

*Pacific
Journal of
Mathematics*

**ELLIPTIC GRADIENT ESTIMATES
FOR A PARABOLIC EQUATION
WITH V -LAPLACIAN AND APPLICATIONS**

JIAN-HONG WANG AND YU ZHENG

**ELLIPTIC GRADIENT ESTIMATES
FOR A PARABOLIC EQUATION
WITH V -LAPLACIAN AND APPLICATIONS**

JIAN-HONG WANG AND YU ZHENG

In this paper, we establish a local elliptic gradient estimate for positive bounded solutions to a parabolic equation concerning the V -Laplacian

$$(\Delta_V - \partial_t - q(x, t))u(x, t) = F(u(x, t))$$

on an n -dimensional complete Riemannian manifold with the Bakry–Émery Ricci curvature Ric_V bounded below, which is weaker than the m -Bakry–Émery Ricci curvature Ric_V^m bounded below considered by Chen and Zhao (2018). As applications, we obtain the local elliptic gradient estimates for the cases that $F(u) = au \ln u$ and au^γ . Moreover, we prove parabolic Liouville theorems for the solutions satisfying some growth restriction near infinity and study the problem about conformal deformation of the scalar curvature. In the end, we also derive a global Bernstein-type gradient estimate for the above equation with $F(u) = 0$.

1. Introduction and main results

In this paper, we will study local and global elliptic gradient estimates for positive smooth bounded solutions $u(x, t)$ to a parabolic equation

$$(1.1) \quad (\Delta_V - \partial_t - q(x, t))u(x, t) = F(u(x, t))$$

on an n -dimensional complete Riemannian manifold (M^n, g) , where $q(x, t)$ is a function which is C^2 in the x -variable and C^1 in the t -variable, and $F(u)$ is a C^2 function of u .

The Equation (1.1) is an important extension of the Schrödinger equation. The V -Laplacian is defined by

$$\Delta_V := \Delta - V \cdot \nabla,$$

where V is a smooth vector field.

Yu Zheng is supported by the NSFC (No.11671141).

MSC2010: primary 58J35; secondary 35B53, 35K05.

Keywords: gradient estimate, Liouville theorem, V -Laplacian, Bakry–Émery Ricci curvature, parabolic equation.

As in [Chen et al. 2012], we define the m -Bakry–Émery Ricci curvature

$$\text{Ric}_V^m := \text{Ric} + \frac{1}{2}\mathcal{L}_V g - \frac{1}{m}V^* \otimes V^*$$

for any number $m \geq 0$, where Ric is the Ricci tensor, \mathcal{L}_V is the Lie derivative in the direction of V , and V^* is the metric-dual of V . When $m = 0$, it means that $V \equiv 0$ and Ric_V^m returns to the usual Ricci tensor. The (∞) -Bakry–Émery Ricci curvature is

$$\text{Ric}_V := \text{Ric} + \frac{1}{2}\mathcal{L}_V g.$$

It is easy to see that $\text{Ric}_V^m \geq c$ implies $\text{Ric}_V \geq c$, but not vice versa.

If $\text{Ric}_V = \lambda g$ for some real constant λ , then (M^n, g) is a Ricci soliton, which is a natural extension of Einstein metric. A Ricci soliton is called shrinking, steady or expanding, if $\lambda > 0$, $\lambda = 0$ or $\lambda < 0$, respectively. In particular, when $V = \nabla f$ for some function $f \in C^\infty(M)$, since $\mathcal{L}_{\nabla f} g = 2 \text{Hess } f$ (Hess is the Hessian with respect to the metric g), a Ricci soliton becomes a gradient Ricci soliton. The gradient Ricci soliton plays an important role in the formation of singularities of the Ricci flow, and has been studied by many authors; see [Cao 2010; Hamilton 1995] for nice surveys.

Relating to the V -Laplacian, we have, for $\text{Ric}_V^m (0 < m < \infty)$, the following Bochner formula:

$$\begin{aligned} (1.2) \quad \frac{1}{2}\Delta_V |\nabla u|^2 &= |\nabla \nabla u|^2 + \langle \nabla u, \nabla \Delta_V u \rangle + \text{Ric}_V^m(\nabla u, \nabla u) + \frac{1}{m}|\langle V, \nabla u \rangle|^2 \\ &\geq \frac{(\Delta_V u)^2}{m+n} + \langle \nabla u, \nabla \Delta_V u \rangle + \text{Ric}_V^m(\nabla u, \nabla u). \end{aligned}$$

When $m = \infty$, we have

$$(1.3) \quad \frac{1}{2}\Delta_V |\nabla u|^2 = |\nabla \nabla u|^2 + \langle \nabla u, \nabla \Delta_V u \rangle + \text{Ric}_V(\nabla u, \nabla u).$$

The formula (1.2) looks like the classical Bochner formula on an $(m+n)$ -dimensional manifold with Ricci tensor, therefore many geometric results for the Laplacian on n -dimensional manifolds with Ricci bounded below can be possibly extended to the V -Laplacian on $(m+n)$ -dimensional manifolds with Ric_V^m bounded below, such as the mean curvature comparison theorem, the volume comparison theorem, etc. However, for Ric_V , due to lack of the term $\frac{1}{m}|\langle V, \nabla u \rangle|^2$, there seems essential obstacles to obtaining some important conclusions when Ric_V is only bounded below.

To the best of our knowledge, the gradient estimate technique was originated by S.-T. Yau [1975] in the 1970s, who first proved a gradient estimate for the harmonic function on manifolds. In the 1980s, this technique was developed by Li and Yau [1986] for the heat equation on manifolds, and yielded a parabolic gradient estimate (sometimes called Li–Yau’s gradient estimate). More precisely,

Theorem A [Li and Yau 1986]. *Let M be a complete manifold with dimension $n \geq 2$, $\text{Ric}(M) \geq -k$, $k \geq 0$. Suppose u is any positive solution to the heat equation in $B(x_0, R) \times [t_0 - T, t_0]$. Then*

$$\frac{|\nabla u|^2}{u^2} - \frac{u_t}{u} \leq \frac{c_n}{R^2} + \frac{c_n}{T} + c_n k$$

in $B(x_0, \frac{R}{2}) \times [t_0 - \frac{T}{2}, t_0]$. Here c_n depends only on n .

Li and Yau [1986] also proved a parabolic gradient estimate for the Schrödinger equation

$$(\Delta - \partial_t - q(x, t))u(x, t) = 0,$$

which can be seen as the special case of (1.1) (see [Li and Yau 1986, Theorem 1.2]).

In the 1990s, R. Hamilton [1993] proved a global elliptic gradient estimate (sometimes called Hamilton's gradient estimate) for the heat equation on closed manifolds.

Theorem B [Hamilton 1993]. *Let M be an n -dimensional closed manifold with $\text{Ric} \geq -K$ for nonnegative constant K , and let u be a positive solution of the heat equation*

$$\frac{\partial u}{\partial t} = \Delta u$$

with $u \leq A$ for all time. Then

$$t|\nabla u|^2 \leq (1 + 2Kt)u^2 \ln \frac{A}{u}.$$

Hamilton's gradient estimate requires that the equation be defined on closed manifolds. Later, Souplet and Zhang [2006] proved a local elliptic gradient estimate (sometimes called Souplet–Zhang's gradient estimate) for the heat equation on noncompact manifolds by inserting a necessary logarithmic correction term.

Theorem C [Souplet and Zhang 2006]. *Let M be a Riemannian manifold with dimension $n \geq 2$ and $\text{Ric} \geq -k$, $k \geq 0$. Assume u is any positive solution to the heat equation in $Q_{R,T} = B_{x_0}(R) \times [t_0 - T, t_0] \subset M \times (-\infty, \infty)$ with $u \leq M$. Then there exists a dimensional constant c such that*

$$|\nabla \ln u| \leq c \left(\frac{1}{R} + \frac{1}{\sqrt{T}} + \sqrt{k} \right) \left(1 + \ln \frac{M}{u} \right)$$

in $Q_{R/2, T/2}$.

Moreover, if M has nonnegative Ricci curvature and u is any positive solution of the heat equation on $M \times (0, \infty)$, then there exist dimensional constants c_1, c_2 such that

$$|\nabla \ln u| \leq c_1 \frac{1}{\sqrt{t}} \left(c_2 + \ln \frac{u(x, 2t)}{u(x, t)} \right)$$

for all $x \in M$ and $t > 0$.

Apart from the above theorems, Li–Yau’s, Hamilton’s and Souplet–Zhang’s gradient estimates have been generalized to other linear and nonlinear equations on Riemannian manifolds, see, e.g., [Brighton 2013; Chow and Hamilton 1997; Chen and Qiu 2016; Cao and Zhang 2011; Huang and Ma 2016; Li and Xu 2011; Li 1991; 2012; 2015; Ma 2006; Ruan 2007; Wu 2015; Yang 2008; Zhu 2016].

We now give the main theorems, a local elliptic (Souplet–Zhang’s) gradient estimate for positive smooth solutions to (1.1), which is based on the arguments of Souplet and Zhang [2006] for the heat equation, Brighton [2013] for the f -harmonic function and J.-Y. Wu [2015] for the f -heat equation. It is important that our gradient estimate does not depend on any assumption on V .

