > §;, we have
(3-50) w()= S(t)((1 Yuo, (1=)uy)
l t
—/ S(t—1)O0, A—=yY)F(u(r)))dr— / S(t—1)(0, F(u(t)))dr.

0 10
First, we consider the contribution of the third term of (3-50). Taking r = 20

13
in (3-25), by interpolation, we have

(3-51) ||M||L2L4([5]/10 811xR3)

1
= el ; 50/13 osi 122 ]| 5 2576 sy AT
/31/10 Ly (R) Ly (R)

_1 7
< 2 6 <
S sup [t 10 ||M(t)||L§O/'3(R5)]”u||Lf/4L§5/6([‘i}),81]x[R{5) S0,

IG[%,&]

=

From this inequality and Strichartz, we have

(3-52) ” /8 5/110 S(8; —1)(0, F(u(t)))dt“

HI(RY)

_l’_

t
3,[[ St —1)(0, F(u(r))) dr]
8

1/10

=8 Il L2 (®5)

8=

SNFGON Ly (13 1) S 100101 5,1y S 01

By Strichartz, radial Sobolev inequality (2-2) and Holder, the second term of (3-50)
can be estimated as

81/10 _
(3—53) |)f0 S(t - T)(O’ (1 - lp)F‘(M(":))) dr|t=51 | HIXLZ(RS)

Sha- wF(u(r))||L%L2([o,g]m5)

SN0 - w)unzw([o b sy 1 ull ) (05 ]xw)

LOOB|/2 fs 31

=

e 2IIMII
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Hence, it remains to estimate

(3-54) (L =) (o, u) ll g1y r2gs)-

For ug, by radial Sobolev inequality (2-2) and polar coordinates,

261

(3-55) ”(vw)u()”%](Rﬁ) S 81_1/

[ iy do@rtar < ol
51/100 J 4

<1
IEGS

By the inequality (2-13), we have

_1
(3-56) (X =) 0ruoll2ms) S 6y °-
For u1, by the inequality (2-8) and polar coordinates, one can deduce that
o
r2dr N I
Ll

10 10

@51 N0 =Pl < [, [ m@Prdo@ars |

This inequality together with (3-55) and (3-56) implies that

1

(3-58) L=y o, uD) |l g1y 2msy S8 -

This completes the proof. (]

3C. Global well-posedness. In this subsection, we prove that the solution u is
globally well-posed. We emphasize that the constants in “ < ” in this subsection
depend only upon §; and || (uo, u1)||3131X3121(R5).

Theorem 3.6. Let u be the solution to (1-5) with initial data (ug, uy) € B?l X 3121
Then u is globally well-posed and such that for any compact interval J C R,

(3-59) bl sy < C (4, N0, uDl g e 81)-

Proof. By Lemma 2.11, it suffices to show (3-59). By the time reversibility of the
wave equation, we just need consider the part of r > 0.
For ¢t > 81, by u(t) = w(t) + v(¢) and the formula (3-36) of v(¢), we have

(3-60) Wi — Aw = —|ulu.

We define the energy of w as (1-2) by

(3-61) E(w(t)):%/Rslvtw(mzdx—{—%/w |wa(t)|2dx+%/w lw(®)]? dx.

By the estimates (3-22), (3-38), Lemma 3.5 and interpolation, we have

(3-62) Ew() S 1.
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Now, we consider

d
(3-63) EE(w(t))

= ‘/ (Jw|lw—|u|lu)w, dx
RS

S vl zs sy lwell 2 sy Twll 3 @)+ lwe ll 22 wsy 101l 2o sy 10123 s -

By interpolation and the dispersive estimate (3-37) of v, we have

11
(3-64) Ivll Lo sy lwe Il 22 sy 1wl 23 wsy < ;||v||z§(Rs) llwell 22 sy lwll 23 @s)
<1 5.1
S ;E(w(t))6 10175 sy
1 3
S.z ;[E(U))(t) + ”v”L)S((RS)]a
1 1 3
(3-65) lwell L2 wsy IVl Lo sy IVl L3 wsy S ;E(w(f))2 ||v||2§((R5)
1 3
S ;[E(w)(l) + ||U||L§(Rs)]-

Substituting (3-64) and (3-65) into (3-63), we obtain

d 1
(3-66) T E@®) = Co(E@@) + V17 ps)-
Hence,
d
(3-67) T CE@ONT =TI s,

This estimate and the inequality (3-38) imply that
(3-68) Ew(n) < Ci(1+ ).
Thus, for any compact interval J C R, we have

