

*Pacific
Journal of
Mathematics*

A REMARK ON A TRACE PALEY-WIENER THEOREM

GORAN MUIĆ

A REMARK ON A TRACE PALEY–WIENER THEOREM

GORAN MUIĆ

We prove a version of a trace Paley–Wiener theorem for tempered representations of a reductive p -adic group. This is applied to complete certain investigations of Shahidi on the proof that a Plancherel measure is an invariant of an L -packet of discrete series.

1. Introduction

Let G be a reductive p -adic group. Let $\text{Rep}(G)$ be the category of smooth admissible complex representations of G of finite length, and let $R(G)$ be the corresponding Grothendieck group. We write $\Psi(G)$ (resp., $\Psi^u(G)$) for the group (resp., unitary group) of unramified characters of G . The group $\Psi(G)$ has a structure of an algebraic variety (a complex torus). The corresponding algebra of regular functions $\mathbb{C}[\Psi(G)]$ is generated by evaluations on elements of G as a \mathbb{C} -algebra. The subgroup $\Psi^u(G)$ is Zariski dense in $\Psi(G)$. We say that a complex function is regular on $\Psi^u(G)$ if it is a restriction of a regular function on $\Psi(G)$. We observe that the restriction map from $\mathbb{C}[\Psi(G)]$ into functions on $\Psi^u(G)$ is injective since $\Psi^u(G)$ is Zariski dense in $\Psi(G)$.

We fix a minimal parabolic subgroup P_0 , its Levi decomposition $P_0 = M_0 U_0$, and, as usual related to these choices, we fix a set of standard parabolic subgroups $P = MU$, where $M_0 \subset M$, $P = MP_0$. Since the standard parabolic subgroup is determined by the choice of Levi subgroup, the normalized parabolic induction $\text{Ind}_P^G(\sigma)$, where σ is a smooth representation of M , we write as usual $i_{GM}(\sigma)$.

In [Bernstein et al. 1986], Bernstein, Deligne, and Kazhdan proved a trace Paley–Wiener theorem for category $\text{Rep}(G)$. We consider a full subcategory $\text{Rep}_t(G)$ of $\text{Rep}(G)$ consisting of representations having all irreducible subquotients tempered. Let $R_t(G)$ be the corresponding Grothendieck group. We write $R_t^i(G)$ for the subgroup of $R_t(G)$ generated by $i_{GM}(\sigma)$, where M ranges over all standard Levi subgroups of G (including G), and σ ranges over a set of square-integrable modulo center irreducible representations of M . We warn the reader that this notion is not an analogue of the notion of strictly induced modules from

The author acknowledges Croatian Science Foundation grant no. 9364.

MSC2020: primary 22E50; secondary 11E70.

Keywords: Paley–Wiener theorem, admissible representations, reductive p -adic groups.

[Bernstein et al. 1986, §3.1]. An analogue would be the subgroup of $R_t(G)$ generated by $i_{GM}(\tau)$, where M ranges over all *proper* standard Levi subgroups of G , and τ ranges over irreducible tempered representations of M . But this is not useful for us in the present paper.

The main result of the present paper is the following version of a trace Paley–Wiener theorem:

Theorem 1.1. *Let $f : R_t(G) \rightarrow \mathbb{C}$ be a \mathbb{Z} -linear form such that the following hold:*

- (i) *There exists an open compact subgroup $K \subset G$ which dominates f (i.e., f is nonzero only on those irreducible tempered representations which have a nontrivial space of K -invariant vectors).*
- (ii) *For each standard maximal Levi subgroup M , or $M = G$, and a square-integrable modulo center representation σ of M , the function $\psi \mapsto f(i_{GM}(\psi\sigma))$ is regular on $\Psi^u(M)$, and for any other proper standard Levi subgroup N , and a square-integrable modulo center representation τ of N , we have $f(i_{GN}(\tau)) = 0$.*

Then, there exists $F \in C_c^\infty(G)$ such that

$$f(\pi) = \text{tr}(\pi(F)) \quad \text{for all } \pi \in R_t^i(G).$$

Theorem 1.1 is proved by reduction to the main result of [Bernstein et al. 1986] using the Harish-Chandra theory of tempered representations [Waldspurger 2003] and some standard considerations related to the Langlands classification [Renard 2010, Chapter VII]. The proof is given in Section 3. It is a consequence of its effective version given by Proposition 3.4. Proposition 3.4 constructs a correct function needed in the proof of [Shahidi 1990, Proposition 9.3.2] in the case when M (see notation there) is a Levi subgroup of a maximal parabolic subgroup. We remark that since Plancherel factors are multiplicative, it is enough to prove [Shahidi 1990, Proposition 9.3.2] for a maximal Levi subgroup.

