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ELIMINATING TAME RAMIFICATION
GENERALIZATIONS OF ABHYANKAR’S LEMMA

ARPAN DUTTA AND FRANZ-VIKTOR KUHLMANN

A basic version of Abhyankar’s lemma states that for two finite extensions
L and F of a local field K , if L|K is tamely ramified and if the ramification
index of L|K divides the ramification index of F|K , then the compositum
L.F is an unramified extension of F. In this paper, we generalize the result
to valued fields with value groups of rational rank 1, and show that the latter
condition is necessary. Replacing the condition on the ramification indices
by the condition that the value group of L be contained in that of F, we gen-
eralize the result further in order to give a necessary and sufficient condition
for the elimination of tame ramification of an arbitrary extension F|K by a
suitable algebraic extension of the base field K . In addition, we derive more
precise ramification theoretical statements and give several examples.

1. Introduction

In this paper we consider valued fields (K , v), i.e., fields K with a Krull valuation v.
The valuation ring of v on K will be denoted by OK . The value group of (K , v)
will be denoted by vK , and its residue field by Kv. The value of an element
a will be denoted by va, and its residue by av. By (L|K , v) we denote a field
extension L|K where v is a valuation on L and K is endowed with the restriction
of v. For background on valuation theory, see [Endler 1972; Engler and Prestel
2005; Kuhlmann ≥ 2020; Zariski and Samuel 1960]. Basic facts that we will need,
in particular from ramification theory, will be presented in Section 2.

Throughout, we will consider the following general situation. We let (M, v)
be an arbitrary algebraically closed extension of some valued field (K , v). Every
subfield E of M will be endowed with the restriction of v, which we will again
denote by v; note that (M, v) contains a unique henselization of (E, v), which we
denote by (Eh, v). Further, we take an arbitrary subextension F |K and an algebraic
subextension L|K of M |K . The compositum of the fields F and L within M is the
smallest subfield of M that contains both F and L , and we denote it by L .F . The
restriction of v from M to L .F is then a simultaneous extension of the restrictions
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to L and F . Similarly, the compositum of the value groups vF and vL within vM
is the smallest subgroup of vM that contains both vF and vL , and we denote it by
vL + vF .

An algebraic extension (L|K , v) of henselian fields is called tame if every finite
subextension E |K of L|K satisfies the following conditions:

(TE1) The ramification index (vE : vK ) is not divisible by char Kv.

(TE2) The residue field extension Ev|Kv is separable.

(TE3) The extension (E |K , v) is defectless, i.e.,

[E : K ] = (vE : vK )[Ev : Kv].

Note that the extension (L|K , v) is called tamely ramified if (TE1) and (TE2)
hold for all finite subextensions E |K , so a finite tame extension is the same as
a finite defectless tamely ramified extension. The extension (L|K , v) is called
unramified if the canonical embedding of vK in vL is onto and the residue field
extension Lv|Kv is separable; this does not necessarily imply that the extension is
defectless.

In the case of a henselian discretely valued field (K , v), condition (TE3) is known
to hold as soon as L|K is separable. Therefore, if in addition char K = 0, then a
finite extension of (K , v) is tame once it is tamely ramified. If in addition (K , v) is
complete, then condition (TE3) always holds.

For henselian discretely valued fields, Abhyankar’s lemma provides a sufficient
condition to eliminate tame ramification of a finite extension (F |K , v) by lifting
through a finite extension. In this case we can choose M to be the algebraic closure
of K , and the extension of v from K to L , F and L .F is uniquely determined.

Theorem 1 (Abhyankar’s lemma). Let (K , v) be a henselian discretely valued
field, (L|K , v) be a finite tame extension and (F |K , v) a finite extension. If the
ramification index of (L|K , v) divides the ramification index of (F |K , v), then the
extension (L .F/F, v) is unramified.

In [Chabert and Halberstadt 2018] the following version of Abhyankar’s lemma
is shown: the ramification index of the compositum of two finite extensions of local
fields is equal to the least common multiple of the ramification indices corresponding
to the finite extensions, provided at least one of the extensions is tame. This version
is a special case of a more general theorem that we will present next.

The condition on the ramification indices in Theorem 1 is also necessary. Indeed,
(L .F |F, v) being unramified implies that v(L .F)= vF . Thus,

(vF : vK )= (v(L .F) : vK )= (v(L .F) : vL)(vL : vK ),

hence (vL : vK ) divides (vF : vK ).
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The question naturally arises how far the above formulation of Abhyankar’s
lemma can be generalized. The next theorem, which implies Theorem 1, shows
that the result remains true whenever vK has rational rank 1; the rational rank of
an abelian group is the Q-dimension of the divisible hull Q⊗Z 0 of 0.

From now on we will assume the general situation as introduced in the beginning,
i.e., F |K is an arbitrary extension, and L|K is a (not necessarily finite) algebraic
extension.

