

*Pacific
Journal of
Mathematics*

LOUVILLE-TYPE THEOREMS
FOR WEIGHTED p -HARMONIC 1-FORMS
AND WEIGHTED p -HARMONIC MAPS

KEOMKYO SEO AND GABJIN YUN

**LOUVILLE-TYPE THEOREMS
FOR WEIGHTED p -HARMONIC 1-FORMS
AND WEIGHTED p -HARMONIC MAPS**

KEOMKYO SEO AND GABJIN YUN

In this paper, we obtain Bochner–Weitzenböck formulas for the weighted Hodge Laplacian operator acting on differential forms and more generally on vector bundle-valued weighted p -harmonic forms. Applying these formulas, we prove Liouville-type theorems for weighted L^q p -harmonic 1-forms and for weighted p -harmonic maps in a weighted complete noncompact manifold with nonnegative Bakry–Emery Ricci curvature, where $q = 2p - 2$ or $q = p$.

1. Introduction

The celebrated Liouville theorem states that every positive harmonic function on \mathbb{R}^n is constant. There have been a lot of effort over the years to generalize the classical Liouville theorem into complete noncompact Riemannian manifolds. Huber [1957] proved that any negative subharmonic function on a complete surface with nonnegative curvature is constant. Yau [1975] proved that any positive harmonic function on a noncompact Riemannian manifold with nonnegative Ricci curvature is constant. See also [Greene and Wu 1979; Hildebrandt 1982; Karp 1982] for further related results. Moreover, Yau [1976] obtained an L^p -Liouville type theorem. More precisely, he proved that, for $1 < p < \infty$, any L^p harmonic function on a complete Riemannian manifold is constant. Given a harmonic function f on a Riemannian manifold M , we note that the differential df is obviously a harmonic 1-form on M . In the case where M is a complete noncompact Riemannian manifold, it is natural to consider L^2 harmonic forms on M because L^2 -Hodge theory remains valid in complete noncompact manifolds as classical Hodge theory works well in compact manifolds. It turned out that the theory of L^2 harmonic 1-forms is useful to investigate the geometry and topology at infinity. For example, Li and Tam [1992] proved that if the space of L^2 harmonic 1-forms on a complete Riemannian manifold M is trivial, then M must have at most one nonparabolic end. Cao, Shen,

Yun is the corresponding author.

MSC2010: primary 53C20; secondary 58A10, 58E20.

Keywords: harmonic form, harmonic map, Liouville-type theorem, weighted manifold.

and Zhu [Cao et al. 1997] also obtained an interesting topological result which says that if M is a complete Riemannian manifold with all ends of infinite volume supporting a Sobolev inequality and if the space of L^2 harmonic 1-forms is trivial, then M must have only one end. Their argument using the space of L^2 harmonic 1-forms to study the geometry and topology at infinity has been extended in various ways. We refer the readers to [Dung and Seo 2012; 2017; Li and Wang 2002; 2004; Lin 2015; Pigola et al. 2005; Seo 2010; 2014; Vieira 2016; Yun 2002] for recent developments on this topic.

In this paper, we study Liouville-type properties on p -harmonic 1-forms and p -harmonic maps in weighted manifolds. Given a smooth Riemannian manifold (M, g) and a smooth function $f : M \rightarrow \mathbb{R}$, a *weighted manifold* (or a smooth metric measure space, also known as a manifold with density) is a triple $M_f := (M, g, e^{-f} dv_g)$, where dv_g is the volume form induced by the metric g . Since the geometry of weighted manifolds were developed by Bakry and Émery [1985], it has been intensively studied by many authors (for instance, see [Lott 2003; Lott and Villani 2009; Sturm 2006a; 2006b; Wei and Wylie 2009]). Moreover, it turned out that the study of weighted manifolds is closely related with that of self-shrinkers and gradient Ricci solitons.

An important geometric quantity on a weighted manifold M_f known as *Bakry–Émery Ricci curvature* is defined by

$$\text{Ric}_f^M = \text{Ric} + \text{Hess}(f),$$

where $\text{Hess}(f)$ denotes the Hessian of f . Obviously, the Bakry–Émery Ricci curvature is a generalization of Ricci curvature. In a weighted manifold, there is a useful elliptic differential operator, the so-called *f -Laplacian*, Δ_f which is defined by

$$\Delta_f u = \Delta u - \langle \nabla f, \nabla u \rangle.$$

The f -Laplacian is a natural generalization of the Laplace–Beltrami operator Δ as it is self-adjoint with respect to the weighted measure $e^{-f} dv_g$, i.e.,

$$\int_M v \Delta_f u e^{-f} dv_g = \int_M (u \Delta_f v) e^{-f} dv_g$$

and

$$\int_M (v \Delta_f u) e^{-f} dv_g = - \int_M \langle \nabla u, \nabla v \rangle e^{-f} dv_g$$

for $u, v \in C_0^\infty(M)$.

On the other hand, for a smooth map $\varphi : (M^n, g, e^{-f} dv_g) \rightarrow (N^m, h)$ from an f -weighted manifold into a Riemannian manifold, and for a bounded domain

$\Omega \subset M$, the f -weighted p -energy $\mathcal{E}_{f,p}(\varphi; \Omega)$ with $p > 1$ of φ over Ω is defined by

$$(1-1) \quad \mathcal{E}_{f,p}(\varphi; \Omega) = \frac{1}{p} \int_{\Omega} |d\varphi|^p e^{-f} dv_g,$$

where $|d\varphi|$ denotes the Hilbert–Schmidt norm of $d\varphi$ induced by the metrics g and h . Namely, if $\{e_i\}$ is a local frame on M , $|d\varphi|$ is given by

$$(1-2) \quad |d\varphi|^2 = \sum_{i=1}^n \langle d\varphi(e_i), d\varphi(e_i) \rangle$$

so that

$$|d\varphi|^2 = \text{tr}_g \varphi^* h = \langle g, \varphi^* h \rangle.$$

A smooth map $\varphi : (M, g, e^{-f} dv_g) \rightarrow (N, h)$ is called f -weighted p -harmonic if it is a critical point of the f -weighted p -energy functional $\mathcal{E}_{f,p}(\varphi; \Omega)$ for any bounded domain $\Omega \subset M$. It can be easily shown that when φ is C^2 -regular, the Euler–Lagrange equation for the f -weighted p -energy $\mathcal{E}_{f,p}$ is the f -weighted p -harmonic map equation

$$(1-3) \quad \tau_{f,p}(\varphi) = -\delta_f(|d\varphi|^{p-2} d\varphi) = |d\varphi|^{p-2} \tau_f(\varphi) + d\varphi(\nabla |d\varphi|^{p-2}) = 0.$$

Here $\delta_f = \delta + i_{\nabla f}$ is the adjoint operator of the exterior derivative d with respect to the measure $e^{-f} dv_g$, $i_{\nabla f}$ denotes the interior product with the vector ∇f , $\tau_f(\varphi) = \tau(\varphi) - i_{\nabla f} d\varphi$ and $\tau(\varphi)$ is the classical tension field of φ . In the case where $p = 2$ and f is a constant function, Schoen and Yau [1976] obtained the following well-known Liouville-type theorem for harmonic maps between complete Riemannian manifolds.

Theorem [Schoen and Yau 1976]. *Let M be a complete Riemannian manifold of nonnegative Ricci curvature and let N be a complete Riemannian manifold of nonpositive sectional curvature. Then, for any constant function f , every harmonic map $u : M \rightarrow N$ with finite 2-energy $\mathcal{E}_{f,2}(u)$ must be constant.*

Recently, Rimoldi and Veronelli [2013] generalized Schoen and Yau’s Liouville-type theorem for harmonic maps into f -weighted 2-harmonic maps between complete Riemannian manifolds. More precisely, they showed that if

$$u : (M^n, g, e^{-f} dv_g) \rightarrow (N^m, h)$$

is an f -weighted 2-harmonic map from a complete Riemannian manifold M with nonnegative Bakry–Émery Ricci curvature into a complete Riemannian manifold with nonpositive sectional curvature and if the f -weighted 2-energy $\mathcal{E}_{f,2}(u)$ is finite, then the harmonic map u must be constant. See also [Hua et al. 2017; Nakauchi 1998; Takeuchi 1991; Zhang and Wang 2016] for related previous results. In this paper, we extend their result into f -weighted p -harmonic maps.

