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CLUSTER AUTOMORPHISM GROUPS AND
AUTOMORPHISM GROUPS OF EXCHANGE GRAPHS

WEN CHANG AND BIN ZHU

For a coefficient-free cluster algebra A, we study the cluster automor-
phism group Aut(A) and the automorphism group Aut(EA) of its ex-
change graph EA. We show that these two groups are isomorphic with
each other, if A is of finite type excepting types of rank 2 and type F4, or
if A is of skew-symmetric finite mutation type.

1. Introduction

Cluster algebras were introduced by Sergey Fomin and Andrei Zelevinsky [2002].
In this paper we consider cluster algebras with trivial coefficients, which can be
defined through a skew-symmetrizable square matrix. Such a cluster algebra is a
Z-subalgebra of a rational function field with n indeterminates. More precisely, a
seed is a pair consisting of a set (cluster) of n indeterminates (cluster variables)
in the field and a skew-symmetrizable square matrix (exchange matrix) of size n.
Starting from an initial seed, we get a new seed by an operation called mutation.
Then the cluster algebra is algebraic-generated by all the cluster variables obtained
by iterated mutations. The cluster algebra has nice combinatorial structures which
are (in some sense) given by mutations, and these structures are captured by its
exchange graph, which is a graph with seeds as vertices and with mutations as edges.

We focus in this paper on two special types of cluster algebras: the finite type
and the finite mutation type. Cluster algebras of finite type are those algebras with
a finite number of clusters. They are classified in [Fomin and Zelevinsky 2003a],
which corresponds to the Killing–Cartan classification of complex semisimple
Lie algebras, or, equivalently, corresponds to the classification of root systems in
Euclidean space. If there are finitely many matrix classes in the seeds of a cluster
algebra, then we say it is of finite mutation type, where two matrices are in the same
class if one of them can be obtained from the other by simultaneous relabeling of the
rows and columns. The cluster algebras of finite mutation type with skew-symmetric
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exchange matrices are classified in [Felikson et al. 2012b]; a large class of them
arises from marked Riemann surfaces (possibly with boundary) [Fomin et al. 2008],
and there are 11 exceptional ones. The classification of skew-symmetrizable cluster
algebras of finite mutation type is given in [Felikson et al. 2012a] via operations
called unfoldings upon the skew-symmetric cluster algebras of finite mutation type.

We consider the relations in this paper between two groups associated to the
cluster algebras. One is the cluster automorphism group consisting of cluster
automorphisms, which are permutations of the clusters that commute with mutations.
This group is introduced in [Assem et al. 2012] for a coefficient-free cluster algebra,
and in [Chang and Zhu 2016b] for a cluster algebra with coefficients, it reveals the
combinatorial and algebraic symmetries of the cluster algebra. Another is the auto-
morphism group of the exchange graph, which consists of graph automorphism of the
exchange graph. This group describes the symmetries of the exchange graph; in other
words, it describes combinatorial symmetries of the cluster algebra. The problem
that considers the relations between these two groups is stated in [Saleh 2014].

The exchange graph is a fairly coarse invariant of a cluster algebra, e.g., all
infinite type cluster algebras of rank 2 have the same exchange graph. This article
suggests that, nonetheless, the exchange graph is already rich enough to capture
most of the symmetries of the cluster algebra.

For a coefficient-free cluster algebra A with exchange graph EA, we write the
cluster automorphism group of A and the automorphism group of EA as Aut(A)
and Aut(EA), respectively. In general, Aut(A) is a subgroup of Aut(EA), and may
be a proper subgroup; see Examples 3.3 and 3.5. The main result of this paper is
that these two groups are isomorphic with each other if A is of finite type, excepting
types of rank two and type F4 (Theorem 3.16), or A is of skew-symmetric finite
mutation type (Theorem 3.18). Therefore in some degree, for these cluster algebras,
the algebraic symmetries are also captured by the exchange graphs. In particular,
we compute the automorphism group of the exchange graph of a finite type cluster
algebra in Table 1; see Remark 3.17.

To prove these results, we describe EA more precisely. In Section 3A, we define
layers of geodesic loops of EA by using the distance of a vertex to a fixed vertex
on EA. An easy observation is that an isomorphism of exchange graphs should
maintain the combinatorial numbers of the layers of geodesic loops based on the
corresponding vertices; see Remark 3.2(4). By this observation, we directly show in
Examples 3.6, 3.7, 3.10 and 3.11 that for a cluster algebra of type A3, B3, C3, Ã2

or T3 (the cluster algebra from a once-punctured torus), we have Aut(A)∼=Aut(EA).
For the general cases we reduce them to above five cases (Theorems 3.16 and 3.18).

The paper is organized as follows: we recall preliminaries on cluster algebras,
cluster algebras of finite mutation type and cluster automorphisms in Section 2,
then we prove the main theorems in Section 3.
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Dynkin type automorphism group Aut(EA)

An(n > 2) Dn+3

B2 D6

Bn(n > 3) Dn+ 1
C2 D6

Cn(n > 3) Dn+1

D4 D4× S3

Dn(n > 5) Z2

E6 D14

E7 D10

E8 D16

F4 D7 oZ2

G2 D8

Table 1. Automorphism groups of exchange graphs of cluster
algebras of finite type.