Theorem 2. Assume that the value group of (K , v) is of rational rank 1, that
the extension (L .K h

|K h, v) is tame and that the ramification indices (vL : vK )
and (vF : vK ) are finite. Then (v(L .F) : vK ) is the least common multiple of
(vL : vK ) and (vF : vK ). In particular, (L .F |F, v) is unramified if and only if the
ramification index of (L|K , v) divides the ramification index of (F |K , v).

In contrast, in Section 7 we will show that the result fails for higher rational
rank (see Lemma 18). In particular, the result fails for generalized discretely valued
fields, i.e., those valued fields whose value group is a lexicographically ordered
product of finitely many copies of Z.

By reformulating the condition on the ramification indices in a different way,
using the value groups themselves instead, one can prove a far-reaching general-
ization of Abhyankar’s lemma. The absolute ramification field (K r , v) of (K , v)
is the ramification field of the normal extension (K sep

|K , v), where K sep denotes
the separable-algebraic closure of K . Likewise, the absolute inertia field (K i , v) of
(K , v) is the inertia field of the extension (K sep

|K , v). Since M is assumed to be
algebraically closed, just as for henselizations, it contains a unique ramification field
and a unique inertia field for every subfield (E, v). We have that Eh

⊆ E i
⊆ Er

and hence, (E i , v) and (Er , v) are henselian.
An extension (L|K , v) of valued fields is called immediate if the canonical

embeddings of vK in vL and of Kv in Lv are onto. Recall that the henselization
is an immediate extension.

In Section 3, we will prove the following:

Theorem 3. (1) Assume that (L , v) is contained in the absolute ramification
field of (K , v). Then (L .F, v) is contained in the absolute ramification field
of (F, v) and v(L .F) = vL + vF. Further, (L .F, v) is contained in the
absolute inertia field of (F, v) (which implies that the extension (L .F |F, v) is
unramified) if and only if vL is a subgroup of vF.

(2) Assume that (L , v) is contained in the absolute inertia field of (K , v). Then
(L .F, v) is contained in the absolute inertia field of (F, v) and (L .F)v =
Lv.Fv. Further, (L .F, v) is contained in the henselization of (F, v) (which
implies that the extension (L .F |F, v) is immediate) if and only if Lv is a
subfield of Fv.
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In Section 7 we will show that this theorem implies Theorem 2 and hence also
Theorem 1.

Note that if char Kv = 0, then the absolute ramification field is algebraically
closed, so (L , v) is contained in it as soon as L|K is algebraic. If char Kv > 0 and
L|K is algebraic, then for (L , v) to lie in the absolute ramification field (K r , v) of
(K , v), the following three conditions are necessary and sufficient (the letters “PT”
stand for “pre-tame”):

(PT1) char Kv does not divide the order of any nonzero element in vL/vK ,

(PT2) the residue field extension Lv|Kv is separable,

(PT3) for every finite subextension E |K of L|K , the extension (Eh
|K h, v) of their

respective henselizations (in (M, v)) is defectless.

This means that if (K , v) is henselian, then (L , v) lies in its absolute ramification
field if and only if (L|K , v) is a tame extension; in other words, (K r , v) is the
unique maximal tame extension of (K , v).

Similarly, (L , v) lies in the absolute inertia field of (K , v) if and only if L|K is
algebraic, vL = vK , and conditions (PT2) and (PT3) hold.

Assume now that char Kv = p > 0. Does elimination of tame ramification also
hold if the extension (Lh

|K h, v) is not tame? The answer is yes if we restrict the
scope to normal extensions. We denote by (vL)p′ the maximal subgroup of vL
containing vK and such that p does not divide the order of any of its nonzero
element modulo vK . Further, we denote by (Lv)s the maximal subfield of Lv
separable over Kv. A p-extension is a (not necessarily finite) Galois extension with
Galois group a p-group.

Theorem 4. Assume that L|K is normal, F |K is an arbitrary extension, and
char Kv = p > 0. Then the following assertions hold:

(1) The quotient group v(L .F)/((vL)p′ + vF) is a p-group, and in particular,
v(L .F)/vF is a p-group if and only if (vL)p′ ⊆ vF.

(2) If (vL)p′ = vK , then the maximal separable subextension of (L .F)v|(Lv)s .Fv
is a p-extension.

Trivial examples of ramification that can easily be eliminated appear when
the base field K is smaller than the constant field of the function field F . More
sophisticated examples will therefore present situations where the base field K is
equal to the constant field, i.e., is relatively algebraically closed in F . But this
does not imply that K is equal to the relative algebraic closure of K in a fixed
henselization of (F, v). In [Kuhlmann 2004], for valued rational function fields
(K (x)|K , v) the implicit constant field IC(K (x)|K , v) is defined to be the relative
algebraic closure of K in a fixed henselization of (K (x), v). While it depends
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on the chosen henselization, it is unique up to valuation preserving isomorphism
over K .