The organization of this paper is the following. In Section 2 we derive a Bochner–Weitzenböck formula for the weighted Hodge Laplacian Δ_f on differential forms. Applying this formula, we are able to show a Liouville-type property of weighted L^q p -harmonic 1-forms on a complete noncompact weighted manifold with nonnegative Bakry–Émery Ricci curvature (see Theorem 2.4 for $q = 2p - 2$ and Theorem 2.5 for $q = p$). In Section 3 we obtain a Bochner–Weitzenböck formula for vector bundle-valued weighted p -harmonic forms (Lemma 3.1), which is an extension of our previous results in Section 2. In Section 4 we prove Liouville-type theorems for weighted p -harmonic maps. In fact, we prove that if u is a weighted p -harmonic map from a complete noncompact weighted manifold with nonnegative Bakry–Émery Ricci curvature into a Riemannian manifold with nonpositive sectional curvature and if u has finite weighted q -energy, then u must be constant (see Theorem 4.1 for $q = 2p - 2$ and Theorem 4.2 for $q = p$).

2. Weighted p -harmonic forms

Let (M^n, g) be an n -dimensional complete noncompact Riemannian manifold and let $f : M \rightarrow \mathbb{R}$ be a smooth function on M . We consider differential forms on the f -weighted manifold $(M, g, e^{-f} dv_g)$ and derive a Bochner–Weitzenböck formula for the weighted Hodge Laplacian. Recall that the formal adjoint of the exterior derivative d with respect to the measure $e^{-f} dv_g$ is given by the formula

$$\delta_f = \delta + i_{\nabla f}.$$

Then the f -Hodge Laplacian Δ_f on differential forms is defined by

$$\Delta_f = -(d\delta_f + \delta_f d).$$

Lemma 2.1 (Bochner–Weitzenböck formula). *Let $(M, g, e^{-f} dv_g)$ be an f -weighted manifold. If ω is a differential 1-form on M , then*

$$(2-1) \quad \frac{1}{2}\Delta_f|\omega|^{2p-2} = \langle |\omega|^{p-2}\omega, \Delta_f(|\omega|^{p-2}\omega) \rangle + |\nabla(|\omega|^{p-2}\omega)|^2 + |\omega|^{2p-4}\text{Ric}_f^M(\omega^\sharp, \omega^\sharp).$$

Here ω^\sharp is the dual vector field to ω .

Proof. It is well-known (see [Chang and Sung 2011]) that

$$\begin{aligned} \frac{1}{2}\Delta|\omega|^{2p-2} &= \frac{1}{2}\Delta||\omega|^{p-2}\omega|^2 \\ &= \langle |\omega|^{p-2}\omega, \Delta(|\omega|^{p-2}\omega) \rangle + |\nabla(|\omega|^{p-2}\omega)|^2 + |\omega|^{2p-4}\text{Ric}(\omega^\sharp, \omega^\sharp). \end{aligned}$$

Using the definition of the f -weighted Laplacian $\Delta_f = \Delta - \langle \nabla f, \nabla \cdot \rangle$, we have

$$\frac{1}{2}\Delta_f|\omega|^{2p-2} = \frac{1}{2}\Delta|\omega|^{2p-2} - \frac{1}{2}\langle \nabla f, \nabla|\omega|^{2p-2} \rangle.$$

Since $\text{Ric}_f^M = \text{Ric} + \text{Hess}(f)$ and $\Delta_f = \Delta - di_{\nabla f} - i_{\nabla f}d$, we get

$$\begin{aligned} \frac{1}{2}\Delta_f|\omega|^{2p-2} &= \langle |\omega|^{p-2}\omega, \Delta_f(|\omega|^{p-2}\omega) \rangle + |\nabla(|\omega|^{p-2}\omega)|^2 + |\omega|^{2p-4}\text{Ric}_f^M(\omega^\sharp, \omega^\sharp) \\ &\quad + \langle |\omega|^{p-2}\omega, di_{\nabla f}(|\omega|^{p-2}\omega) \rangle + \langle |\omega|^{p-2}\omega, i_{\nabla f}d(|\omega|^{p-2}\omega) \rangle \\ &\quad - |\omega|^{2p-4}\text{Hess}(f)(\omega^\sharp, \omega^\sharp) - \frac{1}{2}\langle \nabla f, \nabla(|\omega|^{2p-2}) \rangle. \end{aligned}$$

We claim that

$$(2-2) \quad \begin{aligned} &\langle |\omega|^{p-2}\omega, di_{\nabla f}(|\omega|^{p-2}\omega) \rangle + \langle |\omega|^{p-2}\omega, i_{\nabla f}d(|\omega|^{p-2}\omega) \rangle \\ &\quad - |\omega|^{2p-4}\text{Hess}(f)(\omega^\sharp, \omega^\sharp) - \frac{1}{2}\langle \nabla f, \nabla(|\omega|^{2p-2}) \rangle = 0. \end{aligned}$$

Let $\{e_1, \dots, e_n\}$ be a local geodesic frame at a point p in M and $\{\theta_1, \dots, \theta_n\}$ its dual coframe. Let $\{\theta_{ij}\}$ be the connection 1-form vanishing at the point p . Writing $\omega = \omega^i \theta_i$ with Einstein convention, we have

$$|\omega|^{2p-4}\text{Hess}(f)(\omega^\sharp, \omega^\sharp) = |\omega|^{2p-4}\omega^i \omega^j f_{ij}.$$

Since

$$di_{\nabla f}(|\omega|^{p-2}\omega) = f_i \omega^i d|\omega|^{p-2} + |\omega|^{p-2}\omega^i f_{ij} \theta_j + |\omega|^{p-2} f_i \omega^i_{;j} \theta_j,$$

we have

$$\begin{aligned} &\langle |\omega|^{p-2}\omega, di_{\nabla f}(|\omega|^{p-2}\omega) \rangle \\ &= |\omega|^{p-2} f_i \omega^i \langle \omega, d|\omega|^{p-2} \rangle + |\omega|^{2p-4} \omega^i \omega^j f_{ij} + |\omega|^{2p-4} \omega^j f_i \omega^i_{;j}. \end{aligned}$$

Here the semicolon means the covariant differentiation. Moreover,

$$\begin{aligned} d(|\omega|^{p-2}\omega) &= d|\omega|^{p-2} \wedge \omega + |\omega|^{p-2} d\omega \\ &= d|\omega|^{p-2} \wedge \omega + |\omega|^{p-2} d\omega^i \wedge \theta_i \end{aligned}$$

which gives

$$(2-3) \quad \begin{aligned} &i_{\nabla f}d(|\omega|^{p-2}\omega) \\ &= d|\omega|^{p-2}(\nabla f)\omega - \omega^i f_i d|\omega|^{p-2} + |\omega|^{p-2} \omega^i_{;j} f_j \theta_i - |\omega|^{p-2} \omega^i_{;j} f_i \theta_j. \end{aligned}$$

Thus

$$\begin{aligned} \langle |\omega|^{p-2}\omega, i_{\nabla f}d(|\omega|^{p-2}\omega) \rangle &= |\omega|^p d|\omega|^{p-2}(\nabla f) - |\omega|^{p-2} \omega^i f_i \langle \omega, d|\omega|^{p-2} \rangle \\ &\quad + |\omega|^{2p-4} \omega^i_{;j} \omega^i f_j - |\omega|^{2p-4} \omega^i_{;j} f_i \omega^j. \end{aligned}$$

Next we have

$$\begin{aligned} \frac{1}{2}\langle \nabla f, \nabla|\omega|^{2p-2} \rangle &= \frac{1}{2}\langle \nabla f, \nabla(|\omega|^p \cdot |\omega|^{p-2}) \rangle \\ &= \frac{1}{2}|\omega|^p \langle \nabla f, \nabla|\omega|^{p-2} \rangle + \frac{1}{2}|\omega|^{p-2} \langle \nabla f, \nabla|\omega|^p \rangle. \end{aligned}$$

Since

$$\nabla|\omega|^2 = 2\omega^i \omega^j_{;j} e_j \quad \text{and} \quad \nabla|\omega|^p = \nabla(|\omega|^2)^{p/2} = \frac{p}{2}|\omega|^{p-2} \nabla|\omega|^2,$$

we get

$$\frac{1}{2}|\omega|^{p-2}\langle \nabla f, \nabla |\omega|^p \rangle = \frac{p}{4}|\omega|^{2p-4}\langle \nabla f, \nabla |\omega|^2 \rangle = \frac{p}{2}|\omega|^{2p-4}f_j\omega^i\omega_{;j}^i$$

and

$$|\omega|^{2p-4}f_j\omega_{;j}^i\omega^i = \frac{1}{2}|\omega|^{2p-4}\langle \nabla f, \nabla |\omega|^2 \rangle.$$

Thus the left-hand side of (2-2) becomes

$$\begin{aligned} |\omega|^p d|\omega|^{p-2}(\nabla f) + |\omega|^{2p-4}f_j\omega_{;j}^i\omega^i - \frac{1}{2}|\omega|^p\langle \nabla f, \nabla |\omega|^{p-2} \rangle - \frac{1}{2}|\omega|^{p-2}\langle \nabla f, \nabla |\omega|^p \rangle \\ = \frac{1}{2}|\omega|^p\langle \nabla f, \nabla |\omega|^{p-2} \rangle + \frac{2-p}{4}|\omega|^{2p-4}\langle \nabla f, \nabla |\omega|^2 \rangle. \end{aligned}$$

Since

$$\nabla|\omega|^{p-2} = \nabla(|\omega|^2)^{(p-2)/2} = \frac{p-2}{2}(|\omega|^2)^{(p-2)/2-1}\nabla|\omega|^2 = \frac{p-2}{2}|\omega|^{p-4}\nabla|\omega|^2,$$

the left-hand side of (2-2) vanishes, which completes the proof of Lemma 2.1. \square

As a consequence of Lemma 2.1, we have the following.

