Vol. 307, No. 1, 2020

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 334: 1  2
Vol. 333: 1  2
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
The Dirichlet problem for the mimimal hypersurface equation with Lipschitz continuous boundary data in a Riemannian manifold

Arì Aiolfi, Giovanni da Silva Nunes, Lisandra Sauer and Rodrigo Soares

Vol. 307 (2020), No. 1, 1–12
Abstract

In Corollary 1 of J. Reine Angew. Math. 354:123–140 (1984), G. H. Williams proves the existence of solutions to the Dirichlet problem for the minimal hypersurface equation on arbitrary bounded C2 domains of the Euclidean space for Lipschitz continuous boundary data with optimal Lipschitz constant. We prove a similar result on a complete Riemannian manifold. Our theorem recovers Williams’ Corollary 1 when the ambient is the Euclidean space. Moreover, it applies to unbounded domains.

Keywords
Dirichlet problem for minimal hypersurface equation, Lipschitz continuous boundary data
Mathematical Subject Classification 2010
Primary: 53C21
Secondary: 58J05
Milestones
Received: 11 September 2018
Revised: 27 January 2020
Accepted: 27 March 2020
Published: 8 August 2020
Authors
Arì Aiolfi
Departamento de Matemática
Universidade Federal de Santa Maria
Santa Maria
Brazil
Giovanni da Silva Nunes
Instituto de Física e Matemática
Universidade Federal de Pelotas
Pelotas
Brazil
Lisandra Sauer
Instituto de Física e Matemática
Universidade Federal de Pelotas
Pelotas
Brazil
Rodrigo Soares
Instituto de Matemática e Estatística
Universidade Federal do Rio Grande
Rio Grande
Brazil