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The purpose of this paper is threefold. First, we establish the critical Adams
inequality on the whole space with restrictions on the norm

.krmuk
n
m
n
m

C�kuk
n
m
n
m

/
m
n

for any � > 0. Second, we prove a sharp concentration-compactness princi-
ple for singular Adams inequalities and a new Sobolev compact embedding
in W m;2.R2m/. Third, based on the above results, we give sufficient con-
ditions for the existence of ground state solutions to the following polyhar-
monic equation with singular exponential nonlinearity

(0-1) .��/muCV.x/uD
f.x;u/

jxjˇ
in R2m;

where 0 < ˇ < 2m, V.x/ has a positive lower bound and f.x; t/ behaves
like exp.˛jtj2/ as t!C1. Furthermore, when ˇ D 0, in light of the prin-
ciple of the symmetric criticality and the radial lemma, we also derive the
existence of nontrivial weak solutions by assuming f.x; t/ and V.x/ are
radially symmetric with respect to x and f.x; t/D o.t/ at origin. Thus our
main theorems extend the recent results on bi-Laplacian in R4 by Chen, Li,
Lu and Zhang (2018) to .��/m in Rm.

1. Introduction and main results

The standard Sobolev space W
k;p

0
.�/ is defined by the completion of C1c .�/

equipped with the norm

kukW k;p D

�
kukpp C

kX
jD1

kr
j ukpp

�1
p

;
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where� denotes a smooth bounded domain in Rn. Basically, the Sobolev continuous
embeddings state that

W
k;p

0
.�/ ,!Lq.�/ for 1� q �

np

n� kp
; kp < n:

However, in the limiting case kp D n, many examples show that W
k; n

k

0
.�/ ª

L1.�/. In this case, the Trudinger–Moser inequality and the Adams inequality
serve as appropriate replacements. Research concerning the sharp constant for the
Trudinger–Moser inequality could be traced back to the 1960s and 1970s. Trudinger
[1967] proved there exists a constant ˛ > 0 such that the following inequality holds
(also see [Pohozaev 1965; Yudovich 1961]):

(1-1) sup
u2W

1;n

0
.�/; krukn�1

1

j�j

Z
�

e˛juj
n

n�1
dx � C0:

Nevertheless, the best constant for (1-1) is unknown. Later, Moser [1971] established
the sharp version of inequality (1-1) which can be stated as follows:

(1-2) sup
u2W

1;n

0
.�/; krukn�1

1

j�j

Z
�

e˛njuj
n

n�1
dx � C0;

where ˛n D n!
1=.n�1/
n�1

is the sharp constant in the sense that if ˛n is replaced
by any larger number, the supremum would become infinity. !n�1 denotes the
area of the surface of the unit ball in Rn. Estimate (1-2) is now referred as the
Trudinger–Moser inequality and plays an important role in geometric analysis
and partial differential equations (e.g., see [Moser 1973]). For more results of
Trudinger–Moser inequalities on compact Riemannian manifolds, one can refer
to [Li 2001; 2006; Li and Ndiaye 2007]. If we replace � with Rn, the Trudinger–
Moser inequality (1-2) makes no sense. Instead, a subcritical Trudinger–Moser type
inequality was proved by Adachi and Tanaka [2000]. By replacing the Dirichlet
norm with the standard Sobolev norm in W 1;n.Rn/, Cao [1992] (for nD 2), Panda
[1996] and J. M. do Ó [2014] (for general n) constructed the Trudinger–Moser
inequality in the whole space which states that for any ˛ < ˛n,

(1-3) sup
u2W 1;n.Rn/; jjujj

W 1;n.Rn/
�1

Z
Rn

ˆn;1.˛ju.x/j
n

n�1 / dx � Cn;

where ˆn;1.t/ WD et
�

n�2X
jD0

tj

j !
:

However, they did not prove the criticality of this inequality. Later, Ruf [2005]
(for the case n D 2), Li and Ruf [2008] (for the general case n � 3) proved that
Trudinger–Moser inequality (1-3) still holds in the critical case ˛ D ˛n by using
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the symmetrization argument and the blow-up procedure. Both the critical and
subcritical Trudinger–Moser inequalities on Rn given in the aforementioned works
are based on the Pólya–Szegő inequality and symmetrization argument which is
not available in other non-Euclidean settings. Lam and Lu [2012c] developed a
symmetrization-free argument on the Heisenberg group and established the critical
Trudinger–Moser inequality (see also Lam, Lu and Tang [Lam et al. 2014] for the
subcritical Trudinger–Moser inequality without using symmetrization argument). In
fact, the critical and subcritical Trudinger–Moser inequalities are proved equivalent
by Lam, Lu and Zhang [Lam et al. 2017b], where they also establish relationships
between supremums of the critical and subcritical Trudinger–Moser inequalities.
Such a relationship has been used to establish the existence of extremal functions
for subcritical Trudinger–Moser inequalities on the entire space Rn [Lam et al.
2019].

The above Trudinger–Moser inequalities and its generalizations are often applied
to derive the existence of weak solutions for the following n-Laplacian equations:

(1-4) � div.jrujn�2
ru/CV .x/jujn�2uD

f .x;u/

jxjˇ
C "h.x/;

where f W Rn �R! R is continuous and behaves like exp.˛jt j
n

n�1 / as t !C1,
h.x/ belongs to the dual space of W 1;n.Rn/. Adding some appropriate assumptions
on V .x/, one can see that the compact embedding

E D

�
u W

Z
Rn

jrujnCV .x/jujndx <C1

�
,�,!Lp.Rn/ for p � n

becomes admissible. The authors of [Adimurthi and Yang 2010; Alves and
Figueiredo 2009; do Ó et al. 2014; Lam and Lu 2013a; Yang 2012b] carried
out the standard mountain-pass procedure to obtain nontrivial weak solutions of
(1-4). When V .x/ is constant, there is a long way to go yet. In order to overcome
the possible failure of the Palais–Smale compactness condition which is caused
by the absence of a compact embedding W 1;n.Rn/ ,! Ln.Rn/, Masmoudi and
Sani [2015] applied a method involved with a constrained minimization argument
and the sharp Trudinger–Moser inequality with the exact growth condition to
investigate the existence of ground state solutions for (1-4) in the case of V .x/D 1,
f .x;u/D f .u/, ˇ D "D 0. By assuming f .x; t/D o.t/, J. M. do Ó et al. [2014]
employed a modified form of the Trudinger–Moser inequality and rearrangement
inequalities to give sufficient conditions for the existence of ground state solutions.
We also note that Lam and Lu [2014; 2013a] investigated the n-Laplacian equation
and polyharmonic operators without the Ambrosetti–Rabinowitz condition. For
more results about the Trudinger–Moser inequality and its application, we refer the
reader to [Adimurthi and Sandeep 2007; Adimurthi and Yang 2010; Atkinson and
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Peletier 1986; Carleson and Chang 1986; de Figueiredo et al. 2002; do Ó 1996;
Lam and Lu 2012a; Panda 1996; Silva and Soares 1999].

D. Adams [1988] established the sharp Trudinger–Moser inequality with higher
order derivatives. More precisely, he proved that

sup
u2W

m; n
m

0
.Rn/; krmuk n

m
�1

Z
�

eˇn;mjuj
n

n�m
dx <1;

where

ˇn;m D

8̂̂̂<̂
ˆ̂:

n

!n�1

�
�

n
2 2m�

�
mC1

2

�
�
�

n�mC1
2

� � n
n�m

; if m is odd,

n

!n�1

�
�

n
2 2m�

�
m
2

�
�
�

n�m
2

� � n
n�m

; if m is even.

and

r
muD

�
�

m
2 ; if m is even,
r�

m�1
2 ; if m is odd.