Corollary 2.2. *Let ω be a differential 1-form on a weighted manifold $(M, g, e^{-f}dv_g)$. Then*

$$|\omega|^{p-1}\Delta_f|\omega|^{p-1} \geq \langle |\omega|^{p-2}\omega, \Delta_f(|\omega|^{p-2}\omega) \rangle + |\omega|^{2p-4}\text{Ric}_f^M(\omega^\sharp, \omega^\sharp).$$

Proof. Since

$$(2-4) \quad \frac{1}{2}\Delta_f|\omega|^{2p-2} = |\omega|^{p-1}\Delta_f|\omega|^{p-1} + |\nabla|\omega|^{p-1}|^2,$$

it follows from Lemma 2.1 that

$$\begin{aligned} |\omega|^{p-1}\Delta_f|\omega|^{p-1} + |\nabla|\omega|^{p-1}|^2 \\ = \langle |\omega|^{p-2}\omega, \Delta_f(|\omega|^{p-2}\omega) \rangle + |\nabla(|\omega|^{p-2}\omega)|^2 + |\omega|^{2p-4}\text{Ric}_f^M(\omega^\sharp, \omega^\sharp). \end{aligned}$$

From the generalized Kato type inequality, we have

$$|\nabla|\omega|^{p-1}|^2 = |\nabla(|\omega|^{p-2}\omega)|^2 \leq |\nabla(|\omega|^{p-2}\omega)|^2.$$

Thus we get

$$|\omega|^{p-1}\Delta_f|\omega|^{p-1} \geq \langle |\omega|^{p-2}\omega, \Delta_f(|\omega|^{p-2}\omega) \rangle + |\omega|^{2p-4}\text{Ric}_f^M(\omega^\sharp, \omega^\sharp). \quad \square$$

Let $\phi : M \rightarrow \mathbb{R}$ be a harmonic function. Since

$$d(d\phi) = 0 \quad \text{and} \quad \Delta\phi = \delta(d\phi) = 0,$$

the differential $d\phi$ is a harmonic 1-form. Similarly, if $\phi : M \rightarrow \mathbb{R}$ is a p -harmonic function, then

$$\Delta_p\phi = \text{div}(|\nabla\phi|^{p-2}\nabla\phi) = 0,$$

which is equivalent to the equation

$$\delta(|d\phi|^{p-2}d\phi) = 0.$$

In fact, this is the Euler–Lagrange equation of the p -energy functional $\mathcal{E}_p(\phi) = \frac{1}{p} \int_M |d\phi|^p dv_g$. Using this observation, one can define a p -harmonic form ω on M as follows [Chang and Sung 2011]:

$$d\omega = 0 \quad \text{and} \quad \delta(|\omega|^{p-2}\omega) = 0,$$

which shows that, for any p -harmonic function ϕ on M , its differential $d\phi$ is a p -harmonic 1-form. Motivated by this notion of p -harmonic differential forms in [Chang and Sung 2011] and weighted harmonic forms in [Vieira 2013], we give the definition of weighted p -harmonic forms on a weighted manifold.

Definition 2.3. A differential form ω on M is *f -weighted p -harmonic* if ω satisfies

$$d\omega = 0 \quad \text{and} \quad \delta_f(|\omega|^{p-2}\omega) = 0.$$

When f is constant, we note that the above definition of f -weighted p -harmonic forms is equivalent to the definition of p -harmonic forms in the sense of [Chang and Sung 2011]. Consider an f -weighted L_f^{2p-2} p -harmonic 1-form ω on a weighted manifold M_f with nonnegative Bakry–Émery Ricci curvature, where the L_f^{2p-2} norm of ω is given by

$$\int_M |\omega|^{2p-2} e^{-f} dv_g < \infty.$$

Then we have the following Liouville-type theorem for weighted p -harmonic 1-forms.

Theorem 2.4. *Let $(M, g, e^{-f} dv_g)$ be a complete noncompact f -weighted manifold with nonnegative Bakry–Émery Ricci tensor, $\text{Ric}_f^M \geq 0$. Suppose that f is a bounded function. If ω is an f -weighted L_f^{2p-2} p -harmonic 1-form on M for $p > 1$, then ω vanishes.*

Proof. Since ω is an f -weighted p -harmonic 1-form, we have

$$\delta_f(|\omega|^{p-2}\omega) = 0.$$

Thus Corollary 2.2 together with curvature condition implies

$$(2-5) \quad |\omega|^{p-1} \Delta_f |\omega|^{p-1} \geq \langle |\omega|^{p-2}\omega, \delta_f d(|\omega|^{p-2}\omega) \rangle.$$

Fix a point $p \in M$ and choose a cut-off function η satisfying

$$(2-6) \quad 0 \leq \eta \leq 1, \quad \eta = 1 \text{ on } B_p(r), \quad \text{supp}(\eta) \subset B_p(2r), \quad \text{and} \quad |\nabla \eta| \leq \frac{1}{r}.$$

Here $B_p(r)$ denotes the geodesic ball of radius r centered at p . Multiplying (2-5) by η^2 and integrating it over M with respect to the measure $e^{-f}dv_g$, we obtain

$$\begin{aligned}
& \int_M \eta^2 |\omega|^{p-1} \Delta_f |\omega|^{p-1} e^{-f} dv_g \\
&= - \int_M \eta^2 |\nabla |\omega|^{p-1}|^2 e^{-f} dv_g - 2 \int_M \eta |\omega|^{p-1} \langle \nabla \eta, \nabla |\omega|^{p-1} \rangle e^{-f} dv_g \\
&\leq - \int_M \eta^2 |\nabla |\omega|^{p-1}|^2 e^{-f} dv_g + \frac{1}{2} \int_M \eta^2 |\nabla |\omega|^{p-1}|^2 e^{-f} dv_g \\
&\quad + 2 \int_M |\omega|^{2p-2} |\nabla \eta|^2 e^{-f} dv_g \\
&= -\frac{1}{2} \int_M \eta^2 |\nabla |\omega|^{p-1}|^2 e^{-f} dv_g + 2 \int_M |\omega|^{2p-2} |\nabla \eta|^2 e^{-f} dv_g.
\end{aligned}$$

Moreover

$$\begin{aligned}
& \int_M \eta^2 \langle |\omega|^{p-2} \omega, \delta_f d(|\omega|^{p-2} \omega) \rangle e^{-f} dv_g \\
&= \int_M \langle d(\eta^2 |\omega|^{p-2} \omega), d(|\omega|^{p-2} \omega) \rangle e^{-f} dv_g \\
&= 2 \int_M \eta |\omega|^{p-2} \langle d\eta \wedge \omega, d(|\omega|^{p-2} \omega) \rangle e^{-f} dv_g + \int_M \eta^2 |d(|\omega|^{p-2} \omega)|^2 e^{-f} dv_g \\
&\geq - \int_M \eta^2 |d(|\omega|^{p-2} \omega)|^2 e^{-f} dv_g - \int_M |\nabla \eta|^2 |\omega|^{2p-2} e^{-f} dv_g \\
&\quad + \int_M \eta^2 |d(|\omega|^{p-2} \omega)|^2 e^{-f} dv_g \\
&= - \int_M |\nabla \eta|^2 |\omega|^{2p-2} e^{-f} dv_g.
\end{aligned}$$

Therefore

$$\frac{1}{2} \int_M \eta^2 |\nabla |\omega|^{p-1}|^2 e^{-f} dv_g \leq 3 \int_M |\nabla \eta|^2 |\omega|^{2p-2} e^{-f} dv_g \leq \frac{3}{r^2} \int_M |\omega|^{2p-2} e^{-f} dv_g.$$

Since ω is an f -weighted L^{2p-2} harmonic 1-form, we obtain

$$\nabla |\omega|^{p-1} = 0$$

by letting $r \rightarrow \infty$. Hence $|\omega|^{p-1}$ is constant. Since $\text{Ric}_f^M \geq 0$ and f is bounded, the f -volume of (M, g) is infinite (see [Wei and Wylie 2009], for example). Therefore we see that $\omega = 0$. \square

Using the Bochner–Weitzenböck formula, we can also prove the following.

