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The purpose of this paper is threefold. First, we establish the critical Adams
inequality on the whole space with restrictions on the norm

m, o i
IV™ulls +zllulls) "
m m

for any 7 > 0. Second, we prove a sharp concentration-compactness princi-
ple for singular Adams inequalities and a new Sobolev compact embedding
in W™-2(R2™), Third, based on the above results, we give sufficient con-
ditions for the existence of ground state solutions to the following polyhar-
monic equation with singular exponential nonlinearity

S(x,u)
|x|?

(0-1) M) "u+V(x)u = n R2™,

where 0 < 8 < 2m, V(x) has a positive lower bound and f(x,?) behaves
like exp(e|t|?) as t — +o0. Furthermore, when 8 = 0, in light of the prin-
ciple of the symmetric criticality and the radial lemma, we also derive the
existence of nontrivial weak solutions by assuming f(x,7) and V(x) are
radially symmetric with respect to x and f(x,?) = o(t) at origin. Thus our
main theorems extend the recent results on bi-Laplacian in R* by Chen, Li,
Lu and Zhang (2018) to (—A)™ in R™.

1. Introduction and main results

The standard Sobolev space Wok’p (€2) is defined by the completion of C>°(£2)
equipped with the norm

1

k 1
. p
el n = (uun;: Y ||v1u||;:) ,

Jj=1
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where Q2 denotes a smooth bounded domain in R”. Basically, the Sobolev continuous
embeddings state that

WEP(Q) > LI(Q) for 1 <g <

" —pkp’ kp <n.

However, in the limiting case kp = n, many examples show that Wok ’%(Q) Z
L°°(£2). In this case, the Trudinger—Moser inequality and the Adams inequality
serve as appropriate replacements. Research concerning the sharp constant for the
Trudinger—-Moser inequality could be traced back to the 1960s and 1970s. Trudinger
[1967] proved there exists a constant & > 0 such that the following inequality holds
(also see [Pohozaev 1965; Yudovich 1961]):

1 i
(1-1) sup ﬁ/ T gy < (.
ueW; "(Q), |Vul,<1 2

Nevertheless, the best constant for (1-1) is unknown. Later, Moser [1971] established
the sharp version of inequality (1-1) which can be stated as follows:

1 _n_
(1-2) sup @/ T g <
ueW, (), IVul.<1 v

1/(n—1
where oy = na)ni(l" )

is the sharp constant in the sense that if o, is replaced
by any larger number, the supremum would become infinity. w,—; denotes the
area of the surface of the unit ball in R”. Estimate (1-2) is now referred as the
Trudinger—Moser inequality and plays an important role in geometric analysis
and partial differential equations (e.g., see [Moser 1973]). For more results of
Trudinger—Moser inequalities on compact Riemannian manifolds, one can refer
to [Li 2001; 2006; Li and Ndiaye 2007]. If we replace Q2 with R”, the Trudinger—
Moser inequality (1-2) makes no sense. Instead, a subcritical Trudinger—Moser type
inequality was proved by Adachi and Tanaka [2000]. By replacing the Dirichlet
norm with the standard Sobolev norm in W " (R"), Cao [1992] (for n = 2), Panda
[1996] and J. M. do o} [2014] (for general n) constructed the Trudinger—Moser

inequality in the whole space which states that for any o < oy,

(1-3) sup / @1 (cefuu(x)|71) dx < C,
MGWI’K(Rn)y||”||W1,H(Rn)51 R n—2
t)
where @, (1) := ¢’ — Z e
j=0""

However, they did not prove the criticality of this inequality. Later, Ruf [2005]
(for the case n = 2), Li and Ruf [2008] (for the general case n > 3) proved that
Trudinger—Moser inequality (1-3) still holds in the critical case « = o, by using



GROUND STATE SOLUTIONS OF POLYHARMONIC EQUATIONS 355

the symmetrization argument and the blow-up procedure. Both the critical and
subcritical Trudinger—Moser inequalities on R” given in the aforementioned works
are based on the Pélya—Szegd inequality and symmetrization argument which is
not available in other non-Euclidean settings. Lam and Lu [2012c¢] developed a
symmetrization-free argument on the Heisenberg group and established the critical
Trudinger—Moser inequality (see also Lam, Lu and Tang [Lam et al. 2014] for the
subcritical Trudinger—Moser inequality without using symmetrization argument). In
fact, the critical and subcritical Trudinger—Moser inequalities are proved equivalent
by Lam, Lu and Zhang [Lam et al. 2017b], where they also establish relationships
between supremums of the critical and subcritical Trudinger—Moser inequalities.
Such a relationship has been used to establish the existence of extremal functions
for subcritical Trudinger—Moser inequalities on the entire space R” [Lam et al.
2019].

The above Trudinger—-Moser inequalities and its generalizations are often applied
to derive the existence of weak solutions for the following n-Laplacian equations:

S (x,u)
[

(1-4) —div(|Vu|""2Vu) + V() [u|"2u = + eh(x),

where f :R"” x R — R is continuous and behaves like exp(a|t|n"TI) ast — 400,
h(x) belongs to the dual space of W 1" (R™). Adding some appropriate assumptions
on V(x), one can see that the compact embedding

E = {u : / IVul" + V(x)|u|"dx < —i—oo} <« LP(R") for p>n
Rn

becomes admissible. The authors of [Adimurthi and Yang 2010; Alves and
Figueiredo 2009; do O et al. 2014; Lam and Lu 2013a; Yang 2012b] carried
out the standard mountain-pass procedure to obtain nontrivial weak solutions of
(1-4). When V(x) is constant, there is a long way to go yet. In order to overcome
the possible failure of the Palais—Smale compactness condition which is caused
by the absence of a compact embedding W 1" (R") — L"(R"), Masmoudi and
Sani [2015] applied a method involved with a constrained minimization argument
and the sharp Trudinger—Moser inequality with the exact growth condition to
investigate the existence of ground state solutions for (1-4) in the case of V(x) =1,
f(x,u) = f(u), p=¢e=0.Byassuming f(x,?) =o(t),J. M. do O et al. [2014]
employed a modified form of the Trudinger—Moser inequality and rearrangement
inequalities to give sufficient conditions for the existence of ground state solutions.
We also note that Lam and Lu [2014; 2013a] investigated the n-Laplacian equation
and polyharmonic operators without the Ambrosetti—-Rabinowitz condition. For
more results about the Trudinger—Moser inequality and its application, we refer the
reader to [Adimurthi and Sandeep 2007; Adimurthi and Yang 2010; Atkinson and
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Peletier 1986; Carleson and Chang 1986; de Figueiredo et al. 2002; do O 1996;
Lam and Lu 2012a; Panda 1996; Silva and Soares 1999].

