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ELEMENTS OF HIGHER HOMOTOPY GROUPS
UNDETECTABLE BY POLYHEDRAL APPROXIMATION

JOHN K. ACETI AND JEREMY BRAZAS

When nontrivial local structures are present in a topological space X , a
common approach to characterizing the isomorphism type of the n-th ho-
motopy group πn(X, x0) is to consider the image of πn(X, x0) in the n-
th Čech homotopy group π̌n(X, x0) under the canonical homomorphism
9n : πn(X, x0) → π̌n(X, x0). The subgroup ker(9n) is the obstruction to
this tactic as it consists of precisely those elements of πn(X, x0), which can-
not be detected by polyhedral approximations to X . In this paper, we use
higher dimensional analogues of Spanier groups to characterize ker(9n). In
particular, we prove that if X is paracompact, Hausdorff, and LCn−1, then
ker(9n) is equal to the n-th Spanier group of X . We also use the perspective
of higher Spanier groups to generalize a theorem of Kozlowski–Segal, which
gives conditions ensuring that 9n is an isomorphism.

1. Introduction

When nontrivial local structures are present in a topological space X , a common
approach to characterizing the isomorphism type of πn(X, x0) is to consider the
image of πn(X, x0) in the n-th Čech (shape) homotopy group π̌n(X, x0) under the
canonical homomorphism 9n : πn(X, x0)→ π̌n(X, x0). The n-th shape kernel
ker(9n) is the obstruction to this tactic as it consists of precisely those elements
of πn(X, x0), which cannot be detected by polyhedral approximations to X . This
method has proved successful in many situations for both the fundamental group
[Cannon and Conner 2006; Eda and Kawamura 1998; Fischer and Guilbault 2005;
Fischer and Zastrow 2005] and higher homotopy groups [Brazas 2021; Eda and
Kawamura 2000a; 2010; Eda et al. 2013; Kawamura 2003]. In this paper, we
study the map 9n and give a characterization the n-th shape kernel in terms of
higher-dimensional analogues of Spanier groups.

The subgroups of fundamental groups, which are now commonly referred to
as “Spanier groups,” first appeared in E.H. Spanier’s unique approach [1966] to
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covering space theory. If U is an open cover of a topological space X and x0 ∈ X ,
then the Spanier group with respect to U is the subgroup π

Sp
1 (U , x0) of π1(X, x0)

generated by path-conjugates [α][γ ][α]−1 where α is a path starting at x0 and γ

is a loop based at α(1) with image being contained in some element of U . These
subgroups are particularly relevant to covering space theory since, when X is
locally path-connected, a subgroup H ≤ π1(X, x0) corresponds to a covering map
p : (Y, y0)→ (X, x0) if and only if π

Sp
1 (U , x0)≤H for some open cover U [Spanier

1966, 2.5.12]. The intersection π
Sp
1 (X, x0)=

⋂
U π

Sp
1 (U , x0) is called the Spanier

group of (X, x0) [Fischer et al. 2011]. The inclusion π
Sp
1 (X, x0)⊆ ker(91) always

holds [Fischer and Zastrow 2007, Proposition 4.8]. It is proved in [Brazas and
Fabel 2014, Theorem 6.1] that π

Sp
1 (X, x0)= ker(91) whenever X is paracompact

Hausdorff and locally path connected. The upshot of this equality is having a
description of level-wise generators (for each open cover U ) whereas there may
be no readily available generating set for the kernel of a homomorphism induced
by a canonical map from X to the nerve |N (U )|. Indeed, 1-dimensional Spanier
groups have proved useful in persistence theory [Virk 2020]. Since much of applied
topology is based on a geometric refinement of polyhedral approximation from
shape theory, there seems potential for higher dimensional analogues to be useful
as well.

Higher dimensional analogues of Spanier groups recently appeared in [Bahredar
et al. 2021] and are defined in a similar way: π

Sp
n (U , x0) is the subgroup of

πn(X, x0) consisting of homotopy classes of path-conjugates α ∗ f where α is a
path starting at x0 and f : Sn

→ X is based at α(1) with image being contained in
some element of U . Then π

Sp
n (X, x0) is the intersection of these subgroups. In

this paper, we prove a higher-dimensional analogue of the 1-dimensional equality
π

Sp
1 (X, x0)= ker(91) from [Brazas and Fabel 2014].
A space X is LCn if for every neighborhood U of a point x ∈ X , there is a

neighborhood V of x in U such that every map f : Sk
→ V , 0 ≤ k ≤ n is null-

homotopic in U . When a space is LCn , “small” maps on spheres of dimension ≤ n
contract by null-homotopies of relatively the same size. Certainly, every locally
n-connected space is LCn . However, when n ≥ 1, the converse is not true even for
metrizable spaces. Our main result is the following.

Theorem 1.1. Let n ≥ 1 and x0 ∈ X. If X is paracompact, Hausdorff , and LCn−1,
then π

Sp
n (X, x0)= ker(9n).

This result confirms that higher Spanier groups, like their 1-dimensional counter-
parts, often identify precisely those elements of πn(X, x0) which can be detected
by polyhedral approximations to X . More precisely, under the hypotheses of
Theorem 1.1, g ∈ π

Sp
n (X, x0) if and only if f#(g)= 0 for every map f : X→ K to

a polyhedron K . A first countable path-connected space is LC0 if and only if it
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is locally path connected. Hence, in dimension n = 1, Theorem 1.1 only expands
[Brazas and Fabel 2014, Theorem 6.1] to some nonfirst countable spaces.

Regarding the proof of Theorem 1.1, the inclusion π
Sp
n (X, x0)⊆ ker(9n) was

first proved for n = 1 in [Fischer and Zastrow 2007, Proposition 4.8] and for n ≥ 2
in [Bahredar et al. 2021, Theorem 4.14]. We include this proof for the sake of
completion (Corollary 3.11). The proof of the inclusion ker(9n) ⊆ π

Sp
n (X, x0)

appears in Section 5 and is more intricate, requiring a carefully chosen sequence of
open cover refinements using the LCn−1 property. These refinements allow one to
recursively extend maps on simplicial complexes skeleton-wise. These extension
methods, established in Section 4, are similar to methods found in [Kozlowski and
Segal 1977; 1978].

We also put these extension methods to work in Section 6 where we identify
conditions that imply 9n is an isomorphism. Kozlowski and Segal [1978], proved
that if X is paracompact Hausdorff and LCn , then 9n is an isomorphism. Fischer
and Zastrow [2007], generalized this result in dimension n = 1 by replacing “LC1”
with “locally path connected and semilocally simply connected.” Similar, to the
approach of Fischer and Zastrow, our use of Spanier groups shows that the existence
of small null-homotopies of small maps Sn

→ X (specifically in dimension n) is not
necessary to prove that 9n is injective. We say a space X is semilocally πn-trivial
if for every x ∈ X there exists an open neighborhood U of x such that every map
Sn
→U is null-homotopic in X . This definition is independent of lower dimensions

but certainly LCn
⇒ (LCn−1 and semilocally πn-trivial). Our second result proves

Kozlowski–Segal’s theorem under a weaker hypothesis and is stated as follows.

Theorem 1.2. Let n ≥ 1 and x0 ∈ X. If X is paracompact, Hausdorff , LCn−1, and
semilocally πn-trivial, then 9n : πn(X, x0)→ π̌n(X, x0) is an isomorphism.

The hypotheses in Theorem 1.2 are the homotopical versions of the hypotheses
used in [Mardešić 1959] to ensure that the canonical homomorphism ϕ∗ : Hn(X)→

Ȟn(X) is an isomorphism; see also [Eda and Kawamura 2000b] regarding the
surjectivity of ϕ∗. Examples show that 9n can fail to be an isomorphism if X
is semilocally πn-trivial but not LCn−1 (Example 7.4) or if X is LCn−1 but not
semilocally πn-trivial (Example 7.5).

The authors are grateful to the referee for many suggestions, which substantially
improved the exposition of this paper.

2. Preliminaries and notation

Throughout this paper, X is assumed to be a path-connected topological space
with basepoint x0. The unit interval is denoted I and Sn is the unit n-sphere with
basepoint d0 = (1, 0, . . . , 0). The n-th homotopy group of (X, x0) is denoted
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πn(X, x0). If f : (X, x0)→ (Y, y0) is a based map, then f# :πn(X, x0)→πn(Y, y0)

is the induced homomorphism.
A path in a space X is a map α : I → X from the unit interval. The reverse of α

is the path given by α−(t)= α(1− t) and the concatenation of two paths α, β with
α(1)= β(0) is denoted α ·β. Similarly, if f, g : Sn

→ X are maps based at x ∈ X ,
then f · g denotes the usual n-loop concatenation and f − denotes the reverse map.
We may write

∏m
i=1 fi to denote an m-fold concatenation f1 · f2 · · · · · fm .

2.1. Simplicial complexes. We make heavy use of standard notation and theory of
abstract and geometric simplicial complexes, which can be found in texts such as
[Mardešić and Segal 1982; Munkres 1984]. We briefly recall relevant notation.

For an abstract (geometric) simplicial complex K and integer r ≥ 0, Kr denotes
the r-skeleton of K . If K is abstract, |K | denotes the geometric realization of K
with the weak topology. If K is geometric, then sdm K denotes the m-th barycentric
subdivision of K and if v is a vertex of K , then st(v, K ) denotes the open star of
the vertex v. When L ⊆ K is a subcomplex, sdm L is a subcomplex of sdm K . If
σ ={v0, v1, . . . , vr } is a r -simplex of K , then [v0, v1, . . . , vr ] denotes the r -simplex
of |K | with the indicated orientation.

We frequently make use of the standard n-simplex 1n in Rn spanned by the origin
o and standard unit vectors. Since the boundary ∂1n = (1n)n−1 is homeomorphic
to Sn−1, we fix a based homeomorphism ∂1n ∼= Sn−1 that allows us to represent
elements of πn(X, x0) by maps (∂1n+1, o)→ (X, x0).

2.2. The Čech expansion and shape homotopy groups. We now recall the con-
struction of the first shape homotopy group π̌1(X, x0) via the Čech expansion. For
more details; see [Mardešić and Segal 1982].

Let O(X) be the set of open covers of X directed by refinement; we write
V ⪰U when V refines U . Similarly, let O(X, x0) be the set of open covers with a
distinguished element containing x0, i.e., the set of pairs (U , U0) where U ∈O(X),
U0 ∈ U , and x0 ∈U0. We say (V , V0) refines (U , U0) if V ⪰ U and V0 ⊆U0.

The nerve of a cover (U , U0) ∈ O(X, x0) is the abstract simplicial complex
N (U ) whose vertex set is N (U )0 = U and vertices A0, . . . , An ∈ U span an
n-simplex if

⋂n
i=0 Ai ̸= ∅. The vertex U0 is taken to be the basepoint of the

geometric realization |N (U )|. Whenever (V , V0) refines (U , U0), we can construct
a simplicial map pU V : N (V )→ N (U ), called a projection, by sending a vertex
V ∈ N (V ) to a vertex U ∈U such that V ⊆U . In particular, we make a convention
that pU V (V0)=U0. Any such assignment of vertices extends linearly to a simplicial
map. Moreover, the induced map |pU V | : |N (V )| → |N (U )| is unique up to based
homotopy. Thus the homomorphism pU V # : π1(|N (V )|, V0)→ π1(|N (U )|, U0)

induced on fundamental groups is (up to coherent isomorphism) independent of the
choice of simplicial map.
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Recall that an open cover U of X is normal if it admits a partition of unity
subordinated to U . Let 3 be the subset of O(X, x0) (also directed by refinement)
consisting of pairs (U , U0) where U is a normal open cover of X and such that
there is a partition of unity {φU }U∈U subordinated to U with φU0(x0) = 1. It is
well-known that every open cover of a paracompact Hausdorff space X is normal.
Moreover, if (U , U0) ∈ O(X, x0), it is easy to refine (U , U0) to a cover (V , V0)

such that V0 is the only element of V containing x0 and therefore (V , V0) ∈ 3.
Thus, for paracompact Hausdorff X , 3 is cofinal in O(X, x0).

The n-th shape homotopy group is the inverse limit

π̌n(X, x0)= lim
←−−

(πn(|N (U )|, U0), pU V #, 3).

This group is also referred to as the n-th Čech homotopy group.
Given an open cover (U , U0) ∈O(X, x0), a map pU : X→|N (U )| is a (based)

canonical map if p−1
U (st(U, N (U )))⊆U for each U ∈U and pU (x0)=U0. Such

a canonical map is guaranteed to exist if (U , U0) ∈3: find a locally finite partition
of unity {φU }U∈U subordinated to U such that φU0(x0) = 1. When U ∈ U and
x ∈U , determine pU (x) by requiring its barycentric coordinate belonging to the
vertex U of |N (U )| to be φU (x). According to this construction, the requirement
φU0(x0)= 1 gives pU (x0)=U0.

A canonical map pU is unique up to based homotopy and whenever (V , V0)

refines (U , U0), the compositions pU V ◦ pV and pU are homotopic as based maps.
Hence, for n ≥ 1, the homomorphisms

pU # : πn(X, x0)→ πn(|N (U )|, U0)

satisfy pU V # ◦ pV # = pU #. These homomorphisms induce the following canonical
homomorphism to the limit, which is natural in the continuous maps of based
spaces:

9n : πn(X, x0)→ π̌n(X, x0) given by 9n([ f ])= ([pU ◦ f ]).

The subgroup ker(9n), which we refer to as the n-th shape kernel is, in a
rough sense, an algebraic measure of the n-dimensional homotopical information
lost when approximating X by polyhedra. Since (pU ) forms an HPol-expansion
of X [Mardešić and Segal 1982, Appendix 1, Sectin 3.2, Theorem 8], we have
[ f ] ∈ πn(X, x0)\ ker(9n) if and only if there exist a polyhedron K and a map
p : (X, x0)→ (K , k0) such that p#([ f ]) ̸= 0 in πn(K , k0). Of utmost importance
is the situation when ker(9n) = 0. In this case, πn(X, x0) can be understood as
a subgroup of π̌n(X, x0), that is, the n-th shape group retains all the data in the
n-th homotopy group of X . A space for which ker(9n)= 0 is said to be πn-shape
injective.
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3. Higher Spanier groups

To define higher Spanier groups as in [Bahredar et al. 2021], we briefly recall the
action of the fundamental groupoid on the higher homotopy groups of a space. Fix a
retraction R : Sn

× I→ Sn
×{0}∪{d0}× I . Given a map f : (Sn, d0)→ (X, y0) and

a path α : I→ X with α(0)= x0 and α(1)= y0, define F : Sn
×{0}∪{d0}× I→ X

so that g(x, 0) = f (x) and f (d0, t) = α(1− t). The path-conjugate of f by α is
the map α ∗ f : (Sn, d0)→ (X, x0) given by α ∗ f (x)= F(R(x, 1)).

Path-conjugation defines the basepoint-change isomorphism ϕα : πn(X, y0)→

πn(X, x0), ϕα([ f ])=[α∗ f ]. In particular, [α∗ f ][α∗g]= [α∗( f ·g)]. Additionally,
if [α] = [β], which we write to mean that the paths α and β are homotopic relative
to their endpoints, then [α ∗ f ] = [β ∗ f ]. Note that when n = 1, f : S1

→ X is a
loop and α ∗ f ≃ α · f ·α−.

Definition 3.1. Let n ≥ 1 and α : (I, 0)→ (X, x0) be a path and U be an open
neighborhood of α(1) in X . Define

[α] ∗πn(U )= {[α ∗ f ] ∈ πn(X, x0) | f (Sn)⊆U, f (d0)= α(1)}.

Since [α∗ f ][α∗g] = [α∗( f ·g)], the set [α]∗πn(U ) is a subgroup of πn(X, x0).

Definition 3.2. Let n ≥ 1, U be an open cover of X , and x0 ∈ X . The n-th
Spanier group of (X, x0) with respect to U is the subgroup π

Sp
n (U , x0) of πn(X, x0)

generated by the subgroups [α] ∗ πn(U ) for all pairs (α, U ) with α(1) ∈ U and
U ∈ U . In short

π Sp
n (U , x0)= ⟨[α] ∗πn(U ) |U ∈ U , α(1) ∈U ⟩.

The n-th Spanier group of (X, x0) is the intersection

π Sp
n (X, x0)=

⋂
U ∈O(X)

π Sp
n (U , x0).

We may refer to subgroups of the form π
Sp
n (U , x0) as relative Spanier groups and

to π
Sp
n (X, x0) as the absolute Spanier group.

Remark 3.3. We note that our definition of n-th Spanier group is the “unbased”
definition from [Bahredar et al. 2021]; see also [Fischer et al. 2011] for more on
“based” Spanier groups, which is defined using covers of X by pointed open sets.
The two notions agree for locally path connected spaces. When n = 1, Spanier
groups (absolute and relative to a cover) are normal subgroups of π1(X, x0). In the
case n = 1, Spanier groups have been studied heavily due to their relationship to
covering space theory [Spanier 1966].

Remark 3.4 (functorality). Let Top∗ denote the category of based topological
spaces and based continuous functions and Grp and Ab denote the usual categories
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of groups and abelian groups respectively. If f : (X, x0) → (Y, y0) is a map
and V is an open cover of Y , then U = { f −1(V ) | V ∈ V } is an open cover
of X such that f#(πn(U , x0)) ⊆ πn(V , y0). It follows that f#(π

Sp
n (X, x0)) ⊆

π
Sp
n (Y, y0). Thus ( f#)|π Sp

n (X,x0)
: π

Sp
n (X, x0)→ π

Sp
n (Y, y0) is well-defined showing

that π
Sp
1 : Top∗→ Grp and π

Sp
n : Top∗→ Ab, n ≥ 2, are functors [Bahredar et al.

2021, Theorem 4.2]. Moreover, if g : (Y, y0)→ (X, x0) is a based homotopy inverse
of f , then ( f#)|π Sp

n (X,x0)
and (g#)|π Sp

n (Y,y0)
are inverse isomorphisms. Hence, these

functors descend to functors hTop∗→ Grp and hTop∗→ Ab where hTop∗ is the
category of based spaces and basepoint-relative homotopy classes of based maps.

Remark 3.5 (basepoint invariance). Suppose x0, x1 ∈ X and β : I → X is a path
from x1 to x0, and ϕβ : πn(X, x0)→ πn(X, x1), ϕβ([g])= [β ∗ g] is the basepoint-
change isomorphism. If [α ∗ f ] is a generator of π

Sp
n (U , x0), then ϕβ([α ∗ f ])=

[(β · α) ∗ f ] is a generator of π
Sp
n (U , x1). It follows that ϕβ(π

Sp
n (U , x0)) =

π
Sp
n (U , x1). Moreover, in the absolute case, we have ϕβ(π

Sp
n (X, x0))=π

Sp
n (X, x1).

In particular, changing the basepoint of X does not change the isomorphism type
of the n-th Spanier group, particularly its triviality.

In terms of our choice of generators, a generic element of π
Sp
n (U , x0) is a product∏m

i=1[αi ∗ fi ] where each map fi : Sn
→ X has an image in some open set Ui ∈U

(see Figure 1). The next lemma identifies how such products might actually appear
in practice and motivates the proof of our key technical lemma, Lemma 5.1. Recall
that (sdm 1n+1)n is the union of the boundaries of the (n+1)-simplices in the m-th
barycentric subdivision sdm 1n+1.

Lemma 3.6. For m, n∈N, let U be an open cover of X and f : ((sdm 1n+1)n, o)→

(X, x0) be a map such that for every (n + 1)-simplex σ of sdm 1n+1, we have
f (∂σ )⊆U for some U ∈ U . Then f#(πn((sdm 1n+1)n, o))⊆ π

Sp
n (U , x0).

Proof. The case n = 1 is proved in [Brazas and Fabel 2014]. Suppose n ≥ 2
and set K = sdm 1n+1. The set W = { f −1(U ) | U ∈ U } is an open cover of
Kn = (sdm 1n+1)n such that f#(π

Sp
n (W , o))⊆ π

Sp
n (U , x0) and for every (n+ 1)-

simplex σ in K , we have ∂σ ⊆ f −1(U ) for some U ∈U . Thus it suffices to prove
πn(Kn, o)⊂ π

Sp
n (W , o). Let S be the set of (n+ 1)-simplices of K . Since n ≥ 2,

Kn is simply connected. Standard simplicial homology arguments give that the
reduced singular homology groups of Kn are trivial in dimension < n and Hn(Kn)

is a finitely generated free abelian group. A set of free generators for Hn(Kn) can be
chosen by fixing the homology class of a simplicial map gσ :∂1n+1→Kn that sends
∂1n+1 homeomorphically onto the boundary of an (n+1)-simplex σ ∈ S. Thus Kn

is (n− 1)-connected and the Hurewicz homomorphism h : πk(Kn, o)→ Hk(Kn)

is an isomorphism for all 1 ≤ k ≤ n. In particular, let pσ : I → Kn be any
path from o to gσ (o). Then πn(Kn, o) is freely generated by the path-conjugates
[pσ ∗ gσ ], σ ∈ S. By assumption, for every σ ∈ S, [pσ ∗ gσ ] is a generator of
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U2 U3

U1

x0

˛1

˛2
˛3

f1

f2

f3

Figure 1. An element of π
Sp
2 (U , x0), which is a product of three

path-conjugate generators [αi ∗ fi ].

π
Sp
n (W , o). Since π

Sp
n (W , o) contains all the generators of πn(Kn, o), the inclusion

πn(Kn, o)⊂ π
Sp
n (W , o) follows. □

To characterize the triviality of relative Spanier groups, we establish the following
terminology.

Definition 3.7. Let n ≥ 0 and x ∈ X . We say the space X is:

(1) Semilocally πn-trivial at x if there exists an open neighborhood U of x in X
such that every map Sn

→U is null-homotopic in X .

(2) Semilocally n-connected at x if there exists an open neighborhood U of x in
X such that every map Sk

→ X , 0≤ k ≤ n is null-homotopic in X .

We say X is semilocally πn-trivial (resp. semilocally n-connected) if it has this
property at all of its points.

It is straightforward to see that X is semilocally n-connected at x if and only if
X is semilocally πk-trivial at x for all 0≤ k ≤ n.

Remark 3.8. A space X is semilocally πn-trivial if and only if X admits an open
cover U such that π

Sp
n (U , x0) is trivial [Bahredar et al. 2021, Theorem 3.7]. More-

over, X is semilocally n-connected if and only if X admits an open cover U such
that π

Sp
k (U , x0) is trivial for all 1 ≤ k ≤ n. Note that local path connectivity is

independent of the properties given in Definition 3.7.
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Attempting a proof of Theorem 1.1, one should not expect the groups π
Sp
n (U , x0)

and ker(pU #) to agree “on the nose.” Indeed, the following example shows that we
should not expect the equality π

Sp
n (U , x0)= ker(pU #) to hold even in the “nicest”

local circumstances.

Example 3.9. Let X = S2
∨ S2 and W be a contractible neighborhood of d0 in S2.

Set U1 = S2
∨W and U2 = W ∨ S2 and consider the open cover U = {U1, U2}

of X . Then π
Sp
3 (U , x0) ∼= Z2 is freely generated by the homotopy classes of the

two inclusions i1, i2 : S2
→ X . However, π3(X) ∼= Z3 is freely generated by [i1],

[i2], and the Whitehead product [[i1, i2]]. However |N (U )| is a 1-simplex and is
therefore contractible. Thus ker(pU #) is equal to π3(X) and contains [[i1, i2]]. Even
though the spaces X, U1, U2 are locally contractible and the elements of U are
1-connected, π

Sp
n (U , x0) is a proper subgroup of ker(pU #). One can view this

failure as the result of two facts: (1) The sets Ui are not 2-connected and (2) the
definition of Spanier group does not allow one to generate homotopy classes by
taking Whitehead products of maps S2

→Ui in the neighboring elements of U .

First, we show the inclusion π
Sp
n (X, x0) ⊆ ker(9n) holds in full generality.

Recall that the intersections π
Sp
n (X, x0) =

⋂
U ∈O(X) π

Sp
n (U , x0) and ker(9n) =⋂

(U ,U0)∈3
ker(pU #) are formally indexed by different sets.

Lemma 3.10. For every open cover U of X and canonical map pU : X→|N (U )|,
there exists a refinement V ⪰ U such that π

Sp
n (V , x0)⊆ ker(pU #) in πn(X, x0).

Proof. Let U ∈ O(X). The stars st(U, |N (U )|), U ∈ U form an open cover of
|N (U )| by contractible sets and therefore V ={p−1

U (st(U, |N (U )|)) |U ∈U } is an
open cover of X . Since pU is a canonical map, we have p−1

U (st(U, |N (U )|))⊆U
for all U ∈ U . Thus V is a refinement of U . A generator of π

Sp
n (V , x0) is of the

form [α ∗ f ] for a map f : Sn
→ p−1

U (st(U, |N (U )|)). However, pU ◦ f has image
in the contractible open set st(U, |N (U )|) and is therefore null-homotopic. Thus
pU #([α ∗ f ])= 0. We conclude that pU #(π

Sp
n (V , x0))= 0. □

Corollary 3.11 [Bahredar et al. 2021, Theorem 4.14]. Let n ≥ 1. For any based
space (X, x0), we have π

Sp
n (X, x0)⊆ ker(9n).

Proof. Suppose [ f ] ∈ π
Sp
n (X, x0). Given a normal, based open cover (U , U0) ∈3

and any canonical map pU : X → |N (U )|, Lemma 3.10 ensures we can find a
refinement V ⪰ U such that π

Sp
n (V , x0) ⊆ ker(pU #). Thus [ f ] ∈ π

Sp
n (V , x0) ⊆

ker(pU #). Since (U , U0) is arbitrary, we conclude that [ f ] ∈ ker(9n). □

Example 3.12 (higher earring spaces). An important space, which we will call
upon repeatedly for examples, is the n-dimensional earring space

En =
⋃
j∈N

{x ∈ Rn+1
| ∥x− (1/j, 0, 0, . . . , 0)∥ = 1/j},
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which is a shrinking wedge (one-point union) of n-spheres with basepoint the
origin o. It is known that En is (n− 1)-connected, locally (n− 1)-connected, and
πn-shape injective for all n ≥ 1 [Eda and Kawamura 2000a; Morgan and Morrison
1986]. However, En is not semilocally πn-trivial. Thus π

Sp
n (U , o) ̸= 0 for any open

cover U of En even though in the absolute case π
Sp
n (En, o) is trivial.

Example 3.13. Let n ≥ 3 and notice that E1 ∨ En is not semilocally π1-trivial
(since it has E1 as a retract) and therefore fails to be semilocally (n− 1)-connected.
However, it has recently been shown that πk(E1∨En)= 0 for 2≤ k ≤ n−1 and that
E1 ∨ En is πn-shape injective [Brazas 2021]. Thus E1 ∨ En is semilocally πk-trivial
for all k ≤ n − 1 except k = 1 and π

Sp
n (E1 ∨ En, o) = 0. Thus the failure to be

semilocally n-connected can occur at single dimension less than n.

4. Recursive extension lemmas

Toward a proof of the inclusion ker(9n) ⊆ π
Sp
n (X, x0) for LCn−1 space X , we

introduce some convenient notation and definitions. If U is an open cover and
A ⊆ X , then St(A, U ) =

⋃
{U ∈ U | A ∩ U ̸= ∅}. Note that if A ⊆ B, then

St(A, U ) ⊆ St(B, U ). Also if V ⪰ U , then St(A, V ) ⊆ St(A, U ). We take the
following terminology from [Willard 1970].

Definition 4.1. Let U , V ∈ O(X):

(1) We say V is a barycentric-star refinement of U if for every x ∈ X , we have
St(x, V )⊆U for some U ∈ U . We write V ⪰∗ U .

(2) We say V is a star refinement of U if for every V ∈ V , we have St(V, V )⊆U
for some U ∈ U . We write V ⪰∗∗ U .

Note that if U ⪯∗ V ⪯∗ W , then U ⪯∗∗ W .

Lemma 4.2 [Stone 1948]. A T1 space X is paracompact if and only if for every
U ∈ O(X) there exists V ∈ O(X) such that V ⪰∗ U .

Definition 4.3. [Mardešić and Segal 1982, Chapter I, Section 3.2.5] Let n ∈
{0, 1, 2, 3, . . . ,∞}. A space X is LCn at x ∈ X if for every neighborhood U
of x , there exists a neighborhood V of x such that V ⊆ U and such that for all
0 ≤ k ≤ n (k < ∞ if n = ∞), every map f : ∂1k+1 → V extends to a map
g :1k+1→U . We say X is LCn if X is LCn at all of its points.

We have the following evident implications for both the point-wise and global
properties:

X is locally n-connected⇒ X is LCn
⇒ X is semilocallyn-connected.

For first countable spaces, the LCn property is equivalent to the “n-tame” property
in [Brazas 2021] defined in terms of shrinking sequences of maps.
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Definition 4.4. Suppose V ⪰ U in O(X):

(1) We say V is an n-refinement of U , and write V ⪰n U , if for all 0 ≤ k ≤ n,
V ∈ V , and maps f : ∂1k+1 → V , there exists U ∈ U with V ⊆ U and a
continuous extension g :1k+1→U of f .

(2) We say V is an n-barycentric-star refinement of U , and write V ⪰n
∗

U , if for
every 0≤ k ≤ n, for every x ∈ X , and every map f : ∂1k+1→ St(x, V ), there
exists U ∈ U with St(x, V )⊆U and a continuous extension g :1k+1→U
of f .

Note that if V ⪰n U (resp. V ⪰n
∗

U ), then V ⪰k U (resp. V ⪰k
∗

U ) for all
0≤ k ≤ n.

Lemma 4.5. Suppose X is paracompact, Hausdorff , and LCn . For every U ∈

O(X), there exists V ∈ O(X) such that V ⪰n
∗

U .

Proof. Let U ∈ O(X). Since X is LCn , for every U ∈ U and x ∈ U , there
exists an open neighborhood W (U, x) such that W (U, x) ⊆ U and such that for
all 0 ≤ k ≤ n, each map f : ∂1k+1→ W (U, x) extends to a map g :1k+1→ U .
Let W = {W (U, x) |U ∈ U , x ∈U } and note W ⪰n U . Since X is paracompact
Hausdorff, by Lemma 4.2, there exists V ∈ O(X) such that V ⪰∗ W .

Fix x ′ ∈ X . Then St(x ′, V )⊆W (U, x) for some x ∈U ∈U . Then St(x ′, V )⊆U .
Moreover, if 0≤ k ≤ n and f : ∂1k+1→ St(x ′, V ) is a map, then since f has image
in W (U, x), there is an extension g :1k+1→U . This verifies that V ⪰n

∗
U . □

For the next two lemmas, we fix n ∈ N, a geometric simplicial complex K with
dim K = n + 1, and a subcomplex L ⊆ K with dim L ≤ n. Let M[k] = L ∪ Kk

denote the union of L and the k-skeleton of K . Since L ⊆ Kn , M[n] = Kn is the
union of the boundaries of the (n+ 1)-simplices of K . Later we will consider the
cases where (1) K = sdm 1n+1 and L = sdm ∂1n+1 and (2) K = sdm ∂1n+2 and
L = {o}.

Lemma 4.6 (recursive extensions). Suppose 1≤ k ≤ n, U ⪯∗ V ⪯k−1
∗

W , m ∈ N,
and f : M[k − 1] → X is a map such that for every (n + 1)-simplex σ of K , we
have f (σ ∩ M[k − 1]) ⊆ Wσ for some Wσ ∈ W . Then there exists a continuous
extension g : M[k] → X of f such that for every (n+ 1)-simplex σ of K , we have
g(σ ∩M[k])⊆Uσ for some Uσ ∈ U .

Proof. Supposing the hypothesis, we must extend f to the k-simplices of M[k] that
do not lie in L . Let τ be a k-simplex of M[k] that does not lie in L and let Sτ be
the set of (n+ 1)-simplices in K that contain τ . By assumption, Sτ is nonempty.
We make some general observations first. Since f maps the (k − 1)-skeleton of
each (n+ 1)-simplex σ ∈ Sτ into Wσ and ∂τ lies in this (k− 1)-skeleton, we have
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f (∂τ )⊆
⋂

σ∈Sτ
Wσ . Thus, for all τ , we have

f (∂τ )⊆
⋂
σ∈Sτ

St(Wσ , V ).

Fix a vertex vτ of τ and let xτ = f (vτ ). Then xτ ∈ Wσ ⊆ St(xτ , W ) whenever
σ ∈ Sτ . Since W ⪰k−1

∗
V , we may find Vτ ∈ V such that St(xτ , W ) ⊆ Vτ and

such that every map ∂1k→ St(xτ , W ) extends to a map 1k→ Vτ . In particular,
f |∂τ : ∂τ→Wσ extends to a map τ→ Vτ . We define g :M[k]→ X so that it agrees

with f on M[k− 1] and so that the restriction of g to τ is a choice of continuous
extension τ → Vτ of f |∂τ .

We now choose the sets Uσ . Fix an (n+ 1)-simplex σ of K . If the k-skeleton of
σ lies entirely in L , we choose any Uσ ∈ U satisfying Wσ ⊆ Uσ . Suppose there
exists at least one k-simplex in σ not in L . Then whenever τ is a k-simplex of σ

not in L , we have Wσ ⊆ St(xτ , W ) ⊆ Vτ . Fix a point yσ ∈ Wσ . The assumption
that V ⪰∗ U implies that there exists Uσ ∈ U such that St(yσ , V ) ⊆ Uσ . In this
case, we have Wσ ⊆ Vτ ⊆Uσ whenever τ is a k-simplex of σ not in L .

Finally, we check that g satisfies the desired property. Again, fix an (n + 1)-
simplex σ of K . If τ is a k-simplex of σ not in L , our definition of g gives
g(τ ) ⊆ Vτ ⊆ Uσ . If τ ′ is a k-simplex in σ ∩ L , then g(τ ′) = f (τ ′) ⊆ Wσ ⊆ Uσ .
Overall, this shows that g(σ ∩M[k])⊆Uσ for each (n+ 1)-simplex σ of K . □

A direct, recursive application of the previous lemma is given in the following
statement.

Lemma 4.7. Suppose there is a sequence of open covers

Wn ⪯∗ Vn ⪯
n−1
∗

Wn−1 ⪯∗ · · · ⪯
2
∗

W2 ⪯∗ V2 ⪯
1
∗

W1 ⪯∗ V1 ⪯
0
∗

W0

and a map f0 : M[0] → X such that for every (n + 1)-simplex σ of K , we have
f0(σ ∩M[0])⊆W for some W ∈W0. Then there exists an extension fn :M[n]→ X
of f0 such that for every (n + 1)-simplex σ of K , we have fn(∂σ ) ⊆ U for some
U ∈Wn .

5. A proof of Theorem 1.1

We apply the extension results of the previous section in the case where K =
sdm 1n+1 for some m ∈ N and L = sdm ∂1n+1 so that M[k] = L ∪ Kk consists of
the n-simplices of the boundary of 1n+1 and the k-simplices of sdm 1n+1 not in the
boundary. Note that M[n] is the union of the boundaries of the (n+ 1)-simplices
of sdm 1n+1.

Lemma 5.1. Let n ≥ 1. Suppose X is paracompact, Hausdorff , and LCn−1. Then
for every open cover U of X , there exists (V , V0) ∈ 3 such that ker(pV #) ⊆

π
Sp
n (U , x0).
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Proof. Suppose U ∈ O(X). Since X is paracompact, Hausdorff, and LCn−1, we
may apply Lemmas 4.2 and 4.5 to first find a sequence of refinements

U = Un ⪯∗ Vn ⪯
n−1
∗

Un−1 ⪯∗ · · · ⪯
2
∗

U2 ⪯∗ V2 ⪯
1
∗

U1 ⪯∗ V1 ⪯
0
∗

U0

and then one last refinement U0 ⪯∗ V0 = V . Let V0 ∈ V be any set containing
x0 and recall that since X is paracompact Hausdorff (V , V0) ∈ 3. We will show
that ker(pV #)⊆ π

Sp
n (U , x0). Note that p−1

V (st(V, N (V )))⊆ V by the definition of
canonical map pV .

Suppose [ f ] ∈ ker(pV #) is represented by a map f : (|∂1n+1|, o)→ (X, x0).
We will show that [ f ] ∈ π

Sp
n (U , x0). Then pV ◦ f : |∂1n+1| → |N (V )| is null-

homotopic and extends to a map h : |1n+1|→ |N (V )|. Set YV = h−1(st(V, N (V )))

so that Y = {YV | V ∈ V } is an open cover of |1n+1|.
We find a particular simplicial approximation for h using the cover Y [Munkres

1984, Theorem 16.1]: let λ be a Lebesgue number for Y so that any subset of 1n+1

of diameter less than λ lies in some element of Y . Find m ∈ N such that each
simplex in sdm 1n+1 has diameter less than λ/2. Thus the star st(a, sdm 1n+1) of
each vertex a in sdm 1n+1 lies in a set YVa ∈ Y for some Va ∈ V . The assignment
a 7→ Va on vertices extends to a simplicial approximation h′ : sdm 1n+1→ N (V )

of h, i.e., a simplicial map h′ such that

h(st(a, sdm 1n+1))⊆ st(h′(a), N (V ))= st(Va, N (V ))

for each vertex a [Munkres 1984, Lemma 14.1].
Let K = sdm 1n+1 and L = sdm ∂1n+1 so that M[k] = L ∪Kk . First, we extend

f : L→ X to a map f0 :M[0]→ X . For each vertex a in K , pick a point f0(a)∈ Va .
In particular, if a ∈ L , take f0(a) = f (a). This choice is well defined since, for
a boundary vertex a ∈ L , we have pV ◦ f (a) = h(a) ∈ st(Va, |N (V )|) and thus
f (a) ∈ p−1

V (st(Va, |N (V |)))⊆ Va .
Note that h′ maps every simplex σ = [a0, a1, . . . , ak] of K to the simplex of

N (V ) spanned by {h′(ai ) | 0≤ i ≤ k} = {Vai | 0≤ i ≤ k}. By definition of the nerve,
we have

⋂
{Vai | 0≤ i ≤ k} ̸=∅. Pick a point xσ ∈

⋂
{Vai | 0≤ i ≤ k}.

By our initial choice of refinements, we have U0 ⪯∗ V . If σ = [a0, a1, . . . , an+1]

is an (n+ 1)-simplex of K , then St(xσ , V )⊆Uσ for some Uσ ∈ U . In particular
{ f0(ai ) | 0 ≤ i ≤ n + 1} ⊆

⋃
{Vai | 0 ≤ i ≤ n + 1} ⊆ Uσ . Thus f0 maps the

0-skeleton of σ into Uσ . If 1 ≤ k ≤ n, τ is a k-face of σ ∩ L with ai ∈ τ , then
pV ◦ f0(int(τ ))= pV ◦ f (int(τ ))= h(int(τ ))⊆ h(st(ai , K ))⊆ st(Vai , |N (V )|). It
follows that

f0(τ )⊆ p−1
V (st(Vai , |N (V )|))⊆ Vai ⊆Uσ .

Thus for every n-simplex in σ ∩ L , we have f0(τ ) ⊆ Uσ . We conclude that for
every (n+ 1)-simplex σ of K , we have f0(σ ∩M[0])⊆Uσ .
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By our choice of sequence of refinements, we are precisely in the situation to
apply Lemma 4.7. Doing so, we obtain an extension fn : M[n]→ X of f such that
for every (n+ 1)-simplex σ of K , we have fn(∂σ )⊆ Uσ for some Uσ ∈ Un = U .
By Lemma 3.6, we have [ f ] = [ fn|∂1n+1] ∈ π

Sp
n (U , x0). □

Finally, both inclusions have been established and provide a proof of our main
result.

Proof of Theorem 1.1. The inclusion π
Sp
n (X, x0) ⊆ ker(9n) holds in general by

Corollary 3.11. Under the given hypotheses, the inclusion ker(9n)⊆ π
Sp
n (X, x0)

follows from Lemma 5.1. □

When considering examples relevant to Theorem 1.1, it is helpful to compare
πn-shape injectivity with the following weaker property from [Ghane and Hamed
2009].

Definition 5.2. We say a space X is n-homotopically Hausdorff at x ∈ X if no
nontrivial element of πn(X, x) has a representing map in every neighborhood of x .
We say X is n-homotopically Hausdorff if it is n-homotopically Hausdorff at each
of its points.

Clearly, πn-shape injectivity⇒ n-homotopically Hausdorff. The next example,
which highlights the effectiveness of Theorem 1.1, shows the converse is not true
even for LCn−1 Peano continua.

Example 5.3. Fix n≥ 2 and let ℓ j : Sn
→ En be the inclusion of the j -th sphere and

define f :En→En to be the shift map given by f ◦ℓ j =ℓ j+1. Let M f =En×[0, 1]/∼,
(x, 0)∼( f (x), 1) be the mapping torus of f . We identify En with the image of
En × {0} in M f and take o to be the basepoint of M f . Let α : I → M f be the
loop where α(t) is the image of (o, t). Then M f is locally contractible at all points
other than those in the image of α. Also, every point α(t) has a neighborhood
that deformation retracts onto a homeomorphic copy of En . Thus, since En is
LCn−1, so is X . It follows from Theorem 1.1 that π

Sp
n (M f , o)= ker(πn(M f , o)→

π̌n(M f , o)). In particular, the Spanier group of M f contains all elements [αk
∗ g]

where g : Sn
→ En is a based map and k ∈ Z. Using the universal covering map

E→ M f that “unwinds” α and the relation [g] = [α ∗ ( f ◦ g)] in πn(M f , o), it is
not hard to show that these are, in fact, the only elements of the n-th Spanier group.
Hence,

ker(πn(M f , o)→ π̌n(M f , o))= {[αk
∗ g] | [g] ∈ πn(En, o), k ∈ Z},

which is an uncountable subgroup. Moreover, since M f is shape equivalent to the
aspherical space S1, we have π̌n(M f , o)= 0 and thus πn(M f , o)= {[αk

∗g] | [g] ∈
πn(En, o), k ∈ Z}.
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It follows from this description that, even though M f is not πn-shape injective,
M f is n-homotopically Hausdorff. Indeed, it suffices to check this at the points
α(t), t ∈ I . We give the argument for α(0) = o, the other points are similar. If
0 ̸= h ∈ πn(M f , o) has a representative in every neighborhood of o in M f , then
clearly h ∈ ker(9n). Hence, h = [αk

∗ g] for [g] ∈ πn(En, o) and k ∈ Z. Since M f

retracts onto the circle parametrized by α, the hypothesis on h can only hold if
k = 0. However, there is a basis of neighborhoods of o in M f that deformation
retract onto an open neighborhood of o in En . Thus [g] has a representative in every
neighborhood of o in πn(En, o), giving h = [g] ∈ ker(πn(En, o)→ π̌n(En, o))= 0.

It is an important feature of Example 5.3 that M f is not simply connected and
has multiple points at which it is not semilocally πn-trivial. This motivates the
following application of Theorem 1.1, which identifies a partial converse of the
implication πn-shape injective⇒ n-homotopically Hausdorff.

Corollary 5.4. Let n ≥ 2 and X be a simply connected, LCn−1, compact Hausdorff
space such that X fails to be semilocally πn-trivial only at a single point x ∈ X.
Then for every element g ∈ ker(9n) ⊆ πn(X, x) and neighborhood V of x , g is
represented by a map with image in V . In particular, if X is n-homotopically
Hausdorff at x , then X is πn-shape injective.

Proof. Let 0 ̸= g ∈ ker(9n)⊆πn(X, x). By Theorem 1.1, g ∈π
Sp
n (X, x). Since X is

compact Hausdorff, we may replace O(X) by the cofinal subdirected order OF (X)

consisting of finite open covers U of X with the property that there is a unique
AU ∈U with x ∈ AU . For each U ∈ OF (X), we can write g=

∏mU
i=1 [αU ,i ∗ fU ,i ]

where fU ,i : Sn
→UU ,i is a non-nullhomotopic map for some UU ,i ∈U and αU ,i

is a path from x to fU ,i (d0).
Let V be an open neighborhood of x . We check that g is represented by a map

with image in V . Since X is LC0 at x , there exists an open neighborhood V ′ of x
such that any two points of V ′ may be connected by a path in V . Fix U0 ∈ OF (X)

such that AU0 ⊆ V ′. Then AV ⊆ V ′ whenever V ∈ OF (X) refines U0.
We claim that for sufficiently refined V , all of the maps fV ,i have image in V ′.

