
Pacific
Journal of
Mathematics

AFFINE STRUCTURES ON LIE GROUPOIDS

HONGLEI LANG, ZHANGJU LIU AND YUNHE SHENG

Volume 307 No. 2 August 2020





PACIFIC JOURNAL OF MATHEMATICS
Vol. 307, No. 2, 2020

https://doi.org/10.2140/pjm.2020.307.353

AFFINE STRUCTURES ON LIE GROUPOIDS

HONGLEI LANG, ZHANGJU LIU AND YUNHE SHENG

We study affine structures on a Lie groupoid, including affine k-vector fields,
k-forms and ( p, q)-tensors. We show that the space of affine structures is
a 2-vector space over the space of multiplicative structures. Moreover, the
space of affine multivector fields with the Schouten bracket and the space of
affine vector-valued forms with the Frölicher–Nijenhuis bracket are graded
strict Lie 2-algebras, and affine (1, 1)-tensors constitute a strict monoidal
category. Such higher structures can be seen as the categorification of mul-
tiplicative structures on a Lie groupoid.

1. Introduction

Geometric structures on a Lie groupoid that are compatible with the groupoid mul-
tiplication are called multiplicative structures. They have been studied intensively
and their infinitesimal correspondings have been developed. See [Iglesias-Ponte
et al. 2012; Mackenzie and Xu 2000; Xu 1995] and [Bursztyn and Cabrera 2012;
Bursztyn et al. 2009; Crainic et al. 2015] for multiplicative multivector fields and
multiplicative forms, respectively, and see [Bursztyn and Drummond 2019] for
the theory of multiplicative tensors. Beyond this, there are also multiplicative
Dirac structures [Jotz Lean 2019; Ortiz 2013], multiplicative generalized complex
structures [Jotz Lean et al. 2016], multiplicative contact and Jacobi structures
[Crainic and Salazar 2015; Crainic and Zhu 2007; Iglesias-Ponte and Marrero
2003], multiplicative distributions [Jotz Lean and Ortiz 2014] and multiplicative
Manin pairs [Li-Bland and Ševera 2011], etc. We refer to [Kosmann-Schwarzbach
2016] for a survey on this subject.

Our purpose is to study geometric structures that are compatible with the affinoid
structure on a Lie groupoid. This is motivated by Weinstein’s work [1990], where he
studied Poisson manifolds also carrying affinoid structures. An affinoid structure on
a space X is a subset of X4 whose elements are called parallelograms, with axioms
modeled on the properties of the quaternary relation {(g, h, l, k) : hg−1

= kl−1
} on
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a group or a groupoid. Groupoids are affinoid spaces, but not every affinoid space
arises in this way. Mackenzie [1992; 2000] regarded affinoid structures as a type of
double groupoid. He gave the equivalence of affinoid structures, butterfly diagrams
and generalized principal bundles and studied their infinitesimal invariants.

The multiplicativity condition for a k-vector field (a k-form) on a Lie groupoid is
known as the graph {(g, h, gh) : s(g)= t (h)} of the groupoid multiplication being
a coisotropic (an isotropic) submanifold of G×G×G. A Lie groupoid G carries an
affinoid structure with the set of parallelograms given by {(g, h, l, hg−1l)} when
hg−1l is well defined. So the affine condition is naturally defined to be that the set
of parallelograms is a coisotropic or an isotropic submanifold of G×G×G×G for k-
vector fields or k-forms respectively. This gives the notions of affine k-vector fields
and affine k-forms on a Lie groupoid. This topic was first studied in [Weinstein
1990]. Then Lu [1990] studied the dressing transformation, Poisson cohomology and
also the symplectic groupoids of affine Poisson structures on Lie groups. For more
information on affine Poisson structures, see also [Dazord et al. 1991; Dazord and
Sondaz 1991; Urbański 1994]. To define affine (p, q)-tensors on a Lie groupoid G,
we consider the tangent and cotangent groupoids of G. A (p, q)-tensor on G can
be viewed as a function on the Lie groupoid G̃ := ⊕q TG⊕p T ∗G ⇒⊕q T M⊕p A∗.
Then a (p, q)-tensor is said to be affine if it is an affine function (0-form) on the
Lie groupoid G̃. This definition coincides with the previous definitions for affine
k-vector fields and affine k-forms.

We shall first make clear the relations between affine and multiplicative structures.
For Lie groups, Lu [1990] obtained two multiplicative bivector fields from an affine
bivector field by using the right and left translations. We generalize this result to the
case of Lie groupoids and obtain two multiplicative k-vector fields (k-forms, (p, q)-
tensors) from an affine k-vector field (k-form, (p, q)-tensor). Furthermore, we show
that the space of affine structures is a 2-vector space over the vector space of mul-
tiplicative structures. Thus affine structures can be viewed as the categorification of
multiplicative structures and affine structures define an equivalence relation on mul-
tiplicative structures. For some cases, multiplicative structures are functors, as mor-
phisms of Lie groupoids; then affine structures are natural transformations between
these multiplicative structures. Moreover, for affine multivector fields, the Schouten
bracket gives rise to a graded strict Lie 2-algebra structure on the aforementioned
2-vector space. This recovers the strict Lie 2-algebra structure on 1-vector fields in
[Berwick-Evans and Lerman 2016] and is equivalent to the graded Lie 2-algebra in
[Bonechi et al. 2018]; see also [Ortiz and Waldron 2019]. We give the geometric sup-
port of this graded Lie 2-algebra structure. We also prove that affine vector-valued
forms are closed under the Frölicher–Nijenhuis bracket and thus constitute a graded
strict Lie 2-algebra. For affine (1, 1)-tensors, the composition of affine (1, 1)-tensors
defines a strict monoidal category structure on the aforementioned 2-vector space.
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We remark that on Lie groups, affine (p, q)-tensors and multiplicative (p, q)-
tensors are the same when q 6= 0. In particular, the affine k-forms and multiplicative
k-forms are the same. An affine k-vector field differs from a multiplicative k-vector
field by an element in ∧kg, where g is the Lie algebra of the Lie group. Affine
k-vector fields, k-forms and (1, 1)-tensors on pair groupoids are also analyzed in
detail.

The organization of this paper is as follows. In Section 2, we recall Lie 2-algebras,
monoidal categories, tangent and cotangent Lie groupoids. In Section 3, we intro-
duce the notion of affine k-vector fields and clarify the relation with multiplicative
k-vector fields. We show that the space of affine k-vector fields is a 2-vector space.
Moreover, affine multivector fields are closed under the Schouten bracket; we thus
get a graded strict Lie 2-algebra structure on this 2-vector space. In Section 4, we
introduce the notion of affine k-forms and study their properties analogously. In
Section 5, affine tensors on a Lie groupoid are introduced. We obtain a graded strict
Lie 2-algebra structure on the space of vector-valued forms and a strict monoidal
category structure on the space of affine (1, 1)-tensors.

2. Preliminary

2A. Strict Lie 2-algebras. Lie 2-algebras are the categorification of Lie algebras,
whose underlying spaces are 2-vector spaces. See [Baez and Crans 2004] for more
details. Let Vect be the category of vector spaces.

Definition 2.1 [Baez and Crans 2004]. A 2-vector space is a category in Vect.

Explicitly, a 2-vector space is a category V1 ⇒ V0 whose spaces of objects and
arrows are both vector spaces, such that the source and target maps s, t : V1→ V0,
the identity-assigning map ι : V0 ↪→ V1, and the composition ◦ : V1×V0 V1→ V1

are all linear.
A 2-vector space is completely determined by the vector spaces V0, V1 with the

source, target and the identity-assigning map. Actually, given f ∈ V1, define its
arrow part by

−→

f = f − ι(s( f )). Then s(
−→

f ) = 0 and t (
−→

f ) = t ( f )− s( f ). So we
can identify f : x→ y with the pair (x,

−→

f ). With this notation, the composition of
f : x→ y and g : y→ z is defined as g ◦ f = (x,

−→

f + −→g ). Any arrow (x,
−→

f ) has
an inverse (x + t (

−→

f ),−
−→

f ), so a 2-vector space is always a Lie groupoid.
A 2-vector space is equivalent to a 2-term chain complex of vector spaces. On

the one hand, given a 2-vector space V1 ⇒ V0, the corresponding 2-term complex
is t : ker s→ V0. On the other hand, given a chain complex C1→ C0, the 2-vector
space is C0⊕C1→ C0. We refer to [Baez and Crans 2004] for the details.

Definition 2.2 [Baez and Crans 2004]. A strict Lie 2-algebra is a 2-vector space V
together with a skew-symmetric bilinear functor, the bracket, [ · , · ] : V × V → V
satisfying the Jacobi identity.
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A strict Lie 2-algebra is equivalent to a strict 2-term L∞-algebra. Namely, a
2-term complex d : C1→ C0 with skew-symmetric brackets [ · , · ] : C0×C0→ C0

and [ · , · ] : C0×C1→ C1 satisfying the Jacobi identity and [da, b] = [a, db] and
d[x, a] = [x, da] for x ∈ C0 and a, b ∈ C1. See [Baez and Crans 2004] for details.

When the spaces of objects and morphisms are graded vector spaces and the Lie
bracket is a graded Lie bracket, we call it a graded strict Lie 2-algebra. We refer to
[Bonechi et al. 2018] for the explicit definition.

2B. Strict monoidal categories. A monoidal category is a category C with a bi-
functor ◦ : C×C→ C, its product, which is associative up to a natural isomorphism,
and with an object which is a left unit and a right unit for the product up to natural
isomorphisms. For our purpose, we only consider the category with a product which
is strict associative and has a strict two-sided identity object.