(3-69) Nl 3 rxmsy = MVl L3 (rxmsy T Wl L3 (7xrs) < 00 O

4. Scattering

In this section we prove Theorem 1.1 by assuming Proposition 1.3, that is, re-
moving the dependence of §; in (1-8). From the arguments in Section 3, we have
81 =38/(2R), where § and R depending the scaling and spatial profile of the initial
data, respectively. We give the heuristic idea of the proof by analyzing the effect of
the parameters § and R on the critical norm L,S’ LR xR).

Note that the critical norm L?’ L(Rx R3) of the solution to the nonlinear equation
(1-5) is invariant under the scaling transform. Hence the parameter § may not
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be the main difficulty in proving Theorem 1.1. On the other hand, the latter
parameter R relies on the spatial profile of the initial data. For example, let R be
the parameter correspondmg to the initial data (ug, 1) with compact support. The
linear evolution S (1) for ¢ € R does not change the critical norm H'/2 x H~1/2 by
the Plancherel theorem, but owing to the Huygens principle for the odd-dimension
linear wave equations, it does change the spatial support of the initial datum. Thus,
for the initial data S (to) (uo, u1), the spatial parameter (may be chosen as R + #g)
is likely very huge, when ¢y is large enough However, the Bl | X Bl | horm may
become huge under the evolution of S (1). Indeed if || (ug, up)|| BY < B,(RS) = =1,
then ||S(t0)(u0, “1)”33 X B2 (RS) —> 00 as to — oo.! Hence, if

| S(20) (wo. D g ez ) S 1

then #y remains bounded. Taking account of this fact, one may conquer the difficul-
ties caused by the parameter R.

To finish the proof of Theorem 1.1, we need the following theorem of profile
decomposition.

4A. Profile decomposition. Now, we recall the linear profile decomposition from
[Ramos 2012] in the radial case. We refer to [Bahouri and Gérard 1999] for the
profile decompositions in the energy critical spaces.

Theorem 4.1 (profile decomposition). Let C > 0 be a fixed number and let (ug, u'}),
be a sequence in H'/2 x H_I/Z(RS), with
4-1) | (g, WDl g2 x -12@sy < C-
Then there exist a subsequence of (ug, u'l) (still denoted by (u, u7)), a sequence
(@3 9])jen C H'Ax HT'2(RY),
a sequence
(RQ, RY N1 CH' P H™ V2 (RY)
and a sequence of parameters (t}’, )»;?) C R x (0, 00) such that for each N > 1,

N

4-2) S(t)(u’é,u’f)=2(?»”) [S(X"(t—t ))(¢0 ¢1)](?»”x)+5(t)(R0n, 1n)
j=1

with

4-3) hm lim sup||S(t)(R(])Vn, R )”L?YX(RXW) =0.

n—oo
1By interpolation and density, it suffices to show that, for f €S R, hm || VI f || B2 =0,

(R%)
which follows from the dispersive estimate (2-20) and Bernstein’s estimates.
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In addition, the parameters (t;’, k;f) satisfy the orthogonality property: for any j #k,

n—oo

4-4) hm(ﬁ+k7+(kk)2(kj)2|tj—tk|)=oo.
k J
Furthermore, for every N > 1,

2
(4-5) ||(M8, M?)”I_'Il/zngl/z(ﬂs)

N
j N2 2
= D 1@ ED N2 fr12msy + IR s RED W 12y + 00 (D
j=1

4B. End of the proof of the main theorem. Now, we apply the strategy in [Dodson
2019] to finish the proof of Theorem 1.1, that is, remove the §; in Proposition 1.3.

We prove Theorem 1.1 by contradiction. We assume u is the solution to (1-5)
with the initial data such that (uo, u1) € B} | x B} |(R%). For M > 0, let

(4-6) fM) = Sup{”””L?’X(RXRS) : I (o, Ml)||3i‘_le}12_l([kg5) < Mj}.

Then by Proposition 1.3, f is well defined. Also, by Bernstein and Theorem 2.10,
f(M) < oo when M is small enough. From the definition, f (M) is nondecreasing
as M increases.