Theorem 1.1. *Let (M^n, g) be an n -dimensional complete Riemannian manifold, and let $B_{x_0}(R)$ be a geodesic ball of radius R around x_0 and $R \geq 2$. Assume $\text{Ric}_V \geq -k$ in $B_{x_0}(R)$ for some constant $k \geq 0$. Let u be a positive solution of (1.1) in $Q_{R,T} = B_{x_0}(R) \times [t_0 - T, t_0] \subset M^n \times (-\infty, \infty)$ with $u \leq M$ for some positive constant M , where $t_0 \in \mathbb{R}$ and $T > 0$. Then there exists a dimensional constant $C(n)$ such that*

$$(1.4) \quad |\nabla \ln u| \leq C(n) \left(\sqrt{\frac{1+|\delta|}{R}} + \frac{1}{\sqrt{t-t_0+T}} + \sqrt{k+\lambda_1+\lambda_2+\lambda_3+\lambda_4} \right) \left(1 + \ln \frac{M}{u} \right)$$

in $Q_{R/2,T}$ with $t \neq t_0 - T$. Here

$$\begin{aligned} \lambda_1 &= -\min \left\{ 0, \min_{Q_{R,T}} \frac{F(u)}{u} \right\}, \quad \lambda_2 = -\min \left\{ 0, \min_{Q_{R,T}} \left(F'(u) - \frac{F(u)}{u} \right) \right\}, \\ \lambda_3 &= 2 \max_{Q_{R,T}} \{q^-\} \quad (q^- = \max\{-q, 0\} \text{ is the negative part of } q), \\ \lambda_4 &= \max_{Q_{R,T}} |\nabla \sqrt{|q|}|, \end{aligned}$$

which are nonnegative constants, and $\delta = \max_{\{x|d(x,x_0)=1\}} \Delta_V r(x)$.

Remark 1.2. Theorem 1.1 describes local elliptic gradient estimate under only Ric_V bounded below, whose assumption on Ric_V is obviously weaker than the assumption on Ric_V^m ($m < \infty$) which was considered by Chen and Zhao [2018].

On one hand, we apply Theorem 1.1 to analyze the existence of solutions to the special case of (1.1). Moreover, we study the problem about conformal deformation of the scalar curvature on complete noncompact manifolds; see Corollary 2.7 in Section 2.

Theorem 1.3. *Let (M^n, g) be an n -dimensional complete manifold with $\text{Ric}_V \geq 0$. Consider the equation*

$$(1.5) \quad (\Delta_V - \partial_t - q(x))u(x, t) = au^\gamma$$

for some constants $a \geq 0$ and $\gamma > 1$. Suppose that $q(x) \neq 0$ and

$$q^- = o(R^{-1}), \quad |\nabla \sqrt{|q|}| = o(R^{-1}) \quad \text{as } R \rightarrow \infty.$$

Then there does not exist any positive ancient solution (that is, a solution defined in all space and negative time) to (1.5) such that $u(x, t) = o(r(x)^{1/2} + |t|^{1/2})$ near infinity. In particular, if $V \equiv 0$, we only assume $u(x, t) = o(r(x) + |t|^{1/2})$ near infinity.

Remark 1.4. If $q(x)$ is a positive constant, it naturally satisfies the growth conditions of $q(x)$ in Theorem 1.3. There also exist many nontrivial functions $q(x)$ satisfying these growth conditions, such as $q(x) = e^{-x}$ in \mathbb{R}^1 .

On the other hand, we apply Theorem 1.1 to prove the parabolic Liouville theorem for the V -heat equation under certain growth conditions of solutions. This result is similar to the cases of the heat equation and the f -heat equation, obtained by Souplet and Zhang [2006] and Wu [2015], respectively.

Theorem 1.5. Let (M^n, g) be an n -dimensional complete Riemannian manifold with $\text{Ric}_V \geq 0$. Let $u(x, t)$ be an eternal solution (that is, a solution defined in all space and time) to

$$(1.6) \quad (\Delta_V - \partial_t)u = 0.$$

Then the following conclusions hold.

- (i) If $u(x, t) = e^{o(r^{1/2}(x) + |t|^{1/2})}$ near infinity and $u > 0$, then u is a constant.
- (ii) If $u(x, t) = o(r^{1/2}(x) + |t|^{1/2})$ near infinity, then u is a constant.

Remark 1.6. The growth condition of u is necessary. For example, let $u = e^{x+2t}$, $V = \nabla f$, $f = -x$ in \mathbb{R}^1 . Then u is a nonconstant positive eternal solution to (1.6). Any complete shrinking or steady Ricci solitons satisfy $\text{Ric}_V \geq 0$, hence Theorem 1.5 also holds on shrinking or steady Ricci solitons.

In the end, we derive a global Bernstein-type gradient estimate for positive bounded solution to (1.1) with $F(u) = 0$ on complete Riemannian manifolds with Ric_V bounded below, which is inspired by the works of Kotschwar [2007] for the heat equation and Wu [2015] for the f -heat equation.

Theorem 1.7. Let (M^n, g) be an n -dimensional complete Riemannian manifold with $\text{Ric}_V \geq -k$ for some constant $k \geq 0$. Let u be a solution to

$$(1.7) \quad (\Delta_V - \partial_t - q(x, t))u(x, t) = 0$$

in $M^n \times [0, T]$ with $0 < T < \infty$. Suppose that

$$0 < u \leq M, \quad q^-(x, t) \leq \alpha \quad \text{and} \quad |\nabla \sqrt{|q|}| \leq \beta,$$

where M, α, β are positive constants. Then there exists an absolute constant C such that

$$t|\nabla u|^2 \leq CM^2(1 + (k + \alpha + \beta)T)$$

in $M^n \times [0, T]$.

The rest of this paper is organized as follows. In Section 2, we give a useful lemma and a cut-off function to prove Theorem 1.1 via the maximum principle and V -Laplacian comparison theorem. As applications of Theorem 1.1, we prove Theorems 1.3 and 1.5. Moreover, we apply Theorem 1.3 to discuss Yamabe type problems and obtain Corollary 2.7. In Section 3, we prove Theorem 1.7 by using another local elliptic gradient estimate for (1.7).

2. Local elliptic gradient estimate

In this section, we first follow the techniques of [Souplet and Zhang 2006; Brighton 2013; Wu 2015] to prove Theorem 1.1. Notice that $0 < u \leq M$ is a solution of (1.1). Define a smooth function

$$f = \ln \frac{u}{M} \quad \text{in } Q_{R,T}.$$

Obviously, $f \leq 0$. By (1.1), we have

$$(2.1) \quad (\Delta_V - \partial_t)f + |\nabla f|^2 - q(x, t) = A(f), \quad \text{where } A(f) = \frac{F(Me^f)}{Me^f} = \frac{F(u)}{u}.$$

Let

$$g := |\nabla \ln(1 - f)|^2 = \frac{|\nabla f|^2}{(1 - f)^2},$$

we have the following lemma.

Lemma 2.1. *Let (M^n, g) be an n -dimensional complete Riemannian manifold with $\text{Ric}_V \geq -k$ for some constant $k \geq 0$. Then g satisfies*

$$(2.2) \quad (\Delta_V - \partial_t)g \geq \frac{2f}{1-f} \langle \nabla f, \nabla g \rangle + 2(1-f)g^2 - 2(k + \lambda_1 + \lambda_2 + \lambda_3)g - 2\lambda_4^2,$$

where $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ are the same as in Theorem 1.1.

Proof. Let $h = \ln(1 - f)$, i.e., $g = |\nabla h|^2$. By the Bochner formula (1.3) and $\text{Ric}_V \geq -k$, we have

$$(2.3) \quad \begin{aligned} \Delta_V g &= 2(|\nabla \nabla h|^2 + \langle \nabla h, \nabla \Delta_V h \rangle + \text{Ric}_V(\nabla h, \nabla h)) \\ &\geq 2(\langle \nabla h, \nabla \Delta_V h \rangle - k|\nabla h|^2). \end{aligned}$$

Since $\nabla h = -\frac{\nabla f}{1-f}$ and

$$\begin{aligned}\Delta_V h &= \Delta h - \langle V, \nabla h \rangle = -\frac{(1-f)\Delta f + |\nabla f|^2}{(1-f)^2} + \left\langle V, \frac{\nabla f}{1-f} \right\rangle \\ &= -\frac{\Delta_V f}{1-f} - \frac{|\nabla f|^2}{(1-f)^2}.\end{aligned}$$

By a direct computation, we obtain

$$\langle \nabla h, \nabla \Delta_V h \rangle = \frac{2\nabla \nabla f(\nabla f, \nabla f)}{(1-f)^3} + \frac{2|\nabla f|^4}{(1-f)^4} + \frac{\langle \nabla f, \nabla \Delta_V f \rangle}{(1-f)^2} + \frac{|\nabla f|^2 \Delta_V f}{(1-f)^3}.$$