Definition 2.3 [Mac Lane 1971]. A strict monoidal category (C, ◦, e) is a category C
with a bifunctor ◦ : C× C→ C, which is associative:

◦(◦× 1)= ◦(1×◦) : C× C× C→ C,

and with an object e which is a left and right unit for ◦:

◦(e× 1)= idC = ◦(1× e) : C→ C.

The bifunctor ◦ here assigns to each pair of objects x, y an object x ◦ y and to
each pair of arrows f : x→ x ′, g : y→ y′ an arrow f ◦ g : x ◦ y→ x ′ ◦ y′. Thus ◦
being a bifunctor means that

1x ◦ 1y = 1x◦y, ( f ′ ◦ g′) · ( f ◦ g)= ( f ′ · f ) ◦ (g′ · g),

whenever f ′, f and g′, g are composable. Here · is the multiplication in the
category C. The associative law and the unit law in the definition hold both for
objects and arrows.

2C. Tangent and cotangent Lie groupoids. We recall the definition of the tangent
and cotangent Lie groupoids of a Lie groupoid.

Denote the source and target maps for a Lie groupoid G ⇒ M by s, t : G→ M.
Two elements g, h∈G are multiplicable or composable if and only if s(g)= t (h) and
their product is written as g ·h or simply as gh. Such a pair is called a multiplicable
pair. We denote the space of multiplicable pairs by G(2). Let A be the Lie algebroid
of G. For u ∈ 0(A), the right and left translations −→u ,←−u ∈ X(G) are defined by

−→u (g)= d Rg(ut (g)),
←−u (g)=−d Lg(d inv(us(g)),

where Rg and Lg are the right and left multiplications on G and inv : G→ G is the
inverse map in G.

Throughout this paper, by abuse of notation, we use the same notations s and t
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to denote the source and target of any Lie groupoid and we adopt the same notation
to denote a map and its tangent map.

Given a Lie groupoid G⇒ M, its tangent bundle TG⇒ T M with the differentials
of the structure maps of G is again a Lie groupoid.

Its cotangent bundle T ∗G is also equipped with a Lie groupoid structure which
is over A∗, written as T ∗G ⇒ A∗. First we have the inclusion A∗ ↪→ T ∗G since
T ∗G|M ∼= T ∗M ⊕ A∗. The source and target maps of an element ξ ∈ T ∗g G with
g ∈ G are

〈s(ξ), u〉 = 〈ξ,←−u 〉, 〈t (ξ), v〉 = 〈ξ,−→v 〉 for all u ∈ As(g), v ∈ At (g),

So for any u ∈0(A), seen as a function on the base manifold A∗, we get the formulas

(1) s∗u =←−u , t∗u =−→u .

For a multiplicable pair (g, h) ∈ G(2), if ξ ∈ T ∗g G and η ∈ T ∗h G are multiplicable,
the product is the element ξ · η ∈ T ∗ghG such that

(ξ · η)(X · Y )= ξ(X)+ η(Y ) for all (X, Y ) ∈ TG(2),

where X ·Y ∈ TghG is the product of X ∈ TgG and Y ∈ ThG in the Lie groupoid TG.
See, for example, [Kosmann-Schwarzbach 2016; Lang and Liu 2018] for more
explanation of the cotangent groupoid.

3. Affine k-vector fields on a Lie groupoid

An affinoid structure on a space X is a subset of X4 whose elements are seen as
parallelograms, with axioms modeled on the properties of the quaternary relation
{(g, h, l, k) | hg−1

= kl−1
} on a group or a groupoid [Weinstein 1990]. In particular,

a groupoid has an affinoid structure with parallelograms given by the relation

{(g, h, l, hg−1l) : s(g)= s(h), t (g)= t (l)}.

A k-vector field on a Lie groupoid is called affine when it is compatible with the
affinoid structure in the sense that the submanifold of parallelograms is coisotropic.
While a k-vector field is multiplicative when the graph {(g, h, gh) : s(g)= t (h)} of
the multiplication, or space of triangles, is coisotropic.

Let V be a vector space and 5 ∈ ∧k V. A subspace W ⊂ V is coisotropic with
respect to 5 if

5(ξ1, . . . , ξk)= 0 for all ξ1, . . . , ξk ∈W 0,

where W 0 is the annihilator space of W, namely,

W 0
= {ξ ∈ V ∗ : ξ(w)= 0 for all w ∈W }.

More generally, for a manifold M and 5 ∈ Xk(M), a submanifold S of M is
coisotropic with respect to 5 if Tx S is coisotropic with respect to 5x for all x ∈ S.
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The following definition is motivated by Weinstein’s [1990] definition for affine
Poisson structures on a Lie groupoid.

Definition 3.1. A k-vector field 5 ∈ Xk(G) on a Lie groupoid G is called affine if
the submanifold

S := {(g, h, l, hg−1l) : s(g)= s(h), t (g)= t (l)} ⊂ G×G×G×G

is coisotropic with respect to 5⊕ (−1)k+15⊕ (−1)k+15⊕5.

Comparatively, a k-vector field on a Lie groupoid G is multiplicative [Iglesias-
Ponte et al. 2012; Mackenzie and Xu 2000; Xu 1995] if it satisfies that the
submanifold {(g, h, gh) : s(g) = t (h)} ⊂ G × G × G is coisotropic relative to
5⊕5⊕ (−1)k+15.

It is shown in [Chen et al. 2013; Iglesias-Ponte et al. 2012; Weinstein 1990] that
a k-vector field 5 ∈ Xk(G) is multiplicative if and only if it is affine and the base
manifold M is coisotropic with respect to 5. We refer the readers to [Chen et al.
2013, Lemma 2.3], where the authors pointed out that some of the conditions listed
in [Iglesias-Ponte et al. 2012, Theorem 2.19] are redundant.

As shown in [Iglesias-Ponte et al. 2012] for the k = 2 case, for any µ∈ T ∗ghG, the
covector (−µ, L∗Xµ, R∗Yµ,−L∗X R∗Yµ) is conormal to S, that is, an element in the
annihilator space of T S at (gh, h, g, s(g)), where X and Y are bisections passing
through g and h. Another two classes of vectors conormal to S are (−t∗η, t∗η, 0, 0)
and (−s∗ξ, s∗ξ, 0, 0) for η ∈ T ∗t (g)M and ξ ∈ T ∗s(g)M. We thus get an explicit
description of affine k-vector fields:

Lemma 3.2 [Chen et al. 2013, Lemma 2.3]. A k-vector field 5 ∈ Xk(G) on a Lie
groupoid G is affine if and only if the following two conditions hold:

(i) For any (g, h) ∈ G(2),

(2) 5(gh)= LX5(h)+ RY5(g)− LX ◦ RY(5(s(g))),

where X and Y are any two local bisections passing through g and h respec-
tively.

(ii) For any ξ ∈�1(M), ιt∗ξ5 is right-invariant.

An equivalent description of (2) is that [5,
−→

X ] is right-invariant for X ∈ 0(A)
[Mackenzie and Xu 2000].

Remark 3.3. We emphasize that our definition of affine multivector fields is differ-
ent from that in [Iglesias-Ponte et al. 2012; Xu 1995], where they call multivector
fields satisfying (2) affine multivector fields. We have an extra condition.

On the other hand, we shall see that one affine k-vector field defines two multi-
plicative k-vector fields.
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The restriction on M for a k-vector field 5 ∈ Xk(G) has k+ 1 components:

5|M ∈0(∧
k TG|M)∼=0(∧k(T M⊕A))=0(∧k T M⊕(∧k−1T M⊗A)⊕· · ·⊕∧k A).

We denote by π the ∧k A-component:
π = pr∧k A5|M ∈ 0(∧

k A).

So the base manifold M is coisotropic with respect to 5 ∈ Xk(G) if π = 0.

Proposition 3.4. Let5 be a k-vector field on the Lie groupoid G with π=pr∧k A5|M .
Define

(3) 5r =5−
−→π , 5l =5−

←−π .

Then 5 is affine if and only if 5l or 5r is a multiplicative k-vector field on G. Here
the right and left translations are

−→π (g) := Rg(πt (g)),
←−π (g) := −Lg(inv(πs(g))) for all g ∈ G.

Proof. It is known from [Mackenzie and Xu 2000] that a k-vector field 5 on G
satisfying5(gh)= LX5(h)+RY5(g)−LX ◦RY(5(s(g))) is equivalent to saying
that [5,

−→

X ] is right-invariant for any X ∈ 0(A).
For any X ∈ 0(A), [5r ,

−→

X ] is right-invariant if and only if [5,
−→

X ] is right-
invariant. So 5 satisfies (2) if and only if 5r satisfies (2). Besides, since t ◦ Rg = t ,
it is clear that ιt∗ξ

−→
π is right-invariant for ξ ∈�1(M). Also it is obvious that M is

coisotropic with respect to 5r . We conclude that 5r is multiplicative if and only if
5 is affine.

For 5l , since [5l,
−→

X ] = [5,
−→

X ], ιt∗ξ←−π = 0 and M is coisotropic with respect
to5l , we obtain the conclusion that5 is affine if and only if5l is multiplicative. �

Example 3.5. Multiplicative k-vector fields on Rn are linear k-vector fields. An
affine k-vector field is of the form∑

f i1,...,ik (x)
∂

∂x i1
∧ · · · ∧

∂

∂x ik
+

∑
ci1,...,ik

∂

∂x i1
∧ · · · ∧

∂

∂x ik
,

where f i1,...,ik (x) is a linear function on Rn and ci1,...,ik is a constant. Namely, an
affine k-vector field is a sum of a linear k-vector field and a constant k-vector field.

