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ELLIPTIC GRADIENT ESTIMATES
FOR A PARABOLIC EQUATION

WITH V -LAPLACIAN AND APPLICATIONS

JIAN-HONG WANG AND YU ZHENG

In this paper, we establish a local elliptic gradient estimate for positive
bounded solutions to a parabolic equation concerning the V -Laplacian(

1V − ∂t − q(x, t)
)
u(x, t)= F(u(x, t))

on an n-dimensional complete Riemannian manifold with the Bakry–Émery
Ricci curvature RicV bounded below, which is weaker than the m-Bakry–
Émery Ricci curvature Ricm

V bounded below considered by Chen and Zhao
(2018). As applications, we obtain the local elliptic gradient estimates for the
cases that F(u)= au ln u and auγ . Moreover, we prove parabolic Liouville
theorems for the solutions satisfying some growth restriction near infinity
and study the problem about conformal deformation of the scalar curvature.
In the end, we also derive a global Bernstein-type gradient estimate for the
above equation with F(u)= 0.

1. Introduction and main results

In this paper, we will study local and global elliptic gradient estimates for positive
smooth bounded solutions u(x, t) to a parabolic equation

(1.1)
(
1V − ∂t − q(x, t)

)
u(x, t)= F(u(x, t))

on an n-dimensional complete Riemannian manifold (Mn, g), where q(x, t) is a
function which is C2 in the x-variable and C1 in the t-variable, and F(u) is a C2

function of u.
The Equation (1.1) is an important extension of the Schrödinger equation. The

V -Laplacian is defined by
1V :=1− V · ∇,

where V is a smooth vector field.
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As in [Chen et al. 2012], we define the m-Bakry–Émery Ricci curvature

Ricm
V := Ric+1

2LV g− 1
m

V ∗⊗ V ∗

for any number m ≥ 0, where Ric is the Ricci tensor, LV is the Lie derivative in the
direction of V , and V ∗ is the metric-dual of V . When m = 0, it means that V ≡ 0
and Ricm

V returns to the usual Ricci tensor. The (∞)-Bakry–Émery Ricci curvature
is

RicV := Ric+ 1
2LV g.

It is easy to see that Ricm
V ≥ c implies RicV ≥ c, but not vice versa.

If RicV = λg for some real constant λ, then (Mn, g) is a Ricci soliton, which is
a natural extension of Einstein metric. A Ricci soliton is called shrinking, steady
or expanding, if λ > 0, λ= 0 or λ < 0, respectively. In particular, when V =∇ f
for some function f ∈ C∞(M), since L∇ f g = 2 Hess f (Hess is the Hessian with
respect to the metric g), a Ricci soliton becomes a gradient Ricci soliton. The
gradient Ricci soliton plays an important role in the formation of singularities of
the Ricci flow, and has been studied by many authors; see [Cao 2010; Hamilton
1995] for nice surveys.

Relating to the V -Laplacian, we have, for Ricm
V (0 < m <∞), the following

Bochner formula:

(1.2) 1
21V |∇u|2 = |∇∇u|2+〈∇u,∇1V u〉+Ricm

V (∇u,∇u)+ 1
m
|〈V,∇u〉|2

≥
(1V u)2

m+ n
+〈∇u,∇1V u〉+Ricm

V (∇u,∇u).

When m =∞, we have

(1.3) 1
21V |∇u|2 = |∇∇u|2+〈∇u,∇1V u〉+RicV (∇u,∇u).

The formula (1.2) looks like the classical Bochner formula on an (m+n)-
dimensional manifold with Ricci tensor, therefore many geometric results for
the Laplacian on n-dimensional manifolds with Ric bounded below can be possibly
extended to the V -Laplacian on (m+n)-dimensional manifolds with Ricm

V bounded
below, such as the mean curvature comparison theorem, the volume comparison
theorem, etc. However, for RicV , due to lack of the term 1

m |〈V,∇u〉|2, there seems
essential obstacles to obtaining some important conclusions when RicV is only
bounded below.

To the best of our knowledge, the gradient estimate technique was originated by
S.-T. Yau [1975] in the 1970s, who first proved a gradient estimate for the harmonic
function on manifolds. In the 1980s, this technique was developed by Li and Yau
[1986] for the heat equation on manifolds, and yielded a parabolic gradient estimate
(sometimes called Li–Yau’s gradient estimate). More precisely,
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Theorem A [Li and Yau 1986]. Let M be a complete manifold with dimension
n ≥ 2, Ric(M)≥−k, k ≥ 0. Suppose u is any positive solution to the heat equation
in B(x0, R)×[t0−T, t0]. Then

|∇u|2

u2 −
ut

u
≤

cn

R2 +
cn

T
+ cnk

in B
(
x0,

R
2

)
×
[
t0− T

2 , t0
]
. Here cn depends only on n.

Li and Yau [1986] also proved a parabolic gradient estimate for the Schrödinger
equation (

1− ∂t − q(x, t)
)
u(x, t)= 0,

which can be seen as the special case of (1.1) (see [Li and Yau 1986, Theorem 1.2]).
In the 1990s, R. Hamilton [1993] proved a global elliptic gradient estimate

(sometimes called Hamilton’s gradient estimate) for the heat equation on closed
manifolds.

Theorem B [Hamilton 1993]. Let M be an n-dimensional closed manifold with
Ric≥−K for nonnegative constant K , and let u be a positive solution of the heat
equation

∂u
∂t
=1u

with u ≤ A for all time. Then

t |∇u|2 ≤ (1+ 2K t)u2 ln A
u
.

Hamilton’s gradient estimate requires that the equation be defined on closed
manifolds. Later, Souplet and Zhang [2006] proved a local elliptic gradient estimate
(sometimes called Souplet–Zhang’s gradient estimate) for the heat equation on
noncompact manifolds by inserting a necessary logarithmic correction term.