Suppose, to obtain a contradiction, there is a subset T ⊆ {V ∈ OF (X) | V ⪰ U0},
which is cofinal in OF (X) and such that for every V ∈ T there exists iV ∈
{1, 2, . . . , mV } and dV ∈ Sn such that fV ,iV (dV ) ∈UV ,i\V ′ ⊆UV ,i\AU0 . Since X
is compact, we may replace { fV ,iV (dV )} with a subnet {x j } j∈J that converges to a
point y ∈ X . Here, x j = fV j ,iV j

(dV j ) for some directed set J and monotone, final
function J→ T given by j 7→ V j . Let Y be an open neighborhood of y in X . Find
W ∈ OF (X) such that there exists W0 ∈W such that y ∈W0 and St(W0, W )⊆ Y .
Since {x j } is subnet that converges to y, there exists k ∈ J such that Vk ⪰W and
xk ∈ W0. We have xk ∈ Im( fVk ,iVk

) ⊆ UVk ,iVk
⊆ W for some W ∈ W and thus

Im( fVk ,iVk
) ⊆ UVk ,i ⊆ St(W0, W ) ⊆ Y . However, for every V ∈ OF (X), fV ,iV is
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not null-homotopic in X . Thus, since Y represents an arbitrary neighborhood of y,
X is not semilocally πn-trivial at y. By assumption, we must have x = y. Since
{x j } → x , the same argument, but where Y is replaced by V ′, shows that there
exists sufficiently refined V for which Im( fV ,iV )⊆ V ′; a contradiction. Since the
claim is proved, there exists U1 ⪰ U0 in OF (X) such that whenever V ⪰ U1, we
have Im( fV ,i )⊆ V ′ for all i ∈ {1, 2, . . . , mV }.

Fix V ⪰U1 in OF (X). For all i ∈{1, 2, . . . , mV }, we may find a path βV ,i : I→V
from x to fV ,i (d0). Since X is simply connected, we have [αV ,i∗ fU ,i ]=[βV ,i∗ fU ,i ]

for all i . Thus g is represented by
∏mV

i=1 βV ,i ∗ fV ,i , which has image in V . □

Remark 5.5 (topologies on homotopy groups). Given a group G and a collection
of subgroups {N j | j ∈ J } of G such that for all j, j ′ ∈ J , there exists k ∈ J
such that Nk ⊆ N j ∩ N j ′ , we can generate a topology on G by taking the set
{gN j | j ∈ J, g ∈ G} of left cosets as a basis. We can apply this to both the
collection of Spanier subgroups π

Sp
n (U , x0) and the collection of kernels ker(pU #)

to define two natural topologies on πn(X, x0):

(1) The Spanier topology on πn(X, x0) is generated by the left cosets of Spanier
groups πn(U , x0) for U ∈ O(X).

(2) The shape topology on πn(X, x0) is generated by left cosets of the kernels
ker(pU #) where (U , U0) ∈3. Equivalently, the shape topology is the initial
topology with respect to the map 9n where the groups πn(|N (U )|, U0) are
given the discrete topology and π̌n(X, x0) is given the inverse limit topology.

Lemma 3.10 ensures the Spanier topology is always finer than the shape topology.
Lemma 5.1 then implies that, whenever X is paracompact, Hausdorff, and LCn−1,
the two topologies agree. Moreover, πn(X, x0) is Hausdorff in the shape topology
if and only if X is πn-shape injective.

6. When is 9n an isomorphism?

It is a result of Kozlowski and Segal [1978] that if X is paracompact Hausdorff
and LCn , then 9n : πn(X, x)→ π̌n(X, x) is an isomorphism. This result was first
proved for compact metric spaces in [Kuperberg 1975]. The assumption that X is
LCn assumes that small maps Sn

→ X may be contracted by small null-homotopies.
However, if En is the n-dimensional earring space, then the cone CEn is LCn−1

but not LCn . However, CEn is contractible and so 9n is an isomorphism of trivial
groups. Certainly, many other examples in this range exist. Our Spanier group-
based approach allows us to generalize Kozlowski–Segal’s theorem in a way that
includes this example by removing the need for “small” homotopies in dimension n.
In this section, when U is an open cover of a space X and a distinguished element
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U0 ∈ U containing the basepoint x0 has been established or is clear from context,
we will often write U to represent the pair (U , U0) ∈3.

Lemma 6.1. Let n ≥ 1. Suppose that X is paracompact, Hausdorff , and LCn−1.
If ([ fU ])U ∈3 ∈ π̌1(X, x0), then for every U ∈3, there exists [g] ∈ πn(X, x) such
that (pU )#([g])= [ fU ].

Proof. With (U , U0) ∈3 and pU fixed, consider a representing map

fU : (|∂1n+1|, o)→ (|N (U )|, U0).

Let U ′ = {p−1
U (st(U, |N (U )|)) | U ∈ U }. Since p−1

U (st(U, |N (U )|)) ⊆ U for
all U ∈ U , we have U ⪯ U ′. Applying Lemmas 4.2 and 4.5 we can choose
the following sequence of refinements of U ′. First, we choose a star refinement
U ′ ⪯∗∗ W so that for every W ∈W , there exists U ′ ∈U ′ such that St(W, W )⊆U ′.
In this case, we can choose the projection map pU ′W : |N (W )| → |N (U ′)| so
that if pU ′W (W )=U ′ on vertices, then St(W, W )⊆U ′ in X . This choice will be
important near the end of the proof.

To construct g, we must take further refinements. First, we choose a sequence of
a refinements

W =Wn ⪯∗ Vn ⪯
n−1
∗

Wn−1 ⪯∗ · · · ⪯
2
∗

W2 ⪯∗ V2 ⪯
1
∗

W1 ⪯∗ V1 ⪯
0
∗

W0

followed by one last refinement W0 ⪯∗ V0 = V . Let V0 ∈ V be any set containing
x0 and recall that since X is paracompact Hausdorff (V , V0) ∈3. For some choice
of canonical map pV , we have p−1

V (st(V, N (V )))⊆ V for all V ∈ V .
Recall that we have assumed the existence of a map

fV : (∂1n+1, o)→ (|N (V )|, V0)

such that pU V #([ fV ])=[ fU ]. Set YV = f −1
V (st(V, N (V ))) so that Y ={YV |V ∈V }

is an open cover of ∂1n+1. As before, we find a simplicial approximation for fV .
Find m ∈ N such that the star st(a, sdm ∂1n+1) of each vertex a in sdm ∂1n+1

lies in a set YVa ∈ Y for some Va ∈ V . Since fV (o) = V0, we may take Vo =

V0. The assignment a 7→ Va on vertices extends to a simplicial approximation
f ′ : sdm ∂1n+1→ |N (V )| of fV , i.e., a simplicial map f ′ such that

fV (st(a, sdm ∂1n+1))⊆ st( f ′(a), |N (V )|)= st(Va, |N (V )|)

for each vertex a.
We begin to define g with the constant map {o} → X sending o to x0. In

preparation for applications of Lemma 4.6, set K = sdm ∂1n+1 and L = {o} so
that K [k] = Kk . First, we define a map g0 : M[0] → X by picking, for each
vertex a ∈ K0, a point g0(a) ∈ Va . In particular, set g0(o) = x0. This choice is
well defined since we have pV (x0) = V0 ∈ st(Vo, N (V )) and thus g0(o) = x0 ∈

p−1
V (st(Vo, N (V ))) ⊆ Vo. Note that f ′ maps every simplex σ = [a0, a1, . . . , ak]

of K to the simplex of |N (V )| spanned by {Vai | 0 ≤ i ≤ k}. By definition of the
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nerve, we have
⋂
{Vai | 0 ≤ i ≤ k} ̸= ∅. Pick a point xσ ∈

⋂
{Vai | 0 ≤ i ≤ k}.

By our initial choice of refinements, we have U0 ⪯∗ V . If σ = [a0, a1, . . . , an]

is a n-simplex of K , then St(xσ , V ) ⊆ U0,σ for some U0,σ ∈ U0. In particular
{g0(ai ) | 0≤ i ≤ n+ 1} ⊆

⋃
{Vai | 0≤ i ≤ n} ⊆U0,σ . Thus g0 maps the 0-skeleton

of σ into U0,σ . If o ∈ σ , then g0(o) ∈ p−1
V (st(Vo, N (V )))⊆ Vo ⊆U0,σ . Hence, for

every n-simplex σ of K , we have g0(σ ∩M[0])⊆U0,σ .
We are now in the situation to recursively apply Lemma 4.6. This is similar to

the application in the proof of Lemma 5.1 with the dimension n+ 1 shifted down
by one so we omit the details. Recalling that M[n] = sdm ∂1n+1, we obtain an
extension g : K = M[n] → X of g0 such that for every n-simplex σ of K , we have
g(σ )⊆Wσ for some Wσ ∈W = Un .

With g being defined, we seek show that fU ≃ pU ◦ g. Since f ′ ≃ fV (by
simplicial approximation), pU V ≃ pU U ′ ◦ pU ′W ◦ pW V (for any choice of projection
maps), and pU V ◦ fV ≃ fU (for any choice of projection pU V ), it suffices to show
that pU U ′ ◦ pU ′W ◦ pW V ◦ f ′≃ pU ◦g. We do this by proving that the simplicial map
F = pU U ′◦ pU ′W ◦ pW V ◦ f ′ : K→|N (U )| is a simplicial approximation for pU ◦g.
Recall that this can be done by verifying the “star-condition” pU ◦ g(st(a, K ))⊆

st(F(a), |N (U )|) for any vertex a ∈ K [Munkres 1984, Chapter 2, Section 14].
Since n ≥ 1, we have W ⪯∗∗ V . Hence, just like our choice of pU ′W , we may
choose pW V so that whenever pW V (V )=W , then St(V, V )⊆W . Also, we choose
pU U ′ to map p−1

U (st(U, |N (U )|)) 7→U on vertices.
Fix a vertex a0 ∈ K . To check the star-condition, we’ll check that pU ◦ g(σ )⊆

st(F(a0), |N (U )|) for each n-simplex σ having a0 as a vertex. Pick an n-simplex
σ = [a0, a1, . . . , an] ⊆ K having a0 as a vertex. Recall that f ′(ai )= Vai for each i .
Set pW V (Vai )=Wi and pU ′W (Wi )= p−1

U (st(Ui , |N (U )|)) ∈U ′ for some Ui ∈U .
Then F(ai )=Ui for all i . It now suffices to check that pU ◦g(σ )⊆ st(U0, |N (U )|).
Recall that by our choice of pU ′W , we have St(W0, W ) ⊆ p−1

U (st(U0, |N (U )|)).
Thus it is enough to check that g(σ )⊆ St(W0, W ). By construction of g, we have
g(σ ) ⊆ Wσ for some Wσ ∈ W . Since g(a0) ∈ W0 ∩Wσ , we have g(σ ) ⊆ Wσ ⊆

St(W0, W ), completing the proof. □

Finally, we prove our second result, Theorem 1.2.

Proof of Theorem 1.2. Since X is paracompact, Hausdorff, LCn−1, we have
π

Sp
n (X, x0) = ker(9n) by Theorem 1.1. Since X is semilocally πn-trivial, we

have π
Sp
n (U , x0) = 1 for some U ∈ 3. It follows that 9n is injective. More-

over, by Lemma 5.1, we may find V ∈ 3 with ker(pV #) ⊆ π
Sp
n (U , x0). Thus

pV # : πn(X, x0)→ πn(|N (V )|, V0) is injective. Let ([ fU ])U ∈3 ∈ π̌n(X, x0). By
Lemma 6.1, for each U ∈3, there exists [gU ] ∈ πn(X, x0) such that pU ([gU ])=

[ fU ]. If V ⪯W , then we have

pV #([gV ])= [ fV ] = pV W #([ fW ])= pV W # ◦ pW #([gW ])= pV #([gW ]).
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Since pV # is injective, it follows that [gW ] = [gV ] whenever V ⪯ W . Setting
[g] = [gV ] gives 9n([g])= ([ fU ])U ∈3. Hence, 9n is surjective. □

7. Examples

Example 7.1. Fix n ≥ 2. When X is a metrizable LCn−1 space, the cone C X
and unreduced suspension SX are LCn−1 and semilocally πn-trivial but need not
be LCn . This occurs in the case X = En or if X = Y ∨En where Y is a CW-complex.
In such cases, 9n :πn(SX)→ π̌n(SX) is an isomorphism. One point unions of such
cones and suspensions, e.g., C X ∨CY or C X ∨ SY also meet the hypotheses of
Theorem 1.2 (checking this is fairly technical [Brazas 2021]) but need not be LCn .

Example 7.2. The converse of Theorem 1.2 does not hold. For n ≥ 2, En is LCn−1

but is not semilocally πn-trivial at the wedgepoint x0. However, 9n : πn(En, x0)→

π̌n(En, x0) is an isomorphism where both groups are canonically isomorphic to ZN

[Eda and Kawamura 2000a]. Additionally, for the infinite direct product
∏

N Sn ,
9k : πk

(∏
N Sn, x0

)
→ π̌k

(∏
N Sn, x0

)
is an isomorphism for all k ≥ 1 even though∏

N Sn is not LCk−1 when k− 1≥ n.

Example 7.3. We can also modify the mapping torus M f from Example 5.3 so
that 9n becomes an isomorphism (recall that n ≥ 2 is fixed). Let X = M f ∪CEn

be the mapping cone of the inclusion En → M f . For the same reason M f is
LCn−1, the space X is LCn−1. Moreover, if U is a neighborhood of α(t) that
deformation retracts onto a homeomorphic copy of En , then any map Sn

→U may
be freely homotoped “around” the torus and into the cone. It follows that X is
semilocally πn-trivial. We conclude from Theorem 1.2 that 9n : πn(X)→ π̌n(X) is
an isomorphism. Since sufficiently fine covers of X always give nerves homotopy
equivalent to S1

∨ Sn+1, we have π̌n(X)= 0. Thus πn(X)= 0.

Example 7.4. Let n ≥ 2 and X = E1 ∨ Sn (see Figure 2). Note that because E1 is
aspherical [Cannon et al. 2002; Curtis and Fort 1957], X is semilocally πn-trivial.
However, X is not LC1 because it has E1 as a retract. It is shown in [Brazas
2021] that πn(X)∼=

⊕
π1(E1)

πn(Sn)∼=
⊕

π1(E1)
Z and that 9n : πn(X)→ π̌n(X) is

injective. In particular, we may represent elements of πn(X) as finite-support sums∑
β∈π1(E1)

mβ where mβ ∈ Z. We show that 9n is not surjective.
Identify π1(X) with π1(E1) and recall from [Eda 1992] that we can represent

the elements of π1(E1) as countably infinite reduced words indexed by a countable
linear order (with a countable alphabet β1, β2, β3, . . . ). Here β j is represented by
a loop S1

→ E1 going once around the j-th circle. Let X j be the union of Sn and
the largest j circles of E1 so that X = lim

←−− j X j . Identify π1(X j ) with the free group
F j on generators β1, β2, . . . β j and note that πn(X j )∼=

⊕
F j

Z. Thus we may view
an element of πn(X j ) as a finite-support sums

∑
w∈F j

mw of integers indexed over
reduced words in F j . Let d j+1, j : F j+1→ F j be the homomorphism that deletes the
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Figure 2. The one point union E1 ∨ S2.

letter β j+1. Consider the inverse limit π̌1(X)= lim
←−− j (F j , d j+1, j ). The map X→ X j

that collapses all but the first j -circles of E1 induces a homomorphism d j :π1(X)→

F j . There is a canonical homomorphism φ : π1(X)→ π̌1(X) = lim
←−− j (F j , d j+1, j )

given by φ(β) = (d1(β), d2(β), . . . ), which is known to be injective [Morgan
and Morrison 1986] but not surjective. For example, if xk =

∏k
j=1[β1, β j ], then

(x1, x2, x3, x4, . . . ) is an element of π̌1(X) not in the image of φ.
The bonding map b j+1, j : πn(X j+1)→ πn(X j ) sends a sum

∑
w∈F j+1

mw to∑
v∈F j

pv where pv =
∑

d j+1, j (w)=v mw. Similarly, projection map b j : πn(X)→

πn(X j ) sends the sum
∑

β∈π1(X) nβ to
∑

v∈F j
mv where mv =

∑
d j (β)=v mβ . Let

y j ∈ πn(X) be the sum whose only nonzero coefficient is the x j -coefficient, which
is 1. Since d j+1, j (x j+1) = x j , it’s clear that (y1, y2, y3, . . . ) ∈ π̌n(X). Suppose
9n

(∑
β mβ

)
= (y1, y2, y3, . . . ). Writing

∑
β mβ as a finite sum

∑r
i=1 mβi for

nonzero mβi , we must have
∑

d j (βi )=x j
mβi = 1 for all j ∈ N. Since there are only

finitely many βi involved, there must exist at least one i for which d j (βi ) = x j

for infinitely many j . For such i , we have φ(βi ) = (x1, x2, x3, . . . ), which, as
mentioned above, is impossible. Hence 9n is not surjective.

The previous example shows why we cannot remove the LCn−1 hypothesis in
Theorem 1.2. Since we weakened the hypothesis from [Kozlowski and Segal 1978]
in dimension n and no hypothesis in dimension n is required for Theorem 1.1, one
might suspect that we might be able to remove the dimension n hypothesis com-
pletely. The next example, which is a higher analogue of the harmonic archipelago
[Bogley and Sieradski 1998; Conner et al. 2015; Karimov and Repovš 2012] shows
why this is not possible.

Example 7.5. Let n≥ 2 and ℓ j : Sn
→ En be the inclusion of the j -th n-sphere in En .

Let X be the space obtained by attaching (n+1)-cells to En using the attaching
maps ℓ j . Since En is LCn−1, it follows that X is LCn−1. However, X is not
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semilocally πn-trivial at the wedgepoint o of En . Indeed, the infinite concatenation
maps

∏
j≥k ℓ j = ℓk · ℓk+1 · · · are not null-homotopic (using a standard argument

that works for the harmonic archipelago) but are all homotopic to each other. Thus,
πn(X, o) ̸= 0. However, for sufficiently fine open covers U ∈ O(X), |N (U )|

is homotopy equivalent to a wedge of (n + 1)-spheres and thus π̌n(X, o) = 0.
Therefore, despite X being LCn−1, 9n is not an isomorphism. In fact, πn(X, o)=

π
Sp
n (X, o) = ker(9n). The reader might also note that since En−1 is (n − 1)-

connected and πn(En, o) ∼= Hn(En) ∼= ZN, X will also be (n − 1)-connected. A
Meyer–Vietoris sequence argument similar to that in [Karimov and Repovš 2012]
can then be used to show πn(X, o)∼= Hn(X)∼= ZN/⊕N Z.
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REGULARITY FOR FREE MULTIPLICATIVE CONVOLUTION
ON THE UNIT CIRCLE

SERBAN T. BELINSCHI, HARI BERCOVICI AND CHING-WEI HO

Suppose that µ1 and µ2 are Borel probability measures on the unit circle,
both different from unit point masses, and let µ denote their free multiplica-
tive convolution. We show that µ has no continuous singular part (relative to
arclength measure) and that its density can only be locally unbounded at a
finite number of points, entirely determined by the point masses of µ1 and µ2.
Analogous results were proved earlier for the free additive convolution on R

and for the free multiplicative convolution of Borel probability measures on
the positive half-line.

1. Introduction

It has been known for some time that free convolutions have a strong regularizing
effect. The earliest instances of this phenomenon were observed in [Voiculescu 1993;
Bercovici and Voiculescu 1998; Biane 1997]. For the additive case (see [Voiculescu
1986; Bercovici and Voiculescu 1993; Voiculescu et al. 1992] for definitions), it
was shown in [Belinschi 2008; 2014] that, given Borel probability measures µ1, µ2

on R, neither of which is a point mass, the free convolution µ= µ1 ⊞µ2 has no
singular continuous part relative to the Lebesgue measure, and its density is analytic
wherever positive and finite. In addition, this density is locally bounded unless
µ1({α1})+ µ2({α2}) ≥ 1 for some α1, α2 ∈ R. The atomic part of µ has finite
support and was determined earlier [Bercovici and Voiculescu 1998]. Analogous
results have been obtained in [Ji 2021] for the free multiplicative convolution of
Borel probability measures on [0,+∞). Despite a strong similarity between these
operations, the corresponding result for free multiplicative convolutions of Borel
probability measures on the unit circle T in the complex plane is still missing.
Recent results on Denjoy–Wolff points [Belinschi et al. 2022, Corollary 3.3] allow
us to rectify this omission in Theorem 3.2.

The necessary background on subordination is given in Section 2, and the main
result is proved in Section 3. An application in Section 4 yields a strengthening of
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the results of [Bercovici and Wang 2008] concerning indecomposable measures
relative to free convolution.

We wish to thank the referee for a thorough review of the paper.

2. Analytic subordination for free multiplicative convolution

We begin by recalling the analytical apparatus for the calculation of free multi-
plicative convolutions on the unit circle T = {z ∈ C : |z| = 1}. An arbitrary Borel
probability measure µ on T is uniquely determined by its moments

mn(µ)=

∫
T

tn dµ(t), n ∈ N,

and these moments are encoded in the moment generating function

ψµ(z)=

∫
T

t z
1−t z

dµ(t)=

∞∑
n=1

mn(µ)zn.

The formal seriesψµ actually converges for z in the unit disk D={z ∈C : |z|<1}, and

ψµ(D)⊂
{
z ∈ C : ℜz >−

1
2

}
.

Observe that

(2-1) 2ℜψµ(z)+ 1 =

∫
T

ℜ

(
ζ + z

ζ − z

)
dµ(ζ )=

∫
T

ℜ

(
ζ + z
ζ − z

)
dµ(ζ ), z ∈ D,

and the last term above is precisely a Poisson integral. It follows that µ can be
recovered from ψµ by taking radial limits

2πdµ(e−iθ )= lim
r↑1

(
2ℜψµ(eiθ )+ 1

)
dθ.

(See, for instance, [Akhiezer 1965, Chapter 5], [Belinschi and Bercovici 2005,
Section 3], and [Garnett 1981, Chapter 1] for details.) In particular, if µs denotes
the singular part of the measure µ, (2-1) shows that

(2-2) lim
r↑1

ℜψµ(rζ )= +∞ for µs-almost all ζ ∈ T.

We note for further use the following consequence of (2-1):

Lemma 2.1. If ψµ is a bounded function on D, then µ is absolutely continuous
relative to arclength measure and its density is bounded.

Consider now two Borel probability measures µ1, µ2 on T = {z ∈ C : |z| = 1},
and denote by µ = µ1 ⊠µ2 their free multiplicative convolution. This was first
defined in [Voiculescu 1987] using the multiplication of ∗-free unitary operators,
and its calculation — in case the two measures have a nonzero first moment — relied
on the analytic inverses of the functions ψµ1 and ψµ2 in the complex plane (see
[Voiculescu et al. 1992] for the technical details). Subsequently, Biane [1998]
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discovered that ψµ is subordinate to ψµ j , with j = 1, 2, in the sense of Littlewood.
This result implies that — at least when µ1 and µ2 have nonzero first moments —
one can describe the function ψµ as the unique solution of a system of implicit
equations. This method for the calculation of ψµ does in fact extend to arbitrary µ1

and µ2, as seen in [Belinschi and Bercovici 2007]. We state the result below because
it is instrumental in the proof of Theorem 3.2. We need the additional notation

ηµ(z)=
ψµ(z)

1 +ψµ(z)
and hµ(z)=

ηµ(z)
z

.

It is easily seen that ηµ(D) ⊂ D, ηµ(0) = 0, η′
µ(0) = m1(µ), and hµ extends to

an analytic function from D to D. If the function hµ takes values in T, then it
is constant and this happens precisely when µ is a point mass. The following
statement combines [Belinschi and Bercovici 2007, Theorem 3.2] and [Belinschi
et al. 2022, Corollary 3.3]:

Theorem 2.2. Consider Borel probability measures µ1, µ2 on T and their free
multiplicative convolution µ= µ1 ⊠µ2. There exist unique continuous functions
ω1, ω2 : D ∪ T → D ∪ T that are analytic on D and, in addition:

(1) ω1(0)= ω2(0)= 0.

(2) zηµ(z)= zηµ1(ω1(z))= zηµ2(ω2(z))= ω1(z)ω2(z), ω1(z)= zh2(ω2(z)), and
ω2(z)= zh1(ω1(z)) for every z ∈ D∪T. In particular, ηµ extends continuously
to T. When either ω1(z) or ω2(z) belongs to T, the values ηµ j (ω j (z)) are
understood as radial limits, that is,

ηµ j (ω j (z))= lim
r↑1

ηµ j (rω j (z)).

(3) If m1(µ1)= m1(µ2)= 0, the functions ηµ, ψµ, ω1, and ω2 are identically zero.

3. Boundedness and the lack of a singular continuous part

We are ready now to identify the singular behavior of a free multiplicative convolu-
tion on T. Of course, part (1) was proved in [Belinschi 2003].

Lemma 3.1. Suppose that µ1 and µ2 are Borel probability measures on T, neither
of which is a unit point mass, set µ= µ1 ⊠µ2, and let α ∈ T.

(1) If µ({α}) > 0, then there exist α1, α2 ∈ T such that α1α2 = α and

µ1({α1})+µ2({α2})= 1 +µ({α}).

(2) Ifψµ is unbounded near 1/α, then there exist α1, α2 ∈T such that α1α2 =α and

µ1({α1})+µ2({α2})≥ 1.

Proof. We only prove (2). As already mentioned, if m1(µ1)= m1(µ2)= 0, then µ
is the Haar measure on T, which has no singular part and a density identically equal
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to 1/2π . Indeed, by Theorem 2.2 (3), ψµ is identically zero; in particular, bounded.
For the remainder of the proof, we assume that at least one of m1(µ1),m1(µ2)

is nonzero, and thus the functions ψµ, ω1, ω2 of Theorem 2.2 are not constant.
Suppose now that β = 1/α is such that ηµ(β)= 1 or, equivalently,

ψµ(β)= lim
r↑1

ψµ(rβ)= ∞.

Setting α1 = ω1(β) and α2 = ω2(β),Theorem 2.2 (2) yields the equality α1α2 = β.
Since |α j | ≤ 1, it follows that, in fact, α j ∈ T for j = 1, 2. The subordination in
Theorem 2.2 (2) also yields

lim
z→β

ηµ j (ω j (z))= ηµ(β)= 1, j = 1, 2,

and then
lim
r↑1

ηµ j (rα j )= 1, j = 1, 2,

by Lindelöf’s Theorem (see [Collingwood and Lohwater 1966, Theorem 2.3]).
An application of the dominated convergence theorem shows that

lim
r↑1
(1 − r)ψµ j (rα j )= µ

({ 1
α j

})
∈ [0, 1), j = 1, 2.

In terms of the functions ηµ j , this amounts to

lim
r↑1

ηµ j (rα j )− 1
r − 1

=
1

µ j ({1/α j })
, j = 1, 2,

where the right-hand side is understood as ∞ if µ j ({1/α j }) = 0. Using Julia–
Carathéodory derivatives (see, for instance, [Garnett 1981, Chapter I, Exercise 7])
this relation can be rewritten as η′

µ(ω1(α)) = 1/(µ j ({1/α j })). Properties of this
derivative imply now that

1
µ1({1/α1})

− 1 = lim inf
w→α1

|ηµ1(w)| − 1
|w| − 1

− 1

= lim inf
w→α1

|ηµ1(w)| − |w|

|w| − 1

≤ lim inf
z→β

|ηµ1(ω1(z))| − |ω1(z)|
|ω1(z)| − 1

(substituting w = ω1(z))

= lim inf
z→β

|ω1(z)|
|z|

|ω2(z)| − |z|
|ω1(z)| − 1

(using Theorem 2.2)

= lim inf
z→β

|ω2(z)| − |z|
|ω1(z)| − 1

≤ lim inf
z→β

1 − |ω2(z)|
1 − |ω1(z)|

.
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Switching the roles of µ1 and µ2, we obtain

1
µ2({1/α2})

− 1 ≤ lim inf
z→β

1 − |ω1(z)|
1 − |ω2(z)|

=

[
lim sup

z→β

1 − |ω2(z)|
1 − |ω1(z)|

]−1

≤

[
lim inf

z→β

1 − |ω2(z)|
1 − |ω1(z)|

]−1

≤

[
1

µ1({1/α1})
− 1

]−1

.

A simple calculation shows now that the inequality(
1

µ2({1/α2})
− 1

)(
1

µ1({1/α1})
− 1

)
≤ 1

is equivalent to µ1({1/α1})+µ2({1/α2})≥ 1, thus concluding the proof. □

We are now ready to state and prove the main result of this paper.

Theorem 3.2. Consider the Borel probability measures µ1, µ2 on T and their free
multiplicative convolution µ= µ1 ⊠µ2. Suppose that neither µ1 nor µ2 is a point
mass. Then:

(1) The singular continuous part of µ relative to the arclength measure is zero.

(2) If we have

(3-1) max
{
µ1({α1})+µ2({α2}) : α1, α2 ∈ T

}
≤ 1,

then µ is absolutely continuous relative to the arclength measure.

(3) If (3-1) is strict, then the density of µ relative to the arclength measure is
bounded.

Remark 3.3. It is remarkable that, for all free convolutions (see [Belinschi 2014;
Ji 2021]), only the atomic parts of µ1, µ2 have an impact on the local boundedness
of the density of their convolution.

Proof. The set {(α1, α2) ∈ T2
: µ1({α1})+µ2({α2}) ≥ 1} is obviously finite. By

Lemma 3.1 (2), the set S = {α ∈ T : ηµ({1/α}) = 1} is finite as well. Since (2-2)
implies that the support of the singular summand of µ is contained in S, it follows
that this summand is a finite sum of point masses. This proves (1). Suppose now that
(3-1) holds. Then Lemma 3.1 (1) shows that µ is absolutely continuous. Finally, sup-
pose that (3-1) is strict. Then Lemma 3.1 (2) implies that ηµ does not take the value
1 at any point on T. Since ηµ is continuous on D, it must be bounded away from 1.
Thusψµ=ηµ/(1−ηµ) is a bounded function. Then (3) follows from Lemma 2.1. □



248 SERBAN T. BELINSCHI, HARI BERCOVICI AND CHING-WEI HO

Remark 3.4. Suppose that µ1({α1})+µ2({α2})= 1 for some α1, α2 ∈ T. It was
shown in [Belinschi 2003] that, setting β j =1/α j and β=β1β2, we haveω j (β)=β j

for j = 1, 2, but, of course, µ({1/β})= 0. (This can also be proved using the results
of [Belinschi et al. 2022] and the “chain rule” for Julia–Carathéodory derivatives.)
In all computable examples, the density of µ is unbounded near 1/β. We suspect
that this is true in full generality.

4. An application

The following statement extends the main result of [Bercovici and Wang 2008] for
probability measures on the circle. Nearly identical proofs yield the corresponding
extensions for free additive convolutions and for free multiplicative convolutions
on the positive half-line. For these two convolutions, it is not necessary to assume
that one of the convolved measures has more than two points in its support. The
condition ηµ(α)= 1 in the statement amounts to the requirement that either γ is an
atom of µ, or the density of µ is unbounded near γ (or both).

Theorem 4.1. Consider Borel probability measures µ1, µ2 on T, different from
point masses, and set µ = µ1 ⊠µ2. Suppose that J ⊂ T is an open arc such that
each endpoint α of J satisfies ηµ(α) = 1. If either µ1 or µ2 has more than two
points in its support, then µ(J ) > 0.

Proof. Let α and β be the two endpoints of J , and let ω j denote the subordination
function of ηµ relative to ηµ j . By Lemma 3.1, the points α j =ω j (α) and β j =ω j (β)

satisfy
µ1({α1})+µ2({α2})≥ 1 and µ1({β1})+µ2({β2})≥ 1.

The hypothesis implies that either α1 = β1 or α2 = β2. Indeed, otherwise, it would
follow that the support of µ j is {α j , β j }, for j = 1, 2. Switching, if necessary, the
roles of µ1 and µ2, we may assume that α1 = β1, so ω1(α)= ω1(β).

Suppose now that µ(J ) = 0. Then |ηµ(ζ )| = 1 for every ζ ∈ J . The equation
ηµ(ζ )= ηµ1(ω1(ζ )) and the Schwarz lemma (which applies because ηµ(0)= 0),
imply that

|ηµ(z)| ≤ |ω1(z)|

for every z ∈ D. Letting z approach a point ζ ∈ J , we see that |ω1(ζ )| = 1. Now, ω1

is not constant, and therefore ω1(ζ ) moves counterclockwise as ζ ∈ J does so. By
the Schwarz reflection principle, ω1 is analytic and, thanks to the Julia–Carathéodory
Theorem, it is locally injective on J . The equation ω1(α) = ω1(β) allows us to
conclude that ω1(J ) ⊇ T \ {ω1(α)}. Moreover, the fact that |ηµ1(ω1(ζ ))| = 1 for
ζ ∈ J shows that the support of µ1 is contained in T\ω1(J )⊆ {ω1(α)}, contrary to
the hypothesis. This contradiction yields the desired conclusion that µ(J ) ̸= 0. □
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AND A Q-ANALOGUE
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To the memory of Georgia Benkart

We examine from an invariant theory viewpoint the monoid algebras for
two monoids having large symmetry groups. The first monoid is the free
left-regular band on n letters, defined on the set of all injective words, that is,
the words with at most one occurrence of each letter. This monoid carries the
action of the symmetric group. The second monoid is one of its q-analogues,
considered by K. Brown, carrying an action of the finite general linear group.
In both cases, we show that the invariant subalgebras are semisimple commu-
tative algebras, and characterize them using Stirling and q-Stirling numbers.

We then use results from the theory of random walks and random-to-top
shuffling to decompose the entire monoid algebra into irreducibles, simul-
taneously as a module over the invariant ring and as a group representation.
Our irreducible decompositions are described in terms of derangement sym-
metric functions, introduced by Désarménien and Wachs.

1. Introduction

Motivated by results on mixing times for shuffling algorithms on permutations,
Bidigare [1997] and Bidigare, Hanlon, and Rockmore [Bidigare et al. 1999] devel-
oped a complete spectral analysis for a class of random walks on chambers of a
hyperplane arrangement. Their work relied heavily on the Tits semigroup structure
on the cones of the arrangement. Later, Brown [2000] generalized their analysis to
random walks coming from semigroups F which form a left-regular band (LRB),
meaning that x2

= x for all x and xyx = xy for all x, y in F.
Here we study two examples of left-regular bands M , related to those discussed

by Brown, having actions of large groups of monoid automorphisms G:

• the free LRB on n letters [Brown 2000, §1.3], denoted Fn , with G the symmetric
group Sn , and

MSC2020: 05E10, 16W22, 60J10.
Keywords: left-regular band, shuffle, random-to-top, random-to-random,

Bidigare–Hanlon–Rockmore, Stirling number, semigroup, monoid, symmetric group, general
linear group, unipotent character.

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC
BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org/pjm/
https://doi.org/10.2140/pjm.2023.322-2
https://doi.org/10.2140/pjm.2023.322.251
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


252 SARAH BRAUNER, PATRICIA COMMINS AND VICTOR REINER

• a q-analogue F
(q)
n related to monoids in [Brown 2000], and G the general

linear group GLn := GLn(Fq).

For both monoids M = Fn,F
(q)
n , we examine the monoid algebra R := kM with

coefficients in a commutative ring k, and answer the two main questions of invariant
theory for G acting on R:

Question 1.1. What is the structure of the invariant subalgebra RG?

Question 1.2. What is the structure of R, simultaneously as an RG-module and a
G-representation?

Section 2 answers Question 1.1 with our first main result, using the combinatorics
of Stirling and q-Stirling numbers. We paraphrase it here; see Theorem 2.9 for a
more precise statement.

Theorem 1.3. Consider either monoid M = Fn,F
(q)
n with symmetry groups G =

Sn, GLn , and assume that k is a field in which |G| is invertible.

(1) The invariant subalgebra RG is a commutative subalgebra of R generated by
a single element; call this element x for M = Fn and x (q) for M = F

(q)
n .

(2) The elements x, x (q) have minimal polynomials

f (X) =

{
X (X − 1)(X − 2) · · · (X − n), if M = Fn,

X (X − [1]q)(X − [2]q) · · · (X − [n]q), if M = F
(q)
n ,

where [m]q := 1 + q + · · · + qm−1 is a standard q-analogue of the integer
m ≥ 0.

(3) In particular, RG ∼= k[X ]/( f (X)), and RG acts semisimply on R, with
• x-eigenvalues 0, 1, 2, . . . , n on R = kFn ,
• x (q)-eigenvalues [0]q , [1]q , . . . , [n]q on R = kF (q)

n .

Since the above hypothesis that |G| is invertible in k also implies that kG acts
semisimply by Maschke’s theorem, this leads to our next goal: a complete answer
to Question 1.2 above, decomposing the monoid algebra R into simple modules for
the simultaneous (commuting) actions of RG and G. The fact that RG is generated
by a single, semisimple element x (respectively, x (q)) reduces this problem to
understanding each eigenspace of x (respectively, x (q)) as a kG-module.

To describe these kG-modules, recall that irreducible representations {χλ
} of Sn

are indexed by partitions λ of n and let C(S) :=
⊕

∞

n=0 C(Sn), where C(Sn) denotes
the Z-module of virtual characters of Sn . Then the classical Frobenius character-
istic map ch is an algebra isomorphism between C(S) and the ring of symmetric
functions 3. It has ch(χλ) = sλ, the Schur function, and the trivial representation 1n

has ch(1n) = hn , the complete homogeneous symmetric function.
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There is a parallel and q-analogous story for a subset of irreducible representations
{χλ

q } of GLn called the unipotent representations, also indexed by partitions λ of n.
These are the irreducible constituents of the GLn-permutation action on the set
GLn /B = F(V ) of complete flags of subspaces in V = (Fq)n . Here, too, there is a
q-Frobenius characteristic map chq that defines an algebra isomorphism between
C(GL) :=

⊕
∞

n=0 C(GLn) and 3, where C(GLn) is the free Z-submodule of the class
functions on GLn spanned by the unipotent characters {χλ

q }. As one might hope,
chq(χλ

q ) = sλ and chq(1GLn ) = hn , where 1GLn is the trivial representation of GLn .
This allows us to phrase parallel answers to Question 1.2, in terms of an important

family of symmetric functions introduced by Désarménien and Wachs [1988],
which we will call the Désarménien–Wachs derangement symmetric functions
{dn}n=0,1,2,... , reviewed in Section 3C. Here dn is both the Frobenius image of an
Sn-representation Dn that we call the Derangement representation, as well as the q-
Frobenius image of a q-analogous GLn-representation D

(q)
n . As the name suggests,

these representations have dimensions counted by the derangement numbers and
q-derangement numbers, respectively1. They have irreducible decomposition

Dn ∼=
⊕
Q

χλ(Q) and D(q)
n

∼=
⊕
Q

χλ(Q)
q ,

where Q runs through all standard Young tableaux of size n whose first ascent is
even [Reiner and Webb 2004]. Derangement symmetric functions have connections
to many well-studied objects in combinatorics such as the complex of injective words
[Reiner and Webb 2004], random-to-top and random-to-random shuffling [Uyemura-
Reyes 2002], higher Lie characters [Uyemura-Reyes 2002], and configuration spaces
[Hersh and Reiner 2017]; see Section 3C. We add to this list by showing they form
crucial building blocks for the invariant theory of kFn and kF (q)

n .
Section 4 derives the following answer to Question 1.2, paraphrased here — see

Theorem 4.11 for a more precise statement:

Theorem 1.4. Let k be a field whose characteristic does not divide |G|. Then
when x, x (q) act on kFn, kF (q)

n , for each j = 0, 1, 2, . . . , n, the j-eigenspace for x
and [ j]q -eigenspace for x (q) carry G-representations with the same Frobenius map
images

ch ker
(
(x − j)|kFn

)
=

n∑
ℓ= j

hn−ℓ · h j · dℓ− j = chq ker
(
(x (q)

− [ j]q)|kF (q)
n

)
.

Our proofs use techniques that go back to a discussion between Michelle Wachs
and Reiner in the analysis of random-to-top shuffling, and have been employed

1There are two natural families of kSn-modules whose dimensions are the derangement numbers,
discussed in [Hersh and Reiner 2017, Theorem 1.2]. The representation Dn here is the one with
character L̂ien in the notation of [Hersh and Reiner 2017, Equation (1)].
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more recently by Dieker and Saliola [2018] and Lafrenière [2020] in the analysis
of random-to-random shuffling and a generalization. The method constructs eigen-
vectors of x, x (q) acting on Fn,F

(q)
n from null vectors associated to the analogous

operators for smaller values of n. Combining these ideas with various filtrations
on kM allows us to describe the eigenspaces as parabolic inductions of derangement
representations in a conceptual way, avoiding character computations.

The remainder of the paper proceeds as follows: Section 2 introduces the monoid
algebras of interest, R = kFn, kF (q)

n , and proves Theorem 1.3, describing in parallel
the invariant subalgebras RG for G = Sn, GLn . Section 3 reviews the relation
between symmetric functions, representations of Sn and unipotent representations
of GLn . It also introduces the derangement symmetric functions dn , and describes
some of their many definitions and guises. Section 4 proves Theorem 1.4, simulta-
neously decomposing the monoid algebra R into simple modules for RG and kG,
with arguments in parallel for R = kFn and R = kF (q)

n .

2. Definitions, background, and the answer to Question 1.1

We introduce the monoids M = Fn,F
(q)
n , the symmetries G = Sn, GLn of the

monoid algebras R = kM , and analyze the invariant rings RG . Useful references
are Brown [2000] and B. Steinberg [2016].

2A. The monoids Fn and F
(q)
n .

Definition 2.1. The free left-regular band (or LRB) on n letters Fn (see [Brown
2000, §1.3] and [Steinberg 2016, §14.3.1]) consists, as a set, of all words a =

(a1, a2, . . . , aℓ) with letters ai from {1, 2, . . . , n} and no repeated letters, that is,
ai ̸= a j for 1 ≤ i < j ≤ n. Here the length ℓ(a) := ℓ lies anywhere in the range
0 ≤ ℓ ≤ n. The set Fn becomes a semigroup under the following operation: if
b = (b1, . . . , bm) is another word in Fn , then their product is

a · b := (a1, . . . , aℓ, b1, . . . , bm)∧,

where we have borrowed the notation from Brown [2000] that for a sequence
c = (c1, . . . , cp), the subsequence c∧

= (c1, . . . , cp)
∧ is obtained by removing any

letter ci that appears already in the prefix (c1, c2, . . . , ci−1). One can check that the
empty word ( ) is an identity element for this operation, and hence Fn is not only a
semigroup, but a monoid.

Definition 2.2. The q-analogue of Fn that we will consider will be denoted F
(q)
n .

As a set, it consists of all partial flags of subspaces A = (A1, A2, . . . , Aℓ), where Ai

is an i-dimensional Fq -linear subspace of (Fq)n , and A1 ⊂ A2 ⊂ · · ·⊂ Aℓ. Again the
length ℓ(A) :=ℓ lies in the range 0≤ℓ≤n. The set F (q)

n becomes a semigroup under
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the following operation: if B = (B1, . . . , Bm) is another such flag in F
(q)
n , then

A · B := (A1, . . . , Aℓ, Aℓ + B1, Aℓ + B2, . . . , Aℓ + Bm)∧

using a similar notation as before: for a sequence C = (C1, . . . , C p) of nested
subspaces C1 ⊆ C2 ⊆ · · · ⊆ C p, the subsequence C∧ is obtained by removing any
subspace Ci that appears already in the prefix (C1, C2, . . . , Ci−1). As above, F (q)

n

is not only a semigroup, but a monoid, since the empty flag ( ) is an identity element.

Remark 2.3. Warning: Brown [2000, §1.4 and §5] introduced two other monoids
Fn,q and Fn,q , closely related to F

(q)
n . All three are different q-analogues of Fn ,

related as follows:
Considered as a set, Brown’s first q-analogue Fn,q consists of all sequences

v = (v1, v2, . . . , vℓ) of linearly independent vectors in (Fq)n . For another sequence
v′

= (v′

1, v
′

2, . . . , v
′
m), one defines their product

v · v′
:= (v1, v2, . . . , vℓ, v

′

1, v
′

2 . . . , v′

m)∧,

where (u1, . . . , u p)
∧ is obtained by removing any ui which is dependent upon the

preceding vectors (u1, . . . , ui−1). One may regard the monoid F
(q)
n as a quotient

monoid of Fn,q via the surjection

Fn,q ↠ F (q)
n , (v1, v2, . . . , vℓ) 7→ (A1, A2, . . . , Aℓ),

where Ai := Fqv1 + Fqv2 + · · · + Fqvi .
Brown’s second q-analogue Fn,q turns out to be a further quotient of either

Fn,q or F (q)
n , whose motivation he explains in [Brown 2000, §5.1 and §5.2]. It

is q-analogous to a certain quotient monoid of Fn that he denotes Fn , which one
could define as follows: the monoid quotient map Fn ↠ Fn identifies the longest
words, those of length n, with their prefix word of length n − 1,

(a1, a2, . . . , an−1, an) = (a1, a2, . . . , an−1).