The above inequality was extended by Tarsi [2012] to a larger space W m;n=m
N .�/

containing the Sobolev space W
n;n=m

0
.�/ as a closed subspace, where W m;n=m

N .�/

is given by

W
m; n

m

N
.�/ WD

˚
u 2W n; n

m .�/ j�j uD 0 on @� for 0� j �
�

m�1
2

�	
:

Sharp singular Adams inequalities on W
m;n=m

N
.�/ were also established by Lam

and Lu [2012d]. We also mention that existence results concerning extremals of the
Adams inequality in the case nD 2mD 4 were established by Lu and Yang [2009].
Li, Lu and Q. Yang [Li et al. 2018a; Lu and Yang 2017] proved the Hardy–Adams
inequalities on hyperbolic spaces as a borderline case of the higher order Hardy–
Sobolev–Mazya inequalities established by Lu and Q. Yang [2019] on upper half
spaces.

After Adams, establishing Adams type inequalities in higher order Sobolev space
W m;n=m.Rn/ has attracted much attention. Ogawa and Ozawa [1991] (for nD 2m)
and Ozawa [1995] (for general n, m) proved that there exist positive constants ˛
and C˛ such thatZ

Rn

ˆn;m.˛juj
n

n�m / dx � C˛; for all u 2W m; n
m .Rn/; jujm;n � 1;

where

ˆn;m.t/D et
�

j n
m
�2X

jD0

tj

j !
; jn

m
Dmin

˚
j 2 N W j � n

m

	
and jujm;n is given by jujm;n D k.I ��/m=2ukn=m. Kozono et al. [2006] studied
the sharp constant problem by applying O’Neil’s results on the rearrangement of
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convolution functions. In fact, they proved that there exists a constant ˇ�n:m �
ˇ.n;m/, particularly, ˇ�

2m:m
D ˇ.2m;m/ such that if ˇ < ˇ�n:m, then

sup
u2W

m; n
m

0
.Rn/; jujm;n�1

Z
Rn

ˆn;m.ˇjuj
n

n�m / dx <1:

Ruf and Sani [2013] established the sharp Adams type inequality for the critical
case ˇD ˇn;m when m is an even integer, where the Talenti’s comparison principle
plays an important role in their proof. Lam and Lu [2012b; 2012d] proved the
above inequality for all integers m (including fractional order 
 ). More precisely,
they showed

sup
k.I��/

m�1
2 uk

n
m
n
m
Ckr.I��/

m�1
2 uk

n
m
n
m
�1

Z
Rn

ˆn;m.ˇn;mjuj
n

n�m / dx � C.m; n/;

for any odd integer m. Lam and Lu [2013b] further developed a rearrangement-
free approach. This method can help us to get rid of the symmetrization or the
comparison principle argument. Using this method, Lam and Lu established the
sharp Adams inequality which can be stated as follows:

(1-5) sup
u2W 
;p.Rn/; k.�I��/



2 ukp�1

Z
Rn

exp.ˇ0.n; 
 /juj
p0/ dx � C.n; 
 /;

where 0< 
 < n; p D
n



and ˇ0.n; 
 /D

n

!n�1

�
�

n
2 2
�

�

2

�
�
�n�


2

� �p0

:

Recently, Lam and Lu [2013b] obtained the Adams inequality involved with the
norm .k�uk

n=2

n=2
Ckuk

n=2

n=2
/2=n. Later, Fontana and Morpurgo [2015] extended Lam

and Lu’s results to higher order derivatives. They proved that there exists some
constant Cm;n such that

(1-6) sup
krmuk

n
m
n
m
Ckuk

n
m
n
m
�1

Z
Rn

ˆn;m.ˇn;mjuj
n

n�m / dx � Cm;n:

Note that in (0-1), we assume V .x/ has a positive lower bound, thus we need an
Adams inequality involved with the norm .krmuk

n=m

n=m
C �kuk

n=m

n=m
/m=n. We utilize

the change of variable to obtain the following result.

Theorem 1.1. For any � > 0 and 0 < ˛ � ˇn;m, there exists some constant Cm;n

such that for u 2W m;n=m.Rn/ with krmukn=m
n=mC �kuk

n=m
n=m � 1,

(1-7)
Z

Rn

ˆn;m.˛juj
n

n�m / dx � Cm;n:
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Theorem 1.2. For any � > 0, 0 � t < n and 0 < ˛ < ˇn;m, there exists some
constant Cm;n such that for u 2W m;n=m.Rn/ with krmukn=m

n=mC �kuk
n=m
n=m � 1,

(1-8)
Z

Rn

ˆn;m

�
˛
�
1� t

n

�
juj

n
n�m

�
jxjt

dx � Cm;n:

Remark 1.3. In fact, the inequality (1-8) still holds in the case of ˛ D ˇn;m.
However, in order to prove the concentration-compactness principle for the Adams
inequality, we only need inequality (1-5). For convenience, we also give the proof
of the critical case of Theorem 1.2.

The purpose of proving such inequalities is to prove the following sharp ver-
sion of concentration-compactness principle for weighted Adams inequalities in
W m;2.R2m/. For simplicity, we define a new function space

E D

�
u 2W m;2.R2m/ W kuk2E D

Z
R2m

jr
muj2CV .x/juj2 dx <1

�
;

where V .x/� c0 .c0 > 0/.

Theorem 1.4. For 0 � t < 2m, assume fukgk is a sequence in E satisfying
kukk

2
E
D 1 and uk * u 6� 0 in E. If

0< p < p2m;m.u/ WD
1

1�kuk2
E

;

then

(1-9) sup
k

Z
R2m

ˆ2m;m

�
ˇ2m;m

�
1� t

2m

�
pu2

k

�
jxjt

dx <1;

where ˆ2m;m.t/D et
� 1 and ˇ2m;m D

2m

!2m�1
�2m22m:

Furthermore, for any positive constant c, if V .x/ D c, the constant p2m;m.u/ is
sharp in the sense that if p � p2m;m.u/, the supremum will become infinite.

Remark 1.5. Theorem 1.4 is an extension of do Ó’s result [2014] which relies
heavily on the Pólya–Szegő inequality. Therefore, the methods they used cannot be
applied to obtain the concentration-compactness principle of the Adams inequal-
ity on Rn or the Trudinger–Moser inequality in settings where a rearrangement
argument fails such as the Heisenberg group Hn. Recently, Li, Lu and Zhu [Li
et al. 2018b] developed a symmetrization-free approach and established Lions
concentration-compactness of the singular Trudinger–Moser inequality on the
Heisenberg group H. The method is rearrangement-free and can be easily applied to
other settings. In the present paper, we use a different approach to prove Theorem 1.4.
This is due to the fact that the Sobolev space W m;2.Rn/ we are dealing with is a
Hilbert space. Analyzing the energy loss when taking the weak limit is an essential
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part in proving concentration-compactness principle and for the Hilbert space,
the weak limit is relatively simple and with the help of the Brezis–Lieb lemma
(Lemma 3.1), we are able to develop a different proof.

Remark 1.6. Nguyen [2016] took advantage of the Talenti comparison theorem
to obtain inequality (1-9) in the case of V .x/D 1 and t D 0. However, they did
not verify the sharpness of p2m;m.u/. By constructing a proper sequence, we also
verify that the supremum in (1-9) becomes infinite if p � p2m;m.u/.

