Vol. 305, No. 2, 2020

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Dominance order and monoidal categorification of cluster algebras

Elie Casbi

Vol. 305 (2020), No. 2, 473–537
DOI: 10.2140/pjm.2020.305.473
Abstract

We study a compatibility relationship between Qin’s dominance order on a cluster algebra 𝒜 and partial orderings arising from classifications of simple objects in a monoidal categorification 𝒞 of 𝒜. Our motivating example is Hernandez and Leclerc’s monoidal categorification using representations of quantum affine algebras. In the framework of Kang, Kashiwara, Kim and Oh’s monoidal categorification via representations of quiver Hecke algebras, we focus on the case of the category R-gmod for a symmetric finite type An quiver Hecke algebra using Kleshchev and Ram’s classification of irreducible finite-dimensional representations.

Keywords
quiver Hecke algebras, categorification of cluster algebras, dominance order
Mathematical Subject Classification 2010
Primary: 16G99, 16T30
Milestones
Received: 18 December 2018
Revised: 17 October 2019
Accepted: 17 November 2019
Published: 29 April 2020
Authors
Elie Casbi
Université Paris-Diderot
CNRS Institut de Mathématiques de Jussieu-Paris Rive Gauche
Paris
France