D. Adams [1988] established the sharp Trudinger—Moser inequality with higher
order derivatives. More precisely, he proved that

sup / ePrm Bl gy < o0,
uew," @), |Vl y <17
where .
2amp(m+1 n—m
n_| 722 f( ) , if m is odd,
on | T (72
,Bn,m =
n [nzzmr(g)} e
— , if m is even.
ot | T(252)
and m
Az, if m is even,
VP = { =1 . . ’
2, if mis odd.
The above inequality was extended by Tarsi [2012] to a larger space Wi} n/m(Q)
containing the Sobolev space W (Q) as a closed subspace, where W37 n/my)
is given by

Wa T (Q) = {u € W (2) | AJu =0 0n 99 for 0 < j < [21]}.

m,n/m

Sharp singular Adams inequalities on W, (£2) were also established by Lam
and Lu [2012d]. We also mention that existence results concerning extremals of the
Adams inequality in the case n = 2m = 4 were established by Lu and Yang [2009].
Li, Lu and Q. Yang [Li et al. 2018a; Lu and Yang 2017] proved the Hardy—Adams
inequalities on hyperbolic spaces as a borderline case of the higher order Hardy—
Sobolev-Mazya inequalities established by Lu and Q. Yang [2019] on upper half
spaces.

After Adams, establishing Adams type inequalities in higher order Sobolev space
Wmn/m (R1) has attracted much attention. Ogawa and Ozawa [1991] (for n = 2m)
and Ozawa [1995] (for general n, m) proved that there exist positive constants o
and C, such that

/ ®pm(|ulmm)dx < Cq, forall u € W™m(R"), |ulmn <1,
Rn

where
Jn—=2 j
! . . .
Dy (1) =e' — Z it Jn =min{j eN:j> 2}
j=0

and |u|pm,p, is given by |u|mn = ||(1 — A)m/2u||n/m. Kozono et al. [2006] studied
the sharp constant problem by applying O’Neil’s results on the rearrangement of
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convolution functions. In fact, they proved that there exists a constant 8, , <
B(n,m), particularly, 85 = B(2m,m) such that if B < B, then

sup / ¢n,m(ﬂ|u|n£m)dx < Q.
n n
uEW(;n'm(Rn)amlm,nfl "

Ruf and Sani [2013] established the sharp Adams type inequality for the critical
case B = Bn,m When m is an even integer, where the Talenti’s comparison principle
plays an important role in their proof. Lam and Lu [2012b; 2012d] proved the
above inequality for all integers m (including fractional order y). More precisely,
they showed

sup / By (Bl 7Y dx < Cm. ).
I-8)"T 41V (-8) T "

§\= 3k

for any odd integer 7. Lam and Lu [2013b] further developed a rearrangement-
free approach. This method can help us to get rid of the symmetrization or the
comparison principle argument. Using this method, Lam and Lu established the
sharp Adams inequality which can be stated as follows:

(1-5) sup exp(Bo(n, y)|u|?") dx < C(n, y),
ueW - p @, |(cI-A) Zulp<1”

n n n’izyr(%))"
where 0 <y <mn, =— and n,y)= —
14 P=3 Bo(n,y) wn—l( F)

Recently, Lam and Lu [2013b] obtained the Adams inequality involved with the
norm (||Au||Zﬁ + ||u||2g)2/ ", Later, Fontana and Morpurgo [2015] extended Lam
and Lu’s results to higher order derivatives. They proved that there exists some

constant Cy, , such that

(1-6) sup CI>n,m(13n,m|u|#)dx < Cmn,n-

IV ull s +llul s <
m m

Note that in (0-1), we assume V(x) has a pos1t1ve lower bound, thus we need an

Adams inequality involved with the norm (|| V™ u || " T|u ||"/ "ym/n e utilize

n/m n/m

the change of variable to obtain the following result.

Theorem 1.1. For any t > 0 and 0 < o < By . there exists some constant Cp,
such that for u € W1/ M (R?) yith ||vmu||"/m +lulpm <1,

n/m m —

(1-7) / (| ™m) dx < Cpun.
Rn
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Theorem 1.2. For any t > 0,0 <t <n and 0 < a < Bn m, there exists some
constant Cpy  such that for u € WmR M (R yith || V|| 4 ¢ ||u]|2)™ < 1,

n/m n/m —
B (o (1= L)|u|mom
(1-8) /n n,m( ( |x|;1)| | )

dx < Cpp.

Remark 1.3. In fact, the inequality (1-8) still holds in the case of « = By m.
However, in order to prove the concentration-compactness principle for the Adams
inequality, we only need inequality (1-5). For convenience, we also give the proof
of the critical case of Theorem 1.2.

The purpose of proving such inequalities is to prove the following sharp ver-
sion of concentration-compactness principle for weighted Adams inequalities in
W™2(R?™), For simplicity, we define a new function space

E = {u e W™2R*™) : ||u||% = / IV™u|? + V(x)|u|? dx < oo},
RZm

where V(x) > ¢y (co > 0).

Theorem 1.4. For 0 < t < 2m, assume {uy}; is a sequence in E satisfying
luglly =1 and up — u #0in E. If

1

0<p< p2m,m(”) =
1—lull%

then

dx < o0,

/ q)2m,m(,32m,m(1 - ﬁ)pui)
R2m

(1-9) sup |7

k
2m n2m22m'

where @3, (1) = e'—1 and Bam.m =

W2m—1
Furthermore, for any positive constant ¢, if V(x) = c, the constant pyy, m(u) is
sharp in the sense that if p > pom m(u), the supremum will become infinite.

Remark 1.5. Theorem 1.4 is an extension of do O’s result [2014] which relies
heavily on the P6lya—Szeg6 inequality. Therefore, the methods they used cannot be
applied to obtain the concentration-compactness principle of the Adams inequal-
ity on R” or the Trudinger—-Moser inequality in settings where a rearrangement
argument fails such as the Heisenberg group H”. Recently, Li, Lu and Zhu [Li
et al. 2018b] developed a symmetrization-free approach and established Lions
concentration-compactness of the singular Trudinger—Moser inequality on the
Heisenberg group H. The method is rearrangement-free and can be easily applied to
other settings. In the present paper, we use a different approach to prove Theorem 1.4.
This is due to the fact that the Sobolev space W 2(R") we are dealing with is a
Hilbert space. Analyzing the energy loss when taking the weak limit is an essential
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part in proving concentration-compactness principle and for the Hilbert space,
the weak limit is relatively simple and with the help of the Brezis—Lieb lemma
(Lemma 3.1), we are able to develop a different proof.