Recently, another improved version of the sharp Adams inequality was investi-
gated by Lam, Lu and Tang [Lam et al. 2017a] in the spirit of Lions’ work [1985].
Their result can be stated as follows:

(1-10) sup
u2W 2;m.R2m/R

R2m j�ujmC� jujm dx�1

Z
R2m

ˆ2m;2

�
1=.2m�1˛/

.1Ck�ukmm/
1

m�1

juj
m

m�1

�
jxjˇ

dx � C.m; ˇ; �/

for 0 � ˇ < 2m, � > 0 and 0 � ˛ �
�
1� ˇ

2m

�
ˇ2m;2. It is easy to verify that the

above inequality is stronger than the general Adams inequalities in W 2;m.R2m/.
Adams inequalities (1-5) and (1-10) are often used to study nonlinear equations

related to the Bessel potential. Bao, Lam and Lu [Bao et al. 2016] considered
polyharmonic equations of the form

(1-11) .I ��/muD f .x;u/ in R2m:

Yang [2012a] exploited the following bi-Laplacian equation with small perturbation

(1-12) �2u� div.a.x/ru/C b.x/uD
f .x;u/

jxjˇ
C "h.x/ in R4;

where f .x;u/ has exponential growth and V .x/ satisfies limjxj!C1 V .x/DC1.
Recently, Chen, Li, Lu and Zhang [Chen et al. 2018] considered the following

equation in R4:

(1-13) .��/2uCV .x/uD
f .x;u/

jxjˇ
in R4; 0< ˇ < 4;

where V .x/ � c0 and f .x; t/ satisfies some critical exponential growth. They
established the existence of the ground state solutions.

Motivated by the work [Chen et al. 2018], we will study the existence of ground
state solutions for the following polyharmonic equations with singular nonlinear
term

(1-14) .��/muCV .x/uD
f .x;u/

jxjˇ
in R2m; 0< ˇ < 2m;
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where V .x/ � c0 and f .x; t/ has critical exponential growth. Furthermore, we
assume that f .x; t/ satisfies the following conditions.

(H0) The nonlinearity f .x; t/ W R2m �R! R is continuous, f .x; t/D 0 at .x; 0/,
and has exponential growth as t!C1, which means there exists a constant ˛0> 0

such that

lim
t!C1

f .x; t/e�˛jt j
2

D

�
0 for all ˛ > ˛0;

C1 for all ˛ < ˛0;

uniformly in x 2 R2m.

(H1) There exist constants ˛0, b1, b2> 0 such that for any .x; t/2R2m�.0;C1/,

0< f .x; t/� b1t C b2ˆ2m;m.˛0t2/; where ˆ2m;m.t/D et
� 1:

(H2) There exist constants t0 and M0 > 0 such that

0< F.x; t/ WD

Z t

0

f .x; s/ ds �M0f .x; t/ for all .x; t/ 2 R2m
� Œt0;C1/:

(H3) There exists a constant � > 2 such that for all x 2 R2m and t > 0,

0< �F.x; t/� f .x; t/t:

(H4) lim sup
t!0C

2F.x; t/

jt j2
< �ˇ uniformly in x 2 R2m,

where �ˇ D inf
u2E

R
R2m jr

muj2CV .x/juj2 dxR
R2m juj2=jxjˇ dx

:

(H5) There exist constants p > 2 and Cp such that for all .x; t/ 2 R2m � .0;C1/,

f .x; t/� Cptp�1;

where Cp >

�
ˇ2m;m

�
1� ˇ

2m

�
˛0

�.2�p/
2
�

p� 2

p

�p�2
2

Sp
p

and S2
p WD inf

u2E

R
R2m jr

muj2CV .x/juj2 dx�R
R2m jujp=jxjˇ dx

� 2
p

:

(H6) The function f .x;t/
t

is increasing for t > 0.
By (H2) and (H3), we can get that for all .x; t/ 2 R2m � Œ0;C1/, there exists

� > 0 such that
0< F.x; t/� �f .x; t/:

This result together with (H1) and the singular Adams inequality in W m;2.R2m/

yields the boundedness of F.x;u/ and f .x;u/v in L1.R2m; jxj�ˇdx/ for any
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u; v 2 E. Hence, one can easily find the functional related with polyharmonic
equation (1-14), given by

Iˇ.u/D
1
2
kuk2E �

Z
R2m

F.x;u/

jxjˇ
dx;

is well defined. With standard calculations, it is easy to obtain that Iˇ 2 C 1.E;R/

and

I 0ˇ.u/v D

Z
R2m

.rmurmvCV .x/uv/ dx�

Z
R2m

f .x;u/v

jxjˇ
dx; u; v 2E:

Since the weak solutions of (1-14) are equivalent to the critical points of func-
tional Iˇ , we focus our attention on critical points of functional Iˇ . Equation (1-14)
is different from Equations (1-11) and (1-12). Unlike Bao, Lam and Lu’s result [Bao
et al. 2016], we do not necessarily assume that f .x; t/ satisfies some periodicity
conditions. Moreover, the presence of potential V .x/ of (1-14) makes it difficult
to directly apply Yang’s argument in [Yang 2012a]. Thus a new compactness
embedding in W m;2.R2m/ must be established and we observe that the weight
term 1=jxjˇ provides a good control to the integral away from zero, which enables
us to establish the following compactness result.

Theorem 1.7. The Sobolev space W m;2.R2m/ can be compactly embedded into
Lq.R2m; jxj�s dx/ when q � 2 and 0< s < 2m.

Remark 1.8. In view of E ,!W m;2.R2m/ and Theorem 1.7, we can derive that
E can be compactly embedded into Lq.R2m; jxj�s dx/ for q � 2 and 0< s < 2m.

With the help of Theorem 1.7, our next result will concern the existence of the
ground state solution of polyharmonic equation (1-14).

Theorem 1.9. Assume f .x; t/ satisfies (H1)–(H6), then (1-14) has a ground state
solution.

In the case of ˇ D 0, (1-14) becomes the following nonsingular polyharmonic
equation

(1-15) .�4/muCV .x/uD f .x;u/ in R2m:

The existence of the ground state solution of (1-15) cannot be obtained immediately
from Theorem 1.9 due to the absence of compactness embedding. There is a
common constrained minimization theory to deal with this problem. Unfortunately,
this method crucially depends on the rearrangement inequality which is not obvious
available in W m;2.R2m/. In order to overcome this difficulty, we use the principle
of the symmetric criticality of the Hilbert space. By assuming f .x; t/ and V .x/ are
radially symmetric with respect to x, one can carry out the same process as what
we do in Theorem 1.9 to derive a nontrivial weak solution of the polyharmonic
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equation with nonsingular nonlinearity (1-15). However, whether there exists a
ground state solution to (1-15) is still open. In a very recent work of Chen, Lu and
Zhu [Chen et al. 2019], they made the first attempt in this direction. They derive the
existence of ground state solutions to (1-15) when mD 2, V is a trapping potential
and

f .x;u/D u exp.2u2/:

Theorem 1.10. Under the assumptions of Theorem 1.9, if we additionally assume
that V .x/ and f .x; t/ are radially symmetric in x, f .x; t/D o.t/ at origin, then
polyharmonic equation with nonsingular linearity (1-15) has a nontrivial weak
solution.

The plan of the paper is as follows. In Section 2, we employ the change of variable
to establish some weighted Adams inequalities in W m;2.R2m/ involved with the
norm .krmuk

n=m

n=m
C �kuk

n=m

n=m
/m=n for any � > 0. Sections 3 and 4 are devoted to

the concentration-compactness principle for the weighted Adams inequality and
a new compactness embedding in W m;2.R2m/. As an immediate application of
Theorem 1.4, in Section 5, we give sufficient conditions to guarantee the existence
of ground state solutions for the polyharmonic equation with singular exponential
nonlinearity term. Finally, in Section 6, we also derive the existence of a nontrivial
weak solution for the polyharmonic equation (1-15) through the principle of the
symmetric criticality.

