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In this paper, we obtain Bochner–Weitzenböck formulas for the weighted
Hodge Laplacian operator acting on differential forms and more gener-
ally on vector bundle-valued weighted p-harmonic forms. Applying these
formulas, we prove Liouville-type theorems for weighted Lq p-harmonic
1-forms and for weighted p-harmonic maps in a weighted complete non-
compact manifold with nonnegative Bakry–Émery Ricci curvature, where
q = 2 p− 2 or q = p.

1. Introduction

The celebrated Liouville theorem states that every positive harmonic function on
Rn is constant. There have been a lot of effort over the years to generalize the clas-
sical Liouville theorem into complete noncompact Riemannian manifolds. Huber
[1957] proved that any negative subharmonic function on a complete surface with
nonnegative curvature is constant. Yau [1975] proved that any positive harmonic
function on a noncompact Riemannian manifold with nonnegative Ricci curvature is
constant. See also [Greene and Wu 1979; Hildebrandt 1982; Karp 1982] for further
related results. Moreover, Yau [1976] obtained an L p-Liouville type theorem. More
precisely, he proved that, for 1< p <∞, any L p harmonic function on a complete
Riemannian manifold is constant. Given a harmonic function f on a Riemannian
manifold M , we note that the differential d f is obviously a harmonic 1-form on
M . In the case where M is a complete noncompact Riemannian manifold, it is
natural to consider L2 harmonic forms on M because L2-Hodge theory remains
valid in complete noncompact manifolds as classical Hodge theory works well in
compact manifolds. It turned out that the theory of L2 harmonic 1-forms is useful
to investigate the geometry and topology at infinity. For example, Li and Tam
[1992] proved that if the space of L2 harmonic 1-forms on a complete Riemannian
manifold M is trivial, then M must have at most one nonparabolic end. Cao, Shen,
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and Zhu [Cao et al. 1997] also obtained an interesting topological result which
says that if M is a complete Riemannian manifold with all ends of infinite volume
supporting a Sobolev inequality and if the space of L2 harmonic 1-forms is trivial,
then M must have only one end. Their argument using the space of L2 harmonic
1-forms to study the geometry and topology at infinity has been extended in various
ways. We refer the readers to [Dung and Seo 2012; 2017; Li and Wang 2002; 2004;
Lin 2015; Pigola et al. 2005; Seo 2010; 2014; Vieira 2016; Yun 2002] for recent
developments on this topic.

In this paper, we study Liouville-type properties on p-harmonic 1-forms and
p-harmonic maps in weighted manifolds. Given a smooth Riemannian manifold
(M, g) and a smooth function f : M → R, a weighted manifold (or a smooth
metric measure space, also known as a manifold with density) is a triple M f :=

(M, g, e− f dvg), where dvg is the volume form induced by the metric g. Since the
geometry of weighted manifolds were developed by Bakry and Émery [1985], it
has been intensively studied by many authors (for instance, see [Lott 2003; Lott and
Villani 2009; Sturm 2006a; 2006b; Wei and Wylie 2009]). Moreover, it turned out
that the study of weighted manifolds is closely related with that of self-shrinkers
and gradient Ricci solitons.

An important geometric quantity on a weighted manifold M f known as Bakry–
Émery Ricci curvature is defined by

RicM
f = Ric+Hess( f ),

where Hess( f ) denotes the Hessian of f . Obviously, the Bakry–Émery Ricci
curvature is a generalization of Ricci curvature. In a weighted manifold, there is a
useful elliptic differential operator, the so-called f -Laplacian, 1 f which is defined
by

1 f u =1u−〈∇ f,∇u〉.

The f-Laplacian is a natural generalization of the Laplace–Beltrami operator 1 as
it is self-adjoint with respect to the weighted measure e− f dvg, i.e.,∫

M
v1 f ue− f dvg =

∫
M
(u1 f v)e− f dvg

and ∫
M
(v1 f u) e− f dvg =−

∫
M
〈∇u,∇v〉e− f dvg

for u, v ∈ C∞0 (M).
On the other hand, for a smooth map ϕ : (Mn, g, e− f dvg)→ (N m, h) from

an f-weighted manifold into a Riemannian manifold, and for a bounded domain
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�⊂ M , the f -weighted p-energy E f,p(ϕ;�) with p> 1 of ϕ over � is defined by

(1-1) E f,p(ϕ;�)=
1
p

∫
�

|dϕ|pe− f dvg,

where |dϕ| denotes the Hilbert–Schmidt norm of dϕ induced by the metrics g and h.
Namely, if {ei } is a local frame on M , |dϕ| is given by

(1-2) |dϕ|2 =
n∑

i=1

〈dϕ(ei ), dϕ(ei )〉

so that
|dϕ|2 = trg ϕ

∗h = 〈g, ϕ∗h〉.

A smooth map ϕ : (M, g, e− f dvg)→ (N , h) is called f -weighted p-harmonic if it is
a critical point of the f-weighted p-energy functional E f,p(ϕ;�) for any bounded
domain � ⊂ M . It can be easily shown that when ϕ is C2-regular, the Euler–
Lagrange equation for the f -weighted p-energy E f,p is the f -weighted p-harmonic
map equation

(1-3) τ f,p(ϕ)=−δ f (|dϕ|p−2dϕ)= |dϕ|p−2τ f (ϕ)+ dϕ(∇|dϕ|p−2)= 0.

