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A REMARK ON A TRACE PALEY-WIENER THEOREM

GORAN MuIC

We prove a version of a trace Paley—Wiener theorem for tempered repre-
sentations of a reductive p-adic group. This is applied to complete certain
investigations of Shahidi on the proof that a Plancherel measure is an invari-
ant of an L-packet of discrete series.

1. Introduction

Let G be areductive p-adic group. Let Rep(G) be the category of smooth admissible
complex representations of G of finite length, and let R(G) be the corresponding
Grothendieck group. We write W(G) (resp., ¥*(G)) for the group (resp., unitary
group) of unramified characters of G. The group W (G) has a structure of an algebraic
variety (a complex tours). The corresponding algebra of regular functions C[W¥ (G)]
is generated by evaluations on elements of G as a C-algebra. The subgroup W*(G)
is Zariski dense in W(G). We say that a complex function is regular on W*(G) if it
is a restriction of a regular function on W (G). We observe that the restriction map
from C[W(G)] into functions on W*(G) is injective since W*(G) is Zariski dense
in ¥(G).

We fix a minimal parabolic subgroup Py, its Levi decomposition Py = MyUy,
and, as usual related to these choices, we fix a set of standard parabolic subgroups
P = MU, where My C M, P = M Py. Since the standard parabolic subgroup is
determined by the choice of Levi subgroup, the normalized parabolic induction
Indg (0), where o is a smooth representation of M, we write as usual ig (o).

In [Bernstein et al. 1986], Bernstein, Deligne, and Kazhdan proved a trace
Paley—Wiener theorem for category Rep(G). We consider a full subcategory
Rep, (G) of Rep(G) consisting of representations having all irreducible subquo-
tients tempered. Let R,(G) be the corresponding Grothendieck group. We write
Rf (G) for the subgroup of R;(G) generated by igp (o), where M ranges over all
standard Levi subgroups of G (including G), and o ranges over a set of square-
integrable modulo center irreducible representations of M. We warn the reader
that this notion is not an analogue of the notion of strictly induced modules from
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[Bernstein et al. 1986, §3.1]. An analogue would be the subgroup of R;(G) gen-
erated by ig (7)), where M ranges over all proper standard Levi subgroups of G,
and t ranges over irreducible tempered representations of M. But this is not useful
for us in the present paper.

The main result of the present paper is the following version of a trace Paley—
Wiener theorem:

Theorem 1.1. Let f : R,(G) — C be a Z-linear form such that the following hold:

(1) There exists an open compact subgroup K C G which dominates f (i.e., f
is nonzero only on those irreducible tempered representations which have a
nontrivial space of K -invariant vectors).

(ii) For each standard maximal Levi subgroup M, or M = G, and a square-
integrable modulo center representation o of M, the function Y f(igu (Y o))
is regular on W* (M), and for any other proper standard Levi subgroup N, and a
square-integrable modulo center representation T of N, we have f (ign (1)) =0.

Then, there exists F € C2°(G) such that
f@@)=tr (7 (F)) forallme R; (G).

Theorem 1.1 is a proved by reduction to the main result of [Bernstein et al. 1986]
using the Harish-Chandra theory of tempered representations [Waldspurger 2003]
and some standard considerations related to the Langlands classification [Renard
2010, Chapter VII]. The proof is given in Section 3. It is a consequence of its
effective version given by Proposition 3.4. Proposition 3.4 constructs a correct
function needed in the proof of [Shahidi 1990, Proposition 9.3 2] in the case when M
(see notation there) is a Levi subgroup of a maximal parabolic subgroup. We remark
that since Plancherel factors are multiplicative, it is enough to prove [Shahidi 1990,
Proposition 9.3 2] for a maximal Levi subgroup.