If Theorem 1.1 fails, then there exist My < oo and a sequence {(ug, u'{)}aen C
313,1 X B%’l(RS), such that

(4-7) g WD g iz sy < Mo

and the solution u" to (1-5) with (1" (0), (3;u")(0)) = (uy, u7) satisfying

4-8) 1" 2 sy = 0.

as n — 0o. By Theorem 4.1, we have
N

@-9) SO, uh) =D WSO — )] $)](31x) + SO(RY,. RY,).
j=1

In the proof of Theorem 4.1, Ramos [2012] actually proved that

J J

weakly in H'/2 x H~'/2(R%) as n — co. From this we can prove the following:

— @, oD,

t=0

Proposition 4.2. For fixed j e N, if (qbé , qblj ) #0, then II;?A?I is bounded as n — oo.
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Proof. First, if £71; is unbounded for n € N, then by taking a subsequence of n (still

denoted by n), we assume that |t}1)»;f| — 00, as n — oo. In light of the heuristic
analysis at the beginning of this section, we have

4-11) §(r;u';)[()\") < : ) a3 <A>] — (0,0).
J

in Lfc x W, L3(R3). In fact, using (4-7) and the estimate (3-30) in Section 3, we have

e fsnsfon () 09

L3(R5)
o) o)
( A UL

nyn—i nony . .
§|tj)¥j| 3||(u0,141)||3f<1><312ﬂ(u@5)_>0,

< AT

B} | x B} | (R%)

as n — oo. Similarly, by the dispersive estimate (2-20), Bernstein and interpolation,
we have

(4-13) Hs'(t;lx';)[(x;%) (/\) (M)3u’;(k;n)]
j

<A 5 ;
N|tj)¥j| 3||(Mo,141)||]_!;f_l><1_!312w1([r@5)—>07

Wi ()

as n — oo. Hence, from the weak convergence relation (4-10), (4-12) and (4-13)
imply that (3. ¢7) = (0. 0). O

For simplicity, we assume that every (q&é, ¢{ ) in (4-9) is nontrivial. By Proposition
4.2, t;’A;? is bounded for each fixed j, and therefore after taking a suitable subse-
quence of n (still denoted by n), we can assume t;’A;? — tj € Rasn — oo. Hence,

if we denote (¢], 9]) = S(—t;)(@], $!), then
(4-14) S(— Mt )(¢0 ¢ — (9§ o)) —> 0.

in H'/2 x H*I/Z(RS) as n — oo. Let

=Ry A 2 [S (=t )(<z>o ¢’)](A”x> 2@}, wl)(k"X)
(4 15) N N n\3 n n J n n\3 n
RN, =RY 430 W3 [S(=2) (5. D] 1x)— (D3 (g 911 x),
then
(4-16) Jim_1im supl|S(1) (Rg', RV 13 (s =0

n—oo



276 CHANGXING MIAO, JIANWEI YANG AND TENGFEI ZHAO

Taking ¢t = 0 in (4-9), by (4-14) and (4-15), we have
N

@17 pou) =Y (WD (g Wx), D3] (1)) + (RY,. RY).

j=1
In addition, by the orthogonality (4-4) and Proposition 4.2, we have for each j # k

An )»n
(4-18) lim — + 2k = 0,

n—00 )L” )\,"

as n — oo. Thus, for fixed j € N, we have

(4-19) ((A;f)zus( ) a3 "(K,,))A(wéwp{)

weakly in H'/2 x H='/2(R%) as n — oo. By Fatou’s lemma, this fact and the
inequality (4-7) imply

(4-20) 123 Dl 2 @) < Mo.

On the other hand, (4-5) and (4-14) yield that

2 2
(4-21) Z”(‘Po ‘P])”Hl/z H-12(RS) ~ <Sup||(“o» 111)”1-'11/2x1-'1*1/2(R5) S G-
jzl

Hence, for fixed € > 0, there exists a finite integer Ny such that

(4-22) PO (] R
Jj=No+1

By the local well-posedness theory, if € > 0 is small enough, then the solution v/
to (1-5) with the initial data ((p0 gol) is globally well-posed and

(4-23) [[v/ I3, ®xrs) N ||(§00, <,01)||H1/2XH—1/2(R5), for every j > No+ 1.