Example 3.6. Multiplicative k-vector fields on the pair groupoid M ×M ⇒ M all
have the form (5,−5) for 5 ∈ Xk(M) and affine k-vector fields on M ×M are
of the form (5,5′) for two k-vector fields 5,5′ ∈ Xk(M).

Example 3.7. Let G be a Lie groupoid with Lie algebroid A. For any π ∈ 0(∧k A),
the k-vector field 5 = −→π is affine and the associated two multiplicative k-vector
fields are 5r = 0 and 5l =

−→
π −

←−
π .

The space Xk
aff(G) of affine k-vector fields is a vector space with the space

Xk
mult(G) of multiplicative k-vector fields as a linear subspace.
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Theorem 3.8. We have a 2-vector space

Xk
aff(G)⇒ Xk

mult(G),

where the groupoid structure is as follows: the source and target maps are given by
s(5)=5r and t (5)=5l as defined in (3), and the multiplication ∗ is

5 ∗5′ =5+
←−
π ′ ,

for a pair 5,5′ of affine k-vector fields such that 5r =5
′

l . Here π ′ = pr∧k A5
′
|M

is the ∧k A-component of 5′|M .

Proof. We first verify the groupoid structure. It follows from 5r = 5′l that
5−

−→
π =5′−

←−
π ′ . Then

s(5 ∗5′)=5+
←−
π ′ −−→π −

−→
π ′ =5′−

−→
π ′ =5′r = s(5′),

and
t (5 ∗5′)=5+

←−
π ′ −←−π −

←−
π ′ =5l = t (5).

Here we have used the fact that

pr∧k A
←−
π ′ |M = (−1)kpr∧k Ainv(π ′)= pr∧k A(π

′
− ρ(π ′))= π ′,

where if π ′ = X1 ∧ · · · ∧ Xk , we have

(−1)k inv(π ′)=−inv(X1)∧· · ·∧ (−inv(Xk))= (X1−ρ(X1))∧· · · (Xk−ρ(Xk)).

For the associativity of this multiplication, let 5′′ be another affine k-vector field
such that 5′r =5

′′

l . We see

(5 ∗5′) ∗5′′ =5+
←−
π ′ +
←−
π ′′ =5 ∗ (5′ ∗5′′).

Also, it is immediate that all the groupoid structures are linear. This gives a 2-vector
space structure on Xk

aff(G). �

The inverse of 5 ∈ Xk
aff(G) in this 2-vector space is

(4) 5−1
=5− (−→π +←−π ), π = pr∧k A5|M .

Remark 3.9. Lu [1990] considered the case when 5 ∈ X2(G) is an affine Poisson
vector field on a Lie group. This affine vector field 5−1 is also Poisson and is
called the opposite affine Poisson structure of 5. We see here that it is actually the
inverse of 5 in the 2-vector space given above.

Corollary 3.10. The associated 2-term chain complex of vector spaces for the
2-vector space in the above theorem is

0(∧k A)→ Xk
mult(G), π 7→ −→π −←−π .
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In addition to this, since affine multivector fields are closed under the Schouten
bracket [Iglesias-Ponte et al. 2012], we further obtain a graded strict Lie 2-algebra
on this 2-vector space. See [Baez and Crans 2004] for the details of Lie 2-algebras.

Theorem 3.11. We have a graded strict Lie 2-algebra structure on

⊕kX
k
aff(G)⇒⊕kX

k
mult(G),

where the bracket is the Schouten bracket.

Proof. The Schouten bracket defines a graded Lie algebra structure on ⊕kX
k
aff(G).

It suffices to check that it is a functor. Let 51,5
′

1 ∈ X
k
aff(G) and 52,5

′

2 ∈ X
l
aff(G)

be two multiplicable pairs, that is (51)r = (5
′

1)l and (52)r = (5
′

2)l . The Schouten
bracket [ · , · ] : Xk

aff(G)×Xl
aff(G)→ Xk+l−1

aff (G) being a functor means

(5) [(51,52) ∗ (5
′

1,5
′

2)] = [51,52] ∗ [5
′

1,5
′

2].

Actually, by Theorem 3.8, the left-hand side of (5) is equal to

[51+
←−
π ′1,52+

←−
π ′2] = [51,52] + [51,

←−
π ′2] + [

←−
π ′1,52] −

←−−−−
[π ′1, π

′

2],

where π ′1 = pr∧k A5
′

1|M and π ′2 = pr∧l A5
′

2|M . And the right-hand side of (5)
amounts to

[51,52] +
←−−−−−−−−−−−−−
pr∧k+l−1 A[5

′

1,5
′

2]|M .

By straightforward calculation, we have

[5′1,5
′

2] = [(5
′

1)l, (5
′

2)l] + [
←−
π ′1, (5

′

2)l] + [(5
′

1)l,
←−
π ′2] + [

←−
π ′1,
←−
π ′2]

= [(5′1)l, (5
′

2)l] + [
←−
π ′1, (52)r ] + [(51)r ,

←−
π ′2] + [

←−
π ′1,
←−
π ′2]

= [(5′1)l, (5
′

2)l] + [
←−
π ′1,52] + [51,

←−
π ′2] −

←−−−−
[π ′1, π

′

2],

where we have used the fact that [
←−

X ,
−→

Y ] = 0 for any X, Y ∈ 0(A). Moreover, 51

is affine so [51,
←−
π ′2] is left-invariant and so is [

←−
π ′1,52]. From this and the fact that

(5′1)l ((5′2)l) has no component in ∧k A (∧l A), we see
←−−−−−−−−−−−−−
pr∧k+l−1 A[5

′

1,5
′

2]|M = [
←−
π ′1,52] + [51,

←−
π ′2] −

←−−−−
[π ′1, π

′

2].

Thus we get (5). This finishes the proof. �

Remark 3.12. In [Berwick-Evans and Lerman 2016; Ortiz and Waldron 2019], the
authors constructed a strict Lie 2-algebra on the multiplicative 1-vector fields and
their natural transformations. They proved the Morita invariance of this construction
and obtained a strict Lie 2-algebra structure on the differentiable stack. Actually, this
is our case for k = 1 when writing the strict Lie 2-algebra as a Lie algebra crossed
module. Another remark is that our graded Lie 2-algebra is actually the same as
the one in [Bonechi et al. 2018], where they wrote it in the 2-term L∞-algebra
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form 0(∧•A)→ X•mult(G). Moreover, this Lie 2-algebra is Morita invariant and is
used to define multivector fields on a differentiable stack in [Bonechi et al. 2018].
Here we see affine multivector fields as the geometric support of this graded Lie
2-algebra structure.

Now we move to consider the infinitesimal of affine k-vector fields.
For an affine k-vector field 5∈Xk

aff(G), by Lemma 3.2, define δ5 f ∈0(∧k−1 A)
and δ5X ∈ 0(∧k A) for any f ∈ C∞(M) and X ∈ 0(A), such that

(6)
−−→
δ5 f = [5, t∗ f ],

−−→
δ5X = [5,

−→
X ].

Recall that a k-differential [Iglesias-Ponte et al. 2012] on a Lie algebroid A is a
pair of maps

δ0 : C∞(M)→ 0(∧k−1 A), δ1 : 0(A)→ 0(∧k A),
satisfying

δ0( f g)= δ0( f )g+ f δ0(g), δ1( f X)= δ0( f )X + f δ1(X)

for all f, g ∈ C∞(M), X ∈ 0(A), and

δ1[X, Y ] = [δ1(X), Y ] + [X, δ1(Y )], X, Y ∈ 0(A).

Denote by ⊕kX
k
aff(G) (resp. ⊕kX

k
mult(G)) and ⊕kAk the spaces of affine (resp.

multiplicative) vector fields on G and k-differentials on A. It is straightforward
to check that they are graded Lie algebras with the Schouten bracket and the
commutator Lie bracket.

With these notions, by (6), we have a map

(7) δ : ⊕kX
k
aff(G)→⊕kAk, 5 7→ δ5.

The universal lifting theorem says that

δ|
⊕kX

k
mult(G)

: ⊕kX
k
mult(G)→⊕kAk

is an isomorphism of graded Lie algebras when G is s-connected and s-simply
connected [Iglesias-Ponte et al. 2012].

As a direct consequence of Proposition 3.4, we have the following isomorphism
of graded Lie algebras.

Proposition 3.13. We have an isomorphism

⊕kX
k
aff(G)→⊕kX

k
mult(G)F (⊕k0(∧

k A)), 5 7→ (5−−→π , π), π = pr∧k A5|M ,

of graded Lie algebras, where the brackets on ⊕kX
k
aff(G) and ⊕kX

k
mult(G) are the

Schouten bracket, the bracket on ⊕k0(∧
k A) is the graded Lie bracket induced by

the Lie bracket on A, and the mixed bracket is

[0, π] = δ0(π) ∈ 0(∧
k+l−1 A), 0 ∈ Xk

mult(G), π ∈ 0(∧
l A).
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Proof. By Proposition 3.4, this map is an isomorphism of graded vector spaces
whose inverse is (0, π) 7→ 0+

−→
π . Identifying an element π ∈ 0(∧k A) with the

affine k-vector field −→π , we see that the Lie bracket on the right-hand side is actually
induced by the Schouten bracket on the left-hand side under the isomorphism.
Hence the right-hand side is a graded Lie algebra and this map is an isomorphism
of graded Lie algebras.

We could also check directly that this map is a morphism of graded Lie algebras.
The key point is

(8) pr∧k+l−1 A[5,5
′
]|M

= δ5(π
′)− (−1)(k−1)(l−1)δ5′(π)− [π, π

′
], 5 ∈ Xk

aff(G),5
′
∈ Xl

aff(G).