2. Preliminaries

We continue with the notation introduced in the introduction. Let M be a standard
Levi subgroup. Then, we write W (M)" for the group of all unramified characters
which are R.(-valued. As we stated in the introduction, every standard Levi
subgroup M determines a unique standard parabolic subgroup, say P. We denote
by W(M)"* the set of all characters from W (M)" which correspond to the points of
the (open) Weyl chamber determined by the roots of the split component of M which
belong to the unipotent radical of P in the usual description of unramified characters
(see, for example, [Mui¢ 2008, Section 2]). If M = G, then W (M) = W (M)".
For a standard Levi subgroup M, an irreducible tempered representation 7 of M,
and € W(M)"™T, the module igy (¥ ) is called a standard module; it has a
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unique (Langlands quotient) L(igpy (¥ 7)). The condition is empty if M = G. By
the Langlands classification [Renard 2010, Theorem VII.4.2], every irreducible
representation can be expressed in the form L(igp (7)) for unique such datum
(M, 7, ). The following standard result will be used in the proof:

Lemma 2.1. The standard modules of G form a Z-basis of R(G).
Proof. The proof is as in [Clozel 1986, Proposition 1]. ]

In analogy with [Bernstein et al. 1986, §2.1], we make the following definitions.
Let o € Irr(M) where M is a standard Levi subgroup of G. We define the usual
affine variety attached to o

(M) D D(c) = W(M)o = W (M)/ Staby 1(0),

where Staby yr)(0) is a finite group consisting of all ¢ € W (M) such that Yo >~ 0.
If A is a maximal split torus in the center of M, the restriction map W (M) — W(A)
is surjective, and the kernel is a finite group. Therefore, by considering the restriction
to A we find that
Stabq;u(M) (0)= Stab\y(M) (0).
So, we may consider

D"(0) & W (M)/ Stabyu () (0) € D(o).

It is easy to see that D"(o) is Zariski dense in D (o).
The action of the Weyl group

W(M) = Ng(M)/M

on W(M) is algebraic. Furthermore, w € W (M) transforms Staby (o) onto
Staby (ary(w(0)), so it maps D(o) (resp., D" (o)) onto D(w(0o)) (resp., D" (w(0))).

Put D = D(o) and D* = D“(o). As usual, we consider the group W (D) of all
w € W (M) such that there exists i, € W(M) such that

(2.2) w(o) =~ Yyo.

The character v, is determined uniquely modulo Staby sy (o). The group W (D)
acts on the affine variety D = W (M)/ Staby ) (o) as follows:

(2.3) w. 4 Staby 1) (0') = Yo w (W) Staby ) ().

The resulting orbit space
D/W (D)

is again an affine variety with algebra of regular functions given as usual,
C[D/W(D)]=C[D]"®D,

One can construct a regular function D/ W (D) in the following way:
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Lemma 24. Let F € C°(G). Then, the function ¥ +— tr(igu(Yo)(F)) is a
regular function on D/ W (D).

Proof. It is standard that this function is regular on D. We show that it is W(D)-
invariant. Let w € W(D). By [Bernstein et al. 1986, Lemma 5.4 (iii)], we have

tr(igm (Yo )(F)) =tr(igu(w(Yo))(F)),
which completes the proof. ([

The above explicit description shows that the analogously defined group W (D")
is a subgroup of W(D). In fact, we have the following lemma:

Lemma 2.5. Assume that the central character w, : A — C* of o is unitary. Then,
W(D") = W(D). Moreover, D"/ W (D) is Zariski dense in D/ W (D).

Proof. As we remarked above, it is always W(D") Cc W(D). Conversely, if
w € W(D), then w(o) =~ vy, 0 by (2.2). Considering central characters, we find
that

Wy(o) = WYrwla)ws.

