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We give a categorical setting in which Penrose graphical calculus naturally
extends to graphs drawn on the boundary of a handlebody. We use it to
introduce invariants of 3-manifolds presented by Heegaard splittings. We
recover Kuperberg invariants when the category comes from an involutory
Hopf algebra and Turaev–Viro invariants when the category is semisimple
and spherical.
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1. Introduction

A remarkable achievement of low-dimensional topology in the last 30 years was a
discovery of deep relations between topology and the theory of monoidal (tensor)
categories. This development was initiated by V. Jones’ introduction of his famous
knot polynomial; by now it encompasses many aspects of low-dimensional topology
including 3-manifold invariants, representations of mapping class groups of surfaces,
topological quantum field theories in dimensions 2 and 3, etc. In particular, it
was shown that monoidal categories satisfying certain conditions and carrying
appropriate additional structures give rise to topological invariants of 3-dimensional
manifolds, see [Turaev 1994; Turaev and Virelizier 2017]. This has instigated
extensive research in the theory of monoidal categories aiming at construction (and
eventually classification) of monoidal categories with required properties. At the
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same time, this development has provoked an appearance of parallel approaches
not involving monoidal categories but using related algebraic objects. One such
approach is due to G. Kuperberg [1991] who derived invariants of 3-manifolds from
involutory Hopf algebras. The initial aim of this paper was to recover Kuperberg’s
invariants in terms of monoidal categories. To this end we introduce here a new
construction of 3-manifold invariants from monoidal categories. We show that
our method produces both the Kuperberg invariants and the standard Turaev–Viro
invariants. Other generalizations of Kuperberg invariants of 3-manifolds were
considered by Kashaev and Virelizier [2019].

The first main result of our paper is that in a general categorical setting there
exists an invariant of graphs on the boundary of a handlebody.

With some additional categorical structure we show that this invariant extends
to an invariant of bichrome handlebody graphs which are graphs on the boundary
of a handlebody which are the union of two subgraphs: blue and red. Here the
red curves have the nice property: any edge of the graph can be slid over a red
curve. This is used when we define a 3-manifold invariant. In particular, we use
Heegaard decompositions of 3-manifolds which are unions of two handlebodies
glued along their common boundary. Such a decomposition is encoded by a set of
disjoint simple closed curves on the boundary of a handlebody. These curves form
a complete set of meridians for the second handlebody and are drawn in red.

On the algebraic side, we use two main tools — the so-called modified traces
(m-traces) and the chromatic morphisms. The m-traces generalize the usual trace of
endomorphisms of objects of a monoidal category to situations where the standard
trace is not defined. The m-traces first appeared in [Geer et al. 2011a; 2013a; 2013b]
and have been successfully used to produce 3-manifold invariants, see for example
[Beliakova et al. 2018b; Costantino et al. 2014; Geer et al. 2011b]. The chromatic
morphisms are introduced here.

2. Statements of main results and open problems

2A. The invariant F′. We first introduce the notation used in the main statements,
for more details see Section 3. Let C be a pivotal k-category, where k is a field.
Let F be the Penrose functor (defined using the Penrose graphical calculus) from
the category of planar C -colored ribbon graphs to C , see for example [Geer et al.
2013b]. Finally, let t be a modified trace (or m-trace for short) on an ideal I in C .
Then t induces an invariant of I-colored spherical graphs denoted by F ′, see [Geer
et al. 2013b]. This invariant can be computed by composing t and F on a cutting
presentation of the graph (see Equation (8)).

We assume the m-trace is nondegenerate, i.e., for any object P ∈ I, the pairing:

HomC (1, P)×HomC (P,1)→ k given by (x, y) 7→ tP(xy)
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is nondegenerate. Given a basis {xi } of HomC (1, P) let {yi } be the dual basis of
HomC (P,1) for this pairing. Let

(1) �P ∈ HomC (1, P)⊗k HomC (P,1) be given by �P =
∑

i

xi ⊗k yi ,

where ⊗k is the standard tensor product of vector spaces over k. The following
proposition is the first item of Proposition 4.2.

Proposition 2.1. The element �P is independent of the choice of the basis of
HomC (1, P).

By a multihandlebody we will mean a disjoint union of a finite number of oriented
handlebodies. A C -colored ribbon graph on a multihandlebody is a graph on the
boundary of the multihandlebody such that each edge is colored with an object of
C and each vertex is thickened to a coupon colored with a morphism of C . All
coupons have a top and a bottom sides which in our pictures will be the horizontal
sides of the coupons. Since our graphs are drawn on a surface they have a natural
framing and therefore can be considered as ribbon graphs in the usual sense. When
all the colors of such a C -colored ribbon graph are in the ideal I we say that the
graph is I-colored. Let

HI =
{
(H, 0) : 0 is a nonempty I-colored graph on a multihandlebody H

}
.

In what follows we extend the colorings of coupons multilinearly. In particular,
we can color an ordered matching pair of coupons with �P =

∑
i xi ⊗k yi and we

represent such a coupon with the adjacent edges by the figure

(2) ①
①'

=

∑
i

xi

yi

To state our first theorem we define a cutting operation on colored graphs. Let
(H, 0) ∈HI and D be a disk in H bounded by a simple oriented curve ∂D ⊂ ∂H
which intersects the edges of 0 nontrivially and transversely without meeting the
coupons of 0. Cutting (H, 0) along D we obtain a new multihandlebody graph
(cutD(H), cutD(0)) ∈HI , where cutD(0) is obtained by cutting the edges of 0
intersecting ∂D and then joining the cut points into two new coupons in ∂(cutD(H))
(one on each side of the cut). The coupons are colored as in Equation (2), see the
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following figure:

−→

①'

①

Note that H and cutD(H) can have different numbers of connected components
and the orientation of cutD(H) is induced by the one of H .

Remark, if (B3, 0) ∈HI then 0 is a I-colored spherical graph in the domain of
the invariant F ′ defined in Equation (8).

The following theorem (proved in Section 4) extends F ′ to the full set HI .

Theorem 2.2. Let C be a pivotal k-category equipped with an ideal I in C and a
nondegenerate m-trace on I. Then there exists a unique mapping

F ′ :HI→ k

satisfying the following four properties.

(1) Invariance. The element F ′(H, 0) of k depends only on the orientation pre-
serving diffeomorphism class of the pair (H, 0) ∈HI .

(2) Extension of F ′. For any I-colored ribbon graph (B3, 0) in the 3-ball B3, we
have

F ′(B3, 0)= F ′(0).

(3) Disjoint union of multihandlebodies. For any (H1, 01), (H2, 02) ∈ HI we
have

F ′(H1 t H2, 01 t02)= F ′(H1, 01)F ′(H2, 02).

(4) Cutting along a disk. Cutting any (H, 0) ∈HI along a disk D as described
before the statement of the theorem, we always have F ′(cutD(H), cutD(0)) =

F ′(H, 0).

The hypotheses of the above theorem are quite mild. Indeed, by Theorem 5.5 of
[Geer et al. 2018] they are satisfied in all the following examples (see [Geer et al.
2013a]): representations of factorizable ribbon Hopf algebras, finite groups and
their quantum doubles, Lie (super)algebras, the (1, p) minimal model in conformal
field theory, and quantum groups at a root of unity.
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Following the ideas of [De Renzi et al. 2018], we extend the invariant of multi-
handlebody graphs F ′ to so-called bichrome multihandlebody graphs as follows.
A bichrome handlebody graph is a graph on the boundary of a multihandlebody
which is split as a disjoint union of two subgraphs: blue and red. The blue subgraph
is a C -colored graph on the multihandlebody. The red subgraph is a collection of
disjoint simple closed unoriented curves (which are not required to be C -colored).
We refer to these curves as red circles. We say a bichrome handlebody graph is
admissible if its blue subgraph is I-colored and meets each connected component
of the multihandlebody.

Definition 2.3. Let G be an object of I. Set 3=
∑

i xi yi ∈ EndC (G⊗G∗), where
�G⊗G∗=

∑
xi⊗k yi . A chromatic morphism for G is a morphism d̃ :G⊗G→G⊗G

such that

(3) (IdG ⊗
←

evG ⊗ IdG) ◦ (3⊗ d̃) ◦ (IdG ⊗
−→

coevG ⊗ IdG)= IdG⊗G .

This equation is represented pictorially as

d̃3 =

where all blue strands are colored by G.

We use the word chromatic here because the morphism d̃ is used to change a red
circle into a blue graph, as explained in Theorem 2.4. In the case of Hopf algebras
this corresponds to the evaluation of the integral on the red circles (see Section 6).

A generator of an ideal I is an object G ∈ I such that for any P ∈ I there exists
morphisms f j : G→ P and g j : P→ G indexed by a finite set J such that

(4) IdP =
∑
j∈J

f j g j .

Remark there are many different notions of a generator of an ideal. Here we use
the word generator because in the case of Hopf algebras G will be the projective
generator.

Let d̃ be a chromatic morphism for a generator G of an ideal I. If P ∈ I and
IdP =

∑
j f j g j as in Equation (4) we define

(5) d̃P =
∑
j∈J

(IdG ⊗ f j )d̃(IdG ⊗g j ) : G⊗ P→ G⊗ P.

We prove the following theorem in Section 5C.
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Theorem 2.4. Let C be a pivotal k-category equipped with a nondegenerate m-
trace on an ideal I and a chromatic morphism d̃ on a generator G. Then there
exist a unique extension of F ′ to admissible bichrome handlebody graphs which
is preserved under the following transformation making a red circle blue in the
presence of a nearby blue edge colored with an object P as shown in the figure

(6)
P

−→ d̃P

G
P

Moreover, if (H, 0) is a bichrome handlebody graph then F ′(H, 0) only depends
on the orientation preserving diffeomorphism class of (H, 0).