2. Preliminaries

We continue with the notation introduced in the introduction. Let M be a standard Levi subgroup. Then, we write $\Psi(M)^r$ for the group of all unramified characters ψ which are $\mathbb{R}_{>0}$ -valued. As we stated in the introduction, every standard Levi subgroup M determines a unique standard parabolic subgroup, say P . We denote by $\Psi(M)^{r,+}$ the set of all characters from $\Psi(M)^r$ which correspond to the points of the (open) Weyl chamber determined by the roots of the split component of M which belong to the unipotent radical of P in the usual description of unramified characters (see, for example, [Muić 2008, Section 2]). If $M = G$, then $\Psi(M)^{r,+} = \Psi(M)^r$.

For a standard Levi subgroup M , an irreducible tempered representation π of M , and $\psi \in \Psi(M)^{r,+}$, the module $i_{GM}(\psi\pi)$ is called a standard module; it has a

unique (Langlands quotient) $L(i_{GM}(\psi\pi))$. The condition is empty if $M = G$. By the Langlands classification [Renard 2010, Theorem VII.4.2], every irreducible representation can be expressed in the form $L(i_{GM}(\psi\pi))$ for unique such datum (M, π, ψ) . The following standard result will be used in the proof:

Lemma 2.1. *The standard modules of G form a \mathbb{Z} -basis of $R(G)$.*

Proof. The proof is as in [Clozel 1986, Proposition 1]. \square

In analogy with [Bernstein et al. 1986, §2.1], we make the following definitions.

Let $\sigma \in \text{Irr}(M)$ where M is a standard Levi subgroup of G . We define the usual affine variety attached to σ

$$\text{Irr}(M) \supset D(\sigma) = \Psi(M)\sigma = \Psi(M)/\text{Stab}_{\Psi(M)}(\sigma),$$

where $\text{Stab}_{\Psi(M)}(\sigma)$ is a finite group consisting of all $\psi \in \Psi(M)$ such that $\psi\sigma \simeq \sigma$.

If A is a maximal split torus in the center of M , the restriction map $\Psi(M) \rightarrow \Psi(A)$ is surjective, and the kernel is a finite group. Therefore, by considering the restriction to A we find that

$$\text{Stab}_{\Psi^u(M)}(\sigma) = \text{Stab}_{\Psi(M)}(\sigma).$$

So, we may consider

$$D^u(\sigma) \stackrel{\text{def}}{=} \Psi^u(M)/\text{Stab}_{\Psi^u(M)}(\sigma) \subset D(\sigma).$$

It is easy to see that $D^u(\sigma)$ is Zariski dense in $D(\sigma)$.

The action of the Weyl group

$$W(M) = N_G(M)/M$$

on $\Psi(M)$ is algebraic. Furthermore, $w \in W(M)$ transforms $\text{Stab}_{\Psi(M)}(\sigma)$ onto $\text{Stab}_{\Psi(M)}(w(\sigma))$, so it maps $D(\sigma)$ (resp., $D^u(\sigma)$) onto $D(w(\sigma))$ (resp., $D^u(w(\sigma))$).

Put $D = D(\sigma)$ and $D^u = D^u(\sigma)$. As usual, we consider the group $W(D)$ of all $w \in W(M)$ such that there exists $\psi_w \in \Psi(M)$ such that

$$(2.2) \quad w(\sigma) \simeq \psi_w \sigma.$$

The character ψ_w is determined uniquely modulo $\text{Stab}_{\Psi(M)}(\sigma)$. The group $W(D)$ acts on the affine variety $D = \Psi(M)/\text{Stab}_{\Psi(M)}(\sigma)$ as follows:

$$(2.3) \quad w \cdot \psi \text{Stab}_{\Psi(M)}(\sigma) = \psi_w w(\psi) \text{Stab}_{\Psi(M)}(\sigma).$$

The resulting orbit space

$$D/W(D)$$

is again an affine variety with algebra of regular functions given as usual,

$$\mathbb{C}[D/W(D)] = \mathbb{C}[D]^{W(D)}.$$

One can construct a regular function $D/W(D)$ in the following way:

Lemma 2.4. *Let $F \in C_c^\infty(G)$. Then, the function $\psi \mapsto \text{tr}(i_{GM}(\psi\sigma)(F))$ is a regular function on $D/W(D)$.*

Proof. It is standard that this function is regular on D . We show that it is $W(D)$ -invariant. Let $w \in W(D)$. By [Bernstein et al. 1986, Lemma 5.4 (iii)], we have

$$\text{tr}(i_{GM}(\psi\sigma)(F)) = \text{tr}(i_{GM}(w(\psi\sigma))(F)),$$

which completes the proof. \square

The above explicit description shows that the analogously defined group $W(D^u)$ is a subgroup of $W(D)$. In fact, we have the following lemma:

Lemma 2.5. *Assume that the central character $\omega_\sigma : A \rightarrow \mathbb{C}^\times$ of σ is unitary. Then, $W(D^u) = W(D)$. Moreover, $D^u/W(D)$ is Zariski dense in $D/W(D)$.*