This implies that i, |4 is a unitary character. By the standard description of
unramified characters of M, and its relation to unramified characters of A, this
implies that i, € W*(M) (see [Mui¢ 2008, Section 2]). Hence, w € W (D"). This
completes the proof that W(D*) = W (D). The remaining claim is obvious from
above considerations. O

The following lemma is a fundamental result of Harish-Chandra:

Lemma 2.6. Assume that M and N are standard Levi subgroups of G, and o and t
are square-integrable modulo center representations of M and N, respectively.
Then, igy (o) and ign(t) have a common irreducible subrepresentation if and
only if there exists w € G such that N = wMw™" and © ~ w(o), where w(o) is
defined by w(o)(n) = o (w™'nw), n € N. Moreover, if there exists w € G such
that N = wMw™", then iy (0) and igy(w(o)) are isomorphic, and in particular
equal in R, (G).

Proof. See [Waldspurger 2003]. (]

Motivated by [Bernstein et al. 1986, §2.1], we proceed as follows. By the standard
theory of tempered irreducible representations due to Harish-Chandra (see [Wald-
spurger 2003]), for an irreducible tempered representation 7 € Irr(G), there exists a
standard Levi subgroup M and a square-integrable modulo center representation o
of M such that m < igp (o). The pair (M, o) is unique up to a conjugation (see
Lemma 2.6). We call the equivalence class [M, o] under conjugation of the pair
(M, o) the t-infinitesimal character of 7. The set of equivalence of such pairs we
denote by 0,(G).



A REMARK ON A TRACE PALEY-WIENER THEOREM 411

For a pair (M, o), we define a natural map ¥*(M) — ©,(G) given by

V=M, yo].

The image is called a connected component of ®;(G). We denote it by ©,(M, o).
This map induces a bijection which enables us to identify

®/(M,0) =D"(0)/W(D(0)).
Thus, in view of Lemma 2.5, we may consider
©;(M,0) C D(o)/W(D(0)).

This realizes ®, (M, o) as a Zariski dense subset of the affine variety D(o)/ W(D(0)).
As in [Bernstein et al. 1986, §2.1], we can decompose

(2.7) R(G) = @9 R (G)(0),
where 6 ranges over connected components of ®,(G). Here
R(G)(6)

is generated with all tempered irreducible representations with 7-infinitesimal char-
acters belonging to 6. We denote by 14 the projector

R:(G) — R:(G)(0),

for all 6 € ©,(G).

We end this section with an analogue for Rep, (G) of the decomposition theorem
for the category of all smooth complex representations of G (see [Bernstein et al.
1986, §2.3]; [Bernstein 1984, §2.10]).

Lemma 2.8. Let K C G be an open compact subgroup. Then, there exists a finite
set Tg consisting of connected components in ©,(G) such that for each irreducible
tempered representation w € Rep,(G), having nonzero space of K -invariants, there
exists 0 € Ty such that m € R,(G)(0).

Proof. By the decomposition theorem (see [Bernstein et al. 1986, §2.3]), there
exists a finite set, say S, of pairs (N, p), where N is a standard Levi subgroup of G,
and p are irreducible supercuspidal representations, such that for every irreducible
representation 7 of G, having nonzero space of K -invariants, there exists (N, p) € S,
and an unramified character x such that & is a subquotient of ig n (x0).

Now, assume that 7 is as in the statement of the lemma. Then, there exist a
standard Levi subgroup M and a square-integrable modulo center o of M such that
7 <> igpm (o). Moreover, there exist a standard Levi subgroup M’ of M (and of G),
and a supercuspidal irreducible representation p’ such that o is an irreducible sub-
quotient of iys y(p’). By induction in stages, 77 must be a subquotient of iy (p').
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By standard theory of induced representations [Bernstein and Zelevinsky 1977],
the pair (M’, p’) must be G-conjugate to the one in S. Thus, we may assume that
(M', p") € S already.

Thus, it is enough to prove that given (N, p) € S and given a standard Levi
subgroup M of G such that N C M, there are finitely many W* (M )-orbits of square-
integrable modulo center representations of M such they are subquotients of the
induced representations in the family iys y(x0) parametrized by x € W(N). But
that is easy. We can select a sufficiently small open compact subgroup L C M such
that every irreducible representation that appears as a subquotient of iy y(xp) for
some x € W(N) has a nonzero space of L-invariants.