Here δ f = δ+ i∇ f is the adjoint operator of the exterior derivative d with respect
to the measure e− f dvg, i∇ f denotes the interior product with the vector ∇ f ,
τ f (ϕ) = τ(ϕ)− i∇ f dϕ and τ(ϕ) is the classical tension field of ϕ. In the case
where p = 2 and f is a constant function, Schoen and Yau [1976] obtained the
following well-known Liouville-type theorem for harmonic maps between complete
Riemannian manifolds.

Theorem [Schoen and Yau 1976]. Let M be a complete Riemannian manifold
of nonnegative Ricci curvature and let N be a complete Riemannian manifold of
nonpositive sectional curvature. Then, for any constant function f , every harmonic
map u : M→ N with finite 2-energy E f,2(u) must be constant.

Recently, Rimoldi and Veronelli [2013] generalized Schoen and Yau’s Liouville-
type theorem for harmonic maps into f-weighted 2-harmonic maps between com-
plete Riemannian manifolds. More precisely, they showed that if

u : (Mn, g, e− f dvg)→ (N m, h)

is an f-weighted 2-harmonic map from a complete Riemannian manifold M with
nonnegative Bakry–Émery Ricci curvature into a complete Riemannian manifold
with nonpositive sectional curvature and if the f -weighted 2-energy E f,2(u) is finite,
then the harmonic map u must be constant. See also [Hua et al. 2017; Nakauchi
1998; Takeuchi 1991; Zhang and Wang 2016] for related previous results. In this
paper, we extend their result into f-weighted p-harmonic maps.
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The organization of this paper is the following. In Section 2 we derive a Bochner–
Weitzenböck formula for the weighted Hodge Laplacian 1 f on differential forms.
Applying this formula, we are able to show a Liouville-type property of weighted Lq

p-harmonic 1-forms on a complete noncompact weighted manifold with nonnegative
Bakry–Émery Ricci curvature (see Theorem 2.4 for q = 2p− 2 and Theorem 2.5
for q = p). In Section 3 we obtain a Bochner–Weitzenböck formula for vector
bundle-valued weighted p-harmonic forms (Lemma 3.1), which is an extension of
our previous results in Section 2. In Section 4 we prove Liouville-type theorems for
weighted p-harmonic maps. In fact, we prove that if u is a weighted p-harmonic map
from a complete noncompact weighted manifold with nonnegative Bakry–Émery
Ricci curvature into a Riemannian manifold with nonpositive sectional curvature
and if u has finite weighted q-energy, then u must be constant (see Theorem 4.1
for q = 2p− 2 and Theorem 4.2 for q = p).

2. Weighted p-harmonic forms

Let (Mn, g) be an n-dimensional complete noncompact Riemannian manifold and
let f : M→ R be a smooth function on M . We consider differential forms on the
f-weighted manifold (M, g, e− f dvg) and derive a Bochner–Weitzenböck formula
for the weighted Hodge Laplacian. Recall that the formal adjoint of the exterior
derivative d with respect to the measure e− f dvg is given by the formula

δ f = δ+ i∇ f .

Then the f-Hodge Laplacian 1 f on differential forms is defined by

1 f =−(dδ f + δ f d).

Lemma 2.1 (Bochner–Weitzenböck formula). Let (M, g, e− f dvg)be an f -weighted
manifold. If ω is a differential 1-form on M , then

(2-1) 1
21 f |ω|

2p−2
= 〈|ω|p−2ω,1 f (|ω|

p−2ω)〉+ |∇(|ω|p−2ω)|2

+ |ω|2p−4RicM
f (ω

], ω]).

Here ω] is the dual vector field to ω.

Proof. It is well-known (see [Chang and Sung 2011]) that

1
21|ω|

2p−2
=

1
21||ω|

p−2ω|2

= 〈|ω|p−2ω,1(|ω|p−2ω)〉+ |∇(|ω|p−2ω)|2+ |ω|2p−4Ric(ω], ω]).

Using the definition of the f-weighted Laplacian 1 f =1−〈∇ f,∇ ·〉, we have

1
21 f |ω|

2p−2
=

1
21|ω|

2p−2
−

1
2〈∇ f,∇|ω|2p−2

〉.
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Since RicM
f = Ric+Hess( f ) and 1 f =1− di∇ f − i∇ f d , we get

1
21 f |ω|

2p−2
= 〈|ω|p−2ω,1 f (|ω|

p−2ω)〉+ |∇(|ω|p−2ω)|2+|ω|2p−4RicM
f (ω

], ω])

+〈|ω|p−2ω, di∇ f (|ω|
p−2ω)〉+ 〈|ω|p−2ω, i∇ f d(|ω|p−2ω)〉

− |ω|2p−4Hess( f )(ω], ω])− 1
2〈∇ f,∇(|ω|2p−2)〉.

We claim that

(2-2) 〈|ω|p−2ω, di∇ f (|ω|
p−2ω)〉+ 〈|ω|p−2ω, i∇ f d(|ω|p−2ω)〉

− |ω|2p−4Hess( f )(ω], ω])− 1
2〈∇ f,∇(|ω|2p−2)〉 = 0.