Hence, (2.3) becomes

$$\begin{aligned}(2.4) \quad \Delta_V g &\geq \frac{4\nabla \nabla f(\nabla f, \nabla f)}{(1-f)^3} + \frac{4|\nabla f|^4}{(1-f)^4} + \frac{2\langle \nabla f, \nabla \Delta_V f \rangle}{(1-f)^2} + \frac{2|\nabla f|^2 \Delta_V f}{(1-f)^3} \\ &\quad - 2k \frac{|\nabla f|^2}{(1-f)^2}.\end{aligned}$$

By using (2.1), we obtain

$$\begin{aligned}(2.5) \quad \partial_t g &= \frac{2\langle \nabla f, \nabla f_t \rangle}{(1-f)^2} + \frac{2|\nabla f|^2 f_t}{(1-f)^3} \\ &= \frac{2\langle \nabla f, \nabla \Delta_V f \rangle}{(1-f)^2} + \frac{4\nabla \nabla f(\nabla f, \nabla f)}{(1-f)^2} + \frac{2|\nabla f|^2 \Delta_V f}{(1-f)^3} + \frac{2|\nabla f|^4}{(1-f)^3} \\ &\quad - \frac{2\langle \nabla f, \nabla (q+A) \rangle}{(1-f)^2} - \frac{2(q+A)|\nabla f|^2}{(1-f)^3}.\end{aligned}$$

Combining (2.4) and (2.5), we have

$$\begin{aligned}(2.6) \quad (\Delta_V - \partial_t) g &\geq \frac{4\nabla \nabla f(\nabla f, \nabla f)}{(1-f)^3} + \frac{4|\nabla f|^4}{(1-f)^4} - \frac{4\nabla \nabla f(\nabla f, \nabla f)}{(1-f)^2} - \frac{2|\nabla f|^4}{(1-f)^3} \\ &\quad - 2k \frac{|\nabla f|^2}{(1-f)^2} + \frac{2\langle \nabla f, \nabla (q+A) \rangle}{(1-f)^2} + \frac{2(q+A)|\nabla f|^2}{(1-f)^3}.\end{aligned}$$

Since $g = \frac{|\nabla f|^2}{(1-f)^2}$, then

$$\langle \nabla g, \nabla f \rangle = \frac{2\nabla \nabla f(\nabla f, \nabla f)}{(1-f)^2} + \frac{2|\nabla f|^4}{(1-f)^3},$$

which implies

$$\begin{aligned}(2.7) \quad 0 &= -2\langle \nabla g, \nabla f \rangle + \frac{4\nabla \nabla f(\nabla f, \nabla f)}{(1-f)^2} + \frac{4|\nabla f|^4}{(1-f)^3} \\ &\quad + \frac{1}{1-f} \left(2\langle \nabla g, \nabla f \rangle - \frac{4|\nabla f|^4}{(1-f)^3} \right) - \frac{4\nabla \nabla f(\nabla f, \nabla f)}{(1-f)^3}.\end{aligned}$$

From (2.7), we know that

$$\begin{aligned} \frac{4\nabla\nabla f(\nabla f, \nabla f)}{(1-f)^3} + \frac{4|\nabla f|^4}{(1-f)^4} - \frac{4\nabla\nabla f(\nabla f, \nabla f)}{(1-f)^2} - \frac{2|\nabla f|^4}{(1-f)^3} \\ = \frac{2f}{1-f} \langle \nabla g, \nabla f \rangle + \frac{2|\nabla f|^4}{(1-f)^3}. \end{aligned}$$

Using the above equality, (2.6) becomes

$$\begin{aligned} (2.8) \quad (\Delta_V - \partial_t)g \geq \frac{2f}{1-f} \langle \nabla f, \nabla g \rangle + 2(1-f)g^2 - 2\left(k - A'(f) - \frac{A}{1-f}\right)g \\ - \frac{2}{1-f}|\nabla q|\sqrt{g} + \frac{2q}{1-f}g. \end{aligned}$$

Since $0 < \frac{1}{1-f} \leq 1$ and

$$(2.9) \quad 2|\nabla q|\sqrt{g} \leq 2|q|g + \frac{|\nabla q|^2}{2|q|} = 2|q|g + 2|\nabla\sqrt{|q|}|^2.$$

Noticing that the inequality (2.9) is trivial when $q = 0$. Hence,

$$-\frac{2|\nabla q|\sqrt{g}}{1-f} \geq -\frac{2|q|g}{1-f} - \frac{2|\nabla\sqrt{|q|}|^2}{1-f} \geq -\frac{2|q|g}{1-f} - 2|\nabla\sqrt{|q|}|^2.$$

Using this inequality, (2.8) can be rewritten as

$$\begin{aligned} (\Delta_V - \partial_t)g \geq \frac{2f}{1-f} \langle \nabla f, \nabla g \rangle + 2(1-f)g^2 - 2\left(k - A'(f) - \frac{A}{1-f} + \frac{2q^-}{1-f}\right)g \\ - 2|\nabla\sqrt{|q|}|^2. \end{aligned}$$

By the definitions of $\lambda_1, \lambda_2, \lambda_3, \lambda_4$, we have

$$\begin{aligned} -\frac{A}{1-f} \leq \frac{A^-}{1-f} \leq A^- = -\min\{0, \frac{F(u)}{u}\} \leq \lambda_1, \\ -A'(f) = -\left(F'(u) - \frac{F(u)}{u}\right) \leq \lambda_2, \quad \frac{2q^-}{1-f} \leq \lambda_3, \quad |\nabla\sqrt{|q|}| \leq \lambda_4. \end{aligned}$$

Hence, (2.2) immediately follows. \square

In order to prove Theorem 1.1, we introduce a useful cut-off function which originated with Li and Yau [1986] (see also [Bailesteau et al. 2010; Souplet and Zhang 2006]).

Lemma 2.2. *Fix $t_0 \in \mathbb{R}$ and $T > 0$. For any given $\tau \in (t_0-T, t_0]$, there exists a smooth function $\bar{\eta} : [0, \infty) \times [t_0-T, t_0] \rightarrow \mathbb{R}$ satisfying following propositions:*

- (1) $0 \leq \bar{\eta}(r, t) \leq 1$ in $[0, R] \times [t_0-T, t_0]$, and it is supported in a subset of $[0, R] \times [t_0-T, t_0]$.

- (2) $\bar{\eta}(r, t) = 1$ and $\partial_r \bar{\eta}(r, t) = 0$ in $[0, \frac{R}{2}] \times [\tau, t_0]$ and $[0, \frac{R}{2}] \times [t_0 - T, t_0]$, respectively.
- (3) $|\partial_t \bar{\eta}| \leq C \bar{\eta}^{1/2} / (\tau - t_0 + T)$ in $[0, \infty) \times [t_0 - T, t_0]$ for some constant $C > 0$, and $\bar{\eta}(r, t_0 - T) = 0$ for all $r \in [0, \infty)$.
- (4) $-(C_\epsilon / R) \bar{\eta}^\epsilon \leq \partial_r \bar{\eta} \leq 0$ and $|\partial_r^2 \bar{\eta}| \leq C_\epsilon \bar{\eta}^\epsilon / R^2$ in $[0, \infty) \times [t_0 - T, t_0]$ for every $\epsilon \in (0, 1)$ with some constant C_ϵ depending on ϵ .

Now, we apply Lemmas 2.1 and 2.2 to prove Theorem 1.1 via the maximum principle and the V-Laplacian comparison theorem [Wu 2018, Theorem 2.1] in a local space-time supported set.

Proof of Theorem 1.1. Fix any number $\tau \in (t_0 - T, t_0]$, we will show that (1.4) holds at (x, τ) for all $x \in B_{x_0}(\frac{R}{2})$. The assertion of theorem will immediately follows due to τ is arbitrary.

Choose a cut-off function $\bar{\eta}(r, t)$ satisfying the propositions of Lemma 2.2. Let $\eta : M \times [t_0 - T, t_0] \rightarrow \mathbb{R}$ such that $\eta(x, t) = \bar{\eta}(r(x), t)$, where $r(x) = d(x, x_0)$. It is easy to see that $\eta(x, t)$ is supported in $Q_{R, T}$. Our aim is to calculate $(\Delta_V - \partial_t)(\eta g)$ and estimate each term at a space-time point where ηg attains its maximum.

