Vol. 316, No. 1, 2022

Download this article
Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Kähler–Ricci solitons induced by infinite-dimensional complex space forms

Andrea Loi, Filippo Salis and Fabio Zuddas

Vol. 316 (2022), No. 1, 183–205
Abstract

We exhibit families of nontrivial (i.e., not Kähler–Einstein) radial Kähler–Ricci solitons (KRS), both complete and not complete, which can be Kähler immersed into infinite-dimensional complex space forms. This shows that the triviality of a KRS induced by a finite-dimensional complex space form proved by Loi and Mossa (Proc. Amer. Math. Soc. 149:11 (2020), 4931–4941) does not hold when the ambient space is allowed to be infinite-dimensional. Moreover, we show that the radial potential of a radial KRS induced by a nonelliptic complex space form is necessarily defined at the origin.

Keywords
Kähler metric, Kähler–Ricci solitons, Einstein metrics, Calabi's diastasis function, complex space forms
Mathematical Subject Classification
Primary: 32Q15, 53C55
Milestones
Received: 23 July 2021
Accepted: 27 November 2021
Published: 26 February 2022
Authors
Andrea Loi
Dipartimento di Matematica
Università di Cagliari
Cagliari
Italy
Filippo Salis
Dipartimento di Scienze Matematiche
Politecnico di Torino
Torino
Italy
Fabio Zuddas
Dipartimento di Matematica
Università di Cagliari
Cagliari
Italy