Let {e1, . . . , en} be a local geodesic frame at a point p in M and {θ1, . . . , θn} its
dual coframe. Let {θi j } be the connection 1-form vanishing at the point p. Writing
ω = ωiθi with Einstein convention, we have

|ω|2p−4Hess( f )(ω], ω])= |ω|2p−4ωiω j fi j .

Since

di∇ f (|ω|
p−2ω)= fiω

i d|ω|p−2
+ |ω|p−2ωi fi jθ j + |ω|

p−2 fiω
i
; jθ j ,

we have

〈|ω|p−2ω, di∇ f (|ω|
p−2ω)〉

= |ω|p−2 fiω
i
〈ω, d|ω|p−2

〉+ |ω|2p−4ωiω j fi j + |ω|
2p−4ω j fiω

i
; j .

Here the semicolon means the covariant differentiation. Moreover,

d(|ω|p−2ω)= d|ω|p−2
∧ω+ |ω|p−2dω

= d|ω|p−2
∧ω+ |ω|p−2 dωi

∧ θi

which gives

(2-3) i∇ f d(|ω|p−2ω)

= d|ω|p−2(∇ f )ω−ωi fi d|ω|p−2
+ |ω|p−2ωi

; j f jθi − |ω|
p−2ωi

; j fiθ j .

Thus

〈|ω|p−2ω, i∇ f d(|ω|p−2ω)〉 = |ω|pd|ω|p−2(∇ f )− |ω|p−2ωi fi 〈ω, d|ω|p−2
〉

+ |ω|2p−4ωi
; jω

i f j − |ω|
2p−4ωi

; j fiω
j .

Next we have
1
2〈∇ f,∇|ω|2p−2

〉 =
1
2〈∇ f,∇(|ω|p · |ω|p−2)〉

=
1
2 |ω|

p
〈∇ f,∇|ω|p−2

〉+
1
2 |ω|

p−2
〈∇ f,∇|ω|p〉.

Since

∇|ω|2 = 2ωiωi
; j e j and ∇|ω|p =∇(|ω|2)p/2

=
p
2
|ω|p−2

∇|ω|2,
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we get

1
2 |ω|

p−2
〈∇ f,∇|ω|p〉 =

p
4
|ω|2p−4

〈∇ f,∇|ω|2〉 =
p
2
|ω|2p−4 f jω

iωi
; j

and
|ω|2p−4 f jω

i
; jω

i
=

1
2 |ω|

2p−4
〈∇ f,∇|ω|2〉.

Thus the left-hand side of (2-2) becomes

|ω|pd|ω|p−2(∇ f )+|ω|2p−4 f jω
i
; jω

i
−

1
2 |ω|

p
〈∇ f,∇|ω|p−2

〉−
1
2 |ω|

p−2
〈∇ f,∇|ω|p〉

=
1
2 |ω|

p
〈∇ f,∇|ω|p−2

〉+
2− p

4
|ω|2p−4

〈∇ f,∇|ω|2〉.

Since

∇|ω|p−2
=∇(|ω|2)(p−2)/2

=
p− 2

2
(|ω|2)(p−2)/2−1

∇|ω|2 =
p− 2

2
|ω|p−4

∇|ω|2,

the left-hand side of (2-2) vanishes, which completes the proof of Lemma 2.1. �

As a consequence of Lemma 2.1, we have the following.

Corollary 2.2. Letω be a differential1-form on a weighted manifold (M, g,e− f dvg).
Then

|ω|p−11 f |ω|
p−1
≥ 〈|ω|p−2ω,1 f (|ω|

p−2ω)〉+ |ω|2p−4 RicM
f (ω

], ω]).

Proof. Since

(2-4) 1
21 f |ω|

2p−2
= |ω|p−11 f |ω|

p−1
+ |∇|ω|p−1

|
2,

it follows from Lemma 2.1 that

|ω|p−11 f |ω|
p−1
+ |∇|ω|p−1

|
2

= 〈|ω|p−2ω,1 f (|ω|
p−2ω)〉+ |∇(|ω|p−2ω)|2+ |ω|2p−4 RicM

f (ω
], ω]).

From the generalized Kato type inequality, we have

|∇|ω|p−1
|
2
=
∣∣∇| |ω|p−2ω|

∣∣2 ≤ |∇(|ω|p−2ω)|2.

Thus we get

|ω|p−11 f |ω|
p−1
≥ 〈|ω|p−2ω,1 f (|ω|

p−2ω)〉+ |ω|2p−4RicM
f (ω

], ω]). �

Let φ : M→ R be a harmonic function. Since

d(dφ)= 0 and 1φ = δ(dφ)= 0,

the differential dφ is a harmonic 1-form. Similarly, if φ : M→ R is a p-harmonic
function, then

1pφ = div(|∇φ|p−2
∇φ)= 0,
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which is equivalent to the equation

δ(|dφ|p−2dφ)= 0.

