Vol. 310, No. 2, 2021

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Bilinear Hilbert transforms and (sub)bilinear maximal functions along convex curves

Junfeng Li and Haixia Yu

Vol. 310 (2021), No. 2, 375–446
DOI: 10.2140/pjm.2021.310.375
Abstract

We determine the Lp() × Lq() Lr() boundedness of the bilinear Hilbert transform Hγ(f,g) along a convex curve γ:

Hγ(f,g)(x) := p.v.f(x t)g(x γ(t))dt t ,

where p, q, and r satisfy 1p + 1q = 1r, and r > 1 2, p > 1, and q > 1. Moreover, the same Lp() × Lq() Lr() boundedness property holds for the corresponding (sub)bilinear maximal function Mγ(f,g) along a convex curve γ

Mγ(f,g)(x) := sup𝜀>0 1 2𝜀𝜀𝜀|f(x t)g(x γ(t))|dt.

Keywords
bilinear Hilbert transform, (sub)bilinear maximal function, convex curve, time frequency analysis
Mathematical Subject Classification
Primary: 42B20
Secondary: 47B38
Milestones
Received: 7 June 2020
Revised: 2 September 2020
Accepted: 4 September 2020
Published: 8 March 2021
Authors
Junfeng Li
School of Mathematical Sciences
Dalian University of Technology
Dalian
China
Haixia Yu
Department of Mathematics
Shantou University
Shantou
China