Theorem 2.5. *Let $(M, g, e^{-f}dv_g)$ be a complete noncompact f -weighted manifold with nonnegative Bakry–Émery Ricci tensor. Suppose that f is a bounded function. For $p \geq 2$, if ω is an f -weighted L_f^p p -harmonic 1-form on M , then $\omega = 0$.*

Proof. Since $\delta_f(|\omega|^{p-2}\omega) = 0$, Corollary 2.2 and the curvature condition implies

$$(2-7) \quad \begin{aligned} |\omega|\Delta_f|\omega|^{p-1} &\geq \langle\omega, \Delta_f(|\omega|^{p-2}\omega)\rangle + |\omega|^{2p-4} \operatorname{Ric}_f^M(\omega^\sharp, \omega^\sharp) \\ &\geq \langle\omega, \delta_f d(|\omega|^{p-2}\omega)\rangle. \end{aligned}$$

Fix a point $p \in M$ and choose a cut-off function η satisfying (2-6). Multiplying (2-7) by η^2 and integrating it over M with respect to the measure $e^{-f}dv_g$, we obtain

$$(2-8) \quad \int_M \eta^2 |\omega|\Delta_f|\omega|^{p-1} e^{-f} dv_g \geq \int_M \eta^2 \langle\omega, \delta_f d(|\omega|^{p-2}\omega)\rangle e^{-f} dv_g.$$

Then the left-hand side of (2-8) is given by

$$(2-9) \quad \begin{aligned} &\int_M \eta^2 |\omega|\Delta_f|\omega|^{p-1} e^{-f} dv_g \\ &= - \int_M \eta^2 \langle \nabla|\omega|, \nabla|\omega|^{p-1} \rangle e^{-f} dv_g - 2 \int_M \eta |\omega| \langle \nabla\eta, \nabla|\omega|^{p-1} \rangle e^{-f} dv_g \\ &= -(p-1) \int_M \eta^2 |\omega|^{p-2} |\nabla|\omega||^2 e^{-f} dv_g \\ &\quad - 2(p-1) \int_M \eta |\omega|^{p-1} \langle \nabla\eta, \nabla|\omega| \rangle e^{-f} dv_g. \end{aligned}$$

Note that

$$|\omega|^{p-2} |\nabla|\omega||^2 = \frac{4}{p^2} |\nabla|\omega|^{p/2}|^2$$

and

$$(2-10) \quad |\omega|^{p-1} \nabla|\omega| = |\omega|^{p/2} \cdot |\omega|^{p/2-1} \nabla|\omega| = \frac{2}{p} |\omega|^{p/2} \nabla|\omega|^{p/2}.$$

Substituting these two identities into (2-9), we obtain

$$(2-11) \quad \begin{aligned} &\int_M \eta^2 |\omega|\Delta_f|\omega|^{p-1} e^{-f} dv_g \\ &= -\frac{4(p-1)}{p^2} \int_M \eta^2 |\nabla|\omega|^{p/2}|^2 e^{-f} dv_g \\ &\quad - \frac{4(p-1)}{p} \int_M \eta |\omega|^{p/2} \langle \nabla\eta, \nabla|\omega|^{p/2} \rangle e^{-f} dv_g \\ &\leq -\frac{4(p-1)}{p^2} \int_M \eta^2 |\nabla|\omega|^{p/2}|^2 e^{-f} dv_g \\ &\quad + \frac{2(p-1)}{p} \left\{ \varepsilon \int_M \eta^2 |\nabla|\omega|^{p/2}|^2 e^{-f} dv_g + \frac{1}{\varepsilon} \int_M |\omega|^p |\nabla\eta|^2 e^{-f} dv_g \right\}, \end{aligned}$$

where we used Young's inequality in the last inequality for arbitrary $\varepsilon > 0$.

On the other hand, applying the divergence theorem with respect to the measure $e^{-f} dv_g$, the right-hand side of (2-8) becomes

$$\int_M \eta^2 \langle \omega, \delta_f d(|\omega|^{p-2}\omega) \rangle e^{-f} dv_g = \int_M \langle d(\eta^2 \omega), d(|\omega|^{p-2}\omega) \rangle e^{-f} dv_g.$$

Since

$$|d(\varphi\omega)| = |d\varphi \wedge \omega| \leq |d\varphi| |\omega|$$

for any smooth function $\varphi : M \rightarrow \mathbb{R}$ and any closed 1-form ω (see Lemma 13 in [Pigola et al. 2008]), using (2-10) and Young's inequality again gives

$$\begin{aligned} (2-12) \quad & |\langle d(\eta^2 \omega), d(|\omega|^{p-2}\omega) \rangle| \leq |d(\eta^2 \omega)| |d(|\omega|^{p-2}\omega)| \\ & \leq |d\eta^2| |\omega|^2 |d\omega|^{p-2} \\ & = 2\eta |\omega|^2 |\nabla \eta| |\nabla |\omega|^{p-2}| \\ & = 2(p-2)\eta |\nabla \eta| |\omega|^{p-1} |\nabla |\omega|| \\ & = \frac{4(p-2)}{p} \eta |\nabla \eta| |\omega|^{p/2} |\nabla |\omega|^{p/2}| \\ & \leq \frac{2(p-2)}{p} \left(\delta \eta^2 |\nabla |\omega|^{p/2}|^2 + \frac{1}{\delta} |\nabla \eta|^2 |\omega|^p \right) \end{aligned}$$

for any $\delta > 0$. Therefore

$$\begin{aligned} (2-13) \quad & \int_M \eta^2 \langle \omega, \delta_f d(|\omega|^{p-2}\omega) \rangle e^{-f} dv_g \geq -\frac{2(p-2)}{p} \delta \int_M \eta^2 |\nabla |\omega|^{p/2}|^2 e^{-f} dv_g \\ & \quad - \frac{2(p-2)}{p} \frac{1}{\delta} \int_M |\nabla \eta|^2 |\omega|^p e^{-f} dv_g. \end{aligned}$$

Combining (2-8), (2-11) and (2-13), we obtain

$$\begin{aligned} & \left(\frac{4(p-1)}{p^2} - \frac{2(p-1)}{p} \varepsilon - \frac{2(p-2)}{p} \delta \right) \int_M \eta^2 |\nabla |\omega|^{p/2}|^2 e^{-f} dv_g \\ & \leq \left(\frac{2(p-1)}{p} \frac{1}{\varepsilon} + \frac{2(p-2)}{p} \frac{1}{\delta} \right) \int_M |\nabla \eta|^2 |\omega|^p e^{-f} dv_g. \end{aligned}$$

Choose ε and δ sufficiently small so that

$$\frac{4(p-1)}{p^2} - \frac{2(p-1)}{p} \varepsilon - \frac{2(p-2)}{p} \delta > 0.$$

Since ω is an L_f^p p -harmonic 1-form, as r tends to infinity, we see

$$\nabla |\omega|^{p/2} = 0,$$

which implies that $\omega \equiv 0$ as in the proof of Theorem 2.4. \square

Remark 2.6. In Theorems 2.4 and 2.5, the boundedness on the weighted function f is only needed to guarantee that the weighted volume of $(M, g, e^{-f} dv_g)$ is infinite. In fact, we prove that any f -weighted L_f^{2p-2} p -harmonic 1-form with $p > 1$ or L_f^p p -harmonic 1-form with $p \geq 2$ on a complete noncompact f -weighted manifold with nonnegative Bakry-Émery Ricci tensor has constant length, which implies that ω is f -harmonic. Thus applying the standard Bochner formula for f -harmonic 1-forms (see Lemma 2.1 with $p = 2$, [Lott 2003] or [Vieira 2013]), one can see that ω is parallel without the assumption that f is bounded. This result leads to applications in gradient steady Ricci solitons or, more generally, to applications in weighted manifolds with infinite weighted volumes (see [Vieira 2013]). Recall that a gradient steady Ricci soliton is a manifold (M, g) together with a smooth function f satisfying $\text{Ric}_f^M = 0$.