2. Preliminaries

2A. Cluster algebras.

Definition 2.1. [Fomin and Zelevinsky 2002] (labeled seeds). A labeled seed is a
pair 6 = (x, B), where

• x = {x1, x2, . . . , xn} is an ordered set of n indeterminates;

• B = (bx j xi )n×n ∈ Mn×n(Z) is a skew-symmetrizable matrix labeled by x× x;
that is, there exists a diagonal matrix D with positive integer entries such that
DB is skew-symmetric.

The set x is called the cluster with elements the cluster variables, and B is called
the exchange matrix. An element bx j xi in B is also written as b j i for brevity. We
assume throughout the paper that B is indecomposable; that is, for any 16 i, j 6 n,
there is a sequence i0 = i, i1, . . . , im, im+1 = j, such that bik ,ik+1 6= 0 for any
06 k 6 m. We also assume that n > 1 for convenience. One may produce a new
labeled seed by a mutation at direction k for any cluster variable xk .

Definition 2.2. [Fomin and Zelevinsky 2002] (seed mutations). The labeled seed
µk(6)=(µk(x),µk(B)) obtained by the mutation of6 in the direction k is given by:

• µk(x)= (x \ {xk})t {µxk ,x(xk)} where

xkµxk ,x(xk)=
∏

16 j6n;
b jk>0

x j
b jk +

∏
16 j6n;
b jk<0

x j
−b jk .
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• µk(B)= (b′j i )n×n ∈ Mn×n(Z) is given by

b′j i =

{
−b j i if i = k or j = k;

b j i +
1
2(|b j i |bik + b j i |bik |) otherwise.

It is easy to check that a mutation is an involution; that is, µkµk(6)=6.

Definition 2.3. [Fomin and Zelevinsky 2007] (n-cluster patterns). An n-regular
tree Tn is a diagram, whose edges are labeled by 1, 2, . . . , n, such that the n edges
emanating from each vertex receive different labels. A n-cluster pattern is an
assignment of a labeled seed 6t = (xt , Bt) to every vertex t ∈Tn , so that the labeled
seeds assigned to the endpoints of any edge labeled by k are obtained from each
other by the seed mutation in direction k. The elements of 6t are written as follows:

(1) xt = (x1;t , . . . , xn;t), Bt = (bt
i j ).

Note that Tn is in fact determined by any fixed labeled seed on it. Now we are
ready to define cluster algebras.

Definition 2.4. [Fomin and Zelevinsky 2007] (cluster algebras). Given a seed 6
and a cluster pattern Tn associated to it, we denote

(2) X =
⋃
t∈Tn

xt = {xi,t : t ∈ Tn, 1≤ i ≤ n},

the union of clusters of all the seeds in the pattern. We call the elements xi,t ∈X the
cluster variables. The cluster algebra A associated with 6 is the Z-subalgebra of
the rational function field F =Q(x1, x2, . . . , xn), generated by all cluster variables,
A= Z[X ].

To a skew-symmetrizable matrix B = (b j i )n×n , one can associate a valued quiver
(quiver for brevity) Q = (Q0, Q1, υ) as follows: Q0 = {1, 2, . . . , n} is a set of
vertices. For any two vertices j and i , if b j i > 0, then there is an arrow α from
j to i to which we assign a pair of values (υ1(α), υ2(α)) = (b j i ,−bi j ). These
arrows form the set Q1. Since B is an indecomposable skew-symmetrizable matrix,
the defined valued quiver Q is connected and there are no loops nor 2-cycles in
Q. Then we can define a mutation of the valued quiver by the mutation of the
matrix; we refer to [Fomin and Zelevinsky 2002; Keller 2012] for details. We say
two quivers Q and Q′ are mutation equivalent if the corresponding matrices are
mutation equivalent; that is, one of them can be obtained from the other one by a
finite sequence of mutations. We also write (x, Q) for the labeled seed (x, B), and
write AQ for the cluster algebra defined by 6. The quiver and the defined cluster
algebra are called skew-symmetric if the corresponding matrix is skew-symmetric.
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If the cluster algebra is of finite type [Fomin and Zelevinsky 2003a] or of skew-
symmetric type, then the cluster determines the quiver [Gekhtman et al. 2008], and
we denote the quiver of a cluster x by Q(x).

Example 2.5. Let B be the following skew-symmetrizable matrix with skew-
symmetrizer D = diag{2, 2, 1, 1}:

B =


0 1 0 0
−1 0 −1 0
0 2 0 2
0 0 −2 0

.
The quiver corresponding to B is Q, where we always delete the trivial pairs of
values (1, 1), and replace a arrow assigning pair (m,m) by m arrows:

Q : 1−→ 2 (2,1)
←−− 3⇒ 4.

Definition 2.6. [Fomin and Zelevinsky 2007] (seeds). Given two labeled seeds
6 = (x, B) and 6′ = (x′, B ′), we say that they define the same seed if 6′ is
obtained from 6 by simultaneous relabeling of the sets x and the corresponding
relabeling of the rows and columns of B.

