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A REMARK ON A TRACE PALEY–WIENER THEOREM

GORAN MUIĆ

We prove a version of a trace Paley–Wiener theorem for tempered repre-
sentations of a reductive p-adic group. This is applied to complete certain
investigations of Shahidi on the proof that a Plancherel measure is an invari-
ant of an L-packet of discrete series.

1. Introduction

Let G be a reductive p-adic group. Let Rep(G) be the category of smooth admissible
complex representations of G of finite length, and let R(G) be the corresponding
Grothendieck group. We write 9(G) (resp., 9u(G)) for the group (resp., unitary
group) of unramified characters of G. The group9(G) has a structure of an algebraic
variety (a complex tours). The corresponding algebra of regular functions C[9(G)]
is generated by evaluations on elements of G as a C-algebra. The subgroup 9u(G)
is Zariski dense in 9(G). We say that a complex function is regular on 9u(G) if it
is a restriction of a regular function on 9(G). We observe that the restriction map
from C[9(G)] into functions on 9u(G) is injective since 9u(G) is Zariski dense
in 9(G).

We fix a minimal parabolic subgroup P0, its Levi decomposition P0 = M0U0,
and, as usual related to these choices, we fix a set of standard parabolic subgroups
P = MU, where M0 ⊂ M, P = M P0. Since the standard parabolic subgroup is
determined by the choice of Levi subgroup, the normalized parabolic induction
IndG

P (σ ), where σ is a smooth representation of M, we write as usual iG M(σ ).
In [Bernstein et al. 1986], Bernstein, Deligne, and Kazhdan proved a trace

Paley–Wiener theorem for category Rep(G). We consider a full subcategory
Rept(G) of Rep(G) consisting of representations having all irreducible subquo-
tients tempered. Let Rt(G) be the corresponding Grothendieck group. We write
Ri

t (G) for the subgroup of Rt(G) generated by iG M(σ ), where M ranges over all
standard Levi subgroups of G (including G), and σ ranges over a set of square-
integrable modulo center irreducible representations of M. We warn the reader
that this notion is not an analogue of the notion of strictly induced modules from

The author acknowledges Croatian Science Foundation grant no. 9364.
MSC2020: primary 22E50; secondary 11E70.
Keywords: Paley–Wiener theorem, admissible representations, reductive p-adic groups.

407

http://msp.org/pjm/
https://doi.org/10.2140/pjm.2020.308-2
http://https://doi.org/10.2140/pjm.2020.308.407


408 GORAN MUIĆ

[Bernstein et al. 1986, §3.1]. An analogue would be the subgroup of Rt(G) gen-
erated by iG M(τ ), where M ranges over all proper standard Levi subgroups of G,
and τ ranges over irreducible tempered representations of M. But this is not useful
for us in the present paper.

The main result of the present paper is the following version of a trace Paley–
Wiener theorem:

Theorem 1.1. Let f : Rt(G)→ C be a Z-linear form such that the following hold:

(i) There exists an open compact subgroup K ⊂ G which dominates f (i.e., f
is nonzero only on those irreducible tempered representations which have a
nontrivial space of K -invariant vectors).

(ii) For each standard maximal Levi subgroup M, or M = G, and a square-
integrable modulo center representation σ of M, the functionψ 7→ f (iG M(ψσ))

is regular on9u(M), and for any other proper standard Levi subgroup N, and a
square-integrable modulo center representation τ of N, we have f (iG N (τ ))=0.

Then, there exists F ∈ C∞c (G) such that

f (π)= tr (π(F)) for all π ∈ Ri
t (G).