Remark 1.6. Nguyen [2016] took advantage of the Talenti comparison theorem
to obtain inequality (1-9) in the case of V(x) = 1 and ¢t = 0. However, they did
not verify the sharpness of py,, m(1). By constructing a proper sequence, we also
verify that the supremum in (1-9) becomes infinite if p > pay, m(©).

Recently, another improved version of the sharp Adams inequality was investi-
gated by Lam, Lu and Tang [Lam et al. 2017a] in the spirit of Lions’ work [1985].
Their result can be stated as follows:

( /2" la) —m

— |ul

(1+ | Aullgp T

1-10 su dx <C(m,B,t

( ) uewlmp(RZm) /%Zm |x|l3 - ( ’3 )
,I;RZm [Au|"+lul™ dx<1

for0<fB<2m, t>0and 0 <o < (1 — %)ﬂZm,Z- It is easy to verify that the
above inequality is stronger than the general Adams inequalities in W2 (R2™).

Adams inequalities (1-5) and (1-10) are often used to study nonlinear equations
related to the Bessel potential. Bao, Lam and Lu [Bao et al. 2016] considered
polyharmonic equations of the form

(1-11) (I —A)"u= f(x,u) in R*>™,
Yang [2012a] exploited the following bi-Laplacian equation with small perturbation

J(x,u)
|x|#

(1-12) A%u —div(a(x)Vu) + b(x)u = +eh(x) in R*,

where f'(x, u) has exponential growth and V(x) satisfies lim)y|— o V(x) = +00.
Recently, Chen, Li, Lu and Zhang [Chen et al. 2018] considered the following

equation in R*:

(1-13) (=M u+V(x)u =

where V(x) > c¢o and f(x,t) satisfies some critical exponential growth. They
established the existence of the ground state solutions.

Motivated by the work [Chen et al. 2018], we will study the existence of ground
state solutions for the following polyharmonic equations with singular nonlinear
term

S (x,u)

(1-14) (—A)Y"u+ V(x)u =
|x|B

n R, 0<pB<2m,
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where V(x) > ¢o and f(x,?) has critical exponential growth. Furthermore, we
assume that f(x,¢) satisfies the following conditions.

(Ho) The nonlinearity f'(x,?): R>” x R — R is continuous, f(x,?) =0 at (x, 0),
and has exponential growth as # — +o00, which means there exists a constant ozg > 0

such that

0 for all @ > «y,

lim f(x, Z)e_""’|2 = {
+o00

t— +oo forall ¢ <y,

uniformly in x € R?™.

(H;) There exist constants «g, b1, b, > 0 such that for any (x, ) € R%" x (0, +00),
0< f(x,t) <bit+ b2d>2m,m(oz0l2), where @3, (1) = el —1.

(H,) There exist constants 7y and M > 0 such that
t
0< F(x,t):= / f(x,s)ds < My f(x,t) forall (x,7) € R> x[tg, +00).
0

(H3) There exists a constant 6 > 2 such that for all x € R?” and ¢ > 0,

0<OF(x,t) < f(x,0)t.

(Hy) Timsup 2£-0

5>— <Ap uniformly in x € R2™,
t—>0+ |t|

m VU2 +V 2d
where Ag = inf fRz VPul” + VOO |ul” dx
ueE Jram lu|?/|x|8 dx

(Hs) There exist constants p > 2 and Cj such that for all (x,7) € R2™ x (0, +00),

fx,t) = CptP™!,

1-B
where Cp> (M)
¥o

(55°) s
P
s Jrem IV U4 V() |ul? dx
and Sp :ulg]fg P
(fzm P /1x|8 dx)?

(Hg) The function £ ()t‘ ) is increasing for ¢ > 0.
By (H,) and (H3), we can get that for all (x,¢) € R?™ x [0, +00), there exists

@ > 0 such that
0< F(x,t) = uf(x,t).

This result together with (H;) and the singular Adams inequality in W"2(R?")
yields the boundedness of F(x,u) and f(x,u)v in L'(R*™ |x|~Bdx) for any



GROUND STATE SOLUTIONS OF POLYHARMONIC EQUATIONS 361

u,v € E. Hence, one can easily find the functional related with polyharmonic
equation (1-14), given by
F(x,u)
Ig(u) = Yull% — / “— dx,
p =l - [ =5

is well defined. With standard calculations, it is easy to obtain that Ig € C YE,R)
and

f(x,u)v

I‘f}(u)v 2/ (V™"uN™v + V(x)uv) dx —
R2m R2m |,)C|l3

dx, u,ve kL.
Since the weak solutions of (1-14) are equivalent to the critical points of func-
tional /g, we focus our attention on critical points of functional /g. Equation (1-14)
is different from Equations (1-11) and (1-12). Unlike Bao, Lam and Lu’s result [Bao
et al. 2016], we do not necessarily assume that f(x, ¢) satisfies some periodicity
conditions. Moreover, the presence of potential V' (x) of (1-14) makes it difficult
to directly apply Yang’s argument in [Yang 2012a]. Thus a new compactness
embedding in W2 (R2™) must be established and we observe that the weight
term 1/|x|# provides a good control to the integral away from zero, which enables
us to establish the following compactness result.

Theorem 1.7. The Sobolev space W™?2(R?>™) can be compactly embedded into
LI(R?>™,|x|~Sdx) when ¢ > 2 and 0 < s < 2m.

Remark 1.8. In view of E < W"2(R>") and Theorem 1.7, we can derive that
E can be compactly embedded into L4 (R?™, |x|~*dx) for g > 2 and 0 < s < 2m.

With the help of Theorem 1.7, our next result will concern the existence of the
ground state solution of polyharmonic equation (1-14).

Theorem 1.9. Assume f(x,t) satisfies (Hy)—(Hg), then (1-14) has a ground state
solution.

In the case of 8 = 0, (1-14) becomes the following nonsingular polyharmonic
equation

(1-15) (=A™ u+V(x)u= f(x,u) in R*™.

The existence of the ground state solution of (1-15) cannot be obtained immediately
from Theorem 1.9 due to the absence of compactness embedding. There is a
common constrained minimization theory to deal with this problem. Unfortunately,
this method crucially depends on the rearrangement inequality which is not obvious
available in W2 (R?™). In order to overcome this difficulty, we use the principle
of the symmetric criticality of the Hilbert space. By assuming f(x,?) and V(x) are
radially symmetric with respect to x, one can carry out the same process as what
we do in Theorem 1.9 to derive a nontrivial weak solution of the polyharmonic
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equation with nonsingular nonlinearity (1-15). However, whether there exists a
ground state solution to (1-15) is still open. In a very recent work of Chen, Lu and
Zhu [Chen et al. 2019], they made the first attempt in this direction. They derive the
existence of ground state solutions to (1-15) when m = 2, V is a trapping potential
and

f(x,u) = uexpu?).