For 1 < j < Ny, as a consequence of Proposition 1.3, the solution to (1-5) with
the initial data (‘/’0 (,01) is globally well-posed and such that

(4-24) ”UJ“L?_X(RX[}@) So.j 1

By the orthogonality property (4-18), for any j # k,

(4-25) lim /f |07 (Wt M) P 1) v e, Afx)| dx di = 0.
This together with the estimates (4-22)—(4-24) implies

_ i m2oi (o0
(4-26) NzSIZ\JIE)H"lggoH 3 (Ajt,ij)‘

1<j<N L?,X(RXRS)
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is bounded. Similarly, as a consequence of the trivial estimate
N N
‘F(Z(,\;)va (W1, x’;x)) =) F@DM )J}x))‘
Jj=1 j=1

SO0 IR M) ()P (e, )
1<j.k<N,j#k

and the orthogonality property (4-18), we have

=0.

LY2RxR5)

N N
(4-27) lim HF(Z(Af})%f (W1t ,\f;x)> =Y F((H* (Wt Mx))
j=1 j=1

Let u’y be an approximate solution to (1-5) defined by

N
'l = Z(xy)zvf (V1) + S(O(RY,. RY,).
j=1
Then, recall the property (4-16) for (Rév o RN ,) and the fact that (4-26) is uniformly
bounded for N > Ny + 1, we obtain

(4-28) lim sup 11m ||uN||L3 LRXRS) S <.

N—o0
Moreover, combining (4-27), the property (4-16) for (R([)Vn, RN »)» and Holder’s
inequality, we have

N

(4-29)  limsup lim HF(u )= S F(0 o, A;%x))‘
N—o0

‘/Z(RxRS)

j=1

Utilizing Theorem 2.12, by (4-17), (4-28) and (4-29), we have that for n large
enough, the solution " to (1-5) with initial data (u, u’) is global and such that

: n
(4-30) m s res)

is bounded, which contradicts the hypothesis (4-8) of u". Thus, we have proved
Theorem 1.1.

5. Hyperbolic coordinates and spacetime estimates

In this section, we will finish the proof of Proposition 1.3. We first reduce
Proposition 1.3 to estimating the L3 norm of w on the region Q,, which will be
defined below. Without loss of generahty, we assume that §; < . Asin Theorem 3.6,
we also note the constants in “<” in this section may be dlfferent in each step and
are dependent on §; and ||(ug, u1) ”313_1 X B (RS)*
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5A. Reduction of the proof of Proposition 1.3. Now we consider the L?’x norm
of u on Ry x R. First, we split time-spatial region R, x R’ as the union

(5-1) Ry xR = QUQHLUQ;,
where
Q ={tx) eRy xR :|x| =141},
L ={(t.x) eRy xR : (t 4+ (1 =8))> — |x[> > 1}.
Since §; < zlt’ there exists a large constant C > 0, such that
Q3 {(t,x)eRy xR : 1+ x| < C).

Recalling the estimate (3-23) in Section 3, we obtain ||u]| L3 < 1. For the
bounded region 23, Theorem 3.6 yields ||”||L,3X(93) < 1. Hence, we just need to
consider the Lf’ . norm of u on the region ;. By the estimate (3-38) for v, we are
reduced to showing ||w|| L @) <.

5B. Hyperbolic coordinates. For the radial solution u(z, x) to (1-5), if we denote
u(t,r)=u(t, x) for r = |x|, then

(5-2) 3 (rPu) — 8,y (r’u) = —2u — r?|ulu.

Denote u(t,r) = u(t — (1 — 81),r) and denote v, w similarly. Let (t,r) =
(e” cosh s, €7 sinh s); then drdt = e**dtds. We denote the hyperbolic transforms by

_ 2Tsinh?s _ . . .
(5-3) u=—2u(e coshs, e sinhs),
S
e sinh?s _ . .
(5-4) v=—2v(e coshs, e’ sinhs),
S
- ezrsinhzs_ . .
(5-5) w=—2w(e coshs, e’ sinhys).
S
Hence, we have
252 s
5-6 Brr (s2il) — By (s%00) = — ii — i,
(5-6) v ($7U) — O55(s711) R sinh25| I
2 2
(5-7) Bre (575) — B (529) = ————7,
sinh” s
N N 2 2 N 4
(5-8) Bee (57) — 03y (5°) = ——— " Jala.

w —
sinh? s sinh? s
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Define the hyperbolic energy of w by

e 2502 2~13
0

sinh®s 3 sinh®s

5C. The hyperbolic energy for some 1y > 0. First, we want to prove Ej,(w)(t) is
bounded for some 7y > 0. We claim that it suffices to show the boundedness of