Theorem C [Souplet and Zhang 2006]. Let M be a Riemannian manifold with
dimension n ≥ 2 and Ric ≥ −k, k ≥ 0. Assume u is any positive solution to the
heat equation in Q R,T = Bx0(R)×[t0−T, t0] ⊂ M× (−∞,∞) with u ≤ M. Then
there exists a dimensional constant c such that

|∇ ln u| ≤ c
(

1
R
+

1
√

T
+
√

k
)(

1+ ln M
u

)
in Q R/2, T/2.

Moreover, if M has nonnegative Ricci curvature and u is any positive solution
of the heat equation on M × (0,∞), then there exist dimensional constants c1, c2

such that
|∇ ln u| ≤ c1

1
√

t

(
c2+ ln u(x, 2t)

u(x, t)

)
for all x ∈ M and t > 0.
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Apart from the above theorems, Li–Yau’s, Hamilton’s and Souplet–Zhang’s
gradient estimates have been generalized to other linear and nonlinear equations
on Riemannian manifolds, see, e.g., [Brighton 2013; Chow and Hamilton 1997;
Chen and Qiu 2016; Cao and Zhang 2011; Huang and Ma 2016; Li and Xu 2011;
Li 1991; 2012; 2015; Ma 2006; Ruan 2007; Wu 2015; Yang 2008; Zhu 2016].

We now give the main theorems, a local elliptic (Souplet–Zhang’s) gradient
estimate for positive smooth solutions to (1.1), which is based on the arguments
of Souplet and Zhang [2006] for the heat equation, Brighton [2013] for the f -
harmonic function and J.-Y. Wu [2015] for the f -heat equation. It is important that
our gradient estimate does not depend on any assumption on V .

Theorem 1.1. Let (Mn, g) be an n-dimensional complete Riemannian manifold,
and let Bx0(R) be a geodesic ball of radius R around x0 and R ≥ 2. Assume
RicV ≥−k in Bx0(R) for some constant k ≥ 0. Let u be a positive solution of (1.1)
in Q R,T = Bx0(R)×[t0− T, t0] ⊂ Mn

× (−∞,∞) with u ≤ M for some positive
constant M , where t0 ∈ R and T > 0. Then there exists a dimensional constant
C(n) such that

(1.4) |∇ ln u|

≤ C(n)
(√

1+ |δ|
R
+

1
√

t − t0+ T
+

√
k+ λ1+ λ2+ λ3+ λ4

)(
1+ ln M

u

)
in Q R/2, T with t 6= t0− T . Here

λ1 =−min
{

0,min
Q R,T

F(u)
u

}
, λ2 =−min

{
0,min

Q R,T

(
F ′(u)− F(u)

u

)}
,

λ3 = 2 max
Q R,T
{q−} (q− =max{−q, 0} is the negative part of q),

λ4 =max
Q R,T

∣∣∇√|q|∣∣,
which are nonnegative constants, and δ =max{x |d(x,x0)=1}1V r(x).

Remark 1.2. Theorem 1.1 describes local elliptic gradient estimate under only
RicV bounded below, whose assumption on RicV is obviously weaker than the
assumption on Ricm

V (m <∞) which was considered by Chen and Zhao [2018].

On one hand, we apply Theorem 1.1 to analyze the existence of solutions to the
special case of (1.1). Moreover, we study the problem about conformal deformation
of the scalar curvature on complete noncompact manifolds; see Corollary 2.7 in
Section 2.

Theorem 1.3. Let (Mn, g) be an n-dimensional complete manifold with RicV ≥ 0.
Consider the equation

(1.5)
(
1V − ∂t − q(x)

)
u(x, t)= auγ
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for some constants a ≥ 0 and γ > 1. Suppose that q(x) 6= 0 and

q− = o(R−1),
∣∣∇√|q|∣∣= o(R−1) as R→∞.

Then there does not exist any positive ancient solution (that is, a solution defined
in all space and negative time) to (1.5) such that u(x, t)= o(r(x)1/2+ |t |1/2) near
infinity. In particular, if V ≡ 0, we only assume u(x, t) = o(r(x)+ |t |1/2) near
infinity.

Remark 1.4. If q(x) is a positive constant, it naturally satisfies the growth con-
ditions of q(x) in Theorem 1.3. There also exist many nontrivial functions q(x)
satisfying these growth conditions, such as q(x)= e−x in R1.

On the other hand, we apply Theorem 1.1 to prove the parabolic Liouville
theorem for the V -heat equation under certain growth conditions of solutions. This
result is similar to the cases of the heat equation and the f -heat equation, obtained
by Souplet and Zhang [2006] and Wu [2015], respectively.

Theorem 1.5. Let (Mn, g) be an n-dimensional complete Riemannian manifold
with RicV ≥ 0. Let u(x, t) be an eternal solution (that is, a solution defined in all
space and time) to

(1.6) (1V − ∂t)u = 0.

Then the following conclusions hold.

(i) If u(x, t)= eo(r1/2(x)+|t |1/2) near infinity and u > 0, then u is a constant.

(ii) If u(x, t)= o(r1/2(x)+ |t |1/2) near infinity, then u is a constant.

Remark 1.6. The growth condition of u is necessary. For example, let u = ex+2t ,
V =∇ f , f =−x in R1. Then u is a nonconstant positive eternal solution to (1.6).
Any complete shrinking or steady Ricci solitons satisfy RicV ≥0, hence Theorem 1.5
also holds on shrinking or steady Ricci solitons.

In the end, we derive a global Bernstein-type gradient estimate for positive
bounded solution to (1.1) with F(u)= 0 on complete Riemannian manifolds with
RicV bounded below, which is inspired by the works of Kotschwar [2007] for the
heat equation and Wu [2015] for the f -heat equation.