Theorem 5 [Kuhlmann 2004, Theorem 1.3]. Let (L|K , v) be a countably gener-
ated separable-algebraic extension of nontrivially valued fields. Then there is an
extension of v from L to the algebraic closure L(x)ac

= K (x)ac of the rational
function field K (x) such that, upon taking henselizations in (K (x)ac, v),

Lh
= IC(K (x)|K , v).

This means that L ⊂ K (x)h , so that L(x)= L .K (x) lies in the henselization of
K (x) and all ramification, whether tame or wild, is eliminated. We will construct
specific examples in Section 6.

Finally, let us mention that there are various other versions and generalizations
of Abhyankar’s lemma. Here we list only a few. When the valued field (K , v)
is a formally ℘-adic field, then Theorem 1 is Corollary 4 in [Narkiewicz 2004,
Chapter 5]. Elimination of ramification by so-called strongly solvable extensions
of the base field has been presented in [Ponomarëv 1998; 1999]. Generalizations
are also discussed in the Stacks Project [Stacks 2005–], some of which we will cite
in Section 7. Finally, a “perfectoid Abhyankar lemma” has recently been presented
in [André 2018].

2. Preliminaries

We recall some aspects of ramification theory and of general valuation theory see,
e.g., [Abhyankar 1959; Endler 1972; Engler and Prestel 2005; Kuhlmann ≥ 2020;
Neukirch 1992; Zariski and Samuel 1960]. We take a normal algebraic extension
(L|K , v) of valued fields and set G = Aut L|K . The decomposition group of the
extension is defined as

Gd(L|K , v) := {σ ∈ G | v ◦ σ = v on L},

the inertia group as

Gi (L|K , v) := {σ ∈ G | ∀x ∈OL : v(σ x − x) > 0},

and the ramification group as

Gr (L|K , v) := {σ ∈ G | ∀x ∈ L× : v(σ x − x) > vx}.

The corresponding fixed fields in K sep will be denoted as (L|K , v)d , (L|K , v)i and
(L|K , v)r and are called the decomposition field, inertia field and ramification field
of (L|K , v), respectively. We have:

Gr (L|K , v)E Gi (L|K , v)E Gd(L|K , v)≤ G



126 ARPAN DUTTA AND FRANZ-VIKTOR KUHLMANN

and
Gr (L|K , v)E Gd(L|K , v),

so (L|K , v)d ⊆ (L|K , v)i ⊆ (L|K , v)r with both extensions as well as (L|K , v)d ⊆
(L|K , v)r Galois.

In the above notation, the absolute decomposition field, absolute inertia field
and absolute ramification field of (K , v) that we mentioned in the introduction
are K d

= (K ac
|K , v)d = (K sep

|K , v)d , K i
= (K ac

|K , v)i = (K sep
|K , v)i and

K r
= (K ac

|K , v)r = (K sep
|K , v)r , respectively.

We collect the main facts of ramification theory that we will need in this paper
in the next theorem. To simplify notation, we set Ld = (L|K , v)d , L i = (L|K , v)i ,
Lr = (L|K , v)r , and denote by Ls the maximal separable extension of K inside
of L .

Theorem 6. (1) The extension (Ld |K , v) is immediate and v has a unique exten-
sion from Ld to L.

(2) The extension L iv|Ldv is separable, and Lrv = L iv.

(3) We have that vL i = vLd , and the order of no element in vLr/vL i = vLr/vK
is divisible by char Kv.

(4) If char Kv = p > 0, then Gr (L|K , v) is a p-group, so Ls |Lr is a p-extension.
If char Kv = 0, then Gr (L|K , v) is trivial and Lr = L. The extension Lv|Lrv

is purely inseparable, and vL/vLr is a p-group.

(5) If K ⊆ K1 ⊆ K2 ⊆ Lr , K2|K1 is finite and (K1, v) (and thus also (K2, v)) is
henselian, then the extension (K2|K1, v) is defectless.

(6) We have that (L|Ld , v)
i
= L i and (L|Ld , v)

r
= (L|L i , v)

r
= Lr .

(7) If K ⊆ L ′ ⊆ L , then (L|L ′, v)d = L ′.Ld , (L|L ′, v)i = L ′.L i and (L|L ′, v)r =
L ′.Lr .

(8) Whenever F |K is an arbitrary extension and the valuation v is fixed on some
field containing the algebraic closure of F , then K d

⊆ Fd , K i
⊆ F i and

K r
⊆ Fr .

(9) If K ⊆ K1 ⊆ K d , then K d
1 = K d . If K ⊆ K1 ⊆ K i , then K i

1 = K i . If
K ⊆ K1 ⊆ K r , then K r

1 = K r .