We denote by [6] the seed represented by a labeled seed 6. The cluster x of
a seed [6] is an unordered n-element set. For any x ∈ x, there is a well-defined
mutation µx([6])=[µk(6)] of [6] at direction x , where x= xk . For two same rank
skew-symmetrizable matrices B and B ′, we say B ∼= B ′ if B ′ is obtained from B by
simultaneous relabeling of the rows and columns of B. Then the exchange matrices
in any two labeled seeds representing a same seed are isomorphic. The isomorphism
of two exchange matrices induces an isomorphism of corresponding quivers. For
convenience, in the rest of the paper, we also denote by 6 the seed [6] represented
by 6.

Definition 2.7. [Fomin and Zelevinsky 2007] (exchange graphs). The exchange
graph of a cluster algebra is the n-regular graph whose vertices are the seeds of
the cluster algebra and whose edges connect the seeds related by a single mutation.
We denote by EA the exchange graph of a cluster algebra A.

Clearly, the exchange graph of a cluster algebra is a quotient graph of the n-
regular tree; its vertices are equivalent classes of labeled seeds. The exchange graph
need not be a finite graph; if it is finite, then we say the corresponding cluster
algebra (and its cluster pattern) are of finite type.

Definition 2.8. [Fomin and Zelevinsky 2003a, page 70] (cluster complexes). A
cluster complex 1 of A is a simplicial complex on the ground set X with the
clusters as the maximal simplices.
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An : 1 2 · · · n−1 n

Bn : 1 2 · · · n−1 n
(2,1)

Cn : 1 2 · · · n−1 n
(1,2)

Dn : 1 2 · · · n−2
n−1

n

E6 : 1 2 3 4 5

6

E7 : 1 2 3 4 5 6

7

E8 : 1 2 3 4 5 6 7

8

F4 : 1 2 3 4
(2,1)

G3 : 1 2
(3,1)

Figure 1. Quivers of finite type.

Then 1 is an n-dimensional complex. In particular, if A is of finite type or
skew-symmetric, then the vertices of EA are clusters, so the dual graph of 1 is EA.

2B. Finite types and finite mutation types. By the classification of cluster algebras
of finite type [Fomin and Zelevinsky 2003a], a cluster algebra is of finite type if and
only if there is a seed whose quiver is one of the quivers depicted in Figure 1. Note
that the underlying graphs of quivers in Figure 1 are trees, thus any two quivers
with the same underlying graph are mutation-equivalent.

Definition 2.9. [Fomin et al. 2008; Felikson et al. 2012b] A block is a quiver
isomorphic to one of the quivers with black or white colored vertices shown in
Figure 2. Vertices marked in white are called outlets. A connected quiver Q
is called block-decomposable (decomposable for brevity) if it can be obtained
from a collection of blocks by identifying outlets of different blocks along some
partial matching (matching of outlets of the same block is not allowed), where two
arrows with the same endpoints and opposite directions cancel out. If Q is not
block-decomposable then we call Q nondecomposable.
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◦ ◦

◦ ◦

◦

• •

◦

• •

◦

◦ ◦

•

•
• •

• •

◦

I II IIIa IIIb IV V

Figure 2. Blocks. Outlets are colored white, dead ends are black.

It is proved in [Fomin et al. 2008, Theorem 13.3] that a quiver is decomposable
if and only if it is a quiver of a triangulation of an oriented marked Riemann
surface, and thus a quiver mutation equivalent to a decomposable quiver is also
decomposable. Note that all arrow multiplicities of a decomposable quiver are 1
or 2. Therefore decomposable quivers are mutation finite. It is clear that a quiver
of rank 2, that is, a quiver with two vertices, is mutation finite. Besides these two
kinds of quivers, there are exactly 11 exceptional skew-symmetric quivers of finite
mutation type; see Theorem 6.1 in [Felikson et al. 2012b]. We list the exceptional
quivers in Figure 3.

2C. Automorphism groups. In this section, we recall the cluster automorphism
group [Assem et al. 2012] of a cluster algebra, and the automorphism group of the
corresponding exchange graph [Chang and Zhu 2016b].

Definition 2.10. [Assem et al. 2012] (cluster automorphisms). For a cluster alge-
bra A and a Z-algebra automorphism f :A→A, we call f a cluster automorphism
if there exists a labeled seed (x, B) of A such that the following conditions are
satisfied:

(1) f (x) is a cluster.

(2) f is compatible with mutations; that is, for every x ∈ x and y ∈ x, we have

f (µx,x(y))= µ f (x), f (x)( f (y)).

Then a cluster automorphism maps a labeled seed 6 = (x, B) to a labeled
seed 6′ = (x′, B ′). Under our assumption that B is indecomposable, we have the
following:

Lemma 2.11 [Assem et al. 2012]. A Z-algebra automorphism f : A→ A is a
cluster automorphism if and only if there exists a labeled seed 6 = (x, B) of A,
such that f (x) is the cluster in a labeled seed 6′ = (x′, B ′) of A with B ′ = B or
B ′ =−B.