Proof. As we remarked above, it is always $W(D^u) \subset W(D)$. Conversely, if $w \in W(D)$, then $w(\sigma) \simeq \psi_w \sigma$ by (2.2). Considering central characters, we find that

$$\omega_{w(\sigma)} = (\psi_w|_A)\omega_\sigma.$$

This implies that $\psi_w|_A$ is a unitary character. By the standard description of unramified characters of M , and its relation to unramified characters of A , this implies that $\psi_w \in \Psi^u(M)$ (see [Muić 2008, Section 2]). Hence, $w \in W(D^u)$. This completes the proof that $W(D^u) = W(D)$. The remaining claim is obvious from above considerations. \square

The following lemma is a fundamental result of Harish-Chandra:

Lemma 2.6. *Assume that M and N are standard Levi subgroups of G , and σ and τ are square-integrable modulo center representations of M and N , respectively. Then, $i_{GM}(\sigma)$ and $i_{GN}(\tau)$ have a common irreducible subrepresentation if and only if there exists $w \in G$ such that $N = wMw^{-1}$ and $\tau \simeq w(\sigma)$, where $w(\sigma)$ is defined by $w(\sigma)(n) = \sigma(w^{-1}nw)$, $n \in N$. Moreover, if there exists $w \in G$ such that $N = wMw^{-1}$, then $i_{GM}(\sigma)$ and $i_{GM}(w(\sigma))$ are isomorphic, and in particular equal in $R_t(G)$.*

Proof. See [Waldspurger 2003]. \square

Motivated by [Bernstein et al. 1986, §2.1], we proceed as follows. By the standard theory of tempered irreducible representations due to Harish-Chandra (see [Waldspurger 2003]), for an irreducible tempered representation $\pi \in \text{Irr}(G)$, there exists a standard Levi subgroup M and a square-integrable modulo center representation σ of M such that $\pi \hookrightarrow i_{GM}(\sigma)$. The pair (M, σ) is unique up to a conjugation (see Lemma 2.6). We call the equivalence class $[M, \sigma]$ under conjugation of the pair (M, σ) the t -infinitesimal character of π . The set of equivalence of such pairs we denote by $\Theta_t(G)$.

For a pair (M, σ) , we define a natural map $\Psi^u(M) \rightarrow \Theta_t(G)$ given by

$$\psi \mapsto [M, \psi\sigma].$$

The image is called a connected component of $\Theta_t(G)$. We denote it by $\Theta_t(M, \sigma)$. This map induces a bijection which enables us to identify

$$\Theta_t(M, \sigma) = D^u(\sigma)/W(D(\sigma)).$$

Thus, in view of Lemma 2.5, we may consider

$$\Theta_t(M, \sigma) \subset D(\sigma)/W(D(\sigma)).$$

This realizes $\Theta_t(M, \sigma)$ as a Zariski dense subset of the affine variety $D(\sigma)/W(D(\sigma))$.

As in [Bernstein et al. 1986, §2.1], we can decompose

$$(2.7) \quad R_t(G) = \bigoplus_{\theta} R_t(G)(\theta),$$

where θ ranges over connected components of $\Theta_t(G)$. Here

$$R_t(G)(\theta)$$

is generated with all tempered irreducible representations with t -infinitesimal characters belonging to θ . We denote by 1_{θ} the projector

$$R_t(G) \rightarrow R_t(G)(\theta),$$

for all $\theta \in \Theta_t(G)$.

We end this section with an analogue for $\text{Rep}_t(G)$ of the decomposition theorem for the category of all smooth complex representations of G (see [Bernstein et al. 1986, §2.3]; [Bernstein 1984, §2.10]).

Lemma 2.8. *Let $K \subset G$ be an open compact subgroup. Then, there exists a finite set T_K consisting of connected components in $\Theta_t(G)$ such that for each irreducible tempered representation $\pi \in \text{Rep}_t(G)$, having nonzero space of K -invariants, there exists $\theta \in T_k$ such that $\pi \in R_t(G)(\theta)$.*

Proof. By the decomposition theorem (see [Bernstein et al. 1986, §2.3]), there exists a finite set, say S , of pairs (N, ρ) , where N is a standard Levi subgroup of G , and ρ are irreducible supercuspidal representations, such that for every irreducible representation π of G , having nonzero space of K -invariants, there exists $(N, \rho) \in S$, and an unramified character χ such that π is a subquotient of $i_{G,N}(\chi\rho)$.

Now, assume that π is as in the statement of the lemma. Then, there exist a standard Levi subgroup M and a square-integrable modulo center σ of M such that $\pi \hookrightarrow i_{GM}(\sigma)$. Moreover, there exist a standard Levi subgroup M' of M (and of G), and a supercuspidal irreducible representation ρ' such that σ is an irreducible subquotient of $i_{M,M'}(\rho')$. By induction in stages, π must be a subquotient of $i_{G,M'}(\rho')$.