In fact, this is the Euler–Lagrange equation of the p-energy functional Ep(φ) =
1
p

∫
M |dφ|

p dvg. Using this observation, one can define a p-harmonic form ω on
M as follows [Chang and Sung 2011]:

dω = 0 and δ(|ω|p−2ω)= 0,

which shows that, for any p-harmonic function φ on M , its differential dφ is a
p-harmonic 1-form. Motivated by this notion of p-harmonic differential forms in
[Chang and Sung 2011] and weighted harmonic forms in [Vieira 2013], we give
the definition of weighted p-harmonic forms on a weighted manifold.

Definition 2.3. A differential form ω on M is f -weighted p-harmonic if ω satisfies

dω = 0 and δ f (|ω|
p−2ω)= 0.

When f is constant, we note that the above definition of f-weighted p-harmonic
forms is equivalent to the definition of p-harmonic forms in the sense of [Chang and
Sung 2011]. Consider an f-weighted L2p−2

f p-harmonic 1-form ω on a weighted
manifold M f with nonnegative Bakry–Émery Ricci curvature, where the L2p−2

f
norm of ω is given by ∫

M
|ω|2p−2e− f dvg <∞.

Then we have the following Liouville-type theorem for weighted p-harmonic 1-
forms.

Theorem 2.4. Let (M, g, e− f dvg) be a complete noncompact f-weighted manifold
with nonnegative Bakry–Émery Ricci tensor, RicM

f ≥0. Suppose that f is a bounded
function. If ω is an f-weighted L2p−2

f p-harmonic 1-form on M for p > 1, then ω
vanishes.

Proof. Since ω is an f-weighted p-harmonic 1-form, we have

δ f (|ω|
p−2ω)= 0.

Thus Corollary 2.2 together with curvature condition implies

(2-5) |ω|p−11 f |ω|
p−1
≥ 〈|ω|p−2ω, δ f d(|ω|p−2ω)〉.

Fix a point p ∈ M and choose a cut-off function η satisfying

(2-6) 0≤ η ≤ 1, η = 1 on Bp(r), supp(η)⊂ Bp(2r), and |∇η| ≤
1
r
.
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Here Bp(r) denotes the geodesic ball of radius r centered at p. Multiplying (2-5)
by η2 and integrating it over M with respect to the measure e− f dvg, we obtain∫

M
η2
|ω|p−11 f |ω|

p−1e− f dvg

=−

∫
M
η2
|∇|ω|p−1

|
2e− f dvg − 2

∫
M
η|ω|p−1

〈∇η,∇|ω|p−1
〉e− f dvg

≤−

∫
M
η2
|∇|ω|p−1

|
2e− f dvg +

1
2

∫
M
η2
|∇|ω|p−1

|
2e− f dvg

+ 2
∫

M
|ω|2p−2

|∇η|2e− f dvg

=−
1
2

∫
M
η2
|∇|ω|p−1

|
2e− f dvg + 2

∫
M
|ω|2p−2

|∇η|2e− f dvg.

Moreover∫
M
η2
〈|ω|p−2ω, δ f d(|ω|p−2ω)〉e− f dvg

=

∫
M
〈d(η2

|ω|p−2ω), d(|ω|p−2ω)〉e− f dvg

= 2
∫

M
η|ω|p−2

〈dη∧ω, d(|ω|p−2ω)〉e− f dvg +

∫
M
η2
|d(|ω|p−2ω)|2e− f dvg

≥−

∫
M
η2
|d(|ω|p−2ω)|2e− f dvg −

∫
M
|∇η|2|ω|2p−2e− f dvg

+

∫
M
η2
|d(|ω|p−2ω)|2e− f dvg

=−

∫
M
|∇η|2|ω|2p−2e− f dvg.

Therefore

1
2

∫
M
η2
|∇|ω|p−1

|
2e− f dvg ≤ 3

∫
M
|∇η|2|ω|2p−2e− f dvg ≤

3
r2

∫
M
|ω|2p−2e− f dvg.

Since ω is an f-weighted L2p−2 harmonic 1-form, we obtain

∇|ω|p−1
= 0

by letting r→∞. Hence |ω|p−1 is constant. Since RicM
f ≥ 0 and f is bounded, the

f-volume of (M, g) is infinite (see [Wei and Wylie 2009], for example). Therefore
we see that ω = 0. �

Using the Bochner–Weitzenböck formula, we can also prove the following.

Theorem 2.5. Let (M, g, e− f dvg) be a complete noncompact f-weighted manifold
with nonnegative Bakry–Émery Ricci tensor. Suppose that f is a bounded function.
For p ≥ 2, if ω is an f-weighted L p

f p-harmonic 1-form on M , then ω = 0.
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Proof. Since δ f (|ω|
p−2ω)= 0, Corollary 2.2 and the curvature condition implies

(2-7) |ω|1 f |ω|
p−1
≥ 〈ω,1 f (|ω|

p−2ω)〉+ |ω|2p−4 RicM
f (ω

], ω])

≥ 〈ω, δ f d(|ω|p−2ω)〉.

Fix a point p ∈ M and choose a cut-off function η satisfying (2-6). Multiplying
(2-7) by η2 and integrating it over M with respect to the measure e− f dvg, we obtain

(2-8)
∫

M
η2
|ω|1 f |ω|

p−1e− f dvg ≥

∫
M
η2
〈ω, δ f d(|ω|p−2ω)〉e− f dvg.