Theorem 1.7. Let (Mn, g) be an n-dimensional complete Riemannian manifold
with RicV ≥−k for some constant k ≥ 0. Let u be a solution to

(1.7)
(
1V − ∂t − q(x, t)

)
u(x, t)= 0

in Mn
×[0, T ] with 0< T <∞. Suppose that

0< u ≤ M, q−(x, t)≤ α and
∣∣∇√|q|∣∣≤ β,
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where M, α, β are positive constants. Then there exists an absolute constant C such
that

t |∇u|2 ≤ C M2(1+ (k+α+β)T )
in Mn

×[0, T ].

The rest of this paper is organized as follows. In Section 2, we give a useful
lemma and a cut-off function to prove Theorem 1.1 via the maximum principle
and V -Laplacian comparison theorem. As applications of Theorem 1.1, we prove
Theorems 1.3 and 1.5. Moreover, we apply Theorem 1.3 to discuss Yamabe type
problems and obtain Corollary 2.7. In Section 3, we prove Theorem 1.7 by using
another local elliptic gradient estimate for (1.7).

2. Local elliptic gradient estimate

In this section, we first follow the techniques of [Souplet and Zhang 2006; Brighton
2013; Wu 2015] to prove Theorem 1.1. Notice that 0< u ≤ M is a solution of (1.1).
Define a smooth function

f = ln u
M

in Q R,T .

Obviously, f ≤ 0. By (1.1), we have

(2.1) (1V −∂t) f +|∇ f |2−q(x, t)= A( f ), where A( f )= F(Me f )

Me f =
F(u)

u
.

Let

g := |∇ ln(1− f )|2 =
|∇ f |2

(1− f )2
,

we have the following lemma.

Lemma 2.1. Let (Mn, g) be an n-dimensional complete Riemannian manifold with
RicV ≥−k for some constant k ≥ 0. Then g satisfies

(2.2) (1V − ∂t)g ≥
2 f

1− f
〈∇ f,∇g〉+2(1− f )g2

−2(k+λ1+λ2+λ3)g−2λ2
4,

where λ1, λ2, λ3, λ4 are the same as in Theorem 1.1.

Proof. Let h = ln(1 − f ), i.e., g = |∇h|2. By the Bochner formula (1.3) and
RicV ≥−k, we have

(2.3) 1V g = 2
(
|∇∇h|2+〈∇h,∇1V h〉+RicV (∇h,∇h)

)
≥ 2

(
〈∇h,∇1V h〉− k|∇h|2

)
.
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Since ∇h =− ∇ f
1− f and

1V h =1h−〈V,∇h〉 = −
(1− f )1 f + |∇ f |2

(1− f )2
+

〈
V,
∇ f

1− f

〉
=−

1V f
1− f

−
|∇ f |2

(1− f )2
.

By a direct computation, we obtain

〈∇h,∇1V h〉 =
2∇∇ f (∇ f,∇ f )

(1− f )3
+

2|∇ f |4

(1− f )4
+
〈∇ f,∇1V f 〉
(1− f )2

+
|∇ f |21V f
(1− f )3

.

Hence, (2.3) becomes

(2.4) 1V g ≥
4∇∇ f (∇ f,∇ f )

(1− f )3
+

4|∇ f |4

(1− f )4
+

2〈∇ f,∇1V f 〉
(1− f )2

+
2|∇ f |21V f
(1− f )3

− 2k
|∇ f |2

(1− f )2
.

By using (2.1), we obtain

(2.5) ∂t g =
2〈∇ f,∇ ft 〉

(1− f )2
+

2|∇ f |2 ft

(1− f )3

=
2〈∇ f,∇1V f 〉
(1− f )2

+
4∇∇ f (∇ f,∇ f )

(1− f )2
+

2|∇ f |21V f
(1− f )3

+
2|∇ f |4

(1− f )3

−
2〈∇ f,∇(q + A)〉

(1− f )2
−

2(q + A)|∇ f |2

(1− f )3
.

Combining (2.4) and (2.5), we have

(2.6) (1V − ∂t)g ≥
4∇∇ f (∇ f,∇ f )

(1− f )3
+

4|∇ f |4

(1− f )4
−

4∇∇ f (∇ f,∇ f )
(1− f )2

−
2|∇ f |4

(1− f )3

− 2k
|∇ f |2

(1− f )2
+

2〈∇ f,∇(q + A)〉
(1− f )2

+
2(q + A)|∇ f |2

(1− f )3
.

Since g = |∇ f |2

(1− f )2 , then

〈∇g,∇ f 〉 =
2∇∇ f (∇ f,∇ f )

(1− f )2
+

2|∇ f |4

(1− f )3
,

which implies

(2.7) 0=−2〈∇g,∇ f 〉+
4∇∇ f (∇ f,∇ f )

(1− f )2
+

4|∇ f |4

(1− f )3

+
1

1− f

(
2〈∇g,∇ f 〉−

4|∇ f |4

(1− f )3

)
−

4∇∇ f (∇ f,∇ f )
(1− f )3

.
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From (2.7), we know that

4∇∇ f (∇ f,∇ f )
(1− f )3

+
4|∇ f |4

(1− f )4
−

4∇∇ f (∇ f,∇ f )
(1− f )2

−
2|∇ f |4

(1− f )3

=
2 f

1− f
〈∇g,∇ f 〉+

2|∇ f |4

(1− f )3
.

Using the above equality, (2.6) becomes

(2.8) (1V − ∂t)g ≥
2 f

1− f
〈∇ f,∇g〉+ 2(1− f )g2

− 2
(

k− A′( f )− A
1− f

)
g

−
2

1− f
|∇q|
√

g+
2q

1− f
g.

Since 0< 1
1− f ≤ 1 and

(2.9) 2|∇q|
√

g ≤ 2|q|g+
|∇q|2

2|q|
= 2|q|g+ 2

∣∣∇√|q|∣∣2.
Noticing that the inequality (2.9) is trivial when q = 0. Hence,

−
2|∇q|

√
g

1− f
≥−

2|q|g
1− f

−
2
∣∣∇√|q|∣∣2

1− f
≥−

2|q|g
1− f

− 2
∣∣∇√|q|∣∣2.