From Lemma 2.1, we conclude

$$\begin{aligned}
 (2.10) \quad & (\Delta_V - \partial_t)(\eta g) - \left(\frac{2f}{1-f} \nabla f + 2 \frac{\nabla \eta}{\eta} \right) \nabla(\eta g) \\
 & \geq 2(1-f) \eta g^2 - \left(\frac{2f}{1-f} \langle \nabla f, \nabla \eta \rangle \right) g - 2 \frac{|\nabla \eta|^2}{\eta} g + (\Delta_V \eta) g - \eta_t g \\
 & \quad - 2(k + \lambda_1 + \lambda_2 + \lambda_3) \eta g - 2\lambda_4^2 \eta.
 \end{aligned}$$

Assume

$$(\eta g)(x_1, t_1) = \max_{B_{x_0}(R) \times [t_0 - T, \tau]} (\eta g).$$

We may assume $(\eta g)(x_1, t_1) > 0$, otherwise, $g(x, \tau) \leq 0$ and (1.4) naturally holds at (x, τ) whenever $d(x, x_0) < \frac{R}{2}$. Notice that $t_1 \neq t_0 - T$ due to $(\eta g)(x_1, t_1) > 0$. We may also assume that $\eta(x, t)$ is smooth at (x_1, t_1) by the standard Calabi argument [1958]. Using the maximum principle, at (x_1, t_1) , we have

$$\Delta_V(\eta g) \leq 0, \quad (\eta g)_t \geq 0 \quad \text{and} \quad \nabla(\eta g) = 0.$$

Hence, (2.10) can be simplified as

$$\begin{aligned}
 (2.11) \quad & 2(1-f) \eta g^2 \leq \left(\frac{2f}{1-f} \langle \nabla f, \nabla \eta \rangle + 2 \frac{|\nabla \eta|^2}{\eta} \right) g - (\Delta_V \eta) g + \eta_t g \\
 & \quad + 2(k + \lambda_1 + \lambda_2 + \lambda_3) \eta g + 2\lambda_4^2 \eta.
 \end{aligned}$$

at (x_1, t_1) . In the following, we will estimate each term on the right hand side of (2.11) and obtain the desired gradient estimate in Theorem 1.1. We will get it by two steps.

Case I. Assume $x_1 \notin B_{x_0}(1)$. Since $\text{Ric}_V \geq -k$ and $d(x_1, x_0) \geq 1$ in $B_{x_0}(R)$, $R \geq 2$, by the V -Laplacian comparison theorem, we have

$$\Delta_V r(x_1) \leq \delta + k(R-1),$$

where $\delta = \max_{\{x|d(x, x_0)=1\}} \Delta_V r(x)$.

Below the Young's inequality and Lemma 2.2 will be repeatedly used in the following estimate. Let c be a constant depending only on n whose value may change from line to line. Then we have the following inequalities:

$$\begin{aligned} (2.12) \quad & \frac{2f}{1-f} \langle \nabla f, \nabla \eta \rangle g \leq 2|f||\nabla \eta|g^{3/2} \\ & = 2[\eta(1-f)g^2]^{3/4} \cdot \frac{|f||\nabla \eta|}{[\eta(1-f)]^{3/4}} \\ & \leq \eta(1-f)g^2 + c \frac{f^4|\nabla \eta|^4}{(1-f)^3\eta^3} \\ & \leq \eta(1-f)g^2 + c \frac{f^4}{R^4(1-f)^3}. \end{aligned}$$

$$(2.13) \quad 2 \frac{|\nabla \eta|^2}{\eta} g \leq \frac{1}{8}\eta g^2 + 8 \frac{|\nabla \eta|^4}{\eta^3} \leq \frac{1}{8}\eta g^2 + \frac{c}{R^4}.$$

$$\begin{aligned} (2.14) \quad & -(\Delta_V \eta)g = -(\partial_r^2 \bar{\eta} + \partial_r \bar{\eta} \Delta_V r)g \\ & \leq \left(|\partial_r^2 \bar{\eta}| + (|\delta| + k(R-1))|\partial_r \bar{\eta}| \right)g \\ & = \eta^{1/2}g \frac{|\partial_r^2 \bar{\eta}|}{\bar{\eta}^{1/2}} + (|\delta| + k(R-1))\eta^{1/2}g \frac{|\partial_r \bar{\eta}|}{\bar{\eta}^{1/2}} \\ & \leq \frac{1}{8}\eta g^2 + c \left(\frac{|\partial_r^2 \bar{\eta}|^2}{\bar{\eta}} + \delta^2 \frac{|\partial_r \bar{\eta}|^2}{\bar{\eta}} + k^2(R-1)^2 \frac{|\partial_r \bar{\eta}|^2}{\bar{\eta}} \right) \\ & \leq \frac{1}{8}\eta g^2 + \frac{c}{R^4} + \frac{c\delta^2}{R^2} + ck^2 \frac{(R-1)^2}{R^2} \\ & \leq \frac{1}{8}\eta g^2 + \frac{c}{R^4} + \frac{c\delta^2}{R^2} + ck^2. \end{aligned}$$

$$(2.15) \quad |\eta_t|g = \eta^{1/2}g \frac{|\bar{\eta}_t|}{\bar{\eta}^{1/2}} \leq \frac{1}{8}\eta g^2 + 8 \frac{|\bar{\eta}_t|^2}{\bar{\eta}} \leq \frac{1}{8}\eta g^2 + \frac{c}{(\tau-t_0+T)^2}.$$

$$(2.16) \quad 2(k + \lambda_1 + \lambda_2 + \lambda_3)\eta g \leq \frac{1}{8}\eta g^2 + 8(k + \lambda_1 + \lambda_2 + \lambda_3)^2.$$

$$(2.17) \quad 2\lambda_4^2\eta \leq 2\lambda_4^2.$$

Substituting (2.12)–(2.17) into the right hand side of (2.11), at (x_1, t_1) , we have

$$2\eta(1-f)g^2 \leq \eta(1-f)g^2 + \frac{1}{2}\eta g^2 + c \frac{f^4}{R^4(1-f)^3} + \frac{c}{R^4} + \frac{c\delta^2}{R^2} + ck^2 + \frac{c}{(\tau-t_0+T)^2} + 8(k+\lambda_1+\lambda_2+\lambda_3)^2 + 2\lambda_4^2.$$

Since $1-f \geq 1$, the above estimate implies

$$\begin{aligned} (\eta g^2)(x_1, t_1) &\leq \frac{1}{1-f} \left(\frac{1}{2}\eta g^2 + c \frac{f^4}{R^4(1-f)^3} + \frac{c}{R^4} + \frac{c\delta^2}{R^2} + ck^2 + \frac{c}{(\tau-t_0+T)^2} \right. \\ &\quad \left. + 8(k+\lambda_1+\lambda_2+\lambda_3)^2 + 2\lambda_4^2 \right) \\ &\leq \frac{1}{2}\eta g^2 + c \frac{f^4}{R^4(1-f)^4} + \frac{c}{R^4} + \frac{c\delta^2}{R^2} + ck^2 + \frac{c}{(\tau-t_0+T)^2} \\ &\quad + 8(k+\lambda_1+\lambda_2+\lambda_3)^2 + 2\lambda_4^2 \\ &\leq \frac{1}{2}\eta g^2 + \frac{c}{R^4} + \frac{c\delta^2}{R^2} + \frac{c}{(\tau-t_0+T)^2} + c(k+\lambda_1+\lambda_2+\lambda_3+\lambda_4)^2. \end{aligned}$$

Since $0 \leq \eta \leq 1$, then

$$\begin{aligned} (\eta g)^2(x_1, t_1) &\leq (\eta g^2)(x_1, t_1) \\ &\leq \frac{c}{R^4} + \frac{c\delta^2}{R^2} + \frac{c}{(\tau-t_0+T)^2} + c(k+\lambda_1+\lambda_2+\lambda_3+\lambda_4)^2. \end{aligned}$$

Since $\eta(x, \tau) = 1$ when $x \in B_{x_0}(\frac{R}{2})$ by the proposition (2) in Lemma 2.2 and $R \geq 2$, we obtain

$$\begin{aligned} g(x, \tau) &= (\eta g)(x, \tau) \leq (\eta g)(x_1, t_1) \\ &\leq \frac{c}{R^2} + \frac{c|\delta|}{R} + \frac{c}{\tau-t_0+T} + c(k+\lambda_1+\lambda_2+\lambda_3+\lambda_4) \\ &\leq \frac{c(1+|\delta|)}{R} + \frac{c}{\tau-t_0+T} + c(k+\lambda_1+\lambda_2+\lambda_3+\lambda_4) \end{aligned}$$

for all $x \in B_{x_0}(\frac{R}{2})$.

Case II. Assume $x_1 \in B_{x_0}(1) \subset B_{x_0}(\frac{R}{2})$ when $R \geq 2$. In this case, η is a constant in space direction in $Q_{R/2, T}$. Hence (2.11) can be simplified as

$$2(1-f)\eta g^2 \leq \eta_t g + 2(k+\lambda_1+\lambda_2+\lambda_3)\eta g + 2\lambda_4^2\eta$$

at (x_1, t_1) . Since $1-f \geq 1$, this implies

$$2\eta g^2 \leq \eta_t g + 2(k+\lambda_1+\lambda_2+\lambda_3)\eta g + 2\lambda_4^2\eta$$

at (x_1, t_1) . Substituting (2.15)–(2.17) into the right hand side of the above inequality,

we have

$$(\eta g^2)(x_1, t_1) \leq c \left(\frac{1}{(\tau - t_0 + T)^2} + (k + \lambda_1 + \lambda_2 + \lambda_3)^2 + \lambda_4^2 \right).$$

Since $0 \leq \eta \leq 1$, we have

$$(\eta g)(x_1, t_1) \leq c \left(\frac{1}{\tau - t_0 + T} + k + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 \right).$$

Since $\eta(x, \tau) = 1$ whenever $x \in B_{x_0}(\frac{R}{2})$,

$$\begin{aligned} g(x, \tau) &= (\eta g)(x, \tau) \leq (\eta g)(x_1, t_1) \\ &\leq c \left(\frac{1}{\tau - t_0 + T} + k + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 \right) \end{aligned}$$

for all $x \in B_{x_0}(\frac{R}{2})$.