Later we will see that F ′ is also invariant under sliding an edge of 0 over a red
circle, see Proposition 5.4.

2B. The invariant K. Let C be a pivotal k-category equipped with a nondegenerate
m-trace t on an ideal I and a chromatic morphism on a generator G. Since t is
nondegenerate, there exists a morphism h : G → G such that tG(h) 6= 0. By
renormalizing the m-trace we can assume tG(h)= 1. Let OG be the ribbon graph
in R2 formed by the braid closure of the coupon filled with h. Consider the
bichrome handlebody graph (B3, OG) where OG is blue and viewed as a graph on
the boundary of B3. By definition, one has F ′(B3, OG)= F ′(OG)= tG(h)= 1.

Let M be a closed connected orientable 3-manifold. Next we use some standard
topological definitions, see Section 5 for more details. A Heegaard diagram of
M is a prescription for a Heegaard splitting M = Hα ∪6 Hβ determined by upper
and lower reducing sets of bounding circles {αi } and {βi } in 6 = ∂Hα = ∂Hβ . A
Heegaard diagram determines an admissible bichrome handlebody graph on Hα
where the red subgraph is the set of circles {βi } (on the boundary of Hα) and the
blue subgraph is OG embedded in a small disk in ∂Hα . We call such a handlebody
graph a bichrome diagram for M . See Figure 1 for an example.

Next we state the main theorem of this paper which will be proved in Section 5C.

Theorem 2.5. If (H, 0) is a bichrome diagram for a closed connected orientable
3-manifold M , then F ′(H, 0) only depends of the diffeomorphism class of M.

We denote the invariant of Theorem 2.5 by KC (M). Let us now discuss some
examples.

2C. Hopf algebras and Kuperberg’s invariant. We use standard terminology of
Hopf algebras, for details see Section 6. Let A be a finite dimensional unibalanced
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h

Figure 1. Bichrome diagram for the lens space L(2, 1).

unimodular pivotal Hopf algebra. Let A-mod be the category of finite dimensional
modules over A. Let Proj be the ideal of projective objects in A-mod. The Hopf
algebra A itself with its left regular representation is a generator of Proj.

In Section 6 we prove the following theorem:

Theorem 2.6. There exists a nondegenerate m-trace on Proj in A-mod and a chro-
matic morphism d̃ on the generator A.

Let us discuss the hypothesis on A briefly. The existence of the chromatic
morphism comes from the theory of (co)integrals in Hopf algebras. The requirement
that A is pivotal implies that the category A-mod is pivotal. The unimodularity of A
ensures that the ideal Proj has a nondegenerate right m-trace. That A is unibalanced
implies that this m-trace is also a left m-trace, see [Beliakova et al. 2018a].

Theorems 2.5 and 2.6 yield an invariant KA-mod. From Lemmas 6.2 and 6.3, the
chromatic morphism is essentially determined by the integral λ : A→ k and cutting
along a bounding circle is determined by the cointegral 3 ∈ A, where λ(3)= 1.

In Section 6C we will prove the following:

Theorem 2.7. If A is involutive (the square of the antipode is the identity map) then

KA-mod(M)= KuA(M),

where KuA(M) is the Kuperberg invariant associated to A (see [Kuperberg 1991]).

2D. Turaev–Viro invariant. Let C be a finite semisimple spherical k-category (see
[Barrett and Westbury 1999]). Here we claim that such a category satisfies the
hypothesis of Theorem 2.5. If the dimension of C (see Equation (7)) is not zero in k,
the resulting 3-manifold invariant KC is the Turaev–Viro invariant TVC [Turaev
and Viro 1992; Barrett and Westbury 1996] associated to C .

Let {Si }i∈I be a set of representatives of the isomorphism classes of simple
objects of C . Then G =

⊕
i∈I Si is a generator. By definition of a semisimple

spherical k-category, the quantum trace t = qTrC is a nondegenerate m-trace on
I = C . Then it follows that{

xi =
1

qdim(Si )

←−

coevSi

}
i∈I

and {yi =
→

evSi }i∈I
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are dual bases of HomC (1,G ⊗G∗) and HomC (G ⊗G∗,1), respectively. Using
the expansion �G⊗G∗ =

∑
i∈I xi ⊗k yi , it is straightforward to check that

d̃ =
∑
i∈I

qdim(Si ) IdSi ⊗ IdG

is a chromatic morphism for G.
In [Barrett and Westbury 1996], the Turaev–Viro invariant TVC is generalized to

the context of a finite semisimple spherical k-category C when the following scalar
D, called the dimension of C , does not vanish in k:

(7) D =
∑
i∈I

qdim(Si )
2
∈ k.

In Section 7 we prove the following theorem.

Theorem 2.8. If C is a finite semisimple nondegenerate spherical k-category with
the chromatic morphism d̃ and generator G then the invariant KC is proportional
to the Turaev–Viro invariant of closed 3-manifolds associated to C ,

TVC = D−1 KC .

2E. Open Problems. A strong point of our approach is its great generality. Besides
the categories studied here, it certainly applies in other settings. Here we list (from
least to most general) three further categories where our constructions should work:

(1) the categories of finite dimensional modules over nice (quantum) Lie superal-
gebras, see [Scheunert and Zhang 2001; 2005],

(2) the categories of finite dimensional modules over nice quasi-Hopf algebras,
see [Bulacu and Caenepeel 2003; 2012; Hausser and Nill 1999; Panaite and
Van Oystaeyen 2000],

(3) general unimodular finite tensor categories, see [Shimizu 2019].

Here the adjective “nice” means that the category satisfies the hypothesis of
Theorem 2.4, in particular, admits an m-trace and a chromatic morphism. The
theory of [Geer et al. 2018] should imply the existence of an m-trace in the above
contexts. Here, we may need to choose an appropriate pivotal structure to make
the m-trace two sided, and it may be useful to work with the ideal of projective
modules. It seems likely that the references listed above can help to construct
chromatic morphisms in the categories in question. It also looks plausible that the
results of [Geer et al. 2013a] may help to generalize our approach to nonunimodular
categories.

In a different direction, recall that Kuperberg [1996] used framings of 3-manifolds
to generalize the invariant in [Kuperberg 1991] to arbitrary finite dimensional Hopf
algebras. As explained above, a finite dimensional unibalanced unimodular pivotal
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Hopf algebra A gives rise to a framing-independent 3-manifold invariant KA-mod

which is computed in a way similar to the invariants in [Kuperberg 1996] using
an integral and a cointegral (see Section 6). With Theorem 2.7 in mind, we ask if
KA-mod(M)=KuA(M, f ) for some framing f of a 3-manifold M? Is the Kuperberg
invariant associated to a unibalanced unimodular pivotal Hopf algebra framing-
independent? (This is known not be true for all finite dimensional Hopf algebras.)

3. Algebraic setup

3A. Pivotal and ribbon categories. In this paper, we consider strict tensor cate-
gories with tensor product ⊗ and unit object 1. Let C be such a category. The
notation V ∈ C means that V is an object of C .

The category C is a pivotal category if it has duality morphisms
←−

coevV : 1→ V ⊗ V ∗,
←

evV : V
∗
⊗ V → 1,

−→

coevV : 1→ V ∗⊗ V,
→

evV : V ⊗ V ∗→ 1,

which satisfy compatibility conditions (see for example [Barrett and Westbury 1999;
Geer et al. 2013a]).

3B. k-categories. Let k be a field. A k-category is a category C such that its
hom-sets are left k-modules, the composition of morphisms is k-bilinear, and the
canonical k-algebra map k→ EndC (1), k 7→ k Id1 is an isomorphism. A tensor
k-category is a tensor category C such that C is a k-category and the tensor product
of morphisms is k-bilinear.

3C. M-traces on ideals in pivotal categories. Let C be a pivotal k-category. Here
we recall the definition of an m-trace on an ideal in C , for more details see [Geer
et al. 2013a; Geer et al. 2013b]. By a ideal of C we mean a full subcategory, I, of
C such that:

Closed under tensor products. If V is an object of I and W is any object of C ,
then V ⊗W and W ⊗ V are objects of I.

Closed under retracts. If V is an object of I, W is any object of C , and there exists
morphisms f :W → V , g : V →W such that g f = IdW , then W is an object of I.

An m-trace on an ideal I is a family of linear functions

{tV : EndC (V )→ k}V∈I

such that following two conditions hold:

Cyclicity. If U, V ∈ I then for any morphisms f : V →U and g :U → V in C

we have
tV (g f )= tU ( f g).
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Partial trace properties. If U ∈ I and W ∈ C then for any f ∈ EndC (U ⊗W ) and
g ∈ EndC (W ⊗U ) we have

tU⊗W ( f )= tU
(
(IdU ⊗

→

evW )( f ⊗ IdW ∗)(IdU ⊗
←−

coevW )
)
,

tW⊗U (g)= tU
(
(
←

evW ⊗ IdU )(IdW ∗ ⊗g)(
−→

coevW ⊗ IdU )
)
.

As above, an m-trace is nondegenerate if for any object P ∈ I, the following
pairing is nondegenerate:

HomC (1, P)×HomC (P,1)→ k given by (x, y) 7→ tP(xy).

Remark that using the pivotal structure and the partial trace property one can show
the nondegeneracy condition is equivalent to the following: for all P ∈ I and V ∈
Obj(C ), the pairing HomC (V, P)×HomC (P, V )→ k given by (x, y) 7→ tP(xy)
is nondegenerate.

3D. Projective objects. Many of our examples use an m-trace on the ideal of
projective objects. An object P of C is projective if for any epimorphism p : X→Y
and any morphism f : P→ Y in C , there exists a morphism g : P→ X in C such
that f = pg. An object Q of C is injective if for any monomorphism i : X → Y
and any morphism f : X→ Q in C , there exists a morphism g : Y → Q in C such
that f = gi . Denote by Proj the full subcategory of projective objects. In a pivotal
category projective and injective objects coincide (see [Geer et al. 2013b]). Also,
Proj is an ideal.