Theorem 1.1 is a proved by reduction to the main result of [Bernstein et al. 1986]
using the Harish-Chandra theory of tempered representations [Waldspurger 2003]
and some standard considerations related to the Langlands classification [Renard
2010, Chapter VII]. The proof is given in Section 3. It is a consequence of its
effective version given by Proposition 3.4. Proposition 3.4 constructs a correct
function needed in the proof of [Shahidi 1990, Proposition 9.3 2] in the case when M
(see notation there) is a Levi subgroup of a maximal parabolic subgroup. We remark
that since Plancherel factors are multiplicative, it is enough to prove [Shahidi 1990,
Proposition 9.3 2] for a maximal Levi subgroup.

2. Preliminaries

We continue with the notation introduced in the introduction. Let M be a standard
Levi subgroup. Then, we write 9(M)r for the group of all unramified characters ψ
which are R>0-valued. As we stated in the introduction, every standard Levi
subgroup M determines a unique standard parabolic subgroup, say P. We denote
by 9(M)r,+ the set of all characters from 9(M)r which correspond to the points of
the (open) Weyl chamber determined by the roots of the split component of M which
belong to the unipotent radical of P in the usual description of unramified characters
(see, for example, [Muić 2008, Section 2]). If M = G, then 9(M)r,+ =9(M)r.

For a standard Levi subgroup M, an irreducible tempered representation π of M,
and ψ ∈ 9(M)r,+, the module iG M(ψπ) is called a standard module; it has a
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unique (Langlands quotient) L(iG M(ψπ)). The condition is empty if M = G. By
the Langlands classification [Renard 2010, Theorem VII.4.2], every irreducible
representation can be expressed in the form L(iG M(ψπ)) for unique such datum
(M, π, ψ). The following standard result will be used in the proof:

Lemma 2.1. The standard modules of G form a Z-basis of R(G).

Proof. The proof is as in [Clozel 1986, Proposition 1]. �

In analogy with [Bernstein et al. 1986, §2.1], we make the following definitions.
Let σ ∈ Irr(M) where M is a standard Levi subgroup of G. We define the usual

affine variety attached to σ

Irr(M)⊃ D(σ )=9(M)σ =9(M)/Stab9(M)(σ ),

where Stab9(M)(σ ) is a finite group consisting of all ψ ∈9(M) such that ψσ ' σ .
If A is a maximal split torus in the center of M, the restriction map9(M)→9(A)

is surjective, and the kernel is a finite group. Therefore, by considering the restriction
to A we find that

Stab9u(M)(σ )= Stab9(M)(σ ).

So, we may consider

Du(σ )
def
= 9u(M)/Stab9u(M)(σ )⊂ D(σ ).

It is easy to see that Du(σ ) is Zariski dense in D(σ ).
The action of the Weyl group

W (M)= NG(M)/M

on 9(M) is algebraic. Furthermore, w ∈ W (M) transforms Stab9(M)(σ ) onto
Stab9(M)(w(σ)), so it maps D(σ ) (resp., Du(σ )) onto D(w(σ)) (resp., Du(w(σ))).

Put D = D(σ ) and Du
= Du(σ ). As usual, we consider the group W (D) of all

w ∈W (M) such that there exists ψw ∈9(M) such that

(2.2) w(σ)' ψwσ.

The character ψw is determined uniquely modulo Stab9(M)(σ ). The group W (D)
acts on the affine variety D =9(M)/Stab9(M)(σ ) as follows:

(2.3) w.ψ Stab9(M)(σ )= ψww(ψ)Stab9(M)(σ ).

The resulting orbit space
D/W (D)

is again an affine variety with algebra of regular functions given as usual,

C[D/W (D)] = C[D]W (D).

One can construct a regular function D/W (D) in the following way:
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Lemma 2.4. Let F ∈ C∞c (G). Then, the function ψ 7→ tr(iG M(ψσ)(F)) is a
regular function on D/W (D).