One can then define Brown’s second q-analogue Fn,q as a quotient of F (q)
n , where

the monoid quotient map F
(q)
n ↠ Fn,q identifies a complete flag of length n with

the flag of length n − 1 that omits the (improper) subspace (Fq)n at the end:

(A1, A2, · · · , An−1, (Fq)n) = (A1, A2, . . . , An−1).

2B. Symmetries of the monoid algebras. Let k be a commutative ring with 1. For
any finite monoid M (such as M = Fn,F

(q)
n ), the monoid algebra R = kM is the

free k-module with basis elements given by the elements a of M , and multiplication
extended k-linearly from the monoid operation on the basis elements(∑

a
pa a

)(∑
b

qb b
)

=
∑
a,b

paqb a · b =
∑

c

( ∑
a·b=c

paqb

)
c.
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Note that any group G of monoid automorphisms of M acts as ring automorphisms
on R = kM . In particular, the symmetric group Sn permuting letters {1, 2, . . . , n}

acts on Fn via
w(a1, . . . , aℓ) = (w(a1), . . . , w(aℓ)).

Similarly, the finite general linear group GLn := GLn(Fq) acts on F
(q)
n by

g(A1, . . . , Aℓ) = (g(A1), . . . , g(Aℓ)).

Our first goal is to analyze the G-invariant subalgebras RG in both cases.

2C. The invariant subalgebras RG and Question 1.1. Since the groups G permute
the monoid elements M , the monoid algebra R = kM becomes a permutation
representation of G. Therefore, the invariant subalgebra RG has as a k-basis the
orbit sums

{∑
a∈O a

}
as one runs through all G-orbits O on M . For both of the

monoids M = Fn,F
(q)
n , one can easily identify the G-orbits, since the groups

G = Sn and GLn act transitively on the subsets

Fn,ℓ := {a ∈ Fn : ℓ(a) = ℓ},

F
(q)

n,ℓ := {A ∈ F (q)
n : ℓ(A) = ℓ}.

Thus the G-invariant subalgebras RG have k-bases {xℓ}ℓ=0,1,...,n , and {x (q)

ℓ }ℓ=0,1,...,n ,
defined by

(1) xℓ :=
∑

a∈Fn,ℓ

a and x (q)

ℓ :=
∑

A∈F
(q)

n,ℓ

A.

Example 2.4. Let q = 2, n = 3, ℓ = 1, and let e1, e2, e3 be standard basis vectors
for V = (F2)

3. Using the notation ⟨v1, v2, . . . , vm⟩ for the Fq-span of the vectors
{v1, v2, . . . , vm} in V , one has

x (2)
1 = (⟨e1⟩)+(⟨e2⟩)+(⟨e3⟩)+(⟨e1+e2⟩)+(⟨e1+e3⟩)+(⟨e2+e3⟩)+(⟨e1+e2+e3⟩).

It will be convenient to adopt the convention that xn+1 := 0 =: x (q)

n+1.
Using the k-bases in (1) for (kFn)

Sn and (kF (q)
n )GLn , there is a simple rule for

multiplication by the elements

x := x1 =

n∑
i=1

(i) = (1) + (2) + · · · + (n),

x (q)
:= x (q)

1 =
∑

lines L⊂(Fq )n
(L).

To state the rule, recall a standard q-analogue of nonnegative integers

[n]q := 1 + q + q2
+ · · · + qn−1.
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Lemma 2.5. Inside RG for the monoid algebras R = kM with M = Fn,F
(q)
n , the

elements x and x (q) act on the (ordered) k-bases (1) as follows: for ℓ = 0, 1, . . . , n,

x · xℓ = ℓxℓ + xℓ+1,

x (q)
· x (q)

ℓ = [ℓ]q x (q)

ℓ + qℓ x (q)

ℓ+1.

In other words, x and x (q) act on RG , in the ordered bases above, via the matrices:

x =



0
1 1

1 2
1

. . .
n−1

1 n

 and x (q)
=



[0]q

q0
[1]q

q1
[2]q

q2 . . .
[n−1]q

qn−1
[n]q

.

Proof. Note that the product x · xℓ is G-invariant, and is a sum of terms a of length
ℓ or ℓ+1, so it must have the form c · xℓ +d · xℓ+1 for some constants c, d in k. The
constant d = 1, since any word a = (a1, a2, . . . , aℓ+1) of length ℓ+1 arises uniquely
as (a1) · (a2, . . . , aℓ+1). The constant c = ℓ, since any word (a1, a2, . . . , aℓ) of
length ℓ arises in ℓ ways, from these products:

(a1) · (a1, a2, a3, a4, . . . , aℓ),

(a1) · (a2, a1, a3, a4, . . . , aℓ),

(a1) · (a2, a3, a1, a4, . . . , aℓ),
...

(a1) · (a2, a3, a4, . . . , aℓ, a1).

For the q-analogous formula, one argues similarly that

x (q)
· x (q)

ℓ = c · x (q)

ℓ + d · x (q)

ℓ+1

for some constants c, d in k. We first show that the constant d = qℓ. Any flag
A = (A1, A2, . . . , Aℓ+1) of length ℓ + 1 arises from products of the form (A1) ·

(B1, B2 . . . , Bℓ), where the flag B1 ⊂ B2 ⊂ · · · ⊂ Bℓ satisfies A1 + Bi = Ai+1 for
i = 1, 2, . . . , ℓ. If one picks B1, B2, . . . , Bℓ sequentially, then having chosen Bi−1,
one must choose Bi so that Bi/Bi−1 is any line inside the 2-dimensional quotient
space Ai+1/Bi−1 other than the line (A1 + Bi−1)/Bi−1. Since there are q + 1 lines
in Ai+1/Bi−1, this gives q choices for Bi , and qℓ sequential choices in total for
B1, B2, . . . , Bℓ.

We next argue that the constant c = [ℓ]q . Any flag A = (A1, A2, . . . , Aℓ) of
length ℓ arises from products of the form (A1) · (B1, B2 . . . , Bℓ) in which the flag
B1 ⊂ B2 ⊂· · ·⊂ Bℓ has A1 ⊆ Bℓ (else, (A1)·(B1, B2 . . . , Bℓ) has length ℓ+1, not ℓ).



258 SARAH BRAUNER, PATRICIA COMMINS AND VICTOR REINER

Letting i0 be the smallest index for which A1 ⊆ Bi0 , one finds that 1 ≤ i0 ≤ ℓ.
Having fixed i0, the Bi for i in the range i0 ≤ i ≤ ℓ are completely determined by
Bi = A1+Bi = Ai . Meanwhile, for i in the range 1≤ i ≤ i0−1, as in the argument for
the constant d = qℓ above, one can sequentially choose each of B1, B2, . . . , Bi0−1

in q ways so that they satisfy A1 + Bi = Ai+1. This gives q i0−1 choices, which
when summed over i0 = 1, 2, . . . , ℓ gives 1+q +q2

+· · ·+qℓ−1
= [ℓ]q sequential

choices in total. □

Lemma 2.5 allows us to connect RG to the Stirling and q-Stirling numbers,
briefly reviewed here.

Definition 2.6. The classical Stirling numbers of the second kind (S(n, k))k,n=0,1,...

have two closely related families of q-analogues Sq(n, k), S̃q(n, k), introduced
by Carlitz [1933, §4] and studied by many others, e.g., Cai, Ehrenborg, and
Readdy [Cai et al. 2018], Garsia and Remmel [1986], Gould [1961], de Médicis
and Leroux [1993], Milne [1978; 1982], Sagan and Swanson [2022], Wachs and
White [1991], among others. Using the notation2 in [Milne 1978], all three are
doubly indexed triangles defined for (n, k) with n, k ≥ 0, having initial conditions
that set them all equal to 1 when (n, k) = (0, 0), and vanishing whenever n + k ≥ 1
but either k = 0 or n = 0. When both n, k ≥ 1, they are then defined by the recursions

(2)

S(n, k) = S(n − 1, k − 1) + k · S(n − 1, k),

S̃q(n, k) = S̃q(n − 1, k − 1) + [k]q · S̃q(n − 1, k),

Sq(n, k) = qk−1
· Sq(n − 1, k − 1) + [k]q · Sq(n − 1, k).

An easy induction using the recursion lets one check that, for all n and k, one has
the relation

Sq(n, k) = q(k
2) S̃q(n, k),

and for n ≥ 1, one has

(3) S(n, 1)= Sq(n, 1)= S̃q(n, 1)=1, S(n, n)= S̃q(n, n)=1, Sq(n, n)=q( n
2).

Remark 2.7. Alternatively, one can consider S(n, k), S̃q(n, k), Sq(n, k) as change-
of-basis matrices in the polynomial rings k[t] with k = Z, Z[q], Z[q, q−1

], re-
spectively. Consider the obvious ordered k-basis of k[t] given by the powers
(tn)∞n=0 = (1, t, t2, . . . ), versus these (q-)falling factorial k-bases,

(t)n := t (t − 1)(t − 2) · · · (t − (n − 1)), in Z[t],

(t)n,q := t (t − [1]q)(t − [2]q) · · · (t − [n − 1]q), in Z[q][t] or Z[q, q−1
][t].

2Notational conflicts are unavoidable. E.g., our Sq (n, k), S̃q (n, k) here equal S[n, k], S[n, k],
respectively, in [Sagan and Swanson 2022].
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Then one has these change-of-basis formulas (see3 Gould [1961, §3], Milne [1978,
Equation (1.14)], and [Garsia and Remmel 1986, Equation (I.17)]):

(4)

tn
=

∑
k

S(n, k) · (t)k, in Z[t],

tn
=

∑
k

S̃q(n, k) · (t)k,q , in Z[q][t],

tn
=

∑
k

Sq(n, k)q−(k
2) · (t)k,q , in Z[q, q−1

][t].

We next show that S(n, k), Sq(n, k) also mediate a natural change-of-basis
within RG .

Corollary 2.8. Let k be a commutative ring with 1, and let R = kM with M = Fn

or F
(q)
n . Then the (q-)Stirling numbers S(m, k) and Sq(m, k) are the expansion

coefficients for the powers {xm
}m=0,1,...,n and {(x (q))m

}m=0,1,...,n in the orbit-sum
k-bases {xk}k=0,1,...,n and {x (q)

k }k=0,1,...,n of RG :

xm
=

∑
k

S(m, k) xk and (x (q))m
=

∑
k

Sq(m, k) x (q)

k .

Thus unitriangularity of {S(m, k)} shows {xk
}k=0,1,...,n always gives a k-basis

for RG , while triangularity of {Sq(m, k)} shows {(x (q))k
}k=0,1,...,n is a k-basis

for RG if and only if q lies in k×.

Proof. Both expansions follow by induction on m. Here is the inductive step
calculation in the q-Stirling case, applying induction, Lemma 2.5, and (2) for
equalities (∗), (∗∗), and (∗ ∗ ∗), respectively:

(x (q))m
= x (q)

· (x (q))m−1 (∗)
= x (q)

·
∑
k

Sq(m − 1, k) x (q)

k

=
∑
k

Sq(m − 1, k) x (q)
· x (q)

k

(∗∗)
=

∑
k

Sq(m − 1, k)
(
[k]q x (q)

k + qk x (q)

k+1

)
=

∑
k

(
[k]q Sq(m − 1, k) + qk−1Sq(m − 1, k − 1)

)
x (q)

k

(∗∗∗)
=

∑
k

Sq(m, k)x (q)

k .

The q-expansion is invertible only when q lies in k× due to triangularity and
Sq(m, m) = q(m

2). □

This leads to our answer for Question 1.1.

3The formulas as discussed by Milne [1978, (1.14)] use the notation [x] = (y − 1)/(q − 1), where
y = qx is regarded as an indeterminate. To agree with notation and (4) here, one should substitute
t = [x] = (y − 1)/(q − 1), so that y = 1 + t (q − 1).
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Theorem 2.9. Let k be any commutative ring with 1, and let R = kM for either
of the monoids M = Fn,F

(q)
n , with symmetry groups G = Sn, GLn . If M = F

(q)
n ,

assume further that q is in k×.

(i) The unique k-algebra map k[X ]
γ
−→R defined by

X 7→

{
x, if M = Fn,

x (q), if M = F
(q)
n ,

induces an algebra isomorphism k[X ]/( f (X)) ∼= RG, where

f (X) :=

{
X (X − 1)(X − 2) · · · (X − n), if M = Fn,

X (X − [1]q)(X − [2]q) · · · (X − [n]q), if M = F
(q)
n .

Hence, RG is commutative and generated by x or x (q).

(ii) If k is a field, where |G| is invertible, then x or x (q) acts semisimply on any
finite-dimensional RG-module, with eigenvalues contained in the lists{

0, 1, 2, . . . , n, if M = Fn,

[0]q , [1]q , [2]q , . . . , [n]q , if M = F
(q)
n .

Proof. For (i), note that Lemma 2.5 shows that x or x (q) acts on RG with character-
istic polynomial f (X). Consequently, the kernel of the algebra map k[X ]

γ
−→RG

contains f (X), and γ descends to a map on the quotient k[X ]/( f (X))
γ
−→RG .

Moreover, since f (X) is monic of degree n + 1, the quotient k[X ]/( f (X)) has
k-basis (1, X, X2, . . . , Xn), and Corollary 2.8 shows that γ maps this onto a k-basis
of powers {xk

}
n
k=0 or {(x (q))k

}
n
k=0 for RG . Hence, γ is an algebra isomorphism.

For (ii), assume that k is a field where the roots of the characteristic polynomial
f (X) of x or x (q) acting on RG are all distinct. This means that f (X) must also be
the minimal polynomial for x , or x (q) acting on RG , and that it acts semisimply in
any finite dimensional RG-module, with eigenvalues contained in that set of roots.
Lastly, note the groups G have cardinalities

|G| =


|Sn| = n!, for M = Fn,

| GLn | = q(n
2)(q − 1)n

[n]!q

= (qn
− 1)(qn

− q)(qn
− q2) · · · (qn

− qn−1), for M = F
(q)
n ,

where the q-factorial [n]!q is defined by

(5) [n]!q := [n]q [n − 1]q · · · [2]q [1]q .

One can then check that the invertibility of n! in k and distinctness of 0, 1, 2, . . . , n
are both equivalent to k having characteristic zero or a prime p > n, while in-
vertibility of | GLn | in k and distinctness of [0]q , [1]q , [2]q , . . . , [n]q are both
equivalent to k having characteristic zero or characteristic coprime to q and to [m]q

for m = 1, 2, . . . , n. □
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We close this section with some remarks on Brown’s other q-analogues of Fn .

Remark 2.10. The analysis in Lemma 2.5 can be lifted to an analogous (and
even simpler) computation in Brown’s first q-analogue Fn,q . Denoting the orbit
sum k-basis in kFn,q by y0, y1, . . . , yn , multiplication by the element y := y1 =∑

v∈(Fq )n\{0}
(v) acts on that basis as follows:

(6) y · yℓ = (qℓ
− 1)yℓ + yℓ+1.

Bearing in mind that the monoid surjection Fn,q
π
↠ F

(q)
n described in Remark 2.3

has exactly

(q − 1)(q2
− q) · · · (qℓ

− qℓ−1) = (q − 1)ℓq(ℓ
2)

preimages (v1, v2, . . . , vℓ) for every flag A = (A1, A2, . . . , Aℓ), one can check
that (6) maps under the linearization kFn,q

π
↠kF (q)

n to a formula consistent with the
second formula in Lemma 2.5.

Remark 2.11. It is also easy to check that Lemma 2.5 gives similar computations
in the other monoids Fn and Fn,q considered by Brown, discussed in Remark 2.3.
Specifically, in kFn , one has

x̄ · x̄ℓ =

{
ℓx̄ℓ + x̄ℓ+1, if 0 ≤ ℓ < n − 1,

nx̄n−1, if ℓ = n − 1,

and in kFn,q , one has

x̄ (q)
· x̄ (q)

ℓ =

{
[ℓ]q x̄ (q)

ℓ + qℓ x̄ (q)

ℓ+1, if 0 ≤ ℓ < n − 1,

[n]q x̄ (q)

n−1, if ℓ = n − 1.

The point is that when one k-linearizes the monoid surjection F → Fn it maps
xℓ 7−→ x̄ℓ for i ≤ n−2, and maps xn−1, xn 7−→ x̄n−1. An analogous statement holds
for F (q)

→ Fn,q . One can then check that applying these linearized surjections to
Lemma 2.5 gives the above formulas.

3. Representation-theoretic preliminaries

Having answered Question 1.1 by describing the structure of RG , the next few
subsections collect and review some facts regarding representations of G = Sn and
G = GLn that will help us answer Question 1.2 in Section 4 on the structure of R,
simultaneously as an RG-module and a G-representation.

3A. Semisimplicity, filtrations, and eigenspaces. In what follows, we will be
examining various modules V over the monoid algebra R = kM for the two
monoids M = Fn,F

(q)
n , carrying kG-module structures for the automorphism
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groups G =Sn, GLn . In all cases, the G-actions on R and V will be compatible in
the sense that

g(r · v) = g(r) · g(v) for all r ∈ R, v ∈ V, g ∈ G.

Note that in this setting, V carries commuting actions of RG and of kG, and we
will wish to describe it simultaneously as a module over both.

Henceforth, assume that k is a field in which |G| is invertible, and take V to be
finite-dimensional over k. This implies that V is semisimple both as an RG-module
due to Theorem 2.9 (ii), and as a kG-module by Maschke’s Theorem.

In order to answer Question 1.2, we will utilize two important features of our
setting:

(1) Semisimplicity implies that given a filtration by RG-submodules and kG-
submodules Vi

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vr = V,

one actually has an RG-module and kG-module isomorphism

V ∼=
⊕

i
Vi/Vi−1.

This will play a crucial role in Section 4B (specifically, in our proof of Theorem 1.4),
where we will define filtrations on kFn and kF (q)

n that significantly simplify the
analysis.

(2) By Theorem 2.9 (ii), we have that RG is generated by the single element x
or x (q), which acts diagonalizably with certain eigenvalues λ all lying in k. It follows
that in order to understand the RG and kG-module structure of any module V , it
suffices to decompose the eigenspaces ker((x − λ)|V ) as kG-modules.

Hence, we will answer Question 1.2 by describing the j-eigenspaces of kFn as
Sn-representations and the [ j]q -eigenspaces of kF (q)

n as GLn- representations for
j = 0, 1, . . . , n.

3B. Symmetric functions,Sn-representations,and unipotent GLn-representations.
We review here the relation between the ring of symmetric functions 3 and rep-
resentations of Sn; see Sagan [1991] and Stanley [1999] as references, and for
undefined terminology. We then review the parallel story for R. Steinberg’s unipotent
representations of GLn; see [Grinberg and Reiner 2014, §4.2, §4.6, and §4.7] as a
reference.

The ring of symmetric functions 3 (of bounded degree, in infinitely many vari-
ables) may be viewed as a polynomial algebra Z[h1, h2, . . . ]= Z[e1, e2, . . . ], where
hn and en are the complete homogeneous and elementary symmetric functions of
degree n. One may view 3 as a graded Z-algebra 3 =

⊕
∞

n=0 3n , which we wish



INVARIANT THEORY FOR THE FREE LEFT-REGULAR BAND AND A Q-ANALOGUE 263

to relate to the direct sum

C(S) :=

∞⊕
n=0

C(Sn),

where C(Sn) denotes the Z-module of virtual characters of Sn . That is, C(Sn)

is the free Z-module on the basis of irreducible characters {χλ
} indexed by the

partitions λ of n, or alternatively, the Z-submodule of class functions on Sn of the
form χ − χ ′ for genuine characters χ, χ ′. One makes C(S) into a graded algebra
via the induction product defined by

(7) C(Sn1)×C(Sn2) → C(Sn1+n2), ( f1, f2) 7→ f1 ∗ f2 := ( f1 ⊗ f2) ↑
Sn1+n2
Sn1×Sn2

,

where (−) ↑
G
H is the usual induction of class functions on a subgroup H to class

functions on G.
For later use, we note that since [Sn1+n2 :Sn1 ×Sn2] =

(n1+n2
n1

)
, whenever f1, f2

are genuine characters, one has the formula for the degree of f1 ∗ f2:

(8) deg( f1 ∗ f2) =

(n1+n2
n1

)
deg( f1) deg( f2).

One then has the Frobenius characteristic isomorphism of Z-algebras C(S)
ch
−→3,

mapping
C(S)

ch
−→3, 1Sn 7→ hn, sgnSn

7→ en, χλ
7→ sλ.

Here, sλ is the Schur function. For a composition α = α1, α2, . . . , αℓ, we use the
standard shorthand

hα := hα1hα2 · · · hαℓ
.

For later use, we note that one can express the regular representation kSn =

1S1 ∗ 1S1 ∗ · · · ∗ 1S1 , implying

(9) ch kSn = hn
1 = h1n .

There is a parallel story for a certain subset of GLn-representations. Specifically,
there is a collection of irreducible GLn-representations {χλ

q }, indexed by partitions λ

of n, which are the irreducible constituents occurring within the GLn-permutation
action on the set GLn /B of complete flags of subspaces F(V ) in V = (Fq)n . They
were studied by R. Steinberg [1951], and are now called the unipotent characters
of GLn . Letting C(GLn) represent the free Z-submodule of the class functions
on GLn with unipotent characters {χλ

q } as a basis, one can define the parabolic or
Harish–Chandra induction product on the direct sum C(GL) :=

⊕
∞

n=0C(GLn) as
follows:

C(GLn1) × C(GLn2) → C(GLn1+n2),

( f1, f2) 7→ f1 ∗ f2 :=
(
( f1 ⊗ f2) ⇑

Pn1,n2
GL n1×GLn2

)
↑

GL n1+n2
Pn1,n2

.
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Here, Pn1,n2 is the maximal parabolic subgroup of GLn1+n2 setwise stabilizing the
Fq-span of the first n1 standard basis vectors, and (−)⇑

Pn1,n2
GL n1×GLn2

is the inflation
operation that creates a GL n1 × GLn2-representation from a Pn1,n2-representation,
by precomposing with the surjective homomorphism Pn1,n2 ↠GLn1 × GLn2 sending[ A

0
B
C

]
7→

[ A
0

0
C

]
. For later use, we note that since the inflation operation does not

change the degree of a representation, and since

[GLn1+n2 : Pn1,n2] =

[
n1 + n2

n1

]
q

=
[n1 + n2]!q

[n1]!q [n2]!q
,

(with [n]!q as in (5)) when f1, f2 are genuine characters, one has this degree formula
for f1 ∗ f2:

(10) deg( f1 ∗ f2) =

[
n1 + n2

n1

]
q

deg( f1) deg( f2).

This parabolic induction operation turns out to make C(GL) into an associative,
commutative Z-algebra. One then has a q-analogue of the Frobenius isomorphism
C(GL)

chq
−−→3 sending4

C(GL)
chq
−−→3, 1GLn 7→ hn, χλ

q 7→ sλ.

Note that the permutation representation k[GLn /B] of GLn on the complete flags
can be expressed as 1GL1 ∗ 1GL1 ∗ · · · ∗ 1GL1 , and therefore one has this q-analogue
of (9):

(11) chq k[GLn /B] = hn
1 = h1n .

3C. (q-)derangement numbers and representations. A central role in this story is
played by the classical derangement numbers dn and the q-derangement numbers
dn(q) of Wachs [1989]:

(12)

dn := n!

n∑
k=0

(−1)k

k!
= n!

(
1
1!

−
1
2!

+
1
3!

−
1
4!

+ · · · +
(−1)n

n!

)
,

dn(q) := [n]!q

n∑
k=0

(−1)k

[k]!q
.

There are two well-known combinatorial models for dn counting permutations
in Sn:

• derangements, which are the fixed-point free permutations, or

4One might wonder which GLn-character maps under chq to the elementary symmetric function en ;
it is the Steinberg representation, in which GLn acts on the top homology of the Tits building, which
is the simplicial complex of flags of nonzero proper subspaces in (Fq )n .
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• desarrangements, which are permutations w = (w1, w2, . . . , wn) whose first
ascent position i with wi < wi+1 (using wn+1 = n + 1 by convention) occurs
for an even position i .

Wachs [1989], and later Désarménien and Wachs [1993], gave various interpre-
tations for dn(q). In particular, dn(q) is still closely related to derangements and
desarrangements. Letting Dn and En denote the derangements and desarrangements
in Sn , and defining the major index statistic of a permutation w = (w1, . . . , wn) as
maj(σ ) =

∑
i :wi >wi+1

i , one has

dn(q) =
∑

σ∈Dn

qmaj(σ )
=

∑
σ∈En

qmaj(σ−1).

These dn and dn(q) are the dimensions for a pair of representations of Sn

and GLn , which we call the derangement representation Dn and its (unipotent)
q-analogue D

(q)
n . Both have the same symmetric function image dn under the

Frobenius maps ch and chq , a symmetric function with many equivalent descriptions.
For the reader’s convenience, and for future use, we will compile these descriptions
in Proposition 3.1, after first reviewing terminology.

Define for a permutation w = (w1, w2, . . . , wn) in Sn its descent set

Des(w) :=
{
i ∈ {1, 2, . . . , n − 1} : wi > wi+1

}
.

For example, w = (6, 3, 5, 2, 1, 4) has Des(w)={1, 3, 4}. Note that the definition of
a desarrangement given above may be rephrased as a permutation w in Sn for which
the smallest element of {1, 2, . . . , n} \ Des(w) is even. Thus w = (6, 3, 5, 2, 1, 4)

is a desarrangement, since min({1, 2, 3, 4, 5, 6} \ {1, 3, 4}) = 2 is even.
Given a standard Young tableau Q with n cells written in English notation, its

descent set is

Des(w) := {i ∈ {1, 2, . . . , n −1} : i +1 appears south and weakly west of i in Q}.

For example,

Q =

1 3
2 6
4
5

has Des(Q) = {1, 3, 4}. Define a desarrangement tableau to be a standard Young
tableau Q with n cells for which the smallest element of {1, 2, . . . , n} \ Des(Q) is
even. Thus, the example tableau Q given above is a desarrangement tableau.

Finally, for integers n ≥ 1 and D ⊆ [n], define Gessel’s fundamental quasisym-
metric function

Ln,D :=
∑

1≤i1≤i2≤···≤in
i j <i j+1 if j∈D

xi1 xi2 · · · xin ,
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which is a formal power series in x1, x2, . . . and is homogeneous of degree n. For
w in Sn , let λ(w) denote its cycle type partition of n. For any partition λ of n,
the higher Lie character of Thrall [1942] or the Gessel–Reutenauer symmetric
function Lλ (see [Gessel and Reutenauer 1993], [Grinberg and Reiner 2014, §6.6],
and [Stanley 1999, Exercise 7.89 ]) can be defined as

Lλ :=
∑

w∈Sn :

λ(w)=λ

Ln,Des(w).

Proposition 3.1. With the convention that d0 := 1, the following definitions of a
sequence of symmetric functions {dn}n=0,1,2,... are all equivalent:

(A) dn = h1dn−1 + (−1)nen for n ≥ 1;

(B) dn =
∑n

k=0(−1)kek · h1n−k ;

(C) dn = h1n −
∑n−1

j=0 d j hn− j
(
or equivalently, h1n =

∑n
j=0 d j hn− j

)
for n ≥ 1;

(D) dn =
∑

Q sλ(Q), where Q runs through the desarrangement tableaux of size n;

(E) dn =
∑

w Ln,Des(w), where w runs through all desarrangements in Sn;

(F) dn =
∑

w Ln,Des(w), where w runs through all derangements in Sn;

(G) dn =
∑

w Lλ(w), where w runs through all derangements in Sn .

We will mainly need definition (C) for dn . However, we wish to point out that
part (D) decomposes dn very explicitly into Schur functions, illustrated in Table 1
for n = 0, 1, 2, 3, 4.

n desarrangement tableaux Q dn

0 ∅ 1
1 none 0

2 1
2

s(1,1)

3 1 3
2

s(2,1)

4 1
2
3
4

1 3
2
4

1 3
2 4

1 3 4
2

s(1,1,1,1) + s(2,1,1) + s(2,2) + s(3,1)

Table 1. Decomposition of dn into Schur functions for n = 0,1,2,3,4.
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Sketch proof of Proposition 3.1.. We sketch some of the equivalences here. The
equivalence of (A) and (B) is straightforward. Defining {dn} by (A), note they
satisfy definition (C) by induction on n:

(13)
n∑

j=0
d j hn− j =

( n∑
j=1

d j hn− j

)
+hn =

( n∑
j=1

(h1d j−1+(−1) j e j )·hn− j

)
+hn

= h1

n∑
j=1

d j−1hn− j
(∗)
=

n∑
j=0

(−1) j e j hn− j

(∗∗)
= h1 ·h1n−1 +0 = h1n .

Here, equality (∗) used
∑n

j=0(−1) j e j hn− j = 0 for n ≥ 1, and equality (∗∗) used
induction. Consequently, (A) and (C) define the same sequence of polynomials {dn},
and so (A), (B), and (C) coincide.

Defining {dn} by the explicit sum (D), let us check that they also satisfy the
recursive definition (A) by induction on n. In the base case n = 0, both have d0 = 1,
since the unique (empty) tableau of size 0 is a desarrangement tableau. In the
inductive step, using the Pieri formula shows that h1 · dn−1 is the sum over all
standard tableaux of size n obtained from a desarrangement tableau Q of size n −1
by adding n in any corner cell. This produces all desarrangement tableaux of size n,
except the single column tableau Q0 which:

• is produced for n odd, but is not a desarrangement tableaux, and

• is not produced for n even, but is a desarrangement tableau.

These exceptions are corrected by (−1)nen in the formula dn = h1dn1 + (−1)nen

in (A). Consequently, (A) and (D) define the same sequence of polynomials {dn}.
The equivalence of (D) and (E) uses two facts. First, applying the Robinson–

Schensted bijection to w to obtain a pair of standard Young tableaux (P, Q), one has
Des(w)= Des(Q); see [Stanley 1999, Lemma 7.23.1]. Thus, w is a desarrangement
if and only if Q is a desarrangement tableau5. Second, sλ =

∑
P LDes(P), where P

runs over standard Young tableaux of shape λ, by [Stanley 1999, Theorem 7.19.7].
The equivalence of (E) and (F) was proven by Désarménien and Wachs [1988],

where they showed that both families of symmetric functions defined in (E) and
(F) satisfy the recursive definition (C). Their proof also used the equivalence of (F)
and (G) that follows from the definition of Lλ. □

Note that part (B) of Proposition 3.1 generalizes the formulas in (12), upon
taking dimensions of the various representations and using (8) and (10). Similarly,

5Our earlier examples w = (6, 3, 5, 2, 1, 4) and Q also exemplify this, as w 7→ (P, Q) with
Q = 1 3

2 6
4
5

and P = 1 4
2 5
3
6

.
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part (C) corresponds to the formulas:

(14)
dimk kSn = n! =

n∑
j=0

dn− j

(n
j

)
,

dimk k[GLn /B] = [n]!q =

n∑
j=0

dn− j (q)
[n

j

]
q
,

after taking into account (9) and (11).
We conclude this section with some further historical remarks and context on

the derangement representations Dn and symmetric functions dn .

Remark 3.2. We are claiming no originality in Proposition 3.1. As mentioned in
its proof, the equivalence of (C), (E), (F), and (G) is work of Désarménien and
Wachs [1988]. In [Reiner and Webb 2004, Propositions 2.2, 2.1, and 2.3], it is noted
that one can repackage their results to include part (D). It was also noted there that
the tensor product sgn ⊗Dn of Dn with the one-dimensional sign representation sgn
of Sn , carries the same kSn-module as the homology of the complex of injective
words on n letters. Therefore, after tensoring with the sign character of Sn or
applying the fundamental involution ω on symmetric functions, parts (A), (C),
and (D) above correspond to [Reiner and Webb 2004, Propositions 2.2, 2.1, and
2.3].

Remark 3.3. It was noted in [Hersh and Reiner 2017] that Dn occurs naturally
in the representation stability and FI -module structure (as in Church, Ellenberg,
and Farb [Church et al. 2015]) on the cohomology of the configuration space of n
labeled points in Rd for d odd. Specifically, Dn is the kSn-module on the subspace
of FI -module generators for this cohomology, denoted L̂ien in [Hersh and Reiner
2017, Theorems 1.2 and 1.3].

Remark 3.4. As hinted at in Section 1, Dn also occurs as the kSn-module on
the kernel of two shuffling operators on kSn , both studied by Uyemura-Reyes:
random-to-top shuffles [2002, §1.1.7, §3.2.2, and §4.5.3] (also known as the Tsetlin
library) and random-to-random shuffles [2002, Chapter 5]; see also [Steinberg 2016,
Proposition 14.5] and Section 4A below. More generally, Uyemura-Reyes [2002,
Theorem 4.1] described the kSn-module structure on the eigenspaces for all
Bidigare–Hanlon–Rockmore shuffling operators that carry Sn-symmetry. Among
these are random-to-top shuffles, whose eigenvalue multiplicities had previously
been computed by Phatarfod [1991], ignoring the kSn-module structure. See also
the discussion by Hanlon and Hersh [2004, §3] and by Saliola, Welker, and Reiner
[Reiner et al. 2014, §VI.9].

Remark 3.5. In unpublished notes, Garsia [2012] (see also Tian [2016]), stud-
ied the top-to-random shuffling operator, which is adjoint or transpose to the
random-to-top operator. There he sketched a proof that its minimal polynomial



INVARIANT THEORY FOR THE FREE LEFT-REGULAR BAND AND A Q-ANALOGUE 269

is X (X − 1)(X − 2) · · · (X − n). The element x acts as (rescaled) random-to-top
on the chamber space of Fn (see 4A). In light of the fact that an operator and its
transpose have the same minimal polynomial, Garsia’s sketch is closely related to
the part of our proof of Theorem 2.9 dealing with M = kFn .

4. Answering Question 1.2

Our goal here is to answer Question 1.2, by describing the kG-module decomposi-
tions on the eigenspaces of x, x (q) as they act on kM for M = Fn,F

(q)
n .

Recall the (k-vector space) direct sum decompositions by length:

kFn =

n⊕
ℓ=0

kFn,ℓ, where Fn,ℓ := {a ∈ Fn : ℓ(a) = ℓ},

kF (q)
n =

n⊕
ℓ=0

kF (q)

n,ℓ , where F
(q)

n,ℓ := {A ∈ F (q)
n : ℓ(A) = ℓ}.

Following Brown [2000], we call the monoid elements of Fn,n and F
(q)
n,n of maximum

length chambers. Their k-spans kFn,n and kF (q)
n,n , which we call the chamber spaces,

form submodules for the action of both the monoid algebras kM and the group
algebras kG. We first analyze the structure of these chamber spaces in Section 4A,
and then use this to analyze the entire semigroup algebra kM in Section 4B.

4A. The chamber spaces. The chamber space kFn,n consists of all words of
length n. Thus, as a kSn module it is isomorphic to the left regular-representation
kSn . Similarly, kF (q)

n,n has as a k-basis the set F(V ) = {A = (A1, . . . , An)} of
all complete flags A1 ⊂ · · · ⊂ An−1 ⊂ An(= V ), and is isomorphic to the coset
representation of GLn on k[GLn /B].

We start with an old observation: multiplication by x acts on Fn,n as a (rescaled)
version of the random-to-top operator on kSn; see, for instance, B. Steinberg [2016,
Proposition 14.5].

Example 4.1. If n = 4 and w = (3, 1, 4, 2) in F4,4, then

x · w = ((1) + (2) + (3) + (4)) · (3, 1, 4, 2)

= (1, 3, 4, 2) + (2, 3, 1, 4) + (3, 1, 4, 2) + (4, 3, 1, 2),

which
(
after scaling by 1

4

)
is the result of random-to-top shuffling on w as an

element of kS4.

In this sense, the results in this section for the chamber space kFn,n are repack-
aging previously mentioned results on random-to-top shuffling and the Sn-action
on its eigenspaces, due to Uyemura-Reyes [2002, Theorem 4.19], building on the
computation of Phatarfod [1991] of the eigenvalue multiplicities. On the other hand,
as far as we aware, our results for the q-analogue kF (q)

n,n in Theorem 4.2 are new.
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We record here the action of x (q) on a complete flag A in V = (Fq)n , using
Definition 2.2:

x (q)
·A =

∑
lines L∈V

(L)·A =
∑

lines L∈V
(L , L+A1, L+A2, . . . , L+An−1, L+An)

∧.

For j = 0, 1, . . . n, we will write the j- and [ j]q-eigenspaces of the chamber
spaces kFn,n and kF (q)

n,n as

ker
(
(x − j)|kFn,n

)
and ker

(
(x (q)

− [ j]q)|kF (q)
n,n

)
.

In Theorem 4.2 below, we relate these j- and [ j]q -eigenspaces to Dn− j and D
(q)

n− j .
Our proof depends crucially on Proposition 4.5, Proposition 4.7, and Lemma 4.8
(all proved in Section 4A1) wherein we explicitly construct eigenvectors for the
action of x and x (q) on the chamber spaces kFn,n and kF (q)

n,n from the null vectors
of the same operators for smaller n.

Theorem 4.2. When x and x (q) act on kFn,n and kF (q)
n,n , for each j = 0, 1, 2, . . . , n,

their eigenspaces carry representations with the same Frobenius map images

ch ker
(
(x − j)|kFn,n

)
= h j · dn− j = chq ker

(
(x (q)

− [ j]q)|kF (q)
n,n

)
.

In other words, one has kG-module isomorphisms:

ker
(
(x − j)|kFn,n

)
∼= 1S j ∗Dn− j ,

ker
(
(x (q)

− [ j]q)|kF (q)
n,n

)
∼= 1GL j ∗D

(q)

n− j .

Proof. Lemma 4.8 below exhibits G-equivariant injections

(15)
1S j ∗ ker(x |kFn− j,n− j ) ↪→ ker

(
(x − j)|kFn,n

)
,

1GL j ∗ ker
(
x (q)

|kF (q)

n− j,n− j

)
↪→ ker

(
(x (q)

− [ j]q)|kF (q)
n,n

)
.

We now use facts proven by Phatarfod [1991] for q = 1 and by Brown [2000,
§5.2] for the q-analogue6:

dimk ker(x |kFn,n ) = dn and dimk ker
(
x (q)

|kF (q)
n,n

)
= dn(q).

Hence, the spaces on the left sides in (15) have dimensions dn− j
(n

j

)
and dn− j (q)

[n
j

]
q ,

respectively. However, since eigenspaces for distinct eigenvalues are always linearly
independent, and since

kFn,n ∼= kSn and kF (q)
n,n

∼= k[GLn /B]

6A minor discrepancy here is that Brown analyzes the action of x(q) not on the chamber space of
kF (q)

n itself, but rather on the chamber space of the quotient kF (q)
n discussed in Remark 2.3 above.

However, just as Brown points out for Fn and Fn in [Brown 2000, Remark, p. 888], the bijection
(A1, A2, . . . , An−1, V ) 7→ (A1, A2, . . . , An−1) between chambers of F (q)

n and those of kF (q)
n will

commute with both the action of GLn and with multiplication by x(q).
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have dimensions n! and [n]!q , the equations in (14) imply that the injections in (15)
must all be isomorphisms.

It also follows from the above analysis, or from Theorem 2.9 (ii), that

kFn,n =

n⊕
j=0

ker
(
(x − j)|kFn,n

)
and kF (q)

n,n =

n⊕
j=0

ker
(
(x (q)

− [ j]q)|kF (q)
n,n

)
.

Then using (9) and (11) and comparing with Proposition 3.1 (C), the theorem
follows. □

4A1. Constructing eigenvectors from null vectors: proof of Lemma 4.8. The goal
of this subsection is to prove Lemma 4.8. It relies on parallel constructions7 of
eigenvectors for x and x (q) acting on the spaces kFn,n and kF (q)

n,n from null vectors
for the same operators for smaller n.

Definition 4.3. Let [n] :={1,2, . . . ,n}, and fix a j -element subset U of {1,2, . . . ,n}.
Let S[n]\U denote the permutations a = (a1, a2, . . . , an− j ) of the complementary
subset [n]\U , written in one-line notation. On the k-vector space k[S[n]\U ] having
these permutations as a k-basis, define two maps 9U , 8U : k[S[n]\U ] → k[Sn] by
extending these rules k-linearly:

9U (a) :=
∑

b∈SU

(b1, b2, . . . , b j , a1, a2, . . . , an− j ),

8U (a) :=
∑

b∈SU

(a1, b1, b2, . . . , b j , a2, . . . , an− j ),

where the summation indices b run over all permutations b= (b1, b2, . . . , b j ) in SU .

Example 4.4. Let n = 5 and U = {4, 5}. Then

9U ((1, 2, 3)) = (4, 5, 1, 2, 3) + (5, 4, 1, 2, 3),

8U ((1, 2, 3)) = (1, 4, 5, 2, 3) + (1, 5, 4, 2, 3).

To state the next proposition, introduce for U ⊆ [n] the free left-regular band FU

on U , having an obvious isomorphism FU ∼=F j if j = |U |. Also let xU :=
∑

i∈U (i)
inside kFU .

Proposition 4.5. Fix a j-element subset U of [n] and a permutation a in S[n]\U .
Then

x · 9U (a) = j · 9U (a) + 8U (x[n]\U · a).

Consequently, if v in kF[n]\U,n− j has x[n]\U · v = 0, then 9U (v) is a j-eigenvector
for x on kFn,n:

x · 9U (v) = j · 9U (v).

7Reiner is grateful to Michelle Wachs for explaining to him the kFn version of this construction
(the operator 9U ) in 2002, in the context of random-to-top shuffling.



272 SARAH BRAUNER, PATRICIA COMMINS AND VICTOR REINER

Proof. One can calculate that

x · 9U (a) =

n∑
i=1

(i) · 9U (a) =
∑
i∈U

(i) · 9U (a) +
∑

i∈[n]\U
(i) · 9U (a)

= j · 9U (a) + 8U (x[n]\U · a),

where we explain here the two substitutions in the last equality. The fact that the
left sum equals j ·9U (a) follows from the last equation x ·x j = j ·x j in Lemma 2.5
applied to kFU ∼= kF j . The fact that the right sum is 8U (x[n]\U · a) follows via
direct calculation from the definitions. □

We next introduce two q-analogous maps 9
(q)

U and 8
(q)

U .

Definition 4.6. Fix U a j-dimensional Fq-linear subspace of V = (Fq)n . Let
F(V/U ) denote the set of maximal flags in the quotient space V/U

A = (A1, A2 . . . , An− j−1, An− j︸ ︷︷ ︸
=V/U

).

On the space k[F(V/U )] with these flags as a k-basis, we define the maps
9

(q)

U , 8
(q)

U : k[F(V/U )] → k[F(V )] by extending the following rules k-linearly:

9
(q)

U (A) :=
∑

B∈F(U )

(B1, B2, . . . , B j−1, U, A1 + U, A2 + U, . . . , An− j−1 + U, V ),

8
(q)

U (A) :=
∑

lines L:
L⊂U+A1,

L ̸⊂U

∑
B∈F(U )

(L , L + B1, . . . , L + B j−1,

=L+U+A1︷ ︸︸ ︷
L + U ,

L + U + A2, . . . , L + U + An− j−1, V ),

where the summation indices B run over all complete flags B = (B1, . . . , B j−1, U )

in F(U ).

To state the next proposition, introduce for any Fq -vector space U of dimension j
the monoid F

(q)

U
∼= F

(q)

j by identifying U ∼= F
j
q . Also introduce the element of

the monoid algebra kF (q)

U

x (q)

U :=
∑

lines L in U
(L).

Proposition 4.7. For a j-dimensional subspace U of V = (Fq)n and complete
flag A in F(V/U ),

x (q)
· 9

(q)

U (A) = [ j]q · 9
(q)

U (A) + 8
(q)

U

(
x (q)

V/U · A
)
.

Hence if v in kF (q)

V/U,n− j has x (q)

V/U ·v = 0, then 9
(q)

U (v) is a [ j]q -eigenvector for x (q)

on kF (q)
n,n :

x (q)
· 9

(q)

U (v) = [ j]q · 9
(q)

U (v).
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Proof. One can calculate that

x (q)
· 9

(q)

U (A) =
∑

lines L
in V

(L) · 9
(q)

U (A) =
∑

lines L
in U

(L) · 9
(q)

U (A) +
∑

lines L
not in U

(L) · 9
(q)

U (A)

= [ j]q · 9
(q)

U (A) + 8
(q)

U (x (q)

V/U · A),

where we explain here the two substitutions in the last equality. The fact that the
left sum equals [ j]q ·9

(q)

U (A) follows from the last equation x (q)
· x (q)

j = [ j]q · x (q)

j
in Lemma 2.5 applied to kF (q)

U
∼= kF (q)

j . To check the substitution made for the
right sum, one calculates directly that

8
(q)

U (x (q)

V/U · A)

=
∑

lines L
in V/U

8
(q)

U ((L) · A)

=
∑

lines L
in V/U

8
(q)

U

(
(L, L + A1, L + A2, . . . , L + An− j−1, V/U )∧

)
=

∑
lines L
in V/U

∑
lines L in V

L⊂U+L
L ̸⊂U

∑
B∈F(U )

(L , L + B1, . . . , L + B j−1,

=L+U︷ ︸︸ ︷
L + B j ,

L + U + A1, . . . , L + U + An− j−1, V )∧

=
∑

lines L in V
L ̸⊂U

∑
B∈F(U )

(L)·(B1, . . . , B j−1,

= U

}

B j , A1+U, A2+U, . . . , An− j−1+U, V )

=
∑

lines L
not in U

(L) · 9
(q)

U (A). □

We are at last ready to prove Lemma 4.8.