Theorem 1.10. Under the assumptions of Theorem 1.9, if we additionally assume
that V(x) and f(x,t) are radially symmetric in x, f(x,t) = o(t) at origin, then
polyharmonic equation with nonsingular linearity (1-15) has a nontrivial weak
solution.

The plan of the paper is as follows. In Section 2, we employ the change of variable
to establish some weighted Adams inequalities in W2 (R?™) involved with the
norm (||V”’u||%'m" + r||u||Z§Z)”’/” for any 7 > 0. Sections 3 and 4 are devoted to
the concentration-compactness principle for the weighted Adams inequality and
a new compactness embedding in W2 (R?™). As an immediate application of
Theorem 1.4, in Section 5, we give sufficient conditions to guarantee the existence
of ground state solutions for the polyharmonic equation with singular exponential
nonlinearity term. Finally, in Section 6, we also derive the existence of a nontrivial
weak solution for the polyharmonic equation (1-15) through the principle of the

symmetric criticality.

2. Proof of Theorems 1.1 and 1.2

In this section, we will utilize a change of variable to establish Adams inequal-
ity (1-7).

Proof. For any T > 0, 0 < & < By.m and u € W™2(R?™) with
/ V™ u|m + tlu|m dx <1,
Rn

we denote a new function v(x) given by v(t'/"x) = u(x). Then direct computations
yield that

/|vmv|:’%+|v|5’qu=/ V™ u|m + tlu|m dx <1
R R

and

_n_ 1 _n_
/ Dy m(ajuln=m)dx = —/ Dy (|| n=m) dx.
Rn T Jgrn
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Combining this with inequality (1-6), we obtain

sup / q)n,m(a|u|n£'n)dx
n n R~
IVmull i +elul’y <1
m m 1 n
5; sup / by m(afv|n=m) dx < C(m,n).
n n n
V™ol T+l 7 <1

m m

Next, it suffices to show that inequality (1-8) still holds for any T > 0 and
0 <t < n. In fact, we have

D (er(1 — £)lu[77)
R" |x|?

<[ Sumleli= )
[x|=<1

- |x]*

@2-1) dx

dx—i—/ @n,m(a(l—%)|u|#)dx.
[x|=1
This together with (1-7) and the Holder inequality leads to

[ o=
R

| x|’ -

sup

n n
IV7ull’y +elull’y <1
m m

for any 0 < o < By, m-

Finally, we prove that inequality (1-8) still holds in the case of & = B m.
Following the same line of the proof of Theorem 1 in [Fontana and Morpurgo 2015],
we can obtain that for any u € W"/™ (R") satisfying Jan |Vmu|% + |u|% dx <1,

® 1 — L) |u|m=m
2-2) /Qn’m(ﬂn’mﬁxp”)'”' ) < (41015,

where €2 is any bounded domain of R”. Let
A:={xeR":|u(x)|>1}.

Since u € W™"/™(R"), it is obvious that A is a bounded domain. Now, we split
the integral over R” into two parts:

/ (Dn,m(ﬂn,m(l _%)Wl"f"’) dx
[Rn

x|’

dx

[l ) [ et
A4 |x|t R\ A |x|t
= 11 +12.
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For I, using the estimate (2-2), we obtain that

|
11=/®”’m(ﬂ”’m(1_ﬁ)|”|" )dx<l.
A

|x1? -

For I,, since

/ q)n,m(ﬂn,m(l_%)h”ﬁ) dx
R\ A

| x|
n n
</ [l dx+/ b e <1
~ Joxi=<t, <1y 1x1f (xl=1,lul<1y IxIf 7~

we derive that I, < 1. Combining the above estimates, we derive inequality (1-8)
in the case of @ = By m, T = 1. Carrying out the same procedure as the proof of
Theorem 1.1, one can conclude that inequality (1-8) still holds for any = > 0. [

3. The proof of Theorem 1.4

Our purpose in this section is to prove Theorem 1.4. Namely, we will give the proof
of the concentration-compactness principle for weighted Adams inequalities. Our
proof relies on the following lemmas.

Lemma 3.1 [Brézis and Lieb 1983]. Let Q be an open subset of R" and {uy }; C
LP(Q) (1 £ p<o0). If {up b satisfies the following conditions:
(1) {ug}y is bounded in LP(S2),
(ii) uy — u almost everywhere in Q,
then
; p_ —yll?) = p

im (a7 = ok = ) =l
Lemma 3.2. Let @ C R" be an open domain and { fi}x € W™"/™(Q) that
strongly converges to f in W™"/™(Q). Then there exists a subsequence { Ji; bi
and a positive function g € W™ (Q) such that

Ji; (x) > f(x) aeinQas j— +oo,

and

|fi; ()| < g(x) ae inQ forall j.

Remark 3.3. Since the proof of Lemma 3.2 is similar to that of Proposition 1 in
[do O et al. 2009], we omit the details.

Proof of Theorem 1.4. At first, we show the proof of inequality (1-9). It follows
from the semicontinuity of the norm in £ that

2 s e 2
ol < timinf e 3 = 1.
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We carry out the process by considering the following two cases.

Case 1. |ju ||?5 = 1. Applying the Brezis-Lieb lemma (Lemma 3.1) on the Hilbert
space E, one can show that uj — u strongly in E. In light of Lemma 3.2, we can
find a subsequence {uy; }; and a positive function v € E such that [u; (x)| < v(x).
Then it follows that

t 2
(3-1) CI>2m,m (,BZm,m(l - m)pukj) dx

R2m |X|t
< / Dom,m (ﬂZm,m(l - ﬁ)pvz)
B R2m |X|t

dx < 0o.

Case 2. 0 < ||u||?5 < 1. Defining ¥(X) = Popy.m (,Bzm,m(l — #)pX) for nota-
tional convenience, one can write that

7] 2
(3-2) sup/ () dx
ram | x|f

k
(1 + —u)? + Cou?
=< suP/ (( ) tu) el )dx
k JR2m | x|
/ W((1 + &) (ug —u)*)¥(Ceu?)
= sup , dx
k JR2m | x|
w((1 —u)? U(Ceu?
—I—sup[ « +8)(L:k u) )dx—l—sup/ —( 8tu )dx
k R2m |X| k R2m |x|
=: 11 + 12 + 13,

where we use the elementary inequality which states
(a+b)*> <1 +e)a*+ Ceb* for a,b>0and e > 0.

