Vol. 306, No. 2, 2020

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Kuperberg and Turaev–Viro invariants in unimodular categories

Francesco Costantino, Nathan Geer, Bertrand Patureau-Mirand and Vladimir Turaev

Vol. 306 (2020), No. 2, 421–450
Abstract

We give a categorical setting in which Penrose graphical calculus naturally extends to graphs drawn on the boundary of a handlebody. We use it to introduce invariants of 3-manifolds presented by Heegaard splittings. We recover Kuperberg invariants when the category comes from an involutory Hopf algebra and Turaev–Viro invariants when the category is semisimple and spherical.

Keywords
quantum invariants, 3-manifold invariants, Heegaard splitting, modified trace, pivotal category, Kuperberg invariants
Mathematical Subject Classification 2010
Primary: 18D10, 57M27
Milestones
Received: 24 July 2019
Accepted: 7 January 2020
Published: 13 July 2020
Authors
Francesco Costantino
Institut de Mathématiques de Toulouse III - Paul Sabotier
Toulouse
France
Nathan Geer
Department of Mathematics and Statistics
Utah State University
Logan, UT
United States
Bertrand Patureau-Mirand
UMR 6205, LMBA
Université de Bretagne-Sud
Campus Tohannic
Vannes
France
Vladimir Turaev
Department of Mathematics
Indiana University
Bloomington, IN
United States