Combining the above two cases, by the definition of g and the fact that $\tau \in (t_0 - T, t_0]$ was chosen arbitrarily, we obtain

$$\frac{|\nabla f|}{1-f}(x, t) \leq C(n) \left(\sqrt{\frac{1+|\delta|}{R}} + \frac{1}{\sqrt{t-t_0+T}} + \sqrt{k+\lambda_1+\lambda_2+\lambda_3+\lambda_4} \right)$$

for any $(x, t) \in Q_{R/2, T}$ with $t \neq t_0 - T$. Substituting $f = \ln \frac{u}{M}$ into the above estimate completes the proof of theorem. \square

Remark 2.3. If $q(x, t) = F(u) = 0$, $V = \nabla f$ for some function f , then Theorem 1.1 is the same as Theorem 1.1 in [Wu 2018] for the weighted heat equation. From the proof of Theorem 1.1, we know that the term $\sqrt{(1+|\delta|)/R}$ in (1.4) can be changed into $\frac{1}{R}$ whenever $V \equiv 0$.

When V is bounded, we can prove another gradient estimate of (1.1) in any geodesic ball. Its proof is similar to that of Theorem 1.1 except that the V -Laplacian comparison theorem in Theorem 1.1 is replaced by another V -Laplacian comparison theorem [Wu 2018, Theorem 2.2]. We only provide the conclusion and omit the proof.

Theorem 2.4. *Let (M^n, g) be an n -dimensional complete Riemannian manifold. Assume $\text{Ric}_V \geq -k$ and $|V| \leq a$ in $B_{x_0}(R)$ for some nonnegative constants k and a . Let $0 < u \leq M$ be a solution of (1.1) in $Q_{R, T}$. Then there exists a dimensional constant $C(n)$ such that*

$$(2.18) \quad |\nabla \ln u| \leq C(n) \left(\sqrt{\frac{1+a}{R}} + \frac{1}{\sqrt{t-t_0+T}} + \sqrt{k+\lambda_1+\lambda_2+\lambda_3+\lambda_4} \right) \left(1 + \ln \frac{M}{u} \right)$$

in $Q_{R/2, T}$ with $t \neq t_0 - T$, where $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ are the same as in Theorem 1.1.

As applications of Theorem 1.1, we can derive some corollaries by considering the special cases of (1.1). More precisely,

$$(2.19) \quad (\Delta_V - \partial_t - q(x, t))u = au \ln u,$$

$$(2.20) \quad (\Delta_V - \partial_t - q(x, t))u = au^\gamma,$$

where a and γ are constants.

When $V \equiv 0$, the elliptic version of (2.19) is closely related to the gradient Ricci soliton; (see [Ma 2006]). In fact, consider the gradient Ricci soliton

$$\text{Ric} + \nabla \nabla f + \lambda g = 0,$$

where λ is a constant. Taking the trace of the above equality, we have

$$R + \Delta f + n\lambda = 0.$$

Using the contracted Bianchi identity and Ricci identity, then

$$|\nabla f|^2 + R - 2\lambda f = c$$

for some constant c . Hence

$$|\nabla f|^2 - \Delta f - 2\lambda f = n\lambda + c.$$

Setting $u = e^{-f}$, we obtain

$$\Delta u - (c + n\lambda)u = -2\lambda u \ln u.$$

When $V \equiv 0$, the elliptic version of (2.20) is related to conformal deformation of the scalar curvature on manifolds. In fact, for any n -dimensional ($n \geq 3$) manifold, consider a conformal metric $\tilde{g} = u^{4/(n-2)}g$ for some positive function u . Then the scalar curvature \tilde{s} of metric \tilde{g} related to the scalar curvature s of metric g is given by

$$(2.21) \quad \Delta u - \frac{n-2}{4(n-1)}su + \frac{n-2}{4(n-1)}\tilde{s}u^{(n+2)/(n-2)} = 0.$$

We have known that if M is compact and \tilde{s} is a constant, the existence of u is the well-known Yamabe problem which has been solved by R. Schoen [1984] (see also [Lee and Parker 1987; Mastrolia et al. 2012] for more details).

Corollary 2.5. *Let (M^n, g) be an n -dimensional complete Riemannian manifold with $\text{Ric}_V \geq -k$ for some constant $k \geq 0$. Let $0 < u \leq M$ be a smooth solution of (2.19) with $a \leq 0$ in $M^n \times [t_0 - T, t_0]$. Suppose that $q^- \leq c_1$ and $|\nabla \sqrt{|q|}| \leq c_2$ for some constants c_1, c_2 . Then there exists a dimensional constant $c(n)$ such that*

$$(2.22) \quad |\nabla \ln u| \leq c(n) \left(\frac{1}{\sqrt{t-t_0+T}} + \sqrt{k - a \ln(\max\{M, 1\}) - a + 2c_1 + c_2} \right) \cdot \left(1 + \ln \frac{M}{u} \right)$$

in $M^n \times (t_0 - T, t_0]$.

Proof. Since $F(u) = au \ln u$ ($a \leq 0$) and $0 < u \leq M$, by the definitions of λ_i ($i = 1, 2, 3, 4$), it is easy to obtain

$$\lambda_1 = -a \ln(\max\{M, 1\}), \quad \lambda_2 = -a, \quad \lambda_3 = 2c_1, \quad \lambda_4 = c_2.$$

Applying Theorem 1.1 and setting $R \rightarrow \infty$, (2.22) immediately follows. \square

Corollary 2.6. *Let (M^n, g) , q^- and $|\nabla \sqrt{|q|}|$ be the same as in Corollary 2.5. Let $0 < u \leq M$ be a smooth solution of (2.20) with $\gamma > 1$ in $M^n \times [t_0 - T, t_0]$. Then there exists a dimensional constant $c(n)$ such that*

$$(2.23) \quad |\nabla \ln u| \leq c(n) \left(\frac{1}{\sqrt{t-t_0+T}} + \sqrt{k + \frac{\operatorname{sgn} a - 1}{2} (a\gamma M^{\gamma-1}) + 2c_1 + c_2} \right) \cdot \left(1 + \ln \frac{M}{u} \right)$$

in $M^n \times (t_0 - T, t_0]$, where

$$\operatorname{sgn} a = \begin{cases} 1 & \text{if } a > 0, \\ 0 & \text{if } a = 0, \\ -1 & \text{if } a < 0. \end{cases}$$

Proof. Since $F(u) = au^\gamma$ ($\gamma > 1$) and $0 < u \leq M$, by the direct calculations, we have

- (i) If $a \geq 0$, then $\lambda_1 = \lambda_2 = 0$.
- (ii) If $a < 0$, then $\lambda_1 = -aM^{\gamma-1}$, $\lambda_2 = -a(\gamma - 1)M^{\gamma-1}$.

Using (1.4) and letting $R \rightarrow \infty$, the desired result (2.23) follows. \square

Next, we apply Theorem 1.1 to prove Theorem 1.3 which analyze the existence of solutions to the parabolic equation (1.5) when the coefficient $q(x)$ and solutions $u(x, t)$ satisfying some growth conditions. Furthermore, we can use Theorem 1.3 to study the problem about conformal deformation of the scalar curvature on complete manifolds.

Proof of Theorem 1.3. From the proof of Theorem 1.1 and Corollary 2.6, since $a \geq 0$, then $\lambda_1 = \lambda_2 = 0$, we get a local elliptic gradient estimate for (1.5):

$$(2.24) \quad |\nabla \ln u| \leq c(n) \left(\sqrt{\frac{1+|\delta|}{R}} + \frac{1}{\sqrt{t-t_0+T}} + \sqrt{\lambda_3 + \lambda_4} \right) \left(1 + \ln \frac{M}{u} \right)$$

for any $(x, t) \in Q_{\frac{R}{2}, T}$ with $t \neq t_0 - T$, where λ_3, λ_4 be defined in Theorem 1.1.

For any fixed space-time point (x_0, t_0) , by the growth assumptions of $u(x, t)$ and $q(x)$, applying (2.24) to $u(x_0, t_0)$ in the space-time set $Q_{R, R} = B_{x_0}(R) \times [t_0 - R, t_0]$, then

$$(2.25) \quad |\nabla \ln u(x_0, t_0)| \leq c(n) \left(\sqrt{\frac{1+|\delta|}{R}} + o(R^{-1/2}) \right) \left(1 + o(\ln \sqrt{R}) - \ln u(x_0, t_0) \right)$$

for sufficiently large $R \geq 2$.