2. Proof of Theorems 1.1 and 1.2

In this section, we will utilize a change of variable to establish Adams inequal-
ity (1-7).

Proof. For any � > 0, 0< ˛ � ˇn;m and u 2W m;2.R2m/ withZ
Rn

jr
muj

n
m C � juj

n
m dx � 1;

we denote a new function v.x/ given by v.�1=nx/Du.x/. Then direct computations
yield that Z

Rn

jr
mvj

n
m Cjvj

n
m dx D

Z
Rn

jr
muj

n
m C � juj

n
m dx � 1

and Z
Rn

ˆn;m.˛juj
n

n�m / dx D
1

�

Z
Rn

ˆn;m.˛jvj
n

n�m / dx:
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Combining this with inequality (1-6), we obtain

sup
krmuk

n
m
n
m
C�kuk

n
m
n
m
�1

Z
Rn

ˆn;m.˛juj
n

n�m / dx

�
1

�
sup

krmvk
n
m
n
m
Ckvk

n
m
n
m
�1

Z
Rn

ˆn;m.˛jvj
n

n�m / dx � C.m; n/:

Next, it suffices to show that inequality (1-8) still holds for any � > 0 and
0� t < n. In fact, we have

(2-1)
Z

Rn

ˆn;m

�
˛
�
1� t

n

�
juj

n
n�m

�
jxjt

dx

�

Z
jxj�1

ˆn;m

�
˛
�
1� t

n

�
juj

n
n�m

�
jxjt

dxC

Z
jxj�1

ˆn;m

�
˛.1� t

n
/juj

n
n�m

�
dx:

This together with (1-7) and the Hölder inequality leads to

sup
krmuk

n
m
n
m
C�kuk

n
m
n
m
�1

Z
Rn

ˆn;m

�
˛
�
1� t

n

�
juj

n
n�m

�
jxjt

dx . 1

for any 0< ˛ < ˇn;m.
Finally, we prove that inequality (1-8) still holds in the case of ˛ D ˇn;m.

Following the same line of the proof of Theorem 1 in [Fontana and Morpurgo 2015],
we can obtain that for any u2W m;n=m.Rn/ satisfying

R
Rn jr

muj
n
m Cjuj

n
m dx � 1,

(2-2)
Z
�

ˆn;m

�
ˇn;m

�
1� t

n

�
juj

n
n�m

�
jxjt

dx . .1Cj�j1�
t
n /;

where � is any bounded domain of Rn. Let

A WD fx 2 Rn
W ju.x/j � 1g:

Since u 2W m;n=m.Rn/, it is obvious that A is a bounded domain. Now, we split
the integral over Rn into two parts:Z

Rn

ˆn;m

�
ˇn;m

�
1� t

n

�
juj

n
n�m

�
jxjt

dx

D

Z
A

ˆn;m

�
ˇn;m

�
1� t

n

�
juj

n
n�m

�
jxjt

dxC

Z
RnnA

ˆn;m

�
ˇn;m

�
1� t

n

�
juj

n
n�m

�
jxjt

dx

D I1C I2:
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For I1, using the estimate (2-2), we obtain that

I1 D

Z
A

ˆn;m

�
ˇn;m

�
1� t

n

�
juj

n
n�m

�
jxjt

dx . 1:

For I2, sinceZ
RnnA

ˆn;m

�
ˇn;m

�
1� t

n

�
juj

n
n�m

�
jxjt

dx

.
Z
fjxj�1; juj�1g

juj
n
m

jxjt
dxC

Z
fjxj�1; juj�1g

juj
n
m

jxjt
dx . 1;

we derive that I2 . 1. Combining the above estimates, we derive inequality (1-8)
in the case of ˛ D ˇn;m, � D 1. Carrying out the same procedure as the proof of
Theorem 1.1, one can conclude that inequality (1-8) still holds for any � > 0. �

3. The proof of Theorem 1.4

Our purpose in this section is to prove Theorem 1.4. Namely, we will give the proof
of the concentration-compactness principle for weighted Adams inequalities. Our
proof relies on the following lemmas.

Lemma 3.1 [Brézis and Lieb 1983]. Let � be an open subset of Rn and fukgk �

Lp.�/ .1� p <1/. If fukgk satisfies the following conditions:

(i) fukgk is bounded in Lp.�/,

(ii) uk ! u almost everywhere in �,

then
lim

k!1
.kukk

p
p �kuk �ukpp /D kuk

p
p :

Lemma 3.2. Let � � Rn be an open domain and ffkgk � W m;n=m.�/ that
strongly converges to f in W m;n=m.�/. Then there exists a subsequence ffkj gj

and a positive function g 2W m;n=m.�/ such that

fkj .x/! f .x/ a.e. in � as j !C1;

and
jfkj .x/j � g.x/ a.e. in � for all j:

Remark 3.3. Since the proof of Lemma 3.2 is similar to that of Proposition 1 in
[do Ó et al. 2009], we omit the details.

Proof of Theorem 1.4. At first, we show the proof of inequality (1-9). It follows
from the semicontinuity of the norm in E that

kuk2E � lim inf
k
kukk

2
E D 1:
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We carry out the process by considering the following two cases.

Case 1. kuk2
E
D 1. Applying the Brezis–Lieb lemma (Lemma 3.1) on the Hilbert

space E, one can show that uk ! u strongly in E. In light of Lemma 3.2, we can
find a subsequence fukj gj and a positive function v 2E such that jukj .x/j � v.x/.
Then it follows that

(3-1)
Z

R2m

ˆ2m;m

�
ˇ2m;m

�
1� t

2m

�
pu2

kj

�
jxjt

dx

�

Z
R2m

ˆ2m;m

�
ˇ2m;m

�
1� t

2m

�
pv2

�
jxjt

dx <1:

Case 2. 0 < kuk2
E
< 1. Defining ‰.X /D ˆ2m;m

�
ˇ2m;m

�
1� t

2m

�
pX

�
for nota-

tional convenience, one can write that

(3-2) sup
k

Z
R2m

‰.u2
k
/

jxjt
dx

� sup
k

Z
R2m

‰
�
.1C "/.uk �u/2CC"u

2
�

jxjt
dx

D sup
k

Z
R2m

‰..1C "/.uk �u/2/‰.C"u
2/

jxjt
dx

C sup
k

Z
R2m

‰..1C "/.uk �u/2/

jxjt
dxC sup

k

Z
R2m

‰.C"u
2/

jxjt
dx

DW I1C I2C I3;

where we use the elementary inequality which states

.aC b/2 � .1C "/a2
CC"b

2 for a; b � 0 and " > 0:

For I1, as an immediately consequence of the Hölder inequality and the singular
Adams inequality, we can derive that

(3-3) I1 .
�

sup
k

Z
R2m

ˆ2m;m

�
ˇ2m;m

�
1� t

2m

�
pr.1C "/.uk �u/2

�
jxjt

dx

�1
r

;

where r is sufficiently close to 1. Noting that uk * u weakly in E and E is a
Hilbert space, one can apply the Brezis–Lieb lemma to derive that

kuk �uk2E D kukk
2
E �kuk

2
E D 1�kuk2E ;

which yields that

ˇ2m;m

�
1� t

2m

�
pr.1C "/.krm.uk �u/k2

2
C c0kuk �uk2

2
/ < ˇ2m;m

�
1� t

2m

�
:
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Combining this with Theorem 1.2 with �Dc0, we conclude that I1<C1. Similarly,
we can obtain that I2 <C1. Thus, we accomplish the proof of inequality (1-9).