We call the cluster automorphism such that B = B ′ (resp. B = −B ′) a direct
cluster automorphism (resp. an inverse cluster automorphism). Clearly, all the
cluster automorphisms of a cluster algebra A form a group with homomorphism
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E6 E7 E8

Ẽ6 : 1 2 3 4 5

6

7

Ẽ7 : 1 2 3 4 5 6 7

8

Ẽ8 : 1 2 3 4 5 6 7 8

9

E (1,1)6 : 1 2 3 4 5 6

7

8

E (1,1)7 : 1 2 3 4 5 6 7

8

9

E (1,1)8 : 1 2 3 4 5 6 7 8

9

10

X6 : 31

2

5

4

6

X7 : 31

2

5

4

6 7

Figure 3. Representatives of nondecomposable quivers of finite
mutation type.

composition as multiplication. We call this group the cluster automorphism group
of A, and denote it by Aut(A). We call the group Aut+(A) consisting of the direct
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cluster automorphisms of A the direct cluster automorphism group of A, which is
a subgroup of Aut(A) with index at most two; see [Assem et al. 2012].

Definition 2.12. [Saleh 2014; Chang and Zhu 2016b] (automorphism of exchange
graphs). An automorphism of the exchange graph EA of a cluster algebra A is an
automorphism of EA as a graph, that is, a permutation σ of the vertex set, such that
the pair of vertices (u, v) forms an edge if and only if the pair (σ (u), σ (v)) also
forms an edge.

Clearly, the natural composition of two automorphisms of EA is again an auto-
morphism. We define an automorphism group Aut(EA) of EA as a group consisting
of automorphisms of EA. It is clear that a cluster automorphism induces a unique
automorphism of the exchange graph. Thus Aut(A) is a subgroup of Aut(EA); see
[Chang and Zhu 2016b]. By the definition, an automorphism σ of an exchange
graph maps clusters to clusters, and induces an automorphism of its dual graph, the
cluster complex 1; we denote this automorphism by σ1. Then σ1 is a permutation
of cluster variables in X , which maps a maximal simplex to a maximal simplex, but
the map may not be compatible with the algebra relations among cluster variables
in A, thus it is not necessarily a cluster automorphism. In fact, Aut(A) may be a
proper subgroup of Aut(EA); see Examples 3.3 and 3.5. The following lemma can
be viewed as a description of Aut(A) as a subgroup of Aut(EA), as those exchange
graph automorphisms which happen to preserve B-matrices (perhaps up to global
reversal of sign) up to simultaneously relabeling of the rows and columns. In this
point of view, the main thrust of this paper is to show that, typically for the cluster
algebras we consider, any graph automorphism has the property of preserving
B-matrices.

Lemma 2.13. Let8 : EA→ EA be an automorphism which maps a seed6= (x, B)
to a seed 6′ = (x′, B ′). If B ∼= B ′ or B ∼=−B ′ under the correspondence x→ x′,
then the map x → x′ induces a cluster automorphism 9 of A and the induced
automorphism 9E : EA→ EA coincides with 8.

Proof. Since B ∼= B ′ or B ∼=−B ′, the map x→ x′ induces a cluster automorphism
9 of A by Lemma 2.11. Notice that 8(x) = 9(x); then by inductions on the
mutations, we have 8=9 on each cluster of EA, so 8=9E as automorphisms
of the exchange graph EA. �

3. Automorphism groups of exchange graphs

In this section we consider relations between the groups Aut(A) and Aut(EA) for a
cluster algebra A of finite type or of skew-symmetric finite mutation type. For this,
we need to describe EA more precisely. In the following we will recall the basic
structures of EA from [Fomin and Zelevinsky 2002; 2003a], and then introduce
layers of geodesic loops on EA.
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3A. Layers of geodesic loops. Let 6 = (x, B) be a labeled seed on the cluster
pattern of A. Let x′ be a proper subset of x, then x′ is a nonmaximal simplex in
the cluster complex 1. We denote by 1x′ the link of x \ x′, which is the simplicial
complex on the ground set

Xx′ = {α ∈X − (x \ x′) : (x \ x′)∪ {α} ∈1},

such that x′′ is a simplex in 1x′ if and only if x \ x′∪ x′′ is a simplex in 1. Let 0x′

be the dual graph of 1x′ . We view 0x′ as a subgraph of EA whose vertices are the
maximal simplices in 1 that contain x \ x′. In fact, as we explain now, 0x′ is the
exchange graph of a cluster algebra A f defined by a frozen seed

6 f = (x′, x \ x′, B f ),

which is the freezing of 6 at x \ x′ (see [Chang and Zhu 2016c, Definition 2.25]),
where B f is obtained from B by deleting the columns labeled by variables in x \ x′.
Then elements in x \ x′ are coefficients of A f (we refer to [Fomin and Zelevinsky
2002; 2007] for a cluster algebra with coefficients). Let A′ be a cluster algebra
defined by a seed 6′ = (x′, B ′), where B ′ is obtained from B by deleting rows and
columns labeled by variables in x \ x′. In our setting, that is, where cluster algebras
are of finite type or of skew-symmetric finite type, the exchange graph of a cluster
algebra (with coefficients) only depends on the principal part of the exchange matrix
(see [Fomin and Zelevinsky 2003a; Cerulli Irelli et al. 2013]) which is the submatrix
labeled by x \ x′× x \ x′; thus the graph 0x′ coincides with the exchange graph EA′ .