Proof. It is standard that this function is regular on D. We show that it is W (D)-
invariant. Let w ∈W (D). By [Bernstein et al. 1986, Lemma 5.4 (iii)], we have

tr(iG M(ψσ)(F))= tr(iG M(w(ψσ))(F)),

which completes the proof. �

The above explicit description shows that the analogously defined group W (Du)

is a subgroup of W (D). In fact, we have the following lemma:

Lemma 2.5. Assume that the central character ωσ : A→ C× of σ is unitary. Then,
W (Du)=W (D). Moreover, Du/W (D) is Zariski dense in D/W (D).

Proof. As we remarked above, it is always W (Du) ⊂ W (D). Conversely, if
w ∈ W (D), then w(σ) ' ψwσ by (2.2). Considering central characters, we find
that

ωw(σ) = (ψw|A)ωσ .

This implies that ψw|A is a unitary character. By the standard description of
unramified characters of M, and its relation to unramified characters of A, this
implies that ψw ∈9u(M) (see [Muić 2008, Section 2]). Hence, w ∈W (Du). This
completes the proof that W (Du)=W (D). The remaining claim is obvious from
above considerations. �

The following lemma is a fundamental result of Harish-Chandra:

Lemma 2.6. Assume that M and N are standard Levi subgroups of G, and σ and τ
are square-integrable modulo center representations of M and N, respectively.
Then, iG M(σ ) and iG N (τ ) have a common irreducible subrepresentation if and
only if there exists w ∈ G such that N = wMw−1 and τ ' w(σ), where w(σ) is
defined by w(σ)(n) = σ(w−1nw), n ∈ N. Moreover, if there exists w ∈ G such
that N = wMw−1, then iG M(σ ) and iG M(w(σ)) are isomorphic, and in particular
equal in Rt(G).

Proof. See [Waldspurger 2003]. �

Motivated by [Bernstein et al. 1986, §2.1], we proceed as follows. By the standard
theory of tempered irreducible representations due to Harish-Chandra (see [Wald-
spurger 2003]), for an irreducible tempered representation π ∈ Irr(G), there exists a
standard Levi subgroup M and a square-integrable modulo center representation σ
of M such that π ↪→ iG M(σ ). The pair (M, σ ) is unique up to a conjugation (see
Lemma 2.6). We call the equivalence class [M, σ ] under conjugation of the pair
(M, σ ) the t-infinitesimal character of π . The set of equivalence of such pairs we
denote by 2t(G).
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For a pair (M, σ ), we define a natural map 9u(M)→2t(G) given by

ψ 7→ [M, ψσ ].

The image is called a connected component of 2t(G). We denote it by 2t(M, σ ).
This map induces a bijection which enables us to identify

2t(M, σ )= Du(σ )/W (D(σ )).

Thus, in view of Lemma 2.5, we may consider

2t(M, σ )⊂ D(σ )/W (D(σ )).

This realizes2t(M,σ) as a Zariski dense subset of the affine variety D(σ)/W(D(σ)).
As in [Bernstein et al. 1986, §2.1], we can decompose

(2.7) Rt(G)=⊕θ Rt(G)(θ),

where θ ranges over connected components of 2t(G). Here

Rt(G)(θ)

is generated with all tempered irreducible representations with t-infinitesimal char-
acters belonging to θ . We denote by 1θ the projector

Rt(G)→ Rt(G)(θ),

for all θ ∈2t(G).
We end this section with an analogue for Rept(G) of the decomposition theorem

for the category of all smooth complex representations of G (see [Bernstein et al.
1986, §2.3]; [Bernstein 1984, §2.10]).

Lemma 2.8. Let K ⊂ G be an open compact subgroup. Then, there exists a finite
set TK consisting of connected components in 2t(G) such that for each irreducible
tempered representation π ∈ Rept(G), having nonzero space of K -invariants, there
exists θ ∈ Tk such that π ∈ Rt(G)(θ).

Proof. By the decomposition theorem (see [Bernstein et al. 1986, §2.3]), there
exists a finite set, say S, of pairs (N , ρ), where N is a standard Levi subgroup of G,
and ρ are irreducible supercuspidal representations, such that for every irreducible
representation π of G, having nonzero space of K -invariants, there exists (N , ρ)∈ S,
and an unramified character χ such that π is a subquotient of iG,N (χρ).