The proof of this is similar to the proof of Theorem 3.11 for the right translation. �

The map δ defined in (7) is not a bijection on⊕kX
k
aff(G). In fact, for5∈Xk

aff(G),
we have

(9) δ5−−→π = δ5− [π, ·], δ5−←−π = δ5, π = pr∧k A5|M .

Proposition 3.13 together with the universal lifting theorem for multiplicative
multivector fields tells us that the kernel of the map δ is ⊕k0(∧

k A) and we obtain
the universal lifting theorem for affine multivector fields.

Theorem 3.14. Let G be an s-simply connected and s-connected Lie groupoid with
Lie algebroid A. We have a graded Lie algebra isomorphism

⊕kX
k
aff(G)∼=⊕kAk F (⊕k0(∧

k A)), 5 7→ (δ5− [π, ·], π), π = pr∧k A5|M ,

where the brackets on ⊕kX
k
aff(G) and ⊕kAk are the Schouten bracket and the

commutator bracket, the bracket on ⊕k0(∧
k A) is the graded Lie bracket induced

by the Lie bracket on A and the mixed bracket is

[δ, π] = δ(π) ∈ 0(∧k+l−1 A), δ ∈Ak, π ∈ 0(∧
l A).

Here δ acts on π as a degree k− 1 derivation.

Proof. This follows from (9), Proposition 3.13 and the universal lifting theorem for
multiplicative multivector fields [Iglesias-Ponte et al. 2012]. �

Next, we consider the case when an affine bivector field 5 on a Lie groupoid G
is also Poisson. We shall generalize Lu’s results for Lie groups [1990].

Proposition 3.15. Let5 be an affine bivector field on a Lie groupoid G, and5r ,5l

be the multiplicative bivector fields given by (3). Then

(i) 5r (resp. 5l) is Poisson if and only if [5,5] is right (resp. left)-invariant;

(ii) if 5r is Poisson, then 5 is Poisson if and only if 2δ5rπ + [π, π] = 0, where
π = pr∧2 A5|M .
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Proof. For (i), direct calculation shows that

[5r ,5r ] = [5−
−→π ,5−−→π ] = [5,5] − 2[5,−→π ] + [−→π ,−→π ]

= [5,5] − 2
−−→
δ5π +

−−−→
[π, π].

Therefore if 5r is Poisson, [5,5] is right-invariant. Conversely, by (8), we have
pr∧3 A[5,5]|M = 2δ5π − [π, π]. If [5,5] is right-invariant, we must have

[5,5] =
−−−−−−−−−→
2δ5π − [π, π]

and hence [5r ,5r ] = 0.
For (ii), following from

[5,5] = [5r +
−→π ,5r +

−→π ] = [5r ,5r ] + 2
−−→
δ5rπ +

−−−→
[π, π],

we get the result. �

As a corollary, if an affine bivector field 5 is Poisson, the associated two multi-
plicative vector fields 5r and 5l are also Poisson.

Corollary 3.16. Let 5 be an affine Poisson structure on a Lie groupoid G with
π = pr∧2 A5|M . Then its inverse as introduced in (4),

5−1
=5− (−→π +←−π ),

is also an affine Poisson structure on G.

Proof. 5−1 is obviously affine. To see that it is Poisson, we have

[5−1,5−1
] = [5−(−→π +←−π ),5−(−→π +←−π )]

=−2[5,−→π ]−2[5,←−π ]+[←−π ,←−π ]+[−→π ,−→π ] = [5r ,5r ]+[5l,5l].

Therefore, by Proposition 3.15, 5−1 is Poisson. �

Example 3.17. Let G be a Lie groupoid with Lie algebroid A. For π ∈ 0(∧2 A),
the bivector field 5= −→π is affine. It is Poisson if and only if π satisfies the classical
Yang–Baxter equation [π, π] = 0. Moreover, we have 5r = 0,5l =

−→
π −

←−
π and

5−1
=−

←−
π .

Besides, given any γ ∈ 0(∧2 A), define 5= −→π +←−γ . Then we get 5r =
←−
γ −

−→
γ

and 5l =
−→
π −

←−
π and 5−1

=−
←−
π −

−→
γ . Furthermore, direct calculation shows that

5 is Poisson if and only if
−−−→
[π, π] =

←−−−
[γ, γ ],

which implies that [π, π] = [γ, γ ] ∈ ∧3kerρ and both of them are Ad-invariant.

Affine Poisson structures give rise to a natural equivalence relation between
multiplicative Poisson structures on a Lie groupoid (Poisson groupoids), which
further give an equivalence relation on Lie bialgebroids.
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4. Affine k-forms on a Lie groupoid

A k-form 2 ∈�k(G) on a Lie groupoid G is multiplicative if the graph of multipli-
cation {(g, h, gh) : s(g)= t (h)}, or space of triangles, is an isotropic submanifold
of G×G×G with respect to 2⊕2⊕−2. Algebraically, a k-form 2 on G ⇒ M
is multiplicative [Bursztyn and Cabrera 2012; Bursztyn et al. 2009; Crainic et al.
2015] if it satisfies

m∗2= pr∗12+ pr∗22,

where m and pr1, pr2 : G(2)→ G are the groupoid multiplication and the projections
to the first and second components, respectively.

One consequence of the multiplicativity condition is that 2 is isotropic on M,
namely, ι∗2 = 0, where ι : M ↪→ G is the natural inclusion. In other words, the
restriction of 2 on M has no component in ∧k T ∗M. Relaxing this condition, we
shall get the notion of affine k-forms.

The restriction of a k-form 2 ∈�k(G) on M has k+ 1 components:

2|M ∈ 0(∧
k T ∗G|M)= 0(∧k(A∗⊕ T ∗M))

= 0(∧k A∗⊕ (∧k−1 A∗⊗ T ∗M)⊕ · · ·⊕∧k T ∗M).

Denote by θ the ∧k T ∗M-component: θ = pr∧k T ∗M2|M . In other words, θ = ι∗2
for ι : M ↪→ G.

Definition 4.1. A k-form 2 ∈�k(G) on a Lie groupoid G is affine if it satisfies

(10) m∗2= pr∗12+ pr∗22− pr1
∗s∗θ,

where θ := pr∧k T ∗M2|M .

Since s ◦ pr1 = t ◦ pr2 : G(2)→ G, the affine condition has another expression:

(11) m∗2= pr∗12+ pr∗22− pr2
∗t∗θ.

One direct consequence of the definition is that the de Rham differential of an affine
k-form on G is an affine (k+1)-form.

Unlike the multiplicative case, it is not obvious from (10) that a k-form is affine
if the submanifold of parallelograms is isotropic in G×G×G×G.

Proposition 4.2. A k-form2 on G is affine if and only if the space of parallelograms

0 = {(g, h, l, hg−1l) : s(g)= s(h), t (g)= t (l)}

is an isotropic submanifold of G×G×G×G with respect to 2⊕−2⊕−2⊕2,
that is,

(12) ι∗(pr∗12− pr∗22− pr∗32+ pr∗42)= 0,

where pri : G × G × G × G → G is the projection to the i-th component and
ι : 0 ↪→ G×G×G×G is the inclusion.
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Proof. The tangent space of 0 at (g, h, l, hg−1l) consists of 4-tuples

(Xg, Yh, Zl, Yh · inv(X)g−1 · Zl)

of tangent vectors, where Yh ·inv(X)g−1 ·Zl means the multiplication of three tangent
vectors in TG. Applying (12) to k such vectors, we have

(13) 2(Y 1
h · inv(X)1g−1 · Z1

l , . . . , Y k
h · inv(X)kg−1 · Z k

l )

=−2(X1
g, . . . , X k

g)+2(Y
1
h , . . . , Y k

h )+2(Z
1
l , . . . , Z k

l ),

where inv(X)ig−1 :=inv(X i
g). In particular, we choose (h, l)∈G(2) and g=1t (l)=1s(h).

Moreover, each (X i
g, Y i

h, Z i
l ) is chosen to satisfy t (Z i

l )= s(Y i
h)= X i

g. Then the
equation becomes

(14) 2(Y 1
h · Z

1
l , . . . , Y k

h · Z
k
l )

=−2(s(Y 1
h ), . . . , s(Y k

h ))+2(Y
1
h , . . . , Y k

h )+2(Z
1
l , . . . , Z k

l ).

This is exactly (10).
Conversely, if 2 is affine, by setting l = h−1 and Z i

l = inv(Y )il in (14), we get

(15) 2(inv(Y )1l , . . . , inv(Y )kl )

=2(s(Y 1
h ), . . . , s(Y k

h ))−2(Y
1
h , . . . , Y k

h )+2(t (Y
1
h ), . . . , t (Y k

h )).

Applying (14) twice to the left-hand side of (13), we obtain

2(Y 1
h ·inv(X)1g−1 ·Z1

l , . . . ,Y
k
h ·inv(X)kg−1 ·Z k

l )

=2(Y 1
h , . . . ,Y

k
h )+2(inv(X)1g−1 ·Z1

l , . . . , inv(X)kg−1 ·Z k
l )−2(s(X

1
g), . . . ,s(X

k
g))

=2(Y 1
h , . . . ,Y

k
h )+2(inv(X)1g−1, . . . , inv(X)kg−1)+2(Z1

l , . . . , Z k
l )

−2(t (X1
g), . . . , t (X

k
g))−2(s(X

1
g), . . . ,s(X

k
g))

=2(Y 1
h , . . . ,Y

k
h )−2(X

1
g, . . . , X k

g)+2(Z
1
l , . . . , Z k

l ),

where we have used (15) in the last step. Hence, we get (12). �

Regarding the relation between multiplicative and affine k-forms, we have already
seen that a multiplicative k-form is an affine k-form which is isotropic on M. On
the other hand, an affine k-form is associated with two multiplicative k-forms.