For I, as an immediately consequence of the Holder inequality and the singular
Adams inequality, we can derive that

/ 2mm (Bamm(1 = 5) pr 1+ )y~ 0)%) dx)i,
R2m

33) I < (sup
"

k

where r is sufficiently close to 1. Noting that u; — u weakly in £ and E is a
Hilbert space, one can apply the Brezis—Lieb lemma to derive that

2 2 2 2
lur —ully = llurle = lluly =1 llul%.

which yields that

IBZm,m(1 - #)pr(l + ‘9)(||Vm(uk —U)”% + cO””k - u”%) < IBZm,m(1 - ﬁ)
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Combining this with Theorem 1.2 with T = ¢, we conclude that /1 < +oc0. Similarly,
we can obtain that I, < 4+o00. Thus, we accomplish the proof of inequality (1-9).

Next, we are ready to show that py, , (1) is sharp when V(x) is constant.
Without loss of generality, we assume V(x) = 1. The idea of proving this sharpness
follows from the result of do O et al. [2014]. Similarly, we construct a sequence
{up e € W™2(R?*™) and a function u € W™2(R?™) such that

lugl =1, wug—u#0in W™AR>™), |ul|=5§<1,

but

/ DPom.m (,32m,m(1 - ﬁ)pzm,m(u)“i) dx — oo.
R2m

| x|’

We denote a sequence {wy }x € W™2(R?™) by

1
| A T
I k2 if |x| € [0, rezm],
@m-2nEmb 2! el |
we(x) =19 -3 2 -3 T
Wz o Ik if || € e )
0 if |x| € [r, +00),

where r > 0 to be chosen later. Simple calculations show that
wi = 0in W2, [V™"uill3 =1, w3 = Ok™").

Next, we define a new function u : R — R given by

4 i |x| € [0, 28],
ut) = (1= (3)") 7 (A= gmll™) i Il € B R
0 if [x| €[R, +00),

where R = 3r and A is a positive constant which needs to be chosen later. Then

G-4) ull® = [lull3 + 1V ull3

_ @W2m—1 3 p\2m 2

+ wrm—1 /2R ((1 — (%)m)_1 (A— Wrm))zﬂm—l dr

sum—2( A \2 RmlGm—-2)! ,,
=@ () e [, "

3
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Picking A satisfying ||u|| = § < 1, a direct application of the Holder inequality
yields that

1
(3-5) logell3 == llu + (1= 8%) 2w |3
:/ i+ (1= 82) 2wy |2dx
RZm
=/ u2+2(1—52)%uwk+(1—52)w,§dx
R2m
= [lul3 + &

where

1
1 1 (2m)2 1 1k p2m o 2m 1
Nk = (EA(I_éz)zmeZm—l (l”2m€ k—+_——e k) k 2

It is clear that V™ and V™ w;, have disjoint supports, so
(3-6) IV oll3 = V"l + (1 =6%) and fug|® = 1+ ng.
Let ug = vg /(1 + ng)'/?; one can easily see that

lugll=1 and wy — u in W™2(R>™).

Consequently,

Dom,m (IBZm,m (l_ﬁ)pZm,m (”)ui)
R2m |X|t
[, om0 )
B

> dx— . —dx
o T x| Brezm x|

(3-7 dx

- f _ eXp(ﬁzm’m(l—ﬁ)«anr%(A+(1—82>%wk))2<1—82)‘1)dx+c
Bre2m

|x|”
. 1 B A 12
=/ ] exp((1—55 ) (1102 (2555577 +K 2)) )dHC
Bre2Zm

> 4 (B 1YY 2m—t
z exp((l—%)(((l—i-nk) 2( T +k2)) —k))r +C — 400,
(1-62)2

1/2

where r < 1 is selected in such a way that n; < Ui’g%k_%. Then Theorem 1.4

is completed. U
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4. the proof of Theorem 1.7

In this section, we begin with a simple fact that the norm (||V"u ||§ + ||u ||%)1/2 and
the standard Sobolev norm given by

j=m 1
j 2
lullym.z = (Z ||v1u||2)

j=0
is equivalent. In fact, for any u € C°(R?™), through Caffarelli-Kohn—Nirenberg
inequalities [Lin 1986], one can derive that

i -4
(%) / IV/u|?dx < (/ |u|2dx) (/ |Au|2dx) )
R2m R2m R2m

Then a simple density argument implies that (x) also holds for u € W2 (R?™).
Now, we are in a position to show that a Sobolev space equipped with the norm
(IV™u ||§ + ||lu ||§)1/2 can be compactly embedded into L?(R?™, |x|~#dx) for any
p=>2and 0 < B < 2m.

Proof. Continuous embedding is an easy consequence of the Adams inequality (1-5).
Our aim is to show that the above continuous embedding is compact. In light of
Wm2(R2™) < LI (R*™) for ¢ > 1, one can find a subsequence {uy; }; such that
ug; (x) = u(x), strongly in L9(Bg(0)) for any R > 0,
ug; (x) > u(x), for almost every x € R2™,
Therefore, our purpose is to show that
4-1) U, —u in LY(R>™ | |x|"*dx).
Applying the Egorov theorem, we obtain that for any Bg(0) and § > 0,

there exists E5 C Bg(0) satisfying m(Eg) < 6,
such that
ug,; uniformly converges to u in Bg(0) \ Es.

Hence, it follows that

. . lug, —ul?
(4-2) lim Ilim lim ——dx
R—>+008—>0j—>+00 Jg2m |X|s
. . . |ukj - u|q
= lim lim Ilim ——dx

R—>+008—>0j—>+00 Jg,  |x[*
|uge; —ul?

4+ lim lim lim dx

R—+008—0j—>+00 J B (0)\ E; |x|®

. . . |Ltk]. _ulq

4+ lim lim lim ——dx
R—>+008—0j—>+00 Jr2m\Br0)  |X|*

=211+12+13.
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By the Holder inequality and the Sobolev continuous embedding, one can derive
that

. . % |ukj _u|qt/ tli/
4-3) I{ < lim lim 1dx — ) dx
§—0j—>+o00 Es Es |x|S’
. 1
< lim sup [Ju; [|7(m(E5))
5§—0 j

=0,
where ¢ > 1 and st’ < 2m. For I, the uniform convergence of ug; in BR(0)\Es
yields that 7, = 0. For I3, the Sobolev continuous embedding W"2(R?") —
L4(R?™) for g > 2 yields that
(4-4) I3 < lim lim lim L lug, —u|? dx

R—>+00§—0j—>+o00 RS R2m\ B g (0) J
< timsup ug, |
—>+oo

=0.

Thus, we have accomplished the proof of Theorem 1.7. O

As a direct result of Theorem 1.7 and Remark 1.8, we can easily see that the
best constant S, (p > 2) in (H3) could be achieved (one can refer to [Zhang and
Chen 2018] for details).