Corollary 7. If K ⊆ K1 ⊆ K ′1 ⊆ Lr , (K ′1|K1, v) is immediate and (K1, v) (and
thus also (K ′1, v)) is henselian, then K1 = K ′1.

Proof. Take K2|K1 to be any finite subextension of K ′1|K1. Since (K ′1|K1, v) is
immediate by assumption, the same holds for (K2|K1, v). As this extension is also
defectless by part 5) of Theorem 6, we have that

[K2 : K1] = (vK2 : vK1)[K2v : K1v] = 1,
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whence K1 = K2. It follows that K1 = K ′1. �

Here is a crucial lemma for the proof of Theorems 3 and 4:

Lemma 8. Take any extension (L , v) of (K , v), elements β ∈ vL , c ∈ K and a
positive integer n such that nβ = vc. Suppose that p does not divide n. Then the
polynomial Xn

− c splits in the absolute inertia field L i of (L , v) and β ∈ vL i .

Proof. Take some b∈ L such that vb=β. Then vcb−n
= 0 and therefore, cb−nv 6= 0.

Since p does not divide n, the polynomial Xn
− cb−nv has n distinct roots in

(Lv)sep
= L iv. By Hensel’s lemma, it follows that the polynomial Xn

−cb−n splits
completely in the henselian field (L i , v). Hence, so does Xn

− c. �

Further, we will need the fundamental inequality, of which we state only a simple
form here: for every finite extension (L|K , v),

(1) [L : K ] ≥ (vL : vK )[Lv : Kv].

Finally, we will need:

Proposition 9. Take any prime p and an arbitrary extension F |K and a normal
algebraic extension L|K . If the maximal separable subextension of L|K is a
p-extension, then the same holds for L .F |F.

Proof. Let Ls |K be the maximal separable subextension of L|K and set E := Ls∩F .
Then both Ls |K and Ls |E are normal and separable, and Aut Ls |E is a subgroup
of Aut Ls |K . Since the latter is a p-group by assumption, so is the former.

Since Ls ∩ F = E and Ls |E is normal and separable, F and Ls are linearly
disjoint over E and it follows that Aut Ls .F |F = Aut Ls |E , which shows that
Ls .F |F is a p-extension. Since L|Ls is purely inseparable, also L .(Ls .F)= L .F
is a purely inseparable extension of Ls .F , so Ls .F |F is the maximal separable
subextension of L .F |F . �

3. Proof of Theorem 3

In this and the next two sections, we will freely use the facts collected in Theorem 6
as well as the fundamental inequality (1) without citing them.

We assume the extensions (F |K , v) and (L|K , v) to be as in the introduction.
Since L|K is algebraic, vL/vK is a torsion group.

Let us first assume that vL ⊆ vF and that (L , v) is contained in the absolute
ramification field K r of (K , v), so vL⊆vK r . Take any set {β j | j ∈ J } of generators
of vL over vK , and let n j be positive integers such that n jβ j ∈ vK for each j ∈ J .
Since char Kv does not divide the order of any element in vK r/vK , the same
holds for vL/vK . Therefore, we can assume that char Kv does not divide any of
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the n j . Applying Lemma 8, we can find elements b j ∈ L i such that vb j = β j and
c j := bn j

j ∈ K . Since K i
⊆ L i , we obtain that

vL ⊆ vK i (b j | j ∈ J )⊆ vL i
= vL ,

showing that equality must hold everywhere. Since Lv|Kv is separable by condi-
tion (TE2), we have that K iv = (Kv)sep

= (Lv)sep
= L iv and thus,

K iv ⊆ K i (b j | j ∈ J )v ⊆ L iv = K iv,

showing again that equality must hold everywhere. We have proved that

(L i
|K i (b j | j ∈ J ), v)

is an immediate extension.
By assumption, (L , v) is an extension of (K , v) within the absolute ramification

field (K r , v) of (K , v). Hence also (L i , v) is contained in (K r , v). Therefore, we
can apply Corollary 7 to find that

L i
= K i (b j | j ∈ J ).

Since K ⊆ F , it follows that K i
⊆ F i . Since β j ∈ vL ⊆ vF , we know from

Lemma 8 that the polynomials Xn j − c j split completely over F i . Consequently,
we also have b j ∈ F i for each j ∈ J . This yields that

L ⊆ L i
= K i (b j | j ∈ J )⊆ F i .