Lemma 4.8. With our usual notation of G = Sn, GLn acting on kM for M =

Fn,F
(q)
n , one has G-equivariant injections for j = 0, 1, 2, . . . , n:

1S j ∗ ker(x |kFn− j,n− j ) ↪→ ker
(
(x − j)|kFn,n

)
,

1GL j ∗ ker(x (q)
|kF (q)

n− j,n− j
) ↪→ ker

(
(x (q)

− [ j]q)|kF (q)
n,n

)
.

Proof. We give the proof for F (q)
n ; the proof for Fn is analogous, but easier.

For each j-dimensional subspace U of V = (Fq)n , define a subspace E(U )

of kF (q)
n,n as the image under 9

(q)

U of the nullspace for x (q)
= x (q)

V/U acting on
kF (q)

V/U,n− j
∼= kF (q)

n− j,n− j :

E(U ) := 9
(q)

U

(
ker x (q)

|kF (q)

V/U,n− j

)
.

According to Proposition 4.7, each E(U ) is a subspace of the [ j]q-eigenspace
ker

(
(x (q)

− [ j]q)|kF (q)
n,n

)
. Note that vectors in E(U ) are sums of complete flags

A = (A1, . . . , An) that pass through A j = U , and hence for U ̸= U ′, they are
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supported on basis elements of kF (q)
n,n indexed by disjoint sets of complete flags.

Therefore, the subspace sum of all E(U ) is a direct sum
⊕

U E(U ) inside this [ j]q -
eigenspace for x . It only remains to produce an isomorphism of GLn-representations

(16)
⊕
U

E(U ) ∼= 1GL j ∗ ker
(
x (q)

|kF (q)

n− j,n− j

)
.

Recall that GLn acts transitively on j-subspaces U . Fix the particular subspace U0

spanned by the first j standard basis vectors in V = (Fq)n , whose GLn-stabilizer is
the maximal parabolic subgroup Pj,n− j . It follows (see, e.g., Webb [2016, Propo-
sition 4.3.2]) that

⊕
U E(U ) carries the GLn-representation induced from Pj,n− j

acting on E(U0). However, because elements in E(U0) are supported on flags A
in E(U0) that all pass through A j = U0, this Pj,n− j -action is inflated through the
surjection Pj,n− j ↠ GL j × GLn− j . Furthermore, the definition of 9

(q)

U0
(−) as a

symmetrized sum over complete flags in U0 shows that GL j fixes elements of E(U0)

pointwise, while elements of GLn− j act as they do on ker
(
x (q)

|kF (q)

n− j,n− j

)
. Comparing

with (7) proves the desired isomorphism (16). □

4B. The entire semigroup algebra. Having described the eigenspaces of the cham-
ber spaces kFn,n and kF (q)

n,n as G-representations, we now turn to the entire semi-
group algebras kFn and kF (q)

n .
Our strategy here will be to introduce filtrations on kFn and kF (q)

n , and study the
action of x and x (q) on the associated graded modules with respect to these filtrations.
(Recall from the discussion in Section 3A that by semisimplicity, this is an equivalent
way to understand the RG and kG-module structures on kFn and kF (q)

n .)
Recall that for a ∈ Fn and A ∈ F

(q)
n the length of a is ℓ(a) and the length of A

is ℓ(A).

Definition 4.9. Define

kFn,≥ℓ := spank{a ∈ Fn : ℓ(a) ≥ ℓ},

kF (q)

n,≥ℓ := spank{A ∈ F (q)
n : ℓ(A) ≥ ℓ}.

In other words, kFn,≥ℓ and kF (q)

n,≥ℓ are the k-spans of the monoid elements of length
at least ℓ.

We then introduce filtrations {kFn,≥ℓ}ℓ=0,1,...,n,n+1 and {kF (q)

n,≥ℓ}ℓ=0,1,...,n,n+1:

(17)
{0} = kFn,≥n+1 ⊂ kFn,≥n ⊂ · · · ⊂ kFn,≥1 ⊂ kFn,≥0 = kFn,

{0} = kF (q)

n,≥n+1 ⊂ kF (q)
n,≥n ⊂ · · · ⊂ kF (q)

n,≥1 ⊂ kF (q)

n,≥0 = kF (q)
n .

Since ℓ(a · b) ≥ ℓ(b), it is easily seen that each kFn,≥ℓ is a kFn-submodule,
and a kSn-submodule. Analogously, kF (q)

n,≥ℓ is a kF (q)
n -submodule, and a k GLn-

submodule.
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Recall that for U ⊂ [n] of size j one has FU ∼= F j and xU =
∑

i∈U (i). Analo-
gously, recall that for U a j-dimensional subspace of V , one has F (q)

U
∼= F

(q)

j and

x (q)

U =
∑

lines L∈U
(L).

Both kFU and kF (q)

U have k-vector space direct sum decompositions defined by
length of words, so that one can identify kFU,ℓ

∼= kF j,ℓ and kF (q)

U,ℓ
∼= kF (q)

j,ℓ for
ℓ = 0, 1, . . . , j .

As k-vector spaces, one has a direct sum decomposition for the filtration factors

(18)

kFn,≥ℓ/kFn,≥ℓ+1 =
⊕

U⊆{1,2,...,n}

|U |=ℓ

kFU,ℓ,

kF (q)

n,≥ℓ/kF (q)

n,≥ℓ+1 =
⊕

Fq -subspaces U⊆(Fq )n

dim(U )=ℓ

kF (q)

U,ℓ,

where kFU,ℓ and kF (q)

U,ℓ denote the image of the subspaces kFU,ℓ and kF (q)

U,ℓ within
the quotient on the left. The next proposition is a simple but crucial observation
about these summands in (18) that is used in the proof of Theorem 1.4.

Proposition 4.10. Consider the summands on the right sides of (18).

• Each kFU,ℓ is a kFn-submodule of kFn,≥ℓ/kFn,≥ℓ+1, annihilated by ( j) for
j ̸∈ U.

• Each kF (q)

U,ℓ is a kF (q)
n -submodule of kF (q)

n,≥ℓ/kF (q)

n,≥ℓ+1, annihilated by (L) for
lines L ̸⊂ U.

Consequently, one has

x · a = xU · a, for a in kFU,ℓ,

x (q)
· A = x (q)

U · A, for A in kF (q)

U,ℓ.

Proof by example. Consider n = 3, with ℓ = 2 and U = {1, 2}. Then working
in the quotient kFU,2, because 3 ̸∈ U , the element (3) of kF3 will annihilate the
element (1, 2) of kF3,≥2/kF3,≥3. One has

(3) · (1, 2) = (3, 1, 2) = 0 in kF3,≥2/kF3,≥3,

because ℓ(3, 1, 2) = 3 > 2 = ℓ. Thus, x = (1) + (2) + (3) acts on (1, 2) as

x · (1, 2) = ((1) + (2) + (3)) · (1, 2)

= (1, 2) + (2, 1) + (3, 1, 2) = (1, 2) + (2, 1) = xU · (1, 2).

The proof for F (q)
n is analogous: one has ℓ((L) · A) > ℓ(A) = ℓ for lines L ̸⊂ U

and A ∈ F
(q)

U,ℓ. □
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We now prove our main result of this section, encompassing Theorem 1.4 from
Section 1.

Theorem 4.11. Let k be a field in which |G| is invertible. Then x and x (q) act
diagonalizably on kFn and kF (q)

n , and for each j = 0, 1, 2, . . . , n, their eigenspaces
carry representations with the same Frobenius map images

ch ker
(
(x − j)|kFn

)
=

n∑
ℓ= j

h(n−ℓ, j) · dℓ− j = chq ker
(
(x (q)

− [ j]q)|kF (q)
n

)
.

In other words, one has kG-module isomorphisms

ker
(
(x − j)|kFn

)
∼=

n⊕
ℓ= j

1Sn−ℓ
∗ 1S j ∗Dℓ− j ,

ker
(
(x (q)

− [ j]q)|kF (q)
n

)
∼=

n⊕
ℓ= j

1GLn−ℓ
∗ 1GL j ∗D

(q)

ℓ− j .

Proof. The filtrations in (17) show that

(19)
ker

(
(x − j)|kFn

)
∼=

n⊕
ℓ=0

ker
(
(x − j)|kFn,≥ℓ/kFn,≥ℓ+1

)
,

ker
(
(x (q)

− [ j]q)|kF (q)
n

)
∼=

n⊕
ℓ=0

ker
(
(x (q)

− [ j]q)|kF (q)

n,≥ℓ/kF (q)

n,≥ℓ+1

)
.

It remains to analyze each summand on the right.
We have seen that (18) is also a direct sum decomposition as kM-modules for

M = kFn, kF (q). For G =Sn, GLn , the action of kM and kG on both sides in (18)
commute.

In the case of M = Fn , this leads to the following equalities and isomorphisms
of kSn-modules, explained below. Let U0 := {1, 2, . . . , ℓ}. Then:

ker
(
(x − j)|kFn,≥ℓ/kFn,≥ℓ+1

) (i)
=

⊕
U⊆{1,2,...,n}:

|U |=ℓ

ker((x − j)|kFU,ℓ
)

(ii)
=

⊕
U⊆{1,2,...,n}:

|U |=ℓ

ker((xU − j)|kFU,ℓ
)

(iii)
∼= 1Sn−ℓ

∗ ker
(
(xU0 − j)|kFℓ,ℓ

)
(iv)
∼=

{
0, if ℓ < j
1Sn−ℓ

∗ 1S j ∗Dℓ− j , if ℓ ≥ j.

• Equality (i) is the restriction of the kSn-module isomorphism (18) to j-
eigenspaces for x .

• Equality (ii) arises because x acts the same as xU on FU,ℓ, by Proposition 4.10.
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• Isomorphism (iii) arises because the summands indexed by U , with |U |= ℓ, are
permuted transitively by Sn with the typical summand for U0 = {1, 2, . . . , ℓ}

stabilized by the subgroup SU0
∼= Sℓ. Thus, this is an induced kSn-module,

e.g., by applying [Webb 2016, Proposition 4.3.2].

• Isomorphism (iv) comes from applying Theorem 4.2 to kFℓ.

The argument for M = F
(q)
n is similar. In particular, setting U0 to be the Fq -span

of the first ℓ standard basis vectors e1, e2, . . . , eℓ in (Fq)n , one has equalities and
isomorphisms of k GLn-modules:

ker
(
(x (q)

− [ j]q)|kF (q)

n,≥ℓ/kF (q)

n,≥ℓ+1

) (i)
=

⊕
U⊆(Fq )n

:

dim(U )=ℓ

ker
(
(x (q)

− [ j]q)|
kF (q)

U,ℓ

)
(ii)
=

⊕
U⊆(Fq )n

:

dim(U )=ℓ

ker
(
(x (q)

U − [ j]q)|
kF (q)

U,ℓ

)
(iii)
∼= 1GLn−ℓ

∗ ker
(
(x (q)

U0
− [ j]q)|kF (q)

ℓ,ℓ

)
(iv)
∼=

{
0, if ℓ < j,
1GLn−ℓ

∗ 1GL j ∗D
(q)

ℓ− j , if ℓ ≥ j,

where isomorphisms (i), (ii), and (iv) are justified exactly as in the proof of q = 1
above. For isomorphism (iii), note (as in the proof of Lemma 4.8) that GLn acts
transitively on ℓ-subspaces U , and that U0 has GLn-stabilizer subgroup Pℓ,n−ℓ,, so
that by [Webb 2016, Proposition 4.3.2],⊕

U⊆(Fq )n
:

dim(U )=ℓ

ker
(
(x (q)

U − [ j]q)|
kF (q)

U,ℓ

)

has the GLn-representation induced from the Pℓ,n−ℓ-action on ker
(
(x (q)

U0
−[ j]q)|kF (q)

ℓ,ℓ

)
.

Since every A ∈ kF (q)

U0,ℓ
∼= kF (q)

ℓ,ℓ is a flag (A1, . . . , Aℓ), with Aℓ = U0, it follows
that this Pℓ,n−ℓ-action is inflated through the surjection Pℓ,n−ℓ ↠ GLℓ × GLn−ℓ,
where the action of GLℓ is as ker

(
(x (q)

U0
− [ j]q)|kF (q)

ℓ,ℓ

)
and the action of GLn−ℓ is

trivial. □

Example 4.12. We illustrate Theorem 1.4 by computing the Frobenius map image
for each j-eigenspace of x on kFn , or equivalently the q-Frobenius map image for
each [ j]q-eigenspace of x (q) on kF (q)

n . For n = 2, 3, Tables 2 and 3 show these
symmetric functions in their j-th row, decomposed into columns labeled by ℓ,
indexing each filtration factor from (18) that contributes a term.
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ℓ = 0 ℓ = 1 ℓ = 2

h2 · d0 h1 · d1 h0 · d2
j = 0 = h2 · s( ) = h1 · 0 = h0 · s(1,1)

= s(2) = 0 = s(1,1)

h(1,1) · d0 h1 · d1
j = 1 = h(1,1) · s( ) = h1 · 0

= s(1,1) + s(2) = 0

h2 · d0
j = 2 = h2 · s( )

= s(2)

Table 2. Frobenius map images for eigenspaces of x and x (q)

on kF2 and kF (q)

2 .

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3
h3 · d0 h2 · d1 h1 · d2 h0 · d3

j = 0 = h3 · s( ) = h2 · 0 = h1 · s(1,1) = h0 · s(2,1)

= s(3) = 0 = s(2,1) + s(1,1,1) = s(2,1)

h(2,1) · d0 h(1,1) · d1 h1 · d2
j = 1 = h(2,1) · s( ) = h(1,1) · 0 = h1 · s(1,1)

= s(3) + s(2,1) = 0 = s(2,1) + s(1,1,1)

h(2,1) · d0 h2 · d1
j = 2 = h(2,1) · s( ) = h2 · 0

= s(3) + s(2,1) = 0

h3 · d0
j = 3 = h3 · s( )

= s(3)

Table 3. Frobenius map images for eigenspaces of x and x (q) on
kF3 and kF (q)

3 .
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IRREDUNDANT BASES FOR FINITE GROUPS OF LIE TYPE

NICK GILL AND MARTIN W. LIEBECK

We prove that the maximum length of an irredundant base for a primitive
action of a finite simple group of Lie type is bounded above by a function
which is a polynomial in the rank of the group. We give examples to show
that this type of upper bound is best possible.

1. Introduction

1A. Main results. Let G be a group acting on a set �. Let ℓ be a nonnegative
integer and let 3 = [ω1, . . . , ωℓ] be a sequence of points ω1, . . . , ωℓ drawn from �;
we write G(3) or Gω1,ω2,...,ωℓ

for the pointwise stabilizer. If ℓ = 0, so 3 is empty,
then we set G(3) = G.

The sequence 3 is called a base if G(3) = {1}; the sequence 3 is called irredun-
dant if

Gω1,...,ωk−1 ⪈ Gω1,...,ωk−1,ωk

for all k = 1, . . . , ℓ. The size of the longest possible irredundant base is denoted
I(G, �).

The main result of this paper shows that for any primitive action of a simple
group of Lie type, the size of an irredundant base is bounded by a polynomial
function of the rank of the group.

Theorem 1. If G is a simple group of Lie type of rank r acting primitively on
a set �, then I(G, �) ≤ Cr8, where C is an absolute constant. This holds with
C = 174.

The degree 8 of the polynomial bound is probably far from sharp but, as discussed
in Section 1B, there are examples showing that this degree must be at least 2. Also
there is no general complementary lower bound for I(G, �) that grows with r , as
shown by Example 4.5.

An upper bound on I(G, �) implies an upper bound on a host of other statistics
associated with the action of G on �. Consider, again, the sequence 3, defined
above. We call 3 a minimal base if it is a base and, furthermore, no proper

MSC2020: primary 20B05, 20D06; secondary 20G40.
Keywords: irredundant base, group of Lie type.

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC
BY). Open Access made possible by subscribing institutions via Subscribe to Open.

http://msp.org/pjm/
https://doi.org/10.2140/pjm.2023.322-2
https://doi.org/10.2140/pjm.2023.322.281
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://msp.org/s2o/


282 NICK GILL AND MARTIN W. LIEBECK

subsequence of 3 is a base. We denote the minimum size of a minimal base
b(G, �), and the maximum size of a minimal base B(G, �).

We say that 3 is independent if, for all k = 1, . . . , ℓ, we have G(3) ̸= G(3\ωk).
We define the height of G to be the maximum size of an independent sequence, and
we denote this quantity H(G, �).

The last statistic of interest to us is the relational complexity of the action of G
on �, denoted RC(G, �). The definition of this is slightly involved and can be
found in [8] where it is given the name arity.

It is easy to verify the inequalities [10]

(1-1) b(G, �) ≤ B(G, �) ≤ H(G, �) ≤ I(G, �).

Less obvious, but still rather elementary is the inequality [10]

(1-2) RC(G, �) ≤ H(G, �)+ 1.

Theorem 1 and inequalities (1-1) and (1-2) immediately yield the following
corollary.

Corollary 2. If G is simple of Lie type of rank r acting primitively on a set �, then
each of b(G, �), B(G, �), H(G, �) and I(G, �) is at most Cr8 while RC(G, �)

is less than Cr8
+ 1, where C is as in Theorem 1.

We can also deduce an upper bound for primitive actions of almost simple groups:

Corollary 3. Let G be an almost simple group, with socle a simple group of Lie
type of rank r over Fq , where q = p f (p prime). If G acts primitively on a set �,
then

I(G, �) ≤ 177r8
+ π( f ),

where π( f ) is the number of primes, counted with multiplicity, dividing the inte-
ger f .

Example 5.1 shows that the term π( f ) in the upper bound cannot be avoided.
Our main tool for proving Theorem 1 is the following result on maximal sub-

groups of finite groups of Lie type. In the statement, we let G(q)= (G F )′ be a simple
group of Lie type over Fq , where G is the corresponding simple adjoint algebraic
group over Fq and F is a Frobenius endomorphism. Let p be the characteristic of Fq .
For a rational representation ρ : G 7→ GLn(Fq), and a closed subgroup H of G,
we define degρ(H) to be the degree of the image ρ(H) as a subvariety of GLn(Fq).
We give some basic definitions and results about degree in Section 2. Also denote
by H 0 the connected component of H .

Theorem 4. Let G(q) = (G F )′ be a finite simple group of Lie type as above, and
let G be an almost simple group with socle G(q). Let M be a maximal subgroup
of G, and set M0 = M ∩ G(q). Let d = dim G. Then one of the following holds:
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(1) M0 = M F
∩ G(q), where M is a closed F-stable subgroup of G of positive

dimension; moreover,

(a) |M : M0
| ≤ |W (G)|, the order of the Weyl group of G, and

(b) excluding the cases where (G, M, p) = (Cr , Dr , 2) or (C3, G2, 2), if we
let ad : G 7→ GL(L(G)) be the adjoint representation, then

degad(M) ≤ |W (G)| degad(G) ≤ |W (G)| 2d2
.

(2) M0 = G(q0), a subgroup of the same type as G (possibly twisted) over a
subfield Fq0 of Fq .

(3) |M0| ≤ 2d2
.

1B. Context for, and possible improvements to, Theorem 1. We think of Theorem 1
as being a version of the Cameron–Kantor conjecture for irredundant bases. The
Cameron–Kantor conjecture, which was stated in [6; 7] and proved in [20], asserts
the existence of an absolute upper bound for b(G, �) for the nonstandard actions
of the almost simple groups. (A standard action of an almost simple group G with
socle S is a transitive action where either S = An and the action is on subsets or
uniform partitions of {1, . . . , n}, or G is classical and the action is a subspace action.)

In Section 6 we explain exactly how Theorem 1 is connected to the Cameron–
Kantor conjecture and we give a number of examples that clarify why Theorem 1
is, in a certain sense, the best possible “Cameron–Kantor-like statement” that can
be made for irredundant bases. In particular, we give examples to show that:

(i) Even for nonstandard actions, the bound Cr8 in Theorem 1 really needs to
depend on r and is not absolute.

(ii) Theorem 1 only holds for primitive actions of simple groups of Lie type – it
does not extend to actions of almost simple groups in general (although we do
prove Corollary 3 for these).

(iii) Likewise, Theorem 1 does not extend to transitive actions of simple groups of
Lie type in general.

Although (i) implies that the upper bound given in Theorem 1 is necessarily a
function of r , it is undoubtedly true that the particular function of r we have given —
174r8 — can be improved. A construction of Freedman, Kelsey and Roney-Dougal
(personal communication) implies that any polynomial upper bound must have
degree at least 2; our guess is that an upper bound which is quadratic in r may hold
in general.

A heuristic supporting this guess follows from the fact that I(G, �) ≤ ℓ(G),
where ℓ(G) is the maximum length of a subgroup chain in the simple group of
Lie type G. Writing p for the field characteristic, U for a Sylow p-subgroup
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of G, and 8+ for the associated set of positive roots, we know that there exist
constants c1, c2 such that

c1r2 logp q ≤ |8+
| logp q = ℓ(U ) < ℓ(G) < log2 |G| ≤ c2r2 log2 q.

More information about ℓ(G) can be found in [23].
Theorem 1 is the second recent success in trying to extend well-known results

about bases to statements about irredundant bases; the first was achieved by Kelsey
and Roney-Dougal [12] extending a result of Liebeck [14].

1C. Proofs and the structure of the paper. In Section 2 we present a number of
definitions and results pertaining to the degree of an affine variety; these include, in
particular, a statement of (one version of) Bézout’s theorem on the degree of the
intersection of a number of algebraic varieties.

In Section 3 we prove Theorem 4. The proof uses various results from the
literature on the subgroup structure of algebraic groups [15; 18].

In Section 4 we prove Theorem 1; the proof makes use of both Theorem 4 and
Bézout’s theorem. Corollary 3 is deduced in Section 5.

The comparison of Theorem 1 with the Cameron-Kantor conjecture, and the
relevant examples mentioned above, are given in Section 6.

2. Degree of an affine variety

Our proof of Theorem 1 is carried out by combining Theorem 4 with Bézout’s
theorem on the degree of the intersection of a number of algebraic varieties. We
need a version of Bézout’s theorem that holds for affine varieties and is due to
Heintz [11].

In what follows we consider subsets of some affine space, An , over an alge-
braically closed field k. A set X in An is called locally closed if X = V ∩ W , where
V is open and W is closed (in the Zariski topology). A set X is called constructible
if it is a finite disjoint union of locally closed sets. Note that the intersection of a
finite number of constructible sets is constructible. Note too that any variety in An

is constructible. From here on X is a constructible set.

Definition 2.1 [11, Definition 1 and Remark 2]. If X is an irreducible variety of
dimension r in An , then the degree of X , written deg(X), is defined to be

sup{|E∩X | : E is an (n − r)-dimensional affine subspace of An with E ∩ X finite}.

If X is a constructible set and C is the set of irreducible components of the closure
of X , then we define

(2-1) deg(X) =
∑

C∈C
deg(C).
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Note that if X is an irreducible variety of dimension 0, then we have deg(X) = 1.
Thus, if X is any variety of dimension 0, irreducible or not, deg(X) = |X |.

Now the main result that we need concerning degree is the following version of
Bézout’s theorem.

Proposition 2.2 [11, Theorem 1]. Let X and Y be constructible sets in An . Then

deg(X ∩ Y ) ≤ deg(X) · deg(Y ).

This proposition obviously generalizes to the intersection of more than two
varieties: If X1, X2, . . . , Xk are constructible sets in An , then

deg(X1 ∩ X2 ∩ · · · ∩ Xk) ≤ deg(X1) · deg(X2) · · · deg(Xk).

(We are implicitly using the fact that the intersection of two constructible sets is
constructible.)

A useful corollary of Proposition 2.2 is the following fact connecting the degree
of an affine variety to the degree of its defining polynomials. We make use of the
fact, noted by Heintz [11, p. 247], that the degree of a hypersurface in An is equal
to the degree of its defining polynomial.

Lemma 2.3. Suppose that an affine variety X in An is defined by polynomials
f1, . . . , fr of degree at most e. Then

deg(X) ≤ er .

Proof. By definition X = V ( f1, . . . , fr ) =
⋂r

i=1V ( fi ) where, for i = 1, . . . , r ,
V ( fi ) is the hypersurface defined by the polynomial fi . We noted that deg(V ( fi ))=

deg( fi ), and hence Proposition 2.2 implies that

deg(X) ≤ deg(V ( f1)) · · · deg(V ( fr )) = deg( f1) · · · deg( fr ) ≤ er . □

As mentioned in the introduction, if G is an affine algebraic group over an
algebraically closed field k, then for a rational representation ρ : G 7→ GLn(k), and
a closed subgroup H of G, we define degρ(H) to be the degree of the image ρ(H)

as a subvariety of GLn(k). From (2-1), we have

(2-2) degρ(H) = |H : H 0
| degρ(H 0) ≥ degρ(H 0).

3. Proof of Theorem 4

As in Theorem 4, let G(q) = (G F )′ be a simple group of Lie type over Fq , where
G is a simple algebraic group over K = Fq , and let G be an almost simple group
with socle G(q). Let M be a maximal subgroup of G, and set M0 = M ∩ G(q).
Let d = dim G and let p be the characteristic of Fq . Denote by Lie(p) the set of
finite simple groups of Lie type over fields of characteristic p.
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Suppose first that G(q) is a classical group, so that G is the corresponding
classical algebraic group. Let V be the natural module for G, and let n = dim V .
We shall apply [15, Theorems 1′ and 2]. We postpone consideration of the cases
where G(q) = PSLn(q), Sp4(2

e) or P�+

8 (q) and the group G contains an element
in the coset of a graph automorphism (a triality graph automorphism in the last
case). Assuming that these cases do not pertain, in [15], six classes Ci of closed
subgroups of G are defined, and it is proved that one of the following holds:

(i) M0 = M F
∩ G(q) for some F-stable member M ∈ C :=

⋃6
1Ci .

(ii) M0 = G(q0), a subgroup of the same type as G(q) (possibly twisted) over a
subfield Fq0 of Fq .

(iii) M0 is almost simple, and F∗(M0) is irreducible on V (and not of the same
type as G(q)).

In case (ii), conclusion (2) of Theorem 4 holds.
Consider now case (i). The only finite members of C are:

• Subgroups of type O1(K ) wr Sn = 2n.Sn in On(K ) with p ̸= 2 (these lie in
the class C2).

• Extraspecial-type subgroups r2m . Sp2m(r) (r prime, n = rm) or 22m .O±

2m(2)

(n = 2m) (these lie in the class C5).

A simple check shows that these subgroups have order less than 2d2
, as required

for conclusion (3) of Theorem 4.
All the other members of C are infinite, in which case

(3-1) M0 = M F
∩ G(q),

where M is a maximal closed F-stable subgroup of G of positive dimension, as
in (1) of Theorem 4.

Now consider case (iii) above. If F∗(M) ̸∈ Lie(p), then an unpublished man-
uscript of Weisfeiler [24], subsequently improved and developed in [9], shows
that |M | < n4(n + 2)!, which is less than 2d2

, as in (3) of Theorem 4. And if
F∗(M) ∈ Lie(p), then [22, Theorem 1] shows that (3-1) holds.

To complete the proof of Theorem 4 in the case where G is classical (apart
from the postponed cases), it remains to prove the bounds for |M : M0

|, degad(M)

and degad(G) for M in (1) of Theorem 4. The bound |M : M0
| ≤ |W (G)| follows

by simply inspecting the structure of the members of C; equality occurs when
M = NG(T ), where T is a maximal torus (these subgroups are in class C2 for
SL(V ) and SO(V )).

To establish the degree bounds, we first prove:
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Claim: Let M0 = M F
∩ G(q) be as in (3-1). Then with two exceptions, M0 acts

reducibly on some G-composition factor of the adjoint module L(G). The two
exceptions are (G, M, p) = (Spn, SOn, 2) or (Sp6, G2, 2).

Proof of Claim. The composition factors of L(G) are given in [16, Proposition 1.10].
Also L(M) ⊆ L(G). First consider M0 = M F

∩ G(q) as in (i). Inspecting M0

for M ∈ C, we see that L(M) maps to a proper subspace of some composition factor
of L(G), with the exception of (G, M, p)= (Spn, SOn, 2), proving the claim for M0

as in (i). Finally, for M0 as in (iii), the group M0 is simple, and [16, Theorem 4]
shows that the only case where L(M) does not map to a proper subspace of some
composition factor of L(G) is (G, M, p) = (Sp6, G2, 2). This completes the proof
of the Claim.

We now use the Claim to deduce the required degree bounds. Let M, M be as
in (3-1), and exclude the exceptions in the Claim, so that M0 acts reducibly on
some composition factor of L(G). If also M is reducible, then as it is maximal
there is a subspace W of L(G) such that

M = stabG(W ).

This defines M by the polynomials defining G in the adjoint representation, together
with some linear equations, and hence by Lemma 2.3, we have

degad(M) ≤ degad(G).

On the other hand, if M acts irreducibly on every composition factor of L(G), then
by the Claim, there is a composition factor V such that V ↓ M0

=
⊕t

1Vi , where
each Vi is irreducible for M0 and t ≥ 2. Set

M1
=

t⋂
1

stab(Vi ),

so that M0
≤ M1

◁ M . As above we see that degad(M1) ≤ degad(G), and so by the
remarks after Lemma 2.3, we have degad(M) ≤ |M : M1

| degad(G). We have seen
that |M : M0

| ≤ |W (G)|, so it follows that

degad(M) ≤ |W (G)| degad(G),

as required for (1) of Theorem 4. Finally, in the adjoint representation, G is defined
by d2 quadratic polynomials expressing preservation of the Lie bracket on L(G),
so degad(G) ≤ 2d2

. Note that the exceptional cases (Spn, SOn, 2), (Sp6, G2, 2) in
the Claim are also excepted in part (i)(b) of Theorem 4. Hence the proof of the
theorem for G classical is now complete, apart from the postponed cases where
G(q) = PSLn(q), Sp4(2

e) or P�+

8 (q) and G contains an element in the coset of a
graph automorphism.
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Now consider the excluded cases. Suppose first that G(q) = PSLn(q). In this
case, the collection C is extended in [15] to a collection C′, and it is proved that
conclusion (i), (ii) or (iii) above holds, with C′ replacing C. The only subgroups
in C′

\C are stabilizers of pairs {U, W } of subspaces of V such that either U ⊆ W or
V = U ⊕ W . The above proof shows that these subgroups satisfy (1) of Theorem 4.
In the other cases, where G(q) = Sp4(2

e) or P�+

8 (q), the maximal subgroups of G
are listed in [1, Tables 8.14, 8.50]. Inspection of these lists shows that (1), (2) or (3)
of Theorem 4 holds (using the same argument as above to bound the degree of M).
This completes the proof of Theorem 4 for G(q) a classical group.

Suppose finally that G(q) is an exceptional group of Lie type. The proof runs
along similar lines. First we use [17, Theorem 8], which gives the possibilities for
the maximal subgroup M . These are:

(i) M0 = M F
∩ G(q), where M is a maximal closed F-stable subgroup of G of

positive dimension.

(ii) M0 = G(q0), a subgroup of the same type as G (possibly twisted) over a
subfield Fq0 of Fq .

(iii) M0 is an “exotic local” subgroup:

33. SL3(3) < F4, 33+3. SL3(3) < E6, 53. SL3(5) < E8 or 25+10. SL5(2) < E8.

(iv) M0 is the “Borovik subgroup” (Alt5 × Alt6).22 < E8.

(v) M0 is almost simple with socle M1, and one of the following holds:

(a) M1 ̸∈ Lie(p): the possibilities for M0 are listed in [17, Theorem 4].

(b) M1 = M(q1) ∈ Lie(p), rank(M1) ≤
1
2 rank(G) satisfying

• q1 ≤ 9,
• M1 = A±

2 (16),
• M1 has rank 1 and q1 ≤ (2, p−1)·t (G), where t (G)=12, 68, 124, 388, 1312
according to G = G2, F4, E6, E7, E8, respectively.

In cases (iii), (iv) and (v) we check that |M0| < 2d2
, as in (3) of Theorem 4; and

case (ii) is (2) of the theorem. Finally, in case (i), the list of possibilities for M is
given in [17, Theorem 8]. We can check that |M : M0

| ≤ |W (G)|, and also that
M0 acts reducibly on some G-composition factor of L(G) (see also [19] for this).
Now we can argue exactly as in the classical case to obtain the required bounds on
degad(G) for M for (1) of Theorem 4. This completes the proof of Theorem 4. □

4. Proof of Theorem 1

Let G be a simple group of Lie type of rank r over Fq with G = (G F )′, where G is the
corresponding simple algebraic group over Fq and F is a Frobenius endomorphism.
Let d = dim G and p = char(Fq).
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We write G1 for a maximal subgroup of G. We consider the action of G on �,
the set of cosets of G1. We suppose that we have a stabilizer chain,

(4-1) G > G1 > G2 > · · · > Gk = {1}

where Gi = Gi−1 ∩ Ggi
1 for some gi ∈ G (i = 1, . . . , k).

Theorem 4 gives three possibilities for G1.

4A. Case 1 of Theorem 4. In this case we have G1 = G1
F

∩ G where G1 is a
closed F-stable subgroup of G of positive dimension. We start by proving three
lemmas where, in fact, the maximality assumption for G1 is not necessary.

Set ρ to be a rational representation of G and let c be an upper bound for
degρ(G1); note that, by (2-2), we also have |G1 : (G1)

0
| ≤ c.

For each i = 2, . . . , k, we define Gi = Gi−1 ∩ G1
gi where gi is the element of

G mentioned above. Thus we have a chain of subgroups

(4-2) G > G1 ≥ G2 ≥ · · · ≥ Gk .

Lemma 4.1. The subgroups G1, . . . , Gk in (4-1) satisfy Gi = Gi
F

∩ G for each
i = 1, . . . , k.

Proof. We proceed by induction on i . The result is true for i = 1. We assume
the result is true for i and prove it for i + 1. Note that Gi+1 = Gi ∩ Ggi+1

1 and
Gi+1 = Gi ∩ G1

gi+1 .
Let x ∈ Gi+1

F
∩ G. This is equivalent to

x ∈ (Gi ∩ G1
gi+1)F

∩ G ⇔ x ∈ (Gi
F

∩ (G1
gi+1)F ) ∩ G

⇔ x ∈ (Gi
F

∩ G) ∩ ((G1
gi+1)F

∩ G)

⇔ x ∈ (Gi
F

∩ G) ∩ ((G1
F )gi+1 ∩ G)

⇔ x ∈ (Gi
F

∩ G) ∩ (G1
F

∩ G)gi+1

⇔ x ∈ Gi ∩ Ggi+1
1 = Gi+1. □

The lemma implies, in particular, that all of the containments in (4-2) are proper.
Let d1 = dim(G1). Then of course d1 < d = dim G. Note that G1 is the largest
group in the chain (4-2) of dimension d1.

Now let k1, . . . , ks be the points in the chain (4-2) where the dimension drops:
that is, k1 = 1, and for each i ≥ 2, Gki is the largest group in the chain such that
dim Gki < dim Gki −1. Obviously s ≤ d1 + 1 ≤ d .

Lemma 4.2. We have degρ Gki ≤ ci .

Proof. We proceed by induction on i . For i = 1, Gk1 = G1 and this has degree at
most c. We assume the result is true for i and prove it for i + 1. In particular, this
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means that Gki has degree at most ci . Consider the chain

Gki > Gki +1 > Gki +2 > · · · > Gki+1 .

Notice that, all but the last listed group have the same dimension, and so have the
same identity component; what is more the number of components decreases as we
descend the chain from Gki to Gki+1−1. Thus (2-2) implies that

degρ(Gki+1−1) ≤ degρ(Gki ) ≤ ci .

Now Gki+1 is the intersection of Gki+1−1 and a conjugate of G1. The former has
degree at most ci , and the latter has degree at most c. Hence Proposition 2.2 implies
that degρ(Gki+1) ≤ ci+1, as required. □

Lemma 4.3. The length k of the stabilizer chain (4-1) satisfies

k ≤ d +
1
2 d(d + 1) log2 c.

Proof. The previous lemma asserts that the degree of Gki is at most ci and so we
also know that |Gki : (Gki )

0
| ≤ ci . Now, for each i = 1, . . . , s, we know that

Gki > Gki +1 > Gki +2 > · · · > Gki+1−1 ≥ (Gki )
0,

where Gki
0 is the identity component of all of the groups in this chain. Since

|Gki : (Gki )
0
| ≤ ci , the length of the chain

Gki > Gki +1 > Gki +2 > · · · > Gki+1−1

is at most log2(c
i ) = i log2 c; in particular, for i = 1, . . . , s, the length of the chain

from Gki to Gki+1 is at most i log2 c + 1. There are two further parts of the chain
that we have not considered.

First, at the top of the chain, the containment G > G1 = Gk1 adds 1 to the total
length. Second, at the bottom of the chain, Gks is of dimension 0 and degree at
most cs ; in other words Gks has cardinality at most cs and so there at most log2(c

s)

further containments at the end of the chain from Gks to {1}.
Our total chain length is, then, at most

1 +

s−1∑
i=1

(i log2 c + 1) + s log2 c = s +
1
2 s(s + 1) log2 c.

Since s ≤ d , the conclusion follows. □

We are ready to complete the proof of Theorem 1 in this case. We reinstate the
maximality supposition on G1. We consider the adjoint representation, ad, of G
and we set

c = |W (G)| · 2d2
.
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For the moment we exclude the exceptional cases (G, G1, p) = (Cn, Dn, 2) or
(C3, G2, 2) in Theorem 4(1)(b); then, by Theorem 4(1), c is an upper bound for
degad(G1) and also, by (2-2), for |G1 : (G1)

0
|.

Recall that r is the rank of G, and that d = dim G, so that d ≤ 4r2. Also

c = |W (G)| · 2d2
≤ 2r2

+d2
≤ 2r2

+16r4
.

Hence Lemma 4.3 gives

k ≤ 4r2
+

1
2(4r2)(4r2

+ 1)(r2
+ 16r4).

The right-hand side is at most Cr8 with C = 174, as required for Theorem 1.
It remains to deal with the excluded cases (G, G1, p)= (Cn, Dn,2) or (C3,G2,2).

In the former case [10, Lemma 6.11] implies that I(G, �)≤2r+1 and the conclusion
holds. In the latter case the action of G = C3(q) on � = (C3(q) : G2(q)) is
contained in (D4(q) : (D4(q) : B3(q)), since there is a factorization D4(q) = AB,
where A ∼= B ∼= B3(q) and A ∩ B ∼= G2(q) (see [21, p. 105]). For this action of
X := D4(q), we have I(X, �) ≤ 15 by [12, Theorem 3.1]. Hence I(G, �) ≤ 15.

This completes the proof of Theorem 1. □

4B. Case 2 of Theorem 4. In this case we have G1 = G(q0), a subgroup of the
same type as G (possibly twisted) over a subfield Fq0 of Fq . Writing G = (G F )′

as before, there is a Frobenius endomorphism F0 of G such that G1 = G F0 ∩ G,
where Fr

0 = F for some integer r ≥ 2.

Lemma 4.4. For x ∈ G we have

G1 ∩ Gx
1 = CG1(x−1x F0) = (CG(x−1x F0))F0 .

Note that the group CG(x−1x F0) may not be F0-stable.

Proof. We have

g ∈ G1 ∩ Gx
1 ⇔ g, gx−1

∈ G1 ⇔ gF0 = g and (xgx−1)F0 = xgx−1

⇔ gF0 = g and x F0 gx−F0 = xsx−1

⇔ g ∈ CG1(x−1x F0). □

Recall that we have a stabilizer chain G > G1 > G2 > · · · > Gk = 1, where
Gi = Gi−1 ∩ Ggi

1 for each i , and gi ∈ G. Define

G1 = G, G2 = CG(g−1
2 gF0

2 ),

and for 2 ≤ j ≤ k,

G j =

j⋂
i=2

CG(g−1
i gF0

i ).
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Then by Lemma 4.4, we have G j = G j
F0 for 1 ≤ j ≤ k, and so

G = G1 > G2 > · · · > Gk .

Given x ∈ G, we of course have CG(x) = {g ∈ G : gx = xg}, so this centralizer
consists of solutions of a system of linear equations in the entries of g, and hence
degad CG(x) ≤ degad G. Now we can bound the length k of the chain exactly as in
Case 1, and the proof is complete. □

4C. Case 3 of Theorem 4. This case is a triviality: clearly if |G1| ≤ 2d2
, then a

stabilizer chain has length at most d2. This observation completes the proof of
Theorem 1. □

Example 4.5. Here is an example that shows there is no general complementary
lower bound to go with the upper bound given in Theorem 1. Let G = SLr (2)

acting on �, the set of cosets of H where H is the normalizer of a Singer cycle,
with r an odd prime. Then H ∼= C2r −1 ⋊ Cr and H is maximal in G for r ≥ 13
(see [13, Table 3.5A]). Since distinct conjugates of the Singer cycle C2r −1 intersect
trivially, it follows that for this action we have I(G, �) ≤ 3. In particular, I(G, �)

does not necessarily grow as the rank increases, even when G is simple and the
action is primitive.

Remark 4.6. It is possible to improve the polynomial bound of Theorem 1 in
particular cases. For example, consider parabolic actions of G = PSLn(q), i.e.,
transitive actions for which the stabilizer G1 is a parabolic subgroup. Set G =

SLn(Fq) and let ρ be the usual n-dimensional rational representation. In this
situation, parabolic subgroups G1 satisfy degρ(G1) ≤ n and so Lemma 4.3 gives
I(G, �) ≤ n4 log2 n.

5. Almost simple groups: proof of Corollary 3

Let G be an almost simple group, with socle S = G(q), a simple group of Lie type
of rank r over Fq , where q = p f (p prime). Let G act primitively on a set �, with
point-stabilizer G1, and let M1 = G1∩S. Note that G = G1S, and so G1/M1 ∼= G/S,
a subgroup of Out(S).

Now let G > G1 > G2 > · · ·> Gk ={1} be a stabilizer chain, where Gi = Gα1···αi

for 1 ≤ i ≤ k. Define Mi = Gi ∩ S. We obtain two chains:

S > M1 ≥ M2 ≥ · · · ≥ Mk = {1},

G/S = G1/M1 ≥ G2/M2 ≥ · · · ≥ Gk/Mk = {1}.

Observe that, for i = 1, . . . , k − 1, if Mi = Mi+1, then Gi/Mi > Gi+1/Mi+1. By
[13, Tables 5.1A, 5.1B], the order of Out(S) divides k f , for some integer k ≤ 6r ,
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and hence a proper subgroup chain in G/S has length at most log2(6r) + π( f ).
Now define

I = {i : 1 ≤ i ≤ k − 1 and Mi > Mi+1}

and write I = {i1, . . . , iℓ−1} where i j < i j+1 for j = 1, . . . , ℓ − 2. Setting iℓ = k
we have, firstly, that

(5-1) ℓ ≥ k − log2(6r) − π( f )

and, secondly, that

(5-2) S > Mi1 > Mi2 > · · · > Miℓ = {1}.

Note that i1 = 1, and (5-2) is the stabilizer chain S > Sα1 > Sα1αi2
> · · · for the

action of S on �.
Now Theorem 4 tells us that Sα1 satisfies (1), (2) or (3) of the conclusion of

that theorem. Hence, arguing exactly as in the proof of Theorem 1 we obtain that
ℓ ≤ 174r8. Combining this bound with (5-1) yields k ≤ 174r8

+ log2(6r)+π( f ),
which is less than 177r8

+ π( f ). This completes the proof of Corollary 3. □

Example 5.1. Here is an example that shows that the term π( f ) in the upper bound
in Corollary 3 cannot be avoided.

Let G = P0L2(q) with q = p f , and consider the action of G on the set of
1-subspaces of V = (Fq)2. We claim that I(G, �) = 3+π( f ). To see this, write the
prime factorization of f as f = r1r2 · · · rℓ where ℓ = π( f ), write {e1, e2} for the
natural basis of V over Fq , and consider the stabilizer chain obtained by successively
stabilizing the following 1-spaces (in order):

⟨e1⟩, ⟨e2⟩, ⟨e1 + e2⟩, ⟨e1 + ζ1e2⟩, ⟨e1 + ζ2e2⟩, . . . , ⟨e1 + ζℓe2⟩,

where, for i = 1, 2, . . . , ℓ, ζi is a primitive element of Fpr1r2···ri . This stabilizer chain
establishes that I(G, �) ≥ 3 + π( f ); on the other hand, the 3-transitivity of the
action of G implies that the stabilizer of any 3 distinct points is isomorphic to C f

and this implies that I(G, �) ≤ 3 + π( f ).