5. The proof of Theorem 1.9

This section is devoted to the proof of Theorem 1.9. We carry out the proof in
three parts. In Part 1, we use the mountain-pass theorem without the Palais—Smale
compactness condition to derive the existence of weak solutions of (1-14) satisfying
hypotheses (H;)—(Hy4). Therefore, in Part 2, we utilize the method combining
the concentration-compactness principle and the new compactness theorem in
W™2(R2™) to verify that the functional / p satisfies the Palais—-Smale compactness
condition. Part 3 is devoted to showing that the critical point of the functional /g is
actually a ground state solution of polyharmonic equation (1-14). Before starting
the proof, we need a couple of important lemmas for which we omit the proofs.

Lemma 5.1 [Badiale and Serra 2011]. Let X be a Hilbert space, ¢ € C*(X,R),
e € X andr > 0 such that |e|| > r and b := inf), =, ¢(u) > ¢(0) > ¢(e). Define

¢ = inf max ¢(g(s)),
gel s€[0,1]

where
I':={geC(0,1], X):2(0)=0, g(1) =e}.
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Then there exists a sequence {uy}r € X such that (uy) — ¢, ¢'(ux) — 0 as
k — 4o0.

Remark 5.2. In the case of p = 2, one can use the property of the Hilbert space to
replace uj — u almost everywhere in 2 with uy — u.

Now, we are ready to start the proof of Theorem 1.9.

Part 1. In this part, we first check that Ig(u) satisfies geometric conditions without
the Palais—Smale compactness condition.

Lemma 5.3. Assume (Hy)—(Hy) hold. Then
(i) there exist constants 8, p > 0 such that 1g(u) > 6 for any |u||g = p,
(i) there exists e € E such that |le||g > p, but Ig(e) < 0.

Proof. According to (Hy), there exist positive constants g, § such that for any |7]| <,
(5-1) F(x,t) < i(Ag—o)lt]* for x e R*™.

Moreover, by (H; ), we derive that for any |¢| > § and x € R?", there exists constants
¢1, ¢y such that

(5-2) F(x,0) = 1|t + ealt|Damm(@olt|?) = Cslt]> Pamm(eolt]?),

1 C2
here Cs = + —=.
" T S Ormm(ol) 52

Then it follows from (5-1) and (5-2) that
(5-3) F(x.1) < 2 (hg—&)|t|* + Clt|? @opmm(ctolt|*) forall (x,r) € R*™ xR.
For sufficiently small ||u|| g, we claim that the following inequality holds:
d 2
R2m |X |ﬁ
For the continuity of our work, let us postpone the proof of (5-4).
Suppose (5-4) holds, we can combine (5-3) and (5-4) to arrive at
F(x,u)

d
g

:5) 10 =duly - [

2 @ (crolul?)
>lu2—lk—e/ ﬂdx—C/ y|3 —2mm 0N ) g
_2” ”E 2( B ) R2m |X|ﬂ [R4| | |X|B

Ag—¢
1 2 1B 2 3
> zllullg—z—kﬂ lullz —Cllullg

= ull% (55 - Clulle).
E(zxﬂ )

When |ul| g < &/(2CAp), inequality (i) holds.
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Now, we give the proof of inequality (5-4). By applying the Holder inequality
and considering the level sets of the function, one can obtain that for p > 1 and

1 1 _
; + 7 - 17
d 2
(5—6) / |u|3 2m,m(a0|u| )d
R2m |x[#

1
7

1 ’
S(/ cbzm,m(paoW)dx)p(/ uf*” dx)"
R2m |x|ﬂ R2m |x|ﬂ

l
Pomm(paolul? ) 4
<([,, "l
R2m | |

where the last inequality comes from the Sobolev continuous embedding £ —
LI(R*™ |x|~Bdx). Pick p > 1 sufficiently close to 1 such that

paollul® < Bamm(1 - L)

due to the fact that ||u|| <||u|| g is sufficiently small. The singular Adams inequalities
in R?™ yield that

d 2
(5_7) / |u|3 2m,m(a0|u| )dXSC”u”%'
R2m |x[#

For (ii), it suffices to show that for a fixed u € E,
Ig(su) - —oco as s — +oo.

Without loss of generality, we may assume u has bounded support €2. Through (H3),
one finds that for any ¢ > 0,

0
E(ln F(x,1)) >

~|

which leads to the result F(x,7) > F(x, o), 949 for some to > 0. Therefore, there
exist positive constants ¢y, ¢; such that

F(x,t)> clze —cy for (x,1) € 2 x][0,00).
Then,

(5-8) Iﬂ(su)ziuu”%_/ Flaosu)
o |x Iﬂ

Jul”
|| ul|% —cys° / dx+c3|sz|1 Do

This inequality together with 6 > 2 implies that

Ig(su) — —oo as s — +o0.
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The proof of Lemma 5.3 is finished. O

Lemma 5.3 shows that the functional /4 satisfies geometric conditions of the
mountain-pass theorem which yields that there exists a Palais—Smale sequence
{uy jx which satisfies Ig(uy) — cg and Ié(uk) — 0 as k — +o00, where

cp= ;relg Sggﬁ} Ig(g(s)), T:={geC(0,1],E):g(0) =0, I(g(1)) <0}.

Lemma 5.4. Assume (H;), (Hy) and (H3) hold. Let {uy}; C E be an arbitrary
Palais—Smale sequence, i.e.,

Ig(ug) — cg. Il’g(uk) —0, as k— +oo.

Then there exists a subsequence of {uy }; (still denoted by {uy }r) and u € E such
that

S up) o f(xu) in L} (R?
|x|8 - |x|8 strongly in L jo, (R,

F(x,ug) N F(x,u)

P 7 strongly in L1 (R?™).
X X

Furthermore, u is a weak solution of (1-14).

Proof. At first, we prove that

F N )
(5-9) / Fug) (oo and S uug ;o e
rem|x|B rem |x|P

Let {uy jx denote a Palais—-Smale sequence of the function /g, i.e.,

F(x,ug)
5-10 u 2—/ — "2 dx—>cg as k—> o
(5-10) Hlaelly = [ = p
and
(5-11) [I'(up)v| < ti||v]|g forall veE,

where 1 — 0 as k — 0o. Moreover, taking v = uy, in (5-11), we get

S, ug)ug

5-12
o1 won )P

2
dx —lullg = wllurl -

This together with (5-10) and (Hy4) leads to

9 [OF (x,up) — f(x,ux)ug]
Ocg + i |luk |l E = (5—1)||Mk||35_/RZm : Ix|B = dx

S =aIY
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Thus, ||lug || g is bounded. Combine this with (5-10) and (5-12), we can get (5-9).
Since ||ug || g is bounded. Thanks to Theorem 1.7, we can assume that up to a
sequence,

Up —u, weakly in E,
Up —>u, strongly in L9(R?™, |x| P dx) for all ¢ > 2,
up(x) — u(x), for almost every x € R*™.