We conclude that
L .F ⊆ F i ,

so the extension (L .F |F, v) is unramified.
Now we prove the assertion in the general case, where vL is not necessarily a

subgroup of vF . We construct an extension (F1, v) of (F, v) within its absolute
ramification field (Fr , v) such that vF1 = vL + vF . Take (F1, v) to be a maximal
extension of (F, v) within (Fr , v) such that vF1 ⊆ vL + vF ; this exists by Zorn’s
lemma. We have to show that vF1 = vL + vF . Suppose otherwise and take an
element β ∈ vL \ vF1. Let n be the order of β over vF1; as it must be a divisor of
the order of β over vK and (L , v) lies in the absolute ramification field of (K , v),
it is not divisible by char Kv. It follows that β ∈ vFr

1 . Take an element c ∈ F1 such
that vc = nβ. Then by Lemma 8 there is some b ∈ (Fr

1 )
i
= Fr

1 = Fr such that
bn
= c and therefore, vb = β. We compute:

n = (vF1+Zβ : vF1)≤ (vF1(b) : vF1)≤ [F1(b) : F1] ≤ n,

so equality holds everywhere and we find that vF1(b) = vF1 + Zβ ⊆ vL + vF .
Since b /∈ F1, this contradicts the maximality of F1, showing that vF1 = vL + vF .
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Now we apply what we have shown already to F1 in place of F . Since now
vL ⊆ vF1, we find that L .F1 ⊆ F i

1 ⊆ Fr
1 = Fr and

v(L .F)⊆ v(L .F1)⊆ vF i
1 = vF1 = vL + vF ⊆ v(L .F),

whence v(L .F)= vL + vF .
Assume that vL is not a subgroup of vF . Then vF ( vL+vF = v(L .F), so the

extension (L .F |F, v) is not unramified. We have now proved part (1) of Theorem 3.
For the proof of part (2) of Theorem 3, we proceed in a similar way as for part (1),

but on a “lower level”. By hypothesis, L ⊆ K i . First, we assume that Lv ⊆ Fv.
We take a set of generators {ζ j | j ∈ J } of the separable-algebraic field extension
Lv|Kv. Then we choose monic polynomials f j ∈ K [X ] such that the reduction f̄ j

of f j modulo v is the minimal polynomial of ζ j over Kv, for each j ∈ J . Since ζ j

is a simple root of f̄ j , we can use Hensel’s lemma to find a root b j ∈ Lh whose
residue is ζ j . Since K h

⊆ Lh , we have that K h(b j | j ∈ J )⊆ Lh and

Lv ⊆ K h(b j | j ∈ J )v ⊆ Lhv = Lv,

showing that equality must hold. We also have that

vL ⊆ vK i
= vK ⊆ vK h(b j | j ∈ J )⊆ vLh

= vL ,

showing again that equality must hold. Thus, (Lh
|K h(b j | j ∈ J ), v) is an immediate

extension of henselian fields inside of the absolute inertia field of (K , v). Hence by
Corollary 7 we obtain that

Lh
= K h(b j | j ∈ J ).

Since K ⊆ F , it follows that K h
⊆ Fh . Since ζ j ∈ Fv and ζ j is a simple root of

f̄ j , it follows from Hensel’s lemma that f j has a root in Fh with residue ζ j ; this
root must be b j . Consequently,

L ⊆ Lh
= K h(b j | j ∈ J )⊆ Fh .

We conclude that
L .F ⊆ Fh,

which implies that the extension (L .F |F, v) is immediate.
Next, we prove the assertion in the general case, where Lv is not necessarily

a subfield of Fv. We construct an extension (F1, v) of (F, v) within its absolute
inertia field (F i , v) such that F1v= Lv.Fv. Take (F1, v) to be a maximal extension
of (F, v) within (F i , v) such that F1v ⊆ Lv.Fv; this exists by Zorn’s lemma. We
have to show that F1v= Lv.Fv. Suppose otherwise and take an element ζ ∈ Lv\F1v.
Since (L , v) lies in the absolute inertia field of (K , v) by hypothesis, ζ is separable-
algebraic over Kv and hence also over F1v. It follows that ζ ∈ F i

1v. Take a monic
polynomial f ∈ F1[X ] whose reduction f v modulo v is the minimal polynomial
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of ζ over F1v and note that ζ is a simple root of f v. By Hensel’s lemma there is a
root z of f in the henselian field (F i

1, v) such that zv = ζ . We compute:

deg f = deg f v = [F1v(ζ ) : F1v] ≤ [F1(z)v : F1v] ≤ [F1(z) : F1] ≤ deg f,

so equality holds everywhere and we find that F1(z)v = F1v(ζ )⊆ Lv.Fv. Since
z /∈ F1, this contradicts the maximality of F1, showing that F1v = Lv.Fv.

Now we apply what we have shown already to F1 in place of F . Since now
Lv ⊆ F1v, we find that L .F1 ⊆ Fh

1 ⊆ F i
1 = F i and

(L .F)v ⊆ (L .F1)v = Fh
1 v = F1v = Lv.Fv ⊆ (L .F)v,

whence (L .F)v = F1v = Lv.Fv.
Finally, assume that Lv is not a subfield of Fv. Then Fv ( Lv.Fv = (L .F)v,

so the extension (L .F |F, v) is not immediate. We have now proved part (2) of
Theorem 3.