It seems possible, however, that one could do better for B(G, �) and/or H(G, �).
In the proof of Lemma 6.3 below we shall show that there exists a primitive action of
G = P0L2(q) for which B(G, �) ≥ πd( f ), where πd( f ) is the number of distinct
primes dividing the integer f .

Conjecture 5.2. There exists a function g : Z+
→ Z+ such that if G is an almost

simple group of Lie type of rank r over a field of order p f acting primitively on a
set �, then

B(G, �) ≤ H(G, �) < g(r) + πd( f ),

where πd( f ) is the number of distinct primes dividing the integer f .
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6. Theorem 1 and the Cameron–Kantor conjecture

The Cameron–Kantor conjecture (now a theorem due to Liebeck and Shalev [20])
asserts the following:

There exists a constant c > 0 such that if G is an almost simple primitive
nonstandard permutation group on a set �, then b(G, �) ≤ c.

(A standard action of an almost simple group G with socle S is a transitive action
where either S = An and the action is on subsets or uniform partitions of {1, . . . , n},
or G is classical and the action is a subspace action; see [2] for more detail.) This
statement is now known to be true with c = 7, by [2; 3; 4; 5].

Colva Roney-Dougal asked us whether a statement like the Cameron–Kantor
conjecture might be true for any of the statistics B(G, �), H(G, �) or I(G, �)

and Theorem 1 was our answer to this question. One naturally wonders, though,
whether it is possible to do better — to investigate this, given (1-1), the first question
one should ask is whether a stronger statement can be proved for B(G, �) (since
any such statement for H(G, �) or I(G, �) is necessarily true for B(G, �)). To
investigate this we need to clarify some things.

Primitivity and transitivity. Suppose that G is a transitive permutation group on �

and identify � with (G : H) where H is the stabilizer of a point. Now let F ≤ H
and let 0 = (G : F). Then it is true that b(G, 0) ≤ b(G, �) and hence, in particular,
the Cameron–Kantor conjecture gives information about all transitive almost simple
permutation groups G for which a point-stabilizer is a subgroup of a maximal
subgroup that is a point stabilizer for a nonstandard primitive action.

Things are more complicated for us because it is not necessarily true that
B(G, 0) ≤ B(G, �), that H(G, 0) ≤ H(G, �) or that I(G, 0) ≤ I(G, �); the
examples below demonstrate this. Hence in investigating how to extend the state-
ment of the Cameron–Kantor conjecture we need to distinguish between statements
involving primitive groups and those involving transitive groups.

Rank-dependent constant versus absolute constant. Our investigations will focus
on almost simple groups with socle a group of Lie type. Our first example will
establish that it is not possible to give an absolute upper bound for B(G, �), even for
nonstandard actions. In light of this it is worth clarifying what the Cameron–Kantor
conjecture implies with regard to a rank-dependent upper bound:

For every positive integer r there exists a constant c > 0 such that if G is
an almost simple primitive permutation group on a set �, with socle a
group of Lie type of rank at most r , then b(G, �) ≤ c.

The point we are making here is that, if we allow our upper bound to be rank-
dependent, then we do not need to distinguish between standard and nonstandard
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actions — it is easy enough to establish that the standard actions also satisfy the
given statement. (For the C8 standard actions of Sp2m(q) this follows from [10,
Lemma 6.11]; for the C1 standard actions of the classical groups this follows from
[12, Theorem 3.1].)

Note, finally, that we have not considered the question of Cameron–Kantor-like
statements for irredundant bases of primitive actions of the alternating groups.

6A. Simple, primitive, absolute upper bound. In this subsection we show that the
following possible extension of the Cameron–Kantor conjecture is false:

There exists a constant c > 0 such that if G is a simple primitive nonstan-
dard permutation group on a set �, then B(G, �) ≤ c.

The key point here is that an upper bound on B(G, �) in this setting must depend
on r .

Lemma 6.1. For every n ≥ 13, q ≥ 5, there exists a nonstandard primitive action
(PSLn(q), �) such that B(PSLn(q), �) ≥ n − 1.

Proof. We consider the action of G = SLn(q) acting on the cosets of a C2-maximal
subgroup that is the normalizer of a split torus. For q ≥ 5, n ≥ 13 this induces a
primitive nonstandard action of PSLn(q) (see [13, Table 3.5A]); furthermore this
action of G is equivalent to the action of G on decompositions of V = (Fq)n as a
direct sum of n 1-dimensional subspaces.

Let {e1, . . . , en} be a basis of V over Fq . For i = 1, . . . , n − 1, we define a
decomposition Di of V as

Di = ⟨e1⟩ ⊕ ⟨e2⟩ ⊕ · · ·⊕ ⟨ei−1⟩ ⊕ ⟨ei + ei+1⟩ ⊕ ⟨ei+1⟩ ⊕ ⟨ei+2⟩ ⊕ · · ·⊕ ⟨en⟩.

Suppose, first, that g ∈ G fixes D1, . . . ,Dn−1. This implies that g fixes the
space ⟨en⟩ (since it is the only 1-space appearing in all n − 1 decompositions);
similarly, for j = 1, . . . , n − 1, g fixes the space ⟨e j ⟩ (since it is the only 1-space
appearing in all n − 1 decompositions except for D j ). Thus, for j = 1, . . . , n,
there exists λ j ∈ Fq such that eg

j = λ j e j . But now, for j = 1, . . . , n − 1, the space
⟨e j + e j+1⟩ occurs in decomposition D j and no others, hence this 1-space too is
fixed by g. This implies, finally, that, for j = 1, . . . , n −1, λ j = λ j+1 and so g acts
as a scalar. In particular, the set {D1, . . . ,Dn−1} is a base for the induced action of
PSLn(q).

On the other hand, for j ∈ 1, . . . , n − 1, define

3 j = {D1, . . . ,D j−1,D j+1, . . . ,Dn−1}

and set g j to be an element of G that swaps ⟨e j ⟩ and ⟨en⟩ while fixing ⟨ei ⟩ for
i = 1, . . . , j − 1, j + 1, . . . , n − 1. It is straightforward to check that g fixes all of
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the decompositions in 3 j . We conclude that 3 is a minimal base for this action of
size n − 1. □

In light of this lemma our remaining investigations will focus on almost simple
groups where the socle is a group of Lie type of bounded rank.

6B. Simple, transitive, rank-dependent upper bound. In this subsection we show
that the following possible extension of the Cameron–Kantor conjecture is false:

For every positive integer r there exists a constant c > 0 such that if G is
a simple transitive permutation group on a set �, with socle a group of
Lie type of rank at most r , then B(G, �) ≤ c.

The next lemma does the job:

Lemma 6.2. For every integer c > 1, there exists a transitive action (SL2(2c), �),
such that B(SL2(2c), �) ≥ c.

Proof. Let q = 2c, let G = SL2(q), let U be a Sylow 2-subgroup of G, let H be an
index 2 subgroup of U and let � be the set of right cosets of H in G. Since H =2c−1

it is clear that B(G, �) ≤ I(G, �) ≤ c. We claim that, in fact, B(G, �) = c.
To show this, let B = NG(U ) and let 1 be the set of right cosets of H in B.

Since B(B, 1) ≤ B(G, �) it is sufficient to show that B(B, 1) ≥ c.
Consider U as a c-dimensional vector space over F2. The action of B on 1 is

isomorphic to the action of B on the set of all affine hyperplanes — these are the
usual linear hyperplanes as well as their translates. Since we are working over F2,
each hyperplane has 2 cosets (itself and one other) thus |1| = 2(q − 1).

Observe that if H1 is a linear hyperplane, then the stabilizer of H1 in B is H1

itself (in particular, H1 is a conjugate of H ). Let e1, . . . , ec be the usual vectors in
the natural basis of U (so ei has 0’s in all places except the i-th where the entry
is 1). For i = 1, . . . , c, define

Hi := ⟨e1, . . . , ei−1, ei+1, . . . , ec⟩.

Then H1, . . . , Hc are linear hyperplanes in U hence are elements of 1 and con-
jugates of H . For i = j, . . . , c, define 3 j = {H1, . . . , H j−1, H j+1, . . . , Hc} and
observe that B(3 j ) = ⟨e j ⟩. Thus 3 = {H1, . . . , Hc} is a minimal base of size c. □

6C. Almost simple, primitive, rank-dependent upper bound. Here we show that
the following possible extension of the Cameron–Kantor conjecture is false:

For every positive integer r there exists a constant c > 0 such that if G is
an almost simple primitive permutation group on a set �, with socle a
group of Lie type of rank at most r , then B(G, �) ≤ c.

The next lemma does the job:
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Lemma 6.3. For all c>0, there exists a nonstandard primitive action (P0L2(q), �),
for some q, such that B(P0L2(q), �) > c.

Proof. Let G = 0L2(q) and consider the action on cosets of the normalizer of a
split torus. For q > 11 this induces a primitive nonstandard action of P0L2(q);
furthermore, this action of G is equivalent to the action of G on decompositions of
V = (Fq)2 as a direct sum of two 1-dimensional subspaces. Let q = pd and assume
that d = f1 · · · fk where k ≥ 3 and f1, . . . , fk are distinct primes.

Let {e1, e2} be the natural basis for V over Fq : e1 = (1 0) and e2 = (0 1). We
define decompositions Di for i = 1, . . . , k as

Di : ⟨e1⟩ ⊕ ⟨e1 + ζi e2⟩,

where ζi is a primitive element in Fp fi . To see that D1, . . . ,Dk form an indepen-
dent set we consider the action F = ⟨σ ⟩ < G where σ is the field automorphism
that acts on vectors by raising each entry to the p-th power.

For j ∈ 1, . . . , k, define 3 j = {D1, . . . ,D j−1,D j+1, . . . ,Dk}. The pointwise-
stabilizer of 3 j in F is ⟨σ d/ f j ⟩ and so the pointwise-stabilizers of 3 j are distinct
for j = 1, . . . , k; in particular we obtain that 3 = {D1, . . . ,Dk} is an independent
set of size k.

We claim that, in fact, 3 is a minimal base. To see this, we must prove that the
pointwise-stabilizer of 3 is trivial. Let g ∈ G(3) and write g = σ r x where r is
some positive integer and x ∈ GL2(q); without loss of generality we can assume
that r divides d . It is clear that ⟨e1⟩

g
= ⟨e1⟩, so there exists λ0 ∈ Fq such that

λ0e1 = eg
1 = eσ r x

1 = ex
1 .

Similarly, for i = 1, . . . , k, there exists λi ∈ Fq such that

λi (e1 + ζi e2) = (e1 + ζi e2)
g
= eg

1 + (ζi e2)
g
= ex

1 + ζ σ r

i ex
2 = λ0e1 + ζ

pr

i ex
2 .

Rearranging we obtain that

ex
2 = λiζ

1−pr

i e2 + ζ
−pr

i (λi − λ0) e1.

We conclude that, for distinct i, j ∈ {1, . . . , k} we have

λiζ
1−pr

i = λ jζ
1−pr

j and ζ
−pr

i (λi − λ0) = ζ
−pr

j (λ j − λ0).

The latter equation yields that

λi =

(
ζi

ζ j

)pr

λ j +

(
1 −

(
ζi

ζ j

)pr )
λ0,
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while the former yields that

λi =
ζ

pr
−1

i

ζ
pr −1
j

λ j .

Combining these two identities and rearranging yields(
ζ j/ζi − 1

(ζ j/ζi )pr
− 1

)
λ j = λ0.

If we fix j and choose ℓ, m ∈ {1, . . . , k} such that j , ℓ and m are all distinct, then
we obtain that

ζ j/ζℓ − 1
(ζ j/ζℓ)pr

− 1
=

ζ j/ζm − 1
(ζ j/ζm)pr

− 1

and, rearranging, we have (
ζ j/ζℓ − 1
ζ j/ζm − 1

)pr
−1

= 1.

We claim that the smallest field containing the quantity in parenthesis is either
Fp f j fℓ fm or Fp fℓ fm . To see this, denote this quantity η and suppose that η is contained
in Fp f j fℓ . Rearranging we obtain

ζm =
ζ jζℓη

ζ j − ζℓ + ζℓη
∈ Fp f j fℓ ,

a contradiction. A similar argument allows us to conclude that this quantity is not
contained in Fp f j fm and the claim follows.

We obtain that r is divisible by both fℓ and fm . Repeating this argument we
obtain that r is divisible by all primes f1, . . . , fk and thus g = x . But this implies
that λi = λ j = λ0 for all i, j = 1, . . . , k and g is a scalar, as required.

We conclude that 3 is a minimal base for this action. Since |3| = k, we need
only choose k > c to obtain that B(G, �) ≥ k > c as required. □

6D. Simple, primitive, rank-dependent upper bound. In light of the examples
given in the preceding sections, this is the only setting where a direct extension of
Cameron–Kantor conjecture is possible. As mentioned above, if we allow our upper
bound to be rank-dependent, then we can ignore the distinction between standard
and nonstandard actions, and hence the statement we end up with has the form of
Theorem 1.
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LOCAL EXTERIOR SQUARE AND ASAI L-FUNCTIONS FOR
GL(n) IN ODD CHARACTERISTIC

YEONGSEONG JO

Let F be a nonarchimedean local field of odd characteristic p>0. We consider
local exterior square L-functions L(s, π,∧2), Bump–Friedberg L-functions
L(s, π, BF), and Asai L-functions L(s, π, As) of an irreducible admissi-
ble representation π of GLm(F). In particular, we establish that those L-
functions, via the theory of integral representations, are equal to their corre-
sponding Artin L-functions L

(
s, ∧2(φ(π))

)
, L

(
s+

1
2 , φ(π)

)
L
(
2s, ∧2(φ(π))

)
,

and L
(
s, As(φ(π))

)
of the associated Langlands parameter φ(π) under the

local Langlands correspondence. These are achieved by proving the identity
for irreducible supercuspidal representations, exploiting the local-to-global
argument due to Henniart and Lomelí.

1. Introduction

Let F be a nonarchimedean local field of positive characteristic p ̸= 2. Let π
be an irreducible admissible representation of GLm(F), where m is a positive
integer. The local Langlands correspondence provides a bijection between the set
of equivalence classes of irreducible admissible (complex-valued) representations
of GLm(F) and the set of equivalence classes of m-dimensional Weil–Deligne
representations of the Weil–Deligne group W ′

F of F . Let r denote either the exterior
square representation ∧

2
: GLm(C)→ GLm(m−1)/2(C) or the Asai representation

(the twisted tensor induction) As : GLm(C)→ GLm2(C) (see [Anandavardhanan
and Rajan 2005, §2.1] and [Shankman 2018, §1.2]) of the Langlands dual group
GLm(C) of GLm(F). Let L(s, (r◦φ)(π)), where s ∈C, be the Artin local L-function
defined by Deligne and Langlands [Tate 1979], where φ(π) : W ′

F → GLm(C) is
the Weil–Deligne representation corresponding to π under the local Langlands
correspondence. In this paper, we address that L-factors, in the cases of exterior
square, Bump–Friedberg, and Asai local L-functions, are compatible with the local
Langlands correspondence, and establish a series of equalities of local L-functions:

• Jacquet–Shalika cases, Theorem 3.8:

L(s, π,∧2)= L
(
s,∧2(φ(π))

)
;
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• Bump–Friedberg cases, Theorem 4.6:

L(s, π,BF)= L
(
s +

1
2 , φ(π)

)
L
(
2s,∧2(φ(π))

)
;

• Flicker cases, Theorem 4.7:

L(s, π,As)= L
(
s,As(φ(π))

)
;

where L-factors on the left-hand sides are defined by the theory of integral repre-
sentations in positive characteristic.

In the late 1980s, global zeta integrals for (partial) Asai L-functions for GLm

appeared in the work of Flicker [1988; 1993]. Around that time, Jacquet and
Shalika [1990] and Bump and Friedberg [1990] independently constructed two
different integral representations for an (incomplete) exterior square L-function
associated to a cuspidal automorphic representation on GLm over a global field.
Recently there has been renewed interest in the local theory of Asai and exterior
square L-functions via Rankin–Selberg methods. In characteristic 0, the identities
were shown for Jacquet–Shalika integrals by the author [Jo 2020a], and by Matringe
for Bump–Friedberg integrals [Matringe 2015] and Flicker integrals [Matringe
2009; 2011]. As a matter of fact, these results improve discrete series cases of
Kewat and Raghunathan [2012] for Jacquet–Shalika integrals and of Anandavard-
hanan and Rajan [2005] for Flicker integrals. In the positive characteristic p > 0,
Artin L-factors L

(
s,∧2(φ(π))

)
and L

(
s,As(φ(π))

)
coincide with L(s, π,∧2) and

L(s, π,As), respectively, via the Langlands–Shahidi method by a sequence of work
by Henniart and Lomelí [2011; 2013a; 2013b]. Similar problems have been worked
out by Henniart [2010] in the characteristic zero cases.

The method to prove the matching was developed by Cogdell and Piatetski-
Shapiro [2017] in the framework of local L-functions of pairs of irreducible generic
representations (π1, π2). The computation of local Rankin–Selberg L-functions
boils down to decomposing it as the product of what is called the exceptional L-
functions (in the sense of [Cogdell and Piatetski-Shapiro 2017]) Lex(s, π (k1)

1 ×π (k2)
2 )

for pairs of Bernstein–Zelevinsky’s derivatives (π (k1)
1 , π (k2)

2 ). The “derivative” in
the sense of Bernstein–Zelevinsky π (k) is given by representations of smaller groups
GLm−k(F). The advantage of adapting such derivatives enables us to proceed by
induction on the rank m − k of general linear groups GLm−k(F).

Each pole of exceptional L-functions, which we often refer to as an exceptional
pole, is astonishingly characterized by local distinctness or existence of certain
models. The classification of irreducible generic distinguished representations has
been widely explored in various works. Indeed, topics of the classification are
brought to light for (S2n(F),2)-distinguished representations (Shalika models) in
[Matringe 2017], for Hm(F)-distinguished representation (linear and Friedberg–
Jacquet models) in [Matringe 2015], for GLm(F)-distinguished representations
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(Flicker–Rallis models) in [Matringe 2011], and for (GLm(F), θ)-distinguished
representations (Bump–Ginzburg models) in [Kaplan 2017]. In particular, the
main results are summarized as, so to speak, “the hereditary property of models”
motivated from the classification of irreducible admissible generic representations
of GLm(F) (Whittaker models) due to Rodier [1973, p. 427].

When we combine these two ingredients, the factorization of local L-functions
and the classification of distinguished representations, we obtain major applications:
the inductive relation of local L-functions for irreducible generic representations
π = IndGLm

Q (11 ⊗12 ⊗ · · · ⊗1t) (Corollary 2.14):

(1-1) L(s, π,∧2)=

∏
1≤k≤t

L(s,1k,∧
2)

∏
1≤i< j≤t

L(s,1i ×1j ),

and the weak multiplicativity of γ -factors for parabolically normalized induced
(not necessarily irreducible) representations π = IndGLm

Q (11 ⊗ 12 ⊗ · · · ⊗ 1t)

(Theorem 2.12):

(1-2) γ (s, π,∧2, ψ)∼

∏
1≤k≤t

γ (s,1k,∧
2, ψ)

∏
1≤i< j≤t

γ (s,1i ×1j , ψ),

where ∼ means the equality up to a unit in C[q±s
] and the 1i are discrete series

representations. Building upon (1-1), we can incorporate the Langlands classifi-
cation of irreducible admissible representations in terms of discrete series ones
into the theory of local L-functions. In turn, (1-2) allows us to compute local
L-functions further in accordance with the Bernstein–Zelevinsky classification of
discrete series representations in terms of irreducible supercuspidal ones. As a
consequence, we express all exterior square L-factors for irreducible admissible
representations in terms of L-factors for irreducible supercuspidal ones in a purely
local mean. This comes down to reducing our main questions to all irreducible
supercuspidal representations, which eventually serve as building blocks.

We emphasize that the third identity in the Flicker cases is not new and can be
found in [Anandavardhanan et al. 2021, Appendix A]. However, we discovered
that our technique seems to carry out uniformly to other L-functions for GLm . As
an application of our approach, the main result of [Anandavardhanan et al. 2021]
immediately implies the agreement of local Asai L-factors for irreducible supercus-
pidal representations, which is sufficient to extend it to all irreducible admissible
representations, reflecting on the local Langlands correspondence. At this point,
unlike [Anandavardhanan et al. 2021, Appendix A], additional globalizations are not
required to generalize the equality unconditionally. In the course of following the
direction taken in [Anandavardhanan et al. 2021, Appendix A], we encountered a few
stumbling blocks. In contrast to characteristic 0 cases, we could not find a good way
to adjust the globalization of discrete series representations in [Gan and Lomelí 2018,
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Proposition 8.2] to our circumstance. As seen in several other’s work [Anandavard-
hanan and Rajan 2005; Kewat and Raghunathan 2012; Kable 2004; Yamana 2017],
there might not be a guarantee that the different places v1 and v2 are coprime in order
to conclude that log(qv1)/ log(qv2) is irrational, and this coprimality condition may
prompt an issue in characteristic p>0. We propose to resolve all these difficulties by
globalizing irreducible supercuspidal representations in [Henniart and Lomelí 2011;
2013b, Theorem 3.1] and controlling all but one place in which we are interested.

In practice, we demonstrate the identity sequentially for irreducible supercuspidal
representations and eventually for discrete series representations under the working
hypothesis analogous to Kaplan’s inquiry [2017, Remark 4.18] that (GLm(F), θ)-
distinguished discrete series representations in positive characteristic are self-dual.
Thankfully, we remove the hypothesis by investigating irreducible generic sub-
quotients of principal series representations. We expect to overcome Kaplan’s
issue beyond the principal series cases by reconciling the different definitions
of local symmetric square L-functions possessing their own insights about rep-
resentations. The poles of L(s, π,Sym2) can be determined, by means of the
Rankin–Selberg method, using the occurrence of (GLm(F), θ)-distinguished rep-
resentations [Yamana 2017], whereas the symmetric square L-functions through
the Langlands–Shahidi method L(s, π,Sym2) can be related to the presence of the
self-duality π ≃ π̃ , using the Rankin–Selberg L-factor L(s, π ×π) as a product
of L(s, π,∧2) and L(s, π,Sym2) [Henniart and Lomelí 2011; 2013b]. Taking it
for granted that L(s, π,Sym2) can be factored in terms of exceptional L-factors
for derivatives (see [Jo 2021, Theorem 3.15]), our discourse sheds light on some
impetus toward systematic development of symmetric square L-factors via integral
representations [Yamana 2017] in number theoretic aspects and the classification
of (GLm(F), θ)-distinguished representations over local function fields [Kaplan
2017] in representation theoretic perspectives. We will return to these matters in
the near future.

Finally, it is worth pointing out that the main result of this paper will be used to
prove the claim in the preprint by Chen and Gan [2021, Theorem 1.1], that the exte-
rior square L-function can be equivalently defined by the Langlands–Shahidi method
or the local zeta integrals of Jacquet and Shalika [1990] in positive characteristic.

Let us overview the content of this paper. Section 2A begins with a summary
of the theory of derivatives of Bernstein and Zelevinsky and the basic existence
theorem of Jacquet–Shalika integrals. Section 2B is devoted to classifying all irre-
ducible generic distinguished representations with respect to given closed algebraic
subgroups, especially H2n and S2n , due to Matringe. By combining the factorization
of Section 2A, the classification of Section 2B, and the method of deformations and
specializations, we prove a weak version of multiplicativity of γ -factors and the
inductive relation of L-factors. Using the globalization of irreducible supercuspidal
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representations presented in Section 3B, if necessary, we complete computing
local exterior square L-functions at the end of Section 3B, local Bump–Friedberg
L-functions in Section 4A, and local Asai L-functions in Section 4B.

2. Jacquet–Shalika zeta integrals

2A. Derivatives and exceptional poles. Let F be a nonarchimedean local field of
characteristic p ̸= 0, 2. We let O denote its ring of integers, p its maximal ideal,
and q the cardinality of its residual field. We will let ϖ denote a uniformizer,
so p = (ϖ). We normalize the absolute value by |ϖ |

−1
= |O/p|. The character

of GLm given by g 7→ | det(g)| is denoted by ν.
For the group GLm := GLm(F), we often confront the two cases: m is even and

m is odd. For the former, we let m = 2n, and for the latter m = 2n + 1. Let σm be
the permutation matrix given by

σ2n =

(
1
1

2
3

· · ·

· · ·

n
2n − 1

∣∣∣ n + 1
2

n + 2
4

· · ·

· · ·

2n
2n

)
when m = 2n is even, and by

σ2n+1 =

(
1
1

2
3

· · ·

· · ·

n
2n − 1

∣∣∣ n + 1
2

n + 2
4

· · ·

· · ·

2n
2n

2n + 1
2n + 1

)
when m = 2n + 1 is odd. Let Bm be the Borel subgroup consisting of the upper
triangular matrices with Levi subgroup Am of diagonal matrices and unipotent
radical Nm . We let Zm denote the center consisting of scalar matrices. We define Pm

to be the mirabolic subgroup given by

Pm =

{(g t u
1

) ∣∣ g ∈ GLm−1, u ∈ Fm−1
}
.

We denote by Um the unipotent radical of Pm . As a group, Pm has a structure of a
semidirect product Pm = GLm−1 ⋉Um . We let Mm be the set of m × m matrices
and Nm be the subspace of upper triangular matrices of Mm . Let {ei | 1 ≤ i ≤ m}

be the standard low basis of Fm .
We let ψF denote a nontrivial additive character of F . We let ψ denote the

character of Nm defined by

ψ(n)= ψF

( n−1∑
i=1

ni,i+1

)
, n = (ni, j ) ∈ Nm .

We denote by AF (m) the set of equivalence classes of all admissible representations
of GLm on complex vector spaces. Furthermore, we say that a representation
π ∈ AF (m) is called generic if HomNm (π, ψ) ̸= {0}. We say that a representation
π ∈ AF (m) is of Whittaker type if

dimC HomNm (π, ψ)= 1.
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For any character χ of F×, χ can be uniquely decomposed as χ = χ0ν
s0 , where

χ0 is a unitary character and s0 is a real number. We use the notation s0 = Re(χ)
for the real part of the exponent of the character χ .

If π ∈ AF (m) is irreducible and generic, it is known that π is of Whittaker
type [Gelfand and Kajdan 1975]. By Frobenius reciprocity, there exists a unique
embedding of π into IndGLm

Nm
(ψ) up to scalar. The image W(π, ψ) of Vπ is called

the Whittaker model of π . For a nonzero functional λ ∈ HomNm (π, ψ), we define
the Whittaker function Wv ∈ W(π, ψ) associated to v ∈ Vπ by

Wv(g)= λ(π(g)v), g ∈ GLm .

We set W := Wv. It follows from [Bernstein and Zelevinsky 1976, Lemma 4.5]
and [Zelevinsky 1980, §9] that if 11,12, . . . ,1t are irreducible essentially square
integrable, which we call discrete series representations, then the representation of
the form IndGLm

Q (11 ⊗12 ⊗· · ·⊗1t) is a representation of Whittaker type, where
the induction is the normalized parabolic induction from the standard parabolic
subgroup Q attached to the partition (m1,m2, . . . ,mt) of m and 1i ∈ AF (mi ).
Also, whenever the parabolic subgroup Q and ambient group GLm are clear from
the context, we simply write Ind(11 ⊗12 ⊗ · · · ⊗1t).

Let Rep(G) denote the category of smooth representations of an l-group G.
There are four functors 9−, 9+, 8−, and 8+. The functor 9− is a normalized
Jacquet functor and 8− is a normalized ψ-twisted Jacquet functor from Rep(Pm)

to Rep(GLm−1) and Rep(Pm−1), respectively. Given τ ∈ Rep(Pm) on the space Vτ ,
9−(τ ) is realized on the space Vτ/Vτ (Um, 1) with the action

9−(τ )(g)(v+ Vτ (Um, 1))= | det(g)|−1/2(τ(g)v+ Vτ (Um, 1)
)

and the subspace Vτ (Um, 1) = ⟨τ(u)v− v | v ∈ Vτ , u ∈ Um⟩. Likewise 8−(τ ) is
realized on the space Vτ/Vτ (Um, ψ) with the action

8−(τ )(p)(v+ Vτ (Um, ψ))= | det(p)|−1/2(τ(p)v+ Vτ (Um, ψ)
)

and the subspace Vτ (Um, ψ) = ⟨τ(u)v−ψ(u)v | v ∈ Vτ , u ∈ Um⟩. The functors
9+ and 8+ are normalized and compactly supported inductions from Rep(GLm−1)

and Rep(Pm−1), respectively, to Rep(Pm). Given σ ∈ Rep(GLm−1),

9+(σ )= indPm
GLm−1 Um

(
| det(g)|1/2σ ⊗ 1

)
= | det(g)|1/2σ ⊗ 1

is realized on the space Vσ , where ind denotes a compactly supported induction. If
σ ∈ Rep(Pm−1), then 8+(σ )= indPm

Pm−1Um

(
| det(g)|1/2σ ⊗ψ

)
.

For τ ∈ Rep(Pm), four functors are utilized to define what is called the Bernstein–
Zelevinsky k-th derivatives τ (k). Let τ (k) ∈ Rep(GLm−k) be τ (k) =9−(8−)k−1(τ )
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for 1 ≤ k ≤ m. The smooth representation τ affords a natural filtration by Pm-
modules

0 ⊆ τm ⊆ τm−1 ⊆ · · · ⊆ τ1 = τ

such that τk/τk+1 = (8+)k−19+(τ (k)) and τk = (8+)k−1(8−)k−1(τ ). Let π =

IndGLm
Q (11 ⊗ · · · ⊗1t) be a parabolically induced representation, where 1i is

an irreducible essentially square integrable representation of GLmi so that m =

m1 +· · ·+mt . Then π (k) has a filtration whose successive quotients are isomorphic
to Ind(1(k1)

1 ⊗ · · · ⊗1(kt )
t ), with k = k1 + · · · + kt [Bernstein and Zelevinsky 1977,

Theorem 4.4 and Lemma 4.5]. For every 0 ≤ k ≤ m − 1, let (ωπ (k)ik
)ik=1,2,...,rk be

the family of the central characters of nonzero successive quotient of the form
π (k)ik

= Ind(1(k1)
1 ⊗ · · · ⊗1(kt )

t ).
Let S(Fn) be the space of smooth locally constant compactly supported functions

on Fn . For each Whittaker function W ∈ W(π, ψ) and Schwartz–Bruhat function
8 ∈ S(Fn), we define the Jacquet–Shalika integrals:

J (s,W,8)

=

∫
Nn\ GLn

∫
Nn\Mn

W
(
σ2n

(
In X

In

)(
g

g

))
ψ−1(Tr(X))8(eng) |det(g)|s d X dg

in the even case m = 2n and

J (s,W,8)=

∫
Nn\ GLn

∫
Nn\Mn

∫
Fn

W

σ2n+1

In X
In

1

g
g

1

In

In

y 1


×ψ−1(Tr(X))8(y)|det(g)|s−1 dy d X dg

in the odd case m = 2n + 1. Several nice consequences follow from inserting an
asymptotic formula over the torus for W into the local zeta integral J (s,W,8) [Jo
2020b, Theorem 3.3 and Lemma 3.10].

Theorem 2.1. Let π = IndGLm
Q (11 ⊗12 ⊗ · · · ⊗1t) be a parabolically induced

representation. Let W ∈ W(π, ψ) and 8 ∈ S(Fn).

(i)-(1) (Even case, m = 2n ) If we have, Re(s) >−
1
kωπ

(2n−2k)
i2n−2k

, for all 1 ≤ k ≤ n and
all 1 ≤ i2k ≤ r2k , then each local integral J (s,W,8) converges absolutely.

(i)-(2) (Odd case, m = 2n +1 ) If we have Re(s) >−
1
kωπ

(2n+1−2k)
i2n+1−2k

, for all 1 ≤ k ≤ n
and all 1 ≤ i2k−1 ≤ r2k−1, then each local integral J (s,W,8) converges
absolutely.

(ii) Each J (s,W,8) is a rational function in C(q−s), hence J (s,W,8) as a
function of s extends meromorphically to all C.

(iii) Each J (s,W,8) can be written with a common denominator determined
by π . Hence the family has “bounded denominators”.
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Let J (π) be the complex linear space of the local integrals J (s,W,8). The
family of local integrals J (π) is a C[q±s

]-fractional ideal of C(q−s) containing 1 [Jo
2020b, Theorems 3.6 and 3.9]. Since the ring C[qs, q−s

] is a principal ideal domain,
the fractional ideal J (π) has a generator. Since 1 ∈ J (π), we can take a generator
having numerator 1 and normalized (up to units) to be of the form P(q−s)−1 with
P(X) ∈ C[X ] having P(0) = 1. The local exterior square L-function, or simply
the exterior square L-factor,

L(s, π,∧2)=
1

P(q−s)

is defined to be the normalized generator of the fractional ideal J (π) spanned by
the local zeta integrals J (s,W,8).

We define the Fourier transform on S(Fm) by

8̂(y)=

∫
Fn
8(x)ψ(x ty) dx .

We assume that the measure on Fm is the self-dual measure. Then the Fourier
inversion takes the form ˆ̂8(x)=8(−x). Let

wm :=

(
1

. .
.

1

)
denote the long Weyl element in GLm . For (π, Vπ ) ∈ Rep(GLm), let π ι denote
the representation of GLm on the same space Vπ given by π ι(g) = π(tg−1). If
π is irreducible, it is known that π ι ≃ π̃ , the contragredient representation of π .
The parabolically induced representation π ι = Ind(1̃t ⊗ 1̃t−1 ⊗ · · · ⊗ 1̃1) is,
again, of Whittaker type. If W ∈ W(π, ψ), then W̃ (g) := W (wm

tg−1) belongs to
W(π ι, ψ−1). We let τm be a matrix given by(

In

In

)
, when m = 2n,

 In

In

1

, when m = 2n + 1.

As a consequence of the uniqueness of bilinear forms on W(π, ψ)×S(Fn), we can
define the local γ -factor, which gives rise to the local functional equation for our
integrals J (s,W,8) [Cogdell and Matringe 2015; Matringe 2014] (see [Jo 2020a,
Theorem 2.10, (2.1)]).

Theorem 2.2. Let π = IndGLm
Q (11 ⊗12 ⊗ · · · ⊗1t) be a parabolically induced

representation of GLm . Then there is a rational function γ (s, π,∧2, ψ) ∈ C(q−s)

such that for every W in W(π, ψ), and every 8 in S(Fn), we have

J (1 − s, ϱ(τm)W̃ , 8̂)= γ (s, π,∧2, ψ)J (s,W,8),

where ϱ denotes right translation.
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An equally important local factor is the local ε-factor

ε(s, π,∧2, ψ)= γ (s, π,∧2, ψ)
L(s, π,∧2)

L(1 − s, π ι,∧2)
,

which is an invertible element ε(s, π,∧2, ψ) in C[q±s
]. With the local ε-factor, the

functional equation becomes

J (1 − s, ϱ(τm)W̃ , 8̂)

L(1 − s, π ι,∧2)
= ε(s, π,∧2, ψ)

J (s,W,8)
L(s, π,∧2)

.

Let π = IndGL2n
Q (11 ⊗12 ⊗· · ·⊗1t) be a parabolically induced representation.

Let S0(Fn) be the subspace of 8 ∈ S(Fn) for which 8(0, 0, . . . , 0)= 0. Suppose
there exists a function in J (π) having a pole of order ds0 at s = s0. We investigate
the rational function defined by an individual zeta integral J (s,W,8). Then the
Laurent expansion about s = s0 will take the form

J (s,W,8)=
Bs0(W,8)

(qs − qs0)ds0
+ (higher order terms).

We define the Shalika subgroup S2n of GL2n by

S2n =

{(
In Z

In

)(
h

h

) ∣∣∣ Z ∈ Mn, h ∈ GLn

}
.

Let us denote an action of the Shalika subgroup S2n on S(Fn) by

R
((

In Z
In

)(
h

h

))
8(x)=8(xh)

for 8 ∈ S(Fn). The coefficient of the leading term, Bs0(W,8), will define a
nontrivial bilinear form on W(π, ψ)×S(Fn) enjoying the quasiinvariance

Bs0

(
ϱ(g)W, R(g)8

)
= |det(h)|−s0ψ(Tr(Z))Bs0(W,8)

for g =
( In Z

In

)(h
h

)
∈ S2n . The pole at s = s0 of the family J (π) is called exceptional

if the associated bilinear form Bs0(W,8) vanishes identically on W(π, ψ)×S0(Fn).
If s = s0 is an exceptional pole of J (π), then the bilinear form Bs0 factors to a
nonzero bilinear form on W(π, ψ)×S(Fn)/S0(Fn). The quotient S(Fn)/S0(Fn)

is isomorphic to C via the map 8 7→8(0). Let 2 be the character of S2n given by

2

((
In Z

In

)(
h

h

))
= ψ(Tr(Z)).

We say that π ∈AF (2n) is (S2n,2)-distinguished if HomS2n (π,2) ̸= {0}. A nonzero
linear functional 3 in HomS2n (π,2) (respectively, 3s in HomS2n (π, ν

−s/22)) is
called a Shalika functional (respectively, a twisted Shalika functional). If s = s0 is
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an exceptional pole, then the form Bs0 can be written as Bs0(W,8)=3s0(W )8(0)
with 3s0 the Shalika functional on W(π, ψ). Using the notation, we let

Lex(s, π,∧2)=

∏
s0

(1 − qs0q−s)ds0 ,

where s0 runs through all the exceptional poles of J (π) with ds0 the maximal order
of the pole at s = s0. The factorization of local exterior square L-functions proposed
by Cogdell and Piatetski-Shapiro asserts that it can be expressed in terms of the
exceptional exterior square L-factors of the derivatives of π [Jo 2020b].

Theorem 2.3. Let π = IndGLm
Q (11 ⊗12 ⊗ · · ·⊗1t) be an irreducible generic rep-

resentation of GLm such that all the derivatives π (k) of π are completely reducible
with irreducible generic constituents of the form π (k)i = Ind(1(k1)

1 ⊗ · · · ⊗1(kt )
t )

with k = k1 + · · · + kt . For each k, i is indexing the partition of k. Then:

(i) m = 2n: L(s, π,∧2)= lcmk,i
{

Lex(s, π (2k)
i ,∧2)−1

}
,

(ii) m = 2n + 1: L(s, π,∧2)= lcmk,i
{

Lex(s, π (2k+1)
i ,∧2)−1

}
,

where the least common multiple is with respect to divisibility in C[q±s
] and is taken

over all k with k = 0, 1, . . . , n−1 and for each k all constituents π (2k)
i (respectively,

π (2k+1)
i ) of π (2k) (respectively, π (2k+1)).

A similar definition for Lex(s, π × σ) and a factorization formula has been
constructed by Cogdell and Piatetski-Shapiro in the context of local Rankin–Selberg
L-functions for a pair of representations (π, σ ) of GLm [Cogdell and Piatetski-
Shapiro 2017; Matringe 2015, §4.1].

2B. Classifications of distinguished representations. For m = 2n, we let M2n

denote the standard Levi subgroup of GL2n associated with the partition (n, n) of 2n.
Letw2n =σ2n , and then we set H2n =w2n M2nw

−1
2n . Letw2n+1 =w2n+2|GL2n+1 so that

w2n+1 =

(
1
1

2
3

· · ·

· · ·

n + 1
2n + 1

∣∣∣ n + 2
2

n + 3
4

· · ·

· · ·

2n
2n − 2

2n + 1
2n

)
.

In the odd case,w2n+1 ̸=σ2n+1, and we denote by M2n+1 the standard Levi subgroup
attached to the partition (n + 1, n) of 2n + 1. We set H2n+1 = w2n+1 M2n+1w

−1
2n+1.

We observe that Hm is compatible in the sense that Hm ∩ GLm−1 = Hm−1. If α is
a character of F× and diag(g, g′) ∈ Mm , we denote by χα the character

χα : wm

(
g

g′

)
w−1

m 7→ α

(
det(g)
det(g′)

)
of Hm . Let χ be a character of Hm . We say that π ∈AF (m) is (Hm, χ)-distinguished
if HomHm (π, χ) ̸=0. If χ is trivial, it is customary to say that π is Hm-distinguished.
In order to classify all irreducible generic distinguished representations, we need to
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know that the induced representations of the form IndGL2n
Q (1⊗1̃) are distinguished.

These types of properties over non-Archimedean local fields in characteristic zero
were originally investigated by Cogdell and Piatetski-Shapiro [1994]. Afterwards the
conjecture was settled by Matringe [2015; 2017]. Parts of the proof of [Matringe
2015, Proposition 3.8] contain inaccuracies, and subsequently it is clarified in
[Matringe 2017, Proposition 5.3].

Proposition 2.4 (N. Matringe). Let 1 be discrete series representations of GLn

and α a character of F×. Then irreducible generic representations of the form
IndGL2n

Q (1⊗ 1̃) are both (H2n, χα)- and (S2n,2)-distinguished.

Proof. We consider parabolically induced representations of the form

5s := IndGL2n
Q (10ν

s
⊗ 1̃0ν

−s),

with 10 a unitary discrete series representations of GLn and s a complex parameter.
The proof in [Matringe 2015, Proposition 3.8] relies on Bernstein’s analytic continua-
tion principle for invariant linear forms. In order to apply it to positive characteristic,
we need to explain that the space HomS2n (5s,2) is of dimension at most one for all
s except the finite number for which 5s is irreducible. However, if this is the case,
HomS2n (5s,2) embeds as a subspace of HomH2n∩P2n (5s, 1H2n ) via [Matringe 2014,
Proposition 4.3] along with HomS2n (5s,2)⊆ HomS2n∩P2n (5s,2). Thanks to an
auxiliary deformation parameter s, the proof of [Matringe 2015, Proposition 5.1-8]
asserts that except for a finite number of s, the space HomH2n∩P2n (5s, 1H2n ) is of
dimension at most 1, as desired.

Alternatively, the quickest way is to use the equivalence between (H2n, χα)-
distinctions and (S2n,2)-distinctions [Yang 2022, Corollary 3.6], which only
depends on Gan’s approach of theta correspondence [2019, Theorem 3.1]. This
allows us to reduce to the case for α = 0, where the result is immediate from Blanc
and Delorme [2008], as described in [Matringe 2014, §5]. We refer the interested
reader to [Offen 2018, Proposition 3.2.15] for an expository construction of this
open orbit contribution. □

We are now ready to introduce the classification of (H2n, χα)-distinguished
representations that was established by Matringe [2015, Theorem 3.1]. The classifi-
cation result holds in positive characteristic p ̸= 2, though written in characteristic
0 only. Indeed, the proof relies crucially on Bernstein and Zelevinsky’s version of
Mackey’s theorem [1977, Theorem 5.2], the explicit description of discrete series
representations and their Jacquet modules [Zelevinsky 1980, Proposition 9.5],
and the fact that a discrete series representation of GL2n+1 cannot be H2n+1-
distinguished [Matringe 2014, Theorem 3.1]. All the aforementioned properties are
true in positive characteristic (see [Anandavardhanan et al. 2021, Appendix A] and
[Gan 2019, §4]).
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Theorem 2.5 (N. Matringe, m = 2n). Let π = IndGL2n
Q (11 ⊗ 12 ⊗ · · · ⊗ 1t)

be an irreducible generic representation of GL2n . Let α be a character of F×

with 0 ≤ Re(α) ≤
1
2 . Then π is (H2n, χα)-distinguished if and only if there is a

reordering of the 1i and an integer r between 1 and [t/2], such that 1i+1 = 1̃i for
i = 1, 3, . . . , 2r − 1, and 1i is (H2ni , χα)-distinguished for i > 2r .

For a discrete series representation 1 of GL2n , 1 is H2n-distinguished if and
only if it is (S2n,2)-distinguished. Matringe [2014, §5], using an analytic approach,
and Gan [2019, Theorem 4.2], using the theta correspondence, individually settled
this connection. Combining this with [Matringe 2017, Theorem 1.1 and Proposi-
tion 5.3], we classify the (S2n,2)-distinguished generic representation of GL2n in
terms of (S2ni ,2)-distinguished discrete series representations 1i [Matringe 2017,
Corollary 1.1]. We refer the reader to [Matringe 2017] for further details of the proof.

Theorem 2.6 (N. Matringe). Let π = IndGL2n
Q (11⊗12⊗· · ·⊗1t) be an irreducible

generic representation of GL2n . Then π is (S2n,2)-distinguished if and only if
there is a reordering of the 1i and an integer r between 1 and [t/2], such that
1i+1 = 1̃i for i = 1, 3, . . . , 2r − 1, and 1i is (S2ni ,2)-distinguished for i > 2r .