Using this inequality, (2.8) can be rewritten as

(1V − ∂t)g ≥
2 f

1− f
〈∇ f,∇g〉+ 2(1− f )g2

− 2
(

k− A′( f )−
A

1− f
+

2q−

1− f

)
g

− 2
∣∣∇√|q|∣∣2.

By the definitions of λ1, λ2, λ3, λ4, we have

−
A

1− f
≤

A−

1− f
≤ A− =−min{0,

F(u)
u
} ≤ λ1,

−A′( f )=−
(
F ′(u)−

F(u)
u

)
≤ λ2,

2q−

1− f
≤ λ3,

∣∣∇√|q|∣∣≤ λ4.

Hence, (2.2) immediately follows. �

In order to prove Theorem 1.1, we introduce a useful cut-off function which
originated with Li and Yau [1986] (see also [Bailesteanu et al. 2010; Souplet and
Zhang 2006]).

Lemma 2.2. Fix t0 ∈ R and T > 0. For any given τ ∈ (t0−T, t0], there exists a
smooth function η̄ : [0,∞)×[t0−T, t0] → R satisfying following propositions:

(1) 0 ≤ η̄(r, t) ≤ 1 in [0, R] × [t0−T, t0], and it is supported in a subset of
[0, R]× [t0−T, t0].
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(2) η̄(r, t)= 1 and ∂r η̄(r, t)= 0 in
[
0, R

2

]
×[τ, t0] and

[
0, R

2

]
×[t0−T, t0], respec-

tively.

(3) |∂t η̄| ≤ C η̄1/2/(τ − t0 + T ) in [0,∞)× [t0−T, t0] for some constant C > 0,
and η̄(r, t0− T )= 0 for all r ∈ [0,∞).

(4) −(Cε/R)η̄ε ≤ ∂r η̄ ≤ 0 and |∂2
r η̄| ≤ Cε η̄ε/R2 in [0,∞)×[t0−T, t0] for every

ε ∈ (0, 1) with some constant Cε depending on ε.

Now, we apply Lemmas 2.1 and 2.2 to prove Theorem 1.1 via the maximum
principle and the V-Laplacian comparison theorem [Wu 2018, Theorem 2.1] in a
local space-time supported set.

Proof of Theorem 1.1. Fix any number τ ∈ (t0−T, t0], we will show that (1.4) holds
at (x, τ ) for all x ∈ Bx0

( R
2

)
. The assertion of theorem will immediately follows due

to τ is arbitrary.
Choose a cut-off function η̄(r, t) satisfying the propositions of Lemma 2.2. Let

η : M×[t0−T, t0]→ R such that η(x, t)= η̄(r(x), t), where r(x)= d(x, x0). It is
easy to see that η(x, t) is supported in Q R,T . Our aim is to calculate (1V −∂t)(ηg)
and estimate each term at a space-time point where ηg attains its maximum.

From Lemma 2.1, we conclude

(2.10) (1V − ∂t)(ηg)−
(

2 f
1− f

∇ f + 2
∇η

η

)
∇(ηg)

≥ 2(1− f )ηg2
−

(
2 f

1− f
〈∇ f,∇η〉

)
g− 2

|∇η|2

η
g+ (1V η)g− ηt g

− 2(k+ λ1+ λ2+ λ3)ηg− 2λ2
4η.

Assume
(ηg)(x1, t1)= max

Bx0 (R)×[t0−T,τ ]
(ηg).

We may assume (ηg)(x1, t1) > 0, otherwise, g(x, τ )≤ 0 and (1.4) naturally holds at
(x, τ ) whenever d(x, x0) <

R
2 . Notice that t1 6= t0− T due to (ηg)(x1, t1) > 0. We

may also assume that η(x, t) is smooth at (x1, t1) by the standard Calabi argument
[1958]. Using the maximum principle, at (x1, t1), we have

1V (ηg)≤ 0, (ηg)t ≥ 0 and ∇(ηg)= 0.

Hence, (2.10) can be simplified as

(2.11) 2(1− f )ηg2
≤

(
2 f

1− f
〈∇ f,∇η〉+ 2

|∇η|2

η

)
g− (1V η)g+ ηt g

+ 2(k+ λ1+ λ2+ λ3)ηg+ 2λ2
4η.

at (x1, t1). In the following, we will estimate each term on the right hand side of
(2.11) and obtain the desired gradient estimate in Theorem 1.1. We will get it by
two steps.
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Case I. Assume x1 /∈ Bx0(1). Since RicV ≥−k and d(x1, x0)≥ 1 in Bx0(R), R≥ 2,
by the V -Laplacian comparison theorem, we have

1V r(x1)≤ δ+ k(R− 1),

where δ =max{x |d(x,x0)=1}1V r(x).
Below the Young’s inequality and Lemma 2.2 will be repeatedly used in the

following estimate. Let c be a constant depending only on n whose value may
change from line to line. Then we have the following inequalities:

2 f
1− f

〈∇ f,∇η〉g ≤ 2| f ||∇η|g3/2

= 2
[
η(1− f )g2]3/4

·
| f ||∇η|[

η(1− f )
]3/4

≤ η(1− f )g2
+ c

f 4
|∇η|4

(1− f )3η3

≤ η(1− f )g2
+ c

f 4

R4(1− f )3
.

(2.12)

2
|∇η|2

η
g ≤ 1

8ηg2
+ 8
|∇η|4

η3 ≤
1
8ηg2
+

c
R4 .(2.13)

−(1V η)g =−
(
∂2

r η̄+ ∂r η̄1V r
)
g

≤

(
|∂2

r η̄| +
(
|δ| + k(R− 1)

)
|∂r η̄|

)
g

= η1/2g
|∂2

r η̄|

η̄1/2 +
(
|δ| + k(R− 1)

)
η1/2g

|∂r η̄|

η̄1/2

≤
1
8ηg2
+ c

(
|∂2

r η̄|
2

η̄
+ δ2 |∂r η̄|

2

η̄
+ k2(R− 1)2

|∂r η̄|
2

η̄

)
≤

1
8ηg2
+

c
R4 +

cδ2

R2 + ck2 (R−1)2

R2

≤
1
8ηg2
+

c
R4 +

cδ2

R2 + ck2.