For a 2-dimensional subcomplex x′ of 1, we call the dual graph 0x′ a geodesic
loop of EA. We mention that the definition of geodesic loop is slightly different
from the definition used in [Fomin and Zelevinsky 2003a], where a line is not a
geodesic loop. If A is of finite type, then EA is a finite graph, and 0x′ is a polygon.
Notice that in the seed 6′ = (x′, B ′) constructed above, B ′ is of Dynkin type, that
is, one of types A2, B2,C2 or G2. Therefore 0x′ is a (h+2)-polygon, where h is
the Coxeter number of the corresponding Dynkin type; see [Fomin and Zelevinsky
2003a]. If A is of finite mutation type, then 0x′ may be a line. We fix a basepoint
6 = (x, B) and introduce the following concept.

Definition 3.1. (1) Letting 6′ be a point of EA, the distance `(6,6′) between
6 and 6′ is the minimal length of paths between 6 and 6′.

(2) Letting L be a geodesic loop of EA, the distance `6(L) between 6 and L is
the minimal length min{`(6,6′),6′ ∈ L}.

(3) Letting m ∈ Z>0 be a nonnegative integer, denote by `m
6 the set of geodesic

loops whose distance to 6 is m. We call it the m-layer of geodesic loops of
EA based on 6.

(4) For any m ∈ Z>0, denote by N (`m
6) the set of amounts of edges belonging to

geodesic loops in the m-layer `m
6 .
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Remark 3.2. The following observations are directly derived from the definitions:

(1) The elements in `0
6 are those geodesic loops 0x′ for the 2-dimensional sub-

complex x′ of 1, where x′ is a subset of the cluster x in 6.

(2) For m1 6= m2, `m1
6 ∩ `

m2
6 =∅.

(3) The disjoint union
⊔

m>0 `
m
6 is the set of all the geodesic loops of EA.

(4) If σ : EA→ EA′ is an isomorphism of graphs such that the image of 6 is 6′,
then for every m ∈ Z>0, N (`m

6)= N (`m
6′) as sets.

3B. Cases of rank 2 and rank 3. In this subsection, we consider the relations
between Aut(A) and Aut(EA) for a cluster algebra A of rank 2 or rank 3.

Example 3.3. For a finite type cluster algebra A of rank 2, that is, one of types
A2, B2,C2 or G2, its exchange graph EA is a (h+2)-polygon, thus Aut(EA) is
isomorphic to the dihedral group Dh+2, where h is the Coxeter number. If A
is of type A2, then Aut(A) ∼= D5 [Assem et al. 2012], thus Aut(A) ∼= Aut(EA).
If A is of type B2,C2 or G2, [Chang and Zhu 2016a, Theorem 3.5] shows that
Aut(A)∼= D(h+2)/2, thus Aut(A)$ Aut(EA).

Example 3.4. For an infinite type skew-symmetric cluster algebra A of rank 2, its
exchange graph EA is a line, thus Aut(EA) = 〈s〉 × 〈r〉 ∼= Z o Z2 = D∞, where
s is a left shift of EA which maps a cluster to the left adjacent cluster and r is a
reflection with respect to a fixed cluster. Then s corresponds to a direct cluster
automorphism of A and r corresponds to an inverse cluster automorphism of A;
thus by Lemma 2.13, Aut(EA)⊆ Aut(A). Therefore Aut(EA)∼= Aut(A)∼= D∞.

Example 3.5. For an infinite type non-skew-symmetric cluster algebra A of rank 2,
its exchange graph EA is also a line, thus as shown in Example 3.4, Aut(EA) =

〈s〉 × 〈r〉 ∼= Z o Z2, where s corresponds to a direct cluster automorphism of A,
while r dose not correspond to any cluster automorphism of A, since there is no
nontrivial symmetry of the quiver in any seed of A. Thus Aut(A)∼= Z $ Aut(EA).

Example 3.6. We consider the cluster algebra A of type A3 with an initial labeled
seed 60 = ({x1, x2, x3}, Q), where Q is 1→ 2← 3. Its exchange graph EA is
depicted in Figure 4. Note that there are three quadrilaterals and six pentagons in EA.
Then as shown in [Chang and Zhu 2016a, Example 3], Aut(A)= 〈 f−, f+〉 ∼= D6,
where f− is defined by

(3) f− :


x1 7→ x1,

x2 7→ µ2(x2),

x3 7→ x3.

It maps 60 to 61, and induces a reflection with respect to the horizontal central



294 WEN CHANG AND BIN ZHU

64

65

60

O3O2

O1

• •

•

63

62

61

•

• •

•

f0

f−

f+

Figure 4. The exchange graph of a cluster algebra of type A3.

axis of EA. The cluster automorphism f+ is defined by

(4) f+ :


x1 7→ µ1(x1),

x2 7→ x2,

x3 7→ µ3(x3).