Notice that $\ln u(x_0, t_0)$ is a fixed value, which implies

$$|\nabla u(x_0, t_0)| = 0 \quad \text{as } R \rightarrow \infty.$$

Since (x_0, t_0) was chosen arbitrarily, then $u(x, t) \equiv u(t)$, and Equation (1.5) becomes

$$(2.26) \quad u'(t) = -q(x)u(t) - au^\gamma(t).$$

Case I. $a = 0$.

In this case, $u'(t) = -q(x)u(t)$. Since $q(x) \neq 0$, we solve this equation and obtain

$$(2.27) \quad u(t) = Ce^{-q(x)t},$$

where C is an arbitrary constant.

From (2.27), we know $q(x) = c$ for some constant $c > 0$ due to the growth assumption of q^- . Then

$$u(t) = u(0)e^{-ct} = u(0)e^{c|t|},$$

which contradicts the assumption that $u(x, t) = o(r(x)^{1/2} + |t|^{1/2})$ near infinity.

Case II. $a > 0$.

In this case, (2.26) can be regraded as a one-order linear ordinary equation which has a general solution

$$(2.28) \quad u^{1-\gamma}(t) = Ce^{(\gamma-1)q(x)t} - \frac{a}{q(x)},$$

where C is an arbitrary constant.

By the same way, we know $q(x) = c$ for some constant $c > 0$, then

$$u^{1-\gamma}(t) = \left(u^{1-\gamma}(0) + \frac{a}{c} \right) e^{(\gamma-1)ct} - \frac{a}{c}.$$

Since $a, c, \gamma - 1$ and $u(0)$ are positive constants, which imply

$$u^{1-\gamma}(t) \rightarrow -\frac{a}{c} < 0 \quad \text{as } t \rightarrow -\infty,$$

this is impossible since $u > 0$.

As for the case $V \equiv 0$, the term $\sqrt{(1+|\delta|)/R}$ in (2.24) can be changed into $\frac{1}{R}$. Since $u(x, t) = o(r(x) + |t|^{1/2})$ near infinity, we apply (2.24) to $u(x_0, t_0)$ in $Q_{R, R^2} = B_{x_0}(R) \times [t_0 - R^2, t_0]$ and the proof is almost the same as before except that (2.25) is replaced by

$$|\nabla \ln u(x_0, t_0)| \leq c(n) \left(\frac{1}{R} + o(R^{-1/2}) \right) (1 + o(\ln R) - \ln u(x_0, t_0)). \quad \square$$

As an application of Theorem 1.3, we discuss the Yamabe type problem of complete Riemannian manifolds and immediately obtain the following corollary.

Corollary 2.7. *Let (M^n, g) be an n -dimensional ($n \geq 3$) complete Riemannian manifold with $\text{Ric} \geq 0$ and the scalar curvature s of g satisfying*

$$\sup_{B_{x_0}(R)} |\nabla \sqrt{s}| = o(R^{-1})$$

as $R \rightarrow \infty$. Then there does not exist complete metric

$$\tilde{g} \in \{u^{4/(n-2)}g \mid 0 < u \in C^\infty(M) \text{ and } u(x) = o(r(x)^{1/2})\},$$

such that the scalar curvature \tilde{s} of \tilde{g} is some nonpositive constant.

Proof. It is equivalent to prove that if \tilde{s} is some nonpositive constant, then there does not exist any positive solution to (2.21) satisfying $u(x) = o(r(x)^{1/2})$. In Theorem 1.3, let

$$\begin{aligned} u(x, t) &= u(x), \quad V = 0, \quad q(x) = \frac{n-2}{4(n-1)}s \geq 0, \\ a &= -\frac{n-2}{4(n-1)}\tilde{s} \geq 0, \quad \gamma = \frac{n+2}{n-2} > 1, \end{aligned}$$

we know that $q(x)$ satisfies the growth conditions in Theorem 1.3 due to the assumptions on s , hence the conclusion follows. \square

We also apply Theorem 1.1 to derive the parabolic Liouville theorem for the V -heat equation which extends some known results.

Proof of Theorem 1.5. Since $F(u) = q = 0$, using Theorem 1.1, we have

$$(2.29) \quad |\nabla \ln u| \leq C(n) \left(\sqrt{\frac{1+|\delta|}{R}} + \frac{1}{\sqrt{t-t_0+T}} \right) \left(1 + \ln \frac{M}{u} \right).$$

(i) By the assumption of $u(x, t)$, we have

$$\ln u = o(r^{1/2}(x) + |t|^{1/2})$$

near infinity. For any space-time point (x_0, t_0) , we apply (2.29) to $u(x_0, t_0)$ in the space-time set $Q_{R,R} = B_{x_0}(R) \times [t_0-R, t_0]$, then

$$\frac{|\nabla u(x_0, t_0)|}{u(x_0, t_0)} \leq \frac{C(n, \delta)}{\sqrt{R}} (1 + o(\sqrt{R}) - \ln u(x_0, t_0))$$

for sufficiently large $R \geq 2$.

For the fixed value $\ln u(x_0, t_0)$, setting $R \rightarrow \infty$ in the above inequality, we get

$$|\nabla u(x_0, t_0)| = 0.$$

Then u is only a time-dependent function due to (x_0, t_0) being arbitrary. Moreover, u is a constant by using (1.6).

(ii) Let $M_R = \sup_{Q_{\sqrt{R}, \sqrt{R}}} |u|$. Considering the function $U = u + 2M_{2R}$, then

$$M_{2R} \leq U(x, t) \leq 3M_{2R}$$

whenever $(x, t) \in Q_{2\sqrt{R}, 2\sqrt{R}}$. For any fixed point (x_0, t_0) , applying (2.29) to U , we have

$$\frac{|\nabla u(x_0, t_0)|}{u(x_0, t_0) + 2M_{2R}} \leq \frac{C(n, \delta)}{\sqrt{R}}$$

for sufficiently large $R \geq 2$. By the assumption of $u(x, t)$, we have $M_{2R} = o(R^{1/4})$. The conclusion immediately follows by taking $R \rightarrow \infty$. \square

3. Global elliptic gradient estimate

In this section, we follow the arguments of Kotschwar [2007] and Wu [2015] to prove Theorem 1.7. The key is to derive a local elliptic gradient estimate which is different from Souplet–Zhang’s gradient estimate. Our proof is based on the technique of Shi [1989] from the estimation of derivatives of curvature under the Ricci flow. Firstly, we give the following lemma.

Lemma 3.1. *Define*

$$G(x, t) := (4M^2 + u^2)|\nabla u|^2.$$

Under the same assumptions as in Theorem 1.7, we have

$$(3.1) \quad (\partial_t - \Delta_V)G \leq \left(\frac{5}{2}k + \frac{7}{2}\alpha\right)G - \frac{2}{125M^4}G^2 + 50\beta^2M^4.$$

Proof. By straightforward calculations, we obtain

$$\begin{aligned} (\partial_t - \Delta_V)u^2 &= -2|\nabla u|^2 - 2qu^2. \\ (\partial_t - \Delta_V)|\nabla u|^2 &\leq -2|\nabla \nabla u|^2 - 2u\langle \nabla u, \nabla q \rangle - 2q|\nabla u|^2 + 2k|\nabla u|^2. \end{aligned}$$

Then,

$$\begin{aligned} (3.2) \quad (\partial_t - \Delta_V)G &= (\partial_t - \Delta_V)u^2 \cdot |\nabla u|^2 + (4M^2 + u^2)(\partial_t - \Delta_V)|\nabla u|^2 \\ &\quad - 2\langle \nabla u^2, \nabla |\nabla u|^2 \rangle \\ &\leq (-2|\nabla u|^2 - 2qu^2)|\nabla u|^2 \\ &\quad + (4M^2 + u^2)(-2|\nabla \nabla u|^2 - 2u\langle \nabla u, \nabla q \rangle - 2q|\nabla u|^2 + 2k|\nabla u|^2) \\ &\quad - 8u\nabla \nabla u(\nabla u, \nabla u). \end{aligned}$$

Since

$$-8u\nabla \nabla u(\nabla u, \nabla u) \leq 10u^2|\nabla \nabla u|^2 + \frac{8}{5}|\nabla u|^4, \quad 5u^2 \leq 4M^2 + u^2 \leq 5M^2,$$

the inequality (3.2) can be simplified as

$$(3.3) \quad (\partial_t - \Delta_V)G \leq 10kM^2|\nabla u|^2 - \frac{2}{5}|\nabla u|^4 - 2qu^2|\nabla u|^2 - 2(4M^2 + u^2)u\langle \nabla u, \nabla q \rangle - 2(4M^2 + u^2)q|\nabla u|^2.$$

Using the Young's inequality, then

$$\begin{aligned} -2(4M^2 + u^2)u\langle \nabla u, \nabla q \rangle &\leq 10M^2u|\nabla u||\nabla q| \\ &\leq 2|q|u^2|\nabla u|^2 + \frac{25}{2}\frac{|\nabla q|^2}{|q|}M^4 \\ &= 2|q|u^2|\nabla u|^2 + 50|\nabla\sqrt{|q|}|^2M^4. \end{aligned}$$

Notice that

$$-2(4M^2 + u^2)q|\nabla u|^2 \leq 10M^2q^-|\nabla u|^2,$$

and

$$|q| - q = 2q^-.$$

Hence, (3.3) can be written as

$$\begin{aligned} (\partial_t - \Delta_V)G &\leq 10kM^2|\nabla u|^2 - \frac{2}{5}|\nabla u|^4 + 4q^-u^2|\nabla u|^2 + 10M^2q^-|\nabla u|^2 \\ &\quad + 50|\nabla\sqrt{|q|}|^2M^4 \\ &\leq -\frac{2}{5}|\nabla u|^4 + (10k + 14\alpha)M^2|\nabla u|^2 + 50\beta^2M^4, \end{aligned}$$

where we used the assumptions $q^- \leq \alpha$ and $|\nabla\sqrt{|q|}| \leq \beta$.