3E. Invariants of colored ribbon graphs. Let C be a pivotal k-category. A mor-
phism f : V1⊗ · · ·⊗ Vn→W1⊗ · · ·⊗Wm in C can be represented by a box and
arrows:

V1 Vn· · ·

W1 Wn· · ·

f

which are called coupons. All coupons have a top and a bottom sides which in
our pictures will be the horizontal sides of the coupons. By a ribbon graph in an
oriented manifold 6, we mean an oriented compact surface embedded in 6 which
is decomposed into elementary pieces: bands, annuli, and coupons (see [Turaev
1994]) and is the thickening of an oriented graph. In particular, the vertices of
the graph lying in Int6 =6 \ ∂6 are thickened to coupons. A C -colored ribbon
graph is a ribbon graph whose (thickened) edges are colored by objects of C and
whose coupons are colored by morphisms of C . The intersection of a C -colored
ribbon graph in 6 with ∂6 is required to be empty or to consist only of vertices of
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valency 1. When 6 is a surface the ribbon graph is just a tubular neighborhood of
the graph.

A C -colored ribbon graph in R2 (resp. S2
= R2

∪ {∞}) is called planar (resp.
spherical). Let Rib be the category of planar C -colored ribbon graphs and let
F : Rib→ C be the pivotal functor1 (defined using the Penrose graphical calculus)
corresponding to C , see for example [Geer et al. 2013b]. Let Ladm be all spherical
C -colored ribbon graphs L such that L is the braid closure of a (1,1)-ribbon graph
TV whose open edge is colored with an object V ∈ I.

Given an m-trace t on I we can renormalize F to an invariant

(8) F ′ : Ladm→ k given by F ′(L)= tV (F(TV )),

where TV is any (1,1)-ribbon graph as above. The properties of the m-trace imply
F ′ is a isotopy invariant of L , see [Geer et al. 2013b].

Remark 3.1. If I is an ideal and P ∈I then Lemma 2 of [Geer et al. 2013b] implies
that P∗ ∈ I. Moreover, the pivotal structure gives an isomorphism f : P→ P∗∗

for all P . This morphism can be used to change the orientation of an edge of a
graph as shown in the following diagram:

P ←→

P
f −1

P∗

f
P

4. An invariant of I-colored graphs on a multihandlebody

In this section we prove Proposition 2.1 and Theorem 2.2.

4A. Algebraic preliminaries. The following lemma contains standard facts from
linear algebra; we leave the proof to the reader.

Lemma 4.1. Let X j and Y j be finite dimensional k-modules, for j = 1, 2. Let
〈·,·〉X j ,Y j : X j ⊗k Y j → k be a pairing whose right and left kernels are zero. Given
a basis {x j

i } of X j let {y j
i } be the dual basis of Y j determined by 〈x j

i , y j
j 〉X j ,Y j = δi, j .

Then

(1) the element � j =
∑

i x j
i ⊗k y j

i ∈ X j ⊗ Y j is independent of the choice of the
basis {x j

i },

1We call this functor the pivotal functor because such a functor is associated to each pivotal
category. However, the functor does not preserve the duality.



432 F. COSTANTINO, N. GEER, B. PATUREAU-MIRAND AND V. TURAEV

(2) if h : X1→ X2 and k : Y2→ Y1 are k-linear maps such that 〈h(x), y〉X2,Y2 =

〈x, k(y)〉X1,Y1 for all x ∈ X1 and y ∈ Y2 then

(9) (h⊗ IdY1)(�1)= (IdX2 ⊗k)(�2).

Proposition 4.2. Recall the element �P =
∑

i xi ⊗k yi defined in Equation (1). Let
3P =

∑
i xi yi ∈ EndC (P). We have:

(1) The element �P is independent of the choice of the basis of HomC (1, P).

(2) If P ′ ∈ I and φ : P→ P ′ is a morphism then

(φ⊗k Id1)�P =�P ′(Id1⊗kφ) and φ ◦3P =3P ′ ◦φ.

(3) If f : 1→ P and g : P→ 1 are morphisms then

tP( f g)=
∑

i

tP( f yi )tP(xi g).

Proof. We use the above lemma to prove this proposition. Let

X1 = HomC (1, P), Y1 = HomC (P,1),

X2 = HomC (1, P ′), Y2 = HomC (P ′,1).

For j = 1, 2, define the bilinear pairing 〈·,·〉X j ,Y j : X j ⊗ Y j → k by

〈x, y〉X1,Y1 = tP(x ◦ y) and 〈x, y〉X2,Y2 = tP ′(x ◦ y), respectively,

for x ∈ X j and y ∈ Y j . Now the first statement of the proposition is a direct
consequence of first statement of Lemma 4.1. Similarly, the second statement of
the proposition follows from the second statement of the lemma: let

h : Hom(1, P)→ Hom(1, P ′) be given by f 7→ φ ◦ f

k : Hom(P ′,1)→ Hom(P,1) be given by g 7→ g ◦φ

then Equation (9) becomes the first equality in the second statement of the proposi-
tion. If we write this equality explicitly we get∑

i

(φ ◦ xi )⊗ yi =
∑

i

x ′i ⊗ (y
′

i ◦φ),

where �P ′ =
∑

i x ′i ⊗k y′i and 3P ′ =
∑

i x ′i y′i ∈ EndC (P ′) and the second equality
follows.

Concerning the last statement of the proposition, let {xi } be a basis of X1 =

HomC (1, P) and let {yi } be the dual basis of Y1 determined by 〈·,·〉X1,Y1 . Using
these bases we can find coefficients ai and bi such that f =

∑
ai xi and g=

∑
bi yi .

Then
tP( f g)=

∑
i, j

ai b j tP(xi y j )=
∑

i

ai bi .
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But we also have that tP( f yi ) =
∑

j a j tP(x j yi ) = ai and similarly tP(xi g) = bi

so the third statement of the proposition follows. �

4B. Proof of Theorem 2.2. By the genus of a multihandlebody we mean the sum
of the genera of all its components. We will show that the last three properties of
Theorem 2.2 determine a well defined invariant by inducting on the genus of the
multihandlebody. We first do this for a fixed multihandlebody then at the end of
the proof we show it is invariant under orientation preserving diffeomorphisms.

The base induction case is graphs on the disjoint union of 3-balls. The extension
of F ′ Property (2) defines F ′ for graphs up to isotopy on the boundary of the 3-ball.
The disjoint union of handlebodies Property (3) extends the invariant F ′ uniquely
to the disjoint union of 3-balls. To conclude the base case we need to show that F ′

satisfies the cutting-along-a-disk Property (4) of Theorem 2.2. Let (B3, 0) ∈HI be
a I-colored graph on the boundary of the 3-ball. Let D be a disk properly embedded
in the 3-ball such that the boundary of D is a simple curve γ on S2 (which intersects
0 transversely).

Orient γ arbitrarily and up to isotopy assume it is the equator of S2. The curve
γ intersects 0 in several points which correspond to the tensor product of objects
of I. We denote by P this tensor product. Let 0l and 0u be the graphs in the
lower and upper hemispheres, respectively (here we use the orientation of γ to
distinguish them). Let

(
cutγ (B3), cutγ (0)

)
= (B3, 0′l)t (B

3, 0′u) be the I-colored
graph on the disjoint union of two 3-balls obtained by cutting along the disk where
the new graphs are obtained by closing 0l and 0u with coupons determined by
�P =

∑
i xi ⊗k yi as described in the statement above the theorem.

Then F(0l) : 1→ P and F(0u) : P→ 1 are morphisms and by definition

F ′(B3, 0)= tP(F(0l)F(0u)).

But by Part (3) of Proposition 4.2 we have

tP(F(0l)F(0u))=
∑

i

tP(F(0l)yi )tP(xi F(0u))

where by definition F ′(0′l)= tP(F(0l)yi ) and F ′(0′u)= tP(xi F(0u)). This shows
that we can cut along D2 and also that the choice of the orientation on γ = ∂D2

does not change the result of F ′ as the left hand side does not depend on γ . This
concludes the base induction step.

Let us assume F ′ is well defined and satisfies Properties (2), (3) and (4) of
Theorem 2.2 for all multihandlebodies with genus strictly less than g ≥ 1. Let
(H, 0) ∈HI where H is a multihandlebody of genus g. Choose a disk D which is
properly embedded in H such that the boundary of D is an essential simple circle γ
on ∂H intersecting 0 transversely. Cutting along D produces a genus g−1 multihan-
dlebody

(
cutγ (H), cutγ (0)

)
which for simplicity we also denote by cutγ (0). Then
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Property (4) and induction says we can assign the value F ′(H, 0)= F ′(cutγ (0)).
We need to show that this value is well defined, i.e., independent of the disk which
is cut along and of the orientation of its boundary chosen to draw the picture used in
the description of the property. To do this, let D and D′ be two discs which bound
essential simple oriented circles γ and γ ′, respectively. We want to show that by
cutting along D or D′ we obtain the same value for F ′. We prove this in two steps.

First, let us assume γ and γ ′ are disjoint. Then one can choose disjoint discs D
and D′ which both cut the multihandlebody to produce genus g− 1 multihandle-
bodies. We have

F ′(cutγ ′(0))= F ′
(
cutγ (cutγ ′(0))

)
= F ′

(
cutγ ′(cutγ (0))

)
= F ′(cutγ (0)),

where the first and the last equalities hold because Property (3) holds in genus less
than g. This in particular proves that the orientation of γ is irrelevant: choose γ ′ to
be parallel to γ but oriented the opposite way.