(5-10) / [1(2@) (r0, )* + | (s @), (10, 5)|*] ds
0

for some 7y > 0.
To prove this claim, we need the sharp Hardy inequality,

_ 2 2
(5-11) (u) / 'f(x;| dxg/ IV FI2(x) dx.
2 R |x] R

By polar coordinates, we rewrite this inequality for radial functions,

(d—2)2 o° 2 d—3 . 2 d—1
(5-12) = / P dr < / 9y £y .
0 0

Then, this inequality and integration by parts imply that

(5-13) / (52 (10))s|* ds

]

o0
:/ s4z’53(ro)ds+4/ szw(ro)sws(ro)ds+4f s2W2(19) ds
0 0 0

o0 [e.¢] 1 [e.¢]
:/ s* 2 (to) ds —2/ s2W(t)* ds > 5/ s* 2 (to) ds.
0 0 0

In addition, by Holder and Sobolev in polar coordinates, we have

00 |25 3 o] 2
(5-14) / Is7w(o)| s=/ () Pstds
0

smh2 sinh? s
9

3
5(/ |w<ro)|%°s4ds) 5(/ |ws<f0)|2s4ds).
0 0

By Hardy’s inequality, we have

00 |25 2 ool N oo~
(5-15) / Mdsgf —2|w<ro)|2s4ds5/ |5 (t0)|s* dis.
0 0o S 0

sinh? s

Hence the claim follows.
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5C1. The hyperbolic energy for s > sy > 0. For t € [0, 1] and sufficiently large
so > 0, we can assume that e ™% < % — 81. By the finite speed of propagation,
v(t, r) are supported in the region {(r,7) € R x Ry : r —t < §1/5}. Then, for
T € [0, 1] and s > 59, we have

¢% sinhs — [e% coshs — (1 —8)] =1—8, —e"™ > % > 85—1

which leads to v(e® coshs — (1 —6;), e* sinhs) = 0. Hence, for T € [0, 1], we have

(5-16) f h N2 D). (z, )+ 3(s* D)5 (z, 8)[* ds

_ / X 1% (v, 91 + 31(s%)s(z, 5) ds.

0

Since u is a radial solution to (1-5), we have, by (2-19),
(5-17) r*u(t,r) = %[(r —0%ug(r — 1) + (r +0)%uo(r +1)]

1 r—+t 1 r—+t
— ! suog(s)ds+— s(s2+r2—t2)u1(s) ds
2 4r J,_,

r—

t

1 t r+t—s

+4—ff p(p? 4+ 1% —(t — )P |ulu(s, p) dp ds,
r 0 r—t+s

for r >t > 0. Hence, by the hyperbolic transform (5-3), we have
s2i(t, )

(5:18) = 2[(1=81—e"*) 2ug(1—-81—e™*)+ (e —(1=8) g (e ~(1-3))]

er+s_(1_8l)
(5-19) —%(e’coshs—(l—él))(efsinhs)_l/ puo(p)dp
1-8;—e™*
T+s
1O P e = (1-8)) (18 —eT)
(520 41 / o A=0=e") yap
4 J1 5 —ets e®sinhs
efcoshs pet™ —t 2 T+s T—s
+(e —t)(t—e _
(5-21) sy [ [P Dt pydpar
1-8, —pT—s e®sinhs

For (5-18), by a direct calculation, we obtain
(5-22) (3 +85)(5-18) =2(e™ ™ — (1 = 81))e" Fug(e™ — (1 =481))
+ (e = (1 =8 up(e™ — (1 =81)e™,
(5-23) (8, —0,)(5-18)=2(1 =81 —e"*)e" “up(1 —8; —e* %)
+((1 =81 —e" ) ?uy(1 — 8 —e™ e .
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Using the estimate (2-13) in Section 2 and polar coordinates, we deduce that
) o
(5-24) / (€ —(1=81))e" P ug(e™ —(1-8))|"ds < / uo(r)*ridr S,
0
S0 X .
(5-25) /|(ef+5—(1—31))Zef“ug(ef+5—(1—51))| ds 5/ |9, u0(r)|*r° dr S 1.
S0 0

By the radial Sobolev inequality (2-2), we have |uo(r)| < r~2 This estimate and
the inequality (2-3) imply

oo
(5-26) / |(1=81—e"")e"up(1 -6, —e’*S)|2ds
S0 o 2
+/ |((1 =81 — e up(1 — 8 —e")e" | ds
\

50
o
< / e 2 ds <1.