Now, assume that π is as in the statement of the lemma. Then, there exist a
standard Levi subgroup M and a square-integrable modulo center σ of M such that
π ↪→ iG M(σ ). Moreover, there exist a standard Levi subgroup M ′ of M (and of G),
and a supercuspidal irreducible representation ρ ′ such that σ is an irreducible sub-
quotient of iM,M ′(ρ

′). By induction in stages, π must be a subquotient of iG,M ′(ρ
′).
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By standard theory of induced representations [Bernstein and Zelevinsky 1977],
the pair (M ′, ρ ′) must be G-conjugate to the one in S. Thus, we may assume that
(M ′, ρ ′) ∈ S already.

Thus, it is enough to prove that given (N , ρ) ∈ S and given a standard Levi
subgroup M of G such that N ⊂M, there are finitely many 9u(M)-orbits of square-
integrable modulo center representations of M such they are subquotients of the
induced representations in the family iM,N (χρ) parametrized by χ ∈ 9(N ). But
that is easy. We can select a sufficiently small open compact subgroup L ⊂ M such
that every irreducible representation that appears as a subquotient of iM,N (χρ) for
some χ ∈9(N ) has a nonzero space of L-invariants.

Hence, we need to prove that there are finitely many 9u(M)-orbits of square-
integrable modulo center representations of M having a nonzero space of L-
invariants. This is proved in (iii) in the introduction of [Waldspurger 2003]. �

3. Proof of Theorem 1.1

We begin the proof of Theorem 1.1 with the following lemma:

Lemma 3.1. Let f be as in the statement of Theorem 1.1. Then, there exists a finite
set T f consisting of connected components in 2t(G) such that for each irreducible
tempered representation π ∈ Rept(G) such that f (π) 6= 0 there exists θ ∈ T f such
that π ∈ Rt(G)(θ).

Proof. This follows from the assumption (i) in Theorem 1.1 combined with
Lemma 2.8. �

By Lemma 3.1, we can decompose f into Z-linear forms f2 : Rt(G)→ C,
θ ∈ T f ,

f =
∑
θ∈T f

fθ ,

where fθ is defined as follows (see (2.7)):

fθ = f ◦ 1θ .

Obviously, each fθ satisfies the assumptions analogous to (i) and (ii) in Theorem 1.1.
Hence, in what follows we may assume that f = fθ for some θ ∈2t(G). By the

assumption (ii) of Theorem 1.1, we may assume that θ has the form θ =2t(M, σ ),
where M is a standard maximal Levi subgroup of G, or M = G, and σ is a σ is a
square-integrable modulo center representation of M. We observe that

ψ ∈9u(M) 7→ f (iG M(ψσ))

is a regular function by the assumption (ii) of Theorem 1.1. Thus, by definition this
means that it is a restriction of a regular function, say a, on the affine variety 9(M).
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By Lemma 2.6, we have

(3.2) a ∈ C[D]W (D),

where

(3.3) D =9(M)/Stab9(M)(σ ).

We refer to previous section for the notation.
Now, the following proposition completes the proof of the theorem.

Proposition 3.4. Let M be a standard maximal Levi subgroup of G, or M = G.
Assume that σ is a square-integrable modulo center representation of M. We define
D by (3.3), and let a be any function in C[D]W (D). Then, there exists F ∈ C∞c (G)
such that

tr(π(F))=
{

a(ψ) for π = iG M(ψσ), ψ ∈9
u(M),

0 for π = iG N (ψτ), ψ ∈9
u(N ),

for any other standard Levi subgroup N and a square-integrable modulo center
representation τ such that 2t(N , τ ) 6=2t(M, σ ).