By hypothesis (Hj), through similar arguments to Lemma 2.1 in [de Figueiredo
et al. 1995], we derive that

SOeug)  f(x.u)

5-13 —
613 L ML

strongly in L} (R?™).

F(

To show the convergence of [pm |

i]ﬁ") dx, one can write

JRLCZOELETP
X
R2m |X|'B
— F —F
[ MRl )R],
Bgr |x|’3 R27\Br |x|l3

According to (H;) and (H3), there exists a positive constant R such that

F(X,le) < ROf(x7uk)
Ix[f = |x[f

(5-14) for all x € R?>™.
Together with the generalized Lebesgue dominated convergence theorem, we can
get that

(5-15) m lm [ EMe) =)

dx =0.
R—>+o00 k—+o00 Bg |X|ﬂ

Thus, it suffices to check that

(5-16) lim  lim |F(x,ug) — F(x,u)|

dx =0.
R—>+4+o00 k—4+00 RZm\BR |x|ﬂ

By dividing the integral into two parts, we arrive at

[, eworeol, |Fx,ug) = Flx,w)
R27\ B |x|8 {112 R} {uge|> A} |x|#
| F(x,ug) — F(x,u)l

+ / .
{x|= R} N{lur|<4} | x|

dx

dx

=14+ 11y
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For 14, it follows from (5-9) that

| F(x,ug)| Ry | f(x, up)ug|
g dx = =2 e dx
(xI=RYN{lug >4y |X] A J{ix1= Ry N{Jug|> 43 | x|
Ro
<_-
~ 4

Thus, limyg—s 4 oo MR 400 limg 5 4 50 14 = 0.
For 114, applying hypothesis (H;) and Theorem 1.7, one can derive that

(5-17)  lim lim lim [Il4
A—>+00 R—+00 k—>+00

2
< lim lim lim C(ag, 4) i
A—+00 R—+00 k—+00 {x1= Ry ux <4y X[

C(ag, A)

< lim lim i 2
- A—il-?oo R—1>I-il}oo k—ir-ir-loo RB/2 Sllip ”uk ”E
=0.
Hence,
F(x, — F(x,
(5-18) lim (PO up) = Foewl

k—+o00 Jg2m |)C|’3

A simple application of (5-13) shows that

/ V"™"uN" 9 4+ ug) dx — f(x,u)(p dx =0, forall ¢ € C{°(R*™).
R2m r2m |x|P
Thus, u is a weak solution of polyharmonic equation (1-14). O

Part 2. This part is devoted to showing that the Palais—Smale sequence {uy }x
satisfies the Palais—Smale condition in light of the concentration-compactness
principle. We begin with a crucial fact:

O<Cﬂ<(l—%)%.

Recall that we have shown the attainability of S, in Section 4, so there exists a
function u such that

|u|?

——dx=1 and |ullg=S,.
[ G Julle =S,

Through the definition of cg, we get

t2 F(x,tu)
< = i —_ _—
O<c,3_rtnza(>)<lﬂ(tu) rtnzaéi(zSp /Rzm P dx ).
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According to the definition of C,, we can obtain that

2 -2
(ﬁsz_t,&): (r=2 8" " Bomm(1—45)
2P '

5-19 <
(5-19)  cp <max p 2 CPZ/(”_Z) < 2o

t=0

Now, we are in a position to verify that {uy }; satisfies the Palais—Smale com-
pactness condition. We discuss this by the following two cases.

Case 1. (cg # 0,u = 0). We first claim that there exists some ¢ > 1 such that
/ ¢2m,m(a0|”k|2)q
RZm |x |ﬁ
Since u = 0, one can employ Lemma 5.4 to drive that
F(x, F(x,
(5-20) / LlGIL NN / 1) e,
R2m |X |ﬂ R2m |_X,‘ |'B
Together with (5-10), we obtain that

dx <C forall k eN.

(5-21) lugl% — 2cg  as k — oo.

Take g > 1 sufficiently close to 1 such that

B
52 aoglul <augluels =Bo < (1= 5 Bamon
Then, it follows that
(5-23) / q)Zm,m(aOl“k |2)q Y < / Dosm,m (a0|uk|2)q dx
R2m x| R2m |x[#

A

dx

/ CI)me ,80 "uk”)z)
|x|#
1.

A

Combining hypothesis (H;), the Holder inequality and (5-23), one can derive
that

S, up)ug

mm |x[B

1 ’
< / il +( / Pamm(@olui )’ dx)q ( / 4| dx)"
pom |x | R2m x| rem | x|P
—ul? z —ul?
5(/ —|uk ul dx)2+(/ —luk ul dx)q,
R2m |X|'B R2m |,)C|/g

where ¢ > 1 close enough to 1 and L >+ pl l.

(5-24)

g




376 CAIFENG ZHANG, JUNGANG LI aAND LU CHEN

Thanks to Theorem 1.7 again, we arrive at

S, up)ug

dx —0 as k— oco.
R2m |X|B

Taking Ié(uk)uk — 0 into consideration, we get limy_, o, ||t || E — O, which is a
contradiction with ¢g > 0.

Case 2. (cg # 0,u # 0). We claim that limy_, o ||ug || g = ||[ul| g. We argue this
by contradiction. Suppose limg_, o ||ur || E > ||#| £, and define

u

u
Vg - k and wvg:

lurll e limy o0 llukllE

We claim that for ¢ > 1 sufficiently close to 1, there exists a constant 8¢ > 0 such
that the following inequality holds.

ﬂZm,m(l - %) '

(5-25) gaolluglE < Bo < S
1= llvoll%

Indeed,
(5-26)  lim [lugl|%(1—llvoll%)
koo ul2
. u
= lim ||uk||§5(1——. E 2)
k—o0 limg s o0 [lug ”E

F(x,u) F(x,u)
—2cp+2 dx —214(u)—2 d
w+2f,, g X e) .. X

< :32m,m(1 - %)
®o

’

where we apply Ig(u) > 0. Then it follows from the above estimate and Theorem 1.4
that

2\\¢q [0) Uk 2
(5-27) / (P2m,m(o|ug|”)) deC/ 2mm (Bol iz | )dx5 L
R2m x| R2m |x[#

Under hypothesis (H;), the Holder inequality gives that

(5-28)

SO u) (g —u) '
X
R2m |x|/3

2 \2 —ul2 \2
() (] )
R2m |)C|l9 R2m |x|ﬂ
’ 1 1
2 RZm |x|ﬂ RZm |x|/3 )




GROUND STATE SOLUTIONS OF POLYHARMONIC EQUATIONS 377

Thanks to Theorem 1.7, we derive the following conclusion with inequalities (5-27)
and (5-28):

dx — 0.