Proposition 4.3. Let2 ∈�k(G) be a k-form on G with θ = pr∧k T ∗M2|M ∈�
k(M).

Define two k-forms on G:

(16) 2l :=2− s∗θ, 2r :=2− t∗θ.

Then 2 is affine if and only if 2l (resp. 2r ) is a multiplicative k-form.
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Proof. By straightforward calculation, we have

m∗2l = m∗2−m∗s∗θ, pr∗12l = pr∗12− pr∗1s∗θ, pr∗22l = pr∗22− pr∗2s∗θ.

Following from s ◦ pr2 = s ◦ m : G(2) → G, we see that the equation m∗2l =

pr∗12l+pr∗22l holds if and only if (10) holds. Similarly, noticing that t ◦pr1= t ◦m,
we get that 2r is multiplicative if and only if 2 satisfies (11), that is, 2 is affine. �

Denote by �k
aff(G) and �k

mult(G) the spaces of affine and multiplicative k-forms,
respectively. It is immediate that �k

aff(G) is a vector space with �k
mult(G) being a

linear subspace.

Theorem 4.4. We have a 2-vector space

�k
aff(G)⇒�k

mult(G),

where the groupoid structure is given as follows: the source and target maps are

s(2)=2r , t (2)=2l for all 2 ∈�k
aff(G),

where 2r and 2l are defined in (16), and the multiplication is

2 ∗2′ =2+ s∗θ ′, θ ′ = pr∧k T ∗M2
′
|M

for a pair 2,2′ ∈�k
aff(G) such that 2r =2

′

l .

Proof. The proof is similar to that for Theorem 3.8. �

Corollary 4.5. The 2-term chain complex of vector spaces associated to the above
2-vector space �k

aff(G)⇒�k
mult(G) is

�k(M)→�k
mult(G), θ 7→ t∗θ − s∗θ.

It is seen from the definition that the affine and multiplicative forms are closed
under the de Rham differential. So we get two subcomplexes of the de Rham
complex on G:

(�•mult(G), d)⊂ (�•aff(G), d)⊂ (�•(G), d).

Proposition 4.6. The map

8 :�•aff(G)→�•mult(G)⊕�
•(M), 2 7→ (2− t∗θ, θ), θ = pr∧•T ∗M2|M ,

is an isomorphism of cochain complexes, where the differentials are the de Rham
differential. Thus we get an isomorphism on the cohomology

H •

aff(G)∼= H •

mult(G)⊕ H •(M).

Proof. The inverse of 8 can be defined by (3, λ) 7→3+ t∗λ for any 3 ∈�k
mult(G)

and λ ∈�k(M). So 8 is an isomorphism. Next, we check that it is a cochain map,
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namely, d ◦8=8 ◦ d . Since θ = ι∗2 for ι : M ↪→ G, we have dθ = pr∧k+1T ∗M d2.
Then we have

d ◦8(2)= (d2− t∗dθ, dθ)=8 ◦ d(2).

Thus it induces an isomorphism on the cohomology. �

Now we discuss the infinitesimal of affine k-forms. It is known from [Bursztyn
and Cabrera 2012; Crainic et al. 2015] that there is a one-to-one correspondence
between multiplicative k-forms on G and IM k-forms on its Lie algebroid A when G
is s-connected and s-simply connected.

A pair (µ, ν) of bundle maps

µ : A→∧k−1T ∗M, ν : A→∧k T ∗M, k ≥ 1,

is called an IM k-form on A if

ιρ(X)µ(Y )=−ιρ(Y )µ(X),

µ([X, Y ])= Lρ(X)µ(Y )− ιρ(Y )dµ(X)− ιρ(Y )ν(X),

ν([X, Y ])= Lρ(X)ν(Y )− ιρ(Y )dν(X) for all X, Y ∈ 0(A).

The pair (µ, ν) determines a linear k-form on the vector bundle A. These conditions
are described in such a way that the induced map⊕k

AT A→R is a Lie algebroid mor-
phism with the tangent Lie algebroid structure on ⊕k

AT A→⊕k T M and the trivial
Lie algebroid structure on R→ {∗}. See [Bursztyn and Cabrera 2012] for details.

By Proposition 4.6, the infinitesimals of affine k-forms on a Lie groupoid G are
clear.

Proposition 4.7. If G is an s-connected and s-simply connected Lie groupoid, there
is a one-to-one correspondence between affine k-forms 2 on G and triples (µ, ν, θ)
of IM k-forms (µ, ν) and θ ∈�k(M). That is

�k
aff(G)∼=�

k
mult(G)⊕�

k(M)∼=�k
IM(A)⊕�

k(M),

2 7→ (2r :=2− t∗θ, θ := pr∧k T ∗M2|M) 7→ (µ, ν, θ).

Example 4.8. For a Lie groupoid G ⇒ M, given any θ ∈�k(M), then s∗θ and t∗θ
are affine k-forms on G and s∗θ − t∗θ is a multiplicative k-form on G.

Example 4.9. On a Lie group G, affine k-forms are multiplicative k-forms. They
are nonzero only when k is 0 and 1. This is because for any k ≥ 2,

2((X1, 0, X3, . . . , Xk) · (0, Y2, Y3, . . . , Yk))

=2(Rh1 X1, Lg2Y2, X3 · Y3, . . . , Xk · Yk)

=2(X1, 0, X3, . . . , Xk)+2(0, Y2, . . . , Yk)= 0

for X i∈Tgi G, Y j∈Th j G. So multiplicative 1-forms on a Lie group are always closed.
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On the abelian group Rn, multiplicative 1-forms are constant 1-forms. They have
the form 2=

∑
i ci dx i, where ci is a constant.

Example 4.10. For the pair Lie groupoid M × M ⇒ M, multiplicative k-forms
all have the form pr∗1α − pr∗2α for α ∈ �k(M), where pri : M × M → M is the
projection to the i-th component. Affine k-forms are of the form pr∗1 α+ pr∗2 β for
any two k-forms α, β ∈�k(M).

5. Affine tensors on a Lie groupoid

5A. Definition of affine tensors. A tensor on a Lie groupoid is said to be affine if
it is affine as a function on a more complicated Lie groupoid. This is motivated by
the notion of multiplicative tensors on a Lie groupoid introduced in [Bursztyn and
Drummond 2019].

Affine functions on a Lie groupoid G⇒ M are naturally defined as affine 0-forms
on G.

Definition 5.1. A function F ∈ C∞(G) is affine if it satisfies

(17) F(gh)= F(g)+ F(h)− F(s(g)) for all (g, h) ∈ G(2),

or F(gh)= F(g)+ F(h)− F(t (h)) as s(g)= t (h).

In particular, if an affine function F satisfies F |M = 0, it is called a multiplicative
function. By the definition, the space of affine functions is a vector space with the
space of multiplicative functions as a subspace.

As a corollary of Proposition 4.3 for 0-forms, we have:

Lemma 5.2. Let F ∈C∞(G) be a function on a Lie groupoid G⇒ M and f = ι∗F ∈
C∞(M) be the restriction of F on M, where ι : M ↪→ G is the natural inclusion.
Define

Fl = F − s∗ f, Fr = F − t∗ f.

Then F is affine if and only if Fl or Fr is a multiplicative function on G.

Example 5.3. For any function f ∈ C∞(M), we see that s∗ f − t∗ f ∈ C∞(G) is a
multiplicative function on G and s∗ f and t∗ f are affine functions on G.

Consider the Lie groupoid

G̃ : ⊕q TG⊕p T ∗G ⇒⊕q T M ⊕p A∗.

A (p, q)-tensor F ∈ 0(∧pTG⊗∧q T ∗G) on G can be viewed as a function on G̃.

Definition 5.4. A (p, q)-tensor F ∈ 0(∧pTG ⊗∧q T ∗G) on a Lie groupoid G is
called affine if it is an affine function on G̃.

The following proposition ensures the consistence of this definition with Defini-
tions 3.1 and 4.1 for the cases of affine k-vector fields and affine k-forms.



370 HONGLEI LANG, ZHANGJU LIU AND YUNHE SHENG

Proposition 5.5. (i) An affine (p, 0)-tensor is an affine p-vector field as defined
in Definition 3.1.

(ii) An affine (0, q)-tensor is an affine q-form as defined in Definition 4.1.

Proof. Let F ∈ 0(∧pTG) be an affine (p, 0)-tensor. Namely,

F(ξ 1
g · η

1
h, . . . , ξ

p
g · η

p
h )= F(ξ 1

g , . . . , ξ
p
g )+ F(η1

h, . . . , η
p
h )− F(s(ξ 1

g ), . . . , s(ξ p
g )),

for ξ i
g ∈ T ∗g G and ηi

h ∈ T ∗h G such that s(ξ i
g)= t (ηi

h), where s, t are the source and
target maps in the Lie groupoid T ∗G ⇒ A∗.

Let f equal pr∧p A F |M , the projection of F restricting on M to ∧k A. We claim
that F is an affine (p, 0)-tensor if and only if F−

−→

f is a multiplicative (p, 0)-tensor,
that is,

(F −
−→
f )(ξ 1

g · η
1
h, . . . , ξ

p
g · η

p
h )= (F −

−→
f )(ξ 1

g , . . . , ξ
p
g )+ (F −

−→
f )(η1

h, . . . , η
p
h ).

By (1), we have t∗ f =
−→

f , where t is the target map in T ∗G ⇒ A∗. The assertion
holds by Lemma 5.2.