Furthermore, if we assume that Ric_f^M is nonnegative and positive at a point, it is easy to see, from Corollary 2.2, that ω vanishes without assuming the boundedness of f . This property leads to applications in gradient shrinking Ricci solitons satisfying $\text{Ric}_f^M = \lambda g$ for some positive constant λ as follows.

Corollary 2.7. *Let $(M, g, e^{-f} dv_g)$ be a complete gradient shrinking Ricci soliton satisfying $\text{Ric} + \text{Hess}(f) = \lambda g$ with $\lambda > 0$, constant. Then if ω is an L_f^{2p-2} ($p > 1$) or L_f^p ($p \geq 2$) p -harmonic 1-form on M , then $\omega = 0$.*

Proof. The proof follows from the argument in Remark 2.6. \square

In case of gradient steady Ricci solitons, we also have the following same vanishing property.

Corollary 2.8. *Let $(M, g, e^{-f} dv_g)$ be a complete gradient steady Ricci soliton satisfying $\text{Ric} + \text{Hess}(f) = 0$. Then if ω is an L_f^{2p-2} ($p > 1$) or L_f^p ($p \geq 2$) p -harmonic 1-form on M , then $\omega = 0$.*

Proof. For $q = 2p - p$ or $q = p$, applying the same argument as in the proofs of Theorems 2.4 and 2.5, we see that $|\omega| \equiv C$ for some constant C . Thus

$$\int_M |\omega|^q e^{-f} dv_g = C^q \text{Vol}_f(M),$$

where $\text{Vol}_f(M)$ denotes the f -weighted volume of M .

On the other hand, it is well-known that the scalar curvature of a gradient steady Ricci soliton is nonnegative and $|\nabla f|$ is bounded by a positive constant (see [Cao 2010] for example). Moreover, Munteanu and Wang [2011] proved that the first eigenvalue of f -Laplacian Δ_f on the nontrivial gradient steady Ricci solitons is positive. Therefore, applying the result by Vieira [2013], we get $\text{Vol}_f(M) = \infty$. This shows that $\omega = 0$. \square

3. Vector bundle-valued weighted p -harmonic forms

In this section, we extend the notions discussed in Section 2 including the Bochner–Weitzenböck formula to vector bundles over a weighted manifold.

Let $\pi : E \rightarrow M$ be a vector bundle of rank m over a smooth oriented Riemannian manifold (M^n, g) . We denote by $\Gamma(E)$ the vector space of smooth sections of E over M . A Riemannian structure on the bundle E is a pair (∇^E, ρ) , where ρ is a Riemannian metric on E , ∇^E a connection and $\nabla^E \rho = 0$. Denoting $\rho = \langle \cdot, \cdot \rangle$, the condition $\nabla^E \rho = 0$ means that, for each $X \in \Gamma(TM)$ and $s_1, s_2 \in \Gamma(E)$, we have

$$X \cdot \langle s_1, s_2 \rangle = \langle \nabla^E s_1, s_2 \rangle + \langle s_1, \nabla^E s_2 \rangle.$$

The curvature of the connection ∇^E is the map $R^E : \Lambda^2 TM \otimes \Gamma(E) \rightarrow \Gamma(E)$ defined by

$$R^E(X, Y)s = -\nabla_X^E \nabla_Y^E s + \nabla_Y^E \nabla_X^E s + \nabla_{[X, Y]}^E s.$$

Let ω be an l -form on M with values in the vector bundle $\pi : E \rightarrow M$. Then, choosing a (local) frame s_1, \dots, s_m on E , for each $X_1, \dots, X_l \in \Gamma(TM)$, we can write

$$\omega(X_1, \dots, X_l) = \sum_{\alpha=1}^m a_\alpha s_\alpha$$

for some local smooth functions a_α on M . For the Levi–Civita connection $D^M = D$ on (M, g) , the induced connection ∇ on $\Gamma(\Lambda^l T^* M \otimes E)$, the space of smooth l -forms on M with values in the vector bundle $\pi : E \rightarrow M$, is given by

$$(\nabla_X \omega)(X_1, \dots, X_l) = \nabla_X^E(\omega(X_1, \dots, X_l)) - \sum_{i=1}^l \omega(X_1, \dots, D_X X_i, \dots, X_l)$$

and its associated curvature is given by

$$\begin{aligned} (R(X, Y)\omega)(X_1, \dots, X_l) \\ = R^E(X, Y)(\omega(X_1, \dots, X_l)) - \sum_{i=1}^l \omega(X_1, \dots, R^M(X, Y)X_i, \dots, X_l). \end{aligned}$$

For the induced connection ∇ , the exterior differential operator

$$d : \Gamma(\Lambda^l T^* M \otimes E) \rightarrow \Gamma(\Lambda^{l+1} T^* M \otimes E)$$

is given by

$$(d\omega)(X_1, \dots, X_{l+1}) = \sum_{i=1}^{l+1} (-1)^{i+1} (\nabla_{X_i} \omega)(X_1, \dots, \widehat{X}_i, \dots, X_{l+1}),$$

where the symbol covered by \widehat{X}_i is omitted. The codifferential operator δ is given by

$$(\delta\omega)(X_1, \dots, X_{l-1}) = -\sum_{i=1}^n (\nabla_{e_i}\omega)(e_i, X_1, \dots, X_{l-1}),$$

where $\{e_i\}$ is a local frame on M . Finally the Laplacian Δ and the f -weighted Laplacian Δ_f are defined on E -valued differential forms by

$$\Delta = -(d\delta + \delta d) \quad \text{and} \quad \Delta_f = -(d\delta_f + \delta_f d),$$

respectively.

For a vector bundle $\pi : E \rightarrow M$ over a weighted manifold $(M, g, e^{-f} dv_g)$, we have the following Bochner–Weitzenböck formula for differential 1-forms on M with values in E .

Lemma 3.1 (Bochner–Weitzenböck formula). *Let $\pi : E \rightarrow M$ be a vector bundle of rank m over a smooth oriented Riemannian manifold (M, g) , and let $f : M \rightarrow \mathbb{R}$ be a smooth function. If ω is an E -valued 1-form on M , then*

$$\begin{aligned} (3-1) \quad \frac{1}{2}\Delta_f|\omega|^{2p-2} &= \langle |\omega|^{p-2}\omega, \Delta_f(|\omega|^{p-2}\omega) \rangle + |\nabla(|\omega|^{p-2}\omega)|^2 \\ &\quad + |\omega|^{2p-4} \sum_{i=1}^n \langle \omega(\text{Ric}_f^M(e_i)), \omega(e_i) \rangle \\ &\quad - |\omega|^{2p-4} \sum_{i,j} \langle R^E(e_i, e_j)\omega(e_i), \omega(e_j) \rangle, \end{aligned}$$

where $\{e_i\}$ is a local frame on M and $\text{Ric}_f^M(e_i)$ is a vector given by

$$\text{Ric}_f^M(e_i) = \sum_{j=1}^n \text{Ric}_f^M(e_i, e_j) e_j = \sum_{j=1}^n [\text{Ric}^M(e_i, e_j) + \text{Hess}(f)(e_i, e_j)] e_j.$$

Proof. It is well-known (see [Eells and Lemaire 1983]) that

$$\begin{aligned} (3-2) \quad \frac{1}{2}\Delta|\omega|^{2p-2} &= \langle |\omega|^{p-2}\omega, \Delta(|\omega|^{p-2}\omega) \rangle + |\nabla(|\omega|^{p-2}\omega)|^2 \\ &\quad + |\omega|^{2p-4} \sum_{i=1}^n \langle \omega(\text{Ric}^M(e_i)), \omega(e_i) \rangle \\ &\quad - |\omega|^{2p-4} \sum_{i,j} \langle R^E(e_i, e_j)\omega(e_i), \omega(e_j) \rangle. \end{aligned}$$

By definition of weighted Laplacian $\Delta_f = \Delta - \langle \nabla f, \nabla \cdot \rangle$, we have

$$\frac{1}{2}\Delta_f|\omega|^{2p-2} = \frac{1}{2}\Delta|\omega|^{2p-2} - \frac{1}{2}\langle \nabla f, \nabla|\omega|^{2p-2} \rangle.$$