~
S0

We now take the derivatives of (5-19) with respect to 7 and s,

1—81 et+s_(]_8])
(5-27) 9:(5-19) = —/ puo(p)dp+ I+ 1
1

2eT sinhs Ji_s5 _or-s
e"coshs — (1 —8;)\ [¢ 1=
(5‘28) 8‘9(5'19) = 0y . ,Ou()(p) dp +1— 1,
2e7 sinh s 1—8;—e7—s
where
Tcoshs —(1—96
(529) L =20 ( 1)ef“(e’“—(1—5]))u0(ef“—(1—51)),
2e? sinh s
Tcoshs — (1 -6
530) h= LS TUTO) ooy s sy — 8y — e,
2e? sinh s

For the first term in the right-hand side of (5-27), by the inequality (2-3), we have

%) et —(1-61) 2 1)
(5-31) / ‘e/ ,ouo(p)dp‘ dsgf e ds <1
S 1

0 —dj—et? 50

By similar estimates, one can find that the contribution of the first term in the
right-hand side of (5-28) to (5-16) is finite. For /1, a change of variables and the
inequality (2-13) yield

o0

o0 [e.8]
(5-32) / IARESS / le*ug(e™ —(1-8))ds < / p luo(p)*dp S1.
S0 s

S0 7€'
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For I,, by (2-2), we obtain

(5-33) / |12|ds§f le™51?ds < 1.

S0 S0

Next, we consider the contribution of (5-20) to (5-16). For simplicity, we consider

3 (0 — 95)(5-20)

(5-34) =e" (1 -6 —er_s)2u1(1—81 —e' )
eT—S(e‘E+S —(1— 31))2 /e’“(lsl)
5-35 d
( ) + (et+s _et—s)Z | =8 —et—s pul(,()) P
et—s et —(1-8) 3
5-36 B IP S — dp,
(5-36) + (o7 F —gr)2 /1—sl—ew p ui(p)dp
and
(3 + 8,)(5-20)
(5_37) — e‘[-‘rS(eT-FS _ (l _ 51))2u1(e‘[+x _ (1 _ 81))
er+3(1 — 8 — erfs)2 e —(1-681)
5-38 d
(5-38) (e F —ory2 /1_51_er—s pui(p)dp
et ts e —(1-51) 3
(5-39) + (et —eroy2 /; 5 p ui(p)dp.
8 —et

Using the estimates (2-4) and (2-13), we can easily estimate the contributions of
(5-34)—(5-38) to (5-16). Let [ ;(y) be the characteristic function of an interval J C R.
For (5-39), by the inequality (2-13) and a change of variables, we see that

00 et —(1-81) ; 2 00 2¢’ ; 2
/ e‘S/ P (p) d| dssf e”f Pl (o)) dp|ds
S0 1 0

—51—et s S0

0 2n 2
1 1
S [ [ punas] Lay
o 'MJo n

00 1 2n 5 2
Sf —/ pflul(p)ldp‘ dn
o 'MJo

S/O | M (00,000 (0) 02 11 (0)) |* () iy

o0
(5-40) < f lu1(p)1*p° dp <1,
0

where M is the Hardy-Littlewood maximal function and we used the fact that M
is bounded in L2



5D DEFOCUSING CONFORMAL INVARIANT NLW IN A CRITICAL BESOV SPACE 283

Next, we consider the contribution of (5-21) to the energy (5-16). Also, for
simplicity, we consider

(9; 4 95)(5-21)

e’ coshs
(5-41) =e™t* / @ —0(ala)t, 't — 1) dt
1-8;

e’ coshs pett5—t )
5-42 T—s ili)(t. ) dp dt
( ) (er-i-s et~ s)2/1 /tef . —e ) (lulu)(t, p)dp
eTcoshs pe’™ —
5-43 — t, p)dpdt,
( ) (eT+S et~ s)zfl [ef . Y (|u|u)( p)dp
and
(9 — 95)(5-21)
e® coshs
(5_44) =er—s/ (l—et_s)2|b_t|l/_t(l‘,t—er_‘v) dt
1-6;
e’ coshs pe™—
(5-45) - f / p(e™ —0)?|ali(t, p) dp dt
(er-‘rv et s)2 1 P
e’ coshs pe™™—
5-46 t, p)dpdt.
( ) +(er+y et S‘)Z/l fef . 1% |M|M( p) P