Next, we are ready to show that p2m;m.u/ is sharp when V .x/ is constant.
Without loss of generality, we assume V .x/D 1. The idea of proving this sharpness
follows from the result of do Ó et al. [2014]. Similarly, we construct a sequence
fukgk �W m;2.R2m/ and a function u 2W m;2.R2m/ such that

kukk D 1; uk * u 6� 0 in W m;2.R2m/; kuk D ı < 1;

but Z
R2m

ˆ2m;m

�
ˇ2m;m

�
1� t

2m

�
p2m;m.u/u

2
k

�
jxjt

dx!1:

We denote a sequence fwkgk �W m;2.R2m/ by

wk.x/D

8̂̂̂<̂
ˆ̂:

1

.2m�2/!!.2m/
1
2

!
� 1

2

2m�1
k

1
2 if jxj 2 Œ0; re

�k
2m �;

!
� 1

2

2m�1
.2m/

1
2

.2m�2/!!
ln. r
jxj
/k�

1
2 if jxj 2 Œre

�k
2m ; r �;

0 if jxj 2 Œr;C1/;

where r > 0 to be chosen later. Simple calculations show that

wk * 0 in W m;2.R2m/; krmwkk
2
2 D 1; kwkk

2
2 DO.k�1/:

Next, we define a new function u W R2m! R given by

u.x/D

8<:
A if jxj 2 Œ0; 2R

3
�;�

1�
�

2
3

�m��1�
A� A

Rm jxj
m
�

if jxj 2 Œ2R
3
;R�;

0 if jxj 2 ŒR;C1/;

where RD 3r and A is a positive constant which needs to be chosen later. Then

(3-4) kuk2 D kuk22Ckr
muk22

D
!2m�1

2m

�
2
3
R
�2m

A2

C!2m�1

Z R

2R
3

��
1�

�
2
3

�m��1
�
A�

A

Rm
rm
��2

r2m�1 dr

C
�
1�

�
2
3

�m��2
�

A

Rm

�2
!2m�1

Z R

2R
3

m!!.3m� 2/!!

.2m� 2/!!
r2m�1 dr

D CA2:
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Picking A satisfying kuk D ı < 1, a direct application of the Hölder inequality
yields that

(3-5) kvkk
2
2 WD kuC .1� ı

2/
1
2wkk

2
2

D

Z
R2m

juC .1� ı2/
1
2wk j

2dx

D

Z
R2m

u2
C 2.1� ı2/

1
2 uwk C .1� ı

2/w2
kdx

D kuk22C �k ;

where

�k D

�
1

m
A.1� ı2/

1
2
.2m/

1
2

.2m� 2/!!
!

1
2

2m�1

�
r2me�k k

2m
C

r2m

2m
�

r2m

2m
e�k

��
k�

1
2

CO.k�1/:

It is clear that rmu and rmwk have disjoint supports, so

(3-6) kr
mvkk

2
2 D kr

muk22C .1� ı
2/ and kvkk

2
D 1C �k :

Let uk D vk=.1C �k/
1=2; one can easily see that

kukk D 1 and uk * u in W m;2.R2m/:

Consequently,

(3-7)
Z

R2m

ˆ2m;m

�
ˇ2m;m

�
1� t

2m

�
p2m;m.u/u

2
k

�
jxjt

dx

�

Z
Br e
�k
2m

exp
�
ˇ2m;m

�
1� t

2m

�
.1�ı2/�1u2

k

�
jxjt

dx�

Z
Br e
�k
2m

1

jxjt
dx

D

Z
Br e
�k
2m

exp
�
ˇ2m;m

�
1� t

2m

�
..1C�k/

� 1
2 .AC.1�ı2/

1
2wk//

2.1�ı2/�1
�

jxjt
dxCC

D

Z
Br e
�k
2m

exp
��

1� t
2m

��
.1C�k/

� 1
2

� ˇ1=2
2m;m

A

.1�ı2/1=2
Ck

1
2

��2�
jxjt

dxCC

& exp
��

1�
t

2m

���
.1C�k/

� 1
2

�
ˇ

1
2

2m;mA

.1�ı2/
1
2

Ck
1
2

��2

�k

��
r2m�t

CC !C1;

where r < 1 is selected in such a way that �k <
ˇ

1=2

2m;m
A

.1�ı2/1=2 k�
1
2 . Then Theorem 1.4

is completed. �
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4. the proof of Theorem 1.7

In this section, we begin with a simple fact that the norm .krmuk2
2
Ckuk2

2
/1=2 and

the standard Sobolev norm given by

kukW m;2 D

�jDmX
jD0

kr
j uk22

� 1
2

is equivalent. In fact, for any u 2 C1c .R2m/, through Caffarelli–Kohn–Nirenberg
inequalities [Lin 1986], one can derive that

(�)
Z

R2m

jr
j uj2 dx �

�Z
R2m

juj2 dx

� j
m
�Z

R2m

j�uj2 dx

�1� j
m

:

Then a simple density argument implies that (�) also holds for u 2W m;2.R2m/.
Now, we are in a position to show that a Sobolev space equipped with the norm
.krmuk2

2
Ckuk2

2
/1=2 can be compactly embedded into Lp.R2m; jxj�ˇdx/ for any

p � 2 and 0< ˇ < 2m.

Proof. Continuous embedding is an easy consequence of the Adams inequality (1-5).
Our aim is to show that the above continuous embedding is compact. In light of
W m;2.R2m/ ,�,!L

q
loc.R

2m/ for q � 1, one can find a subsequence fukj gj such that

ukj .x/! u.x/; strongly in Lq.BR.0// for any R> 0;

ukj .x/! u.x/; for almost every x 2 R2m:

Therefore, our purpose is to show that

(4-1) ukj ! u in Lq.R2m; jxj�sdx/:

Applying the Egorov theorem, we obtain that for any BR.0/ and ı > 0,

there exists Eı � BR.0/ satisfying m.Eı/ < ı;

such that

ukj uniformly converges to u in BR.0/ nEı:

Hence, it follows that

(4-2) lim
R!C1

lim
ı!0

lim
j!C1

Z
R2m

jukj �ujq

jxjs
dx

D lim
R!C1

lim
ı!0

lim
j!C1

Z
Eı

jukj �ujq

jxjs
dx

C lim
R!C1

lim
ı!0

lim
j!C1

Z
BR.0/nEı

jukj �ujq

jxjs
dx

C lim
R!C1

lim
ı!0

lim
j!C1

Z
R2mnBR.0/

jukj �ujq

jxjs
dx

DW I1C I2C I3:
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By the Hölder inequality and the Sobolev continuous embedding, one can derive
that

(4-3) I1 � lim
ı!0

lim
j!C1

�Z
Eı

1 dx

�1
t
�Z

Eı

jukj �ujqt 0

jxjst 0
dx

�1
t0

. lim
ı!0

sup
j

kukj k
q.m.Eı//

1
t

D 0;

where t > 1 and st 0 < 2m. For I2, the uniform convergence of ukj in BR.0/nEı
yields that I2 D 0. For I3, the Sobolev continuous embedding W m;2.R2m/ ,!

Lq.R2m/ for q � 2 yields that

(4-4) I3 � lim
R!C1

lim
ı!0

lim
j!C1

1

Rs

Z
R2mnBR.0/

jukj �ujq dx

. lim
R!C1

sup
j

kukj k
q 1

Rs

D 0:

Thus, we have accomplished the proof of Theorem 1.7. �

As a direct result of Theorem 1.7 and Remark 1.8, we can easily see that the
best constant Sp .p � 2/ in (H3) could be achieved (one can refer to [Zhang and
Chen 2018] for details).