4. Proof of Theorem 4

By assumption, char Kv = p > 0. We let L i , Lr and Ls be as introduced before
Theorem 6. Since vL/vLr is a p-group and no element of vLr/vK has order
divisible by p, we have that vLr = (vL)p′ . Further, L i

= L .K i is a normal
extension of K i and L i

s = Ls .K i is a Galois extension of K i , with ramification field
L i

r = Lr .K i ; thus, L i
s |L

i
r is a p-extension.

We know that Ls |Lr is a p-extension. By Proposition 9, this implies that also
Ls .F |Lr .F is a p-extension. Since L|Ls is purely inseparable, it follows that
also L .F |Ls .F is purely inseparable. These two facts imply that v(L .F)/v(Lr .F)
is a p-group, and that (L .F)v/(Lr .F)v is a normal extension with its maximal
separable subextension being a p-extension. Since v(Lr .F) = (vL)p′ + vF by
part (1) of Theorem 3, the former proves part (1) of Theorem 4.

Now assume that (vL)p′ = vK . This implies that Lr = L i and Lr .F = L i .F .
Hence from part (2) of Theorem 3 it follows that

(Lr .F)v = (L i .F)v = (Lv)s .Fv.

Together with the facts about (L .F)v/(Lr .F)v that we showed above, this proves
part (2) of Theorem 4.

5. A closer analysis of the relevant ramification theory

Throughout this section we will assume that L|K is a (not necessarily finite) Galois
extension. Then also L .F |F is a Galois extension, and we denote by res the
restriction of automorphisms in Aut L .F |F to L . The following is a consequence
of [Neukirch 1992] (see also [Kuhlmann ≥ 2020]).
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Proposition 10. In the above situation, we have:

res Gd(L .F |F, v)⊆ Gd(L|K , v),

res Gi (L .F |F, v)⊆ Gi (L|K , v),

res Gr (L .F |F, v)⊆ Gr (L|K , v).

We set E := L .F , let Ld , L i and Lr be as introduced before Theorem 6, and
correspondingly denote by Ed , Ei , Er the decomposition, inertia and ramification
field, respectively, of (E |F, v). As a consequence of Proposition 10, we obtain:

Proposition 11. With the above assumptions and notation, we have that

Ld ⊆ Ed ∩ L , L i ⊆ Ei ∩ L , Lr ⊆ Er ∩ L ,

and
Ld .F ⊆ Ed , L i .F ⊆ Ei , Lr .F ⊆ Er .

We wish to give examples that show that the inclusion may be strict, even if
F |K is finite. In fact, this phenomenon occurs in all instances of elimination of
tame or wild ramification.

Example 12. We build on a famous example for an extension with nontrivial
defect (see, e.g., [Kuhlmann 2011]). We take (K , v) to be the perfect hull of
the Laurent series field Fp((t)) over the field Fp with p elements. We let ϑ be
a root of the Artin–Schreier polynomial X p

− X − 1/t . As (K , v) is henselian,
there is a unique extension of v to K (ϑ). Then (K (ϑ)|K , v) is an immediate
Galois extension of degree p, hence has nontrivial defect. The same is true for the
extension (K (ϑ + a)|K , v) where a is a root of X p

− X − 1. We set L = K (ϑ)
and F = K (ϑ + a). We obtain that L .F = F(a). Since Fp(a)|Fp is a separable
extension of degree p, we see that L .F = (L .F |F, v)i . But as (K (ϑ)|K , v) has
nontrivial defect, (K (ϑ), v) does not lie in K r , and consequently, Lr = K . With
the notation introduced above, we conclude that K = Ld = L i = Lr ( L , but
F = Ed ( Ei = Er = E and therefore, F = L i .F ( Ei and F = Lr .F ( Er . ♦

This example shows that the p-extension mentioned in part (2) of Theorem 4 can
be nontrivial even if Lv= (Lv)s = Kv and hence (Lv)s .Fv= Fv. In this example,
we have in fact eliminated wild ramification, since Er = E ; the wild ramification
was turned into a tame unramified extension. It should be noted at this point that
eliminating wild ramification cannot increase tame ramification:

Remark 13. If Er = E , then vE = (vL)p′ + vF . This follows from part 1) of
Theorem 4 which states that vE/((vL)p′ + vF) is a p-group. But as no element in
vEr/vF has a order divisible by p, the group vE/((vL)p′ + vF) must be trivial.