By the definition of G , we know

$$4M^2|\nabla u|^2 \leq G \leq 5M^2|\nabla u|^2.$$

Hence, the inequality (3.1) follows. \square

Now, applying Lemma 3.1, we give a proof of Theorem 1.7.

Proof of Theorem 1.7. As in [Li and Yau 1986], we take a cut-off function $\bar{\phi}(s)$ which is defined in $[0, \infty)$ such that $0 \leq \bar{\phi}(s) \leq 1$ and

$$\bar{\phi}(s) = 1 \quad \text{for } s \in [0, \frac{1}{2}], \quad \bar{\phi}(s) = 0 \quad \text{for } s \in [1, \infty).$$

$\bar{\phi}(s)$ also satisfies

$$-c_1 \leq \frac{\bar{\phi}'(s)}{\bar{\phi}^{1/2}(s)} \leq 0, \quad \bar{\phi}''(s) \geq -c_2$$

for positive absolute constants c_1 and c_2 .

Let $\phi(x) = \bar{\phi}(\frac{r(x)}{R})$ for $R \geq 2$, where $r(x)$ denotes the distance from the fixed point x_0 to x . Using the argument of Calabi [1958], we may assume $\phi(x) \in C^2(M)$

with support in $B_{x_0}(R)$. By direct calculations, we have

$$(3.4) \quad \frac{|\nabla\phi|^2}{\phi} \leq \frac{c_3}{R^2}, \quad \Delta_V\phi = \frac{\bar{\phi}'\Delta_V r}{R} + \frac{\bar{\phi}''}{R^2}$$

for some positive absolute constant c_3 .

Considering $t\phi G$ in $B_{x_0}(R) \times [0, T]$, using Lemma 3.1, we get

$$(3.5) \quad (\partial_t - \Delta_V)(t\phi G) \leq \phi G + t\phi \left(\left(\frac{5}{2}k + \frac{7}{2}\alpha \right) G - \frac{2}{125M^4} G^2 + 50\beta^2 M^4 \right) - tG\Delta_V\phi - 2t\langle \nabla\phi, \nabla G \rangle$$

Assume

$$(t\phi G)(x_1, t_1) = \max_{B_{x_0}(R) \times (0, T]} (t\phi G).$$

If $t\phi G$ is not identically zero (i.e., u is not a constant in $\text{supp } \phi$), then

$$(t\phi G)(x_1, t_1) > 0.$$

By the maximum principle, at (x_1, t_1) ,

$$\nabla(t\phi G) = 0, \quad (\partial_t - \Delta_V)(t\phi G) \geq 0.$$

In the following, we will estimate the each term on the right hand side of (3.5) at (x_1, t_1) .

Case I. Assume $x_1 \in B_{x_0}(1) \subset B_{x_0}\left(\frac{R}{2}\right)$ because of $R \geq 2$.

In this case, $\phi \equiv 1$ implies $\nabla\phi = \Delta_V\phi = 0$. The inequality (3.5) can be simplified as

$$0 \leq G + t \left(\left(\frac{5}{2}k + \frac{7}{2}\alpha \right) G - \frac{2G^2}{125M^4} + 50\beta^2 M^4 \right).$$

It is equivalent to

$$\frac{2}{125M^4} tG^2 - \left(\left(\frac{5}{2}k + \frac{7}{2}\alpha \right) t + 1 \right) G - 50\beta^2 M^4 t \leq 0$$

at (x_1, t_1) . Since $0 < t \leq T$, we have

$$\frac{2}{125M^4} (tG)^2 - \left(\left(\frac{5}{2}k + \frac{7}{2}\alpha \right) T + 1 \right) tG - 50\beta^2 M^4 T^2 \leq 0.$$

At this time, (x_1, t_1) is also the maximum point of tG in $B_{x_0}\left(\frac{R}{2}\right) \times (0, T]$. Hence, we obtain

$$(tG)(x, t) \leq (tG)(x_1, t_1) \leq CM^4(1 + (k + \alpha + \beta)T)$$

in $B_{x_0}\left(\frac{R}{2}\right) \times [0, T]$.

Case II. Assume $x_1 \notin B_{x_0}(1)$.

In this case, since $\text{Ric}_V \geq -k$, $d(x_1, x_0) \geq 1$ and $R \geq 2$, by the V -Laplacian comparison theorem, we have

$$\Delta_V r(x_1) \leq \delta + k(R-1) \leq |\delta| + k(R-1),$$

where $\delta = \max_{\{x|d(x, x_0)=1\}} \Delta_V r(x)$. Hence,

$$(3.6) \quad \Delta_V \phi \geq -\frac{c_1}{R}(|\delta| + k(R-1)) - \frac{c_2}{R^2}.$$

By using Lemma 3.1, (3.4) and (3.6), at (x_1, t_1) , we have

$$\begin{aligned} (3.7) \quad 0 &\leq (\partial_t - \Delta_V)(t\phi G) \\ &= \phi G + t\phi(\partial_t - \Delta_V)G - tG\Delta_V\phi - 2t\langle \nabla\phi, \nabla G \rangle \\ &= \left(\phi + 2t\frac{|\nabla\phi|^2}{\phi} - t\Delta_V\phi\right)G + t\phi(\partial_t - \Delta_V)G - 2\left\langle \nabla(t\phi G), \frac{\nabla\phi}{\phi} \right\rangle \\ &\leq \left(1 + \frac{c_4 t}{R^2} + \frac{c_1 t}{R}(|\delta| + k(R-1))\right)G \\ &\quad + t\phi\left(\left(\frac{5}{2}k + \frac{7}{2}\alpha\right)G - \frac{2G^2}{125M^4} + 50\beta^2 M^4\right) \\ &\leq -\frac{c_5}{M^4}t\phi G^2 + \left(1 + c_6\left(\frac{1+|\delta|}{R} + k + \alpha\right)T\right)G + c_7\beta^2 M^4 T. \end{aligned}$$

Multiplying both sides of (3.7) by $t\phi$ and using $t\phi \leq T$, we have

$$\frac{c_5}{M^4}(t\phi G)^2 - \left(1 + c_6\left(\frac{1+|\delta|}{R} + k + \alpha\right)T\right)(t\phi G) - c_7\beta^2 M^4 T^2 \leq 0.$$

We solve this inequality and obtain that

$$(t\phi G)(x_1, t_1) \leq c_8 M^4 \left(1 + \left(\frac{1+|\delta|}{R} + k + \alpha + \beta\right)T\right).$$

Notice that the above constants c_i ($i = 1, 2, \dots, 8$) are all absolute positive constants. Consequently,

$$\begin{aligned} (tG)(x, t) &= (t\phi G)(x, t) \leq (t\phi G)(x_1, t_1) \\ &\leq c_8 M^4 \left(1 + \left(\frac{1+|\delta|}{R} + k + \alpha + \beta\right)T\right) \end{aligned}$$

for any $(x, t) \in B_{x_0}\left(\frac{R}{2}\right) \times [0, T]$.

Combining the above two cases, we obtain

$$(tG)(x, t) \leq CM^4 \left(1 + \left(\frac{1+|\delta|}{R} + k + \alpha + \beta\right)T\right)$$

for any $(x, t) \in B_{x_0}\left(\frac{R}{2}\right) \times [0, T]$.

Since $G \geq 4M^2|\nabla u|^2$, the theorem follows by taking $R \rightarrow \infty$. \square

Acknowledgement

The authors would like to thank the referee for helpful comments and suggestions to improve this article.