5. The proof of Theorem 1.9

This section is devoted to the proof of Theorem 1.9. We carry out the proof in
three parts. In Part 1, we use the mountain-pass theorem without the Palais–Smale
compactness condition to derive the existence of weak solutions of (1-14) satisfying
hypotheses (H1)–(H4). Therefore, in Part 2, we utilize the method combining
the concentration-compactness principle and the new compactness theorem in
W m;2.R2m/ to verify that the functional Iˇ satisfies the Palais–Smale compactness
condition. Part 3 is devoted to showing that the critical point of the functional Iˇ is
actually a ground state solution of polyharmonic equation (1-14). Before starting
the proof, we need a couple of important lemmas for which we omit the proofs.

Lemma 5.1 [Badiale and Serra 2011]. Let X be a Hilbert space, ' 2 C 2.X;R/,
e 2X and r > 0 such that kek> r and b WD infkukDr '.u/ > '.0/� '.e/. Define

c D inf
g2�

max
s2Œ0;1�

'.g.s//;

where

� WD fg 2 C.Œ0; 1�;X / W g.0/D 0; g.1/D eg:
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Then there exists a sequence fukgk 2 X such that '.uk/ ! c, '0.uk/ ! 0 as
k!C1.

Remark 5.2. In the case of pD 2, one can use the property of the Hilbert space to
replace uk ! u almost everywhere in � with uk * u.

Now, we are ready to start the proof of Theorem 1.9.

Part 1. In this part, we first check that Iˇ.u/ satisfies geometric conditions without
the Palais–Smale compactness condition.

Lemma 5.3. Assume (H1)–(H4) hold. Then

(i) there exist constants ı; � > 0 such that Iˇ.u/� ı for any kukE D �,

(ii) there exists e 2E such that kekE > �, but Iˇ.e/ < 0.

Proof. According to (H4), there exist positive constants ", ı such that for any jt j � ı,

(5-1) F.x; t/� 1
2
.�ˇ � "/jt j

2 for x 2 R2m:

Moreover, by (H1), we derive that for any jt j� ı and x 2R2m, there exists constants
c1; c2 such that

(5-2) F.x; t/� c1jt j
2
C c2jt jˆ2m;m.˛0jt j

2/� Cıjt j
3ˆ2m;m.˛0jt j

2/;

where Cı D
c1

ıˆ2m;m.˛0jıj2/
C

c2

ı2
:

Then it follows from (5-1) and (5-2) that

(5-3) F.x; t/� 1
2
.�ˇ � "/jt j

2
CC jt j3ˆ2m;m.˛0jt j

2/ for all .x; t/ 2 R2m
�R:

For sufficiently small kukE , we claim that the following inequality holds:

(5-4)
Z

R2m

juj3
ˆ2m;m.˛0juj

2/

jxjˇ
dx � Ckuk3E :

For the continuity of our work, let us postpone the proof of (5-4).
Suppose (5-4) holds, we can combine (5-3) and (5-4) to arrive at

(5-5) Iˇ.u/D
1
2
kuk2E �

Z
R2m

F.x;u/

jxjˇ
dx

�
1
2
kuk2E�

1
2
.�ˇ�"/

Z
R2m

juj2

jxjˇ
dx�C

Z
R4

juj3
ˆ2m;m.˛0juj

2/

jxjˇ
dx

�
1
2
kuk2E �

1
2

�ˇ � "

�ˇ
kuk2E �Ckuk3E

D kuk2E

�
"

2�ˇ
�CkukE

�
:

When kukE � "=.2C�ˇ/, inequality (i) holds.
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Now, we give the proof of inequality (5-4). By applying the Hölder inequality
and considering the level sets of the function, one can obtain that for p > 1 and
1
p
C

1
p0
D 1,

(5-6)
Z

R2m

juj3
ˆ2m;m.˛0juj

2/

jxjˇ
dx

.
�Z

R2m

ˆ2m;m.p˛0juj
2/

jxjˇ
dx

�1
p
�Z

R2m

juj3p0

jxjˇ
dx

� 1
p0

.
�Z

R2m

ˆ2m;m.p˛0juj
2/

jxjˇ
dx

�1
p

kuk3
E

,

where the last inequality comes from the Sobolev continuous embedding E ,!

Lq.R2m; jxj�ˇdx/. Pick p > 1 sufficiently close to 1 such that

p˛0kuk
2 � ˇ2m;m

�
1� ˇ

2m

�
due to the fact that kuk�kukE is sufficiently small. The singular Adams inequalities
in R2m yield that

(5-7)
Z

R2m

juj3
ˆ2m;m.˛0juj

2/

jxjˇ
dx � Ckuk3E :

For (ii), it suffices to show that for a fixed u 2E,

Iˇ.su/!�1 as s!C1:

Without loss of generality, we may assume u has bounded support�. Through (H3),
one finds that for any t > 0,

@

@t
.ln F.x; t//�

�

t
;

which leads to the result F.x; t/�F.x; t0/t
��
0

t� for some t0 > 0. Therefore, there
exist positive constants c1; c2 such that

F.x; t/� c1t� � c2 for .x; t/ 2�� Œ0;1/:

Then,

(5-8) Iˇ.su/D
s2

2
kuk2E �

Z
�

F.x; su/

jxjˇ
dx

�
s2

2
kuk2E � c1s�

Z
�

juj�

jxjˇ
dxC c3j�j

1� ˇ
2m :

This inequality together with � > 2 implies that

Iˇ.su/!�1 as s!C1:
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The proof of Lemma 5.3 is finished. �

Lemma 5.3 shows that the functional Iˇ satisfies geometric conditions of the
mountain-pass theorem which yields that there exists a Palais–Smale sequence
fukgk which satisfies Iˇ.uk/! cˇ and I 0

ˇ
.uk/! 0 as k!C1, where

cˇ D inf
g2�

max
s2Œ0;1�

Iˇ.g.s//; � WD
˚
g 2 C.Œ0; 1�;E/ W g.0/D 0; I.g.1// < 0

	
:

Lemma 5.4. Assume (H1), (H2) and (H3) hold. Let fukgk � E be an arbitrary
Palais–Smale sequence, i.e.,

Iˇ.uk/! cˇ; I 0ˇ.uk/! 0; as k!C1:

Then there exists a subsequence of fukgk (still denoted by fukgk) and u 2E such
that 8̂<̂

:
f .x;uk/

jxjˇ
!

f .x;u/

jxjˇ
strongly in L1

loc.R
2m/;

F.x;uk/

jxjˇ
!

F.x;u/

jxjˇ
strongly in L1.R2m/:

Furthermore, u is a weak solution of (1-14).

Proof. At first, we prove that

(5-9)
Z

R2m

F.x;uk/

jxjˇ
dx � C and

Z
R2m

f .x;uk/uk

jxjˇ
dx � C:

Let fukgk denote a Palais–Smale sequence of the function Iˇ, i.e.,

(5-10) 1
2
kukk

2
E �

Z
R2m

F.x;uk/

jxjˇ
dx! cˇ as k!1

and

(5-11) jI 0.uk/vj � �kkvkE for all v 2E;

where �k ! 0 as k!1. Moreover, taking v D uk in (5-11), we get

(5-12)
Z

R2m

f .x;uk/uk

jxjˇ
dx�kukk

2
E � �kkukkE :

This together with (5-10) and (H4) leads to

�cˇC �kkukkE �

�
�

2
� 1

�
kukk

2
E �

Z
R2m

Œ�F.x;uk/�f .x;uk/uk �

jxjˇ
dx

�

�
��2

2

�
kukk

2
E :
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Thus, kukkE is bounded. Combine this with (5-10) and (5-12), we can get (5-9).
Since kukkE is bounded. Thanks to Theorem 1.7, we can assume that up to a
sequence,

uk * u; weakly in E;

uk ! u; strongly in Lq.R2m; jxj�ˇdx/ for all q � 2;

uk.x/! u.x/; for almost every x 2 R2m:

