Vol. 315, No. 1, 2021

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Bessel quotients and Robin eigenvalues

Pedro Freitas

Vol. 315 (2021), No. 1, 75–87
Abstract

We obtain sharp bounds for the quotient xJν+1Jν(x), where Jν are Bessel functions of the first kind and ν > 1. These bounds are asymptotically correct close to the zeros of Jν, allowing us to derive sharp estimates for the zeros of the function xJν+1(x) βJν(x), with applications to eigenvalue problems associated with the Laplace and Dirac operators.

Keywords
Bessel functions, eigenvalues, Mittag–Leffler expansion
Mathematical Subject Classification
Primary: 33C10, 34B30
Secondary: 35P15
Milestones
Received: 4 September 2020
Accepted: 11 October 2021
Published: 13 December 2021
Authors
Pedro Freitas
Departamento de Matemática
Instituto Superior Técnico
Universidade de Lisboa
Lisboa
Portugal
Grupo de Física Matemática
Faculdade de Ciências
Universidade de Lisboa
Lisboa
Portugal