The next example is a basic example of the elimination of tame ramification:
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Example 14. We take K = k(t, x) and v to be the t-adic valuation on K . Then
vK =Z and Kv= k(x). We choose an integer n> 1 which is not divisible by char k,
and n-th roots t1/n and x1/n of t and x , respectively. We assume that k contains
a primitive n-th root of unity and set L = K (t1/n) and F = K (t1/nx1/n), so that
L .F= F(x1/n)= (L .F |F, v)i . In this situation, we have that K = Ld= L i ( Lr = L ,
but F = Ed ( Ei = Er = E and therefore, F = L i .F ( Ei and F ( Lr .F = Ei . ♦

Finally, we give an example where a separable extension of the residue field is
eliminated. This corresponds to a well known procedure using Hensel’s lemma
within the henselization of (F, v).

Example 15. We take (K , v) to be as in the previous example, assuming in addition
that char Kv= p>0. We let a be a root of the Artin–Schreier polynomial X p

−X−x ,
and b a root of X p

− X − x − t . We set L = K (a) and F = K (b). We obtain
that L .F = F(b− a). Since b− a is a root of the polynomial X p

− X − t and
vt > 0, b− a lies in the henselization of (F, v) and it follows that L .F = Ed . In
this situation, we have that K = Ld ( L i = Lr = L , but F ( Ed = Ei = Er = E
and therefore, F ( L i .F = Ed = E . ♦

6. Examples with rational function fields F = K (x)

Example 16. We take a valued field extension (K (a)|K , v) such that an
∈ K , the

order of va modulo vK is n and n is not divisible by char Kv. It follows that
vK (a) = vK +Zva and K (a)v = Kv. We set L := K (a). Further, we consider
the Gauß valuation v on the rational function field L(y), that is,

v

k∑
i=0

ai yi
:=min{vai | 0≤ i ≤ k}.

We choose some d ∈ K such that vd >va and set x := a+dy, so K (x) is a rational
function field contained in L(y). We consider K (x) equipped with the restriction
of the valuation v of L(y).

We wish to prove that L ⊂ K (x)h . We observe that x/a and xn/an are 1-units
and that x/a is a root of the polynomial

(2) Xn
−

xn

an ∈ K (x)[X ]

whose reduction modulo v is Xn
− 1. Since n is not divisible by char Kv, 1 is a

simple root of this polynomial and Hensel’s lemma shows that K (x)h contains a
unique root z of (2) with residue 1. Consequently, z= x/a, whence a= x/z∈K (x)h .
This proves that L ⊂ K (x)h . ♦
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Modifications of this example can be obtained by choosing different extensions
of v from L to L(y). For example, one can define

(3) v

k∑
i=0

ai yi
:=min{vai + ivd | 0≤ i ≤ k},

where again d ∈ K with vd > va. In this case we set x := a+ y and proceed as
in the example. Note that in both constructions, K (x)v is transcendental over Kv;
in this case the extensions (K (x)|K , v) are called residue transcendental. In the
example, we have that L(y)v = Lv(yv)= Kv(yv) is transcendental over Kv and
since L(x)|K (x) is algebraic, the same must be true for K (x)v. In the modified
construction we have that

L(y)v = Lv((y/d)v)= Kv((y/d)v).

A similar example can be produced with a value transcendental extension
(K (x)|K , v) where vK (x)/vK has rational rank 1. To achieve this, one replaces
vd in definition (3) by some value α>va which is nontorsion over vK . A particular
case of this is obtained when one takes vy to be the y-adic valuation on L(y) and
then sets the composition vy ◦ v to be the extension of v from L to L(y).

In all of the above examples the extension (K (a)|K , v) was such that vK (a)=
vK +Zva and K (a)v = Kv. However, the examples work in exactly the same way
when we assume that an

∈ K , va = 0, [Kv(av) : Kv] = n and n is not divisible by
char Kv. It then follows that vK (a)= vK and K (a)v = Kv(av). In this case it is
not tame ramification that is eliminated, but a separable-algebraic extension of the
residue field instead.

7. Abhyankar’s lemma using ramification indices

Theorem 1 is a consequence of the more general version of Abhyankar’s lemma
stated in [Stacks 2005–, Tag 0EXT Lemma 15.105.4]. Indeed, in the setup of
[Tag 0EXT Lemma 15.105.4] and [Tag 0EXT Remark 15.105.1], we note that
the assumptions that gcd(e, p) = 1 and κB/κA is separable still hold when the
valued field extension L/K is tamely ramified. Further, A1 is a discrete valuation
ring of rank 1 by [Tag 0EXT Remark 15.105.1(4)]. Finally, from [Tag 0ASF
Definition 15.112.1] and [Tag 09E7 Lemma 15.102.5], it follows that the formally
smooth conclusion in [Tag 0EXT Lemma 15.105.4] implies that the extension is
unramified.