Proof. The proof of Proposition 3.4 is a generalization of [Clozel 1986, §4.2,
Proposition 1] where the proof of existence of pseudocoefficients for semisimple G
is given based also on [Bernstein et al. 1986]. We consider only the case where M
is a standard maximal Levi subgroup of G. The case of M = G is about the
construction of a specific pseudocoefficient of σ . The proof is on the same lines
but considerably easier.

We remark that 9u(G) acts on 9u(M) in a usual way:

ψ 7→ χ |Mψ, χ ∈9u(G), ψ ∈9u(M).

For ψ ∈9u(M), the stabilizer

Stab9u(G)(iG M(ψσ))

is the group of all χ ∈9u(G) such that

χ iG M(ψσ)' iG M(ψσ).

We remind the reader that for all χ ∈9u(G) we have

χ iG M(ψσ)' iG M(χ |Mψσ).

Lemma 3.5. Assume that χ ∈9u(G) and ψ ∈9u(M). Then, for each irreducible
constituent π of iG M(ψσ), the multiplicity of χπ in χ iG M(ψσ) is the same as that
of π in iG M(ψσ).

Proof. This is obvious. �
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Lemma 3.6. Assume that for χ ∈9u(G) andψ ∈9u(M) there exists an irreducible
constituent π of iG M(ψσ) such that χπ is an irreducible constituent of iG M(ψσ).
Then, χ ∈ Stab9u(G)(iG M(ψσ)). In particular, we have

Stab9u(G)(π)⊂ Stab9u(G)(iG M(ψσ)).

Proof. First, χπ is a common constituent of iG M(ψσ) and iG M(χ |Mψσ). So, by
Lemma 2.6, there exists w ∈W (M) such that

χ |Mψσ = w(ψσ).

Then, again by Lemma 2.6, we obtain

χ iG M(ψσ)' iG M(χ |Mψσ)' iG M(ψσ). �

Lemma 3.7. Let ψ ∈9u(M). Then, we have the following:

(i) If χ ∈ Stab9u(G)(iG M(ψσ)), then a(χ |Mψ)= a(ψ).

(ii) For each η ∈9(G) and χ ∈ Stab9u(G)(iG M(ψσ)), we have

a(χ |Mη|Mψ)= a(η|Mψ).

Proof. We prove (i). Since χ ∈ Stab9u(G)(iG M(ψσ)), we obtain

iG M(χ |Mψσ)' χ iG M(ψσ)' iG M(ψσ).

So, by Lemma 2.6, there exists w ∈W (M) such that

χ |Mψσ ' w(ψσ)' w(ψ)w(σ).

By definition of W (D) (see (2.2)), this implies w ∈W (D), and the above relation
can be written as

χ |Mψσ ' ψww(ψ)σ,

where
ψw = w(ψ)

−1χ |Mψ.

Consequently, by the definition of the action of W (D) on D (see (2.3)) we obtain

χ |Mψ Stab9(M)(σ )= ψww(ψ)Stab9(M)(σ )= w.ψ Stab9(M)(σ ).

This implies a(χ |Mψ)= a(ψ). This proves (i).
To prove (ii), we may assume that η is unitary. Then, we obviously have

Stab9u(G)(iG M(η|Mψσ))= Stab9u(G)(iG M(ψσ)).

Now, the claim follows from (i). �
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Now, in order to complete the proof of Proposition 3.4, we apply [Bernstein et al.
1986, Theorem 1.2]. We define a Z-linear form f : R(G)→ C in several steps. We
warn the reader that we use the same letter for a functional different than one from
the statement of Theorem 1.1.

(1) For each 9u(G)-orbit O in 9u(M), we fix a representative ψO ∈ O and an
irreducible constituent πO in iG M(ψOσ). By Lemma 3.6, we have

(3.8) Stab9u(G)(πO)⊂ Stab9u(G)(iG M(ψOσ)).