By standard theory of induced representations [Bernstein and Zelevinsky 1977], the pair (M', ρ') must be G -conjugate to the one in S . Thus, we may assume that $(M', \rho') \in S$ already.

Thus, it is enough to prove that given $(N, \rho) \in S$ and given a standard Levi subgroup M of G such that $N \subset M$, there are finitely many $\Psi^u(M)$ -orbits of square-integrable modulo center representations of M such they are subquotients of the induced representations in the family $i_{M,N}(\chi\rho)$ parametrized by $\chi \in \Psi(N)$. But that is easy. We can select a sufficiently small open compact subgroup $L \subset M$ such that every irreducible representation that appears as a subquotient of $i_{M,N}(\chi\rho)$ for some $\chi \in \Psi(N)$ has a nonzero space of L -invariants.

Hence, we need to prove that there are finitely many $\Psi^u(M)$ -orbits of square-integrable modulo center representations of M having a nonzero space of L -invariants. This is proved in (iii) in the introduction of [Waldspurger 2003]. \square

3. Proof of Theorem 1.1

We begin the proof of Theorem 1.1 with the following lemma:

Lemma 3.1. *Let f be as in the statement of Theorem 1.1. Then, there exists a finite set T_f consisting of connected components in $\Theta_t(G)$ such that for each irreducible tempered representation $\pi \in \text{Rep}_t(G)$ such that $f(\pi) \neq 0$ there exists $\theta \in T_f$ such that $\pi \in R_t(G)(\theta)$.*

Proof. This follows from the assumption (i) in Theorem 1.1 combined with Lemma 2.8. \square

By Lemma 3.1, we can decompose f into \mathbb{Z} -linear forms $f_\theta : R_t(G) \rightarrow \mathbb{C}$, $\theta \in T_f$,

$$f = \sum_{\theta \in T_f} f_\theta,$$

where f_θ is defined as follows (see (2.7)):

$$f_\theta = f \circ 1_\theta.$$

Obviously, each f_θ satisfies the assumptions analogous to (i) and (ii) in Theorem 1.1.

Hence, in what follows we may assume that $f = f_\theta$ for some $\theta \in \Theta_t(G)$. By the assumption (ii) of Theorem 1.1, we may assume that θ has the form $\theta = \Theta_t(M, \sigma)$, where M is a standard maximal Levi subgroup of G , or $M = G$, and σ is a square-integrable modulo center representation of M . We observe that

$$\psi \in \Psi^u(M) \mapsto f(i_{GM}(\psi\sigma))$$

is a regular function by the assumption (ii) of Theorem 1.1. Thus, by definition this means that it is a restriction of a regular function, say a , on the affine variety $\Psi(M)$.

By Lemma 2.6, we have

$$(3.2) \quad a \in \mathbb{C}[D]^{W(D)},$$

where

$$(3.3) \quad D = \Psi(M) / \text{Stab}_{\Psi(M)}(\sigma).$$

We refer to previous section for the notation.

Now, the following proposition completes the proof of the theorem.

Proposition 3.4. *Let M be a standard maximal Levi subgroup of G , or $M = G$. Assume that σ is a square-integrable modulo center representation of M . We define D by (3.3), and let a be any function in $\mathbb{C}[D]^{W(D)}$. Then, there exists $F \in C_c^\infty(G)$ such that*

$$\text{tr}(\pi(F)) = \begin{cases} a(\psi) & \text{for } \pi = i_{GM}(\psi\sigma), \psi \in \Psi^u(M), \\ 0 & \text{for } \pi = i_{GN}(\psi\tau), \psi \in \Psi^u(N), \end{cases}$$

for any other standard Levi subgroup N and a square-integrable modulo center representation τ such that $\Theta_t(N, \tau) \neq \Theta_t(M, \sigma)$.

Proof. The proof of Proposition 3.4 is a generalization of [Clozel 1986, §4.2, Proposition 1] where the proof of existence of pseudocoefficients for semisimple G is given based also on [Bernstein et al. 1986]. We consider only the case where M is a standard maximal Levi subgroup of G . The case of $M = G$ is about the construction of a specific pseudocoefficient of σ . The proof is on the same lines but considerably easier.