Hence, we need to prove that there are finitely many W*“(M)-orbits of square-
integrable modulo center representations of M having a nonzero space of L-
invariants. This is proved in (iii) in the introduction of [Waldspurger 2003]. O

3. Proof of Theorem 1.1

We begin the proof of Theorem 1.1 with the following lemma:

Lemma 3.1. Let f be as in the statement of Theorem 1.1. Then, there exists a finite
set Ty consisting of connected components in ©,(G) such that for each irreducible
tempered representation w € Rep,(G) such that f () # 0 there exists 0 € Ty such
that m € R, (G)(0).

Proof. This follows from the assumption (i) in Theorem 1.1 combined with

Lemma 2.8. U
By Lemma 3.1, we can decompose f into Z-linear forms fg : R, (G) — C,
0 e Tf,
r=> f
QETf
where fj is defined as follows (see (2.7)):
Jo=foly.

Obviously, each fj satisfies the assumptions analogous to (i) and (ii) in Theorem 1.1.
Hence, in what follows we may assume that f = fy for some 6 € ®,(G). By the
assumption (ii) of Theorem 1.1, we may assume that 6 has the form 6 = ©,(M, o),
where M is a standard maximal Levi subgroup of G, or M =G, ando isao isa
square-integrable modulo center representation of M. We observe that

Y e V(M) — flicu(fo))

is a regular function by the assumption (ii) of Theorem 1.1. Thus, by definition this
means that it is a restriction of a regular function, say a, on the affine variety W (M).
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By Lemma 2.6, we have

(3.2) a e C[DIVP),
where
3.3) D= lIJ(M)/Stab\p(M)(O').

We refer to previous section for the notation.
Now, the following proposition completes the proof of the theorem.

Proposition 3.4. Let M be a standard maximal Levi subgroup of G, or M = G.
Assume that o is a square-integrable modulo center representation of M. We define
D by (3.3), and let a be any function in C[D1V D), Then, there exists F € CX(G)
such that

a(y) form=igu(Yo), ¥ € VM),

0 form =ign(WT), Y € W(N),

for any other standard Levi subgroup N and a square-integrable modulo center
representation T such that ©,(N, 1) # 0,(M, o).

tr(ﬂ(F))Z{

Proof. The proof of Proposition 3.4 is a generalization of [Clozel 1986, §4.2,
Proposition 1] where the proof of existence of pseudocoefficients for semisimple G
is given based also on [Bernstein et al. 1986]. We consider only the case where M
is a standard maximal Levi subgroup of G. The case of M = G is about the
construction of a specific pseudocoefficient of o. The proof is on the same lines
but considerably easier.

We remark that *(G) acts on W*(M) in a usual way:

Vi xluy,  x €VH(G), ¢ eVE(M).
For v € W*(M), the stabilizer
Stabyu(g)(igm (Y o))
is the group of all x € W*(G) such that
xiem (o) =Zigu(fo).
We remind the reader that for all x € ¥*(G) we have
xicm(Wo) ~igu(XImypo).

Lemma 3.5. Assume that x € V*(G) and € W"*(M). Then, for each irreducible
constituent w of igy (W o), the multiplicity of x7 in xigy (Vo) is the same as that
ofwinigy(Yo).

Proof. This is obvious. U
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Lemma 3.6. Assume that for y € V" (G) and € V" (M) there exists an irreducible
constituent w of igy (Vo) such that xm is an irreducible constituent of igy (Vo).
Then, x € Staby«(g)(icm (Y 0)). In particular, we have

Stabyu () (1) C Stabyu () (icm (Y o).