The quotient is finite and if χ ranges over representatives of the quotient, then χπO
ranges over the set of all mutually nonequivalent irreducible subrepresentations in
iG M(ψOσ) which are 9u(G)-equivalent to πO. Any of those representations have
the same multiplicity in iG M(ψOσ). Let mO be the sum of their multiplicities. We
define

f (χπO)=
a(ψO)

mO
, χ ∈ Stab9u(G)(iG M(ψOσ)).

(2) For each χ ∈9u(G), we obviously have

Stab9u(G)(χπO)= Stab9u(G)(πO)

and
Stab9u(G)(iG M(χ |MψOσ))= Stab9u(G)(iG M(ψOσ)).

By, Lemma 3.5 and these remarks, the sum of multiplicities of 9u(G)-equivalent
representations of πO which belong to iG M(χ |MψOσ) is again mO. We let

f (χπO)=
a(χ |MψO)

mO
, χ ∈9u(G).

Lemma 3.7 (ii) shows that this is well-defined.

(3) For any other tempered irreducible representation (and, in particular, square-
integrable modulo center representation) π of G we let

f (π)= 0.

(4) For any quasitempered irreducible representation π of G, we can write π =χπu,
where χ ∈9r (G) and πu is tempered. We let

f (π)= 0,

if πu is not in9u(G)πO for any orbit O described in (1). But, if πu
∈9u(G)πO, for

some O, then we can write πu
= ψπO, for some ψ ∈9u(G) uniquely determined

modulo Stab9u(G)(πO). We let

f (π)=
a(χ |Mψ |MψO)

mO
.
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Using (3.8) and Lemma 3.7(ii) we see that this is well-defined.

(5) Finally, we define f on nontempered Langlands quotients (see Lemma 2.1).
Let f be equal to zero on all standard modules induced from proper parabolic
subgroups except in the following two obvious cases:

(a) The standard module iG M(χψσ), where χ ∈ 9(M)r,+ and ψ ∈ 9u(M). In
this case, we let

f (iG M(χψσ))= a(χψ).

(b) It is also possible that χ ∈9(M)r belongs to the positive Weyl chamber for
the opposite parabolic P (see the beginning of the previous section). Then,
there exists a unique standard maximal parabolic subgroup Q with standard
Levi N, and w ∈ G such that N = wMw−1. Now, by [Bernstein et al. 1986,
Lemma 5.3(iii)], we have

iG M(χψσ)= iG N (w(χ)w(ψ)w(σ))

in R(G). Also,w(χ)∈9(N )r,+. On the standard module iG N (w(χ)w(ψ)w(σ))

we let
f (iG N (w(χ)w(ψ)w(σ)))= a(χψ).

Thus, we have

f (iG M(χψσ))= f (iG N (w(χ)w(ψ)w(σ)))= a(χψ),

for χ ∈9(M)r such that w(χ) ∈9(N )r,+.

The third case is that χ ∈ 9(M)r is in neither chamber. Then, χ ∈ 9(G)r, by
standard description of unramified characters [Muić 2008, Section 2]. In this case

iG M(χψσ)= χ iG M(ψσ)

is a quasitempered representation, and, by

f (iG M(χψσ))= f (χ iG M(ψσ))= a(χψ),

by (1)–(4).
This completes the construction of Z-linear form f : R(G)→ C. In order to

complete the proof of Proposition 3.4, we just need to check that it satisfies the
assumptions of [Bernstein et al. 1986, Theorem 1.2]. First, let N be a standard Levi
subgroup of G contained in M, and ρ an irreducible supercuspidal representation
of N such that σ is an irreducible subquotient of iM,N (ρ). Then, by construction,
f is zero on irreducible representations which are not irreducible subquotients of
members of the family iM,N (χρ) parametrized by χ ∈9(N ). Then, as in the proof
of Lemma 2.8, there exists an open compact subgroup K such that f is zero on all
irreducible representations which do not have a nonzero K -invariant vector. This
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is (ii) in [Bernstein et al. 1986, §1.2]. It remains to check (i) in [Bernstein et al.
1986, §1.2]. We need to check that for an arbitrary standard Levi subgroup N of G
and an irreducible representation τ of N, the function χ 7→ f (iG,N (χτ)) is regular
on 9(N ). By Lemma 2.1 applied to N, τ is a Z-linear combination of standard
modules for N. So, instead of being irreducible, we may assume that τ is a standard
module for N, i.e.,