We remark that $\Psi^u(G)$ acts on $\Psi^u(M)$ in a usual way:

$$\psi \mapsto \chi|_M \psi, \quad \chi \in \Psi^u(G), \quad \psi \in \Psi^u(M).$$

For $\psi \in \Psi^u(M)$, the stabilizer

$$\text{Stab}_{\Psi^u(G)}(i_{GM}(\psi\sigma))$$

is the group of all $\chi \in \Psi^u(G)$ such that

$$\chi i_{GM}(\psi\sigma) \simeq i_{GM}(\psi\sigma).$$

We remind the reader that for all $\chi \in \Psi^u(G)$ we have

$$\chi i_{GM}(\psi\sigma) \simeq i_{GM}(\chi|_M \psi\sigma).$$

Lemma 3.5. *Assume that $\chi \in \Psi^u(G)$ and $\psi \in \Psi^u(M)$. Then, for each irreducible constituent π of $i_{GM}(\psi\sigma)$, the multiplicity of $\chi\pi$ in $\chi i_{GM}(\psi\sigma)$ is the same as that of π in $i_{GM}(\psi\sigma)$.*

Proof. This is obvious. □

Lemma 3.6. *Assume that for $\chi \in \Psi^u(G)$ and $\psi \in \Psi^u(M)$ there exists an irreducible constituent π of $i_{GM}(\psi\sigma)$ such that $\chi\pi$ is an irreducible constituent of $i_{GM}(\psi\sigma)$. Then, $\chi \in \text{Stab}_{\Psi^u(G)}(i_{GM}(\psi\sigma))$. In particular, we have*

$$\text{Stab}_{\Psi^u(G)}(\pi) \subset \text{Stab}_{\Psi^u(G)}(i_{GM}(\psi\sigma)).$$

Proof. First, $\chi\pi$ is a common constituent of $i_{GM}(\psi\sigma)$ and $i_{GM}(\chi|_M\psi\sigma)$. So, by Lemma 2.6, there exists $w \in W(M)$ such that

$$\chi|_M\psi\sigma = w(\psi\sigma).$$

Then, again by Lemma 2.6, we obtain

$$\chi i_{GM}(\psi\sigma) \simeq i_{GM}(\chi|_M\psi\sigma) \simeq i_{GM}(\psi\sigma).$$

□

Lemma 3.7. *Let $\psi \in \Psi^u(M)$. Then, we have the following:*

- (i) *If $\chi \in \text{Stab}_{\Psi^u(G)}(i_{GM}(\psi\sigma))$, then $a(\chi|_M\psi) = a(\psi)$.*
- (ii) *For each $\eta \in \Psi(G)$ and $\chi \in \text{Stab}_{\Psi^u(G)}(i_{GM}(\psi\sigma))$, we have*

$$a(\chi|_M\eta|_M\psi) = a(\eta|_M\psi).$$

Proof. We prove (i). Since $\chi \in \text{Stab}_{\Psi^u(G)}(i_{GM}(\psi\sigma))$, we obtain

$$i_{GM}(\chi|_M\psi\sigma) \simeq \chi i_{GM}(\psi\sigma) \simeq i_{GM}(\psi\sigma).$$

So, by Lemma 2.6, there exists $w \in W(M)$ such that

$$\chi|_M\psi\sigma \simeq w(\psi\sigma) \simeq w(\psi)w(\sigma).$$

By definition of $W(D)$ (see (2.2)), this implies $w \in W(D)$, and the above relation can be written as

$$\chi|_M\psi\sigma \simeq \psi_w w(\psi)\sigma,$$

where

$$\psi_w = w(\psi)^{-1}\chi|_M\psi.$$

Consequently, by the definition of the action of $W(D)$ on D (see (2.3)) we obtain

$$\chi|_M\psi \text{ Stab}_{\Psi(M)}(\sigma) = \psi_w w(\psi) \text{ Stab}_{\Psi(M)}(\sigma) = w.\psi \text{ Stab}_{\Psi(M)}(\sigma).$$

This implies $a(\chi|_M\psi) = a(\psi)$. This proves (i).

To prove (ii), we may assume that η is unitary. Then, we obviously have

$$\text{Stab}_{\Psi^u(G)}(i_{GM}(\eta|_M\psi\sigma)) = \text{Stab}_{\Psi^u(G)}(i_{GM}(\psi\sigma)).$$

Now, the claim follows from (i). □

Now, in order to complete the proof of Proposition 3.4, we apply [Bernstein et al. 1986, Theorem 1.2]. We define a \mathbb{Z} -linear form $f : R(G) \rightarrow \mathbb{C}$ in several steps. We warn the reader that we use the same letter for a functional different than one from the statement of Theorem 1.1.