By [Iglesias-Ponte et al. 2012, Proposition 2.7], F−
−→

f is a multiplicative function
if and only if it is a multiplicative p-vector field on G, which is further equivalent to
F being an affine p-vector field by Proposition 3.4. So F is an affine (p, 0)-tensor
if and only if F is an affine p-vector field.

If F ∈ 0(∧q T ∗G) is an affine (0, q)-tensor, then

F(X · Y )= F(X)+ F(Y )− F(s(X)),

where X ∈ ∧q TgG, Y ∈ ∧q ThG, (g, h) ∈ G(2) and s(X)= t (Y ), which implies that

m∗F = pr∗1 F + pr∗2 F − pr∗1s∗F.

So F is an affine q-form as defined in Definition 4.1. �

Regarding the relation between affine and multiplicative (p, q)-tensors, we also
have the assertion as for affine k-vector fields and affine k-forms.

Let f ∈ 0(∧p A⊗∧q T ∗M). View it as a function on the base manifold of the
Lie groupoid

G̃ : ⊕q TG⊕p T ∗G ⇒⊕q T M ⊕p A∗.

By Example 5.3, s∗
G̃

f and t∗
G̃

f are affine functions on G̃ and hence affine (p, q)-
tensors on G, where sG̃ and tG̃ are the source and target maps of the Lie groupoid G̃.

Lemma 5.6. Let f ∈ 0(∧p A ⊗ ∧q T ∗M). We denote
←−

f := s∗
G̃

f and
−→

f := t∗
G̃

f ,
where

←−

f ,
−→

f ∈ 0(∧pTG⊗∧q T ∗G). We have

(18) ←−f (X1, . . . , Xq)=
←−−−−−−−−−−−
f (s X1, . . . ,s Xq),

−→
f (X1, . . . , Xq)=

−−−−−−−−−−→
f (t X1, . . . , t Xq),

for X i ∈ TG.
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Proof. This follows from the definition and (1). �

If assuming f = u⊗β for u ∈ 0(∧p A) and β ∈�q(M), we get
←−
f =←−u ⊗ s∗β,

−→
f =−→u ⊗ t∗β.

The following result is a direct consequence of Lemma 5.2.

Proposition 5.7. Let F ∈ 0(∧pTG⊗∧q T ∗G) and f = pr∧p A⊗∧q T ∗M F |M . Define

Fl = F −
←−
f , Fr = F −

−→
f ,

where
←−

f and
−→

f are defined in (18). Then F is an affine (p, q)-tensor on G if and
only if Fl or Fr is a multiplicative (p, q)-tensor.

Denote by T p,q
aff (G) and T p,q

mult(G) the spaces of affine and multiplicative (p, q)-
tensors on G, respectively. It is immediate that T p,q

aff (G) is a vector space with
T p,q

mult(G) being a linear subspace.

Theorem 5.8. With the above notation, we have a 2-vector space

T p,q
aff (G)⇒ T p,q

mult(G),

where the source and target maps of the groupoid structure are

s(F)= Fr , t (F)= Fl for all F ∈ T p,q
aff (G),

and for a pair F1, F2 ∈ T p,q
aff (G) such that (F1)r = (F2)l , the multiplication is

F1 ∗ F2 = F1+
←−
f2 , f2 = pr∧p A⊗∧q T ∗M F2|M .

Proof. The proof is similar to that for Theorem 3.8. �

Corollary 5.9. The 2-term complex of vector spaces of the above 2-vector space is

0(∧p A⊗∧q T ∗M)→ T p,q
mult(G), f 7→

−→
f −
←−
f .

An IM (p, q)-tensor ([Bursztyn and Drummond 2019]) on a Lie algebroid A is
a triple (D, l, r), where

l : A→∧p A⊗∧q−1T ∗M

and
r : T ∗M→∧p−1 A⊗∧q T ∗M

are bundle maps covering the identity, and

D : 0(A)→ 0(∧p A⊗∧q T ∗M)

is an R-linear map satisfying

D( f X)= f D(X)+ d f ∧ l(X)− X ∧ r(d f ), f ∈ C∞(M), X ∈ 0(A).
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The following equations hold:

D[X, Y ] = X · D(Y )− Y · D(X),

l[X, Y ] = X · l(Y )− ιρ(Y )D(X),

r(Lρ(X)α)= X · r(α)− ιρ∗(α)D(X),

ιρ(X)l(Y )=−ιρ(Y )l(X),

ιρ∗(α)r(β)=−ιρ∗(β)r(α),

ιρ(X)r(α)= ιρ∗(α)l(X),

for X, Y ∈ 0(A) and α, β ∈�1(M). Here · denotes the action of 0(A) on

0(∧p A⊗∧q T ∗M)
by

X · (Z ⊗ γ )= [X, Z ]⊗ γ + Z ⊗Lρ(X)γ, γ ∈�q(M), Z ∈ 0(∧p A).

Denote by T p,q
IM A the space of IM (p, q)-tensors on A.

The universal lifting theorem for multiplicative (p, q)-tensors is given in [Bursz-
tyn and Drummond 2019] as follows: If G is an s-simply connected and s-connected
Lie groupoid, then there is a one-to-one correspondence between multiplicative
(p, q)-tensors on G and IM (p, q)-tensors on the Lie algebroid A of G.

Based on this result and Proposition 5.7, we have the universal lifting theorem
for affine (p, q)-tensors.

Proposition 5.10. If G is an s-simply connected and s-connected Lie groupoid,
then we have the following isomorphisms of vector spaces:

T p,q
aff (G)∼= T p,q

mult(G)⊕0(∧
p A⊗∧q T ∗M)∼= T p,q

IM A⊕0(∧p A⊗∧q T ∗M),

F 7→ (F −
−→
f , f ) 7→ (D, l, r, f ),

where f = pr∧p A⊗∧q T ∗M F |M and
−→

f is defined in (18).

5B. The Frölicher–Nijenhuis bracket on affine vector-valued forms. A vector-
valued form on a manifold M is an element in �•(M, T M)= 0(T M ⊗∧•T ∗M).
So a vector-valued q-form on M is actually a (1, q)-tensor. The space of vector-
valued forms relative to the Frölicher–Nijenhuis bracket is a graded Lie algebra
[Frölicher and Nijenhuis 1956].

In [Bursztyn and Drummond 2013], the authors proved that the multiplicative
vector-valued forms on a Lie groupoid are closed under the Frölicher–Nijenhuis
bracket. Thus they form a graded Lie algebra. We shall prove that affine vector-
valued forms are also closed under the Frölicher–Nijenhuis bracket. Moreover, the
space of affine vector-valued forms is a graded strict Lie 2-algebra over the space
of multiplicative vector-valued forms.
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One formula for the Frölicher–Nijenhuis bracket

[ · , · ]FN :�
k(M, T M)×�q(M, T M)→�k+q(M, T M)

is as follows:

(19) [X ⊗φ, Y ⊗ψ]FN = [X, Y ]⊗φ ∧ψ + Y ⊗φ ∧LXψ − X ⊗LYφ ∧ψ

+ (−1)k(Y ⊗ dφ ∧ ιXψ + X ⊗ ιYφ ∧ dψ),

where X, Y ∈X(M), φ ∈�k(M) and ψ ∈�q(M), and the bracket [ · , · ] and d on
the right-hand side are the Schouten bracket and the de Rham differential. When
k = q = 0, this bracket agrees with the Schouten bracket on vector fields. We refer
to [Bursztyn and Drummond 2013; 2019] for an intrinsic definition of this bracket.

Now we discuss the vector-valued forms on a Lie groupoid G. Recall that T 1,q
aff (G)

and T 1,q
mult(G) are spaces of affine and multiplicative (1, q)-tensors, respectively.

Theorem 5.11. Let F ∈ T 1,k
aff (G) and N ∈ T 1,q

aff (G) be affine tensors. Then [F, N ]FN

is an affine (1, k+ q)-tensor on G.

Proof. By Proposition 5.7, from F and N, we get two multiplicative tensors:

Fr = F −
−→
f , Nr = N −−→n ,

where f =prA⊗∧k T ∗M F |M and n=prA⊗∧q T ∗M N |M and
−→

f and −→n are defined in (18).
Based on this, we have

(20)
[F, N ]FN = [Fr +

−→
f , Nr +

−→n ]FN

= [Fr , Nr ]FN+ [Fr ,
−→n ]FN+ [

−→
f , Nr ]FN+ [

−→
f ,−→n ]FN.

By [Bursztyn and Drummond 2013, Theorem 4.3], we have [Fr , Nr ]FN ∈ T 1,k+p
mult (G),

a multiplicative (1, k+ p)-tensor. By [Bursztyn and Drummond 2019, Lemma 5.3],
we have

[
−→
f , Nr ]FN =

−−−−→
DN ( f ),

where DN : 0(A⊗∧k T ∗M)→ 0(A⊗∧k+q T ∗M) is determined by the IM (1, q)-
tensor (D, l, r) of the multiplicative (1, q)-tensor Nr . We refer to [Bursztyn and
Drummond 2019] for details. Now it suffices to check that

(21) [
−→
f ,−→n ]FN =

−→s ,

for some s ∈ 0(A⊗∧k+q T ∗M). Assume f = u⊗α, n = v⊗ β for u, v ∈ 0(A)
and α ∈�k(M), β ∈�q(M). Then by (19),

[
−→
f ,−→n ]FN = [

−→u ⊗ t∗α,−→v ⊗ t∗β]

=
−−−→
[u, v]⊗ t∗(α∧β)+−→v ⊗ t∗(α∧Lρ(u)β)−−→u ⊗ t∗(Lρ(v)α∧β)

+ (−1)k(−→v ⊗ t∗(dα∧ ιρ(u)β)+
−→u ⊗ t∗(ιρ(v)α∧ dβ)),
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where we have used the relations ι−→u t∗β = t∗ιρ(u)β and d ◦ t∗ = t∗ ◦ d . Write

s = [u, v]⊗α∧β + v⊗α∧Lρ(u)β − u⊗Lρ(v)α∧β
+ (−1)k(v⊗ dα∧ ιρ(u)β + u⊗ ιρ(v)α∧ dβ).