τ = iN N ′(χ
′τ ′),

N ′ is a standard Levi subgroup, τ ′ is an irreducible tempered representation of
N ′ and χ ′ ∈ 9r,+(N ′, N ). Here, by definition 9r,+(N ′, N ) is an analogue of
9r,+(N ′,G) def

= 9r,+(N ′) defined in the previous section. Now, by induction in
stages, we have

iG,N (χτ)= iG,N ′(χ |N ′χ
′τ ′).

We decompose χ =χrχu into its real part χr
∈9r (N ) and unitary part χu

∈9r (N ).
Let N ′′ be a standard Levi subgroup such that N ′ ⊂ N ′′ ⊂ N obtained by adjoining
all simple roots orthogonal to χr

|N ′χ
′ (see [Muić 2008, Section 2]). Then, χr

|N ′χ
′

is an unramified character of N ′′ which is not orthogonal to any simple root that
determines a standard parabolic subgroup of N ′′. In particular, there exists w ∈ G
such that N1

′′
= wN ′′w−1 is a standard Levi subgroup, and

w(χr
|N ′χ

′) ∈9r,+(N1
′′)

(see, for example, [Muić 2006, Section 1]). Also, we can write

iG,N ′(χ |N ′χ
′τ ′)= iG,N ′′(χ

r
|N ′χ

′ iN ′,N ′′(χ
u
|N ′τ

′)).

Obviously, iN ′,N ′′(χ
u
|N ′τ

′) is an direct sum of irreducible tempered representa-
tions, say τ ′′ of N ′′. This implies that iG,N ′(χ |N ′χ

′τ ′) is a direct sum induced by
representations

iG,N ′′(χ |N ′χ
′τ ′′).

By above, in R(G), we have

(3.9) iG,N ′′(χ |N ′χ
′τ ′′)= iG,N1 ′′(w(χ |N ′χ

′)w(τ ′′)).

But the last induced representation is a standard module. Now, by the construction
of f , f = 0 on all standard modules except those described in steps (1)–(5) above.
This means that we have one of the following two cases:

(a) N ′′ is conjugate to G. In this case N1
′′
= N ′′ = N ′ = G, τ ′ is a tempered

irreducible representation of G, and iG,N ′(χ |N ′χ
′τ ′) = χχ ′τ ′. Thus, by the con-

struction (1)–(4), χ 7→ f (χχ ′τ ′) is regular.
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(b) N ′′ is conjugate to M. In this case, N ′ = N ′′, and τ ′ must be conjugate to an
element of the orbit 9u(M)σ (see (5) above). The discussion in (5) implies that
χ 7→ f (iG,N ′(χ |N ′χ

′τ ′)) is regular.
This finally verifies (i) of [Bernstein et al. 1986, §1.2], and completes the proof

of the proposition. �
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419Spectrum of the Laplacian and the Jacobi operator on rotational CMC
hypersurfaces of spheres

OSCAR M. PERDOMO

435Mean curvature flow in a Riemannian manifold endowed with a Killing vector
field

LIANGJUN WENG

473Green correspondence and relative projectivity for pairs of adjoint functors
between triangulated categories

ALEXANDER ZIMMERMANN

0030-8730(202010)308:2;1-K

Pacific
JournalofM

athem
atics

2020
Vol.308,N

o.2


	1. Introduction
	2. Preliminaries
	3. Proof of Theorem 1.1
	Acknowledgements
	References
	
	