It gives a reflection on EA, which maps 60 to 65. In fact, as shown in [Chang and
Zhu 2016a], a direct cluster automorphism of A is of the form ( f+ f−)m, 0≤m ≤ 5,
which induces a rotation of seeds in {60, 61, 62, 63, 64, 65}, thus Aut+(A) can
be viewed as the symmetry group of the bipartite belt consisting of seeds in
{60, 61, 62, 63, 64, 65}, where the quivers in these seeds are the bipartite quivers
isomorphic to Q.

We will prove that any automorphism of EA is induced from an element in
Aut(A), and thus Aut(A) ∼= Aut(EA). For this purpose, we show the following
claims:

(1) There exists no automorphism of EA which maps 60 to a vertex except for 6i ,
0≤ i ≤ 5.

(2) If an automorphism of EA maps 60 to 6i , 0≤ i ≤ 5, then it is induced from a
cluster automorphism of A.

Let σ be an automorphism of EA. Due to symmetries of EA, we only show that
σ(6) 6= Oi , i = 1, 2, 3. By a direct computation, the sets of numbers for the layers
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of geodesic loops based on these vertices are

N (`0
6)= {4, 5, 5}, N (`1

6)= {4, 5, 5}, N (`2
6)= {5, 5}, N (`3

6)= {4};

N (`0
O1
)= {4, 5, 5}, N (`1

O1
)= {5, 5, 5}, N (`2

O1
)= {4, 4}, N (`3

O1
)= {5};

N (`0
O2
)= {5, 5, 5}, N (`1

O1
)= {4, 4, 4}, N (`2

O1
)= {5, 5, 5};

N (`0
O3
)= {4, 5, 5}, N (`1

O3
)= {5, 5, 5}, N (`2

O3
)= {4, 4}, N (`3

O3
)= {5}.

Then by Remark 3.2(4), σ(60) 6= Oi , i = 1, 2, 3. So the first claim is affirmed.
Now we consider the second claim. Still due to the symmetries of the graph, we

may assume that σ(60) = 60. Since σ is a graph automorphism, it can be seen
that there are two possibilities for σ ; one is the identity, the other is the reflection
f0 with respect to the vertical central axis of EA, as depicted in Figure 4. Note
that the identity graph automorphism is induced from the identity automorphism of
the cluster algebra, while the graph automorphism f0 is induced from the cluster
automorphism ( f+ f−)3 by a direct computation. Therefore the second claim is true
and we have Aut(EA)∼= Aut(A)∼= D6.

Example 3.7. It is known from a result in [Fomin and Zelevinsky 2003b] that the
cluster algebras of type Bn and type Cn have the same exchange graph. Based on a
seed 60, the exchange graph of a cluster algebra A of type B3 or type C3 is depicted
in Figure 5. For the cluster algebra of type B3, the quiver of the initial seed 60 is

1−→ 2 (2,1)
←−− 3.

For the cluster algebra of type C3, the quiver of the initial seed 60 is

f rm[o]−− −→ 2 (1,2)
←−− 3.

Let σ be an automorphism of EA. As shown by Example 4 in [Chang and Zhu
2016a], we have Aut(A) ∼= D4 and {60, 61, 62, 63, 64, 65, 66, 67} are all the
seeds whose quivers are isomorphic to Q. Similarly, to get Aut(EA)∼=Aut(A), we
prove the two claims stated in Example 3.6. For the first claim, we only need to
prove that σ(60) 6= Oi (i = 1, 2, 3, 4) in Figure 5, and this can be obtained by the
fact that these seeds have different combinatorial numbers of layers of geodesic
loops:

N (`0
60
)= {4, 5, 6}, N (`1

60
)= {4, 5, 6};

N (`0
O1
)= {5, 6, 6};

N (`0
O2
)= {4, 5, 6}, N (`1

O2
)= {5, 6, 6};

N (`0
O3
)= {4, 5, 6}, N (`1

O3
)= {5, 6, 6};

N (`0
O4
)= {5, 6, 6}.
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O1

O4

O3

6 67

O2

•

•

6162

•

•

•

65 66

•

•

6463

•

Figure 5. The exchange graph of a cluster algebra of type B3 or
type C3.

For the second claim, we may also assume σ(60)=60. Since N (`0
60
)= {4, 5, 6},

there are neither rotation symmetries nor reflection symmetries of EA at 60. So
σ must be the identity automorphism of EA, which is induced from the identity
automorphism of the cluster algebra. Noticing that there are eight elements in
Aut(A)∼= D4, where each one corresponds a graph automorphism which maps 60

to 6i , 0≤ i ≤ 7.

Example 3.8. For cluster algebras of type F4, let the quiver Q of a seed 6 be

1−→ 2 (2,1)
←−− 3−→ 4.

Then Aut(A) ∼= D7 [Chang and Zhu 2016a]. The variables x1, x2, x3 and the
corresponding full subquiver of Q form a seed61 of type B3, while x2, x3, x4 and the
corresponding full subquiver of Q form a seed 62 of type C3. By pinning down 6,
rotating the graph EA induces an automorphism σ of EA, which exchanges the
graph EA61

and the graph EA62
. However σ does not induce a cluster automorphism

of A, and Aut(A)∼= D7 $ D7 oZ2 ∼= Aut(EA).