By the definition of u«, the inequality (3-23) and Holder, the contribution of (5-41)
can be estimated as

et coshs
(5-47) / f“/ e — ) 2i|A(t, et — 1) dt| ds
1

e’ coshs
/ / la|*(t, e —1)e dr ds
1
[o,0)
sf / |ﬁ|4(r,p>p6drdp5/ / w|*(z, p)p®dp dr
1e'0 J1-8, 0 p>1+4

< 1.

u
S ”L3({\X\ l1+3}

Now, we consider (5-42) and (5-43). By Holder, a change of variables, and the
inequality (3-23), we have

et ¢

et coshs ) 3 2
(5-48) | (Pp+p))aP ¢, p)dpdr| ds
1 e'[—;\‘

e coshs 2
/ | /1 ,_Hm)(mpﬂm%,p>)<e’ sinhs)di | ds
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e coshs )
f / [I_%+51’oo)(p)p3|ﬁ|2(t, p)) (e sinhs)] e" coshs dt ds
1

5/ [M(H[t—%+al,oo)(p)03|ﬁ|2(l‘,P))(I”)]zdrdt
1-8; Je0

[e.e]

5/ / rSli|* (e, r)drdt
1-8; Jr>t—1+8
[e.¢]

5// ul*(t, p)p° dpdt
0 p>t+%

< 3 2
SN o142y f‘jg” a0 e ey

<1.

Thus, the contribution of (5-42) and (5-43) to (5-16) is finite.
For (5-44), by the fact that ¢* =% < % — 41, the definition of u, and the inequality
(3-23), we have

(5-49) /OO -

e coshs

2
(t — ")) 2(t, t — ") dt‘ ds

00 et coshs 2
5/ e % / 1=2dt| < 1.
S0 1-6;

Similarly, for (5-45) and (5-46), by the fact that ¢* =% < % — 41 and the inequality
(3-23), we can obtain that

(5-50) /

1-6;

et coshs pett—

2
107+ pe™ — 2Nk, p)dpdi| ds

1—

t—e™—S

00 eTcoshs petti—

/ / / ,0|u| (t, p)d,odt| ds
1 t—e™*
efcoshs petti—

f / f 3dpdt‘ ds
1 t—et*
et coshs 2

/ / t_zdt‘ ds
1-84

Hence, combining (5-24)—(5-50), we have

A

8

A

8

N

o0
(5-51) f L(s20). 2 + L1(s20), P ds S 1.

S0
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5C2. The hyperbolic energy for 0 < s < s59. By the hyperbolic transform (5-5),
we have

(5-52) (s*W).(t,s) =2¢" sinh®s w(e" coshs, e sinhs)
+¢37 sinh? s cosh s W, (¢ coshs, e” sinhs)
+e7 sinh’ s W, (e coshs, €7 sinhs),
(5-53) (s*W)(t, s) =2¢" sinhscoshs w(e? coshs, e sinhs)
+e37 sinh® s W, (¢? coshs, e sinhs)

+e7 sinh” s coshs W, (e? coshs, €7 sinhs).

Hence
1 S0
/ / (W) [*+|(s*W)s > ds dt
0 Jo
1 pso
(5-54) < / / ¢*" sinh? s (sinh® s+cosh? s)|@|* (e coshs, e sinhs)ds dt
0 JoO
1 S0
(5-55) —I—/f e6fsinh4s(sinh2s—l—coshzs)[wtz—l—ﬂ)f](e’coshs,e’sinhs)dsdr.
0 JO

Taking Co = '+, by a change of variables, the Hardy inequality and the inequality
(3-68), we obtain
1
556 GSHS[[  LPeodxdrs s IVl S1
xl+rl=Co 1] ’

0<t<Cy

Similarly, for (5-55), by a change of variables, we have

(5-57) (5-55) % // Ve x@|(t, x)dx dt S sup IVixwllr2ms) < 1.
lx[+l[=Co

0<t<Cy

Then, by the mean value theorem, there exists 7y € [0, 1], such that
50
(5-58) | 163 P + 62D P s ds S 1
0
This estimate along with (5-51) implies
o0
(5-59) / (W) |*(T0, 8) + |(s* W) (10, ) ds < 1.
0

5D. Uniform boundedness of the hyperbolic energy of w. We are now going to
show that Ej,(w)(t) is uniformly bounded for 7 € R.
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A simple calculation gives

|s2W|s2Ww — |s2i|s2d
szwr ds.

d
(5-60) @ =
T

sinh? s

Utilizing the decay property (3-37) of v, we have, for 7, s > 0,

_1
(5-61) (e” coshs — (1 —81))%v(e” coshs — (1 — &), e” sinhs) < 5 7.