Second, it follows from [Masur and Minsky 2004] that for any two essential
bounding curves γ and γ ′, there exists a sequence γ = γ0, γ1, . . . , γn = γ

′ of circles
that bound discs Di with Di ∩ Di+1 =∅. Hence the first step implies the value of
F ′ is constant on this sequence:

F ′(cutγ0(0))= F ′(cutγ1(0))= · · · = F ′(cutγn (0)).

This completes the induction step.
We are now left to prove that F ′ is invariant under the action of the group of

orientation preserving diffeomorphisms of H up to isotopy. Again, we argue by
induction on the genus. Since this group is trivial for B3 (i.e., genus 0), there is
nothing to prove in the base case. Assume F ′ is invariant for all multihandlebodies
of genus less than g. Let (H, 0) be a I-colored graph on a multihandlebody
of genus g. If γ is a simple essential curve bounding in H then applying the
cut-along-a-disc property of F ′ we get

F ′(H, 0)= F ′
(
cutγ (H), cutγ (0)

)
.

If f : H → H is a positive self-diffeomorphism, then we have:

F ′( f (H), f (0))= F ′(H, f (0))= F ′
(
cut f (γ )(H), cut f (γ )( f (0))

)
.

But f induces a diffeomorphism between the genus g− 1 multihandlebody graphs(
cutγ (H), cutγ (0)

)
and

(
cut f (γ )(H), cut f (γ )( f (0))

)
so by induction we have

F ′(H, 0)= F ′
(
cutγ (H), cutγ (0)

)
= F ′

(
cut f (γ )(H), cut f (γ )( f (0))

)
= F ′( f (H), f (0)).

Thus, we have proved Theorem 2.2.
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5. Invariant of bichrome graphs and of 3-manifolds

5A. Bichrome graphs on handlebodies. Recall by a multihandlebody we will
mean a disjoint union of a finite number of oriented connected handlebodies. By the
genus of a multihandlebody we mean the sum of the genera of all its components.
Recall a bichrome handlebody graph is a pair (H, 0) where H is a multihandlebody
and 0 is a graph on ∂H (seen up to isotopy) composed of two disjoint subgraphs
0 = 0blue t0red where 0blue is an I-colored graph and 0red ⊂ ∂H a disjoint union
of simple closed unoriented circles. When convenient, we denote a bichrome
handlebody graph by 0 with the understanding that it is on a multihandlebody.
Recall, we say a bichrome handlebody graph is admissible if its blue subgraph is
I-colored and meets each connected component of the multihandlebody. Let Hb

be the set of orientation preserving diffeomorphism classes of admissible bichrome
handlebody graphs.

Definition 5.1. Let H be a multihandlebody.

(1) We say that a set of simple closed curves (referred to as circles) on ∂H bounds
in H if the circles bound a disjoint union of disks embedded in H .

(2) A bounding set of circles is a reducing set if the complement of the circles is
a disjoint union of spheres with holes.

(3) The complexity of a circle γ on ∂H ⊂ H is the minimal number of intersections
of γ with any reducing set of circles.

Definition 5.2 (red capping and digging moves). Let (H, 0) and (H ′, 0′) be
bichrome handlebody graphs. We say that (H, 0) is obtained from (H ′, 0′) by a
red capping move along a red circle c ⊂ 0′red if there is a properly embedded disc
D in H ′ such that

(1) D ∩ c = {pt},

(2) H is obtained from H ′ by gluing a 2-handle along c, and

(3) 0=0′ \c, where we identify ∂H ′ set minus a neighborhood of c with a subset
of ∂H .

Conversely, we say (H ′, 0′) is obtained from (H, 0) by a red digging move (result-
ing in the red circle c). See Figure 2 for a visual representation of these moves.

Proposition 5.3. A red circle in a bichrome handlebody graph is the result of a red
digging move if and only if it has complexity one.

Proof. Let c be a red circle in a bichrome handlebody graph (H ′, 0′). If c has
complexity one then there exists a reducing set S of circles such that c∩ S is exactly
one point. Now gluing a 2-handle along c one gets a multihandlebody H , and the
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←→ c
D

Figure 2. Red digging / capping moves.

graph 0 := 0′ \ c is obtained by a red capping move which is the inverse of the
sought digging move.

Reciprocally, if c is obtained by a red digging move then it intersects exactly
once the disc D in Definition 5.2. �

Proposition 5.4. Let (H, 0), (H, 0′) ∈ Hb be bichrome graphs such that 0′ is
obtained from 0 by sliding a blue or red edge of 0 over one of its simple red circles.
Then 0 and 0′ are related by a sequence of red digging and capping moves.

Proof. Let 0 = 0blue ∪0red and let c ⊂ 0red be the simple circle on which we want
to slide an edge e (where e is contained in either 0blue or 0red). We claim that up
to applying one red digging move which transforms (H, 0) into a new bichrome
graph (H1, 01) and creates a new red circle c′ ⊂ 01, we can reduce to the case
where c is a red circle created by a red digging move. Proving this claim would
imply the proposition because after applying a red capping move on c, one gets a
bichrome graph (H2, 02) in which e can be slid, by an isotopy, over the disc added
by the red capping. Then redigging along the same disc and recapping along c′

produces exactly the bichrome graph (H, 0′) obtained by sliding e over c.
We now prove the claim by describing a suitable red digging move. Let I ⊂ ∂H

be a parametrized segment, i.e., the image of an embedding i : [−1, 1] ↪→ ∂H such
that ∂ I ∩0 = i({0}) is formed by a single point belonging to c. Let I ′ be a properly
embedded arc in H obtained by slightly pushing I inside H (keeping fixed ∂ I ).
Also, let

H1 = H \Tub(I ′), c′ = ∂ Tub(i(1)),

(01)blue = 0blue, (01)red = 0red t c′,

where Tub denotes a tubular neighborhood and we identify ∂H \Tub({i(±1)}) with
a subset of ∂H1.

Then (H1, 01) is obtained from (H, 0) by a red digging move along I which
creates the red circle c′. But now, with the notation of Definition 5.2, c intersects
the disc D bound by I ∪ I ′ exactly once so it has complexity 1 and thus, by
Proposition 5.3 it is the result of a red digging. �

5B. Heegaard splittings. A Heegaard splitting for a closed oriented connected 3-
manifold M is an ordered triple (Hα, Hβ, 6) such that the following conditions hold:
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(1) 6 is a closed surface embedded in M , (2) Hα and Hβ are oriented handlebodies
positively embedded in M , (3) ∂Hβ =6 = ∂Hα = Hα ∩Hβ , (4) M = Hα ∪Hβ and
(5) 6 is oriented as the boundary of Hα (with the outgoing vector first convention).

A Heegaard diagram for M compatible with this Heegaard splitting is a triple
(6, {αi }, {βi }), where {αi } and {βi } are minimal reducing sets of circles bounding
in Hα and Hβ , respectively. Then one can recover Hα , Hβ and M ' Hα ∪6 Hβ up
to diffeomorphism from the Heegaard diagram.

Recall in Section 2B given a Heegaard diagram (6, {αi }, {βi }) of a closed
connected orientable 3-manifold M we defined a bichrome diagram for M : a
bichrome handlebody graph (H, 0blue ∪ 0red), where H = Hα, 0red = {βi } and
0blue is the planar ribbon graph OG which is the braid closure of the coupon filled
with h such that tG(h)= 1. (Observe that since H \0red is connected, the position
of OG is unique up to isotopy.).

Theorem 5.5. If (H, 0) and (H ′, 0′) are two bichrome diagrams for M , then they
are related by a finite sequence of red digging and capping moves.

Proof. It is well known that (H, 0red) and (H ′, 0′red) can be connected by a finite
sequence of stabilization moves (and their inverses) as well as handle slide moves
(see [Singer 1933]). Clearly a stabilization move is a special case of a red digging
move (and its inverse is a red capping move). Furthermore by Proposition 5.4 we
can achieve handle slides via isotopy and red digging and capping moves. Finally,
since 0blue = OG is contained in a disc in ∂H we can always operate the above
moves. �

5C. Proof of Theorems 2.4 and 2.5. We need to prove a few lemmas.

Lemma 5.6. Let P, P ′ ∈ I and set 3P ′⊗G∗ =
∑

i yi xi ∈ EndC (P ′ ⊗ G∗), where
�P ′⊗G∗ =

∑
xi ⊗k yi . Then

(10) (IdP ′ ⊗
←

evG ⊗ IdP) ◦ (3P ′⊗G∗ ⊗ d̃P) ◦ (IdP ′ ⊗
−→

coevG ⊗ IdP)= IdP ′⊗P .

Proof. Since G is a generator of I there exist gi : P → G, fi : G → P and
g′i : P

′
→ G, f ′i : G→ P ′ such that

∑
i fi ◦ gi = IdP and

∑
i f ′i ◦ g′i = IdP ′ . Then

we have

IdP ′⊗P =
∑
i, j

( f ′i ⊗ f j ) ◦ IdG⊗G ◦(g′i ⊗ g j )

=

∑
i, j

( f ′i⊗
←

evG ⊗ f j ) ◦ (3⊗ d̃) ◦ (g′i⊗
−→

coevG ⊗g j )

=

∑
i

( f ′i⊗
←

evG ⊗ IdP) ◦ (3⊗ d̃P) ◦ (g′i⊗
−→

coevG ⊗ IdP)
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=

∑
i

(IdP ′ ⊗
←

evG ⊗ IdP) ◦
((
( f ′i ⊗ IdG∗)3(g′i ⊗ IdG∗)

)
⊗ d̃P

)
◦(IdP ′ ⊗

−→

coevG ⊗ IdP)

=

∑
i

(IdP ′ ⊗
←

evG ⊗ IdP) ◦
((
3P ′⊗G∗ ◦ ( f ′i g′i ⊗ IdG∗)

)
⊗ d̃P

)
◦(IdP ′ ⊗

−→

coevG ⊗ IdP)

=

∑
i

(IdP ′ ⊗
←

evG ⊗ IdP) ◦ (3P ′⊗G∗ ⊗ d̃P) ◦ (IdP ′ ⊗
−→

coevG ⊗ IdP),

where the second equality uses the definition of the chromatic morphism (Equa-
tion (3)), the third equality uses the definition of d̃P (Equation (5)) and the second
to last equality comes from Part (2) of Proposition 4.2 where φ = f ′i ⊗ IdG∗ . �

Given a bichrome handlebody graph (H, 0) we can produce a new bichrome
handlebody graph (H ′, 0′) by doing a red digging move on (H, 0) then changing
the newly created red circle into a blue graph using the chromatic morphism, as
in Equation (6). We say (H ′, 0′) is obtained from (H, 0) by a blue digging move.
Conversely, we say (H, 0) is obtained from (H ′, 0′) by a blue capping move. See
Figure 3 for a pictorial representation of these moves.

