Vol. 305, No. 2, 2020

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
On the Ekeland–Hofer symplectic capacities of the real bidisc

Luca Baracco, Martino Fassina and Stefano Pinton

Vol. 305 (2020), No. 2, 423–446
DOI: 10.2140/pjm.2020.305.423
Abstract

In 2 with the standard symplectic structure we consider the bidisc D2 × D2 constructed as the product of two open real discs of radius 1. We compute explicit values for the first, second and third Ekeland–Hofer symplectic capacity of D2 × D2 . We discuss some applications to questions of symplectic rigidity.

Keywords
symplectic capacities, Lagrangian bidisc
Mathematical Subject Classification 2010
Primary: 53D05
Secondary: 53D35
Milestones
Received: 7 February 2019
Revised: 15 October 2019
Accepted: 26 November 2019
Published: 29 April 2020
Authors
Luca Baracco
Dipartimento di Matematica Tullio Levi-Civita
Università degli studi di Padova
Padova
Italy
Martino Fassina
Department of Mathematics
University of Illinois
Urbana, IL
United States
Stefano Pinton
Dipartimento di Matematica
Politecnico di Milano
Milano
Italy