In the light of Theorem 2.5, Theorem 2.6, and [Gan 2019, Theorem 4.2], Ma-
tringe and Gan’s equivalence is valid in more general setting of irreducible generic
representations of GL2n .

2C. Deformations and specializations. Let π = IndGLm
Q (11 ⊗12 ⊗· · ·⊗1t) be a

parabolically induced representation of GLm . Let Dπ denote the complex manifold(
C/(2π i/ log(q))Z

)t . The isomorphism Dπ → (C×)t is defined by

u := (u1, u2, . . . , ut) 7→ qu
:= (qu1, qu2, . . . , qut ).

We use q±u as short for (q±u1, q±u2, . . . , q±ut ). For u ∈ Dπ , we set

πu = IndGLm
Q (11ν

u1 ⊗12ν
u2 ⊗ · · · ⊗1tν

ut ).

Let us set

π (k1,k2,...,kt )
u = IndGLm

Q (1
(k1)
1 νu1 ⊗1

(k2)
2 νu2 ⊗ · · · ⊗1

(kt )
t νut ).

Section 2C is indebted to Cogdell and Piatetski-Shapiro [2017], and we closely
follow the path of the adaptation that was used in [Matringe 2009; 2015; Jo 2020a]
to study the characteristic zero case. In particular, the deformation and specialization
argument is widely available in the literature [Cogdell and Piatetski-Shapiro 2017;
Matringe 2009; 2015; Jo 2020a]. Henceforth, we only remark on the nature of
the difference but the reader should consult [Cogdell and Piatetski-Shapiro 2017;
Matringe 2009] for complete details.
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Definition 2.7. We say that u = (u1, u2, . . . , ut) ∈ Dπ is in general position if it
satisfies the following properties:

(i) For every sequences of nonnegative integers (k1, k2, . . . , kt), a nonzero repre-
sentation

π (k1,k2,...,kt )
u = Ind

(
1
(k1)
1 νu1 ⊗1

(k2)
2 νu2 ⊗ · · · ⊗1

(kt )
t νut

)
is irreducible;

(ii) If (a1r1, a2r2, . . . , atrt) and (b1r1, b2r2, . . . , btrt) are two different sequences
such that

t∑
i=1

airi =

t∑
i=1

biri ,

then two representations

Ind
(
1(a1r1)

1 νu1 ⊗1(a2r2)
2 νu2 ⊗ · · · ⊗1(atrt )

t νut
)

Ind
(
1
(b1r1)
1 νu1 ⊗1(b2r2)

2 νu2 ⊗ · · · ⊗1(btrt )
t νut

)
possess distinct central characters;

(iii) If (i, j, k, ℓ)∈ {1, 2, . . . , t}, with {i, j} ̸= {k, ℓ}, then L(s,1iν
ui ×1jν

u j ) and
L(s,1kν

uk ×1ℓν
uℓ) have no common poles;

(iv) If (i, j) ∈ {1, 2, . . . , t}, with i ̸= j , then L(s,1iν
ui ,∧2) and L(s,1jν

u j ,∧2)

have no common poles;

(v) If (i, j,k)∈{1,2, . . . , t}, with i ̸= j , then L(s,1iν
ui×1jν

u j) and L(s,1kν
uk,∧2)

have no common poles;

(vi) If 1 ≤ i ̸= j ≤ t and (1(ai ri )
i )∼ ≃1(a j r j )

j νe for some complex number e, then
the dimension of the space

HomP2(ni −ai ri )∩S2(ni −ai ri )

(
Ind
(
1(ai ri )

i ν(ui +u j +e)/2
⊗ (1(ai ri )

i ν(ui +u j +e)/2)∼
)
,2
)

is at most 1.

We confirm that off a finite number of hyperplanes in u, the deformed represen-
tation πu is in general position [Jo 2020a, Proposition 4.1]. The important point is
that u ∈ Dπ in general position depends only on the representation π , not s ∈ C.
The purpose of (ii) is that outside a finite number of hyperplanes, the central char-
acter of π (a1r1,a2r2,...,atrt )

u are distinct and therefore there are only trivial extensions
among these representation. As a result, off these hyperplanes, the derivatives
π (k)u = ⊕π (a1r1,a2r2,...,atrt )

u are completely reducible, where k =
∑t

i=1airi and each
π (a1r1,a2r2,...,atrt )

u are irreducible. Conditions (i) and (ii) ensure that Theorem 2.3
is applicable. The purpose of Condition (vi) is that the occurrence of the excep-
tional pole of L(s, π,∧2) at s = 0 can be determined by the existence of Shalika
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functional from [Jo 2020a, Lemma 3.2]. Throughout Section 2C, we assume the
working hypothesis proposed by E. Kaplan [2017, Remark 4.18] for fields of odd
characteristic.

Working Hypothesis. Let 1 be an (S2n,2)-distinguished discrete series represen-
tation of GL2n . Then 1 is self-dual. Namely, 1̃≃1.

The following statement is a consequence of the working hypothesis along with
Theorem 2.6:

Corollary 2.8. Assume the working hypothesis. Let π= IndGL2n
Q (11⊗12⊗· · ·⊗1t)

be an irreducible generic representation of GL2n . If π is (S2n,2)-distinguished,
then π is self-dual. Namely, π̃ ≃ π .

The working hypothesis needs not be considered for the subclass of irreducible
principal series representations induced from Borel subgroups due to Theorem 2.6,
and we shall verify the presumption case-by-case in Section 2.

Proposition 2.9. Let π = IndGL2n
B2n

(χ1 ⊗χ2 ⊗· · ·⊗χ2n) be a (S2n,2)-distinguished
irreducible principal series representation of GL2n . Then π is self-dual. Namely,
π̃ ≃ π .

Now we provide an interpretation of Theorem 2.6 in terms of local L-functions,
which is analogous to [Matringe 2015, Proposition 4.13].

Proposition 2.10. Let π = IndGL2n
Q (11 ⊗12 ⊗ · · ·⊗1t) be an irreducible generic

representation of GL2n , where each 1i is a discrete series representation of GLni

with 2n =
∑t

i=1 ni and t ≥ 2. Suppose that Lex(s, π,∧2) has a pole at s = s0. Then
we are in one of the following cases:

(i) There are (i, j) ∈ {1, 2, . . . , t}, with i ̸= j , such that ni and n j are even, and
Lex(s,1i ,∧

2) and Lex(s,1j ,∧
2) have s = s0 as a common pole.

(ii) There are (i, j,k,ℓ)∈{1,2, . . . , t}, with {i, j} ̸={k,ℓ}, such that Lex(s,1i×1j )

and Lex(s,1k ×1ℓ) have s = s0 as a common pole.

(iii) There are (i, j, k) ∈ {1, 2, . . . , t}, with i ̸= j , such that nk is even and
Lex(s,1i ×1j ) and Lex(s,1k,∧

2) have s = s0 as a common pole.

Proof. Suppose that Lex(s, π,∧2) has a pole at s = s0. Since L(s, π,∧2) =

L(s − s0, πν
s0/2,∧2), the representation πνs0/2 admits a nontrivial Shalika func-

tional. We know from Theorem 2.6 that πνs0/2 is isomorphic to

Ind
((
1i1ν

s0/2 ⊗ (1i1ν
s0/2)∼

)
⊗ · · · ⊗

(
1ir ν

s0/2 ⊗ (1ir ν
s0/2)∼

)
⊗1ir+1ν

s0/2 ⊗ · · · ⊗1itν
s0/2
)
,

with 0 ≤ r ≤ [t/2], where 1i j ν
s0/2 affords a Shalika functional and each ni j is even

for all j > r . Putting it in a different way, (1iν
s0/2)∼ ≃ 1jν

s0/2 with i ̸= j , or
1kν

s0/2 owns a Shalika functional, where nk is an even number.
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According to [Matringe 2015, Proposition 4.6], (1iν
s0/2)∼ ≃1jν

s0/2 or equiva-
lently 1̃i ≃1jν

s0 if and only if Lex(s,1i ×1j ) has a pole at s = s0.
If 1kν

s0/2 has the Shalika functional, the space HomSnk
(1kν

s0/2,2) is nontriv-
ial and its central character ω1kν

s0/2 is trivial. Since 1kν
s0/2 is the irreducible

square integrable representation, we obtain from [Jo 2020a, Proposition 3.4] that
Lex(s,1kν

s0/2,∧2) has a pole at s = 0, or equivalently, Lex(s,1k,∧
2) has a pole

at s = s0. Therefore s = s0 is the common pole for either of three cases in
Proposition 2.10. □

Let 1 be a discrete series representation. Such a representation 1 is the unique
irreducible quotient of the form: IndGLm

Q (ρ⊗ρν⊗· · ·⊗ρνℓ−1), where the induction
is a normalized parabolic induction from the standard parabolic subgroup Q attached
to the partition (r, r, . . . , r) of m =rℓ and ρ∈AF (r) is irreducible and supercuspidal
[Zelevinsky 1980]. We denote by 1= [ρ, ρν, . . . , ρνℓ−1

] such a quotient. Using
Hartogs’ theorem [Jo 2020a] is closer to the original spirit of the direction in [Cogdell
and Piatetski-Shapiro 2017]. Nevertheless, we present an alternative approach
employing Proposition 2.10 to keep uniformity with [Matringe 2009; 2015].

Proposition 2.11. Assume the working hypothesis, and let us denote by π =

IndGLm
Q (11 ⊗12 ⊗ · · ·⊗1t) a parabolically induced representation of GLm . Let

u = (u1, u2, . . . , ut) ∈ Dπ be in general position, and let

πu = IndGLm
Q (11ν

u1 ⊗12ν
u2 ⊗ · · · ⊗1tν

ut )

be the deformed representation. Then we have the following:

(i) L(s, πu,∧
2)=

∏
1≤k≤t

L(s + 2uk,1k,∧
2)

∏
1≤i< j≤t

L(s + ui + u j ,1i ×1j ).

(ii) There is a polynomial Q(X) ∈ C[X ] such that

L(s, π,∧2)= Q(q−s)
∏

1≤k≤t

L(s,1k,∧
2)

∏
1≤i< j≤t

L(s,1i ×1j ).

Proof. Let us take1i to be associated to the segment [ρi , ρiν, . . . , ρiν
ℓi −1

], with ρi

an irreducible supercuspidal representation of GLri , mi = riℓi , and m =
∑t

i=1 riℓi .
Keeping Theorem 2.3 in mind, we set

L(s, πu,∧
2)−1

= lcm
{

Lex(s, π (a1r1,a2r2,...,atrt )
u ,∧2)−1},

where 0 ≤ ai ≤ ℓi , m −
∑t

i=1airi is an even number, and the least common multiple
is taken in terms of divisibility in C[q±s

]. Suppose that Lex(s, π (a1r1,a2r2,...,atrt )
u ,∧2)

has a pole at s = s0. If the number of indices i such that ri ̸= ℓi is more than 3, we
deduce from Proposition 2.10 that:

(i) There are (i, j) ∈ {1, 2, . . . , t}, with i ̸= j , such that mi − airi and m j − a jr j

are even, and L
(
s,1(ai ri )

i νui ,∧2
)

and L
(
s,1(a j r j )

j νu j ,∧2
)

have s = s0 as a
common pole.



316 YEONGSEONG JO

(ii) There are (i, j, k, ℓ)∈ {1, 2, . . . , t}, with {i, j} ̸= {k, ℓ}, such that the functions
L
(
s,1(ai ri )

i νui ×1(a j r j )
j νu j

)
and L

(
s,1(akrk)

k νuk ×1(aℓrℓ)ℓ νuℓ
)

have s = s0 as
a common pole.

(iii) There are (i, j, k) ∈ {1, 2, . . . , t}, with i ̸= j , such that mk − akrk is even, and
L
(
s,1(ai ri )

i νui ×1(a j r j )
j νu j

)
and L

(
s,1(akrk)

k νuk ,∧2
)

have s = s0 as a common
pole.

However, Conditions (iii), (iv), and (v) of general positions ensure that the above
scenario cannot happen as long as u is in general position, because exceptional
poles are poles of original L-factors L(s,1i ×1j ) and L(s,1k,∧

2). Owing to [Jo
2020a, Corollary 4.11], when there exists exactly one pair (i, j) of indices i ̸= j
such that ri ̸= ℓi and r j ̸= ℓ j , we have

Lex
(
s, Ind(1(ai ri )

i νui ⊗1
(a j r j )

j νu j ),∧2)
= Lex

(
s,1(ai ri )

i νui ×1
(a j r j )

j νu j
)
.

If i is the only index such that ri ̸= ℓi , it is nothing but Lex(s,1
(ai ri )
i νui ,∧2).

To summarize, Lex(s,π (a1r1,a2r2,...,atrt )
u ,∧2) is equal to Lex(s,1(ai ri )

i νui×1(a j r j )
j νu j )

for i < j or Lex(s,1(ai ri )
i νui ,∧2). Following the rest of the proof in [Jo 2020a,

Theorem 5.1], we arrive at

L(s, πu,∧
2)=

∏
1≤k≤t

L(s,1kν
uk ,∧2)

∏
1≤i< j≤t

L(s,1iν
ui ×1jν

u j )

=

∏
1≤k≤t

L(s + 2uk,1k,∧
2)

∏
1≤i< j≤t

L(s + ui + u j ,1i ×1j ).

Concerning the second part, let W(0)
π be the Whittaker model associated to πu

[Cogdell and Piatetski-Shapiro 2017, §3.1]. For Wu ∈ W(0)
π , it follows from

the standard Bernstein’s principle of meromorphic continuation and rationality
[Jo 2020a, Propositions 4.2 and 4.4] that J (s,Wu,8) defines a rational function
in C(q−s, q−u). We conclude (i), that the rational function

J (s,Wu,8)∏
1≤k≤t L(s + 2uk,1k,∧2)

∏
1≤i< j≤t L(s + ui + u j ,1i ×1j )

has no poles on the Zariski open set of u in general position. We can take one step
further to assert that the ratio lies in C[q±s, q±u

] by the proof of [Matringe 2015,
Lemma 5.1] and [Jo 2020a, Proposition 5.3]. The statement is now an immediate
consequence of specialization to u = 0. □

We denote by P ∼ Q that the ratio is a unit in C[q±s
] for two rational functions

P(q−s) and Q(q−s) in C(q−s). As alluded in the Langlands–Shahidi method
[Ganapathy and Lomelí 2015; Henniart and Lomelí 2011; 2013b; Lomelí 2016],
the unit emerging in Theorem 2.12 (ii) will be presumably 1. This is so-called the
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multiplicativity of γ -factors. However, demonstrating the multiplicativity property
requires manipulating integrals in a delicate manner. Nonetheless, it seems likely
that the weaker one that is relevant to us is enough for the application therein.

Theorem 2.12. Assume the working hypothesis. Let π= IndGLm
Q (11⊗12⊗· · ·⊗1t)

be a parabolically induced representation of GLm . Let u = (u1, u2, . . . , ut)∈Dπ be
in general position and πu = IndGLm

Q (11ν
u1 ⊗12ν

u2 ⊗· · ·⊗1tν
ut ) be the deformed

representation. Then we have the following:

(i) γ (s, πu,∧
2,ψ)∼

∏
1≤k≤t

γ (s+2uk,1k,∧
2,ψ)

∏
1≤i< j≤t

γ (s+ui+u j ,1i×1j ,ψ),

(ii) γ (s, π,∧2, ψ)∼
∏

1≤k≤t
γ (s,1k,∧

2, ψ)
∏

1≤i< j≤t
γ (s,1i ×1j , ψ).

Proof. The proof proceeds along the line of [Jo 2020a, Proposition 5.4] and
[Matringe 2015, Proposition 5.5] by applying Theorem 2.2 and Proposition 2.11 to
our framework, and this idea originated from Cogdell and Piatetski-Shapiro [2017,
Proposition 4.3]. Statement (ii) can be shown by specializing to u = 0. □

To proceed further, we adopt the terminology from [Cogdell and Piatetski-Shapiro
2017; Matringe 2015]. We say that π ∈ AF (m) is a representation of Langlands
type if 4 has the form IndGLm

Q (1◦1ν
u1 ⊗1◦2ν

u2 ⊗· · ·⊗1◦tν
ut ), where each 1◦i is

the irreducible square integrable representation of GLmi , m1 + m2 + · · ·+ mt = m,
each ui is real, and they are ordered so that u1 ≥ u2 ≥ · · · ≥ ut . Let π be
an irreducible admissible representation of GLm . Regardless of being generic,
π can be realized as the unique Langlands quotient of Langlands type 4 =

IndGLm
Q (1◦1ν

u1 ⊗1◦2ν
u2 ⊗· · ·⊗1◦tν

ut ) which is of Whittaker type. The exterior
square L-factor is defined to be

L(s, 4,∧2)= L(s, π,∧2).

Theorem 2.13. Assume the working hypothesis. Consider a representation of
Langlands type of GLm , π= IndGLm

Q (1◦1ν
u1⊗1◦2ν

u2⊗· · ·⊗1◦tν
ut ). Then we have

L(s, π,∧2)=

∏
1≤k≤t

L(s + 2uk,1◦k,∧
2)

∏
1≤i< j≤t

L(s + ui + u j ,1◦i ×1◦ j ).

Proof. The proof is akin to those of [Cogdell and Piatetski-Shapiro 2017, Theo-
rem 4.1], [Jo 2020a, Theorem 5.7], and [Matringe 2009, Theorem 4.26]. In order
to be concise, we do not include the complete details. □

We pass to the case of irreducible generic representations.

Corollary 2.14. Assume the working hypothesis. Let π= IndGLm
Q (11⊗12⊗· · ·⊗1t)

be an irreducible generic representation of GLm . Then we have

L(s, π,∧2)=

∏
1≤k≤t

L(s,1k,∧
2)

∏
1≤i< j≤t

L(s,1i ×1j ).
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Proof. Since π is irreducible, essentially square integrable representations 1i can
be rearranged to be in Langlands order without changing π . □

We define the symmetric square L-factor to be the ratio of Rankin–Selberg
L-factors for GLm × GLm by exterior square L-factors for GLm :

(2-1) L(s, π,Sym2)=
L(s, π ×π)

L(s, π,∧2)
.

In comparison to [Matringe 2009; 2015], we pursue purely local means more
to express a local exterior square L-function in terms of local L-functions for
supercuspidal representations. Performing this step has the benefit of making the
globalization result of Henniart and Lomelí [2011; 2013b] feasible, instead of
globalizing discrete series representations [Kaplan 2017; Kewat and Raghunathan
2012; Matringe 2009] as a black box.

Theorem 2.15. Assume that the working hypothesis holds for the subclass of all
irreducible supercuspidal representations. Let 1◦ =

[
ρ◦ν

−(ℓ−1)/2, . . . , ρ◦ν
(ℓ−1)/2

]
be an irreducible square integrable representation of GLℓr , with ρ◦ an irreducible
unitary supercuspidal representation of GLr .

(i) Suppose that ℓ is even. Then we have

L(s,1◦,∧
2)=

ℓ/2∏
i=1

L
(
s, ρ◦ν

(ℓ+1)/2−i ,∧2)L(s, ρ◦ν
ℓ/2−i ,Sym2)

;

L(s,1◦,Sym2)=

ℓ/2∏
i=1

L
(
s, ρ◦ν

(ℓ+1)/2−i ,Sym2)L(s, ρ◦ν
ℓ/2−i ,∧2).

(ii) Suppose that ℓ is odd. Then we have

L(s,1◦,∧
2)=

(ℓ+1)/2∏
i=1

L
(
s, ρ◦ν

(ℓ+1)/2−i ,∧2)(ℓ−1)/2∏
i=1

L
(
s, ρ◦ν

ℓ/2−i ,Sym2)
;

L(s,1◦,Sym2)=

(ℓ+1)/2∏
i=1

L
(
s, ρ◦ν

(ℓ+1)/2−i ,Sym2)(ℓ−1)/2∏
i=1

L
(
s, ρ◦ν

ℓ/2−i ,∧2)
;

Proof. Our proof is truly influenced by Shahidi [1992, Proposition 8.1]. By the
uniqueness of the Whittaker functional, the Whittaker model for 1◦ agrees with
that for ξ = Ind

(
ρ◦ν

−(ℓ−1)/2
⊗ · · ·⊗ ρ◦ν

(ℓ−1)/2
)
. Likewise the same feature holds

for ξ ι := Ind
(
ρ̃◦ν

−(ℓ−1)/2
⊗ · · ·⊗ ρ̃◦ν

(ℓ−1)/2
)

and 1̃◦. This puts us in a position to
manifest that

γ (s,1◦,∧
2, ψ)= γ

(
s, Ind

(
ρ◦ν

−(ℓ−1)/2
⊗ · · · ⊗ ρ◦ν

(ℓ−1)/2),∧2, ψ
)
.
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Let u be in general position and ξu = Ind
(
ρ◦ν

u1−(ℓ−1)/2
⊗ · · · ⊗ ρ◦ν

uℓ+(ℓ−1)/2
)

its
associated deformed representation. Upon noting the assumption that any (S2n,2)-
distinguished irreducible supercuspidal representation ρ is self-dual, we see that
Proposition 2.10 to Theorem 2.12 can be completely carried over verbatim to
the triple (1◦, ξ, ξu). The remainder of the proof is parallel to that of [Jo 2020a,
Theorem 5.12] (cf. proof of Proposition 4.3), and we find

L(s,1◦,∧
2)=


ℓ/2∏
i=1

L
(
s,ρ◦ν

(ℓ+1)/2−i ,∧2
)
L
(
s,ρ◦ν

ℓ/2−i ,Sym2), ℓ even,

(ℓ+1)/2∏
i=1

L
(
s,ρ◦ν

(ℓ+1)/2−i ,∧2
)(ℓ−1)/2∏

i=1
L
(
s,ρ◦ν

ℓ/2−i ,Sym2), ℓ odd.

The expression of the local symmetric square L-function L(s,1◦,Sym2) is a direct
consequence of the factorization L(s,1◦ ×1◦) = L(s,1◦,∧

2)L(s,1◦,Sym2),
just as in (2-1). □

2D. The equality for principal series representations. We briefly review the
Langlands–Shahidi method for the local exterior square L-function [Ganapathy and
Lomelí 2015; Henniart and Lomelí 2011]. Let G = Sp2m be a symplectic group
over F in 2m variables. The group M ≃GLm can be embedded as a Levi component
of a maximal Siegel parabolic subgroup P = M N with unipotent radical N . Let
r be the adjoint representation of the L-group of M on Ln, the Lie algebra of the
L-group of N . We can check that r = r1 ⊕ r2. The irreducible representation r1

gives the standard γ -factor of GLn and r2 gives the Langlands–Shahidi exterior
square γ -factor,

γ (s, π, r2, ψ)= γL S(s, π,∧2, ψ).

The γ -factor γL S(s, π,∧2, ψ) defined in [Henniart and Lomelí 2011] is a rational
function in C(q−s). Let P(X) be the unique polynomial in C[X ] satisfying P(0)=1
and such that P(q−s) is the numerator of γL S(s, π,∧2, ψ). Whenever π is tempered,
the local Langlands–Shahidi exterior square L-function is defined by

L(s, ρ,∧2) := P(q−s)−1.

We observe that π tempered implies that L(s, ρ,∧2) is holomorphic for Re(s) > 0
[Henniart and Lomelí 2011, §4.6]. The Langlands–Shahidi exterior square ε-factor
is defined to satisfy the relation

εL S(s, π,∧2, ψ)= γL S(s, π,∧2, ψ)
L(1 − s, π̃ ,∧2)

L(s, π,∧2)
.

Besides, various types of L-factors L(s, π,Sym2) for G = SO2m+1, L(s, π ×π)

for G = GL2m , and L(s, π,As) for G = Um , can be extracted from [Henniart and
Lomelí 2013b; Lomelí 2016].
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Proposition 2.16. Let 1 be a discrete series representation of the form

(2-2) [χ, χν, . . . , χνℓ−1
],

where χ is a character of F×. Then we have

L(s,1,∧2)= L(s,1,∧2).

As a consequence, if ℓ = 2n is even and 1 is (S2n,2)-distinguished, then 1 is
self-dual.

Proof. Just as observed in Proposition 2.9, the working hypothesis does not need
to be checked for the character χ of F×, and 1 is automatically self-dual. As
in the proof of Theorem 4.4, we can easily reduce it to the case where 1 is a
unitary representation. We are then left with applying Theorem 2.15 to 1, from
which the equality shall follow by comparing it with the work of Shahidi [1992,
Proposition 8.1]. □

Let us turn our attention to the subclass of irreducible generic subquotients of
principal series representations. This class is not necessarily spherical.

Proposition 2.17. Let π be an irreducible generic subquotient of a principal series
representation of GLm . Then we have

L(s, π,∧2)= L(s, π,∧2).

Proof. From [Bernstein and Zelevinsky 1977; Zelevinsky 1980], π is of the form
Ind(11 ⊗ 12 ⊗ · · · ⊗ 1t), where each 1i is either a character χi of F× or a
discrete series representation given by the segment of the form (2-2). In considering
Proposition 2.16, any (S2ni ,2)-distinguished representations1i satisfy the working
hypothesis. The inductive relation formula, Corollary 2.14, is applicable, and it can
be shown that

L(s, π,∧2)=

∏
1≤k≤t

L(s,1k,∧
2)

∏
1≤i< j≤t

L(s,1i ×1j ).

In the aspect of Proposition 2.16, we only need to compare it with [Ganapathy and
Lomelí 2015, Theorem 3.1 (xi)]. □

The unramified character χ means that it is invariant under the maximal compact
subgroup O× of F×. As before, the working hypothesis is no longer needed for
the set of irreducible unramified representations. Hence, Corollary 2.14 in the
preceding section Section 2C, has the following result:

Corollary 2.18. Let π = IndGLm
Bm

(χ1 ⊗χ2 ⊗· · ·⊗χm) be an irreducible full induced
representation from the Borel subgroup of unramified character χi of F×. Then

L(s, π,∧2)=

∏
1≤i< j≤m

1
1−χi (ϖ)χ j (ϖ)q−s .
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3. Local to global argument

3A. Eulerian integral representations. We denote by Fq the residue field of F ,
and let k = Fq(t) be a (global) function field of the projective line P1 over Fq . Let
A denote its ring of adèles. Let (5, V5) be a cuspidal automorphic representation
of GLm(A). We denote by |P1

| the set of closed points of P1. The set |P1
| is in

bijection with the set of places of k. Hence we write by abuse of notation |P1
| for

the set of places of k. Since 5 is irreducible, we have restricted tensor product
decomposition5=

⊗
′

v5v with (5v, V5v ) irreducible admissible generic represen-
tations of GLm(kv) [Flath 1979], see [Cogdell 2003, §4]. Let its central character
be ω5. We let Pn−1,1 = Zn Pn be the standard parabolic subgroup associated to the
partition (n − 1, 1) of n. Each 8 ∈ S(An) defines a smooth function on GLn(A),
left invariant by Pn(A), by g 7→8(eng) for g ∈ GLn(A). We consider the function

f (s, g;8,ω5)= | det(g)|s
∫

A×

ω5(z)8(zeng)|z|ns d×z,

with the absolute convergence of the integral [Jacquet and Shalika 1981, (4.1)]. We
extend ωπ to a character of Pn−1,1 by ω5(p)= ω5(a) for p =

( h u
a

)
∈ Pn−1,1. We

construct the Eisenstein series by

E(s, g;8,ω5)=

∑
γ∈Pn−1,1(k)\ GLn(k)

F(s, γ g;8,ω5)

This series is convergent absolutely for Re(s) > 1 [Jacquet and Shalika 1981,
(4.1)]. The mirabolic (Godement–Jacquet) Eisenstein series E(s, g;8,ω5) has a
meromorphic continuation to all of C and satisfies the following functional equation
[Jacquet and Shalika 1981, §4]:

(3-1) E(s, g;8,ω5)= E(1 − s, ιg; 8̂, ω−1
5 ),

where ιg =
tg−1 and the Fourier transform on S(An) is defined by

8̂(y)=

∫
An
8(x)ψ(x ty) dx .

For m = 2n, 8 ∈ S(An), and ϕ ∈ V5, we let

Iψ(s, ϕ,8)=

∫
Zn(k)GLn(k)\ GLn(A)

∫
Mn(k)\Mn(A)

ϕ

((
In X

In

)(
g

g

))
×ψ−1(Tr(X))E(s, g :8,ω5) d X dg.
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For m = 2n + 1, 8 ∈ S(An), and ϕ ∈ V5, we define a global integral as

Iψ(s, ϕ,8)

=

∫
An

∫
GLn(k)\ GLn(A)

∫
Mn(k)\Mn(A)

∫
kn\An

ϕ

In X Z
In

1

g
g

1

In

In

y 1


×ψ−1(Tr(X))8(y) |det(g)|s−1 d Z d X dg dy.

The following theorem gives a meaning to these global integrals:

Theorem 3.1. The integral Iψ(s, ϕ,8) is convergent for Re(s) large enough, rep-
resents a meromorphic function on the entire plane, and satisfies the functional
equation

Iψ(s, ϕ,8)= Iψ−1(1 − s, ϱ(τm)ϕ̃, 8̂),

where ϱ denotes right translation and ϕ̃(g)= ϕ(ιg).

Proof. The analytic properties have been established for the even case m = 2n in
[Jacquet and Shalika 1990, §5] and the odd case m = 2n +1 in [Jacquet and Shalika
1990, §9]. The functional equation for m = 2n follows immediately from that of the
Eisenstein series E(s, g :8,ω5) (3-1). See also [Kewat and Raghunathan 2012,
Theorem 3.11]. We take this occasion to refine the elaboration for m = 2n + 1
in [Cogdell and Matringe 2015, §3.5] thoroughly. If ϕ ∈ V5, then ϕ1 and ϕ2 are
defined in [Jacquet and Shalika 1990, p. 219]:

ϕ1(g)=
∫

An
ϕ

g

In

In

y 1

8(y) dy; ϕ2(g)=
∫

An
ϕ

g

In y
In

1

8̂(−ty) dy,

where 8 ∈ S(An). We begin to deal with the equation on the bottom of page 219
in [Jacquet and Shalika 1990]:∫

kn\An

∫
Mn(k)\Mn(A)

ϕ1

In X
In

1

In Z
In

1

g
g

1

ψ−1(Tr(X)) d X d Z

=

∫
kn\An

∫
Mn(k)\Mn(A)

ϕ2

In X
In

1

In

In

Z 1

g
g

1


×ψ−1(Tr(X)) d X d Z |det(g)|.

(Here, ϕ in the corresponding formula in [Jacquet and Shalika 1990, p. 219]
seems to be ϕ2). As opposed to Jacquet and Shalika who conjugate them with the
permutation matrix  wn

wn

1

,
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we exploit τ2n+1. This articulation is consistent with the shape of the local func-
tional equation in [Cogdell and Matringe 2015, Theorem 3.1]. By applying
g 7→ τ2n+1

ιgτ−1
2n+1, and then changing the variables X 7→ −X and Z 7→ −Z ,

the above integral is written as

∫
kn\An

∫
Mn(k)\Mn(A)

ϕ̃2

In X
In

1

In Z
In

1

tg−1

tg−1

1

 τ2n+1


×ψ(Tr(X)) d X d Z |det(g)|.

We insert the definitions of ϕ1 and ϕ2 and utilize the assignment g 7→ τ2n+1
ιgτ−1

2n+1
on the last matrix. After the change of variables y 7→ −y, the identity becomes

∫
An

∫
kn\An

∫
Mn(k)\Mn(A)

ϕ

In X Z
In

1

g
g

1

In

In

y 1


×ψ−1(Tr(X))8(y) d X d Z dy

=

∫
An

∫
kn\An

∫
Mn(k)\Mn(A)

ϕ̃

In X Z
In

1

tg−1

tg−1

1

In

In

y 1

 τ2n+1


×ψ(Tr(X))8̂(y) d X d Z dy |det(g)|

from which the desired global functional equation for integrals follows. □

Let

Wϕ(g)=

∫
Nm(k)\Nm(A)

ϕ(ng)ψ−1(n) dn,

W̃ϕ(g)=

∫
Nm(k)\Nm(A)

ϕ̃(wmng)ψ(n) dn

be the associated Whittaker function of ϕ and ϕ̃, respectively. We have yet to check
that our integrals are Eulerian.

Proposition 3.2 (Jacquet–Shalika). For ϕ ∈ V5 and 8 ∈ S(Fn), global Jacquet–
Shalika integrals

Jψ(s,Wϕ,8)=

∫
Nn(A)\ GLn(A)

∫
Nn(A)\Mn(A)

Wϕ

((
In X

In

)(
g

g

))
×ψ−1(Tr(X))8(eng) |det(g)|s d X dg
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in the even case m = 2n and

Jψ(s,Wϕ,8)=

∫
Nn(A)\GLn(A)

∫
Nn(A)\Mn(A)

∫
An

Wϕ

In X
In

1

g
g

1

In

In

y 1


×ψ−1(Tr(X))8(y)| det(g)|s−1 dy d X dg

in the odd case m = 2n +1 converge when Re(s) is sufficiently large and, when this
is the case, we have

Iψ(s, ϕ,8)= Jψ(s,Wϕ,8).

We suppose, in addition, that Wϕ(g) =
∏
v∈|P1| Wϕv (gv), ψ(n) =

∏
v∈|P1| ψ(nv),

and 8(g)=
∏
v∈|P1|8v(gv). Then, when Re(s) is sufficiently large,

Jψ(s,Wϕ,8)=

∏
v∈|P1|

Jψv (s,Wϕv ,8v).

Likewise, the right-hand side of the functional equation is also unfold and can be
factored as

Iψ−1(1 − s, ϱ(τm)ϕ̃, 8̂)= Jψ−1(1 − s, ϱ(τm)W̃ϕ, 8̂)

=

∏
v∈|P1|

Jψ−1(1 − s, ϱ(τm)W̃ϕv , 8̂v),

with the convergence for Re(s)≪ 0.

Proof. All these statements are drawn, with some minor changes of notation, from
[Jacquet and Shalika 1990, Proposition 5 in §6] for m = 2n and [Jacquet and Shalika
1990, §9.2] for m = 2n + 1. □

Throughout, we will take S ⊂ |P1
| to be a finite set of places such that for all

v /∈ S, 5v and ψv are all unramified and ψv normalized. The partial L-function is
a product of local factors

L S(s,5,∧2)=

∏
v /∈S

L(s,5v,∧
2).

More precisely, this product converges for Re(s) large enough (see [Jacquet and
Shalika 1990, §8–9]). The global L-function and ε-factors for 5 are

L(s,5,∧2, S)=

∏
v∈|P1|

L(s,5v,∧
2)= L S(s,5,∧2)

∏
v∈S

L(s,5v,∧
2)

and
ε(s,5,∧2, S)=

∏
v∈|P1|

ε(s,5v,∧
2, ψv)=

∏
v∈S

ε(s,5v,∧
2, ψv).
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As for the ε-factor, we know that ε(s,5v,∧
2, ψv)≡ 1 for v /∈ S. The independence

of ε(s,5,∧2, S) from the choice of ψ can be seen as a consequence of the global
functional equation below.

Theorem 3.3. The global L-function L(s,5,∧2, S) has a meromorphic continua-
tion to the entire plane, and it satisfies the global functional equation

L(s,5,∧2, S)= ε(s,5,∧2, S)L(1 − s, 5̃,∧2, S),

where ε(s,5,∧2, S) is entire and nonvanishing. This identity further implies that
ε(s,5,∧2, S) is independent of ψ as well.

Proof. From the unfolding in Proposition 3.2, and the local calculation of [Jacquet
and Shalika 1990, §7.2 and §9.4] together with Corollary 2.18, we know that for
Re(s) large and for appropriate choice of ϕ, we have

Iψ(s, ϕ,8)= Jψ(s,Wϕ,8)=

∏
v∈|P1|

Jψv (s,Wϕv ,8v)

=

(∏
v∈S

Jψv (s,Wϕv ,8v)

)
L S(s,5,∧2)

=

(∏
v∈S

Jψv (s,Wϕv ,8v)

L(s,5v,∧2)

)
L(s,5,∧2, S)

=

(∏
v∈S

ev(s,Wϕv ,8v)

)
L(s,5,∧2, S),

where ev(s,Wϕv ,8v)= Jψv (s,Wϕv ,8v)/L(s,5v,∧
2). It follows from Theorem 2.1,

ev(s,Wϕv ,8v) is entire. Therefore L(s,5,∧2, S) has a meromorphic continuation,
as the integral Iψ(s, ϕ,8) is a meromorphic function on the entire plane from
Theorem 3.1. While on the other side, we obtain

Iψ−1(1 − s, ϱ(τm)ϕ̃, 8̂)= Jψ−1(1 − s, ϱ(τm)W̃ϕ, 8̂)

=

(∏
v∈S

ẽv(1 − s, ϱ(τm)W̃ϕv , 8̂v)

)
L(1 − s, 5̃,∧2, S),

with ẽv(1−s, ϱ(τm)W̃ϕv , 8̂v)= Jψ−1
(
1−s, ϱ(τm)W̃ϕv , 8̂v

)
/L(1 − s, 5̃v,∧

2). How-
ever we derive from the local functional equation, Theorem 2.2, that

ẽv(1 − s, ϱ(τm)W̃ϕv , 8̂v)=
Jψ−1(1 − s, ϱ(τm)W̃ϕv , 8̂v)

L(1 − s, 5̃v,∧2)

= ε(s,5v,∧
2, ψv)

Jψv (s,Wϕv ,8v)

L(s,5v,∧2)

= ε(s,5v,∧
2, ψv)ev(s,Wϕv ,8v).
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Combining these all together, we get

L(s,5,∧2, S)=

(∏
v∈S

ε(s,5v,∧
2, ψv)

)
L(1 − s, 5̃,∧2, S)

= ε(s,5,∧2, S)L(1 − s, 5̃,∧2, S),

since for v /∈ S we know 5v and ψv are unramified so that ε(s,5v,∧
2, ψv)≡ 1. □

3B. The equality for discrete series representations. Let k0 = Fq((t)) be the
completion of k at the point 0 ∈ |P1

|. We start with a local irreducible unitary
supercuspidal representation ρ◦ and globalize it according to the result of Henniart
and Lomelí [2011; 2013b, Theorem 3.1].

Theorem 3.4 (Henniart–Lomelí). Let ρ◦ be an irreducible unitary supercuspidal
representation of GLm(F). We choose an isomorphism ξ : F

∼
−→k0. Then there

exists a cuspidal unitary automorphic representation 5 =
⊗

′

v5v whose local
components 5v satisfy:

• ρ◦ corresponds to 50 via ξ ;

• at the places v ∈ |P1
| away from 0, 1, and ∞,5v is irreducible and unramified;

• 51 is an irreducible generic subquotient of an unramified principal series
representation;

• 5∞ is an irreducible generic subquotient of a tamely ramified principal series
representation.

We have control at all places outside 0, which makes it possible to deduce the
identity for irreducible supercuspidal representations.

Theorem 3.5 (supercuspidal cases). Let ρ be an irreducible supercuspidal repre-
sentation of GLr . Then we have

L(s, ρ,∧2)= L(s, ρ,∧2).

As a consequence, if ρ is (S2n,2)-distinguished, then ρ is self-dual.

Proof. Twisting by an unramified character does not affect the conclusion, so we
can assume that ρ = ρ◦ is unitary. (See the proof of Theorem 4.4 for details, cf.
[Lomelí 2016, §6.6]). We define the Langlands–Shahidi global L-function and
ε-factors for 5 by

L(s,5,∧2, S)=

∏
v∈|P1|

L(s,5v,∧
2),

εL S(s,5,∧2, ψ, S)=

∏
v∈|P1|

εL S(s,5v,∧
2, ψv).



LOCAL EXTERIOR SQUARE AND ASAI L -FUNCTIONS FOR GL(n) 327

We choose a finite set S = {0, 1,∞} of places. Applying Theorem 3.4 to the
irreducible unitary supercuspidal representation ρ◦, we obtain a cuspidal unitary
automorphic representation5. For our convenience, we rewrite the global functional
equation in [Henniart and Lomelí 2011, §4.1 (vi)] as

(3-2) L(s,5,∧2, S)= εL S(s,5,∧2, S)L(1 − s, 5̃,∧2, S).

The function εL S(s,5,∧2, S) is entire and nonvanishing. From the global func-
tional equation given by Theorem 3.3 and (3-2), this means that the ratio of L-
function satisfies

L(s,5,∧2, S)
L(s,5,∧2, S)

= η(s,5, S)
L(1 − s, 5̃,∧2, S)
L(1 − s, 5̃,∧2, S)

,

where η(s,5, S) = ε(s,5,∧2, S)εL S(s,5,∧2, S)−1 is entire and nonvanishing.
Applying the already established principal series representations in Corollary 2.18,
along with Proposition 2.17, at the places |P1

| − {0} yields:∏
v /∈{0}

L(s,5v,∧
2)=

∏
v /∈{0}

L(s,5v,∧
2),

∏
v /∈{0}

L(1 − s, 5̃v,∧
2)=

∏
v /∈{0}

L(1 − s, 5̃v,∧
2).

Therefore, at the remaining one place, we have

L(s, ρ◦,∧
2)

L(s, ρ◦,∧2)
= η(s,5, S)

L(1 − s, ρ̃◦,∧
2)

L(1 − s, ρ̃◦,∧2)
.

In view of [Ganapathy and Lomelí 2015] and [Kewat and Raghunathan 2012,
Theorem 3.7], L(s, ρ◦,∧

2) and L(s, ρ◦,∧
2) are regular and nonvanishing in the

region Re(s) > 0, whereas similar analytic properties for L(1 − s, ρ̃◦,∧
2) and

L(1 − s, ρ̃◦,∧
2) are valid in the half plane Re(s) < 1. This forces that the ratio

L(s, ρ◦,∧
2)/L(s, ρ◦,∧

2) is an entire and nonvanishing function, and hence it is a
constant. Since these L-factors are normalized, these must be equal.

We now gain the full strength of flexibility to transport L-factors in the Langlands–
Shahidi side to the Rankin–Selberg side. The L-factor L(s, ρ× ρ) is decomposed
as the product of L(s, ρ,∧2) and L(s, ρ,Sym2) (see [Ganapathy and Lomelí 2015;
Henniart and Lomelí 2011; Shahidi 1992, Corollary 8.2]). Then the pole of
L(s, ρ,∧2) at s = 0 detected by the existence of the Shalika functional [Jo 2020a,
Theorem 3.6 (ii)] contributes the pole of L(s, ρ× ρ). This is amount to saying that
ρ is self-dual [Matringe 2015, Proposition 4.6]. □

Once we know the inductivity of ε-factors, we expect that η(s,5, S) ≡ 1,
independent of the choice of S. We now come to the case of discrete series
representations.
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Theorem 3.6 (discrete series cases). Let 1 be a discrete series representation
of GLm . Then we have

L(s,1,∧2)= L(s,1,∧2).

As a consequence, if 1 is (S2n,2)-distinguished, then 1 is self-dual.

Proof. As indicated in the proof of Theorem 4.4, after proper unramified twisting
of 1, we can easily reduce the equality to the case when 1 is a unitary repre-
sentation of the form

[
ρ◦ν

−(ℓ−1)/2, . . . , ρ◦ν
(ℓ−1)/2

]
with ρ◦ a unitary irreducible

supercuspidal representation of GLr (cf. [Lomelí 2016, §6.6]). Taking advantage of
Theorems 2.15 and 3.5, this finally matches with the expression in [Shahidi 1992,
Proposition 8.1]. Concerning the second assertion, we literally reiterate the second
part of the proof of Theorem 3.5 line-by-line, and therefore we omit thorough
arguments entirely. □

The identity can be extended to the class of all irreducible admissible representa-
tions of GLm .

Theorem 3.7. Let π be an irreducible admissible representation of GLm . Then

L(s, π,∧2)= L(s, π,∧2).

Proof. We realize π as the unique Langlands quotient of Langlands type 4 =

IndGLm
Q (1◦1ν

u1 ⊗1◦2ν
u2 ⊗· · ·⊗1◦tν

ut ), which is again of Whittaker type. Thanks
to Theorem 3.6, the working hypothesis is not required to be checked for discrete
series representations. Then Theorem 2.13 gives us that

L(s, 4,∧2)=

∏
1≤k≤t

L(s + 2uk,1◦k,∧
2)

∏
1≤i< j≤t

L(s + ui + u j ,1◦i ×1◦ j ),

which coincides with corresponding decompositions in Langlands–Shahidi theory
[Ganapathy and Lomelí 2015, §3.1 (xi)]. □

By exploiting the main result of Henniart and Lomelí [2011], it can be summa-
rized that the definition of local exterior square L-function via the theory of integral
representations is compatible with the local Langlands correspondence. In what
follows, we let W ′

F denote the Weil–Deligne group of F , and let φ an m-dimensional
(complex-valued) Frobenius semisimple representation of W ′

F . We call this the
Weil–Deligne representation of W ′

F . Let ∧
2 denote the exterior representation

of GLm(C). We then denote by L(s,∧2(φ)) the Artin exterior square L-factor
attached to φ.