Proposition 3.9. Let Q be a connected quiver with three vertices which is of finite
type. Let 6 = (x, Q) and 6′ = (x′, Q′) be two seeds (not necessarily mutation



AUTOMORPHISM GROUPS AND EXCHANGE GRAPHS 297

equivalent to each other). If there is an isomorphism σ : EA → EA′ such that
σ(6)=6′, then 6′ = (x′, Q′) is a finite type seed with Q′ connected, and

(1) if 6 is of type A3, then Q′ ∼= Q (or Qop);

(2) if 6 is of type B3 and 6′ is not of type C3, then Q′ ∼= Q (or Qop);

(3) if 6 is of type C3 and 6′ is not of type B3, then Q′ ∼= Q (or Qop).

Proof. Clearly, since E ′A ∼= EA is of finite type, Q′ is a Dynkin type quiver with
three vertices. If Q is of type A3, then by Example 3.6,

N (`0
6)= {4, 5, 5} or {5, 5, 5}.

If Q is of type B3 (or C3), then from Example 3.7,

N (`0
6)= {4, 5, 6} or {5, 6, 6}.

If Q′ is a union of a quiver of type A2 and a point, then from Example 3.3,

N (`0
6)= {4, 4, 5}.

If Q′ is a union of a quiver of type B2 (or C2) and a point, then from Example 3.3,

N (`0
6)= {4, 4, 6}.

If Q′ is a union of a quiver of type G2 and a point, then from Example 3.3,

N (`0
6)= {4, 4, 8}.

Thus we get the proof by Remark 3.2. �

Example 3.10. Let Q be the quiver in Figure 6; we say it is of type Ã2. Then it is
not hard to see that if a quiver in the mutation class of Q is not isomorphic to Q,
then it must be isomorphic to the quiver Q′ in Figure 6. Let A be a cluster algebra
with an initial seed

6 = ({x1, x2, x3}, Q),

as in the above examples. To show that Aut(A)∼=Aut(EA), we only need to notice
that

N (`0
6)= {5, 5,∞},

N (`0
6′)= {5, 5, 5},

where 6′ is a seed of A with quiver isomorphic to Q′. In fact, from [Assem et al.
2012, Section 3.3],

Aut(A)= 〈r1, r2 | r1r2 = r2r1, r1
2
= r2〉o 〈σ | σ 2

= 1〉 ∼= H2,1 oZ2,
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Q :

1

2 3

Q′ :

1

2 3

Figure 6. Quivers of type Ã2.

1

2 3

Figure 7. Quiver of type T3.

where

r1 :


x1 7→ x3,

x2 7→ µ1(x1),

x3 7→ x2,

(5)

r2 :


x1 7→ x2,

x2 7→ µ3µ1(x3),

x3 7→ µ1(x1),

(6)

σ :


x1 7→ x2,

x2 7→ x1,

x3 7→ x3.

(7)

Thus Aut(EA)∼= H2,1 oZ2.

Example 3.11. Let A be a cluster algebra from a once punctured torus, which we
call a cluster algebra of type T3; then it is of finite mutation type with quiver always
isomorphic to the quiver in Figure 7. By Lemma 2.13, we have Aut(A)∼=Aut(EA).

Corollary 3.12. Let A and A′ be two cluster algebras of finite type, or of skew-
symmetric finite mutation type, with rank equal to 2 or 3. Let 6 = (x, B) and
6′ = (x′, B ′) be two seeds of A and A′, respectively. If N (`k

6) = N (`k
6′) for any

k ∈ Z≥0, then there exists an isomorphism 8 : EA→ EA′ such that 8(x)= x′.

Proof. This follows from Examples 3.6, 3.7, 3.10 and 3.11. �
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We expect the result in the corollary to be true for any finite type cluster algebras
and finite mutation type cluster algebras. This means that for any seed 6, the set
N (`k

6) characterizes the exchange graph.

Lemma 3.13. Let Q be a connected skew-symmetric quiver of finite mutation type.

(1) If there are 3 vertices in Q, then Q is one of the following types:

(a) A3 type.
(b) Ã2 type.
(c) T3 type.

(2) If there are at least four vertices in Q, then any full subquiver of Q with three
vertices is of type A3 or of type Ã2.

Proof. (1) From the classification of cluster algebras of finite mutation type, Q
must be block-decomposable, so the proof is a straightforward check by gluing the
blocks in Figure 2.

(2) We only need to notice that a quiver of type T3 is obtained by gluing two blocks
of type II in Figure 2, and thus one cannot further glue it with a block to obtain a
connected quiver of finite mutation type. �

It is clear that if for any quiver in the mutation equivalent class of Q the number
of arrows between any two vertices is at most 2, then Q is of finite mutation type.
The above lemma shows that the inverse statement is also true for the cases when
there are at least three vertices; that is, we have the following corollary, which has
been stated in [Derksen and Owen 2008, Corollary 8].

Corollary 3.14. A connected quiver Q with at least three vertices is of finite mu-
tation type if and only if for any quiver in its mutation class the number of arrows
between any two vertices is at most 2.

Proposition 3.15. Let Q be a connected skew-symmetric quiver with three vertices
which is of finite mutation type. Let 6 = (x, Q) and 6′ = (x′, Q′) be two seeds.
If there is an isomorphism σ : EA→ EA′ such that σ(6) = 6′, then Q′ ∼= Q or
Q′ ∼= Qop.