We get (21). Following (20), we have shown that

[F, N ]FN = [Fr , Nr ]FN− (−1)kq−−−→DF (n)+
−−−−→
DN ( f )+−→s ,

where DF : 0(A⊗∧q T ∗M)→ 0(A⊗∧k+q T ∗M) is determined by the IM (1, k)-
tensor (D′, l ′, r ′) of the multiplicative (1, k)-tensor Fr . Thus [F, N ]FN is affine. �

Proposition 5.12. We have a graded strict Lie 2-algebra structure on

⊕k T 1,k
aff (G)⇒⊕k T 1,k

mult(G),

where the bracket is the Frölicher–Nijenhuis bracket.

Proof. By Theorems 5.8 and 5.11, we only need to show that the Frölicher–Nijenhuis
bracket is a functor. This is similar to the proof in Theorem 3.11. We omit the
detail. �

5C. The strict monoidal category of affine (1, 1)-tensors. Another important case
is affine (1, 1)-tensors, which can be used to define affine Nijenhuis operators on
a Lie groupoid. On the space of affine (1, 1)-tensors, in addition to the 2-vector
space structure proposed in Theorem 5.8, we shall also construct a strict monoidal
category structure in this subsection.

A (1, 1)-tensor on a Lie groupoid G is multiplicative if the induced bundle map
TG → TG is a Lie groupoid morphism [Laurent-Gengoux et al. 2009], which
amounts to saying that the corresponding function on T ∗G ⊕ TG ⇒ A∗ ⊕ T M
is multiplicative by [Bursztyn and Drummond 2019, Proposition 3.9]. Thus the
composition of two multiplicative (1, 1)-tensors is still a multiplicative (1, 1)-tensor.
We shall show that the composition of two affine (1, 1)-tensors is also an affine
(1, 1)-tensor.

By (17), a (1, 1)-tensor N ∈ 0(TG⊗ T ∗G) is affine if it satisfies

N (X · Y, ξ · η)= N (X, ξ)+ N (Y, η)− n(sTG X, sT ∗Gξ), n = prA⊗T ∗M N |M ,

where (X, Y ) ∈ TG(2) and (ξ, η) ∈ T ∗G(2) are multiplicable pairs in TG and T ∗G
covering the same pair (g, h) ∈ G(2). Here sTG and sT ∗G are the source maps of the
tangent and cotangent groupoids, respectively.

A multiplicative (1, 1)-tensor N corresponds to a Lie groupoid morphism

(N , nT M) : TG→ TG,

where nT M : T M→ T M is the map on the base manifold. Since N preserves the
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s-fibers, it induces a bundle map n A : A→ A. Then we have N |M = nT M + n A.
For an affine (1, 1)-tensor N, from the difference of affine and multiplicative (1, 1)-
tensors, we have that the restriction of N on M is

N |M =
(

nT M 0
n n A

)
: T M ⊕ A→ T M ⊕ A,

where nT M : T M→ T M and n A : A→ A and n = prA⊗T ∗M N |M .

Lemma 5.13. The composition N ◦ N ′ of two affine (1, 1)-tensors N and N ′ is still
an affine (1, 1)-tensor with

(N ◦ N ′)l = Nl ◦ N ′l , (N ◦ N ′)r = Nr ◦ N ′r for all N , N ′ ∈ T 1,1
aff (G).

Moreover, the A⊗ T ∗M-component of N ◦ N ′|M is

prA⊗T ∗M N ◦ N ′|M = n A ◦ n′+ n ◦ n′T M + n ◦ ρ ◦ n′,

where

N |M =
(

nT M 0
n n A

)
, N ′|M =

(
n′T M 0

n′ n′A

)
: T M ⊕ A→ T M ⊕ A

are the decompositions of N and N ′ restricting on M and ρ : A → T M is the
anchor map.

Proof. Write N = Nr +
−→n and N ′ = N ′r +

−→
n′ , where n and n′ are the A⊗ T ∗M-

components of N |M and N ′|M , respectively, and −→n ,
−→
n′ are defined in (18). Then

N ◦ N ′ = Nr ◦ N ′r + Nr ◦
−→
n′ +−→n ◦ N ′r +

−→n ◦
−→
n′ .

By Proposition 5.7, (Nr , nT M), (N ′r , n′T M) : TG → TG are morphisms of Lie
groupoids. So we have the formulas

Nr (
−→u )=

−−−→
n A(u) for all u ∈ 0(A)

and t ◦ N ′r = n′T M ◦ t . Applying this to X ∈ TgG, we get

Nr ◦
−→
n′ (X)= Nr

−−−→
n′(t X)=

−−−−−−−→
n A(n′(t X))=

−−−→
n A ◦ n′(X),

−→n ◦ N ′r (X)=
−−−−−−→
n(t N ′r (X))=

−−−−−−−−→
n(n′T M(t X))=

−−−−→
n ◦ n′T M(X),

−→n ◦
−→
n′ (X)=−→n

−−−→
n′(t X)=

−−−−−−−−→
n(ρ(n′(t X)))=

−−−−−→
n ◦ ρ ◦ n′(X).

Thus we proved that

N ◦ N ′ = Nr ◦ N ′r +
−−−−−−−−−−−−−−−−−−−−→
n A ◦ n′+ n ◦ n′T M + n ◦ ρ ◦ n′.

Notice that the composition Nr ◦ N ′r of two multiplicative (1, 1)-tensors is still



376 HONGLEI LANG, ZHANGJU LIU AND YUNHE SHENG

multiplicative. Then by Proposition 5.7, we obtain that N ◦ N ′ is an affine (1, 1)-
tensor with the properties as desired. �

Actually, the 2-vector space T 1,1
aff (G) ⇒ T 1,1

mult(G) from Theorem 5.8 with the
composition is a strict monoidal category.

Theorem 5.14. We have a strict monoidal category structure on the 2-vector space

T 1,1
aff (G)⇒ T 1,1

mult(G),

with the product being the composition of two affine (1, 1)-tensors and the unit
given by the identity I : TG→ TG.

Proof. It is obvious that the identity I : TG→ TG, as a multiplicative (1, 1)-tensor,
is a left and right unit for the composition.

It suffices to verify that the composition ◦ : T 1,1
aff (G)× T 1,1

aff (G)→ T 1,1
aff (G) is a

bifunctor. Let N1, N2, N3, N4 be four affine (1, 1)-tensors such that (N1)r = (N3)l

and (N2)r = (N4)l . That is,

N1−
−→n1 = N3−

←−n3 and N2−
−→n2 = N4−

←−n4 .

By Lemma 5.13, we see (N1 ◦ N2)r = (N3 ◦ N4)l . Then we prove

(22) (N1 ∗ N3) ◦ (N2 ∗ N4)= (N1 ◦ N2) ∗ (N3 ◦ N4).

The left-hand side of (22) is equal to

(N1+
←−n3 ) ◦ (N2+

←−n4 )= N1 ◦ N2+ N1 ◦
←−n4 +

←−n3 ◦ N2+
←−n3 ◦
←−n4 ,

and by Lemma 5.13, the right-hand side of (22) amounts to

N1 ◦ N2+
←−−−−−−−−−−−−−−−−−−−−−−−−−
(n3 A ◦ n4+ n3 ◦ n4T M + n3 ◦ ρ ◦ n4).

By the same calculation in Lemma 5.13 for the left translation instead of the right
translation, we get

N1 ◦
←−n4 = (N3−

←−n3 +
−→n1 ) ◦

←−n4 =
←−−−−n3 A ◦ n4+

−→n1 ◦
←−n4 =

←−−−−n3 A ◦ n4,

which follows from

−→n1 ◦
←−n4 (X)=

−→n1 (
←−−−−
n4(s X)=

−−−−−−−−→

n1(t
←−−−−
n4(s X))= 0, X ∈ TgG.

Similarly, we have
←−n3 ◦ N2 =

←−−−−−−n3 ◦ n4T M .

Observe that
←−n3 ◦
←−n4 =

←−−−−−−n3 ◦ ρ ◦ n4

for the same reason as for the right translation proved in Lemma 5.13. This
proves (22). �
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Remark 5.15. This strict monoidal category from affine (1, 1)-tensors is related
to the 2-vector spaces constructed from affine 2-vector fields and 2-forms as in
Theorems 3.8 and 4.4 if we take into consideration the generalized tangent bundle
TG⊕ T ∗G ⇒ T M ⊕ A∗. Identify an affine 2-vector field 5 ∈ X2(G) with a matrix(

I 5

0 I

)
: TG⊕ T ∗G→ TG⊕ T ∗G.

Then the addition in the vector space X2
aff(G) is actually the composition of two

affine 2-vector fields as matrices. Likewise, viewing an affine 2-form 2 ∈�2(G)
as a matrix (

I 0
2 I

)
: TG⊕ T ∗G→ TG⊕ T ∗G,

we get that the addition in �2
aff(G) is the composition of two affine 2-forms as

matrices.

Remark 5.16. As a multiplicative (1, 1)-tensor can be characterized as a Lie
groupoid morphism from TG to TG, a multiplicative p-vector field defines a mor-
phism of Lie groupoids from ⊕p−1T ∗G to TG and a multiplicative p-form defines
a morphism of Lie groupoids from ⊕p−1TG to T ∗G [Bursztyn and Drummond
2019]. In these cases, viewing multiplicative structures as functors, we see that
affine structures are actually natural transformations between these multiplicative
structures.