Then the left-hand side of (2-8) is given by

(2-9)
∫

M
η2
|ω|1 f |ω|

p−1e− f dvg

=−

∫
M
η2
〈∇|ω|,∇|ω|p−1

〉e− f dvg − 2
∫

M
η|ω|〈∇η,∇|ω|p−1

〉e− f dvg

=−(p− 1)
∫

M
η2
|ω|p−2∣∣∇|ω|∣∣2e− f dvg

− 2(p− 1)
∫

M
η|ω|p−1

〈∇η,∇|ω|〉e− f dvg.

Note that

|ω|p−2∣∣∇|ω|∣∣2 = 4
p2

∣∣∇|ω|p/2∣∣2
and

(2-10) |ω|p−1
∇|ω| = |ω|p/2 · |ω|p/2−1

∇|ω| =
2
p
|ω|p/2∇|ω|p/2.

Substituting these two identities into (2-9), we obtain

(2-11)
∫

M
η2
|ω|1 f |ω|

p−1e− f dvg

=−
4(p− 1)

p2

∫
M
η2∣∣∇|ω|p/2∣∣2e− f dvg

−
4(p− 1)

p

∫
M
η|ω|p/2〈∇η,∇|ω|p/2〉e− f dvg

≤−
4(p− 1)

p2

∫
M
η2∣∣∇|ω|p/2∣∣2e− f dvg

+
2(p− 1)

p

{
ε

∫
M
η2∣∣∇|ω|p/2∣∣2e− f dvg +

1
ε

∫
M
|ω|p|∇η|2e− f dvg

}
,

where we used Young’s inequality in the last inequality for arbitrary ε > 0.
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On the other hand, applying the divergence theorem with respect to the measure
e− f dvg, the right-hand side of (2-8) becomes∫

M
η2
〈ω, δ f d(|ω|p−2ω)〉e− f dvg =

∫
M
〈d(η2ω), d(|ω|p−2ω)〉e− f dvg.

Since
|d(ϕω)| = |dϕ ∧ω| ≤ |dϕ||ω|

for any smooth function ϕ : M→ R and any closed 1-form ω (see Lemma 13 in
[Pigola et al. 2008]), using (2-10) and Young’s inequality again gives

(2-12)
∣∣〈d(η2ω), d(|ω|p−2ω)〉

∣∣≤ |d(η2ω)|
∣∣d(|ω|p−2ω)

∣∣
≤ |dη2

||ω|2
∣∣d|ω|p−2∣∣

= 2η|ω|2|∇η|
∣∣∇|ω|p−2∣∣

= 2(p− 2)η|∇η||ω|p−1∣∣∇|ω|∣∣
=

4(p− 2)
p

η|∇η||ω|p/2
∣∣∇|ω|p/2∣∣

≤
2(p− 2)

p

(
δη2∣∣∇|ω|p/2∣∣2+ 1

δ
|∇η|2|ω|p

)
for any δ > 0. Therefore

(2-13)
∫

M
η2
〈ω, δ f d(|ω|p−2ω)〉e− f dvg ≥−

2(p− 2)
p

δ

∫
M
η2∣∣∇|ω|p/2∣∣2e− f dvg

−
2(p− 2)

p
1
δ

∫
M
|∇η|2|ω|pe− f dvg.

Combining (2-8), (2-11) and (2-13), we obtain(
4(p− 1)

p2 −
2(p− 1)

p
ε−

2(p− 2)
p

δ

)∫
M
η2∣∣∇|ω|p/2∣∣2e− f dvg

≤

(
2(p− 1)

p
1
ε
+

2(p− 2)
p

1
δ

)∫
M
|∇η|2|ω|pe− f dvg.

Choose ε and δ sufficiently small so that

4(p− 1)
p2 −

2(p− 1)
p

ε−
2(p− 2)

p
δ > 0.

Since ω is an L p
f p-harmonic 1-form, as r tends to infinity, we see

∇|ω|p/2 = 0,

which implies that ω ≡ 0 as in the proof of Theorem 2.4. �
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Remark 2.6. In Theorems 2.4 and 2.5, the boundedness on the weighted function f
is only needed to guarantee that the weighted volume of (M, g, e− f dvg) is infinite.
In fact, we prove that any f -weighted L2p−2

f p-harmonic 1-form with p > 1 or L p
f

p-harmonic 1-form with p ≥ 2 on a complete noncompact f-weighted manifold
with nonnegative Bakry–Émery Ricci tensor has constant length, which implies
that ω is f-harmonic. Thus applying the standard Bochner formula for f-harmonic
1-forms (see Lemma 2.1 with p = 2, [Lott 2003] or [Vieira 2013]), one can see
that ω is parallel without the assumption that f is bounded. This result leads to
applications in gradient steady Ricci solitons or, more generally, to applications
in weighted manifolds with infinite weighted volumes (see [Vieira 2013]). Recall
that a gradient steady Ricci soliton is a manifold (M, g) together with a smooth
function f satisfying RicM

f = 0.
Furthermore, if we assume that RicM

f is nonnegative and positive at a point, it
is easy to see, from Corollary 2.2, that ω vanishes without assuming the bounded-
ness of f . This property leads to applications in gradient shrinking Ricci solitons
satisfying RicM

f = λg for some positive constant λ as follows.