Theorem 3.8. Let π be an irreducible admissible representation of GLm(F) and
φ(π) the Weil–Deligne representation of W ′

F corresponding to π under the local
Langlands correspondence. Then

L(s, π,∧2)= L(s, π,∧2)= L
(
s,∧2(φ(π))

)
.
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4. Bump–Friedberg and Flicker zeta integrals

4A. Bump–Friedberg L-factors. Define the embedding J :GLn × GLn →GLm by

J (g, g′)k,l =


gi, j , if k = 2i − 1, l = 2 j − 1,
g′

i, j , if k = 2i, l = 2 j,
0, otherwise,

for m = 2n and J : GLn+1 × GLn → GLm by

J (g, g′)k,l =


gi, j , if k = 2i − 1, l = 2 j − 1,
g′

i, j , if k = 2i, l = 2 j,
0, otherwise,

for m = 2n + 1. As for the intention of holding onto coherent terminology with
[Matringe 2015], interested readers may perceive that we interchange the role
of g and g′ in [Bump and Friedberg 1990]. Let π = IndGLm

Q (11 ⊗ · · · ⊗1t) be a
parabolically induced representation. For each Whittaker function W ∈ W(π, ψ)

and Schwartz–Bruhat function 8 ∈ S(Fn), we define Bump–Friedberg integrals:

Z(s1, s2,W,8)

=

∫
Nn\GLn

∫
Nn\GLn

W(J (g,g′))8(em J (g,g′))|det(g)|s1−1/2
|det(g′)|1/2+s2−s1 dg dg′

when m = 2n and

Z(s1, s2,W,8)

=

∫
Nn\ GLn

∫
Nn+1\ GLn+1

W (J (g, g′))8(em J (g, g′))| det(g)|s1 | det(g′)|s2−s1 dg dg′

when m = 2n + 1. If r is a real number, we denote by δr the character

δr : J (g, g′) 7→

∣∣∣∣ det(g)
det(g′)

∣∣∣∣r .
We denote by χm and µm the characters of Hm :

χm

(
wm

(g
g′

)
w−1

m

)
=

1Hm , for m = 2n;∣∣∣∣ det(g)
det(g′)

∣∣∣∣, for m = 2n + 1;

µm

(
wm

(g
g′

)
w−1

m

)
=


∣∣∣∣ det(g)
det(g′)

∣∣∣∣, for m = 2n;

1Hm , for m = 2n + 1.

We turn toward the case for s1 = s +
1
2 and s2 = 2s. We unify Bump–Friedberg

zeta integrals as one single integral of the form

Z(s,W,8)=

∫
(Nm∩Hm)\Hm

W (h)χ1/2
m (h)8(emh)| det(h)|s dh.
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The twisted analogue of Bump–Friedberg zeta integrals attached to χα is defined by

Z(s,W,8, χα)=

∫
(Nm∩Hm)\Hm

W (h)χα(h)χ1/2
m (h)8(emh)| det(h)|s dh.

The integral Z(s,W,8, χα) converges absolutely for s of real part large enough.
The C-vector space generated by Bump–Friedberg zeta integrals〈

Z(s,W,8, χα) | W ∈ W(π, ψ),8 ∈ S(Fm)
〉

is a C[q±s
]-fractional ideal I(π, χα,BF) of C(q−s). The ideal I(π, χα,BF) is

principal and has a unique generator of the form P(q−s)−1, where P(X) is a
polynomial in C[X ] with P(0)= 1. The Bump–Friedberg L-factor associated to
π is defined by the unique normalized generator [Matringe 2015, Proposition 4.8]

L(s, π, χα,BF)=
1

P(q−s)
.

If α = 1F× is a trivial character, we write L(s, π,BF) for L(s, π, χ1F×
,BF). The

Bump–Friedberg γ -factor

γ (s, π,BF, ψ)= ε(s, π,BF, ψ)
L(1/2 − s, π ι, δ−1/2,BF)

L(s, π,BF)

is a rational function in C(q−s) that depends on a choice of a nontrivial character ψ
(see [Matringe 2015, Proposition 4.11]). While the proof of [Matringe 2014,
Proposition 6.2] reflects the structure of Weil–Deligne representations, our aim is
to show the factorization of L(s, π, χα,BF) as a product of the standard L-factor
L(s + 1/2, π) and the exterior square L-factor L(2s, π,∧2) within the framework
of the Rankin–Selberg method. Our approach here is more direct and concise.

Theorem 4.1 (supercuspidal cases). Let ρ be an irreducible supercuspidal repre-
sentation of GLr . Then

L(s, ρ,BF)= L
(
s +

1
2 , ρ

)
L(2s, ρ,∧2).

Proof. If r = 1, then ρ is a character of F×. The integral is just the Tate integral of
the form

∫
F× ρ(z)8(z)|z|s+1/2 d×z, hence

L(s, ρ,BF)= L
(
s +

1
2 , ρ

)
= L

(
s +

1
2 , ρ

)
L(2s, ρ,∧2),

where the last equality comes from L(2s, ρ,∧2)= 1 (see [Jo 2020a, Theorem 2.13]).
We deduce from Theorem 2.3 aligned with [Matringe 2015, Proposition 4.14] that

all the poles of L(s, ρ,BF) and L(s, ρ,∧2) are necessarily simple. Given r = 2n+1
with n ≥ 1, the result of Matringe [2014, Theorem 3.1] (see Theorem 4.2) tells us
that ρ cannot be H2n+1-distinguished. According to [Jacquet 1979, §3.1] coupled
with [Jo 2020a, Theorem 3.6 (ii)] and [Matringe 2015, Corollary 4.3], we have

L(s, ρ,BF)= L(s, ρ)= L(s, ρ,∧2)= 1.
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Now we turn to the case when r = 2n. Analyzing poles of local L-functions is
just a question of certain distinctions of representations. To be precise, [Jo 2020a,
Theorem 3.6 (i)] together with [Matringe 2015, Corollary 4.3] and Section 2B lead
us to the following equivalent statements:

(i) L(2s, ρ,∧2) has a pole at s = s0;

(ii) L(s, ρ,BF) has a pole at s = s0;

(iii) ρνs0 is (S2n,2)-distinguished;

(iv) ρνs0 is H2n-distinguished.

The above characterization of poles of L-factors can be reinterpreted as

L(s, ρ,BF)= L(2s, ρ,∧2)= L
(
s +

1
2 , ρ

)
L(2s, ρ,∧2),

where the last identity follows from L
(
s +

1
2 , ρ

)
= 1 (see [Jacquet 1979, §3.1]). □

Unlike the case of Jacquet and Shalika’s zeta integrals Sections 2 and 3, it
is necessary to additionally use the hereditary property of H2m+1-distinguished
representations due to Matringe [2015, Theorem 3.1].

Theorem 4.2 (N. Matringe, m = 2n + 1). Let π = IndGL2n+1
Q (11 ⊗12 ⊗ · · ·⊗1t)

be an irreducible generic representation of GL2n+1. Let α be a character of F×

with 0 ≤ Re(α)≤
1
2 . Then π is (H2n+1, χαδ−1/2)-distinguished if and only if π is

a parabolically induced representation of the form IndGL2n+1
P2n,1

(π ′
⊗αν−1/2), for π ′

an irreducible generic (H2n, χα)-distinguished representation of GL2n such that
IndGL2n+1

P2n,1
(π ′

⊗αν−1/2) is still irreducible and generic.

Throughout the rest of Section 4A, a variant of the systematic machinery devel-
oped in Section 2C (in particular, Proposition 2.10 to Theorem 2.12) should continue
to work out in the context of Bump–Friedberg zeta integrals, and it is dealt with in
[Matringe 2015, §4] in great detail and clarity. By doing so, Bump–Friedberg local
L-functions are compatible with the classification of discrete series representation
in terms of supercuspidal ones owing to Bernstein and Zelevinsky [1977] and
[Zelevinsky 1980].

Proposition 4.3. Let 1◦ = [ρ◦ν
−(ℓ−1)/2, . . . , ρ◦ν

(ℓ−1)/2
] be an irreducible square

integrable representation of GLℓr , with ρ◦ an irreducible unitary supercuspidal
representation of GLr .

(i) Suppose that ℓ is even. Then we have

L(s,1◦,BF)

= L(s + ℓ/2, ρ◦)

ℓ/2∏
i=1

L(2s, ρ◦ν
(ℓ+1)/2−i ,∧2)L(2s, ρ◦ν

ℓ/2−i ,Sym2).
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(ii) Suppose that ℓ is odd. Then we have

L(s,1◦,BF)

= L
(

s +
ℓ

2
, ρ◦

)(ℓ+1)/2∏
i=1

L(2s, ρ◦ν
(ℓ+1)/2−i ,∧2)

(ℓ−1)/2∏
i=1

L(2s, ρ◦ν
ℓ/2−i ,Sym2).

Proof. By the uniqueness of the Whittaker functional, the Whittaker model for 1◦

coincides with that for Ind(ρ◦ν
−(ℓ−1)/2

⊗ · · · ⊗ ρ◦ν
(ℓ−1)/2). Likewise the same

trait holds for dual objects provided by Ind(ρ̃◦ν
−(ℓ−1)/2

⊗· · ·⊗ ρ̃◦ν
(ℓ−1)/2) and 1̃◦.

According to [Matringe 2015, Proposition 5.5],

γ (s,1◦,BF, ψ)

∼

ℓ−1∏
i=0

γ

(
s +

1−ℓ

2
+ i, ρ◦,BF, ψ

) ∏
0≤i< j≤ℓ−1

γ (2s + 1 − ℓ+ i + j, ρ◦ × ρ◦, ψ).

With the help of Theorem 4.1, the expression can be reformulated in terms of
L-factors as

γ (s,1◦,BF, ψ)∼

ℓ−1∏
i=0

L(−s−i +ℓ/2, ρ̃◦)

L(s+i +1−ℓ/2, ρ◦)

ℓ−1∏
i=0

L(−2s+ℓ−2i, ρ̃◦,∧
2)

L(2s+1−ℓ+2i, ρ◦,∧2)

×

∏
0≤i< j≤ℓ−1

L(−2s+ℓ−i − j, ρ̃◦×ρ̃◦)

L(2s+1−ℓ+i + j, ρ◦×ρ◦)
.

By virtue of [Jo 2020a, Lemma 5.11] combined with L(−s, ρ◦) ∼ L(s, ρ̃◦) (see
[Jacquet et al. 1983, §8.2 (15)–(16)]), it may be written as

γ (s,1◦,BF, ψ)∼

ℓ−1∏
i=0

L(s+i −ℓ/2, ρ◦)

L(s+i +1−ℓ/2, ρ◦)

ℓ−1∏
i=0

L(2s−ℓ+2i, ρ◦,∧
2)

L(2s+1−ℓ+2i, ρ◦,∧2)

×

∏
0≤i< j≤ℓ−1

L(2s−ℓ+i + j, ρ◦×ρ◦)

L(2s+1−ℓ+i + j, ρ◦×ρ◦)
.

We do the case where ℓ is even, the case where ℓ is odd is treated similarly. At this
moment, we repeat the proof given in [Jo 2020a, Theorem 5.12] with adjusting s
to 2s. After canceling common factors, our quotient is simplified to

(4-1) γ (s,1◦,BF, ψ)

∼
L(s−ℓ/2, ρ◦)

L(s+ℓ/2, ρ◦)

(ℓ/2)−1∏
i=0

L(2s−ℓ+2i, ρ◦,∧
2)L(2s−ℓ+2i+1, ρ◦,Sym2)

L(2s+2i+1, ρ◦,∧2)L(2s+2i, ρ◦,Sym2)
.

Using [Matringe 2015, Corollary 4.1], L
( 1

2 − s, 1̃◦, δ−1/2,BF
)
−1 has zeros in

the half plane Re(s) ≥
1
2 , while L(s,1◦,BF)−1 has its zeros contained in the

region Re(s) ≤ 0. Since the half planes Re(s) ≥
1
2 and Re(s) ≤ 0 are disjoint,
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they do not share factors in C[q±s
]. As ρ is unitary, the poles of the prod-

uct of L-factors in the numerator must lie on the line Re(s) = (ℓ − i)/2 for
i = 0, . . . , ℓ− 2, ℓ− 1, while those in the denominator are located on the line
Re(s)= −i/2 for i = 0, . . . , ℓ− 2, ℓ− 1, ℓ. Therefore, they do not have common
factors at all. We establish the identity from the observation that the ratios (4-1)
and γ (s,1◦,BF, ψ)∼ L

( 1
2 − s, 1̃◦, δ−1/2,BF

)
/L(s,1◦,BF) are all reduced and

the indices i are rearranged. □

Theorem 4.4 is the key step to improve the factorization to the set of discrete series
representations. If we can do this, then the application of the Langlands classification
theorem allows us to extend it to all irreducible admissible representations.

Theorem 4.4 (discrete series cases). Let 1 be an irreducible essentially square
integrable representation of GLm . Then

L(s,1,BF)= L
(
s +

1
2 ,1

)
L(2s,1,∧2).

Proof. We choose an unramified quasicharacter νs1 , s1 ∈C, so that1=1◦ν
s1 , where

1◦ is an irreducible square integrable representation of GLm . We can easily verify
that L(s,1◦ν

s1,BF) = L(s + s1,1◦,BF), L
(
s +

1
2 ,1◦ν

s1
)

= L
(
s + s1 +

1
2 ,1◦

)
,

and L(2s,1◦ν
s1,∧2) = L(2s + 2s1,1◦,∧

2). Hence for the calculation, we may
assume that 1 = 1◦ is unitary. The representation 1 is the segment consisting
of supercuspidal representations of the form 1◦ = [ρ◦ν

−(ℓ−1)/2, . . . , ρ◦ν
(ℓ−1)/2

],

where ρ◦ is an irreducible unitary supercuspidal representation of GLr with m = ℓr .
We replace σ by 1F× in [Cogdell and Piatetski-Shapiro 2017, Corollary in §2.6.2].
Then the formula becomes

L
(
s +

1
2 ,1◦

)
= L

(
s +

1
2 ,1◦ × 1F×

)
= L

(
s +

ℓ
2 , ρ◦

)
.

This may also be seen from [Jacquet 1979, Proposition 3.1.3]. Now we are left
with invoking Theorem 2.15. □

Finally, Theorem 4.5 renders the factorization result unconditional.

Theorem 4.5. Let π be an irreducible admissible representation of GLm . Then we
have

L(s, π,BF)= L
(
s +

1
2
, π
)
L(2s, π,∧2).

Proof. We realize π as the unique Langlands quotient of Langlands type 4 =

IndGLm
Q (1◦1ν

u1 ⊗1◦2ν
u2 ⊗ · · ·⊗1◦tν

ut ), which is again of Whittaker type. The
local Bump–Friedberg L-function is defined to be L(s, π,BF)= L(s, 4,BF). By
[Matringe 2015, Theorem 5.2], we have the equality

L(s, 4,BF)=

∏
1≤k≤t

L(s + uk,1◦k,BF)
∏

1≤i< j≤t

L(2s + ui + u j ,1◦i ×1◦ j ).
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Applying Theorem 4.4, the product can be further decomposed as

L(s, 4,BF)=

∏
1≤k≤t

L
(
s + uk +

1
2 ,1◦k

) ∏
1≤k≤t

L(2s + 2uk,1◦k,∧
2)

×

∏
1≤i< j≤t

L(2s + ui + u j ,1◦i ×1◦ j ).

Collecting the contributions for the first product
∏

L
(
s + uk +

1
2 ,1◦k

)
gives the

standard L-factor L
(
s +

1
2 , 4

)
= L

(
s +

1
2 , π

)
by [Jacquet 1979, Theorem 3.4],

while gathering those for the rest of the product∏
L(2s + 2uk,1◦k,∧

2)
∏

L(2s + ui + u j ,1◦i ×1◦ j )

yields the exterior square L-factor L(2s,4,∧2)= L(2s,π,∧2) by Theorem 2.13. □

We end this section with relating Bump–Friedberg L-factors to Galois theoretic
counterparts. In conclusion, it is a consequence of the local Langlands corre-
spondence that L

(
s +

1
2 , π

)
= L

(
s +

1
2 , φ(π)

)
combined with Theorem 3.8 and

Theorem 4.5.

Theorem 4.6. Let π be an irreducible admissible representation of GLm(F) and
φ(π) its associated Weil–Deligne representation of W ′

F under the local Langlands
correspondence. Then we have

L(s, π,BF)= L
(
s +

1
2 , φ(π)

)
L
(
2s,∧2(φ(π))

)
.

4B. Asai L-factors. Let E be a quadratic extension of F . We denote by x 7→ x̄
the nontrivial associated Galois action. We fix an element z ∈ E× such that z̄ = −z
and a nontrivial character ψF of F . Let

ψE(x)= ψF

( x− x̄
z− z̄

)
, x ∈ E .

Then the additive characterψE of E is trivial on F and defines a character of Nm(E),
which by abuse of notation we again denote by ψE . We shall use the Fourier
transform induced by the additive character ψ on the space of Schwartz–Bruhat
space S(Fm). Let π = IndGLm

Q (11 ⊗· · ·⊗1t) ∈AE(m) be a parabolically induced
representation with an associated Whittaker model W(π, ψE). For each Whittaker
function W ∈W(π, ψE) and each Schwartz–Bruhat function8∈S(Fm), we define
the local Flicker integral [1988; 1993] by

Z(s,W,8)=

∫
Nm\ GLm

W (g)8(em g) |det(g)|s dg,

which is absolutely convergent when the real part of s is sufficiently large. Each
Z(s,W,8) is a rational function of q−s , and hence extends meromorphically to
all of C. These integrals Z(s,W,8) span a fractional ideal I(π,As) of C[q±s

]
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generated by a normalized generator of the form P(q−s)−1, where the polynomial
P(X)∈ C[X ] satisfies P(0)= 1. The local Asai L-function attached to π is defined
by such a unique normalized generator [Matringe 2009, Definition 3.1]

L(s, π,As)=
1

P(q−s)
.

Let us define the local Asai ε-factor, as usual [Matringe 2015, §3] (see [Anandavard-
hanan et al. 2021, §8]), by

ε(s, π, ψ,As)= γ (s, π, ψ,As)
L(s, π,As)

L(1 − s, π ι,As)
.

The Weil–Deligne group W ′

E of E is of index two in the Weil–Deligne group W ′

F
of F , and the quotient W ′

F/W ′

E is naturally identified with Gal(E/F). We fix an
element σ in W ′

F which does not belong to W ′

E once and for all. The image of σ in
W ′

F/W ′

E is the nontrivial element of Gal(E/F), which by abuse of notation is also
denoted by σ . Given an m-dimensional (complex) Frobenius semisimple represen-
tation φ of W ′

E , the Asai representation As(φ) : W ′

F → GL(Cm
⊗ Cm)≃ GLm2(C)

given by (twisted) tensor induction of φ is defined as (see [Anandavardhanan and
Rajan 2005, §2.1], [Krishnamurthy 2012, §2], and [Shankman 2018, §1.2]):

As(φ)(τ )(v⊗w)=

{
φ(τ)(v)⊗φ(στσ−1)(w), if τ ∈ W ′

E ,

φ(τσ−1)(w)⊗φ(στ)(v), if τ /∈ W ′

E .

We then denote by L(s,As(φ)) the Artin L-factor attached to the Asai representa-
tion.

The conjugation σ extends naturally to an automorphism of GLm(E), which we
also denote by σ . If π ∈AE(m), we denote by πσ the representation g 7→ π(σ(g)).

Theorem 4.7. Let π be an irreducible admissible representation of GLm(E) and
φ(π) its associated Weil–Deligne representation of W ′

E under the local Langlands
correspondence. Then we have

L(s, π,As)= L(s, π,As)= L
(
s,As(φ(π))

)
.

Proof. We first consider the case of irreducible unitary supercuspidal represen-
tations ρ◦ of GLr . As a consequence of [Anandavardhanan et al. 2021] joined
with [Anandavardhanan and Rajan 2005, Proposition 6] and [Henniart and Lomelí
2013a], we have

L(s, ρ◦,As)= L(s, ρ◦,As).

Let 1 be a discrete series representation. In the spirit of twists by unramified
characters for Langlands–Shahidi theoretic L-factors [Henniart and Lomelí 2013a,
§3.1 (vi)] and Rankin–Selberg theoretic L-factors [Matringe 2009, Theorem 2.3],
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there is no harm to assume that 1 = 1◦ is an irreducible square integrable rep-
resentation of GLrℓ associated to the segment [ρ◦ν

−(ℓ−1)/2, . . . , ρ◦ν
(ℓ−1)/2

] with
ρ◦ an irreducible unitary supercuspidal representation of GLr . Let χE/F be an
extension to E× of the character F× associated to E/F by the local class field the-
ory. As explained in [Anandavardhanan et al. 2021, Appendix A], [Matringe 2009,
Corollary 4.24] and [Matringe 2009, Theorem 4.26] driven from the Cogdell and
Piatetski-Shapiro method similar to Section 2C depend on the complete classification
of GLm(F)-distinguished representations [Matringe 2011]. Looking at the proof of
this proposition, we need to check that the GLm(F)-distinguished representation,
namely, HomGLm(F)(π, 1GLm(F)) ̸= {0}, is still Galois self-dual, πσ ≃ π̃ , for any
nonarchimedean local field of odd residual characteristic. It is presently written
in this generality in the literature, see [Offen 2018, §3.2.12]. Counting on the
weak multiplicativity of γ (s, π,As, ψ) [Matringe 2009, Corollary 4.24], we get
the results below using arguments parallel to the one employed in the proof of
Goldberg [1994, Theorem 5.6]:

L(s,1◦,As)=

ℓ/2∏
i=1

L(s, ρ◦ν
(ℓ+1)/2−i ,As)L(s, χE/F ⊗ ρ◦ν

ℓ/2−i ,As),

when ℓ is even, and

L(s,1◦,As)=

(ℓ+1)/2∏
i=1

L(s, ρ◦ν
(ℓ+1)/2−i ,As)

(ℓ−1)/2∏
i=1

L(s, χE/F ⊗ ρ◦ν
ℓ/2−i ,As),

when ℓ is odd. The expression is similar to that in Theorem 2.15. This places us in
a position to deduce

(4-2) L(s,1,As)= L(s,1,As)

for any discrete series representations 1 of GLrℓ.
In general, we realize π as the unique Langlands quotient of Langlands type

4= IndGLm
Q (1◦1ν

u1 ⊗1◦2ν
u2 ⊗ · · ·⊗1◦tν

ut ). As such, by the inductive relation
of L(s, π,As) [Matringe 2009, Theorem 4.26], one has the equality

L(s, π,As)=

∏
1≤k≤t

L(s + 2uk,1◦k,∧
2)

∏
1≤i< j≤t

L(s + ui + u j ,1◦i ×1σ
◦ j ).

Consequently, the equality

L(s, π,As)= L(s, π,As)

follows from [Henniart and Lomelí 2013a, §4.2], along with (4-2) for all irreducible
admissible representations π of GLm(E). The remaining part is simply to quote
the main theorem of Henniart and Lomelí [2013a, Theorem 4.3]. □
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ON WEAK CONVERGENCE
OF QUASI-INFINITELY DIVISIBLE LAWS

ALEXEY KHARTOV

We study a new class of so-called quasi-infinitely divisible laws, which is a
wide natural extension of the well-known class of infinitely divisible laws
through the Lévy–Khinchin representations. We are interested in criteria
of weak convergence within this class. Under rather natural assumptions,
we state assertions, which connect a weak convergence of quasi-infinitely
divisible distribution functions with one special type of convergence of their
Lévy–Khinchin spectral functions. The latter convergence is not equivalent
to the weak convergence. So we complement known results by Lindner, Pan,
and Sato (2018) in this field.

1. Introduction

This paper is devoted to the questions concerning weak convergence within a new
class of so-called quasi-infinitely divisible probability laws.

Let F be a distribution function of a probability law on the real line R with the
characteristic function

f (t) :=

∫
R

ei t x d F(x), t ∈ R.

Recall that F (and the corresponding law) is called infinitely divisible if for every
positive integer n there exists a distribution function F1/n such that F = (F1/n)

∗n ,
where ∗ is the convolution, i.e., F is n-fold convolution power of F1/n . It is well
known that F is infinitely divisible if and only if the characteristic function f is
represented by the Lévy–Khinchin formula:

(1) f (t)= exp
{

i tγ +

∫
R

(
ei t x

− 1 −
i t
τ

sin(τ x)
)

1 + x2

x2 dG(x)
}
, t ∈ R,

with some τ > 0, shift parameter γ ∈ R, and with a bounded nondecreasing
spectral function G : R → R that is assumed to be right-continuous with condition
G(−∞)= 0 (all over the paper, G(±∞) denote the limits at ±∞ correspondingly).
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We use u 7→
1
τ

sin(τu) as the centering function in the integral in (1) following
Zolotarev [33; 34]. If (1) holds for some τ = τ0 > 0, then it holds for any τ > 0,
where γ will depend on τ , but G will not. It is well known that the spectral pair
(γ,G) is uniquely determined by f and hence by F . The Lévy–Khinchin formula
plays a fundamental role in probability theory; it also has a lot of applications in
related fields (see [3; 30; 31]).

It turns out that there exists a rather wide class of probability laws that are very
similar to infinitely divisible laws. This class of so-called quasi-infinitely divisible
laws was introduced by Lindner and Sato [22]. Following them, a distribution
function F (and the corresponding law) is called quasi-infinitely divisible if its
characteristic function f admits the representation (1) with some shift parameter
γ ∈ R, spectral function G : R → R of bounded variation on R (not necessarily
monotone), and for some (any) τ > 0. Here G is assumed to be right-continuous
with condition G(−∞)= 0 as before and so f (and F) uniquely determines the
spectral pair (γ,G) (see [13, p. 80]). Observe that, due to the Jordan decomposition,
we can represent

G(x)= G+(x)− G−(x), x ∈ R,

with some bounded nondecreasing functions G+ and G− on R. Also we can always
write γ = γ+

− γ− with some numbers γ+ and γ− from R. Then it is clear that

f (t)= f +(t)/ f −(t), t ∈ R,

where f + and f − are characteristic functions of some two infinitely divisible
distribution functions F+ and F− with the spectral pairs (γ+,G+) and (γ−,G−)

correspondingly, and so F ∗ F−
= F+. Starting from this point of view, it is

rather natural to call distribution function F (and the corresponding law) rationally
infinitely divisible. So every infinitely divisible law is quasi-infinitely divisible, but
the converse is not true. There are a lot of interesting examples of quasi-infinitely
divisible laws, which are not infinitely divisible (see [13, pp. 82–83; 24, p. 165; 25,
pp. 123–124]). Moreover, it seems that the class of quasi-infinitely divisible laws is
essentially wider than the class of infinitely divisible ones. In particular, it is clearly
seen within discrete probability laws (see [2; 18; 19; 23]).

Various forms of definition and the first detailed analysis of the class of quasi-
infinitely divisible laws on R was performed in [23], the multivariate case is consid-
ered in the recent papers [6; 7; 21]. There are some results for discrete probability
laws in this field (see [1; 2; 17; 18; 19]) and for mixed laws (see [4; 5]). It should
be noted that quasi-infinitely divisible laws now have interesting applications in
theory of stochastic processes (see [22; 28]), number theory (see [26]), physics (see
[11; 12]), and insurance mathematics (see [32]).

We now focus on a weak convergence of quasi-infinitely divisible laws. Recall
that, by definition, the sequence (Fn)n∈N (where N is the set of positive integers) of
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distribution functions weakly converges to a distribution function F (we will write
Fn

w
−→ F , n → ∞) if

(2)
∫

R
h(x) d Fn(x)→

∫
R
h(x) d F(x), n → ∞

for any bounded continuous function h : R → R. It is a well known fact that this is
equivalent to the following convergence:

(3) Fn(x)→ F(x), n → ∞ for any x ∈ S,

where S is an arbitrary dense subset of R and, in particular, it can be chosen as the
set of all continuity points of F . The latter convergence is usually called weak too
(see [25]).

The weak convergence is also introduced for the class of real-valued functions of
bounded variation on the real line (or for corresponding signed measures). Following
Bogachev [10], it is analogously defined by (2), but instead of Fn , n ∈ N, and F we
write some functions of bounded variation Gn , n ∈ N, and G correspondingly. We
will save the notation Gn

w
−→ G, n → ∞, in this case. It should be noted that weak

convergence here is not equivalent to the analog of convergence (3) with functions
of bounded variation (see [10, Section 1.4]).

There are rather general results by Lindner, Pan, and Sato in [23] concerning the
weak convergence of quasi-infinitely divisible distribution functions. The authors
state the conditions under which the weak convergence of distribution functions
implies the weak convergence of the corresponding spectral functions together with
the convergence of the shift parameters and vice versa. Namely, let (Fn)n∈N be a
sequence of quasi-infinitely divisible distribution functions and let (γn,Gn) be the
spectral pair of Fn for every n ∈ N. Let F be a quasi-infinitely divisible distribution
function with the spectral pair (γ,G). Then the results from [23] are in fact the
following: (1) If γn → γ and Gn

w
−→ G, n → ∞, then Fn

w
−→ F , n → ∞. (2) If

we suppose Fn
w

−→ F , n → ∞, then, under some assumptions on tightness and
uniform boundedness for (Gn)n∈N, we have γn → γ and Gn

w
−→ G, n → ∞. Here

we omitted some details, the full formulation will be given in Section 3.
In this work we complement the results by Lindner, Pan, and Sato [23]. We

connect the weak convergence of quasi-infinitely divisible distribution functions
with one type of convergence of their spectral functions. The latter convergence is
a special modification of the convergence (3) (see the next section for details), and
we think that it is more natural and explicit than the weak convergence for the class
of functions of bounded variation. A very similar convergence has appeared in [10,
Theorem 1.4.7], but we are not aware of the existence of a definition for such a
convergence. So we introduce the necessary definition in Section 2. We also show
that the introduced convergence for functions of bounded variation follows from
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the pointwise convergence of their Fourier–Stieltjes transforms under some natural
assumptions. This and other close propositions are key tools for our main results
devoted to the weak convergence of quasi-infinitely divisible distribution functions.
The main results are presented in Section 3. All proofs are provided in Section 4.

2. Preliminaries and tools

Let us consider the class of all functions G : R → R of bounded variations on R.
Since we will be interested in the functions G, which generate the Lebesgue–
Stieltjes signed measures µG , we will focus only on right-continuous functions G.
So for the measures we will have µG((a, b])= G(b)− G(a) for all a, b ∈ R and
a ⩽ b. Recall that all intervals (a, b] constitute the generating semiring for µG . So
if there are two right-continuous functions G1 and G2 of bounded variations such
that G2(x)= G1(x)+C , x ∈ R, where C ∈ R is a constant, then the corresponding
measures are the same. Therefore we will consider only functions G that satisfy
G(−∞)= 0.

Let V denote the class of all functions G : R → R of bounded variation on R,
which are right-continuous at every point x ∈ R and satisfy G(−∞)= 0. For every
G ∈ V its total variation on R will be denoted by ∥G∥ and the total variation on
(−∞, x] by |G|(x), x ∈ R. So we have

(4) |G(x)| ⩽ |G|(x)⩽ ∥G∥ for any x ∈ R

and |G|(+∞)= ∥G∥.
We now introduce a special type of convergence on the class V . Suppose that

a whole sequence (Gn)n∈N and a function G are from V . We say that (Gn)n∈N

converges basically to G, and write Gn ⇒ G, n → ∞, if each of its subsequences
contains a further subsequence (Gnk )k∈N such that

Gnk (x2)− Gnk (x1)→ G(x2)− G(x1), k → ∞

for any x1, x2 ∈ R except at most a countable set, which in general depends on the
choice of the subsequences.

Let us show that the basic convergence is equivalent to the weak convergence
for distribution functions. Let (Fn)n∈N be a sequence of distribution functions and
let F be a distribution function. Suppose that Fn

w
−→ F , n → ∞. Then we have (3),

where S is the set of all continuity points of F . Hence

Fn(x2)− Fn(x1)→ F(x2)− F(x1), n → ∞ for all x1, x2 ∈ S.

Since R\S is at most countable set, we conclude that Fn ⇒ F , n →∞, by definition.
We now suppose that Fn ⇒ F , n → ∞. Let (Fnk )k∈N be an arbitrary subsequence
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of (Fn)n∈N such that

(5) Fnk (x2)− Fnk (x1)→ F(x2)− F(x1), k → ∞

for any x1, x2 ∈ R except at most a countable set D. Let us fix ε > 0 and choose
rε > 0 such that ±rε ∈ R\ D and 1 − F(rε)+ F(−rε) < ε. We define

Tk(r) := 1 − Fnk (r)+ Fnk (−r), k ∈ N, r > 0.

Due to (5), there exists kε ∈ N such that Tk(rε) < ε for all k ⩾ kε. Taking rε greater
to provide Tk(rε) < ε for all k < kε, we obtain supk∈N Tk(rε) < ε because, due to
monotonicity of every Fnk , the inequality Tk(rε) < ε still holds for all k ⩾ kε. Thus
supk∈N Tk(r)→ 0, r → ∞, and in particular, supk∈N Fnk (−r)→ 0, r → ∞. Due
to the latter, it is easy to check that (5) yields the convergence Fnk (x)→ F(x) for
any x ∈ R except at most countable set D. Since R\ D is a dense subset of R, we
have Fnk

w
−→ F , k → ∞. Thus, according to definition of basic convergence, every

subsequence of (Fn)n∈N contains a further subsequence (Fnk )k∈N that satisfies (5)
and hence weakly converges to F . By the well-known fact in [8, p. 337], it means
that the whole sequence (Fn)n∈N weakly converges to F .

The proved assertion can be generalized for bounded nondecreasing functions
F ∈ V and Fn ∈ V , n ∈ N, but here the basic convergence Fn ⇒ F , n → ∞, must
be taken together with an additional condition that Fn(+∞)→ F(+∞), n → ∞

(see [13, p. 39]). It should be noted that basic and weak convergences are not
equivalent in a general case for functions from V . Indeed, the weak convergence
implies the basic one that will follow from Theorem 5 below, and also it is seen
from Theorem 1.4.7 in [10]. However, the converse is not true. The latter assertion
is concluded from the following simple examples. Below 1a with fixed a ∈ R

denotes the following functions: 1a(x)= 1 for x ⩾ a and 1a(x)= 0 for x < a.

Example 1. Let us define Gn(x) := 1n(x)−1n+1(x), x ∈ R, n ∈ N. It is easily seen
that Gn ∈ V , n ∈N, and Gn(x)→0, n →∞ for all x ∈R. Setting G(x) :=0, x ∈R,
we have the basic convergence Gn ⇒ G, n →∞. Here Gn(+∞)= G(+∞)=0 and
∥Gn∥ = 2, n ∈ N. However, for the continuous and bounded function x 7→ cos(πx),
x ∈ R, we conclude that∫

R
cos(πx) dGn(x)↛

∫
R
cos(πx) dG(x)= 0, n → ∞.

Indeed,∫
R
cos(πx) dGn(x)= cos(πn)− cos(π(n + 1))

= (−1)n − (−1)n+1
= 2 · (−1)n ↛ 0, n → ∞.

Thus (Gn)n∈N doesn’t weakly converge to G. □
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Example 2. Let Gn(x) := n10(x)− n11/n2(x), x ∈ R, n ∈ N. So Gn ∈ V , n ∈ N,
and Gn(x)→ 0, n → ∞ for all x ̸= 0. We set G(x) := 0, x ∈ R, and we obtain that
Gn ⇒ G, n →∞. Observe that ∥Gn∥= 2n →∞, n →∞. Hence (Gn)n∈N cannot
be weak convergent sequence, because, under the weak convergence, total variations
must be uniformly bounded (see Proposition 1.4.4. in [10, p. 22]). Moreover, it
even fails to hold that

(6)
∫

R
h(x) dGn(x)→

∫
R
h(x) dG(x), n → ∞

for any continuous function h with compact support. Indeed, let h(x) :=
√

x for
x ∈ [0, 1], h(x) :=

√
2 − x for x ∈ [1, 2], and h(x) := 0 for x /∈ [0, 2]. Obviously,

the function h satisfies the required properties. So we have∫
R
h(x) dGn(x)= h(0) · n − h(1/n2) · n = 0 −

√
1/n2

· n = −1 for every n ∈ N,

but
∫

R
h(x) dG(x)= 0. Thus (6) does not hold. However, it is interesting to note

that there is a convergence of Fourier–Stieltjes transforms. Indeed, for any t ∈ R∫
R
ei t x dGn(x)=(1−ei t/n2

)·n =−
i t
n
(1+o(1))→0=

∫
R
ei t x dG(x), n →∞. □

The next example shows that the use of the subsequences in the definition of
basic convergence is essential.

Example 3. For any n ∈ N we set kn ∈ N ∪ {0} satisfying 2kn ⩽ n < 2kn+1. We
define

Gn(x) := 1an (x)− 1bn (x), x ∈ R,

where
an :=

n − 2kn

2kn
and bn :=

n + 1 − 2kn

2kn
, n ∈ N.

It is seen that the interval [an, bn] is vanishing (bn − an = 2−kn → 0) and shifting
over [0, 1] as n → ∞. Let h : R → R be a bounded continuous function. Due to
the uniform continuity of h on [0, 1], we have that∫

R
h(x) dGn(x)= h(an)− h(bn)→ 0, n → ∞.

So (Gn)n∈N weakly converges to G(x) := 0 for all x ∈ R. Then, by the comments
above, (Gn)n∈N basically converges to G that can be also checked directly by
definition. However, for any x0, x1, x2 ∈ [0, 1) there is no limit either for Gn(x0)

or Gn(x2)− Gn(x1) as n → ∞, because Gn(x) takes an infinite number of times
each of the values 1 or 0, when x ∈ [an, bn) or not correspondingly. Note that, due
to the weak convergence of (Gn)n∈N, there is a convergence of Fourier–Stieltjes
transforms:∫

R
ei t x dGn(x)→

∫
R
ei t x dG(x)= 0 as n → ∞ for every t ∈ R. □
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The following example shows that it is important to use the differences of values
of the functions at points x1 and x2 in the definition of the basic convergence in
order to stay within V .

Example 4. For every n ∈ N we define Gn(x) := 1+
x
n for x ∈ [−n, n], Gn(x)= 0

for x<−n, and Gn(x)=2 for x>n. So Gn are nondecreasing continuous functions
and Gn(+∞) = ∥Gn∥ = 2, n ∈ N. We see that Gn(x) → 1 as n → ∞ for any
x ∈ R. However, an identical 1 doesn’t belong to V (it must be 0 at −∞). At the
same time for any real x1 and x2 we have Gn(x2)− Gn(x1)→ 0, n → ∞, and we
conclude that (Gn)n∈N basically converges to the function G(x) := 0 for all x ∈ R,
which is from V . Of course, (Gn)n∈N doesn’t weakly converge to G here, because∫

R
dGn(x)= 2 ↛

∫
R
dG(x)= 0, n → ∞.

Note that for t ̸= 0 we have∫
R
ei t x dGn(x)=

1
n

∫ n

−n
ei t x dx =

ei tn
−e−i tn

i tn
→ 0, n → ∞

and ∫
R
ei t x dGn(x)|t=0 =

∫
R
dGn(x)= Gn(+∞)= 2, n ∈ N.

Thus the Fourier–Stieltjes transforms of Gn , n ∈ N, pointwisely converge to the
Fourier–Stieltjes transform of G (i.e., to identical 0) for almost all t ∈ R. □

We now consider a general question about the relationship between the basic
convergence of functions from V and the convergence of their Fourier–Stieltjes
transforms. We do not pretend to study this question in full here; instead, we present
only those assertions that will be used in the main results of the article.

Let (Gn)n∈N be a sequence of functions from V . Let us define the corresponding
sequence of Fourier–Stieltjes integrals:

gn(t)=

∫
R
ei t x dGn(x), t ∈ R, n ∈ N.

The results below in fact show that, under the rather weak and natural assumptions,
the pointwise convergence of gn implies the basic convergence of Gn as n → ∞.

We will use the following assumption:

(7) lim
n→∞

∥Gn∥ = B <∞.

Theorem 5. Let (Gn)n∈N satisfy (7). Suppose that gn(t) → g(t), n → ∞, for
almost all t ∈ R with some function g : R → C. Then there exists a function G ∈ V
such that ∥G∥ ⩽ B and the equality

(8) g(t)=

∫
R
ei t x dG(x)
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holds for almost all t ∈ R including all continuity points of the function g. The
function G is uniquely determined in the class V , and Gn ⇒ G, n → ∞. If
also gn(0) → g(0), n → ∞, and g is continuous at t = 0, then additionally
Gn(+∞)→ G(+∞), n → ∞.

We are not aware of any results with such assertion. There are some close remarks
in [9] and [29]. It is seen that this theorem complements and partially generalizes
the well-known Levy’s continuity theorem, which was stated for sequences of
probability distribution functions.

Suppose that the sequence (Gn)n∈N weakly converges to a function G from V
with Fourier–Stieltjes transform g. Then (7) is satisfied (see Proposition 1.4.4. in
[10, p. 22]) and gn(t)→ g(t), n → ∞ for every t ∈ R. According to the theorem,
we have the basic convergence Gn ⇒ G and also Gn(+∞)→ G(+∞), n → ∞.
Thus we showed that the weak convergence implies the basic convergence.

We next formulate the analog of Theorem 5 using the decompositions

(9) Gn(x)= G+

n (x)− G−

n (x), x ∈ R, n ∈ N,

where G+
n and G−

n are nondecreasing functions from V . Note that (9) are not
necessarily corresponding to the Hahn–Jordan decomposition (see (13) below).
Here we assume

(10) lim
n→∞

G−

n (+∞)= M <∞,

which can sometimes be more convenient for checking than (7).

Proposition 6. Let (Gn)n∈N satisfy (10) for some decompositions (9). Suppose that
gn(0)→ c ∈ R, n → ∞. Then (7) holds with some B ⩽ c + 2M.

Thus if there is a convergence of gn , n ∈N, at t =0, then for some (9) assumptions
(7) and (10) are equivalent. So we come to the following assertion.

Theorem 7. Let (Gn)n∈N satisfy (10) for some decompositions (9). Suppose that
gn(t) → g(t), n → ∞, for almost all t ∈ R including t = 0 with some function
g : R → C. Then g(0) ∈ R, the condition (7) is satisfied with B ⩽ g(0)+ 2M , and
the assertions of Theorem 5 hold. If also g is continuous at t = 0, then additionally
Gn(+∞)→ G(+∞), n → ∞.

3. Main results

Let (Fn)n∈N be a sequence of quasi-infinitely divisible distribution function with
corresponding sequence of characteristic function ( fn)n∈N. Let every fn admit the
representation

(11) fn(t)= exp
{

i tγn+

∫
R

(
ei t x

−1−
i t
τ

sin(τ x)
)

1 + x2

x2 dGn(x)
}
, t ∈R, n ∈N,
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where γn ∈ R, Gn ∈ V , n ∈ N, and τ > 0 is a fixed number. We are interested in
criteria of the weak convergence of (Fn)n∈N in terms of the spectral pairs (γn,Gn),
n ∈ N.

Assertions of the following Theorems 8 and 9 were obtained by Lindner, Pan,
and Sato in [23] (where the results were presented in another form).

Theorem 8. If γn → γ and Gn
w

−→ G, n → ∞, with some γ ∈ R and G ∈ V , then
(γ,G) is the spectral pair for some quasi-infinitely divisible distribution function
F , and (Fn)n∈N weakly converges to F.

We next use the decompositions

(12) Gn(x)= G+

n (x)− G−

n (x), x ∈ R, n ∈ N,

where G+
n and G−

n are nondecreasing functions from V . There exists an important
way of choosing G+

n and G−
n . Let µGn be the signed measure that is generated

by Gn for every n ∈ N, i.e., such that µGn ((a, b])= Gn(b)−Gn(a) for all a, b ∈ R,
a ⩽ b, n ∈ N. Every measure µGn is uniquely represented by the Hahn–Jordan
decomposition µGn = µ+

Gn
− µ−

Gn
, where µ+

Gn
and µ−

Gn
are nonnegative finite

measures concentrated on some disjoint sets (see [10, p. 3]). So we can choose

(13) G+

n (x)= µ+

Gn
((−∞, x]) and G−

n (x)= µ−

Gn
((−∞, x]), x ∈ R, n ∈ N.

In this case we will have (12) and additionally that |Gn|(x) = G+
n (x)+ G−

n (x),
x ∈ R, n ∈ N.