Example 5.17. One example of multiplicative (1, 1)-tensors on a Lie groupoid G
is −→n −←−n for any n ∈ 0(A⊗ T ∗M). And −→n and←−n are both affine (1, 1)-tensors on G.

Example 5.18. An affine (1, 1)-tensor on a Lie group G is a multiplicative (1, 1)-
tensor on G, which is a G-equivariant linear map from g := Lie(G) to g. Namely,

T 1,1
aff (G)= {N ∈ End(g) | N (Adg u)= Adg N (u), g ∈ G, u ∈ g}.

The product of two affine (1, 1)-tensors in the strict monoidal category structure
is the composition of linear maps and the groupoid multiplication is trivial, i.e.,
N ∗ N = N, meaning that an affine (1, 1)-tensor can only multiply itself, which
results in itself.

Example 5.19. For the pair groupoid G = M × M ⇒ M, a multiplicative (1, 1)-
tensor on G is always of the form

−→

N −
←−

N for a bundle map N : T M→ T M, where
by definition,

(
−→
N −
←−
N )(X, Y )=

−−−→
N (X)−

←−−−
N (Y )= (N (X), 0)+ (0, N (Y ))= (N (X), N (Y )),

for all (X, Y ) ∈ Tx M × Ty M. In fact, for any u ∈ X(M), we get −→u (x, y) =
d
dt |t=0(φ

u
t (x), x)(x, y) = (u, 0), where φu

t (x) is a flow of u such that φu
0 (x) = x .
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And ←−u(x, y) = − d
dt |t=0(x, y)(y, φu

t (y)) = −(0, u), where the minus sign comes
from the convention that ←−u(·)=−L(·)inv(u).

By the relation between affine and multiplicative (1, 1)-tensors, an affine (1, 1)-
tensor is of the form

−→

N +
←−
N ′ for two bundle maps N , N ′∈End(T M). For simplicity,

we write an affine (1, 1)-tensor as (N , N ′). The product in the strict monoidal
category structure is the composition of two (1, 1)-tensors:

(N1, N2) ◦ (N3, N4)= (N1 ◦ N3,−N2 ◦ N4) for all Ni ∈ End(T M),

which follows from

(
−→
N1+

←−
N2) ◦ (

−→
N3+

←−
N4)(X, Y )= (

−→
N1+

←−
N2)(N3(X),−N4(Y ))

= (N1 ◦ N3(X), N2 ◦ N4(Y )).

For the groupoid multiplication, two affine (1, 1)-tensors (N1, N2) and (N3, N4)

are multiplicable if and only if N2 =−N3 and the multiplication is

(N1, N2) ∗ (N3, N4)=
−→
N1+

←−
N2+

←−
N3+

←−
N4 =

−→
N1+

←−
N4 = (N1, N4).

The next example we are interested in is the direct sum of the pair groupoid and
a Lie group: M ×M ×G ⇒ M. The following proposition tells us that this case
is just the direct sum of Examples 5.18 and 5.19. So the strict monoidal category
structure for this case is also clear.

Proposition 5.20. An affine (1, 1)-tensor N on M ×M ×G ⇒ M is of the form

N(X,Y,g,u)=(N1(X),N2(Y ),g, L(u)) for all N1,N2∈End(T M), L∈End(g)G,

for X ∈ Tx M, Y ∈ Ty M, g ∈G and u ∈ g. It is multiplicative if and only if N1 = N2.

Proof. A multiplicable (1, 1)-tensor field on G is a bundle map

N = (N1, N2, N3) : T M × T M × T G→ T M × T M × T G

over the base manifold M × M ×G and also a groupoid morphism over T M to
itself. We claim that a multiplicative (1, 1)-tensor field can only be of the form

N (X,Y,g,u)= (N (X),N (Y ),g, L(u)) for all X ∈Tx M, Y ∈Ty M, g∈G, u ∈g,

for some N ∈End(T M) and a G-equivariant linear map L ∈End(g)G. In fact, since
N preserves the s and t-fibers, the first and second components N1, N2 have to be
the same. Then N being a groupoid morphism requires that

N3(X, Y, g, u)+Adg N3(Y, Z , h, v)= N3(X, Z , gh, u+Adg v).

Since N3 is a bundle map, it follows that N3(X, Y, g, u) is independent of X and Y
and it is determined by a G-equivariant linear map L ∈ End(g). We thus easily get
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that an affine (1, 1)-tensor field N on M ×M ×G ⇒ M is of the form

N (X,Y,g,u)=(N1(X),N2(Y ),g, L(u)) for all N1,N2∈End(T M), L∈End(g).

Hence the strict monoidal structure for this case is clear. �

At the end of this section, we provide a class of affine (1, 1)-tensors coming
from the composition of affine 2-vector fields and affine 2-forms.

Proposition 5.21. The composition 5 ◦2 : TG→ TG of an affine 2-vector field
5 ∈ X2(G) and an affine 2-form 2 ∈�2(G) is an affine (1, 1)-tensor with

prA⊗T ∗M(5 ◦2)|M = πA∗ ◦ θ +π ◦ θT M +π ◦ ρ
∗
◦ θ,

where π ∈ 0(∧2 A), πA∗ ∈ 0(A⊗T M) and θT M ∈ 0(T ∗M⊗ A∗) and θ ∈�2(M)
are the corresponding components of 5 and 2 restricting on M , respectively.

Moreover, the associated two multiplicative (1, 1)-tensors are

(5 ◦2)l =5l ◦2l, (5 ◦2)r =5r ◦2r .

Proof. Denote 5=5r +
−→
π and 2=2r + t∗θ , where 5r and 2r are the associated

multiplicative 2-vector field and 2-form. Then

(23) 5 ◦2=5r ◦2r +
−→π ◦2r +5r ◦ t∗θ +−→π ◦ t∗θ.

Acting on X ∈ TgG and pairing with ξ ∈ T ∗g G, we find

〈
−→π ◦2r (X), ξ〉 = 〈π, t2r (X)∧ tξ〉 = 〈π, θT M(t X)∧ tξ〉 = 〈

−−−−−−−−→
π ◦ θT M(t X), ξ〉,

where we have used (1) and the fact that (2r , θT M) is a Lie groupoid morphism
from TG to T ∗G. This implies that

−→π ◦2r =
−−−−→
π ◦ θT M .

On the other hand, using (1) again and the fact that (5r , πA∗) : T ∗G→ TG is a Lie
groupoid morphism, we have

〈5r ◦ t∗θ(X), ξ〉 = −〈θ, t X ∧ t5r (ξ)〉 = −〈θ(t X), πA∗ t (ξ)〉 = 〈
−−−−−−−→
πA∗ ◦ θ(t X), ξ〉.

Thus,
5r ◦ t∗θ =

−−−−→
πA∗ ◦ θ.

At the end, observe that t −→π (ξ)= ρπ(tξ) since

〈t−→π (ξ), α〉 = 〈π(tξ), t∗α〉 = 〈π(tξ), ρ∗α〉 for all α ∈�1(M).

We obtain

〈
−→π ◦ t∗θ(X), ξ〉 = −〈θ(t X), t−→π (ξ)〉 = −〈θ(t X), ρπ(tξ)〉 = 〈

−−−−−−−−−→
π ◦ ρ∗ ◦ θ(t X), ξ〉.
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Hence,
−→π ◦ t∗θ =

−−−−−−→
π ◦ ρ∗ ◦ θ.

Coupled with (23), we get

5 ◦2=5r ◦2r +
−−−−−−−−−−−−−−−−−−−−−−→
(π ◦ θT M +πA∗ ◦ θ +π ◦ ρ

∗
◦ θ).

Since5r ◦2r :TG→TG is a Lie groupoid morphism and thus gives a multiplicative
(1, 1)-tensor, we have proved that 5 ◦ 2 is an affine (1, 1)-tensor. The other
assertions are also clear. �
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by K. Grabowska et al., Banach Center Publ. 110, Polish Acad. Sci. Inst. Math., Warsaw, 2016. MR
Zbl

[Lang and Liu 2018] H. Lang and Z. Liu, “Coadjoint orbits of Lie groupoids”, J. Geom. Phys. 129
(2018), 217–232. MR Zbl

[Laurent-Gengoux et al. 2009] C. Laurent-Gengoux, M. Stiénon, and P. Xu, “Integration of holomor-
phic Lie algebroids”, Math. Ann. 345:4 (2009), 895–923. MR Zbl

[Li-Bland and Ševera 2011] D. Li-Bland and P. Ševera, “Quasi-Hamiltonian groupoids and multi-
plicative Manin pairs”, Int. Math. Res. Not. 2011:10 (2011), 2295–2350. MR Zbl

[Lu 1990] J.-H. Lu, Multiplicative and affine Poisson structures on Lie groups, Ph.D. thesis, University
of California, Berkeley, 1990, Available at https://tinyurl.com/jhuthesis.

[Mac Lane 1971] S. Mac Lane, Categories for the working mathematician, Grad. Texts in Math. 5,
Springer, 1971. MR Zbl

[Mackenzie 1992] K. C. H. Mackenzie, “Double Lie algebroids and second-order geometry, I”, Adv.
Math. 94:2 (1992), 180–239. MR Zbl

[Mackenzie 2000] K. C. H. Mackenzie, “Affinoid structures and connections”, pp. 175–186 in Poisson
geometry (Warsaw, 1998), edited by J. Grabowski and P. Urbański, Banach Center Publ. 51, Polish
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