We will now show how Theorem 2 can be deduced from Theorem 3. We will
need the following preparation. If 1 is a torsion free abelian group and e > 0 is an
integer, then 1

e1 will denote the abelian group consisting of all α in the divisible
hull of 1 such that eα ∈1.

https://stacks.math.columbia.edu/tag/0EXT
https://stacks.math.columbia.edu/tag/0EXT
https://stacks.math.columbia.edu/tag/0EXT
https://stacks.math.columbia.edu/tag/0EXT
https://stacks.math.columbia.edu/tag/0ASF
https://stacks.math.columbia.edu/tag/09E7
https://stacks.math.columbia.edu/tag/0EXT
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Lemma 17. Take an integer e> 0, a torsion free abelian group1 of rational rank 1,
and a subgroup 0 of its divisible hull such that 1 ⊆ 0 and (0 : 1) = e. Then
0 = 1

e1.

Proof. As 1 of rational rank 1, it can be embedded in Q by sending any nonzero
element in1 to 1, and the divisible hull of1 can be identified with Q. As (0 :1)=e,
we have that 0 ⊆ 1

e1. We wish to show that ( 1
e1 :1)= e, which then yields that

0 = 1
e1. It suffices to show that ( 1

e1 :1)≤ e.
Take any e + 1 many elements α1, . . . , αe+1 ∈

1
e1; we have to show that at

least two of them have the same coset modulo 1. As these elements are rational
numbers, we can multiply them by a common denominator s to obtain integers
sα1, . . . , sαe+1. The ideal they generate in Z is principal, equal to, say, rZ. We
know that (Z : eZ) = e and hence also (rZ : erZ) = e. Thus there are distinct
i, j ∈ {1, . . . , e+ 1} such that sαi − sα j ∈ erZ. This implies that αi − α j ∈ e r

s Z.
Since the elements sα1, . . . , sαe+1 generate the group rZ, the elements α1, . . . , αe+1

generate the group r
s Z, which shows that r

s Z ⊆ 1
e1, whence αi − α j ∈ e r

s Z ⊆ 1.
Therefore, αi and α j have the same coset modulo 1. �

As mentioned in the introduction, the assumption that (L .K h
|K h, v) is tame

yields that (L .K h, v) lies in the absolute ramification field of (K h, v), which is
equal to the absolute ramification field of (K , v). Since vK has rational rank 1,
Lemma 17 shows that the value group of (L , v) is 1

(vL:vK )vK , and likewise, the
value group of (F, v) is 1

(vF :vK )vK . Now we infer from Theorem 3 that

v(L .F)=
1

(vL : vK )
vK +

1
(vF : vK )

vK .

If ` is the least common multiple of (vL : vK ) and (vF : vK ), then the right hand
side is equal to 1

`
vK . This proves Theorem 2.

We wish to investigate how far Theorem 1 can be generalized while keeping the
use of ramification indices. We note that if q is a prime and a, b ∈ K ac such that
aq , bq

∈ K , then va, vb ∈ 1
q vK , and that 1

q vK/vK is an Fq -vector space.

Lemma 18. Take a valued field (K , v) and an extension of v to the algebraic
closure K ac of K . Assume that there are a, b ∈ K ac with va, vb /∈ vK and a prime
q such that aq , bq

∈ K and va + vK and vb+ vK are Fq-linearly independent
elements in 1

q vK/vK . Then we have that (vK (a) : vK ) = q = (vK (b) : K ) and
that

(4) (vK (a, b) : vK (a))= q = (vK (a, b) : K (b)).

Proof. We compute:

(vK (a) : vK )≤ [K (a) : K ] ≤ q = (vK +Zva : vK )≤ (vK (a) : vK ).
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Thus, equality holds everywhere, showing that (vK (a) : vK ) = q. In a similar
way, one shows that (vK (b) : vK )= q. Further, the equality (vK +Zva : vK )=
(vK (a) : vK ) shows that vK (a)= vK +Zva. Similarly, it is shown that vK (b)=
vK+Zvb. Obviously, va, vb∈vK (a, b). However, since va+vK and vb+vK are
Fq -linearly independent elements in 1

q vK/vK , we have that va /∈vK+Zvb=vK (b)
and vb /∈ vK +Zva = vK (a). As q is a prime, we conclude that

(vK (a, b) : vK (b))≥ q and (vK (a, b) : vK (a))≥ q,

and with similar inequalities as above, one proves that (4) holds. �

This lemma shows that Theorem 1 will fail as soon as there exist a prime q
different from the residue characteristic and two values α, β ∈ vK such that both are
not divisible by q in vK and α/q+ vK and β/q+ vK are Fq -linearly independent
elements in 1

q vK/vK . Then one can pick a, b ∈ K ac such that aq , bq
∈ K with

vaq
= α and vbq

= β. It follows that a, b /∈ K , so these elements satisfy the
assumptions of Lemma 18.

Quick examples for the above situation are valued fields (K , v) for which vK
is isomorphic to Zn with n > 1, endowed with any ordering. These include all
generalized discretely valued fields with n > 1.
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