By hypothesis (H1), through similar arguments to Lemma 2.1 in [de Figueiredo
et al. 1995], we derive that

(5-13)
f .x;uk/

jxjˇ
!
f .x;u/

jxjˇ
strongly in L1

loc.R
2m/:

To show the convergence of
R

R2m
F.x;uk/

jxjˇ
dx, one can writeZ

R2m

jF.x;uk/�F.x;u/j

jxjˇ
dx

D

Z
BR

jF.x;uk/�F.x;u/j

jxjˇ
dxC

Z
R2mnBR

jF.x;uk/�F.x;u/j

jxjˇ
dx:

According to (H2) and (H3), there exists a positive constant R0 such that

(5-14)
F.x;uk/

jxjˇ
�

R0f .x;uk/

jxjˇ
for all x 2 R2m:

Together with the generalized Lebesgue dominated convergence theorem, we can
get that

(5-15) lim
R!C1

lim
k!C1

Z
BR

jF.x;uk/�F.x;u/j

jxjˇ
dx D 0:

Thus, it suffices to check that

(5-16) lim
R!C1

lim
k!C1

Z
R2mnBR

jF.x;uk/�F.x;u/j

jxjˇ
dx D 0:

By dividing the integral into two parts, we arrive atZ
R2mnBR

jF.x;uk/�F.x;u/j

jxjˇ
dx D

Z
fjxj�Rg

T
fjuk j>Ag

jF.x;uk/�F.x;u/j

jxjˇ
dx

C

Z
fjxj�Rg

T
fjuk j�Ag

jF.x;uk/�F.x;u/j

jxjˇ
dx

DW IAC IIA:
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For IA, it follows from (5-9) thatZ
fjxj�Rg

T
fjuk j>Ag

jF.x;uk/j

jxjˇ
dx �

R0

A

Z
fjxj�Rg

T
fjuk j>Ag

jf .x;uk/uk j

jxjˇ
dx

. R0

A
:

Thus, limA!C1 limR!C1 limk!C1 IA D 0.
For IIA, applying hypothesis (H1) and Theorem 1.7, one can derive that

(5-17) lim
A!C1

lim
R!C1

lim
k!C1

IIA

� lim
A!C1

lim
R!C1

lim
k!C1

C.˛0;A/

Z
fjxj�Rg

T
fjuk j�Ag

juk j
2

jxjˇ
dx

� lim
A!C1

lim
R!C1

lim
k!C1

C.˛0;A/

Rˇ=2
sup

k

kukk
2
E

D 0:

Hence,

(5-18) lim
k!C1

Z
R2m

jF.x;uk/�F.x;u/j

jxjˇ
dx D 0:

A simple application of (5-13) shows thatZ
R2m

.rmurm'Cu'/ dx�

Z
R2m

f .x;u/

jxjˇ
' dx D 0; for all ' 2 C10 .R2m/:

Thus, u is a weak solution of polyharmonic equation (1-14). �

Part 2. This part is devoted to showing that the Palais–Smale sequence fukgk

satisfies the Palais–Smale condition in light of the concentration-compactness
principle. We begin with a crucial fact:

0< cˇ <
�
1�

ˇ

2m

�
ˇ2m;m

2˛0
:

Recall that we have shown the attainability of Sp in Section 4, so there exists a
function u such that Z

R2m

jujp

jxjˇ
dx D 1 and kukE D Sp:

Through the definition of cˇ, we get

0< cˇ �max
t�0

Iˇ.tu/Dmax
t�0

�
t2

2
S2

p �

Z
R2m

F.x; tu/

jxjˇ
dx

�
:
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According to the definition of Cp, we can obtain that

(5-19) cˇ �max
t�0

�
t2

2
S2

p � tp Cp

p

�
D
.p� 2/

2p

S
2p=.p�2/
p

C
2=.p�2/

p

<
ˇ2m;m

�
1� ˇ

2m

�
2˛0

:

Now, we are in a position to verify that fukgk satisfies the Palais–Smale com-
pactness condition. We discuss this by the following two cases.

Case 1. .cˇ ¤ 0;uD 0/. We first claim that there exists some q > 1 such thatZ
R2m

ˆ2m;m.˛0juk j
2/q

jxjˇ
dx � C for all k 2 N:

Since uD 0, one can employ Lemma 5.4 to drive that

(5-20)
Z

R2m

F.x;uk/

jxjˇ
dx!

Z
R2m

F.x;u/

jxjˇ
dx D 0:

Together with (5-10), we obtain that

(5-21) kukk
2
E! 2cˇ as k!1:

Take q > 1 sufficiently close to 1 such that

(5-22) ˛0qkukk
2
� ˛0qkukk

2
E � ˇ0 <

�
1�

ˇ

2m

�
ˇ2m;m:

Then, it follows that

(5-23)
Z

R2m

ˆ2m;m.˛0juk j
2/q

jxjˇ
dx �

Z
R2m

ˆ2m;m.˛0juk j
2/q

jxjˇ
dx

.
Z

R2m

ˆ2m;m

�
ˇ0

�
uk

kukk

�2�
jxjˇ

dx

. 1:

Combining hypothesis (H1), the Hölder inequality and (5-23), one can derive
that

(5-24)
ˇ̌̌̌Z

R2m

f .x;uk/uk

jxjˇ
dx

ˇ̌̌̌

.
Z

R2m

juk j
2

jxjˇ
dxC

�Z
R2m

ˆ2m;m.˛0juk j
2/

q

jxjˇ
dx

�1
q
�Z

R2m

juk j
q0

jxjˇ
dx

� 1
q0

.
�Z

R2m

juk �uj2

jxjˇ
dx

�1
2

C

�Z
R2m

juk �ujq
0

jxjˇ
dx

� 1
q0

;

where q > 1 close enough to 1 and 1
p
C

1
p0
D 1.



376 CAIFENG ZHANG, JUNGANG LI AND LU CHEN

Thanks to Theorem 1.7 again, we arrive atZ
R2m

f .x;uk/uk

jxjˇ
dx! 0 as k!1:

Taking I 0
ˇ
.uk/uk ! 0 into consideration, we get limk!1 kukkE! 0, which is a

contradiction with cˇ > 0.

Case 2. .cˇ ¤ 0;u¤ 0/. We claim that limk!1 kukkE D kukE . We argue this
by contradiction. Suppose limk!1 kukkE > kukE , and define

vk WD
uk

kukkE
and v0 WD

u

limk!1 kukkE
:

We claim that for q > 1 sufficiently close to 1, there exists a constant ˇ0 > 0 such
that the following inequality holds.