Corollary 2.7. Let (M, g, e− f dvg) be a complete gradient shrinking Ricci soliton
satisfying Ric+Hess( f )= λg with λ > 0, constant. Then if ω is an L2p−2

f (p > 1)
or L p

f (p ≥ 2) p-harmonic 1-form on M , then ω = 0.

Proof. The proof follows from the argument in Remark 2.6. �

In case of gradient steady Ricci solitons, we also have the following same
vanishing property.

Corollary 2.8. Let (M, g, e− f dvg) be a complete gradient steady Ricci soliton
satisfying Ric + Hess( f ) = 0. Then if ω is an L2p−2

f (p > 1) or L p
f (p ≥ 2)

p-harmonic 1-form on M , then ω = 0.

Proof. For q = 2p− p or q = p, applying the same argument as in the proofs of
Theorems 2.4 and 2.5, we see that |ω| ≡ C for some constant C . Thus∫

M
|ω|qe− f dvg = Cq Vol f (M),

where Vol f (M) denotes the f-weighted volume of M .
On the other hand, it is well-known that the scalar curvature of a gradient steady

Ricci soliton is nonnegative and |∇ f | is bounded by a positive constant (see [Cao
2010] for example). Moreover, Munteanu and Wang [2011] proved that the first
eigenvalue of f-Laplacian 1 f on the nontrivial gradient steady Ricci solitons is
positive. Therefore, applying the result by Vieira [2013], we get Vol f (M) =∞.
This shows that ω = 0. �
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3. Vector bundle-valued weighted p-harmonic forms

In this section, we extend the notions discussed in Section 2 including the Bochner–
Weitzenböck formula to vector bundles over a weighted manifold.

Let π : E→M be a vector bundle of rank m over a smooth oriented Riemannian
manifold (Mn, g). We denote by 0(E) the vector space of smooth sections of E
over M . A Riemannian structure on the bundle E is a pair (∇E , ρ), where ρ is a
Riemannian metric on E , ∇E a connection and ∇Eρ = 0. Denoting ρ = 〈·,·〉, the
condition ∇Eρ = 0 means that, for each X ∈ 0(T M) and s1, s2 ∈ 0(E), we have

X · 〈s1, s2〉 = 〈∇
E s1, s2〉+ 〈s1,∇

E s2〉.

The curvature of the connection ∇E is the map RE
: 32T M ⊗ 0(E)→ 0(E)

defined by

RE(X, Y )s =−∇E
X∇

E
Y s+∇E

Y ∇
E
X s+∇E

[X,Y ]s.

Let ω be an l-form on M with values in the vector bundle π : E → M . Then,
choosing a (local) frame s1, . . . , sm on E , for each X1, . . . , Xl ∈ 0(T M), we can
write

ω(X1, . . . , Xl)=

m∑
α=1

aαsα

for some local smooth functions aα on M . For the Levi–Civita connection DM
= D

on (M, g), the induced connection ∇ on 0(3l T ∗M ⊗ E), the space of smooth
l-forms on M with values in the vector bundle π : E→ M , is given by

(∇Xω)(X1, . . . , Xl)=∇
E
X (ω(X1, . . . , Xl))−

l∑
i=1

ω(X1, . . . , DX X i , . . . , Xl)

and its associated curvature is given by

(R(X, Y )ω)(X1, . . . Xl)

= RE(X, Y )(ω(X1, . . . , Xl))−

l∑
i=1

ω(X1, . . . , RM(X, Y )X i , . . . , Xl).

For the induced connection ∇, the exterior differential operator

d : 0(3l T ∗M ⊗ E)→ 0(3l+1T ∗M ⊗ E)

is given by

(dω)(X1, . . . , Xl+1)=

l+1∑
i=1

(−1)i+1(∇X iω)(X1, . . . , X̂ i , . . . , Xl+1),
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where the symbol covered by X̂ i is omitted. The codifferential operator δ is given
by

(δω)(X1, . . . , Xl−1)=−

n∑
i=1

(∇eiω)(ei , X1, . . . , Xl−1),

where {ei } is a local frame on M . Finally the Laplacian 1 and the f-weighted
Laplacian 1 f are defined on E-valued differential forms by

1=−(dδ+ δd) and 1 f =−(dδ f + δ f d),

respectively.
For a vector bundle π : E→ M over a weighted manifold (M, g, e− f dvg), we

have the following Bochner–Weitzenböck formula for differential 1-forms on M
with values in E .

Lemma 3.1 (Bochner–Weitzenböck formula). Let π : E→ M be a vector bundle
of rank m over a smooth oriented Riemannian manifold (M, g), and let f : M→ R

be a smooth function. If ω is an E-valued 1-form on M , then

(3-1) 1
21 f |ω|

2p−2
= 〈|ω|p−2ω,1 f (|ω|

p−2ω)〉+ |∇(|ω|p−2ω)|2

+ |ω|2p−4
n∑

i=1

〈ω(RicM
f (ei )), ω(ei )〉

− |ω|2p−4
∑
i, j

〈RE(ei , e j )ω(ei ), ω(e j )〉,

where {ei } is a local frame on M and RicM
f (ei ) is a vector given by

RicM
f (ei )=

n∑
j=1

RicM
f (ei , e j )e j =

n∑
j=1

[
RicM(ei , e j )+Hess( f )(ei , e j )

]
e j .