Since

$$\text{Ric}_f^M = \text{Ric}^M + \text{Hess}(f) \quad \text{and} \quad \Delta_f = \Delta - di_{\nabla f} - i_{\nabla f}d,$$

we get

$$\begin{aligned}
& \frac{1}{2} \Delta_f |\omega|^{2p-2} \\
&= \langle |\omega|^{p-2} \omega, \Delta_f (|\omega|^{p-2} \omega) \rangle + \langle |\omega|^{p-2} \omega, di_{\nabla f} (|\omega|^{p-2} \omega) \rangle \\
&\quad + \langle |\omega|^{p-2} \omega, i_{\nabla f} d (|\omega|^{p-2} \omega) \rangle + |\nabla (|\omega|^{p-2} \omega)|^2 \\
&\quad + |\omega|^{2p-4} \sum_{i=1}^n \langle \omega (\text{Ric}_f^M (e_i)), \omega (e_i) \rangle - |\omega|^{2p-4} \langle \omega (\text{Hess}(f) (e_i)), \omega (e_i) \rangle \\
&\quad - |\omega|^{2p-4} \sum_{i,j} \langle R^E (e_i, e_j) \omega (e_i), \omega (e_j) \rangle - \frac{1}{2} \langle \nabla f, \nabla (|\omega|^{2p-2}) \rangle.
\end{aligned}$$

We claim that

$$\begin{aligned}
(3-3) \quad & \langle |\omega|^{p-2} \omega, di_{\nabla f} (|\omega|^{p-2} \omega) \rangle + \langle |\omega|^{p-2} \omega, i_{\nabla f} d (|\omega|^{p-2} \omega) \rangle \\
& - |\omega|^{2p-4} \langle \omega (\text{Hess}(f) (e_i)), \omega (e_i) \rangle - \frac{1}{2} \langle \nabla f, \nabla (|\omega|^{2p-2}) \rangle = 0.
\end{aligned}$$

Let $\{e_1, \dots, e_n\}$ be a local geodesic frame at a point p in M , and $\{\theta_1, \dots, \theta_n\}$ be its dual coframe. Let $\{\theta_{ij}\}$ be the connection 1-form vanishing at the point p . Let $\{s_1, \dots, s_m\}$ be a local frame on E such that

$$\nabla^E s_\alpha|_p = 0.$$

Then ω can be expressed as

$$\omega = \sum_{\alpha=1}^m \sum_{i=1}^n a_{i\alpha} \theta_i \otimes s_\alpha$$

so that

$$\omega (e_j) = \sum_{\alpha} a_{j\alpha} s_{\alpha} \quad \text{and} \quad |\omega|^2 = \sum_{i,\alpha} a_{i\alpha}^2.$$

Since

$$\begin{aligned}
di_{\nabla f} (|\omega|^{p-2} \omega) &= di_{\nabla f} (|\omega|^{p-2} a_{i\alpha} \theta_i \otimes s_{\alpha}) \\
&= d (|\omega|^{p-2} f_i a_{i\alpha} s_{\alpha}) \\
&= f_i a_{i\alpha} d |\omega|^{p-2} \otimes s_{\alpha} + |\omega|^{p-2} a_{i\alpha} f_{ij} \theta_j \otimes s_{\alpha} \\
&\quad + |\omega|^{p-2} f_i a_{i\alpha;j} \theta_j \otimes s_{\alpha} + |\omega|^{p-2} f_i a_{i\alpha} \nabla^E s_{\alpha},
\end{aligned}$$

we have

$$\begin{aligned}
(3-4) \quad & \langle |\omega|^{p-2} \omega, di_{\nabla f} (|\omega|^{p-2} \omega) \rangle = |\omega|^{p-2} \langle a_{j\alpha} \theta_j \otimes s_{\alpha}, di_{\nabla f} (|\omega|^{p-2} \omega) \rangle \\
&= |\omega|^{p-2} a_{j\alpha} f_i a_{i\alpha} d |\omega|^{p-2} (e_j) \\
&\quad + |\omega|^{2p-4} a_{j\alpha} a_{i\alpha} f_{ij} + |\omega|^{2p-4} a_{j\alpha} f_i a_{i\alpha;j}.
\end{aligned}$$

Moreover

$$\begin{aligned} d(|\omega|^{p-2}\omega) &= a_{i\alpha}(d|\omega|^{p-2}\wedge\theta_i)\otimes s_\alpha + |\omega|^{p-2}(da_{i\alpha}\wedge\theta_i)\otimes s_\alpha \\ &\quad + |\omega|^{p-2}a_{i\alpha}\theta_{ij}\wedge\theta_j\otimes s_\alpha - |\omega|^{p-2}a_{i\alpha}\theta_i\wedge\nabla^E s_\alpha \\ &= a_{i\alpha}(d|\omega|^{p-2}\wedge\theta_i)\otimes s_\alpha + |\omega|^{p-2}a_{i\alpha;j}(\theta_j\wedge\theta_i)\otimes s_\alpha \end{aligned}$$

which gives

$$\begin{aligned} i_{\nabla f}d(|\omega|^{p-2}\omega) &= d|\omega|^{p-2}(\nabla f)\omega - a_{i\alpha}f_id|\omega|^{p-2}\otimes s_\alpha \\ &\quad + |\omega|^{p-2}a_{i\alpha;j}f_j\theta_i\otimes s_\alpha - |\omega|^{p-2}a_{i\alpha;j}f_i\theta_j\otimes s_\alpha. \end{aligned}$$

Thus

$$\begin{aligned} (3-5) \quad &\langle|\omega|^{p-2}\omega, i_{\nabla f}d(|\omega|^{p-2}\omega)\rangle \\ &= |\omega|^{p-2}\langle a_{j\beta}\theta_j\otimes s_\beta, i_{\nabla f}d(|\omega|^{p-2}\omega)\rangle \\ &= |\omega|^p d|\omega|^{p-2}(\nabla f) - |\omega|^{p-2}a_{i\alpha}a_{j\alpha}f_id|\omega|^{p-2}(e_j) \\ &\quad + |\omega|^{2p-4}a_{i\alpha;j}a_{i\alpha}f_j - |\omega|^{2p-4}a_{i\alpha;j}f_i a_{j\alpha} \\ &= |\omega|^p\langle\nabla f, \nabla|\omega|^{p-2}\rangle - |\omega|^{p-2}a_{i\alpha}a_{j\alpha}f_id|\omega|^{p-2}(e_j) \\ &\quad + \frac{1}{2}|\omega|^{2p-4}\langle\nabla f, \nabla|\omega|^2\rangle - |\omega|^{2p-4}a_{i\alpha;j}f_i a_{j\alpha}. \end{aligned}$$

Note that

$$(3-6) \quad \langle\omega(\text{Hess}(f)(e_i)), \omega(e_i)\rangle = f_{ij}\langle\omega(e_j), \omega(e_i)\rangle = f_{ij}a_{j\alpha}a_{i\alpha}.$$

From (3-4), (3-5), and (3-6), it follows that

$$\begin{aligned} &\langle|\omega|^{p-2}\omega, di_{\nabla f}(|\omega|^{p-2}\omega)\rangle + \langle|\omega|^{p-2}\omega, i_{\nabla f}d(|\omega|^{p-2}\omega)\rangle \\ &\quad - |\omega|^{2p-4}\langle\omega(\text{Hess}(f)(e_i)), \omega(e_i)\rangle \\ &= |\omega|^p\langle\nabla f, \nabla|\omega|^{p-2}\rangle + \frac{1}{2}|\omega|^{2p-4}\langle\nabla f, \nabla|\omega|^2\rangle. \end{aligned}$$

We observe that

$$\begin{aligned} \frac{1}{2}\langle\nabla f, \nabla|\omega|^{2p-2}\rangle &= \frac{1}{2}\langle\nabla f, \nabla(|\omega|^p \cdot |\omega|^{p-2})\rangle \\ &= \frac{1}{2}|\omega|^p\langle\nabla f, \nabla|\omega|^{p-2}\rangle + \frac{1}{2}|\omega|^{p-2}\langle\nabla f, \nabla|\omega|^p\rangle. \end{aligned}$$

Since

$$\nabla|\omega|^p = \nabla(|\omega|^2)^{p/2} = \frac{p}{2}|\omega|^{p-2}\nabla|\omega|^2,$$

we have

$$\frac{1}{2}|\omega|^{p-2}\langle\nabla f, \nabla|\omega|^p\rangle = \frac{p}{4}|\omega|^{2p-4}\langle\nabla f, \nabla|\omega|^2\rangle.$$

Thus the left-hand side of (3-3) becomes

$$\frac{1}{2}|\omega|^p\langle\nabla f, \nabla|\omega|^{p-2}\rangle + \frac{2-p}{4}|\omega|^{2p-4}\langle\nabla f, \nabla|\omega|^2\rangle.$$

Using

$$\begin{aligned}\nabla|\omega|^{p-2} &= \nabla(|\omega|^2)^{(p-2)/2} \\ &= \frac{p-2}{2}(|\omega|^2)^{(p-2)/2-1}\nabla|\omega|^2 \\ &= \frac{p-2}{2}|\omega|^{p-4}\nabla|\omega|^2,\end{aligned}$$

we see that the left-hand side of (3-3) vanishes, which completes the proof of Lemma 3.1. \square

As in the proof of Corollary 2.2, we can easily show the following by using Lemma 3.1.