(2.14)

|ηt |g = η1/2g
|η̄t |

η̄1/2 ≤
1
8ηg2
+ 8
|η̄t |

2

η̄
≤

1
8ηg2
+

c
(τ−t0+T )2

.(2.15)

2(k+ λ1+ λ2+ λ3)ηg ≤ 1
8ηg2
+ 8(k+ λ1+ λ2+ λ3)

2.(2.16)

2λ2
4η ≤ 2λ2

4.(2.17)
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Substituting (2.12)–(2.17) into the right hand side of (2.11), at (x1, t1), we have

2η(1− f )g2
≤ η(1− f )g2

+
1
2ηg2
+c

f 4

R4(1− f )3
+

c
R4 +

cδ2

R2 +ck2
+

c
(τ−t0+T )2

+8(k+ λ1+ λ2+ λ3)
2
+ 2λ2

4.

Since 1− f ≥ 1, the above estimate implies

(ηg2)(x1, t1)≤
1

1− f

(
1
2ηg2
+ c

f 4

R4(1− f )3
+

c
R4 +

cδ2

R2 + ck2
+

c
(τ−t0+T )2

+ 8(k+ λ1+ λ2+ λ3)
2
+ 2λ2

4

)
≤

1
2ηg2
+ c

f 4

R4(1− f )4
+

c
R4 +

cδ2

R2 + ck2
+

c
(τ−t0+T )2

+ 8(k+ λ1+ λ2+ λ3)
2
+ 2λ2

4

≤
1
2ηg2
+

c
R4 +

cδ2

R2 +
c

(τ−t0+T )2
+ c(k+ λ1+ λ2+ λ3+ λ4)

2.

Since 0≤ η ≤ 1, then

(ηg)2(x1, t1)≤ (ηg2)(x1, t1)

≤
c

R4 +
cδ2

R2 +
c

(τ−t0+T )2
+ c(k+ λ1+ λ2+ λ3+ λ4)

2.

Since η(x, τ )= 1 when x ∈ Bx0

( R
2

)
by the proposition (2) in Lemma 2.2 and R ≥ 2,

we obtain

g(x, τ )= (ηg)(x, τ )≤ (ηg)(x1, t1)

≤
c

R2 +
c|δ|
R
+

c
τ−t0+T

+ c(k+ λ1+ λ2+ λ3+ λ4)

≤
c(1+|δ|)

R
+

c
τ−t0+T

+ c(k+ λ1+ λ2+ λ3+ λ4)

for all x ∈ Bx0

( R
2

)
.

Case II. Assume x1 ∈ Bx0(1)⊂ Bx0

( R
2

)
when R ≥ 2. In this case, η is a constant

in space direction in Q R/2,T . Hence (2.11) can be simplified as

2(1− f )ηg2
≤ ηt g+ 2(k+ λ1+ λ2+ λ3)ηg+ 2λ2

4η

at (x1, t1). Since 1− f ≥ 1, this implies

2ηg2
≤ ηt g+ 2(k+ λ1+ λ2+ λ3)ηg+ 2λ2

4η

at (x1, t1). Substituting (2.15)–(2.17) into the right hand side of the above inequality,
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we have

(ηg2)(x1, t1)≤ c
( 1
(τ−t0+T )2

+ (k+ λ1+ λ2+ λ3)
2
+ λ2

4

)
.

Since 0≤ η ≤ 1, we have

(ηg)(x1, t1)≤ c
( 1
τ−t0+T

+ k+ λ1+ λ2+ λ3+ λ4

)
.

Since η(x, τ )= 1 whenever x ∈ Bx0

( R
2

)
,

g(x, τ )= (ηg)(x, τ )≤ (ηg)(x1, t1)

≤ c
( 1
τ−t0+T

+ k+ λ1+ λ2+ λ3+ λ4

)
for all x ∈ Bx0

( R
2

)
.

Combining the above two cases, by the definition of g and the fact that τ ∈
(t0−T, t0] was chosen arbitrarily, we obtain

|∇ f |
1− f

(x, t)≤ C(n)
(√

1+ |δ|
R
+

1
√

t − t0+ T
+

√
k+ λ1+ λ2+ λ3+ λ4

)
for any (x, t) ∈ Q R/2,T with t 6= t0 − T . Substituting f = ln u

M into the above
estimate completes the proof of theorem. �

Remark 2.3. If q(x, t)= F(u)=0, V =∇ f for some function f , then Theorem 1.1
is the same as Theorem 1.1 in [Wu 2018] for the weighted heat equation. From the
proof of Theorem 1.1, we know that the term

√

(1+ |δ|)/R in (1.4) can be changed
into 1

R whenever V ≡ 0.

When V is bounded, we can prove another gradient estimate of (1.1) in any
geodesic ball. Its proof is similar to that of Theorem 1.1 except that the V -Laplacian
comparison theorem in Theorem 1.1 is replaced by another V -Laplacian comparison
theorem [Wu 2018, Theorem 2.2]. We only provide the conclusion and omit the
proof.

Theorem 2.4. Let (Mn, g) be an n-dimensional complete Riemannian manifold.
Assume RicV ≥−k and |V | ≤ a in Bx0(R) for some nonnegative constants k and a.
Let 0 < u ≤ M be a solution of (1.1) in Q R,T . Then there exists a dimensional
constant C(n) such that

(2.18) |∇ ln u| ≤C(n)
(√

1+a
R
+

1
√

t−t0+T
+

√
k+λ1+λ2+λ3+λ4

)(
1+ln M

u

)
in Q R/2, T with t 6= t0− T , where λ1, λ2, λ3, λ4 are the same as in Theorem 1.1.
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As applications of Theorem 1.1, we can derive some corollaries by considering
the special cases of (1.1). More precisely,(

1V − ∂t − q(x, t)
)
u = au ln u,(2.19) (

1V − ∂t − q(x, t)
)
u = auγ ,(2.20)

where a and γ are constants.
When V ≡ 0, the elliptic version of (2.19) is closely related to the gradient Ricci

soliton; (see [Ma 2006]). In fact, consider the gradient Ricci soliton

Ric+∇∇ f + λg = 0,

where λ is a constant. Taking the trace of the above equality, we have

R+1 f + nλ= 0.