(5-25) q˛0kukk
2
E � ˇ0 <

ˇ2m;m

�
1� ˇ

2m

�
1�kv0k

2
E

:

Indeed,

(5-26) lim
k!1

kukk
2
E.1�kv0k

2
E/

D lim
k!1

kukk
2
E

�
1�

kuk2
E

limk!1 kukk
2
E

�
D 2cˇC2

Z
R2m

F.x;u/

jxjˇ
dx�2Iˇ.u/�2

Z
R2m

F.x;u/

jxjˇ
dx

<
ˇ2m;m

�
1� ˇ

2m

�
˛0

;

where we apply Iˇ.u/�0. Then it follows from the above estimate and Theorem 1.4
that

(5-27)
Z

R2m

.ˆ2m;m.˛0juk j
2//q

jxjˇ
dx � C

Z
R2m

ˆ2m;m

�
ˇ0

ˇ̌
uk

kukkE

ˇ̌2�
jxjˇ

dx . 1:

Under hypothesis (H1), the Hölder inequality gives that

(5-28)
ˇ̌̌̌Z

R2m

f .x;uk/.uk �u/

jxjˇ
dx

ˇ̌̌̌

� b1

�Z
R2m

juk j
2

jxjˇ
dx

�1
2
�Z

R2m

juk �uj2

jxjˇ
dx

�1
2

C b2

�Z
R2m

juk �ujq
0

jxjˇ
dx

� 1
q0
�Z

R2m

.ˆ2m;m.˛0juk j
2//q

jxjˇ
dx

�1
q

:
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Thanks to Theorem 1.7, we derive the following conclusion with inequalities (5-27)
and (5-28): Z

R2m

f .x;uk/.uk �u/

jxjˇ
dx! 0:

Together with I 0
ˇ
.uk/.uk �u/! 0, we getZ

R2m

r
muk.r

muk �r
mu/ dxC

Z
R2m

V .x/uk.uk �u/ dx! 0:

Since uk * u in E, we haveZ
R2m

r
mu.rmuk �r

mu/ dx! 0 and
Z

R2m

V .x/u.uk �u/ dx! 0:

Therefore

(5-29) lim
k!C1

kuk �uk2E D lim
k!C1

Z
R2m

.rmuk �r
mu/.rmuk �r

mu/ dx

C lim
k!C1

Z
R2m

V .x/.uk �u/.uk �u/ dx

D 0;

which arrives at a contradiction with limk!1 kukkE > kukE .

Part 3. In this part, we show that the critical point of functional Iˇ is actually a
ground state solution for the singular polyharmonic equation (1-14). Define

mD inf
u2s

Iˇ.u/ and S WD fu 2E W u 6� 0 and I 0ˇ.u/D 0g:

For all w 2 S , pick t0 sufficiently large such that Iˇ.t0w/ < 0. Denote h W

.0;C1/! R by h.t/D Iˇ.tw/ and g W Œ0; 1�! E by g.t/D t t0w. It is easy to
check that

h0.t/D I 0ˇ.tw/w D tkwk2E �

Z
R2m

f .x; tw/w

jxjˇ
dx; for all t > 0:

Combine this with I 0
ˇ
.w/w D 0, we easily see that

h0.t/D t

Z
R2m

�
f .x; w/

w
�
f .x; tw/

tw

�
w2

jxjˇ
dx;

which implies that h0.t/ > 0 for t 2 .0; 1/ and h0.t/ < 0 for t > 1 under hypothe-
sis (H6). Thus,

cˇ � max
t2Œ0;1�

Iˇ.g.t//�max
t�0

Iˇ.tw/D Iˇ.w/;

which concludes the proof of Theorem 1.9.
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6. The proof of Theorem 1.10

In this section, we will investigate the existence of the nontrivial weak solutions for
nonsingular polyharmonic equation (1-15). The presence of the constant potential
V .x/makes it hard to follow the same line of reasoning as for Theorem 1.9. In order
to overcome this difficulty, we need to use the principle of symmetric criticality.
We first introduce some background knowledge about the principle of symmetric
criticality.

Definition 6.1. The action of a topological group G on a normed space X is a
continuous map

G �X !X W Œg;u� 7! gu

such that

1 �uD u; .gh/uD g.hu/; u 7�! gu is linear.

The action is isometric if

kguk D kuk

The space of invariant points is defined by

Fix.G/ WD fu 2X W guD u;8g 2Gg:

A function ' WX ! R is invariant if ' ıg D ' for every g 2G.

Lemma 6.2 (principle of symmetric criticality [Badiale and Serra 2011]). Assume
that the action of the topological group G on the Hilbert space X is isometric. If
' 2 C 1.X;R/ is invariant and if u is a critical point of ' restricted to Fix.G/, then
u is also a critical point of '.

Lemma 6.3. For q � 2, W
m;2

r .R2m/ can be compactly embedded into Lq.R2m/

for any q > 2.

Remark 6.4. Through applying the radial lemma, one can easily get Lemma 6.3
with a slight modification of the proof of Theorem 1.7.

Now, we are in a position to prove Theorem 1.10. The functional related with
(1-15) is given by I.u/ D 1

2
kuk2

E
�
R

R2m F.x;u/ dx. Based on Lemma 6.2, we
can restrict the functional I to the subspace Er of E, where Er is the set of
all radial functions in E. It follows from same reasoning as for Lemma 5.3 that
functional I satisfies the geometric conditions which imply that there exists a
sequence fukgk 2Er such that I.uk/! c0, I 0.uk/! 0 as k!C1. Furthermore,
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we also can obtain

uk * u0; in Er ;

uk ! u0; in Lq.R2m/ for all q > 2;

uk.x/! u0.x/; almost everywhere in R2m:

We will use a new method based on Lemma 6.3 to prove thatZ
R2m

F.x;uk/ dx!

Z
R2m

F.x;u/ dx:

By splitting the integral into three parts, we have

(6-1) lim
R!1

lim
k!1

lim
A!1

Z
R2m

jF.x;uk/�F.x;u/j dx

D lim
R!1

lim
k!1

lim
A!1

Z
BR

jF.x;uk/�F.x;u/j dx

C lim
R!1

lim
k!1

lim
A!1

Z
jxj>R; juk j>A

jF.x;uk/�F.x;u/j dx

C lim
R!1

lim
k!1

lim
A!1

Z
jxj>R; juk j�A

jF.x;uk/�F.x;u/j dx

DW I1C I2C I3:

For I1, it directly follows from (5-13), (5-14) for the case ˇ D 0. For I2, in view
of hypotheses (H2) and (H3), we have

(6-2) I2 D lim
R!1

lim
k!1

lim
A!1

Z
jxj>R; juk j>A

jF.x;uk/�F.x;u/j dx

. lim
R!1

lim
k!1

lim
A!1

Z
jxj>R; juk j>A

jF.x;uk/j dx

. lim
R!1

lim
k!1

lim
A!1

1

A

Z
jxj>R; juk j>A

jf .x;uk/uk j dx

D 0:

For I3, combining the hypothesis f .x; t/D o.t/ and Lemma 6.3, one can obtain
that for any " > 0,

(6-3) I3 D lim
R!1

lim
k!1

lim
A!1

Z
jxj>R; juk j�A

jF.x;uk/�F.x;u/j dx

. lim
R!1

lim
k!1

lim
A!1

Z
jxj>R; juk j�A

jF.x;uk/j dx

. "kukk
2
E C lim

R!1
lim

k!1

Z
jxj>R

juk j
3 dx

. "kukk
2
E ;
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which leads to I3 D 0. Carrying out similar steps as we did in Section 4 (Part 1),
one can easily see that u is a weak solution of (1-15).

Next, we show uk satisfies the Palais–Smale compactness condition and u is a
critical point of functional I restricted in Er . The process of proof follows from
the similar argument of Section 4 (Part 2) as long as we can verify thatˇ̌̌̌Z

R2m

f .x;uk/.uk �u/ dx

ˇ̌̌̌
! 0:

Since f .x; t/Do.t/ at the origin, through hypothesis (H1) and the Hölder inequality,
we derive that for any " > 0, it holds that

(6-4)
ˇ̌̌̌Z

R2m

f .x;uk/.uk �u/ dx

ˇ̌̌̌

� "

�Z
R2m

juk j
2 dx

�1
2
�Z

R2m

juk �uj2 dx

�1
2

CC"

�Z
R2m

juk �ujq
0

dx

� 1
q0
�Z

R2m

.ˆ2m;m.˛0juk j
2//q dx

�1
q

:

Letting k!1 and "! 0, we arrives at the desired conclusion. Finally applying
the principle of symmetric criticality again, we see that u is also a critical point of
I in E.
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