Lemma 5.7. The invariant F ′ of I-colored ribbon graphs on multihandlebodies
defined in Theorem 2.2 is invariant under blue digging and capping moves.

Proof. Let (H, 0) and (H ′, 0′) be bichrome handlebody graphs such that (H ′, 0′)
is obtained from (H, 0) by a blue digging move. Up to cutting along a reducing
set of curves for H , we can assume that the component of H to which we are
applying the blue digging has genus 0. To prove the statement we will compute the
morphisms associated to the subsurfaces of ∂H and ∂H ′ drawn in Figure 3.

The right hand side is just IdP ′ ⊗ IdP . In order to compute the left hand side, let
γ be the curve bounding the disc in the far left part of Figure 3. Cutting along γ ,
as discussed before Theorem 2.2, we get that the morphism associated to the left
hand side is:

(IdP ′ ⊗
←

evG ⊗ IdP) ◦ (3P ′⊗G∗ ⊗ d̃P) ◦ (IdP ′ ⊗
−→

coevG ⊗ IdP).

But by Lemma 5.6 this morphism is equal to IdP ′ ⊗ IdP . �

P
d̃P

P ′
←→

PP ′

Figure 3. Blue digging and capping moves. Here one can assume
the orientation of the left most strand is as shown in the figure
because of Remark 3.1.
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Proof of Theorem 2.4. To prove the theorem we will prove a slightly stronger
statement:

Statement. There exists a unique extension of F ′ to an invariant of admissible
bichrome handlebody graphs satisfying Equation (6) and invariant under the blue
capping and digging moves.

We prove the statement by induction on the number of red circles. When there
are no red circles the statement is just Lemma 5.7.

Now suppose the statement is true for all admissible bichrome handlebody graphs
with n− 1 red circles. Let (H, 0) be an admissible bichrome handlebody graph
with n red circles. There exists a not self-interesting path γ0 in ∂H \0 going from
a point on a blue edge to a point on one red circle β0. Using this path we can pull a
small segment of the blue edge to β0 then use the chromatic morphism to change β0

into a blue graph. We obtain an admissible bichrome handlebody graph (H, 0γ0)

with n−1 red circles. Then by induction F ′(H, 0γ0) is well defined, so if F ′ exists
it is unique. To prove F ′ exists we need to show it is independent of the choice
of the path γ0. Let γ1 be another such path going from a point on a blue edge to
a point on one of the red circles β1 and let (H, 0γ1) be the admissible bichrome
handlebody graph obtained by using γ1 to make β1 blue. We consider two cases.

Case 1. β0 = β1. Here we have two subcases. First, suppose the red circle β0 = β1

has complexity one. By Proposition 5.3 we have β0 is the result of a digging move.
Therefore, when we use either γ0 or γ1 with the chromatic morphism to change
β0 to a blue graph and we arrive at a diagram of the form given in the left side
of Figure 3. In both cases we can do a blue capping move to arrive at the same
I-colored ribbon graph on a multihandlebody with n−1 red circles. Thus, induction
implies

F ′(H, 0γ0)= F ′(H, 0γ1)

so in this subcase the extension of F ′ does not depend on the choice of γ0.
Second, assume the red curve β0 = β1 has any complexity. Apply a blue digging

move to 0 along a small interval I intersecting β0 in a single point. The result is
a new bichrome handlebody graph (H ′, 0′) with n red circles in which the image
β ′0 of β0 is a red curve with complexity 1. Since this digging move only modified
(H, 0) in a neighborhood of I , we can identify γ0 and γ1 as paths in ∂H ′ \ 0′

and we can apply the chromatic morphism to β ′0 either through γ0 and γ1 getting,
respectively, bichrome handlebody graphs 0′γ0

and 0′γ1
with n− 1 red components.

By the preceding case F ′(H ′, 0′γ0
) = F ′(H ′, 0′γ1

). But now observing that 0′γ0

(resp. 0′γ1
) is obtained from 0γ0 (resp. 0γ1) by a blue digging move, we have

F ′(H, 0γ0)= F ′(H ′, 0′γ0
)= F ′(H ′, 0′γ1

)= F ′(H, 0′γ1
).
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Case 2. β0 6= β1. In this situation we have two subcases. First, suppose γ0 and γ1

are nonintersecting. In (H, 0γ0) (resp. (H, 0γ1)) we can use γ1 (resp. γ0) to change
β1 (resp. β0) into a blue graph and obtain an admissible bichrome handlebody graph
(H, 01) with n− 2 red circles. Then by induction we have:

F ′(H, 0γ0)= F ′(H, 01)= F ′(H, 0γ1).

Second, suppose γ0 ∩ γ1 6= ∅; we claim that there exists another path γ ′1 con-
necting 0blue to β1 such that γ0 ∩ γ

′

1 =∅ so that by the preceding subcase we have
F ′(H, 0γ0) = F ′(H, 0γ ′1) then Case 1 implies F ′(H, 0γ ′1) = F ′(H, 0γ1) and the
proof follows. To prove our claim observe that since γ0∩γ1 6=∅ then γ0 and γ1 are
contained in the same connected component R of ∂H \0. Moreover, R is an open
orientable surface which is the interior of a compact surface with at least 3 distinct
boundary components: ∂blue ⊂ 0blue, β0 and β1. Then γ0 and γ1 are embedded
arcs in R connecting ∂blue to β0 and β1, respectively. But R \ γ0 is connected as
γ0 intersects the closed curve β0 once. Thus, there exists another path in R \ γ0

connecting ∂blue and β1. �

Proof of Theorem 2.5. By Theorem 5.5 it is sufficient to prove that F ′ is invariant
under red digging and capping moves. Let (H, 0) and (H ′, 0′) be bichrome
handlebody graphs such that (H ′, 0′) is obtained from (H, 0) by a red digging
move. Suppose c is the red circle created in this move. Let (H ′, 0′′) be the bichrome
handlebody graph obtained from using an edge of the blue graph and the chromatic
morphism to change the red circle c into a blue graph. Then by definition the
composition of these two moves is a blue digging move. Thus, by Lemma 5.7 we
have

F ′(H, 0)= F ′(H ′, 0′′).

Moreover, since (H ′, 0′) and (H ′, 0′′) differ by an isotopy and a move represented
in Equation (6) then Theorem 2.4 implies

F ′(H ′, 0′)= F ′(H ′, 0′′).

Combining the last two equalities we have F ′(H, 0)= F ′(H ′, 0′) which concludes
the lemma. �

6. Details on Hopf algebras and Kuperberg invariants

In this section we prove Theorems 2.6 and 2.7. First, we briefly recall some well
known facts about Hopf algebras, see for example [Radford 2012].

6A. Hopf algebra preliminaries. Let A be a finite-dimensional Hopf algebra over
a field k with a multiplication m : A ⊗ A→ A, a unit η : k→ A, a coproduct
1 : A→ A⊗ A, a counit ε : A→ k, an antipode S : A→ A. A right integral of
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A is a linear form λ ∈ A∗ satisfying λ f = f (1A) · λ for every f ∈ A∗. This means
that (λ⊗ IdA)(1(x))= λ(x) · 1A for every x ∈ A. A left (resp. right) cointegral of
A is a vector 3 ∈ A satisfying x3= ε(x)3 (resp. 3x = ε(x)3) for every x ∈ A.
Since A is finite-dimensional, right integrals form a 1-dimensional ideal in A∗ and
left cointegrals form a 1-dimensional ideal in A. Moreover, every nonzero right
integral λ ∈ A∗ and every nonzero left cointegral 3 ∈ A satisfy λ(3) 6= 0. We fix a
choice of a right integral λ ∈ A∗ and of a left cointegral 3 ∈ A satisfying λ(3)= 1.
In this section we use sumless Sweedler notation to describe the application of the
coproduct, for example 13(x)= x(1)⊗ x(2)⊗ x(3).

The Hopf algebra A being unimodular means that S(3)=3, or equivalently, 3
is both a right and left cointegral. We say A is pivotal if there exists g ∈ A such that
S2(x)= gxg−1 for all x ∈ A. Let Proj be the ideal of projective modules over A
(for a definition of projective object see Section 3D). By Theorem 1 of [Beliakova
et al. 2018a] every finite dimensional unimodular pivotal Hopf algebra has a left
m-trace on Proj. Such a Hopf algebra is unibalanced if this left m-trace is also a
right m-trace (see [Beliakova et al. 2018a]).

6B. Proof of Theorem 2.6. Let A be a finite dimensional unibalanced unimodular
pivotal Hopf algebra over a field k and A-mod be the category of its finite dimen-
sional left modules. Denote A as the regular representation of A, which is the left
A-module structure on A itself determined by the action L : A→ Endk(A) given
by Lh(x)= hx for all h, x ∈ A. Let t be the nondegenerate m-trace on Proj with
normalization: tA( f3 ◦ ε) = 1, where f3 : k→ A denotes the unique morphism
determined by f3(1)=3.

Lemma 6.1. The regular representation A is a generator of Proj in A-mod.