References

- [Bailesteianu et al. 2010] M. Bailesteianu, X. Cao, and A. Pulemotov, “Gradient estimates for the heat equation under the Ricci flow”, *J. Funct. Anal.* **258**:10 (2010), 3517–3542. MR Zbl
- [Brighton 2013] K. Brighton, “A Liouville-type theorem for smooth metric measure spaces”, *J. Geom. Anal.* **23**:2 (2013), 562–570. MR Zbl
- [Calabi 1958] E. Calabi, “An extension of E. Hopf’s maximum principle with an application to Riemannian geometry”, *Duke Math. J.* **25** (1958), 45–56. MR Zbl
- [Cao 2010] H.-D. Cao, “Recent progress on Ricci solitons”, pp. 1–38 in *Recent advances in geometric analysis*, edited by Y.-I. Lee et al., Adv. Lect. Math. (ALM) **11**, International Press, Somerville, MA, 2010. MR Zbl
- [Cao and Zhang 2011] X. Cao and Z. Zhang, “Differential Harnack estimates for parabolic equations”, pp. 87–98 in *Complex and differential geometry*, edited by W. Ebeling et al., Springer Proc. Math. **8**, Springer, 2011. MR Zbl
- [Chen and Qiu 2016] Q. Chen and H. Qiu, “Gradient estimates and Harnack inequalities of a nonlinear parabolic equation for the V -Laplacian”, *Ann. Global Anal. Geom.* **50**:1 (2016), 47–64. MR Zbl
- [Chen and Zhao 2018] Q. Chen and G. Zhao, “Li–Yau type and Souplet–Zhang type gradient estimates of a parabolic equation for the V -Laplacian”, *J. Math. Anal. Appl.* **463**:2 (2018), 744–759. MR Zbl
- [Chen et al. 2012] Q. Chen, J. Jost, and H. Qiu, “Existence and Liouville theorems for V -harmonic maps from complete manifolds”, *Ann. Global Anal. Geom.* **42**:4 (2012), 565–584. MR Zbl
- [Chow and Hamilton 1997] B. Chow and R. S. Hamilton, “Constrained and linear Harnack inequalities for parabolic equations”, *Invent. Math.* **129**:2 (1997), 213–238. MR Zbl
- [Hamilton 1993] R. S. Hamilton, “A matrix Harnack estimate for the heat equation”, *Comm. Anal. Geom.* **1**:1 (1993), 113–126. MR Zbl
- [Hamilton 1995] R. S. Hamilton, “The formation of singularities in the Ricci flow”, pp. 7–136 in *Surveys in differential geometry* (Cambridge, MA, 1993), vol. II, edited by S.-T. Yau, International Press, Cambridge, MA, 1995. MR Zbl
- [Huang and Ma 2016] G. Huang and B. Ma, “Hamilton–Souplet–Zhang’s gradient estimates for two types of nonlinear parabolic equations under the Ricci flow”, *J. Funct. Spaces* (2016), art. id. 2894207, 7 pp. MR Zbl
- [Kotschwar 2007] B. L. Kotschwar, “Hamilton’s gradient estimate for the heat kernel on complete manifolds”, *Proc. Amer. Math. Soc.* **135**:9 (2007), 3013–3019. MR Zbl
- [Lee and Parker 1987] J. M. Lee and T. H. Parker, “The Yamabe problem”, *Bull. Amer. Math. Soc. (N.S.)* **17**:1 (1987), 37–91. MR Zbl
- [Li 1991] J. Li, “Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds”, *J. Funct. Anal.* **100**:2 (1991), 233–256. MR Zbl
- [Li 2012] P. Li, *Geometric analysis*, Cambridge Studies in Advanced Mathematics **134**, Cambridge University Press, 2012. MR Zbl
- [Li 2015] Y. Li, “Li–Yau–Hamilton estimates and Bakry–Emery–Ricci curvature”, *Nonlinear Anal.* **113** (2015), 1–32. MR Zbl

[Li and Xu 2011] J. Li and X. Xu, “Differential Harnack inequalities on Riemannian manifolds I: Linear heat equation”, *Adv. Math.* **226**:5 (2011), 4456–4491. MR Zbl

[Li and Yau 1986] P. Li and S.-T. Yau, “On the parabolic kernel of the Schrödinger operator”, *Acta Math.* **156**:3-4 (1986), 153–201. MR Zbl

[Ma 2006] L. Ma, “Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds”, *J. Funct. Anal.* **241**:1 (2006), 374–382. MR Zbl

[Mastrolia et al. 2012] P. Mastrolia, M. Rigoli, and A. G. Setti, *Yamabe-type equations on complete, noncompact manifolds*, Progress in Mathematics **302**, Springer, 2012. MR Zbl

[Ruan 2007] Q. Ruan, “Elliptic-type gradient estimate for Schrödinger equations on noncompact manifolds”, *Bull. Lond. Math. Soc.* **39**:6 (2007), 982–988. MR Zbl

[Schoen 1984] R. Schoen, “Conformal deformation of a Riemannian metric to constant scalar curvature”, *J. Differential Geom.* **20**:2 (1984), 479–495. MR Zbl

[Shi 1989] W.-X. Shi, “Deforming the metric on complete Riemannian manifolds”, *J. Differential Geom.* **30**:1 (1989), 223–301. MR Zbl

[Souplet and Zhang 2006] P. Souplet and Q. S. Zhang, “Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact manifolds”, *Bull. London Math. Soc.* **38**:6 (2006), 1045–1053. MR Zbl

[Wu 2015] J.-Y. Wu, “Elliptic gradient estimates for a weighted heat equation and applications”, *Math. Z.* **280**:1-2 (2015), 451–468. MR Zbl

[Wu 2018] J.-Y. Wu, “Myers’ type theorem with the Bakry–Émery Ricci tensor”, *Ann. Global Anal. Geom.* **54**:4 (2018), 541–549. MR Zbl

[Yang 2008] Y. Yang, “Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds”, *Proc. Amer. Math. Soc.* **136**:11 (2008), 4095–4102. MR Zbl

[Yau 1975] S. T. Yau, “Harmonic functions on complete Riemannian manifolds”, *Comm. Pure Appl. Math.* **28** (1975), 201–228. MR Zbl

[Zhu 2016] X. Zhu, “Gradient estimates and Liouville theorems for linear and nonlinear parabolic equations on Riemannian manifolds”, *Acta Math. Sci. Ser. B (Engl. Ed.)* **36**:2 (2016), 514–526. MR Zbl

Received October 12, 2018. Revised December 12, 2019.

JIAN-HONG WANG
 SCHOOL OF STATISTICS AND MATHEMATICS
 SHANGHAI LIXIN UNIVERSITY OF ACCOUNTING AND FINANCE
 SHANGHAI
 CHINA
 jianhongwang@163.com

YU ZHENG
 SCHOOL OF MATHEMATICAL SCIENCES
 EAST CHINA NORMAL UNIVERSITY
 SHANGHAI
 CHINA
 zhyu@math.ecnu.edu.cn

PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
blasius@math.ucla.edu

Matthias Aschenbrenner
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
matthias@math.ucla.edu

Daryl Cooper
Department of Mathematics
University of California
Santa Barbara, CA 93106-3080
cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong
jhu@maths.hku.hk

Paul Balmer
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
balmer@math.ucla.edu

Wee Teck Gan
Mathematics Department
National University of Singapore
Singapore 119076
matgwt@nus.edu.sg

Sorin Popa
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
popa@math.ucla.edu

Paul Yang
Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Vyjayanthi Chari
Department of Mathematics
University of California
Riverside, CA 92521-0135
chari@math.ucr.edu

Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu

Jie Qing
Department of Mathematics
University of California
Santa Cruz, CA 95064
qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA
KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE
NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY
UNIV. OF BRITISH COLUMBIA
UNIV. OF CALIFORNIA, BERKELEY
UNIV. OF CALIFORNIA, DAVIS
UNIV. OF CALIFORNIA, LOS ANGELES
UNIV. OF CALIFORNIA, RIVERSIDE
UNIV. OF CALIFORNIA, SAN DIEGO
UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SOUTHERN CALIFORNIA
UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2020 is US \$520/year for the electronic version, and \$705/year for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 1945-5844 electronic, 0030-8730 printed) at the University of California, c/o Department of Mathematics, 798 Evans Hall #3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

 mathematical sciences publishers

nonprofit scientific publishing

<http://msp.org/>

© 2020 Mathematical Sciences Publishers

PACIFIC JOURNAL OF MATHEMATICS

Volume 309 No. 2 December 2020

Thin subgroups isomorphic to Gromov–Piatetski-Shapiro lattices SAMUEL A. BALLAS	257
Value distribution properties for the Gauss maps of the immersed harmonic surfaces XINGDI CHEN, ZHIXUE LIU and MIN RU	267
Scattered representations of $SL(n, \mathbb{C})$ CHAO-PING DONG and KAYUE DANIEL WONG	289
Number of singular fibres of surface fibrations over \mathbb{P}^1 CHENG GONG and YI GU	313
Asymptotic behavior of solutions for some elliptic equations in exterior domains ZONGMING GUO and ZHONGYUAN LIU	333
Ulrich elements in normal simplicial affine semigroups JÜRGEN HERZOG, RAHELEH JAFARI and DUMITRU I. STAMATE	353
Notes on equivariant homology with constant coefficients SOPHIE KRIZ	381
Local normal forms for multiplicity free $U(n)$ actions on coadjoint orbits JEREMY LANE	401
Functional determinant on pseudo-Einstein 3-manifolds ALI MAALAOUI	421
Distribution of distances in positive characteristic THANG PHAM and LÊ ANH VINH	437
Elliptic gradient estimates for a parabolic equation with V -Laplacian and applications JIAN-HONG WANG and YU ZHENG	453
Optimal L^2 extension of sections from subvarieties in weakly pseudoconvex manifolds XIANGYU ZHOU and LANGFENG ZHU	475

0030-8730(202012)309:2;1-H