/ S, up)(uy —u)
R27 x|

Together with Ilg(uk)(uk —u) — 0, we get

/Rzm V™ur (V™uy —V™u) dx + /Rzm V(x)uy (up —u)dx — 0.
Since uj — u in E, we have
/Rzm V"u(V"u, —V™u)dx — 0 and /Rzm V(x)u(uy —u)dx — 0.
Therefore

(5-29)  lim ||uk—u||i~ = lim (V"™up —V™"u)(V"uy — V™u) dx
k—+o00 k—+oo JRp2m

4+ lim V(x)(up —u)(up —u) dx
k—+o00 R2m

=0,
which arrives at a contradiction with limy_, o |lux || E > ||ull E-
Part 3. In this part, we show that the critical point of functional /g is actually a
ground state solution for the singular polyharmonic equation (1-14). Define

m=inf Ig(u) and S:={u€E:u#0and I5(u)=0}.
UES

For all w € S, pick 7o sufficiently large such that Ig(fjow) < 0. Denote & :
(0, +00) = R by h(t) = Ig(tw) and g : [0, 1] — E by g(r) = ttow. Itis easy to
check that

, 1
f(x, tw)w J

() = I4(t =tl|lw]% —
W) = Ip(wyw =t|w|% o [P

x, forall t>0.

Combine this with l’g(w)w = 0, we easily see that
: . §
h/(t)=l/ (f(x w)_f(x w)) w dx,
R2m w tw |X|ﬁ

which implies that 4’(z) > 0 for ¢ € (0, 1) and 4’(¢) < 0 for t > 1 under hypothe-
sis (Hg). Thus,

< I5(g(t)) <max Ig(tw) = Ig(w),
cp = max, p(g( ))_rtnzag pltw) = Ig(w)

which concludes the proof of Theorem 1.9.
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6. The proof of Theorem 1.10

In this section, we will investigate the existence of the nontrivial weak solutions for
nonsingular polyharmonic equation (1-15). The presence of the constant potential
V(x) makes it hard to follow the same line of reasoning as for Theorem 1.9. In order
to overcome this difficulty, we need to use the principle of symmetric criticality.
We first introduce some background knowledge about the principle of symmetric
criticality.

Definition 6.1. The action of a topological group G on a normed space X is a
continuous map

GxX—-X: |[gu]l—gu
such that
l-u=u, (ghu = g(hu), U+ gu is linear.
The action is isometric if
lgull = llull
The space of invariant points is defined by
Fix(G):={ue X :gu=u,Vg € G}.
A function ¢ : X — R is invariant if ¢ o g = ¢ for every g € G.

Lemma 6.2 (principle of symmetric criticality [Badiale and Serra 2011]). Assume
that the action of the topological group G on the Hilbert space X is isometric. If
¢ € CY(X,R) is invariant and if u is a critical point of ¢ restricted to Fix(G), then
u is also a critical point of ¢.

Lemma 6.3. Forgq > 2, W,m’z([Rzm) can be compactly embedded into L9 (R*™)
forany g > 2.

Remark 6.4. Through applying the radial lemma, one can easily get Lemma 6.3
with a slight modification of the proof of Theorem 1.7.

Now, we are in a position to prove Theorem 1.10. The functional related with
(1-15) is given by I(u) = %||u||i: — Jg2m F(x,u)dx. Based on Lemma 6.2, we
can restrict the functional I to the subspace E, of E, where E, is the set of
all radial functions in E. It follows from same reasoning as for Lemma 5.3 that
functional I satisfies the geometric conditions which imply that there exists a
sequence {uy }x € E, such that I(uy) — co, I’(ug) — 0 as k — +o0. Furthermore,
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we also can obtain
Z/lk - M(), in Er,
up — Uy, in L9(R*™) for all ¢ > 2,

ug(x) = uo(x), almost everywhere in R>™,

We will use a new method based on Lemma 6.3 to prove that

/ F(x,ug) dx—>/ F(x,u)dx.
R2m R2m
By splitting the integral into three parts, we have

(6-1) lim lim lim | F(x,up)— F(x,u)| dx

R—00 k—00A—00 JR2

= lim lim lim |F(x,up)— F(x,u)|dx

R—>o00 k—o00A—o00 JBy

4+ lim lim lim |F(x,up)— F(x,u)|dx

R—00k—>00A—00 J|x|>R, |uy|>A

4+ lim lim lim |F(x,ur)— F(x,u)|dx

R—00 k—00A—00 J|x|>R, |uy|<4

=11+ 1+ 1I5.

For I, it directly follows from (5-13), (5-14) for the case 8 = 0. For I,, in view
of hypotheses (H;) and (H3), we have

(6-2) I, = lim lim lim |F(x,ug)— F(x,u)|dx

R—>00k—00A4—00 J|x|>R, |u|>A

< lim lim lim | F(x,up)| dx
R—>o00 k—>00A—00 J|x|>R, |uj|>A
) . o1

< lim lim lim = | fOx, up)uy | dx
R—00k—>00A4—00 A Jix|> R, luy|>4

=0.

For I3, combining the hypothesis f(x, ) = o(¢) and Lemma 6.3, one can obtain
that for any ¢ > 0,

(6-3) I3 = lim lim lim |F(x,ug)— F(x,u)|dx

R—o00k—00A4—00 J|x|>R, |ux|<A

< lim lim lim | F(x, up)l dx
R—o0 k—00A—0 |x|>R,|ur|<A4

<ellug|% + lim  lim |lug|? dx
R—00k—00 Jix|>R

2
S ellukl
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which leads to 73 = 0. Carrying out similar steps as we did in Section 4 (Part 1),
one can easily see that u is a weak solution of (1-15).

Next, we show uy, satisfies the Palais—Smale compactness condition and u is a
critical point of functional I restricted in £,. The process of proof follows from
the similar argument of Section 4 (Part 2) as long as we can verify that

— 0.

[ )=y d

Since f'(x,1) = o(¢) at the origin, through hypothesis (H; ) and the Holder inequality,
we derive that for any € > 0, it holds that

6 | [, Fonm - d

1 1

2 3

Ss(/ |uk|2dx) (/ |uk—u|2dx)

R2m R2m
1 1
’ q’ q
([ et ax) ([ @amntanluaa)
RZm RZm

Letting k — oo and ¢ — 0, we arrives at the desired conclusion. Finally applying
the principle of symmetric criticality again, we see that u is also a critical point of
IinE.
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