Proof. First, xm is a common constituent of iy (Vo) and igy (x|pu¥ o). So, by
Lemma 2.6, there exists w € W (M) such that

xlmyo =wpo).
Then, again by Lemma 2.6, we obtain
xicu(Wo) Zigu(xlmypo) ~igu(Yo). U
Lemma 3.7. Let y € W*(M). Then, we have the following:
(@) If x € Stabyu()(icm (Y 0)), then a(x |my) =a().
(i1) For each n € ¥(G) and x € Staby« ) (i (¥ 0)), we have
a(xImnlm¥) =amlpuy).
Proof. We prove (i). Since x € Stabgu«g)(igpm (¥ o)), we obtain
icm(XImyo) = xicu(Yo) ~igu(Yo).
So, by Lemma 2.6, there exists w € W (M) such that
xlmbo =wo) = wy)w(o).

By definition of W (D) (see (2.2)), this implies w € W (D), and the above relation
can be written as

XIlm¥o =yy,w(y)o,

where

Y =w®) " XIu .
Consequently, by the definition of the action of W (D) on D (see (2.3)) we obtain
XIm Y Staby m) (o) = Yryw(¥) Stabya) (0) = w. ¢ Staby m) (o).

This implies a(x|p¥) = a(y). This proves (i).
To prove (ii), we may assume that 7 is unitary. Then, we obviously have

Stabyu ) (i (MmYo)) = Stabyu () (igm (Y o)).

Now, the claim follows from (i). O
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Now, in order to complete the proof of Proposition 3.4, we apply [Bernstein et al.
1986, Theorem 1.2]. We define a Z-linear form f : R(G) — C in several steps. We
warn the reader that we use the same letter for a functional different than one from
the statement of Theorem 1.1.

(1) For each W*(G)-orbit O in W*(M), we fix a representative o € O and an
irreducible constituent 7o in igy (Yoo). By Lemma 3.6, we have

(3.8) Stab\pu((;) (ro) C Stabyu (G) (icu(Wpo)).

The quotient is finite and if y ranges over representatives of the quotient, then x 7o
ranges over the set of all mutually nonequivalent irreducible subrepresentations in
icm (Yoo) which are W*(G)-equivalent to wp. Any of those representations have
the same multiplicity in igy (Yoo ). Let mep be the sum of their multiplicities. We

define

f(xmo) = a;;//;), X € Stabyu () (icm (Y00)).

(2) For each x € ¥“(G), we obviously have

Stab\yu (G) (X 7'[(')) = Stab\pu((;) (7'[(’))
and
Stabyu ) (icm (X IMY00)) = Stabyu Gy (icm (Y 00)).

By, Lemma 3.5 and these remarks, the sum of multiplicities of W*(G)-equivalent
representations of m which belong to igy (x| oo) is again mp. We let

_alxluvo)
- Zxlvo)

f(xmo) x € V'(G).

Lemma 3.7 (ii) shows that this is well-defined.
(3) For any other tempered irreducible representation (and, in particular, square-

integrable modulo center representation) 7w of G we let

f(m) =0.

(4) For any quasitempered irreducible representation 7 of G, we can write 7 = x ",
where y € W' (G) and 7* is tempered. We let

f(m) =0,

if 7% is not in W*(G) e for any orbit O described in (1). But, if 7% € ¥*(G)mp, for
some O, then we can write 7% = Yo, for some ¥ € W*(G) uniquely determined
modulo Staby«g) (7). We let
a(x|\mvyimypo)
fm)y=——""—.

mo
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Using (3.8) and Lemma 3.7(ii) we see that this is well-defined.

(5) Finally, we define f on nontempered Langlands quotients (see Lemma 2.1).
Let f be equal to zero on all standard modules induced from proper parabolic
subgroups except in the following two obvious cases:

(a) The standard module igy (x Vo), where x € W(M)"" and ¢ € W*(M). In
this case, we let

fleu(xyo)) =alxy).