(1) For each $\Psi^u(G)$ -orbit \mathcal{O} in $\Psi^u(M)$, we fix a representative $\psi_{\mathcal{O}} \in \mathcal{O}$ and an irreducible constituent $\pi_{\mathcal{O}}$ in $i_{GM}(\psi_{\mathcal{O}}\sigma)$. By Lemma 3.6, we have

$$(3.8) \quad \text{Stab}_{\Psi^u(G)}(\pi_{\mathcal{O}}) \subset \text{Stab}_{\Psi^u(G)}(i_{GM}(\psi_{\mathcal{O}}\sigma)).$$

The quotient is finite and if χ ranges over representatives of the quotient, then $\chi\pi_{\mathcal{O}}$ ranges over the set of all mutually nonequivalent irreducible subrepresentations in $i_{GM}(\psi_{\mathcal{O}}\sigma)$ which are $\Psi^u(G)$ -equivalent to $\pi_{\mathcal{O}}$. Any of those representations have the same multiplicity in $i_{GM}(\psi_{\mathcal{O}}\sigma)$. Let $m_{\mathcal{O}}$ be the sum of their multiplicities. We define

$$f(\chi\pi_{\mathcal{O}}) = \frac{a(\psi_{\mathcal{O}})}{m_{\mathcal{O}}}, \quad \chi \in \text{Stab}_{\Psi^u(G)}(i_{GM}(\psi_{\mathcal{O}}\sigma)).$$

(2) For each $\chi \in \Psi^u(G)$, we obviously have

$$\text{Stab}_{\Psi^u(G)}(\chi\pi_{\mathcal{O}}) = \text{Stab}_{\Psi^u(G)}(\pi_{\mathcal{O}})$$

and

$$\text{Stab}_{\Psi^u(G)}(i_{GM}(\chi|_M\psi_{\mathcal{O}}\sigma)) = \text{Stab}_{\Psi^u(G)}(i_{GM}(\psi_{\mathcal{O}}\sigma)).$$

By, Lemma 3.5 and these remarks, the sum of multiplicities of $\Psi^u(G)$ -equivalent representations of $\pi_{\mathcal{O}}$ which belong to $i_{GM}(\chi|_M\psi_{\mathcal{O}}\sigma)$ is again $m_{\mathcal{O}}$. We let

$$f(\chi\pi_{\mathcal{O}}) = \frac{a(\chi|_M\psi_{\mathcal{O}})}{m_{\mathcal{O}}}, \quad \chi \in \Psi^u(G).$$

Lemma 3.7 (ii) shows that this is well-defined.

(3) For any other tempered irreducible representation (and, in particular, square-integrable modulo center representation) π of G we let

$$f(\pi) = 0.$$

(4) For any quasitempered irreducible representation π of G , we can write $\pi = \chi\pi^u$, where $\chi \in \Psi^r(G)$ and π^u is tempered. We let

$$f(\pi) = 0,$$

if π^u is not in $\Psi^u(G)\pi_{\mathcal{O}}$ for any orbit \mathcal{O} described in (1). But, if $\pi^u \in \Psi^u(G)\pi_{\mathcal{O}}$, for some \mathcal{O} , then we can write $\pi^u = \psi\pi_{\mathcal{O}}$, for some $\psi \in \Psi^u(G)$ uniquely determined modulo $\text{Stab}_{\Psi^u(G)}(\pi_{\mathcal{O}})$. We let

$$f(\pi) = \frac{a(\chi|_M\psi|_M\psi_{\mathcal{O}})}{m_{\mathcal{O}}}.$$

Using (3.8) and Lemma 3.7(ii) we see that this is well-defined.

(5) Finally, we define f on nontempered Langlands quotients (see Lemma 2.1). Let f be equal to zero on all standard modules induced from proper parabolic subgroups except in the following two obvious cases:

(a) The standard module $i_{GM}(\chi\psi\sigma)$, where $\chi \in \Psi(M)^{r,+}$ and $\psi \in \Psi^u(M)$. In this case, we let

$$f(i_{GM}(\chi\psi\sigma)) = a(\chi\psi).$$

(b) It is also possible that $\chi \in \Psi(M)^r$ belongs to the positive Weyl chamber for the opposite parabolic \bar{P} (see the beginning of the previous section). Then, there exists a unique standard maximal parabolic subgroup Q with standard Levi N , and $w \in G$ such that $N = wMw^{-1}$. Now, by [Bernstein et al. 1986, Lemma 5.3(iii)], we have

$$i_{GM}(\chi\psi\sigma) = i_{GN}(w(\chi)w(\psi)w(\sigma))$$

in $R(G)$. Also, $w(\chi) \in \Psi(N)^{r,+}$. On the standard module $i_{GN}(w(\chi)w(\psi)w(\sigma))$ we let

$$f(i_{GN}(w(\chi)w(\psi)w(\sigma))) = a(\chi\psi).$$

Thus, we have

$$f(i_{GM}(\chi\psi\sigma)) = f(i_{GN}(w(\chi)w(\psi)w(\sigma))) = a(\chi\psi),$$

for $\chi \in \Psi(M)^r$ such that $w(\chi) \in \Psi(N)^{r,+}$.

The third case is that $\chi \in \Psi(M)^r$ is in neither chamber. Then, $\chi \in \Psi(G)^r$, by standard description of unramified characters [Muić 2008, Section 2]. In this case

$$i_{GM}(\chi\psi\sigma) = \chi i_{GM}(\psi\sigma)$$

is a quasitempered representation, and, by

$$f(i_{GM}(\chi\psi\sigma)) = f(\chi i_{GM}(\psi\sigma)) = a(\chi\psi),$$

by (1)–(4).