Corollary 3.2. *Let $\pi : E \rightarrow M$ be a vector bundle of rank m over a smooth oriented Riemannian manifold (M, g) , and let $f : M \rightarrow \mathbb{R}$ be a smooth function. If ω is an E -valued 1-form on M , then*

$$\begin{aligned}|\omega|^{p-1}\Delta_f|\omega|^{p-1} &\geq \langle|\omega|^{p-2}\omega, \Delta_f(|\omega|^{p-2}\omega)\rangle + |\omega|^{2p-4} \sum_{i=1}^n \langle\omega(\text{Ric}_f^M(e_i)), \omega(e_i)\rangle \\ &\quad - |\omega|^{2p-4} \sum_{i,j} \langle R^E(e_i, e_j)\omega(e_i), \omega(e_j)\rangle.\end{aligned}$$

4. Weighted p -harmonic maps

In this section, we obtain some Liouville-type theorems for weighted p -harmonic maps as an application of the Bochner–Weitzenböck formula stated in Section 3. The following theorem shows that the same result holds for f -weighted p -harmonic maps with L_f^{2p-2} -finite energy for $p > 1$ as in the case of f -weighted L_f^{2p-2} p -harmonic 1-forms.

Theorem 4.1. *Let $u : (M, g, e^{-f}dv_g) \rightarrow (N, h)$ be an f -weighted p -harmonic map from an oriented complete noncompact f -weighted manifold into a Riemannian manifold for $p > 1$. Suppose that f is bounded. Assume that the Bakry–Émery Ricci curvature of M is nonnegative, $\text{Ric}_f^M \geq 0$, and the sectional curvature of N is nonpositive, $K^N \leq 0$. If u has finite f -weighted $(2p-2)$ -energy, i.e.,*

$$\int_M |du|^{2p-2}e^{-f} dv_g < \infty,$$

then u must be a constant map.

Proof. Let $du = \omega$. Then ω is an f -weighted p -harmonic 1-form with values in the pull-back bundle $u^{-1}TN$. In particular,

$$\delta_f(|\omega|^{p-2}\omega) = 0.$$

From Corollary 3.2 together with curvature conditions, it follows that

$$(4-1) \quad |\omega|^{p-1} \Delta_f |\omega|^{p-1} \geq \langle |\omega|^{p-2} \omega, \delta_f d(|\omega|^{p-2} \omega) \rangle.$$

From this, we can see that the same argument as in the proof of Theorem 2.4 shows $\omega = 0$. \square

From Corollary 3.2, it follows that

$$(4-2) \quad |\omega| \Delta_f |\omega|^{p-1} \geq \langle \omega, \Delta_f (|\omega|^{p-2} \omega) \rangle + |\omega|^{p-2} \sum_{i=1}^n \langle \omega (\text{Ric}_f^M (e_i)), \omega (e_i) \rangle - |\omega|^{p-2} \sum_{i,j} \langle R^E (e_i, e_j) \omega (e_i), \omega (e_j) \rangle.$$

Applying the same argument as in Theorem 2.5 to (4-2), we are able to prove the following theorem.

Theorem 4.2. *Let $u : (M, g, e^{-f} dv_g) \rightarrow (N, h)$ be an f -weighted p -harmonic map from an oriented complete noncompact f -weighted manifold into a Riemannian manifold. Suppose that f is bounded, and $\text{Ric}_f^M \geq 0$ and $K^N \leq 0$. For $p \geq 2$, if u has finite f -weighted p -energy, then u must be a constant map.*

Remark 4.3. In Theorems 4.1 and 4.2, without the boundedness of f , if we assume that Ric_f is nonnegative and positive at a point, we can conclude that any f -weighted p -harmonic map $u : (M, g, e^{-f} dv_g) \rightarrow (N, h)$ with finite f -weighted $(2p-2)$ -energy or p -energy for $p > 1$ from an oriented complete noncompact f -weighted manifold into a Riemannian manifold of nonpositive sectional curvature, $K^N \leq 0$, must be constant.

Applying the argument in Remark 4.3 to gradient shrinking Ricci solitons, we have the following as in the case of L_f^p p -harmonic 1-forms.

Corollary 4.4. *Let $(M, g, e^{-f} dv_g)$ be a complete noncompact gradient shrinking Ricci soliton satisfying $\text{Ric} + \text{Hess}(f) = \lambda g$ with $\lambda > 0$, constant. If $u : (M, g, e^{-f} dv_g) \rightarrow (N, h)$ is an f -weighted p -harmonic map into a Riemannian manifold of nonpositive sectional curvature $K^N \leq 0$ with finite f -weighted $(2p-2)$ -energy or p -energy for $p > 1$, then u must be a constant map.*

Acknowledgments

The authors would like to express their gratitude to the referees for valuable comments. In particular, their suggestions for vanishing properties of p -harmonic forms and p -harmonic maps on gradient Ricci solitons make this paper more fruitful. Seo was supported by the National Research Foundation of Korea (NRF-2016R1C1B2009778) and Yun was supported by the National Research Foundation of Korea (NRF-2016R1D1A1A09916749).

References

[Bakry and Émery 1985] D. Bakry and M. Émery, “Diffusions hypercontractives”, pp. 177–206 in *Séminaire de probabilités, XIX, 1983/84*, edited by J. Azéma and M. Yor, Lecture Notes in Math. **1123**, Springer, 1985. MR Zbl

[Cao 2010] H.-D. Cao, “Recent progress on Ricci solitons”, pp. 1–38 in *Recent advances in geometric analysis*, edited by Y.-I. Lee et al., Adv. Lect. Math. (ALM) **11**, International Press, Somerville, MA, 2010. MR Zbl

[Cao et al. 1997] H.-D. Cao, Y. Shen, and S. Zhu, “The structure of stable minimal hypersurfaces in \mathbb{R}^{n+1} ”, *Math. Res. Lett.* **4**:5 (1997), 637–644. MR Zbl

[Chang and Sung 2011] L.-C. Chang and C.-J. A. Sung, “A note on p -harmonic l -forms on complete manifolds”, *Pacific J. Math.* **254**:2 (2011), 295–307. MR Zbl

[Dung and Seo 2012] N. T. Dung and K. Seo, “Stable minimal hypersurfaces in a Riemannian manifold with pinched negative sectional curvature”, *Ann. Global Anal. Geom.* **41**:4 (2012), 447–460. MR Zbl

[Dung and Seo 2017] N. T. Dung and K. Seo, “ p -harmonic functions and connectedness at infinity of complete submanifolds in a Riemannian manifold”, *Ann. Mat. Pura Appl.* (4) **196**:4 (2017), 1489–1511. MR Zbl

[Eells and Lemaire 1983] J. Eells and L. Lemaire, *Selected topics in harmonic maps*, CBMS Regional Conference Series in Mathematics **50**, American Mathematical Society, Providence, RI, 1983. MR Zbl

[Greene and Wu 1979] R. E. Greene and H. Wu, *Function theory on manifolds which possess a pole*, Lecture Notes in Mathematics **699**, Springer, 1979. MR Zbl

[Hildebrandt 1982] S. Hildebrandt, “Liouville theorems for harmonic mappings, and an approach to Bernstein theorems”, pp. 107–131 in *Seminar on Differential Geometry*, edited by S. T. Yau, Ann. of Math. Stud. **102**, Princeton Univ. Press, 1982. MR Zbl

[Hua et al. 2017] B. Hua, S. Liu, and C. Xia, “Liouville theorems for f -harmonic maps into Hadamard spaces”, *Pacific J. Math.* **290**:2 (2017), 381–402. MR Zbl

[Huber 1957] A. Huber, “On subharmonic functions and differential geometry in the large”, *Comment. Math. Helv.* **32** (1957), 13–72. MR Zbl

[Karp 1982] L. Karp, “Subharmonic functions on real and complex manifolds”, *Math. Z.* **179**:4 (1982), 535–554. MR Zbl

[Li and Tam 1992] P. Li and L.-F. Tam, “Harmonic functions and the structure of complete manifolds”, *J. Differential Geom.* **35**:2 (1992), 359–383. MR Zbl