Using the contracted Bianchi identity and Ricci identity, then

|∇ f |2+ R− 2λ f = c
for some constant c. Hence

|∇ f |2−1 f − 2λ f = nλ+ c.

Setting u = e− f , we obtain

1u− (c+ nλ)u =−2λu ln u.

When V ≡ 0, the elliptic version of (2.20) is related to conformal deformation of
the scalar curvature on manifolds. In fact, for any n-dimensional (n ≥ 3) manifold,
consider a conformal metric g̃ = u4/(n−2)g for some positive function u. Then the
scalar curvature s̃ of metric g̃ related to the scalar curvature s of metric g is given
by

(2.21) 1u− n−2
4(n−1)

su+ n−2
4(n−1)

s̃u(n+2)/(n−2)
= 0.

We have known that if M is compact and s̃ is a constant, the existence of u is the
well-known Yamabe problem which has been solved by R. Schoen [1984] (see also
[Lee and Parker 1987; Mastrolia et al. 2012] for more details).

Corollary 2.5. Let (Mn, g) be an n-dimensional complete Riemannian manifold
with RicV ≥ −k for some constant k ≥ 0. Let 0 < u ≤ M be a smooth solution
of (2.19) with a ≤ 0 in Mn

× [t0−T, t0]. Suppose that q− ≤ c1 and
∣∣∇√|q|∣∣ ≤ c2

for some constants c1, c2. Then there exists a dimensional constant c(n) such that

(2.22) |∇ ln u| ≤ c(n)
(

1
√

t−t0+T
+

√
k− a ln(max{M, 1})− a+ 2c1+ c2

)
·

(
1+ ln M

u

)
in Mn

× (t0−T, t0].
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Proof. Since F(u) = au ln u (a ≤ 0) and 0 < u ≤ M , by the definitions of λi

(i = 1, 2, 3, 4), it is easy to obtain

λ1 =−a ln(max{M, 1}), λ2 =−a, λ3 = 2c1, λ4 = c2.

Applying Theorem 1.1 and setting R→∞, (2.22) immediately follows. �

Corollary 2.6. Let (Mn, g), q− and
∣∣∇√|q|∣∣ be the same as in Corollary 2.5. Let

0 < u ≤ M be a smooth solution of (2.20) with γ > 1 in Mn
× [t0−T, t0]. Then

there exists a dimensional constant c(n) such that

(2.23) |∇ ln u| ≤ c(n)
(

1
√

t−t0+T
+

√
k+ sgn a−1

2
(aγMγ−1)+ 2c1+ c2

)
·

(
1+ ln M

u

)
in Mn

× (t0−T, t0], where

sgn a =


1 if a > 0,
0 if a = 0,
−1 if a < 0.

Proof. Since F(u)= auγ (γ > 1) and 0< u ≤ M , by the direct calculations, we
have

(i) If a ≥ 0, then λ1 = λ2 = 0.

(ii) If a < 0, then λ1 =−aMγ−1, λ2 =−a(γ − 1)Mγ−1.

Using (1.4) and letting R→∞, the desired result (2.23) follows. �

Next, we apply Theorem 1.1 to prove Theorem 1.3 which analyze the existence
of solutions to the parabolic equation (1.5) when the coefficient q(x) and solutions
u(x, t) satisfying some growth conditions. Furthermore, we can use Theorem 1.3 to
study the problem about conformal deformation of the scalar curvature on complete
manifolds.

Proof of Theorem 1.3. From the proof of Theorem 1.1 and Corollary 2.6, since
a ≥ 0, then λ1 = λ2 = 0, we get a local elliptic gradient estimate for (1.5):

(2.24) |∇ ln u| ≤ c(n)
(√

1+|δ|
R
+

1
√

t−t0+T
+

√
λ3+ λ4

)(
1+ ln M

u

)
for any (x, t) ∈ Q R

2 ,T
with t 6= t0− T , where λ3, λ4 be defined in Theorem 1.1.

For any fixed space-time point (x0, t0), by the growth assumptions of u(x, t) and
q(x), applying (2.24) to u(x0, t0) in the space-time set Q R,R = Bx0(R)×[t0−R, t0],
then

(2.25) |∇ ln u(x0, t0)| ≤ c(n)
(√

1+|δ|
R
+o(R−1/2)

)(
1+o(ln

√
R)−ln u(x0, t0)

)
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for sufficiently large R ≥ 2.
Notice that ln u(x0, t0) is a fixed value, which implies

|∇u(x0, t0)| = 0 as R→∞.

Since (x0, t0)was chosen arbitrarily, then u(x, t)≡u(t), and Equation (1.5) becomes

(2.26) u′(t)=−q(x)u(t)− auγ (t).

Case I. a = 0.
In this case, u′(t) = −q(x)u(t). Since q(x) 6= 0, we solve this equation and

obtain

(2.27) u(t)= Ce−q(x)t ,

where C is an arbitrary constant.
From (2.27), we know q(x) = c for some constant c > 0 due to the growth

assumption of q−. Then

u(t)= u(0)e−ct
= u(0)ec|t |,

which contradicts the assumption that u(x, t)= o(r(x)1/2+ |t |1/2) near infinity.

Case II. a > 0.
In this case, (2.26) can be regraded as a one-order linear ordinary equation which

has a general solution

(2.28) u1−γ (t)= Ce(γ−1)q(x)t
−

a
q(x)

,

where C is an arbitrary constant.
By the same way, we know q(x)= c for some constant c > 0, then

u1−γ (t)=
(

u1−γ (0)+ a
c

)
e(γ−1)ct

−
a
c
.