(b) It is also possible that x € W(M)" belongs to the positive Weyl chamber for
the opposite parabolic P (see the beginning of the previous section). Then,
there exists a unique standard maximal parabolic subgroup Q with standard
Levi N, and w € G such that N = wMw~". Now, by [Bernstein et al. 1986,
Lemma 5.3(ii1)], we have

igu(xyo) =icyn(w(OOw)w(o))

in R(G). Also, w(x)€W(N)"™. On the standard module iy (w () w () w (o))
we let

flenwOOw)w(o))) =alxy).

Thus, we have

Sfliou(xv¥o)) = flion(wOwW)w(o))) =alxy),
for x € W(M)" such that w(x) € W(N)"™.

The third case is that x € W(M)" is in neither chamber. Then, x € W (G)’, by
standard description of unramified characters [Mui¢ 2008, Section 2]. In this case

icum(x¥o) = xicu(Yo)

is a quasitempered representation, and, by
flicgu(x¥o)) = f(xicm(o)) =alxy),

by (1)~(4).

This completes the construction of Z-linear form f : R(G) — C. In order to
complete the proof of Proposition 3.4, we just need to check that it satisfies the
assumptions of [Bernstein et al. 1986, Theorem 1.2]. First, let N be a standard Levi
subgroup of G contained in M, and p an irreducible supercuspidal representation
of N such that o is an irreducible subquotient of i, y(p). Then, by construction,
f 1is zero on irreducible representations which are not irreducible subquotients of
members of the family iys y () ) parametrized by x € W(N). Then, as in the proof
of Lemma 2.8, there exists an open compact subgroup K such that f is zero on all
irreducible representations which do not have a nonzero K -invariant vector. This
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is (i1) in [Bernstein et al. 1986, §1.2]. It remains to check (i) in [Bernstein et al.
1986, §1.2]. We need to check that for an arbitrary standard Levi subgroup N of G
and an irreducible representation T of N, the function x — f(ig n(xT)) is regular
on W(N). By Lemma 2.1 applied to N, t is a Z-linear combination of standard
modules for N. So, instead of being irreducible, we may assume that 7 is a standard
module for N, i.e.,

t=iynv(x't),
N’ is a standard Levi subgroup, 7’ is an irreducible tempered representation of
N’ and x' € W"T(N’, N). Here, by definition W"*(N’, N) is an analogue of
Ut (N, G) def W T (N’) defined in the previous section. Now, by induction in
stages, we have

igN(XT) =i N (xInX'T).

We decompose x = x" x“ into its real part x” € W (N) and unitary part x“ € W' (N).
Let N” be a standard Levi subgroup such that N’ C N” C N obtained by adjoining
all simple roots orthogonal to x” |y x’ (see [Muié 2008, Section 2]). Then, x" |y x’
is an unramified character of N” which is not orthogonal to any simple root that
determines a standard parabolic subgroup of N”. In particular, there exists w € G
such that N1 = wN"w~! is a standard Levi subgroup, and

w(x v x") e W (N
(see, for example, [Mui¢ 2006, Section 1]). Also, we can write
icn(xIvx't) =icn (X v x i v (X I T')).

Obviously, in y»(x*|n'T’) is an direct sum of irreducible tempered representa-
tions, say 7”7 of N”. This implies that i y'(x|nx't’) is a direct sum induced by
representations

ig N (xInx't".

By above, in R(G), we have

(3.9) ic,n(xInvx't") =igny (w(x v xHw(@")).

But the last induced representation is a standard module. Now, by the construction
of f, f =0 on all standard modules except those described in steps (1)—(5) above.
This means that we have one of the following two cases:

(a) N” is conjugate to G. In this case N} = N" = N' = G, 7’ is a tempered
irreducible representation of G, and i v/ (x|n'x't’) = x x't". Thus, by the con-
struction (1)—(4), x — f(x x't’) is regular.
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(b) N” is conjugate to M. In this case, N' = N”, and v/ must be conjugate to an
element of the orbit W*(M)o (see (5) above). The discussion in (5) implies that
x> flic.n(xInx't)) is regular.