Proof. It is well-known (see [Eells and Lemaire 1983]) that

(3-2) 1
21|ω|

2p−2
= 〈|ω|p−2ω,1(|ω|p−2ω)〉+ |∇(|ω|p−2ω)|2

+ |ω|2p−4
n∑

i=1

〈ω(RicM(ei )), ω(ei )〉

− |ω|2p−4
∑
i, j

〈RE(ei , e j )ω(ei ), ω(e j )〉.

By definition of weighted Laplacian 1 f =1−〈∇ f,∇ ·〉, we have

1
21 f |ω|

2p−2
=

1
21|ω|

2p−2
−

1
2〈∇ f,∇|ω|2p−2

〉.

Since
RicM

f = RicM
+Hess( f ) and 1 f =1− di∇ f − i∇ f d,
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we get

1
21 f |ω|

2p−2

= 〈|ω|p−2ω,1 f (|ω|
p−2ω)〉+ 〈|ω|p−2ω, di∇ f (|ω|

p−2ω)〉

+ 〈|ω|p−2ω, i∇ f d(|ω|p−2ω)〉+ |∇(|ω|p−2ω)|2

+ |ω|2p−4
n∑

i=1

〈ω(RicM
f (ei )), ω(ei )〉− |ω|

2p−4
〈ω(Hess( f )(ei )), ω(ei )〉

− |ω|2p−4
∑
i, j

〈RE(ei , e j )ω(ei ), ω(e j )〉−
1
2〈∇ f,∇(|ω|2p−2)〉.

We claim that

(3-3) 〈|ω|p−2ω, di∇ f (|ω|
p−2ω)〉+ 〈|ω|p−2ω, i∇ f d(|ω|p−2ω)〉

− |ω|2p−4
〈ω(Hess( f )(ei )), ω(ei )〉−

1
2〈∇ f,∇(|ω|2p−2)〉 = 0.

Let {e1, . . . , en} be a local geodesic frame at a point p in M , and {θ1, . . . , θn} be
its dual coframe. Let {θi j } be the connection 1-form vanishing at the point p. Let
{s1, . . . , sm} be a local frame on E such that

∇
E sα|p = 0.

Then ω can be expressed as

ω =

m∑
α=1

n∑
i=1

aiαθi ⊗ sα

so that

ω(e j )=
∑
α

a jαsα and |ω|2 =
∑
i,α

a2
iα.

Since

di∇ f (|ω|
p−2ω)= di∇ f (|ω|

p−2aiαθi ⊗ sα)

= d(|ω|p−2 fi aiαsα)

= fi aiαd|ω|p−2
⊗ sα + |ω|p−2aiα fi jθ j ⊗ sα
+ |ω|p−2 fi aiα; jθ j ⊗ sα + |ω|p−2 fi aiα∇

E sα,

we have

(3-4) 〈|ω|p−2ω, di∇ f (|ω|
p−2ω)〉 = |ω|p−2

〈a jαθ j ⊗ sα, di∇ f (|ω|
p−2ω) 〉

= |ω|p−2a jα fi aiαd|ω|p−2(e j )

+ |ω|2p−4a jαaiα fi j + |ω|
2p−4a jα fi aiα; j .
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Moreover

d(|ω|p−2ω)= aiα(d|ω|p−2
∧ θi )⊗ sα + |ω|p−2(daiα ∧ θi )⊗ sα

+ |ω|p−2aiαθi j ∧ θ j ⊗ sα − |ω|p−2aiαθi ∧∇
E sα

= aiα(d|ω|p−2
∧ θi )⊗ sα + |ω|p−2aiα; j (θ j ∧ θi )⊗ sα

which gives

i∇ f d(|ω|p−2ω)= d|ω|p−2(∇ f )ω− aiα fi d|ω|p−2
⊗ sα

+ |ω|p−2aiα; j f jθi ⊗ sα − |ω|p−2aiα; j fiθ j ⊗ sα.

Thus

(3-5) 〈|ω|p−2ω, i∇ f d(|ω|p−2ω)〉

= |ω|p−2
〈a jβθ j ⊗ sβ, i∇ f d(|ω|p−2ω〉

= |ω|pd|ω|p−2(∇ f )− |ω|p−2aiαa jα fi d|ω|p−2(e j )

+ |ω|2p−4aiα; j aiα f j − |ω|
2p−4aiα; j fi a jα

= |ω|p〈∇ f,∇|ω|p−2
〉− |ω|p−2aiαa jα fi d|ω|p−2(e j )

+
1
2 |ω|

2p−4
〈∇ f,∇|ω|2〉− |ω|2p−4aiα; j fi a jα.

Note that

(3-6) 〈ω(Hess( f )(ei )), ω(ei )〉 = fi j 〈ω(e j ), ω(ei )〉 = fi j a jαaiα.

From (3-4), (3-5), and (3-6), it follows that

〈|ω|p−2ω, di∇ f (|ω|
p−2ω)〉+ 〈|ω|p−2ω, i∇ f d(|ω|p−2ω)〉

− |ω|2p−4
〈ω(Hess( f )(ei )), ω(ei )〉

= |ω|p〈∇ f,∇|ω|p−2
〉+

1
2 |ω|

2p−4
〈∇ f,∇|ω|2〉.