Since a, c, γ − 1 and u(0) are positive constants, which imply

u1−γ (t)→−a
c
< 0 as t→−∞,

this is impossible since u > 0.
As for the case V ≡ 0, the term

√
(1+ |δ|)/R in (2.24) can be changed into 1

R .
Since u(x, t)=o(r(x)+|t |1/2) near infinity, we apply (2.24) to u(x0, t0) in Q R,R2 =

Bx0(R)×[t0−R2, t0] and the proof is almost the same as before except that (2.25)
is replaced by

|∇ ln u(x0, t0)| ≤ c(n)
( 1

R
+ o(R−1/2)

)(
1+ o(ln R)− ln u(x0, t0)

)
. �

As an application of Theorem 1.3, we discuss the Yamabe type problem of
complete Riemannian manifolds and immediately obtain the following corollary.
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Corollary 2.7. Let (Mn, g) be an n-dimensional (n ≥ 3) complete Riemannian
manifold with Ric≥ 0 and the scalar curvature s of g satisfying

sup
Bx0 (R)

|∇
√

s| = o(R−1)

as R→∞. Then there does not exist complete metric

g̃ ∈
{
u4/(n−2)g | 0< u ∈ C∞(M) and u(x)= o(r(x)1/2)

}
,

such that the scalar curvature s̃ of g̃ is some nonpositive constant.

Proof. It is equivalent to prove that if s̃ is some nonpositive constant, then there
does not exist any positive solution to (2.21) satisfying u(x) = o(r(x)1/2). In
Theorem 1.3, let

u(x, t)= u(x), V = 0, q(x)= n−2
4(n−1)

s ≥ 0,

a =− n−2
4(n−1)

s̃ ≥ 0, γ =
n+2
n−2

> 1,

we know that q(x) satisfies the growth conditions in Theorem 1.3 due to the
assumptions on s, hence the conclusion follows. �

We also apply Theorem 1.1 to derive the parabolic Liouville theorem for the
V -heat equation which extends some known results.

Proof of Theorem 1.5. Since F(u)= q = 0, using Theorem 1.1, we have

(2.29) |∇ ln u| ≤ C(n)
(√

1+|δ|
R
+

1
√

t−t0+T

)(
1+ ln M

u

)
.

(i) By the assumption of u(x, t), we have

ln u = o(r1/2(x)+ |t |1/2)

near infinity. For any space-time point (x0, t0), we apply (2.29) to u(x0, t0) in the
space-time set Q R,R = Bx0(R)×[t0−R, t0], then

|∇u(x0, t0)|
u(x0, t0)

≤
C(n, δ)
√

R

(
1+ o(

√
R)− ln u(x0, t0)

)
for sufficiently large R ≥ 2.

For the fixed value ln u(x0, t0), setting R→∞ in the above inequality, we get

|∇u(x0, t0)| = 0.

Then u is only a time-dependent function due to (x0, t0) being arbitrary. Moreover,
u is a constant by using (1.6).
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(ii) Let MR = supQ√R,
√

R
|u|. Considering the function U = u+ 2M2R , then

M2R ≤U (x, t)≤ 3M2R

whenever (x, t) ∈ Q2
√

R, 2
√

R . For any fixed point (x0, t0), applying (2.29) to U , we
have

|∇u(x0, t0)|
u(x0, t0)+ 2M2R

≤
C(n, δ)
√

R

for sufficiently large R ≥ 2. By the assumption of u(x, t), we have M2R = o(R1/4).
The conclusion immediately follows by taking R→∞. �

3. Global elliptic gradient estimate

In this section, we follow the arguments of Kotschwar [2007] and Wu [2015] to
prove Theorem 1.7. The key is to derive a local elliptic gradient estimate which
is different from Souplet–Zhang’s gradient estimate. Our proof is based on the
technique of Shi [1989] from the estimation of derivatives of curvature under the
Ricci flow. Firstly, we give the following lemma.

Lemma 3.1. Define

G(x, t) := (4M2
+ u2)|∇u|2.

Under the same assumptions as in Theorem 1.7, we have

(3.1) (∂t −1V )G ≤
(5

2 k+ 7
2α
)
G− 2

125M4 G2
+ 50β2 M4.

Proof. By straightforward calculations, we obtain

(∂t −1V )u2
=−2|∇u|2− 2qu2.

(∂t −1V )|∇u|2 ≤−2|∇∇u|2− 2u〈∇u,∇q〉− 2q|∇u|2+ 2k|∇u|2.

Then,

(3.2) (∂t−1V )G = (∂t−1V )u2
·|∇u|2+(4M2

+u2)(∂t−1V )|∇u|2

−2〈∇u2,∇|∇u|2〉

≤ (−2|∇u|2−2qu2)|∇u|2

+(4M2
+u2)

(
−2|∇∇u|2−2u〈∇u,∇q〉−2q|∇u|2+2k|∇u|2

)
−8u∇∇u(∇u,∇u).

Since

−8u∇∇u(∇u,∇u)≤ 10u2
|∇∇u|2+ 8

5 |∇u|4, 5u2
≤ 4M2

+ u2
≤ 5M2,
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the inequality (3.2) can be simplified as

(3.3) (∂t −1V )G ≤ 10k M2
|∇u|2− 2

5 |∇u|4− 2qu2
|∇u|2

− 2(4M2
+ u2)u〈∇u,∇q〉− 2(4M2

+ u2)q|∇u|2.

Using the Young’s inequality, then

−2(4M2
+ u2)u〈∇u,∇q〉 ≤ 10M2u|∇u||∇q|

≤ 2|q|u2
|∇u|2+ 25

2
|∇q|2

|q|
M4

= 2|q|u2
|∇u|2+ 50

∣∣∇√|q|∣∣2 M4.