This finally verifies (i) of [Bernstein et al. 1986, §1.2], and completes the proof
of the proposition. ([l

Acknowledgements

I would like to than Gordan Savin for turning my attention to this question. A draft
of the paper was written while I visited the Hong Kong University of Science and
Technology in January of 2018. I would like to thank A. Moy and the Hong Kong
University of Science and Technology for their hospitality.

References

[Bernstein 1984] J. N. Bernstein, “Le ‘centre’ de Bernstein”, pp. 1-32 in Representations of reductive
groups over a local field, edited by P. Deligne, Hermann, Paris, 1984. MR Zbl

[Bernstein and Zelevinsky 1977] 1. N. Bernstein and A. V. Zelevinsky, “Induced representations of
reductive p-adic groups, I’, Ann. Sci. Ecole Norm. Sup. (4) 10:4 (1977), 441-472. MR Zbl

[Bernstein et al. 1986] J. Bernstein, P. Deligne, and D. Kazhdan, “Trace Paley—Wiener theorem for
reductive p-adic groups”, J. Analyse Math. 47 (1986), 180-192. MR Zbl

[Clozel 1986] L. Clozel, “On limit multiplicities of discrete series representations in spaces of
automorphic forms”, Invent. Math. 83:2 (1986), 265-284. MR Zbl

[Mui¢ 2006] G. Mui¢, “Construction of Steinberg type representations for reductive p-adic groups”,
Math. Z. 253:3 (2006), 635-652. MR Zbl

[Mui¢ 2008] G. Mui¢, “A geometric construction of intertwining operators for reductive p-adic
groups”, Manuscripta Math. 125:2 (2008), 241-272. MR Zbl

[Renard 2010] D. Renard, Représentations des groupes réductifs p-adiques, Cours Spécialisés 17,
Soc. Math. France, Paris, 2010. MR Zbl

[Shahidi 1990] F. Shahidi, “A proof of Langlands’ conjecture on Plancherel measures: complementary
series for p-adic groups”, Ann. of Math. (2) 132:2 (1990), 273-330. MR Zbl

[Waldspurger 2003] J.-L. Waldspurger, “La formule de Plancherel pour les groupes p-adiques (d’apres
Harish-Chandra)”, J. Inst. Math. Jussieu 2:2 (2003), 235-333. MR Zbl

Received January 5, 2019. Revised January 10, 2020.

GORAN MUIC

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCES
UNIVERSITY OF ZAGREB
ZAGREB

CROATIA

gmuic @math.hr


http://www.math.tau.ac.il/~bernstei/Publication_list/publication_texts/Bern_Center.pdf
http://msp.org/idx/mr/771671
http://msp.org/idx/zbl/0599.22016
http://dx.doi.org/10.24033/asens.1333
http://dx.doi.org/10.24033/asens.1333
http://msp.org/idx/mr/579172
http://msp.org/idx/zbl/0412.22015
http://dx.doi.org/10.1007/BF02792538
http://dx.doi.org/10.1007/BF02792538
http://msp.org/idx/mr/874050
http://msp.org/idx/zbl/0634.22011
http://dx.doi.org/10.1007/BF01388963
http://dx.doi.org/10.1007/BF01388963
http://msp.org/idx/mr/818353
http://msp.org/idx/zbl/0582.22012
http://dx.doi.org/10.1007/s00209-006-0946-6
http://msp.org/idx/mr/2221090
http://msp.org/idx/zbl/1123.22010
http://dx.doi.org/10.1007/s00229-007-0146-7
http://dx.doi.org/10.1007/s00229-007-0146-7
http://msp.org/idx/mr/2373084
http://msp.org/idx/zbl/1145.22010
http://msp.org/idx/mr/2567785
http://msp.org/idx/zbl/1186.22020
http://dx.doi.org/10.2307/1971524
http://dx.doi.org/10.2307/1971524
http://msp.org/idx/mr/1070599
http://msp.org/idx/zbl/0780.22005
http://dx.doi.org/10.1017/S1474748003000082
http://dx.doi.org/10.1017/S1474748003000082
http://msp.org/idx/mr/1989693
http://msp.org/idx/zbl/1029.22016
mailto:gmuic@math.hr

PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)

Matthias Aschenbrenner
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
matthias@math.ucla.edu

Daryl Cooper
Department of Mathematics
University of California
Santa Barbara, CA 93106-3080
cooper @math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong
jhlu@maths.hku.hk

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
blasius @math.ucla.edu

Paul Balmer

Department of Mathematics
University of California
Los Angeles, CA 90095-1555
balmer@math.ucla.edu

Wee Teck Gan

Mathematics Department
National University of Singapore

Singapore 119076

matgwt@nus.edu.sg

Sorin Popa

Department of Mathematics
University of California
Los Angeles, CA 90095-1555
popa@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics
University of California
Riverside, CA 92521-0135
chari @math.ucr.edu

Kefeng Liu

Department of Mathematics
University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu

Jie Qing

Department of Mathematics
University of California
Santa Cruz, CA 95064
qing @cats.ucsc.edu

Paul Yang
Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang @math.princeton.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI STANFORD UNIVERSITY UNIV. OF CALIF., SANTA CRUZ

CALIFORNIA INST. OF TECHNOLOGY UNIV. OF BRITISH COLUMBIA UNIV. OF MONTANA

INST. DE MATEMATICA PURA E APLICADA UNIV. OF CALIFORNIA, BERKELEY UNIV. OF OREGON

KEIO UNIVERSITY UNIV. OF CALIFORNIA, DAVIS UNIV. OF SOUTHERN CALIFORNIA
MATH. SCIENCES RESEARCH INSTITUTE UNIV. OF CALIFORNIA, LOS ANGELES UNIV. OF UTAH

NEW MEXICO STATE UNIV. UNIV. OF CALIFORNIA, RIVERSIDE UNIV. OF WASHINGTON

OREGON STATE UNIV. UNIV.

UNIV.

OF CALIFORNIA, SAN DIEGO
OF CALIF., SANTA BARBARA

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2020 is US $520/year for the electronic version, and $705/year for print and electronic.

Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 1945-5844 electronic, 0030-8730 printed) at the University of California, c/o Department
of Mathematics, 798 Evans Hall #3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at
Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O.
Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLow® from Mathematical Sciences Publishers.
PUBLISHED BY
:I mathematical sciences publishers
nonprofit scientific publishing
http://msp.org/
© 2020 Mathematical Sciences Publishers


http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:matthias@math.ucla.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:balmer@math.ucla.edu
mailto:matgwt@nus.edu.sg
mailto:popa@math.ucla.edu
mailto:yang@math.princeton.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/

YAEL KARSHON and SUSAN TOLMAN

Flag Bott manifolds and the toric closure of a generic orbit associated to a 347
generalized Bott manifold

SHINTARO KUROKI, EUNJEONG LEE, JONGBAEK SONG and DONG
Youpr SUH
Projective cases for the restriction of the oscillator representation to dual pairs 393
of type I
SABINE J. LANG
A remark on a trace Paley—Wiener theorem 407
GORAN MUIC
Spectrum of the Laplacian and the Jacobi operator on rotational CMC 419
hypersurfaces of spheres
OSCAR M. PERDOMO
Mean curvature flow in a Riemannian manifold endowed with a Killing vector 435
field
LIANGIJUN WENG

Green correspondence and relative projectivity for pairs of adjoint functors 473

between triangulated categories

ALEXANDER ZIMMERMANN
0030-8730(202010)308:2;1-K



	1. Introduction
	2. Preliminaries
	3. Proof of Theorem 1.1
	Acknowledgements
	References
	
	