Proof. Let P be an indecomposable projective A-module. Then P being projective
implies it is a direct summand of a free module

⊕
n A. But P is indecomposable

so P is a direct summand of A. Since Krull-Schmidt Theorem holds in A-mod
we have that every element of Proj is a direct sum of indecomposable projective
modules and the lemma follows. �

For P ∈ Proj, observe that the map 3′P : P→ P given by the left action of 3 on
P is a morphism because 3 is both a left and right cointegral. On the other hand,
consider the morphism 3P : P→ P given by 3P = xi yi , where �P =

∑
i xi ⊗k yi

is defined in Proposition 2.1.

Lemma 6.2. 3P =3
′

P .

Proof. First, consider the case when P is the generator A. Since the space of cointe-
grals is one dimensional then HomA-mod(1, A) is one dimensional and generated by
the morphism f3 : k→ A determined by f3(1)=3. Combining this with the fact
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that t is nondegenerate (with the normalization given above) we have �A = f3⊗k ε.
Thus, for all x ∈ A we have

3A(x)= f3ε(x)= ε(x)3= x3=3′A(x).

So the lemma holds for P = A.
Let P be an object in Proj. Since A is a generator there exist f j : A→ P and

g j : P→ A such that IdP =
∑

j∈J f j g j . From Proposition 4.2 Part (2) we have

�P =
∑
j∈J

(
( f j ⊗ Id1)�A(Id1⊗g j )

)
=

∑
j∈J

(
( f j ◦ f3)⊗ (ε ◦ g j )

)
.

So by definition of 3P , for y ∈ P , we have

3P(y)=
∑
j∈J

(
f j ◦ f3 ◦ ε ◦ g j

)
(y)=

∑
j∈J

f j (ε(g j (y))3)

=

∑
j∈J

f j (3g j (y))

=

∑
j∈J

3 f j (g j (y))=3.y,

and the lemma follows. �

In [De Renzi et al. 2018] it is shown that fλ,1A : A → A∗ ⊗ A defined by
1A 7→ λ⊗ 1A is a morphism.

Lemma 6.3. The morphism d̃ : A⊗ A→ A⊗ A defined by

d̃ = (
→

evA ⊗ IdA⊗A)(IdA⊗ fλ,1A ⊗ IdA)(IdA⊗1)

is a chromatic morphism for the generator A.

Proof. First, we set h = λ(S(3(2)))3(1) and prove

(11) h = λ(S(3(2)))3(1) = 1A.

To prove this we consider

S(h)= (IdA⊗λ)(S⊗ S)(1(3))= (IdA⊗λ)(1
op(S(3)))

= (λ⊗ IdA)
(
1(S(3))

)
= λ(S(3))1A = λ(3)1A = 1A.

Then A being finite dimensional implies S is invertible and so Equation (11) follows.
For x ∈ X let L x be the left action of x on A or A∗. We also need the following

equation

(12)
←

evA ◦ (IdA∗ ⊗ L x) ◦ fλ⊗1A = λ(x) · ε
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which is proved, for all x ∈ A, in the proof of Lemma 3.8 of [De Renzi et al. 2018].
Let g be the morphism on the left side of Equation (3). Let x, y ∈ A then

g(x ⊗ y)= (IdA⊗
←

evA)(3⊗ IdA)(IdA⊗ fλ⊗1A ⊗ IdA)(x ⊗1(y))

=3(1)x ⊗
(←
evA (L3(2) ⊗ IdA) fλ⊗1A(y(1))

)
y(2)

=3(1)x ⊗
(←
evA (IdA∗ ⊗L S(3(2))) fλ⊗1A(y(1))

)
y(2)

=3(1)x ⊗ λ(S(3(2)))ε(y(1))y(2)

= λ(S(3(2)))3(1)x ⊗ y

= x ⊗ y,

where the fourth equality follows from Equation (12), the fifth from definition
of the Hopf algebra, i.e., (ε ⊗ IdA)1 = IdA and the last equality follows from
Equation (11). �

Thus, the results of this subsection complete the proof of Theorem 2.6.

6C. Proof of Theorem 2.7. In the last subsection we showed A-mod satisfies the
hypotheses of Theorems 2.4 and 2.5. Thus we have:

Theorem 6.4. The category of finite dimensional modules over a finite dimensional
unibalanced unimodular pivotal Hopf algebra A gives rise to an invariant of
bichrome handlebody graphs F ′ and an invariant of 3-manifolds KA-mod.

We will now show how to compute the invariant KA-mod. Let M be a closed
connected orientable 3-manifold M . Here we use the generator G = A and choose
OG to be the ribbon graph formed by the braid closure of the coupon filled with
h = f3 ◦ ε, see Section 2B. Let (Hα, 0) be a bichrome diagram determined by a
Heegaard splitting M = Hα ∪6 Hβ with lower and upper minimal reducing sets
of circles {α1, . . . , αg} and {β1, . . . , βg}, respectively. Using the blue graph OG

and the chromatic morphism we change all the red circles {βi } into a blue graph.
Now {αi } is a minimal reducing set of circles on Hα and so using Property (4) of
Theorem 2.2 we can cut along the discs in Hα bounded by these circles to obtain a
graph 0′ on the boundary of the 3-ball. By definition

(13) KA-mod(M)= F ′(B3, 0′).

See Figure 4 for an example.
For the rest of the subsection, we assume A is involutive (the square of the

antipode is the identity map). In this case, the invariant KA-mod(M) can be computed
as follows. To do this we need the following two lemmas. The proof of the first is
straightforward and we leave it to the reader.
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F ′


A

f3 ◦ ε



= F ′


Af3 ◦ ε

d̃

A



= F ′



∑
i

f3 ◦ ε

d̃

A A

xi

yi


Figure 4. Here we compute KA-mod for L(2, 1). The first equality
comes from using the chromatic morphism to transform the red
circle into a blue graph. Then cutting along the meridian (de-
picted on the left) one obtains a graph 0′ ⊂ ∂B3. By definition
KA-mod(L(2, 1))= F ′(B3

;0′).

Lemma 6.5. Since A is involutive then we can choose the pivotal structure of
A-mod to be trivial and there exist a forgetful pivotal functor from A-mod to the
category of vector spaces Vectk. Moreover, we have the following commutative
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diagram:

RibA-mod RibVectk

A-mod Vectk

Forgetful

F FVectk

Forgetful

where the horizontal arrows are given by the forgetful functors and the vertical
arrows are the pivotal functor from planar colored ribbon graphs Rib to A-mod or
Vectk.

The next lemma says that evaluating red circles with the chromatic morphism is
essentially the integral.

Lemma 6.6. For all x ∈ A the following equality holds in Vectk

(
←

evA ⊗ IdA)(IdA∗ ⊗L x ⊗ IdA)(IdA∗ ⊗d̃)(
−→

coevA ⊗ IdA)= λ(x) IdA

this equation is represented pictorially as

d̃

x

= λ(x)

where all the strands are colored by A and the dot (or bead) is labeled with x.

Proof. The lemma follows from the definition of the chromatic morphism and
Equation (12). �

Now we are ready to compute KA-mod(M) when A is involutive and prove
Theorem 2.7. To do this we continue the computations given above. In particular,
by Equation (13) it suffices to determine the value of F ′(B3, 0′) as follows. Let
TA be a (1,1)-ribbon graph whose closure is 0′. Then Equation (8) implies

F ′(B3, 0′)= tA(F(TA)).

Recall the A-mod morphism f3 ◦ ε defined at the beginning of Section 6B. Since
tA( f3 ◦ ε)= 1 the proof of Theorem 2.7 is concluded after proving the following
claim:

Claim 6.7. F(TA)= KuA(M) · ( f3 ◦ ε).

Proof of Claim 6.7. Lemma 6.5 implies that

Forgetful(F(TA))= FVectk(Forgetful(TA)).

Thus, it suffices to prove

(14) FVectk(Forgetful(TA))= KuA(M) ·Forgetful( f3 ◦ ε)
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since Forgetful is a faithful functor. For the rest of the proof, we will work in the
category of Vectk, allowing us to consider left multiplication by an element x ∈ A
as a morphism in Vectk. Moreover, to simplify notation we identify each morphism
in A−mod with its underlying linear map.

Recall, by definition, when cutting one of the α-circles we replace the blue circles
crossing the disk with a ordered matching pair of coupons filled with a sum∑

i

xi ⊗k yi

as in Equation (2). By Lemma 6.2 this morphism is equal to the left action by 3.
We now explain how to represent this action with elements called beads.

For each circle in {αi } choose an orientation and a base point (the following
procedure is independent of these choices). As above, use the chromatic morphism
to change all the red circles {βi } into blue graphs (note this induces an orientation
on each circle βi ). Then instead of cutting along the bounding circles {αi } we
decorate the blue graph with certain sums of elements of A called beads as follows.
Each circle α j intersects the set of upper circles {βi } transversely. Let c1, . . . , cm

be these crossings in the order that they are encountered if we travel from the base
point along α j in the positively oriented direction. For the k-th crossing, set pk = 0
if the tangent vectors of the lower circle α j and the upper circle, in that order, form
a positively oriented basis for the tangent space at ck , otherwise set pk = 1. We
assign to the k-th crossing the bead S pk (3(k)) where

1m(3)=3(1)⊗ · · ·⊗3(m).

Notice, since Vectk has a trivial ribbon structure, then the left hand side of
Equation (14) only depends on the abstract graph of TA or equivalently 0′. Thus,
we can compute FVectk(Forgetful(TA)) as follows. Each upper circle βi has an
orientation and a base point (determined by where the chromatic morphism is
applied). Starting at this point and following the orientation we collect the beads to
obtain a word ai of A written from right to left. Doing this for all upper circles we
obtain g beads: a1, . . . , ag. For each βi , apply Lemma 6.6 where x is the bead ai

to obtain

FVectk(Forgetful(TA))= λ(a1)λ(a2) · · · λ(ag) · ( f3 ◦ ε).