We observe that
1
2〈∇ f,∇|ω|2p−2

〉 =
1
2〈∇ f,∇(|ω|p · |ω|p−2)〉

=
1
2 |ω|

p
〈∇ f,∇|ω|p−2

〉+
1
2 |ω|

p−2
〈∇ f,∇|ω|p〉.

Since
∇|ω|p =∇(|ω|2)p/2

=
p
2
|ω|p−2

∇|ω|2,

we have
1
2 |ω|

p−2
〈∇ f,∇|ω|p〉 =

p
4
|ω|2p−4

〈∇ f,∇|ω|2〉.

Thus the left-hand side of (3-3) becomes

1
2 |ω|

p
〈∇ f,∇|ω|p−2

〉+
2− p

4
|ω|2p−4

〈∇ f,∇|ω|2〉.
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Using
∇|ω|p−2

=∇(|ω|2)(p−2)/2

=
p− 2

2
(|ω|2)(p−2)/2−1

∇|ω|2

=
p− 2

2
|ω|p−4

∇|ω|2,

we see that the left-hand side of (3-3) vanishes, which completes the proof of
Lemma 3.1. �

As in the proof of Corollary 2.2, we can easily show the following by using
Lemma 3.1.

Corollary 3.2. Let π : E→M be a vector bundle of rank m over a smooth oriented
Riemannian manifold (M, g), and let f : M→ R be a smooth function. If ω is an
E-valued 1-form on M , then

|ω|p−11 f |ω|
p−1
≥ 〈|ω|p−2ω,1 f (|ω|

p−2ω)〉+ |ω|2p−4
n∑

i=1

〈ω(RicM
f (ei )), ω(ei )〉

− |ω|2p−4
∑
i, j

〈RE(ei , e j )ω(ei ), ω(e j )〉.

4. Weighted p-harmonic maps

In this section, we obtain some Liouville-type theorems for weighted p-harmonic
maps as an application of the Bochner–Weitzenböck formula stated in Section 3.
The following theorem shows that the same result holds for f -weighted p-harmonic
maps with L2p−2

f -finite energy for p > 1 as in the case of f-weighted L2p−2
f

p-harmonic 1-forms.

Theorem 4.1. Let u : (M, g, e− f dvg)→ (N , h) be an f-weighted p-harmonic map
from an oriented complete noncompact f-weighted manifold into a Riemannian
manifold for p > 1. Suppose that f is bounded. Assume that the Bakry–Émery
Ricci curvature of M is nonnegative, RicM

f ≥ 0, and the sectional curvature of N is
nonpositive, K N

≤ 0. If u has finite f-weighted (2p−2)-energy, i.e.,∫
M
|du|2p−2e− f dvg <∞,

then u must be a constant map.

Proof. Let du = ω. Then ω is an f -weighted p-harmonic 1-form with values in the
pull-back bundle u−1T N . In particular,

δ f (|ω|
p−2ω)= 0.
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From Corollary 3.2 together with curvature conditions, it follows that

(4-1) |ω|p−11 f |ω|
p−1
≥ 〈|ω|p−2ω, δ f d(|ω|p−2ω)〉.

From this, we can see that the same argument as in the proof of Theorem 2.4 shows
ω = 0. �

From Corollary 3.2, it follows that

(4-2) |ω|1 f |ω|
p−1
≥ 〈ω,1 f (|ω|

p−2ω)〉+ |ω|p−2
n∑

i=1

〈ω(RicM
f (ei )), ω(ei )〉

− |ω|p−2
∑
i, j

〈RE(ei , e j )ω(ei ), ω(e j )〉.

Applying the same argument as in Theorem 2.5 to (4-2), we are able to prove the
following theorem.

Theorem 4.2. Let u : (M, g, e− f dvg)→ (N , h) be an f-weighted p-harmonic map
from an oriented complete noncompact f-weighted manifold into a Riemannian
manifold. Suppose that f is bounded, and RicM

f ≥ 0 and K N
≤ 0. For p ≥ 2, if u

has finite f-weighted p-energy, then u must be a constant map.

Remark 4.3. In Theorems 4.1 and 4.2, without the boundedness of f , if we
assume that Ric f is nonnegative and positive at a point, we can conclude that any
f-weighted p-harmonic map u : (M, g, e− f dvg)→ (N , h) with finite f-weighted
(2p−2)-energy or p-energy for p > 1 from an oriented complete noncompact f-
weighted manifold into a Riemannian manifold of nonpositive sectional curvature,
K N
≤ 0, must be constant.

Applying the argument in Remark 4.3 to gradient shrinking Ricci solitons, we
have the following as in the case of L p

f p-harmonic 1-forms.

Corollary 4.4. Let (M, g, e− f dvg) be a complete noncompact gradient shrink-
ing Ricci soliton satisfying Ric + Hess( f ) = λg with λ > 0, constant. If u :
(M, g, e− f dvg)→ (N , h) is an f-weighted p-harmonic map into a Riemannian
manifold of nonpositive sectional curvature K N

≤ 0 with finite f-weighted (2p−2)-
energy or p-energy for p > 1, then u must be a constant map.
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