Proof. Similar to Proposition 3.9, this follows from Lemma 3.13 and Examples 3.11,
3.6 and 3.10. �

3C. General cases.

Theorem 3.16. Let A be a cluster algebra of finite type. Assuming that it is not of
type F4, let 6 = (x, Q) be a labeled seed of A, where Q is a connected quiver with
at least three vertices. Then we have Aut(A)∼= Aut(EA).
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Proof. We need to show that Aut(EA) ⊆ Aut(A). Let 8 be any automorphism
of EA. Then it induces an automorphism φ of the complex 1, in particular, which
gives a permutation on the cluster variable set X . Let x′ ⊆ x be a 3-dimensional
complex, and let Q(x′) be the full subquiver of Q(x) with vertices indexed by the
variables in x′. Let A′ be the cluster algebra defined by the seed 6′ = (x′, Q(x′)).

Notice that since φ is an automorphism of a complex, it maps a simplex to a
simplex, and thus induces a bijection from Xx′ ={α ∈X −(x\x′) : x\x′∪{α} ∈1}
to Xφ(x′) = {α ∈ X − φ(x \ x′) : φ(x \ x′) ∪ {α} ∈ 1}, and also induces an
isomorphism φx′ from the link 1x′ to the link 1φ(x′). Moreover, the duality of the
isomorphism φx′ gives an isomorphism between the dual graphs of the complexes;
that is, we have an isomorphism

(8) 8x′ : 0x′→ 0φ(x′).

Let 6′ = (φ(x′), Q(φ(x′))) be a seed, where Q(φ(x′)) is the full subquiver of
Q(8(x)) whose vertices are those labeled by elements in φ(x′). Let A′ be the
cluster algebra defined by 6′. As shown in the beginning of Section 3A, there
are isomorphisms 0x′ ∼= EA′ and 0φ(x′) ∼= EA′ . Combining these with the iso-
morphism (8), we have EA′ ∼= EA′ . Since A is not of type F4, if Q(x′) is of
type B3 (resp. type C3), then Q(φ(x′)) is not of type C3 (resp. type B3). Thus by
Proposition 3.9, Q(x′))∼= Q(φ(x′)) or Q(x′)∼= Q(φ(x′))op.

Let x′ = {x1, x2, x3} ⊆ x and x′′ = {x2, x3, x4} ⊆ x be two 3-dimensional
complexes with exactly two common elements. By the above discussion, we
have Q(x′)) ∼= Q(φ(x′)) or Q(x′) ∼= Q(φ(x′))op, and Q(x′′)) ∼= Q(φ(x′′)) or
Q(x′′) ∼= Q(φ(x′′))op. Now assume bx2x3 6= 0, that is, there exists at least one
arrow in Q(x) between the vertices labeled by x2 and x3, then simultaneously we
have Q(x′)) ∼= Q(φ(x′)) and Q(x′′)) ∼= Q(φ(x′′)), or Q(x′) ∼= Q(φ(x′))op and
Q(x′′)∼= Q(φ(x′′))op. Finally, due to the arbitrariness of the choice of x′ and the
connectedness of the quiver, one may show that Q(8(x))∼= Q or Q(8(x))∼= Qop.
See the inductive process in the following picture:

· · · x0 x1 x2 x3 x4 x5 x6 · · ·

x′

x′′

x′′′

Therefore 8 : EA→ EA induces a cluster automorphism of A by Lemma 2.13.
Thus Aut(EA)⊆ Aut(A) and we have Aut(EA)∼= Aut(A). �

Remark 3.17. By combining the above theorem, Table 1 in [Assem et al. 2012]
and Theorem 3.5 in [Chang and Zhu 2016a], we may compute the automorphism
groups of the exchange graphs of cluster algebras of finite type; see Table 1. The
cases of rank 2 and type F4 are computed in Examples 3.3 and 3.8, respectively.
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Theorem 3.18. Let A be a connected skew-symmetric cluster algebra of finite
mutation type; then Aut(A)∼= Aut(EA).

Proof. If A is of finite type of rank 2, that is, of type A2, then the result follows from
Example 3.3. If A is of infinite type of rank 2, the result follows from Example 3.4.
When the rank of A is at least 3, the proof is similar to the proof of Theorem 3.16
by using the connectedness of the cluster algebra and Proposition 3.15. �

Corollary 3.19. Let A be a connected cluster algebra of finite type or of skew-
symmetric finite mutation type, then an automorphism of EA is determined by the
image of any fixed seed6 and the images of the seeds adjacent to6. More precisely,
let6= (x, B) be a seed on EA, then an automorphism8 : EA→ EA is determined
by a pair (6′, φ), where 6′ = (x′, B ′) is a seed on EA and φ : x→ x′ is a bijection
such that 8(6)=6′ and 8(µx(x))= µφ(x)(x′) for any x ∈ x.

Proof. If A is of finite type of rank 2 and of type F4, then the conclusion is clear.
Otherwise, note that a cluster automorphism is determined by such a pair (6′, φ);
thus the proof follows from Theorems 3.16 and 3.18. �
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