[Li and Wang 2002] P. Li and J. Wang, “Minimal hypersurfaces with finite index”, *Math. Res. Lett.* **9**:1 (2002), 95–103. MR Zbl

[Li and Wang 2004] P. Li and J. Wang, “Stable minimal hypersurfaces in a nonnegatively curved manifold”, *J. Reine Angew. Math.* **566** (2004), 215–230. MR Zbl

[Lin 2015] H. Lin, “ L^2 harmonic forms on submanifolds in a Hadamard manifold”, *Nonlinear Anal.* **125** (2015), 310–322. MR Zbl

[Lott 2003] J. Lott, “Some geometric properties of the Bakry–Émery–Ricci tensor”, *Comment. Math. Helv.* **78**:4 (2003), 865–883. MR Zbl

[Lott and Villani 2009] J. Lott and C. Villani, “Ricci curvature for metric-measure spaces via optimal transport”, *Ann. of Math.* (2) **169**:3 (2009), 903–991. MR Zbl

[Munteanu and Wang 2011] O. Munteanu and J. Wang, “Smooth metric measure spaces with non-negative curvature”, *Comm. Anal. Geom.* **19**:3 (2011), 451–486. MR Zbl

[Nakauchi 1998] N. Nakauchi, “A Liouville type theorem for p -harmonic maps”, *Osaka J. Math.* **35**:2 (1998), 303–312. MR Zbl

[Pigola et al. 2005] S. Pigola, M. Rigoli, and A. G. Setti, “Vanishing theorems on Riemannian manifolds, and geometric applications”, *J. Funct. Anal.* **229**:2 (2005), 424–461. MR Zbl

[Pigola et al. 2008] S. Pigola, M. Rigoli, and A. G. Setti, “Constancy of p -harmonic maps of finite q -energy into non-positively curved manifolds”, *Math. Z.* **258**:2 (2008), 347–362. MR Zbl

[Rimoldi and Veronelli 2013] M. Rimoldi and G. Veronelli, “Topology of steady and expanding gradient Ricci solitons via f -harmonic maps”, *Differential Geom. Appl.* **31**:5 (2013), 623–638. MR Zbl

[Schoen and Yau 1976] R. Schoen and S. T. Yau, “Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature”, *Comment. Math. Helv.* **51**:3 (1976), 333–341. MR Zbl

[Seo 2010] K. Seo, “ L^2 harmonic 1-forms on minimal submanifolds in hyperbolic space”, *J. Math. Anal. Appl.* **371**:2 (2010), 546–551. MR Zbl

[Seo 2014] K. Seo, “ L^p harmonic 1-forms and first eigenvalue of a stable minimal hypersurface”, *Pacific J. Math.* **268**:1 (2014), 205–229. MR Zbl

[Sturm 2006a] K.-T. Sturm, “On the geometry of metric measure spaces, I”, *Acta Math.* **196**:1 (2006), 65–131. MR Zbl

[Sturm 2006b] K.-T. Sturm, “On the geometry of metric measure spaces, II”, *Acta Math.* **196**:1 (2006), 133–177. MR Zbl

[Takeuchi 1991] H. Takeuchi, “Stability and Liouville theorems of p -harmonic maps”, *Japan. J. Math. (N.S.)* **17**:2 (1991), 317–332. MR Zbl

[Vieira 2013] M. Vieira, “Harmonic forms on manifolds with non-negative Bakry–Émery–Ricci curvature”, *Arch. Math. (Basel)* **101**:6 (2013), 581–590. MR Zbl

[Vieira 2016] M. Vieira, “Vanishing theorems for L^2 harmonic forms on complete Riemannian manifolds”, *Geom. Dedicata* **184** (2016), 175–191. MR Zbl

[Wei and Wylie 2009] G. Wei and W. Wylie, “Comparison geometry for the Bakry–Emery Ricci tensor”, *J. Differential Geom.* **83**:2 (2009), 377–405. MR Zbl

[Yau 1975] S. T. Yau, “Harmonic functions on complete Riemannian manifolds”, *Comm. Pure Appl. Math.* **28** (1975), 201–228. MR Zbl

[Yau 1976] S. T. Yau, “Some function-theoretic properties of complete Riemannian manifold and their applications to geometry”, *Indiana Univ. Math. J.* **25**:7 (1976), 659–670. MR Zbl

[Yun 2002] G. Yun, “Total scalar curvature and L^2 harmonic 1-forms on a minimal hypersurface in Euclidean space”, *Geom. Dedicata* **89** (2002), 135–141. MR Zbl

[Zhang and Wang 2016] J.-F. Zhang and Y. Wang, “A theorem of Liouville type for p -harmonic maps in weighted Riemannian manifolds”, *Kodai Math. J.* **39**:2 (2016), 354–365. MR Zbl

Received April 30, 2018. Revised February 17, 2019.

KEOMKYO SEO
 DEPARTMENT OF MATHEMATICS
 SOOKMYUNG WOMEN’S UNIVERSITY
 YONGSAN-GU
 SEOUL
 SOUTH KOREA
 kseo@sookmyung.ac.kr

GABJIN YUN
DEPARTMENT OF MATHEMATICS
MYONG JI UNIVERSITY
CHEOIN-GU
YONG-IN
SOUTH KOREA
gabjin@mju.ac.kr

PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
blasius@math.ucla.edu

Matthias Aschenbrenner
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
matthias@math.ucla.edu

Daryl Cooper
Department of Mathematics
University of California
Santa Barbara, CA 93106-3080
cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong
jhu@maths.hku.hk

Paul Balmer
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
balmer@math.ucla.edu

Wee Teck Gan
Mathematics Department
National University of Singapore
Singapore 119076
matgwt@nus.edu.sg

Sorin Popa
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
popa@math.ucla.edu

Paul Yang
Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Vyjayanthi Chari
Department of Mathematics
University of California
Riverside, CA 92521-0135
chari@math.ucr.edu

Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu

Jie Qing
Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA
KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE
NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY
UNIV. OF BRITISH COLUMBIA
UNIV. OF CALIFORNIA, BERKELEY
UNIV. OF CALIFORNIA, DAVIS
UNIV. OF CALIFORNIA, LOS ANGELES
UNIV. OF CALIFORNIA, RIVERSIDE
UNIV. OF CALIFORNIA, SAN DIEGO
UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA
UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2020 is US \$520/year for the electronic version, and \$705/year for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 1945-5844 electronic, 0030-8730 printed) at the University of California, c/o Department of Mathematics, 798 Evans Hall #3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

 mathematical sciences publishers

nonprofit scientific publishing

<http://msp.org/>

© 2020 Mathematical Sciences Publishers

PACIFIC JOURNAL OF MATHEMATICS

Volume 305 No. 1 March 2020

The Poincaré homology sphere, lens space surgeries, and some knots with tunnel number two	1
KENNETH L. BAKER	
Fusion systems of blocks of finite groups over arbitrary fields	29
ROBERT BOLTJE, ÇİSİL KARAGÜZEL and DENİZ YILMAZ	
Torsion points and Galois representations on CM elliptic curves	43
ABBEY BOURDON and PETE L. CLARK	
Stability of the positive mass theorem for axisymmetric manifolds	89
EDWARD T. BRYDEN	
Index estimates for free boundary constant mean curvature surfaces	153
MARCOS P. CAVALCANTE and DARLAN F. DE OLIVEIRA	
A criterion for modules over Gorenstein local rings to have rational Poincaré series	165
ANJAN GUPTA	
Generalized Cartan matrices arising from new derivation Lie algebras of isolated hypersurface singularities	189
NAVEED HUSSAIN, STEPHEN S.-T. YAU and HUAIQING ZUO	
On the commutativity of coset pressure	219
BING LI and WEN-CHIAO CHENG	
Signature invariants related to the unknotting number	229
CHARLES LIVINGSTON	
The global well-posedness and scattering for the 5-dimensional defocusing conformal invariant NLW with radial initial data in a critical Besov space	251
CHANGXING MIAO, JIANWEI YANG and TENGFEI ZHAO	
Liouville-type theorems for weighted p -harmonic 1-forms and weighted p -harmonic maps	291
KEOMKYO SEO and GABJIN YUN	
Remarks on the Hölder-continuity of solutions to parabolic equations with conic singularities	311
YUANQI WANG	
Deformation of Milnor algebras	329
ZHENJIAN WANG	
Preservation of log-Sobolev inequalities under some Hamiltonian flows	339
BO XIA	
Ground state solutions of polyharmonic equations with potentials of positive low bound	353
CAIFENG ZHANG, JUNGANG LI and LU CHEN	

0030-8730(2020)305:1;1-R