For an example of this computation see Figure 5. But when A is involutive, by
definition the Kuperberg invariant is

KuA(M)= λ(a1)λ(a2) · · · λ(ag).

Thus, we have completed the proof of the claim. �
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Forgetful


F



∑
i

d̃

f3 ◦ ε
A A

xi

yi





= FVectk



∑
i

d̃

f3 ◦ ε

A A

xi

yi



= FVectk



S(3(1)) S(3(2))

d̃

f3 ◦ ε

AA



= FVectk


S(3(2))S(3(1))

d̃

f3 ◦ ε

A A

= λ
(
S(3(2))S(3(1))

)
· ( f3 ◦ ε).

Figure 5. In Figure 4 we showed KA-mod(L(2, 1))= F ′(B3, 0′);
here we continue this computations when A is involutive. The first
drawing depicts the 1-1 tangle obtained by cutting 0′ along the
black disk. In the first equality, we pass to the category Vectk using
Lemma 6.5. Since Vectk has a symmetric braiding, the crossings
make sense. The third equality re-expresses the cutting through
beads (see Lemma 6.2). Finally, we collect the beads and apply
Lemma 6.6.
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7. The semisimple case and the TV invariant

Here we prove Theorem 2.8. Recall the notation of Section 2D.

Proof of Theorem 2.8. Let T be a triangulation of a closed connected orientable
3-manifold M . Let t be a maximal tree of edges of T , then t contains all the v
vertices of T . We define a Heegaard diagram as follows. Let Hβ be a regular
neighborhood of the 1-skeleton of T and Hα its complement, then M = Hα ∪ Hβ
is a Heegaard splitting. The β-circles are meridians of the edges of T not in the
tree t and the α-circles bound discs formed by the 2-dimensional faces of T . As
in Section 5B this Heegaard diagram gives a bichrome handlebody graph (Hα, 0)
where the red graph is the β-circles.

By definition of the chromatic morphism we see that the value of a red unknot is
the nonzero dimension D of C (see Equation (7)). Thus, the value of F ′(Hα, 0)
does not change if we multiply it by 1/D and at the same time add a red unknot to
the bichrome handlebody graph (Hα, 0). With this in mind, we construct a new
bichrome handlebody graph as follows. Starting with (Hα, 0) place a red unknot
on the boundary of the neighborhood of each edge of the tree t . Let e be a leaf
of t , i.e., an edge of t such that one of its vertices has degree 1. Then we can
slide the new red unknot associated to e over all the red meridians of the edges
adjacent to this vertex. After these slidings the new unknot becomes a red meridian
around e. Continuing this process on the leaves of t \ {e}, we obtain a bichrome
handlebody graph (Hα, 0′) where each neighborhood of an edge of T has a red
meridian. Combining the fact that F ′ satisfies the sliding property for red circles
and the discussion above we have

(15) KC (M)= F ′(Hα, 0)=
1

Dv−1 F ′(Hα, 0′),

where v is the number of vertices of T .
Now we compute F ′(Hα, 0′). Use the chromatic morphism to make all the red

circles blue. By definition of the chromatic morphism each red circle is changed
to a blue circle colored with G or equivalently the weighted sum

∑
i qdim(Si )Si

(note this happens for a meridian of each edge of T ). Then cutting along the discs
formed by the 2-dimensional faces of T we obtain a set of spherical tetrahedra
(indexed by the set of tetrahedra of T ) whose edges are all colored by G and whose
four 3-legged coupons are filled with morphisms coming from the cutting. Using
the fact that G splits as an orthogonal direct sum of simple objects one can see that
each of these spherical tetrahedra is a sum indexed by colorings of the edges of T
by elements of {Si }. Moreover, each component of this sum is proportional to the
corresponding usual 6 j-symbol. Therefore, we have

TVC (T )=
1

Dv
F ′(Hα, 0′),
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where TVC (M) = TVC (T ) is the TV invariant associated to the triangulation T
of M , see [Turaev 1994]. Combining this with Equation (15), we have 1

DKC (M)=
TVC (M). �

References

[Barrett and Westbury 1996] J. W. Barrett and B. W. Westbury, “Invariants of piecewise-linear
3-manifolds”, Trans. Amer. Math. Soc. 348:10 (1996), 3997–4022. MR Zbl

[Barrett and Westbury 1999] J. W. Barrett and B. W. Westbury, “Spherical categories”, Adv. Math.
143:2 (1999), 357–375. MR Zbl

[Beliakova et al. 2018a] A. Beliakova, C. Blanchet, and A. M. Gainutdinov, “Modified trace is a
symmetrised integral”, preprint, 2018. arXiv

[Beliakova et al. 2018b] A. Beliakova, C. Blanchet, and N. Geer, “Logarithmic Hennings invariants
for restricted quantum sl(2)”, Algebr. Geom. Topol. 18:7 (2018), 4329–4358. MR Zbl

[Bulacu and Caenepeel 2003] D. Bulacu and S. Caenepeel, “Integrals for (dual) quasi-Hopf algebras:
applications”, J. Algebra 266:2 (2003), 552–583. MR Zbl

[Bulacu and Caenepeel 2012] D. Bulacu and S. Caenepeel, “On integrals and cointegrals for quasi-
Hopf algebras”, J. Algebra 351 (2012), 390–425. MR Zbl

[Costantino et al. 2014] F. Costantino, N. Geer, and B. Patureau-Mirand, “Quantum invariants of
3-manifolds via link surgery presentations and non-semi-simple categories”, J. Topol. 7:4 (2014),
1005–1053. MR Zbl

[De Renzi et al. 2018] M. De Renzi, N. Geer, and B. Patureau-Mirand, “Renormalized Hennings
invariants and 2+ 1-TQFTs”, Comm. Math. Phys. 362:3 (2018), 855–907. MR Zbl

[Geer et al. 2011a] N. Geer, J. Kujawa, and B. Patureau-Mirand, “Generalized trace and modified
dimension functions on ribbon categories”, Selecta Math. (N.S.) 17:2 (2011), 453–504. MR Zbl

[Geer et al. 2011b] N. Geer, B. Patureau-Mirand, and V. Turaev, “Modified 6 j-symbols and 3-
manifold invariants”, Adv. Math. 228:2 (2011), 1163–1202. MR Zbl

[Geer et al. 2013a] N. Geer, J. Kujawa, and B. Patureau-Mirand, “Ambidextrous objects and trace
functions for nonsemisimple categories”, Proc. Amer. Math. Soc. 141:9 (2013), 2963–2978. MR
Zbl

[Geer et al. 2013b] N. Geer, B. Patureau-Mirand, and A. Virelizier, “Traces on ideals in pivotal
categories”, Quantum Topol. 4:1 (2013), 91–124. MR Zbl

[Geer et al. 2018] N. Geer, J. Kujawa, and B. Patureau-Mirand, “M-traces in (non-unimodular) pivotal
categories”, preprint, 2018. arXiv

[Hausser and Nill 1999] F. Hausser and F. Nill, “Integral theory for quasi-Hopf algebras”, preprint,
1999. arXiv

[Kashaev and Virelizier 2019] R. Kashaev and A. Virelizier, “Generalized Kuperberg invariants of
3-manifolds”, Algebr. Geom. Topol. 19:5 (2019), 2575–2624. MR Zbl

[Kuperberg 1991] G. Kuperberg, “Involutory Hopf algebras and 3-manifold invariants”, Int. J. Math.
2:1 (1991), 41–66. MR Zbl

[Kuperberg 1996] G. Kuperberg, “Noninvolutory Hopf algebras and 3-manifold invariants”, Duke
Math. J. 84:1 (1996), 83–129. MR Zbl

[Masur and Minsky 2004] H. A. Masur and Y. N. Minsky, “Quasiconvexity in the curve complex”,
pp. 309–320 in In the tradition of Ahlfors and Bers, III (Storrs, CT, 2001), edited by W. Abikoff and
A. Haas, Contemp. Math. 355, Amer. Math. Soc., Providence, RI, 2004. MR Zbl

http://dx.doi.org/10.1090/S0002-9947-96-01660-1
http://dx.doi.org/10.1090/S0002-9947-96-01660-1
http://msp.org/idx/mr/1357878
http://msp.org/idx/zbl/0865.57013
http://dx.doi.org/10.1006/aima.1998.1800
http://msp.org/idx/mr/1686423
http://msp.org/idx/zbl/0930.18004
http://msp.org/idx/arx/1801.00321
http://dx.doi.org/10.2140/agt.2018.18.4329
http://dx.doi.org/10.2140/agt.2018.18.4329
http://msp.org/idx/mr/3892247
http://msp.org/idx/zbl/1411.57020
http://dx.doi.org/10.1016/S0021-8693(03)00175-3
http://dx.doi.org/10.1016/S0021-8693(03)00175-3
http://msp.org/idx/mr/1995128
http://msp.org/idx/zbl/1030.16024
http://dx.doi.org/10.1016/j.jalgebra.2011.11.006
http://dx.doi.org/10.1016/j.jalgebra.2011.11.006
http://msp.org/idx/mr/2862216
http://msp.org/idx/zbl/1257.16024
http://dx.doi.org/10.1112/jtopol/jtu006
http://dx.doi.org/10.1112/jtopol/jtu006
http://msp.org/idx/mr/3286896
http://msp.org/idx/zbl/1320.57016
http://dx.doi.org/10.1007/s00220-018-3187-8
http://dx.doi.org/10.1007/s00220-018-3187-8
http://msp.org/idx/mr/3845290
http://msp.org/idx/zbl/1402.57024
http://dx.doi.org/10.1007/s00029-010-0046-7
http://dx.doi.org/10.1007/s00029-010-0046-7
http://msp.org/idx/mr/2803849
http://msp.org/idx/zbl/1248.18006
http://dx.doi.org/10.1016/j.aim.2011.06.015
http://dx.doi.org/10.1016/j.aim.2011.06.015
http://msp.org/idx/mr/2822220
http://msp.org/idx/zbl/1237.57011
http://dx.doi.org/10.1090/S0002-9939-2013-11563-7
http://dx.doi.org/10.1090/S0002-9939-2013-11563-7
http://msp.org/idx/mr/3068949
http://msp.org/idx/zbl/1280.18005
http://dx.doi.org/10.4171/QT/36
http://dx.doi.org/10.4171/QT/36
http://msp.org/idx/mr/2998839
http://msp.org/idx/zbl/1275.18017
http://msp.org/idx/arx/1809.00499
http://msp.org/idx/arx/math/9904164
http://dx.doi.org/10.2140/agt.2019.19.2575
http://dx.doi.org/10.2140/agt.2019.19.2575
http://msp.org/idx/mr/4023323
http://msp.org/idx/zbl/07142613
http://dx.doi.org/10.1142/S0129167X91000053
http://msp.org/idx/mr/1082836
http://msp.org/idx/zbl/0726.57016
http://dx.doi.org/10.1215/S0012-7094-96-08403-3
http://msp.org/idx/mr/1394749
http://msp.org/idx/zbl/0949.57003
http://dx.doi.org/10.1090/conm/355/06460
http://msp.org/idx/mr/2145071
http://msp.org/idx/zbl/1076.57016