Notice that
−2(4M2

+ u2)q|∇u|2 ≤ 10M2q−|∇u|2,

and
|q| − q = 2q−.

Hence, (3.3) can be written as

(∂t −1V )G ≤ 10k M2
|∇u|2− 2

5 |∇u|4+ 4q−u2
|∇u|2+ 10M2q−|∇u|2

+ 50
∣∣∇√|q|∣∣2 M4

≤−
2
5 |∇u|4+ (10k+ 14α)M2

|∇u|2+ 50β2 M4,

where we used the assumptions q− ≤ α and
∣∣∇√|q|∣∣≤ β.

By the definition of G, we know

4M2
|∇u|2 ≤ G ≤ 5M2

|∇u|2.

Hence, the inequality (3.1) follows. �

Now, applying Lemma 3.1, we give a proof of Theorem 1.7.

Proof of Theorem 1.7. As in [Li and Yau 1986], we take a cut-off function φ̄(s)
which is defined in [0,∞) such that 0≤ φ̄(s)≤ 1 and

φ̄(s)= 1 for s ∈
[
0, 1

2

]
, φ̄(s)= 0 for s ∈ [1,∞).

φ̄(s) also satisfies

−c1 ≤
φ̄′(s)
φ̄1/2(s)

≤ 0, φ̄′′(s)≥−c2

for positive absolute constants c1 and c2.
Let φ(x)= φ̄

( r(x)
R

)
for R ≥ 2, where r(x) denotes the distance from the fixed

point x0 to x . Using the argument of Calabi [1958], we may assume φ(x) ∈C2(M)
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with support in Bx0(R). By direct calculations, we have

(3.4)
|∇φ|2

φ
≤

c3

R2 , 1Vφ =
φ̄′1V r

R
+
φ̄′′

R2

for some positive absolute constant c3.
Considering tφG in Bx0(R)×[0, T ], using Lemma 3.1, we get

(3.5) (∂t −1V )(tφG)≤ φG+ tφ
(( 5

2 k+ 7
2α
)
G− 2

125M4 G2
+ 50β2 M4

)
− tG1Vφ− 2t〈∇φ,∇G〉

Assume

(tφG)(x1, t1)= max
Bx0 (R)×(0,T ]

(tφG).

If tφG is not identically zero (i.e., u is not a constant in suppφ), then

(tφG)(x1, t1) > 0.

By the maximum principle, at (x1, t1),

∇(tφG)= 0, (∂t −1V )(tφG)≥ 0.

In the following, we will estimate the each term on the right hand side of (3.5) at
(x1, t1).

Case I. Assume x1 ∈ Bx0(1)⊂ Bx0

( R
2

)
because of R ≥ 2.

In this case, φ≡ 1 implies ∇φ=1Vφ= 0. The inequality (3.5) can be simplified
as

0≤ G+ t
((5

2 k+ 7
2α
)
G− 2G2

125M4 + 50β2 M4
)
.

It is equivalent to

2
125M4 tG2

−
((5

2 k+ 7
2α
)
t + 1

)
G− 50β2 M4t ≤ 0

at (x1, t1). Since 0< t ≤ T , we have

2
125M4 (tG)2−

((5
2 k+ 7

2α
)
T + 1

)
tG− 50β2 M4T 2

≤ 0.

At this time, (x1, t1) is also the maximum point of tG in Bx0

( R
2

)
× (0, T ]. Hence,

we obtain

(tG)(x, t)≤ (tG)(x1, t1)≤ C M4(1+ (k+α+β)T )
in Bx0

( R
2

)
×[0, T ].
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Case II. Assume x1 /∈ Bx0(1).
In this case, since RicV ≥ −k, d(x1, x0) ≥ 1 and R ≥ 2, by the V -Laplacian

comparison theorem, we have

1V r(x1)≤ δ+ k(R− 1)≤ |δ| + k(R− 1),

where δ =max{x |d(x,x0)=1}1V r(x). Hence,

(3.6) 1Vφ ≥−
c1

R

(
|δ| + k(R− 1)

)
−

c2

R2 .

By using Lemma 3.1, (3.4) and (3.6), at (x1, t1), we have

(3.7) 0≤ (∂t −1V )(tφG)

= φG+ tφ(∂t −1V )G− tG1Vφ− 2t〈∇φ,∇G〉

=

(
φ+ 2t |∇φ|

2

φ
− t1Vφ

)
G+ tφ(∂t −1V )G− 2

〈
∇(tφG), ∇φ

φ

〉
≤

(
1+

c4t
R2 +

c1t
R

(
|δ| + k(R− 1)

))
G

+ tφ
(( 5

2 k+ 7
2α
)
G− 2G2

125M4 + 50β2 M4
)

≤−
c5

M4 tφG2
+

(
1+ c6

(1+|δ|
R
+ k+α

)
T
)

G+ c7β
2 M4T .

Multiplying both sides of (3.7) by tφ and using tφ ≤ T , we have

c5

M4 (tφG)2−
(

1+ c6

(1+|δ|
R
+ k+α

)
T
)
(tφG)− c7β

2 M4T 2
≤ 0.

We solve this inequality and obtain that

(tφG)(x1, t1)≤ c8 M4
(

1+
(1+|δ|

R
+ k+α+β

)
T
)
.

Notice that the above constants ci (i = 1, 2, . . . , 8) are all absolute positive constants.
Consequently,

(tG)(x, t)= (tφG)(x, t)≤ (tφG)(x1, t1)

≤ c8 M4
(

1+
(1+|δ|

R
+ k+α+β

)
T
)

for any (x, t) ∈ Bx0

( R
2

)
×[0, T ].

Combining the above two cases, we obtain

(tG)(x, t)≤ C M4
(

1+
(1+|δ|

R
+ k+α+β

)
T
)

for any (x, t) ∈ Bx0

( R
2

)
×[0, T ].

Since G ≥ 4M2
|∇u|2, the theorem follows by taking R→∞. �
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