This completes the construction of \mathbb{Z} -linear form $f : R(G) \rightarrow \mathbb{C}$. In order to complete the proof of Proposition 3.4, we just need to check that it satisfies the assumptions of [Bernstein et al. 1986, Theorem 1.2]. First, let N be a standard Levi subgroup of G contained in M , and ρ an irreducible supercuspidal representation of N such that σ is an irreducible subquotient of $i_{M,N}(\rho)$. Then, by construction, f is zero on irreducible representations which are not irreducible subquotients of members of the family $i_{M,N}(\chi\rho)$ parametrized by $\chi \in \Psi(N)$. Then, as in the proof of Lemma 2.8, there exists an open compact subgroup K such that f is zero on all irreducible representations which do not have a nonzero K -invariant vector. This

is (ii) in [Bernstein et al. 1986, §1.2]. It remains to check (i) in [Bernstein et al. 1986, §1.2]. We need to check that for an arbitrary standard Levi subgroup N of G and an irreducible representation τ of N , the function $\chi \mapsto f(i_{G,N}(\chi\tau))$ is regular on $\Psi(N)$. By Lemma 2.1 applied to N , τ is a \mathbb{Z} -linear combination of standard modules for N . So, instead of being irreducible, we may assume that τ is a standard module for N , i.e.,

$$\tau = i_{NN'}(\chi'\tau'),$$

N' is a standard Levi subgroup, τ' is an irreducible tempered representation of N' and $\chi' \in \Psi^{r,+}(N', N)$. Here, by definition $\Psi^{r,+}(N', N)$ is an analogue of $\Psi^{r,+}(N', G) \stackrel{\text{def}}{=} \Psi^{r,+}(N')$ defined in the previous section. Now, by induction in stages, we have

$$i_{G,N}(\chi\tau) = i_{G,N'}(\chi|_{N'}\chi'\tau').$$

We decompose $\chi = \chi^r\chi^u$ into its real part $\chi^r \in \Psi^r(N)$ and unitary part $\chi^u \in \Psi^r(N)$. Let N'' be a standard Levi subgroup such that $N' \subset N'' \subset N$ obtained by adjoining all simple roots orthogonal to $\chi^r|_{N'}\chi'$ (see [Muić 2008, Section 2]). Then, $\chi^r|_{N'}\chi'$ is an unramified character of N'' which is not orthogonal to any simple root that determines a standard parabolic subgroup of N'' . In particular, there exists $w \in G$ such that $N_1'' = wN''w^{-1}$ is a standard Levi subgroup, and

$$w(\chi^r|_{N'}\chi') \in \Psi^{r,+}(N_1'')$$

(see, for example, [Muić 2006, Section 1]). Also, we can write

$$i_{G,N'}(\chi|_{N'}\chi'\tau') = i_{G,N''}(\chi^r|_{N'}\chi' i_{N',N''}(\chi^u|_{N'}\tau')).$$

Obviously, $i_{N',N''}(\chi^u|_{N'}\tau')$ is a direct sum of irreducible tempered representations, say τ'' of N'' . This implies that $i_{G,N'}(\chi|_{N'}\chi'\tau')$ is a direct sum induced by representations

$$i_{G,N''}(\chi|_{N'}\chi'\tau'').$$

By above, in $R(G)$, we have

$$(3.9) \quad i_{G,N''}(\chi|_{N'}\chi'\tau'') = i_{G,N_1''}(w(\chi|_{N'}\chi')w(\tau'')).$$

But the last induced representation is a standard module. Now, by the construction of f , $f = 0$ on all standard modules except those described in steps (1)–(5) above. This means that we have one of the following two cases:

(a) N'' is conjugate to G . In this case $N_1'' = N'' = N' = G$, τ' is a tempered irreducible representation of G , and $i_{G,N'}(\chi|_{N'}\chi'\tau') = \chi\chi'\tau'$. Thus, by the construction (1)–(4), $\chi \mapsto f(\chi\chi'\tau')$ is regular.

(b) N'' is conjugate to M . In this case, $N' = N''$, and τ' must be conjugate to an element of the orbit $\Psi^u(M)\sigma$ (see (5) above). The discussion in (5) implies that $\chi \mapsto f(i_{G,N'}(\chi|_{N'}\chi'\tau'))$ is regular.

This finally verifies (i) of [Bernstein et al. 1986, §1.2], and completes the proof of the proposition. \square

Acknowledgements

I would like to thank Gordan Savin for turning my attention to this question. A draft of the paper was written while I visited the Hong Kong University of Science and Technology in January of 2018. I would like to thank A. Moy and the Hong Kong University of Science and Technology for their hospitality.