The Huygens principle implies that v(e* coshs — (1 — 3;), ¢* sinhs) = 0 unless
1— 281 <etTf <1-— %81. Thus, for 7, s > 0, we have

(e, 5)|

5-62
( ) sinh? s

= e*"|v(e coshs — (1 —§y), e" sinhys)|
2t
€ ”{s30; e <114y

< e
~ (e coshs — (1 —681))2 ™~

-7

Hence, by Holder and interpolation, we have

© 1
(5-63) / —— |52, ||s*0) ds
0o sinh“s

Y :
< (/ |s2w,|2ds) (/ — |s217|3ds>
0 o sinh“s
1 o0 2
Se*”EAwu»z</
0

2
|s25|3ds>,
©
(5-64) / Sinh2s|s2wf||s2f)||s2ﬁ|ds
0

o0 % o0 1 %
g(f |s2f5,|2ds) (/ — |s2w|3ds)
0 o sinh“s
1
o0 1 I3
x(/ |s°5(t, )| — ds)
0 sinh® s

1

- 5 o0 1 6
ge—f/th(w(r))e</ — |s25|3ds> .
o sinh

S

2

2

(T, s)

sinh? s L

sinh? s

Combining (5-63) with (5-64) and employing Holder again, we have

d ~ -2 ~ *
(5-65) —Ep(w(r) Se E,(w(t)+ —
dt o sinh“s

|s25|3ds].
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On the other hand, by a change of variables, we have

o0 o0 1 o o0
(5-66) / / —— s’ ds dr 5/ / lo(t, r)’r dr dt
o Jo sinh®s 81 JO

3 <
S ”v”L?tX([Sl,OO)XRS) ~ 1

Hence, by Gronwall’s inequality, (5-65) and (5-66) yield that Ej,(w)(t) is uniformly
bounded in R;.

5E. Conclusion of the proof of Proposition 1.3. We complete the proof by study-
ing the Morawetz action in hyperbolic coordinates.

Proposition 5.1. Let w be defined in (5-5), then

00 00 |S2w|3
(5-67) f/ |w(t,r)|3r4dtdr=/ / ———dsdr S 1.
93} 0 0o sinh“s

Proof. Define the Morawetz action by

o0 [0 0) 2
(5-68) M(z) = / (s2%), (20), ds = / @ (w +E@>s4 ds.
0 0

One can easily find that |[M (t)| < E(w)(t). By (5-8), we have

d © 252% o g4
5-69 —M(z =—/ $2) ds—/ ilis*w, ds
( ) dt (®) 0 sinhzs( ) 0 sinhzs| | ’

® |52%|% cosh s 2 /OO |s2W|3 cosh s
0

- fo sinhls sinhs 0 3

00 s4
+f ——— (|0 — |it|i)s* Wy ds.
o sinh“s

sinh? s sinhs

By Holder, the estimate (5-62), and the fact that Ej,(w(t)) is uniformly bounded
for T > 0, we have

00 o] S4
(5-70) ‘f / (|81 — Jiild)s B, ds dt
0 o sinh“s

o0 o0 1
5/ f —— 5?0, |[s*0]* ds dt
0 o sinh”s

[e.¢] o0

1 2 1251120

+ — [s“w:||s“v||s“w|ds dt
o Jo sinh“s
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R - 1 o0 1 >
5/ e—fEh(w(r))z(f |s v|3ds> T
0 o sinh’s
0 5 0 1 %
—|—/ e_TEh(w(t))é</ - 520 ds) dt
0 o sinh’s

<1

< 3
~ ”v”LiX(RXRS)

This together with the equality (5-69) and the fact M (t) is uniformly bounded for
7 > 0, implies that

o0 00 125713 h
(5-71) / / STl coshs ) ar <1,

sinh? s sinh s

Thus, we have

3
(5-72) / f 5| dsdr < 1.
sinh? s
This yields (5-67) by the definition of w. (]
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