450 F. COSTANTINO, N. GEER, B. PATUREAU-MIRAND AND V. TURAEV

[Panaite and Van Oystaeyen 2000] F. Panaite and F. Van Oystaeyen, “Existence of integrals for finite
dimensional quasi-Hopf algebras”, Bull. Belg. Math. Soc. Simon Stevin 7:2 (2000), 261–264. MR
Zbl

[Radford 2012] D. E. Radford, Hopf algebras, Series on Knots and Everything 49, World Sci.,
Hackensack, NJ, 2012. MR Zbl

[Scheunert and Zhang 2001] M. Scheunert and R. B. Zhang, “Invariant integration on classical and
quantum Lie supergroups”, J. Math. Phys. 42:8 (2001), 3871–3897. MR Zbl

[Scheunert and Zhang 2005] M. Scheunert and R. B. Zhang, “Integration on Lie supergroups: a Hopf
superalgebra approach”, J. Algebra 292:2 (2005), 324–342. MR Zbl

[Shimizu 2019] K. Shimizu, “Integrals for finite tensor categories”, Algebr. Represent. Theory 22:2
(2019), 459–493. MR Zbl

[Singer 1933] J. Singer, “Three-dimensional manifolds and their Heegaard diagrams”, Trans. Amer.
Math. Soc. 35:1 (1933), 88–111. MR Zbl

[Turaev 1994] V. G. Turaev, Quantum invariants of knots and 3-manifolds, de Gruyter Stud. Math.
18, de Gruyter, Berlin, 1994. MR Zbl

[Turaev and Virelizier 2017] V. Turaev and A. Virelizier, Monoidal categories and topological field
theory, Progr. Math. 322, Birkhäuser, Cham, 2017. MR Zbl

[Turaev and Viro 1992] V. G. Turaev and O. Y. Viro, “State sum invariants of 3-manifolds and
quantum 6 j-symbols”, Topology 31:4 (1992), 865–902. MR Zbl

Received July 24, 2019.

FRANCESCO COSTANTINO

INSTITUT DE MATHÉMATIQUES DE TOULOUSE III - PAUL SABOTIER

TOULOUSE

FRANCE

francesco.costantino@math.univ-toulouse.fr

NATHAN GEER

DEPARTMENT OF MATHEMATICS AND STATISTICS

UTAH STATE UNIVERSITY

LOGAN, UT
UNITED STATES

nathan.geer@gmail.com

BERTRAND PATUREAU-MIRAND

UMR 6205, LMBA
UNIVERSITÉ DE BRETAGNE-SUD

CAMPUS TOHANNIC

VANNES

FRANCE

bertrand.patureau@univ-ubs.fr

VLADIMIR TURAEV

DEPARTMENT OF MATHEMATICS

INDIANA UNIVERSITY

BLOOMINGTON, IN
UNITED STATES

vturaev@yahoo.com

http://dx.doi.org/10.36045/bbms/1103055690
http://dx.doi.org/10.36045/bbms/1103055690
http://msp.org/idx/mr/1771560
http://msp.org/idx/zbl/0972.16020
http://dx.doi.org/10.1142/8055
http://msp.org/idx/mr/2894855
http://msp.org/idx/zbl/1266.16036
http://dx.doi.org/10.1063/1.1364689
http://dx.doi.org/10.1063/1.1364689
http://msp.org/idx/mr/1845224
http://msp.org/idx/zbl/1032.17054
http://dx.doi.org/10.1016/j.jalgebra.2005.08.001
http://dx.doi.org/10.1016/j.jalgebra.2005.08.001
http://msp.org/idx/mr/2172158
http://msp.org/idx/zbl/1087.17006
http://dx.doi.org/10.1007/s10468-018-9777-5
http://msp.org/idx/mr/3921367
http://msp.org/idx/zbl/1411.18012
http://dx.doi.org/10.2307/1989314
http://msp.org/idx/mr/1501673
http://msp.org/idx/zbl/0006.18501
http://dx.doi.org/10.1515/9783110435221
http://msp.org/idx/mr/1292673
http://msp.org/idx/zbl/0812.57003
http://dx.doi.org/10.1007/978-3-319-49834-8
http://dx.doi.org/10.1007/978-3-319-49834-8
http://msp.org/idx/mr/3674995
http://msp.org/idx/zbl/1423.18001
http://dx.doi.org/10.1016/0040-9383(92)90015-A
http://dx.doi.org/10.1016/0040-9383(92)90015-A
http://msp.org/idx/mr/1191386
http://msp.org/idx/zbl/0779.57009
mailto:francesco.costantino@math.univ-toulouse.fr
mailto:nathan.geer@gmail.com
mailto:bertrand.patureau@univ-ubs.fr
mailto:vturaev@yahoo.com


PACIFIC JOURNAL OF MATHEMATICS
Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Matthias Aschenbrenner
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

matthias@math.ucla.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Wee Teck Gan
Mathematics Department

National University of Singapore
Singapore 119076

matgwt@nus.edu.sg

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2020 is US $520/year for the electronic version, and $705/year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 1945-5844 electronic, 0030-8730 printed) at the University of California, c/o Department
of Mathematics, 798 Evans Hall #3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at
Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O.
Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2020 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:matthias@math.ucla.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:balmer@math.ucla.edu
mailto:matgwt@nus.edu.sg
mailto:popa@math.ucla.edu
mailto:yang@math.princeton.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 306 No. 2 June 2020

385Cohomological kernels of purely inseparable field extensions
ROBERTO ARAVIRE, BILL JACOB and MANUEL O’RYAN

421Kuperberg and Turaev–Viro invariants in unimodular categories
FRANCESCO COSTANTINO, NATHAN GEER, BERTRAND

PATUREAU-MIRAND and VLADIMIR TURAEV

451A new equivalence between super Harish-Chandra pairs and Lie supergroups
FABIO GAVARINI

487Generalized Mullineux involution and perverse equivalences
THOMAS GERBER, NICOLAS JACON and EMILY NORTON

519Isotypic multiharmonic polynomials and Gelbart–Helgason reciprocity
ANTHONY C. KABLE

539Two applications of the integral regulator
MATT KERR and MUXI LI

557Definability and approximations in triangulated categories
ROSANNA LAKING and JORGE VITÓRIA

587Remarks on the theta correspondence over finite fields
DONGWEN LIU and ZHICHENG WANG

611On the configurations of centers of planar Hamiltonian Kolmogorov cubic
polynomial differential systems

JAUME LLIBRE and DONGMEI XIAO

6452-categories of symmetric bimodules and their 2-representations
VOLODYMYR MAZORCHUK, VANESSA MIEMIETZ and XIAOTING ZHANG

679The homotopy groups of the η-periodic motivic sphere spectrum
KYLE ORMSBY and OLIVER RÖNDIGS

699On the Noether Problem for torsion subgroups of tori
FEDERICO SCAVIA

721Explicit polynomial bounds on prime ideals in polynomial rings over fields
WILLIAM SIMMONS and HENRY TOWSNER

755A new local gradient estimate for a nonlinear equation under integral curvature
condition on manifolds

LIANG ZHAO and SHOUWEN FANG

0030-8730(202006)306:2;1-J

Pacific
JournalofM

athem
atics

2020
Vol.306,N

o.2


	1. Introduction
	2. Statements of main results and open problems
	2A. The invariant F'
	2B. The invariant K
	2C. Hopf algebras and Kuperberg's invariant
	2D. Turaev–Viro invariant
	2E. Open Problems

	3. Algebraic setup
	3A. Pivotal and ribbon categories
	3B. k-categories
	3C. M-traces on ideals in pivotal categories
	3D. Projective objects
	3E. Invariants of colored ribbon graphs

	4. An invariant of I-colored graphs on a multihandlebody
	4A. Algebraic preliminaries
	4B. Proof of 0=theorem.81=Theorem 2.2

	5. Invariant of bichrome graphs and of 3-manifolds
	5A. Bichrome graphs on handlebodies
	5B. Heegaard splittings
	5C. Proof of Theorems 2.4 and 2.5

	6. Details on Hopf algebras and Kuperberg invariants
	6A. Hopf algebra preliminaries
	6B. Proof of 0=theorem.231=Theorem 2.6
	6C. Proof of 0=theorem.241=Theorem 2.7

	7. The semisimple case and the TV invariant
	References
	
	