References

- [Bernstein 1984] J. N. Bernstein, “Le ‘centre’ de Bernstein”, pp. 1–32 in *Representations of reductive groups over a local field*, edited by P. Deligne, Hermann, Paris, 1984. MR Zbl
- [Bernstein and Zelevinsky 1977] I. N. Bernstein and A. V. Zelevinsky, “Induced representations of reductive p -adic groups, I”, *Ann. Sci. École Norm. Sup. (4)* **10**:4 (1977), 441–472. MR Zbl
- [Bernstein et al. 1986] J. Bernstein, P. Deligne, and D. Kazhdan, “Trace Paley–Wiener theorem for reductive p -adic groups”, *J. Analyse Math.* **47** (1986), 180–192. MR Zbl
- [Clozel 1986] L. Clozel, “On limit multiplicities of discrete series representations in spaces of automorphic forms”, *Invent. Math.* **83**:2 (1986), 265–284. MR Zbl
- [Muić 2006] G. Muić, “Construction of Steinberg type representations for reductive p -adic groups”, *Math. Z.* **253**:3 (2006), 635–652. MR Zbl
- [Muić 2008] G. Muić, “A geometric construction of intertwining operators for reductive p -adic groups”, *Manuscripta Math.* **125**:2 (2008), 241–272. MR Zbl
- [Renard 2010] D. Renard, *Représentations des groupes réductifs p -adiques*, Cours Spécialisés **17**, Soc. Math. France, Paris, 2010. MR Zbl
- [Shahidi 1990] F. Shahidi, “A proof of Langlands’ conjecture on Plancherel measures: complementary series for p -adic groups”, *Ann. of Math. (2)* **132**:2 (1990), 273–330. MR Zbl
- [Waldspurger 2003] J.-L. Waldspurger, “La formule de Plancherel pour les groupes p -adiques (d’après Harish-Chandra)”, *J. Inst. Math. Jussieu* **2**:2 (2003), 235–333. MR Zbl

Received January 5, 2019. Revised January 10, 2020.

GORAN MUIĆ
 DEPARTMENT OF MATHEMATICS
 FACULTY OF SCIENCES
 UNIVERSITY OF ZAGREB
 ZAGREB
 CROATIA
 gmuic@math.hr

PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
blasius@math.ucla.edu

Matthias Aschenbrenner
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
matthias@math.ucla.edu

Daryl Cooper
Department of Mathematics
University of California
Santa Barbara, CA 93106-3080
cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong
jhu@maths.hku.hk

Paul Balmer
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
balmer@math.ucla.edu

Wee Teck Gan
Mathematics Department
National University of Singapore
Singapore 119076
matgwt@nus.edu.sg

Sorin Popa
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
popa@math.ucla.edu

Paul Yang
Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Vyjayanthi Chari
Department of Mathematics
University of California
Riverside, CA 92521-0135
chari@math.ucr.edu

Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu

Jie Qing
Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA
KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE
NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY
UNIV. OF BRITISH COLUMBIA
UNIV. OF CALIFORNIA, BERKELEY
UNIV. OF CALIFORNIA, DAVIS
UNIV. OF CALIFORNIA, LOS ANGELES
UNIV. OF CALIFORNIA, RIVERSIDE
UNIV. OF CALIFORNIA, SAN DIEGO
UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA
UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2020 is US \$520/year for the electronic version, and \$705/year for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 1945-5844 electronic, 0030-8730 printed) at the University of California, c/o Department of Mathematics, 798 Evans Hall #3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

 mathematical sciences publishers

nonprofit scientific publishing

<http://msp.org/>

© 2020 Mathematical Sciences Publishers

PACIFIC JOURNAL OF MATHEMATICS

Volume 308 No. 2 October 2020

Existence of steady multiple vortex patches to the vortex-wave system DAOMIN CAO and GUODONG WANG	257
Relations of rationality for special values of Rankin–Selberg L -functions of $GL_n \times GL_m$ over CM-fields HARALD GROBNER and GUNJA SACHDEVA	281
A bound for the conductor of an open subgroup of GL_2 associated to an elliptic curve NATHAN JONES	307
Topology of complexity one quotients Yael Karshon and Susan Tolman	333
Flag Bott manifolds and the toric closure of a generic orbit associated to a generalized Bott manifold Shintarô Kuroki, Eunjeong Lee, Jongbaek Song and Dong Youp Suh	347
Projective cases for the restriction of the oscillator representation to dual pairs of type I Sabine J. Lang	393
A remark on a trace Paley–Wiener theorem Goran Muić	407
Spectrum of the Laplacian and the Jacobi operator on rotational CMC hypersurfaces of spheres Oscar M. Perdomo	419
Mean curvature flow in a Riemannian manifold endowed with a Killing vector field Liangjun Weng	435
Green correspondence and relative projectivity for pairs of adjoint functors between triangulated categories Alexander Zimmermann	473

0030-8730(202010)308:2;1-K