Theorem 9. Let F be a distribution function and (Fn)n∈N weakly converge to F.
Suppose that G+

n and G−
n from (12) are defined according to the Hahn–Jordan

decomposition by (13) for every n ∈ N. Suppose that the sequence (G−
n )n∈N

satisfies the assumptions

sup
n∈N

∥G−

n ∥<∞ and lim
r→∞

sup
n∈N

(1 − |G−

n |(r)+ |G−

n |(−r))= 0

(uniform boundedness in variation and tightness, correspondingly). Then F is
quasi-infinitely divisible with some spectral pair (γ,G). Moreover, γn → γ and
Gn

w
−→ G, n → ∞.

Theorems 8 and 9 connect the weak convergence of quasi-infinitely divisible
distribution functions with the weak convergence of their spectral functions. We
are interested in analogs of these theorems but with the basic convergence of the
spectral functions.

We will use the following assumption:

(14) lim
n→∞

∥Gn∥ = B <∞.
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Theorem 10. Suppose that (Fn)n∈N satisfies (14) with some B ⩾ 0. Let (Fn)n∈N

weakly converge to a distribution function F. Then F is quasi-infinitely divisible
with some spectral pair (γ,G), where γ ∈ R and G ∈ V with ∥G∥ ⩽ B. Moreover,
γn → γ , Gn ⇒ G and Gn(+∞)→ G(+∞), n → ∞.

The next theorem is an analog of this one, but with the assumption

(15) lim
n→∞

G−

n (+∞)= M <∞

on decompositions (12) for Gn , n ∈ N. If we choose G+
n and G−

n according to
the Hahn–Jordan decomposition by (13) for every n ∈ N, then (15) is weaker
than (14). Also observe that (15) is satisfied, when we deal with nondecreasing
functions Gn , n ∈ N. It should be noted, however, that it is not required in the
theorems and corollaries below that G+

n and G−
n in (12) must be chosen according

to the Hahn–Jordan decomposition.

Theorem 11. Suppose that (Fn)n∈N satisfies (15) with some M ⩾ 0 and for some
decompositions (12). Let (Fn)n∈N weakly converge to a distribution function F.
Then (14) holds for some B ⩾ 0 and all assertions of Theorem 10 are true. Also we
have that B ⩽ G(+∞)+ 2M.

Theorems 10 and 11 yield necessary conditions for the weak convergence within
the class of quasi-infinitely divisible distribution functions under the assumption (14)
or (15).

Corollary 12. Suppose that (Fn)n∈N satisfies (14) or (15) for some decomposi-
tions (12). Let F be a quasi-infinitely divisible distribution function F with spectral
pair (γ,G), where γ ∈ R and G ∈ V . If the sequence (Fn)n∈N weakly converges
to F , then γn → γ , Gn ⇒ G and Gn(+∞)→ G(+∞), n → ∞.

Also Theorems 10 and 11 state sufficient conditions for membership of the class
of quasi-infinitely divisible distribution functions.

Corollary 13. A distribution function F is quasi-infinitely divisible if it is a weak
limit of a sequence (Fn)n∈N of quasi-infinitely divisible distribution functions (with
characteristic functions (11)), which satisfies (14) or (15) for some decomposi-
tions (12).

Note that this corollary is a stronger version of the same assertion in Theorem 9,
because we don’t assume the tightness for (G−

n )n∈N and we don’t require the use
of the Hahn–Jordan decomposition.

It is known (see [23, p. 17]) that a weak limit of quasi-infinitely divisible distri-
bution functions is not necessarily quasi-infinitely divisible. Hence assumptions
(14) or (15) cannot be simply omitted in Corollary 13. However, it seems that they
can be done weaker (see [23, Example 4.4]).
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We will use a notion of relative compactness for (Fn)n∈N in the next theorem.
Recall that (Fn)n∈N is said to be relatively compact if every its subsequence contains
a further subsequence that weakly converges to a distribution function. It is clear
that a weakly convergent sequence of distribution functions is relatively compact.
In general, the property of relative compactness is not difficult for checking due
to Prokhorov’s theorem and various probability inequalities. Also some criteria of
relative compactness are known for particular important sequences of distribution
functions (for example, see [15; 16; 17]).

Theorem 14. Suppose that (Fn)n∈N satisfies (14). If (Fn)n∈N is relatively compact
and γn → γ , Gn ⇒ G, n → ∞, with some γ ∈ R and G ∈ V , then (γ,G) is
the spectral pair for a quasi-infinitely divisible distribution function F and the
sequence (Fn)n∈N weakly converges to F.

This theorem yields sufficient conditions for the weak convergence within the
class of quasi-infinitely divisible distribution functions under the assumption (14).

Corollary 15. Suppose that (Fn)n∈N satisfies (14). Let F be a quasi-infinitely
divisible distribution function F with spectral pair (γ,G), where γ ∈ R and G ∈ V .
If (Fn)n∈N is relatively compact and γn → γ , Gn ⇒ G, n → ∞, then (Fn)n∈N

weakly converges to F.

Corollaries 12 and 15 directly yield the following criterion.

Theorem 16. Suppose that (Fn)n∈N satisfies (14). Let F be a quasi-infinitely
divisible distribution function F with spectral pair (γ,G), where γ ∈ R and G ∈ V .
The sequence (Fn)n∈N weakly converges to F if and only if (Fn)n∈N is relatively
compact and γn → γ , Gn ⇒ G, n → ∞. Moreover, the convergence Gn(+∞)→

G(+∞), n → ∞, can be added to the necessary conditions.

We now formulate the analogs of Theorems 14 and 16, and of Corollary 15 under
the assumption (15). They are directly stated due to the following simple note.

Suppose that a sequence (Gn)n∈N from V satisfies (15) for some decomposi-
tions (12). If limn→∞Gn(+∞) is finite, then (14) holds. Indeed, according to (12),
it follows from the inequalities

∥Gn∥⩽∥G+

n ∥+∥G−

n ∥= G+

n (+∞)+G−

n (+∞)= Gn(+∞)+2G−

n (+∞), n ∈N.

So we obtain the following results.

Theorem 17. Suppose that (Fn)n∈N satisfies (15) for some decompositions (12). If
(Fn)n∈N is relatively compact and γn → γ , Gn ⇒ G, and Gn(+∞) → G(+∞),
n → ∞, with some γ ∈ R and G ∈ V , then all assertions of Theorem 14 hold.

So Theorems 14 and 17 complement Theorem 8: we use weaker convergence for
the spectral functions (Gn)n∈N, but we additionally assume the relative compactness
of (Fn)n∈N.
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Corollary 18. Suppose that (Fn)n∈N satisfies (15) for some decompositions (12).
Let F be a quasi-infinitely divisible distribution function F with the spectral pair
(γ,G), where γ ∈ R and G ∈ V . If (Fn)n∈N is relatively compact and γn → γ ,
Gn ⇒ G and Gn(+∞)→ G(+∞), n → ∞, then (Fn)n∈N weakly converges to F.

Corollaries 12 and 18 directly yield the following criterion.

Theorem 19. Suppose that (Fn)n∈N satisfies (15) for some decompositions (12). Let
F be a quasi-infinitely divisible distribution function F with spectral pair (γ,G),
where γ ∈ R and G ∈ V . The sequence (Fn)n∈N weakly converges to F if and only
if (Fn)n∈N is relatively compact and γn → γ , Gn ⇒ G, and Gn(+∞)→ G(+∞),
n → ∞.

On account of comments before Example 1 in Section 2, Theorems 16 and
19 complement similar well-known results for the weak convergence of infinitely
divisible distribution functions (see [13, p. 87]).

4. Proofs

Proof of Theorem 5. First, observe that the function g is measurable, because it is
an almost everywhere limit of continuous (hence measurable) functions gn , n ∈ N.
So we have

(16)
∫

R
gn(t)ρ(t) dt →

∫
R

g(t)ρ(t) dt, n → ∞

for any function ρ ∈ L1(R). Indeed, due to (7), there exists a constant B0 > 0 such
that |gn(t)|⩽ ∥Gn∥⩽ B0 for all n ∈ N, and convergence (16) holds by the Lebesgue
dominated convergence theorem.

Let us define the function

ϕ(x) :=

∫
R
ei t xρ(t) dt, x ∈ R.

Observe that for every n ∈ N we have

(17)
∫

R
gn(t)ρ(t) dt =

∫
R

(∫
R
ei t x dGn(x)

)
ρ(t) dt

=

∫
R

(∫
R
ei t xρ(t) dt

)
dGn(x)=

∫
R
ϕ(x) dGn(x).

Let us consider the last integral. Due to (4) and (7), by Helly’s first theorem (see [27,
pp. 222 and 240]), there exists a subsequence (Gnk )k∈N in (Gn)n∈N and a function
of bounded variation G∗ : R → R such that Gnk (x)→ G∗(x) as k →∞ for all x ∈ R.
Note that, in general, G∗ may not be right-continuous (see Example 3). But ϕ is
bounded and continuous on R and hence there exists the Riemann–Stieltjes integral∫

R
ϕ(x) dG∗(x). Also the (Lebesgue–Stieltjes) integrals

∫
R
ϕ(x) dGn(x) coincide

with the corresponding Riemann–Stieltjes integrals. Next, due to the well-known
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fact that ϕ(x)→ 0 as x → ±∞, by Helly’s second theorem (see [27, p. 240]), we
have the following convergence for the Riemann–Stieltjes integrals:∫

R
ϕ(x) dGnk (x)→

∫
R
ϕ(x) dG∗(x), k → ∞.

Let us define G(x) := G∗(x+)− G∗(−∞), x ∈ R (note that G∗(−∞) ̸= 0 in
general, see Example 4). So G is right-continuous on R and G(−∞) = 0, i.e.,
G ∈ V . Since G(x) equals G∗(x)−G∗(−∞) for all x ∈ R except at most countable
set, due to the continuity of ϕ, we have∫

R
ϕ(x) dG∗(x)=

∫
R
ϕ(x) dG(x),

where the integral on the right-hand side can be considered as Lebesgue–Stieltjes
integral. Thus we have the following convergence with the Lebesgue–Stieltjes
integrals: ∫

R
ϕ(x) dGnk (x)→

∫
R
ϕ(x) dG(x), k → ∞.

The integral on the right-hand side admits the following representation analogously
to (17): ∫

R
ϕ(x) dG(x)=

∫
R

(∫
R
ei t x dG(x)

)
ρ(t) dt.

Due to (16) and (17), we also have∫
R
ϕ(x) dGnk (x)→

∫
R

g(t)ρ(t) dt, k → ∞.

Thus we obtain

(18)
∫

R
g(t)ρ(t) dt =

∫
R

(∫
R
ei t x dG(x)

)
ρ(t) dt

for any function ρ ∈ L1(R). This implies that

(19) g(t)=

∫
R
ei t x dG(x) for almost every t ∈ R.

Indeed, conversely, suppose that there exists a bounded set E of nonzero Lebesgue
measure such that 1(t) := g(t)−

∫
R

ei t x dG(x) ̸= 0, t ∈ E . Let us introduce the
sets

E1 := {t ∈ E : Re1(t) > 0}, E2 := {t ∈ E : Re1(t) < 0},

E3 := {t ∈ E : Im1(t) > 0}, E4 := {t ∈ E : Im1(t) < 0}.

It is easily seen that E = E1 ∪ E2 ∪ E3 ∪ E4. Hence at least one E j has nonzero
Lebesgue measure. We denote any such set by E∗. Next, according to the property
of strict positivity of integral, we obtain∣∣∣∫

E∗

1(t) dt
∣∣∣⩾ ∣∣∣∫

E∗

Re1(t) dt
∣∣∣ =

∫
E∗

|Re1(t)| dt > 0 for E∗ = E1 or E∗ = E2,
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and∣∣∣∫
E∗

1(t) dt
∣∣∣⩾ ∣∣∣∫

E∗

Im1(t) dt
∣∣∣ =

∫
E∗

|Im1(t)| dt > 0 for E∗ = E3 or E∗ = E4.

Thus we have∣∣∣∫
E∗

g(t) dt −

∫
E∗

(∫
R
ei t x dG(x)

)
dt

∣∣∣ =

∣∣∣∫
E∗

1(t) dt
∣∣∣> 0.

This contradicts (18) when we choose ρ as follows: ρ(t)= 1, t ∈ E∗ and ρ(t)= 0,
t /∈ E∗. It is valid since ρ ∈ L1(R) due to the boundedness E∗ ⊂ E . Thus (19) is true.

Let us show that (19) holds for every continuity point of the function g. Let T be
the set of all t ∈ R for which (19) holds. Hence the Lebesgue measure of R\T equals
zero. Let g be continuous at the fixed point t0. So we can choose tm ∈ T , m ∈ N

such that tm → t0, m → ∞. Then g(tm)→ g(t0), m → ∞, and at the same time

g(tm)=

∫
R
ei tm x dG(x)→

∫
R
ei t0x dG(x), m → ∞

due to continuity of the function t 7→
∫

R
ei t x dG(x) on R. Thus we have

g(t0)=

∫
R
ei t0x dG(x).

According to (19), the function g almost everywhere coincides with the continu-
ous function t 7→

∫
R

ei t x dG(x), t ∈ R. So the latter function is uniquely determined
by g within the class of all continuous complex-valued functions on R. Next, it
is well known that t 7→

∫
R

ei t x dG(x), t ∈ R, uniquely determines G within the
class V . Therefore g uniquely determines G in the class V .

Let’s return to the sequence (Gnk )k∈N. From the above we know that Gnk (x)→

G∗(x) for all x ∈ R and G(x)= G∗(x)− G∗(−∞) for all x ∈ R except at most a
countable set D where G∗ is not right-continuous. Then for all x1, x2 ∈R\D we have

(20) Gnk (x2)− Gnk (x1)

→ (G(x2)+G∗(−∞))− (G(x1)+G∗(−∞))= G(x2)−G(x1), k → ∞.

Let (Gml )l∈N be an arbitrary subsequence of (Gn)n∈N. Analogously to the
above, there exists a further subsequence (Gm′

k
)k∈N in (Gmk )k∈N, which pointwise

converges to some function of bounded variation H∗ : R → R, i.e., Gm′

k
(x)→ H∗(x),

k → ∞ for all x ∈ R. Defining H(x) := H∗(x+)− H∗(−∞), x ∈ R, we as before
will obtain g(t) =

∫
R

ei t x d H(x) for almost all t ∈ R, with H ∈ V . Since G is a
unique function within V , which represents g by (8), we have H(x)= G(x), x ∈ R.
We also have

Gm′

k
(x2)− Gm′

k
(x1)→ G(x2)− G(x1), k → ∞

for all x1, x2 ∈ R except at most countable set D′ where H∗ is not right-continuous
(in general D′

̸= D). So we proved that Gn ⇒ G, n → ∞.
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Let us consider the numbers gn(0) =
∫

R
dGn(x) = Gn(+∞), n ∈ N. If we

suppose that g is continuous at t = 0, then, by the above remarks, we will have
g(0)=

∫
R

dG(x)= G(+∞). Therefore, assuming to hold gn(0)→ g(0), n → ∞,
we will obtain Gn(+∞)→ G(+∞), n → ∞.

It remains to prove that ∥G∥ ⩽ B. On the contrary, suppose that this is false.
Then we can find y0, y1, . . . , yN ∈ R such that

(21) B <
N∑

j=1
|G(y j )− G(y j−1)| ⩽ ∥G∥.

Let us take our sequence (Gnk )k∈N and the set D, which is at most countable. Since
G is right-continuous and the set R\D is dense, we can assume that y0, y1, . . . , yN

are chosen from R \ D. Next, due to the convergence (20) and assumption (7), we
have

N∑
j=1

|G(y j )− G(y j−1)| = lim
k→∞

N∑
j=1

|Gnk (y j )− Gnk (y j−1)| ⩽ lim
n→∞

∥Gn∥ ⩽ B,

which contradicts (21). □

Proof of Proposition 6. By the assumption gn(0)→ c ∈ R, n → ∞. Since gn(0)=∫
R

dGn(x)= Gn(+∞), n ∈ N, we have the convergence Gn(+∞)→ c, n → ∞.
Let us consider decompositions (9). We have Gn(+∞)= G+

n (+∞)− G−
n (+∞),

n ∈ N. Also observe that

∥Gn∥⩽∥G+

n ∥+∥G−

n ∥= G+

n (+∞)+G−

n (+∞)= Gn(+∞)+2G−

n (+∞), n ∈N.

Therefore

B = lim
n→∞

∥Gn∥ ⩽ lim
n→∞

Gn(+∞)+ 2 lim
n→∞

G−

n (+∞)= c + 2M.

Thus we have (7) with B ⩽ g(0)+ 2M . □

Proof of Theorem 7. By the assumption gn(0) → g(0), n → ∞. Since gn(0) =∫
R

dGn(x)= Gn(+∞), n ∈N, we have the convergence Gn(+∞)→ g(0), n →∞.
So the sequence Gn(+∞) ∈ R, n ∈ N, has a finite limit g(0) that must be real.
According to Proposition 6, condition (7) holds with some B ⩽ g(0)+ 2M . Using
Theorem 5, we get all its assertions. So g(t) =

∫
R

ei t x dG(x) holds for some
G ∈ V and for all t ∈ R that are continuity points of the function g. Under the
assumption, g is continuous at t = 0, and we have g(0) =

∫
R

dG(x) = G(+∞).
Since Gn(+∞)→ g(0), n → ∞, we obtain that

Gn(+∞)→ G(+∞), n → ∞. □

We need the following lemma for proving Theorem 10.
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Lemma 20. For any t ∈ R and τ > 0 the following representations hold:

ei t x
− 1 −

i t
τ

sin(τ x)=

∫
At,τ

eisx dUt,τ (s),(
ei t x

− 1 −
i t
τ

sin(τ x)
)

1
x2 =

∫
At,τ

eisx dVt,τ (s),

(22)

(
ei t x

− 1 −
i t
τ

sin(τ x)
)

1 + x2

x2 =

∫
At,τ

eisx dWt,τ (s), x ∈ R,(23)

where At,τ :=
{
s ∈ R : |s| ⩽ max{|t |, τ }

}
, and

Ut,τ (s) := 1t(s)− 10(s)− t
2τ (1τ (s)− 1−τ (s)), s ∈ R,(24)

Vt,τ (s) :=

∫ s

−∞

ρt,τ (y) dy,

ρt,τ (s) := −
1
2

(
|s − t | − |s| − t

2τ (|s − τ | − |s + τ |)
)
, s ∈ R,

(25)

Wt,τ (s) := Ut,τ (s)+ Vt,τ (s), s ∈ R.(26)

For any t ∈ R and τ > 0 it is true that Ut,τ (s)= 0 and ρt,τ (s)= 0 for all s /∈ At,τ ,
ρt,τ is a continuous function on R with a broken-line graph, and, in particular,
ρt,τ ∈ L1(R), the functions Ut,τ , Vt,τ , and Wt,τ belong to the class V .

Proof of Lemma 20. Let us fix t ∈ R, τ > 0, and define At,τ as in the formulation.
We write

(27) ei t x
−1−

i t
τ

sin(τ x)= ei t x
−1−

t
2τ
(eiτ x

−e−iτ x)=

∫
R

eisx dUt,τ (s), x ∈R,

where Ut,τ is defined by (24). Using the definition of the function 1a( · ), a ∈ R,
it is easily seen that Ut,τ is an right-continuous function on R, Ut,τ (s)= 0 for all
s /∈ At,τ , and in particular, Ut,τ ∈ V . Therefore the set R can be changed by At,τ in
the integral (27).

Let us consider the function

ϕt,τ (x) :=

(
ei t x

− 1 −
i t
τ

sin(τ x)
)

1
x2 , x ∈ R.

Observe that ϕt,τ ∈ L1(R). So we define

(28) ρt,τ (s) :=
1

2π

∫
R

e−isxϕt,τ (x) dx, s ∈ R.

Let us find an explicit formula for ρt,τ (s) for every s ∈ R. Observe that x 7→

Reϕt,τ (x), x ∈ R, is an even function and x 7→ Imϕt,τ (x), x ∈ R, is an odd
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function. Therefore

ρt,τ (s)=
1

2π

∫
R

(
Reϕt,τ (x) cos(sx)+ Imϕt,τ (x) sin(sx)

)
dx

=
1
π

∫
∞

0

(
Reϕt,τ (x) cos(sx)+ Imϕt,τ (x) sin(sx)

)
dx

=
1
π

∫
∞

0

(
cos(t x)−1

x2 cos(sx)+
sin(t x)− t

τ
sin(τ x)

x2 sin(sx)
)

dx, s ∈ R.

Next, using the known trigonometric formulas, we write

ρt,τ (s)

=
1
π

∫
∞

0

(
cos(t x) cos(sx)+ sin(t x) sin(sx)− cos(sx)

x2 −

t
τ

sin(τ x) sin(sx)
x2

)
dx

=
1
π

∫
∞

0

(
cos((s − t)x)− cos(sx)

x2 −
t
τ

cos((s − τ)x)− cos((s + τ)x)
2x2

)
dx

=
1
π

∫
∞

0

cos(|s − t |x)− cos(|s|x)
x2 dx

−
t

2τ
·

1
π

∫
∞

0

cos(|s − τ |x)− cos(|s + τ |x)
x2 dx, s ∈ R.

It is known (see [14, p. 447, formula 3.782(2)]) that∫
∞

0

1 − cos(ax)
x2 dx =

aπ
2
, a ⩾ 0.

Hence
ρt,τ (s)= −

1
2

(
|s − t | − |s| − t

2τ (|s − τ | − |s + τ |)
)
, s ∈ R,

as in (25). We see that ρt,τ is a continuous function with a broken-line graph. Also
observe that ρt,τ (s)= 0 for all s /∈ At,τ . Indeed, if s >max{|t |, τ }, then

ρt,τ (s)=−
1
2

(
s−t−s− t

2τ (s−τ−(s+τ))
)
=−

1
2

(
−t− t

2τ ·(−2τ)
)
=−

1
2(−t+t)=0,

and if s <− max{|t |, τ }, then

ρt,τ (s)=−
1
2

(
−(s−t)+s−

t
2τ (−(s−τ)+s+τ)

)
=−

1
2

(
t− t

2τ ·2τ
)
=−

1
2(t−t)= 0.

Thus ρt,τ ∈ L1(R). By the way, observe that Vt,τ , which is defined by (25), is a
continuous function on R and it vanishes at −∞, i.e., Vt,τ ∈ V . Then, according to
these remarks and (28), we have

ϕt,τ (x)=

∫
R

eisxρt,τ (s) ds =

∫
At,τ

eisxρt,τ (s) ds =

∫
At,τ

eisx dVt,τ (s), x ∈ R.

Next, summing the proved equalities in (22), we get (23) with Wt,τ defined
by (26). Since Ut,τ and Vt,τ belong to V , we conclude that Wt,τ ∈ V . □
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Proof of Theorem 10. Let f be a characteristic function of the limit distribution
function F . By the continuity theorem, we have

(29) fn(t)→ f (t), n → ∞ for every t ∈ R.

Moreover, it is well known (see [25]) that

(30) sup
t∈[−T,T ]

| fn(t)− f (t)| → 0, n → ∞ for any T > 0.

First let us recall that characteristic functions of quasi-infinitely divisible distri-
butions have no zeroes on the real line (see [23] or (32) below). So, in particular,
fn(t) ̸= 0, t ∈ R, n ∈ N. We now show that f (t) ̸= 0 for all t ∈ R. For any fixed
n ∈ N and t ∈ R we consider

| fn(t)| = exp
{∫

R

(
cos(t x)− 1

)1 + x2

x2 dGn(x)
}

⩾ exp
{
−

∣∣∣∫
R

(
cos(t x)− 1

)1 + x2

x2 dGn(x)
∣∣∣}

⩾ exp
{
−

∫
R

(
1 − cos(t x)

)1 + x2

x2 d|Gn|(x)
}
.

Let us estimate the inner function x 7→ (1 − cos(t x)) 1+x2

x2 , x ∈ R, which is equal

to t2

2 at x = 0 for the continuity by the well known convention. Due to the inequality

1 − cos y ⩽ y2

2 , y ∈ R, for the case |t x | ⩽ 2 we have

(1 − cos(t x))
1 + x2

x2 ⩽
t2x2

2
·

1 + x2

x2 =
t2

+ t2x2

2
⩽

t2

2
+ 2.

Using the simple inequality 1 − cos y ⩽ 2, y ∈ R, for the case |t x |> 2 we obtain

(1 − cos(t x))
1 + x2

x2 ⩽ 2 ·
1 + x2

x2 = 2 ·

(
1
x2 + 1

)
⩽ 2 ·

(
t2

4
+ 1

)
=

t2

2
+ 2.

Thus

(31) (1 − cos(t x))
1 + x2

x2 ⩽
t2

2
+ 2 for any x ∈ R, t ∈ R.

Thus for any n ∈ N and t ∈ R we obtain

(32) | fn(t)| ⩾ exp
{
−

∫
R

( t2

2 + 2
)

d|Gn|(x)
}

= exp
{
−

( t2

2 + 2
)
∥Gn∥

}
> 0.

Hence, due to (14) and (29), we have

| f (t)|= lim
n→∞

| fn(t)|⩾ exp
{
−

( t2

2 +2
)

lim
n→∞

∥Gn∥
}
= exp

{
−

( t2

2 +2
)
B

}
>0, t ∈R,

i.e., f (t) ̸= 0 for any t ∈ R.



ON WEAK CONVERGENCE OF QUASI-INFINITELY DIVISIBLE LAWS 359

Due to the above remarks, the distinguished logarithms t 7→ Ln f (t) and t 7→

Ln fn(t), n ∈ N, are defined for all t ∈ R. According to (11), we have

(33) Ln fn(t)= i tγn +

∫
R

(
ei t x

−1−
i t
τ

sin(τ x)
)

1 + x2

x2 dGn(x), t ∈ R, n ∈ N.

Due to the convergence (29), we have that

(34) Ln fn(t)→ Ln f (t), n → ∞ for every t ∈ R.

Hence, in particular,

γn =
Im(Ln fn(τ ))

τ
→

Im(Ln f (τ ))
τ

∈ R, n → ∞.

We denote this limit by γ . So we have

(35) γn → γ, n → ∞.

We next introduce the following functions

ψ(t, s) := Ln f (t)− 1
2(Ln f (t − s)+ Ln f (t + s)), t ∈ R, s ⩾ 0,

and analogously

(36) ψn(t, s) := Ln fn(t)− 1
2(Ln fn(t −s)+Ln fn(t +s)), t ∈ R, s ⩾ 0, n ∈ N.

From (34) we conclude that

(37) ψn(t, s)→ ψ(t, s), n → ∞ for any t ∈ R, s ⩾ 0.

Moreover, since (30) implies the convergence (see [20, p. 15], or [31, p. 34])

sup
t∈[−T,T ]

|Ln fn(t)− Ln f (t)| → 0, n → ∞ for any T > 0,

it is clear that

(38) sup
t,s∈[−T,T ]

|ψn(t, s)−ψ(t, s)| → 0, n → ∞ for any T > 0.

We next show that ψn , n ∈ N, are uniformly bounded over t ∈ R and n ∈ N for
any fixed s ⩾ 0. Using (33) in (36), we have

(39) ψn(t, s)

= i tγn +

∫
R

(
ei t x

− 1 −
i t
τ

sin(τ x)
)

1 + x2

x2 dGn(x)

−
1
2

(
i2tγn +

∫
R

(
ei t x(e−isx

+ eisx)− 2 −
i2t
τ

sin(τ x)
)

1 + x2

x2 dGn(x)
)

=

∫
R

ei t x(1 − cos(sx))
1 + x2

x2 dGn(x), t ∈ R, s ⩾ 0, n ∈ N.
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The estimate (31) yields

sup
t∈R

|ψn(t, s)| ⩽ sup
t∈R

∫
R

∣∣∣ei t x(1 − cos(sx))
1 + x2

x2

∣∣∣ d|Gn|(x)

=

∫
R

(1−cos(sx))
1+x2

x2 d|Gn|(x)⩽
(

s2

2
+1

)
∥Gn∥, s ⩾ 0, n ∈ N.

According to (14), there exists a constant B0 ⩾ 0 such that ∥Gn∥⩽ B0 for all n ∈ N.
Then we conclude

(40) sup
n∈N

sup
t∈R

|ψn(t, s)| ⩽ B0 ·

(
s2

2
+ 1

)
, s ⩾ 0.

Additionally, in view of (37), we obtain

(41) sup
t∈R

|ψ(t, s)| ⩽ B0 ·

(
s2

2
+ 1

)
, s ⩾ 0.

Next, since
∫

∞

0 (s2
+ 1) e−s ds <∞, we can define the functions

gn(t) :=
∫

∞

0
ψn(t, s) e−s ds, n ∈N and g(t) :=

∫
∞

0
ψ(t, s) e−s ds, t ∈R,

and, due to (37), conclude at once by the Lebesgue dominated convergence theorem
that

gn(t)→ g(t), n → ∞ for every t ∈ R.

Let us prove that

(42) sup
t∈[−T,T ]

|gn(t)− g(t)| → 0, n → ∞ for any T > 0.

We fix any T > 0 and ε > 0. It is clear that for every n ∈ N

(43) sup
t∈[−T,T ]

|gn(t)− g(t)| ⩽
∫

∞

0
sup

t∈[−T,T ]

|ψn(t, s)−ψ(t, s)| e−s ds.

We denote by Jn(T ) the last integral for every n ∈ N. Let us choose a constant
hε > 0 such that

(44) B0

∫
∞

hε
(s2

+ 2) e−s ds < ε.

Then we write Jn(T )= Jn,1(T )+ Jn,2(T ), n ∈ N, where

Jn,1(T ) :=

∫ hε

0
sup

t∈[−T,T ]

|ψn(t, s)−ψ(t, s)| e−s ds,

Jn,2(T ) :=

∫
∞

hε
sup

t∈[−T,T ]

|ψn(t, s)−ψ(t, s)| e−s ds.
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All the integrals Jn(T ), Jn,1(T ), and Jn,2(T ) are nonnegative. Observe that

Jn,1(T )⩽ sup
t∈[−T,T ]

s∈[0,hε]

|ψn(t, s)−ψ(t, s)|
∫ hε

0
e−s ds

⩽ sup
t,s∈[−Tε,Tε]

|ψn(t, s)−ψ(t, s)|, n ∈ N,

where Tε := max{T, hε}. Due to (38), the last supremum vanishes as n → ∞. So
there exists nε ∈ N such that Jn,1(T ) < ε for any n ⩾ nε. Let us turn to Jn,2(T ).
According to (40), (41), and (44), we have

Jn,2(T )⩽
∫

∞

hε

(
sup
t∈R

|ψn(t, s)| + sup
t∈R

|ψ(t, s)|
)

e−s ds ⩽
∫

∞

hε
B0(s2

+ 2) e−s ds < ε.

Then Jn(T ) = Jn,1(T )+ Jn,2(T ) < 2ε for any n ⩾ nε. Since ε > 0 was chosen
arbitrarily, Jn(T )→ 0 as n → ∞. Thus, according to (43), we obtain (42). Since
g is a uniform limit of continuous functions gn on any segment [−T, T ] as n → ∞,
the function g is continuous on R.

Let us consider the functions gn , n ∈ N. Using (39), we write

gn(t)=

∫
∞

0
ψn(t, s) e−s ds

=

∫
∞

0

(∫
R

ei t x(1 − cos(sx))
1 + x2

x2 dGn(x)
)

e−s ds

=

∫
R

(∫
∞

0
(1 − cos(sx)) e−s ds

)
ei t x 1 + x2

x2 dGn(x), t ∈ R, n ∈ N.

The inner integral is calculated (see [14, p. 486, formula 3.893(2)]):∫
∞

0
(1−cos(sx)) e−s ds = 1−

∫
∞

0
cos(sx) e−s ds = 1−

1
1 + x2 =

x2

1 + x2 , x ∈ R.

Therefore we have

gn(t)=

∫
R

ei t x dGn(x), t ∈ R, n ∈ N.

We now use Theorem 5. So there exists a unique function G ∈ V such that
∥G∥ ⩽ B and the equality

g(t)=

∫
R

ei t x dG(x)

holds for all t ∈ R, because g is continuous on R. Moreover, due to the theorem,
we have Gn ⇒ G and also Gn(+∞)→ G(+∞), n → ∞.
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We now prove that for any t ∈ R and τ > 0

(45)
∫

R

(
ei t x

− 1 −
i t
τ

sin(τ x)
)

1 + x2

x2 dGn(x)

→

∫
R

(
ei t x

− 1 −
i t
τ

sin(τ x)
)

1 + x2

x2 dG(x), n → ∞.

Let us fix t ∈ R and τ > 0. From Lemma 20 we know that(
ei t x

− 1 −
i t
τ

sin(τ x)
)

1 + x2

x2 =

∫
At,τ

eisx dWt,τ (s), x ∈ R,

where At,τ =
{
s ∈ R : |s| ⩽ max{|t |, τ }

}
and Wt,τ ∈ V . Hence for every n ∈ N∫

R

(
ei t x

− 1 −
i t
τ

sin(τ x)
)

1 + x2

x2 dGn(x)

=

∫
R

(∫
At,τ

eisx dWt,τ (s)
)

dGn(x)

=

∫
At,τ

(∫
R

eisx dGn(x)
)

dWt,τ (s)=

∫
At,τ

gn(s) dWt,τ (s).

Also we have analogously that∫
R

(
ei t x

− 1 −
i t
τ

sin(τ x)
)

1 + x2

x2 dG(x)=

∫
At,τ

g(s) dWt,τ (s).

Thus (45) takes the form∫
At,τ

gn(s) dWt,τ (s)→

∫
At,τ

g(s) dWt,τ (s), n → ∞.

This convergence holds. Indeed, for every n ∈ N∣∣∣∫
At,τ

gn(s) dWt,τ (s)−
∫

At,τ

g(s) dWt,τ (s)
∣∣∣ ⩽ ∫

At,τ

|gn(s)− g(s)| d|Wt,τ |(s)

⩽ sup
s∈At,τ

|gn(s)− g(s)| · ∥Wt,τ∥,

where, due to (42), the supremum vanishes as n → ∞. Thus we proved (45).
From (33), (35), and (45), for any t ∈ R we have

Ln fn(t)= i tγn +

∫
R

(
ei t x

− 1 −
i t
τ

sin(τ x)
)

1 + x2

x2 dGn(x)

→ i tγ +

∫
R

(
ei t x

− 1 −
i t
τ

sin(τ x)
)

1 + x2

x2 dG(x), n → ∞.
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According to (34), we conclude that

Ln f (t)= i tγ +

∫
R

(
ei t x

− 1 −
i t
τ

sin(τ x)
)

1 + x2

x2 dG(x), t ∈ R,

where, as we have already proved, γ ∈ R and G ∈ V . Thus f has the Lévy–Khinchin
type representation with (γ,G), i.e., the distribution function F corresponding to f
is quasi-infinitely divisible. □

Proof of Theorem 11. Let f be a characteristic function of the limit distribu-
tion function F . So we have (29) and also (30) (see comments in the proof of
Theorem 10).

Recall that fn(t) ̸= 0, t ∈ R, n ∈ N. Let us choose δ > 0 such that f (t) ̸= 0,
|t | ⩽ δ (it is possible because f is continuous on R and f (0)= 1). Let us consider
values of the Khinchin functional χδ( · ) (see [24, p. 79]) with parameter δ on f
and fn , n ∈ N:

χδ( f )= −
1
δ

∫ δ

0
ln | f (s)| ds, χδ( fn)= −

1
δ

∫ δ

0
ln | fn(s)| ds, n ∈ N.

These quantities are finite and nonnegative. Due to (30), we have

(46) χδ( fn)→ χδ( f ), n → ∞.

Observe that

(47) χδ( fn)= −
1
δ

∫ δ

0

(∫
R

(cos(sx)− 1)
1 + x2

x2 dGn(x)
)

ds

=

∫
R

(
1
δ

∫ δ

0
(1 − cos(sx)) ds

)
1 + x2

x2 dGn(x)

=

∫
R

(
1 −

sin(δx)
δx

)
1 + x2

x2 dGn(x), n ∈ N.

where we set

(48) (cos(sx)− 1)
1 + x2

x2

∣∣∣
x=0

= −
s2

2
,

(
1 −

sin(δx)
δx

)
1 + x2

x2

∣∣∣
x=0

=
δ2

3!
,

according to known expansions cos y = 1 −
y2

2 + o(y2) and sin y = y −
y3

3!
+ o(y3),

y → 0. Let us consider the inner function of the integral in (47):

(49) x 7→

(
1 −

sin(δx)
δx

)
1 + x2

x2 , x ∈ R.

By convention (48), it is continuous at the point x = 0. We see that this function is
continuous and strictly positive on R. Also observe that it tends to 1 as x → ±∞.
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Hence it is clear that there exist positive constants cδ and Cδ such that

(50) 0< cδ ⩽
(

1 −
sin(δx)
δx

)
1 + x2

x2 ⩽ Cδ <∞, x ∈ R.

Let us take some decompositions (12) for Gn , n ∈ N. According to (47):

χδ( fn)

=

∫
R

(
1 −

sin(δx)
δx

)
1 + x2

x2 dG+

n (x)−
∫

R

(
1 −

sin(δx)
δx

)
1 + x2

x2 dG−

n (x), n ∈ N.

Due to (50), we obtain

χδ( fn)⩾ cδ

∫
R

dG+

n (x)− Cδ

∫
R

dG−

n (x)= cδ G+

n (+∞)− CδG−

n (+∞), n ∈ N.

From this we have

G+

n (+∞)⩽
χδ( fn)+ CδG−

n (+∞)

cδ
, n ∈ N.

Hence, due to (15) and (46), we get

(51) lim
n→∞

G+

n (+∞)⩽ 1
cδ

(
lim

n→∞
χδ( fn)+ Cδ lim

n→∞
G−

n (+∞)
)

=
1
cδ
(χδ( f )+ CδM) <∞.

According to (12) and conventions there, it is true that

(52) ∥Gn∥ ⩽ ∥G+

n ∥ +∥G−

n ∥ = G+

n (+∞)+ G−

n (+∞), n ∈ N.

So we conclude from (15) and (51) that (14) holds for some B <∞.
Thus all assertions of Theorem 10 hold. In particular, Gn ⇒ G and Gn(+∞)→

G(+∞), n → ∞, where G is some function from V . It remains to prove that
B ⩽ G(+∞)+ 2M . Using inequality (52), we write

B = lim
n→∞

∥Gn∥ ⩽ lim
n→∞

(G+

n (+∞)+ G−

n (+∞))

⩽ lim
n→∞

(G+

n (+∞)− G−

n (+∞))+ 2 lim
n→∞

G−

n (+∞),

but Gn(+∞)= G+
n (+∞)− G−

n (+∞), n ∈ N, and we obtain

B ⩽ lim
n→∞

Gn(+∞)+ 2 lim
n→∞

G−

n (+∞)= G(+∞)+ 2M,

as required. □

Proof of Theorem 14. Let (Fnk )k∈N be an arbitrary subsequence of (Fn)n∈N, which
weakly converges to some distribution function F∗. Due to the assumption of
relative compactness of (Fn)n∈N, such subsequence exists. By Theorem 10, F∗ is
quasi-infinitely divisible with some spectral pair (γ∗,G∗), where γ∗ ∈ R and G∗ ∈ V .
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Moreover, γnk → γ∗ and Gnk ⇒ G∗, k → ∞. According to the assumption that
γn → γ , n → ∞, we conclude that γ∗ = γ . Let us show that G∗ = G. By definition,
the convergence Gnk ⇒ G∗, k → ∞, implies the existence of a subsequence
(Gn′

l
)l∈N in (Gnk )k∈N such that

Gn′

l
(x2)− Gn′

l
(x1)→ G∗(x2)− G∗(x1), l → ∞

for all x1, x2 ∈ R except at most countable set D′. Due to the assumption that
Gn ⇒ G, n → ∞, we can choose a further subsequence (Gn′′

l
)l∈N in (Gn′

l
)l∈N such

that
Gn′′

l
(x2)− Gn′′

l
(x1)→ G(x2)− G(x1), l → ∞

for all x1, x2 ∈ R except at most countable set D′′ (and let D′
̸= D′′ in general).

Therefore
G∗(x2)− G∗(x1)= G(x2)− G(x1)

for all x1, x2 ∈ R except at most countable set D′
∪ D′′. Letting x1 → −∞ over

x1 ∈ R \ (D′
∪ D′′) we have G∗(x2) = G(x2) for every x2 ∈ R \ (D′

∪ D′′) and,
consequently for all x2 ∈ R, because G∗,G ∈ V , i.e., they are right-continuous and

G∗(−∞)= G(−∞)= 0.

Thus we proved that γ∗ = γ and G∗ = G.
The previous remark means that (γ,G) is the spectral pair for some quasi-

infinitely divisible distribution function F . We also saw that every subsequence
(Fnk )k∈N, which weakly converges to some distribution function, converges exactly
to F , because a spectral pair uniquely determines a distribution function. Therefore,
since (Fn)n∈N is relatively compact, we conclude that whole sequence (Fn)n∈N

weakly converges to F (this is a known fact, see [8, p. 337]). □
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ONTI, Moscow, 1938.

[21] M. Kutlu, “On a denseness result for quasi-infinitely divisible distributions”, Statist. Probab.
Lett. 176 (2021), art. id. 109139. MR Zbl

[22] A. Lindner and K.-i. Sato, “Properties of stationary distributions of a sequence of generalized
Ornstein–Uhlenbeck processes”, Math. Nachr. 284:17-18 (2011), 2225–2248. MR Zbl

[23] A. Lindner, L. Pan, and K.-i. Sato, “On quasi-infinitely divisible distributions”, Trans. Amer.
Math. Soc. 370:12 (2018), 8483–8520. MR Zbl

http://dx.doi.org/10.1002/mana.201800073
http://msp.org/idx/mr/3994295
http://msp.org/idx/zbl/1480.60038
http://dx.doi.org/10.1090/proc/16312
http://msp.org/idx/mr/4556212
http://msp.org/idx/zbl/07660726
http://dx.doi.org/10.3150/21-bej1386
http://dx.doi.org/10.3150/21-bej1386
http://msp.org/idx/mr/4388938
http://msp.org/idx/zbl/07526584
http://dx.doi.org/10.1007/978-3-030-83309-1_6
http://msp.org/idx/mr/4425787
http://msp.org/idx/zbl/1496.60013
http://msp.org/idx/mr/1324786
http://msp.org/idx/zbl/0822.60002
http://dx.doi.org/10.1090/S0002-9904-1934-05843-9
http://msp.org/idx/mr/1562834
http://msp.org/idx/zbl/60.0221.03
http://dx.doi.org/10.1090/surv/234
http://msp.org/idx/mr/3837546
http://msp.org/idx/zbl/1412.60003
http://dx.doi.org/10.1063/1.4958724
http://dx.doi.org/10.1063/1.4958724
http://msp.org/idx/mr/3522606
http://msp.org/idx/zbl/1342.81106
http://dx.doi.org/10.1142/S0219025715500289
http://dx.doi.org/10.1142/S0219025715500289
http://msp.org/idx/mr/3447229
http://msp.org/idx/zbl/1333.81454
http://msp.org/idx/mr/0062975
http://msp.org/idx/zbl/0056.36001
https://www.sciencedirect.com/science/article/abs/pii/B9780080471112500133
http://msp.org/idx/mr/2360010
http://msp.org/idx/zbl/1208.65001
https://www.mathnet.ru/eng/znsl6400
https://www.mathnet.ru/eng/znsl6400
https://doi.org/10.1007/s10958-018-3719-y
http://msp.org/idx/mr/3602417
http://msp.org/idx/zbl/1386.60067
http://dx.doi.org/10.4213/tvp5132
http://dx.doi.org/10.4213/tvp5132
https://doi.org/10.1137/S0040585X97T988915
http://msp.org/idx/mr/3755886
http://msp.org/idx/zbl/1414.60029
http://dx.doi.org/10.1016/j.spl.2019.05.008
http://msp.org/idx/mr/3957474
http://msp.org/idx/zbl/1458.60023
http://dx.doi.org/10.1016/j.spl.2022.109436
http://msp.org/idx/mr/4393935
http://msp.org/idx/zbl/1486.60027
https://www.mathnet.ru/eng/znsl7057
https://doi.org/10.1007/s10958-022-06242-8
http://msp.org/idx/mr/4237080
http://msp.org/idx/zbl/07654804
http://dx.doi.org/10.1016/j.spl.2021.109139
http://msp.org/idx/mr/4260048
http://msp.org/idx/zbl/1476.60037
http://dx.doi.org/10.1002/mana.200910223
http://dx.doi.org/10.1002/mana.200910223
http://msp.org/idx/mr/2859761
http://msp.org/idx/zbl/1239.60010
http://dx.doi.org/10.1090/tran/7249
http://msp.org/idx/mr/3864385
http://msp.org/idx/zbl/1428.60034


ON WEAK CONVERGENCE OF QUASI-INFINITELY DIVISIBLE LAWS 367

[24] J. V. Linnik and I. V. Ostrovskii, Decomposition of random variables and vectors, Transl. Math.
Monogr. 48, Amer. Math. Soc., Providence, RI, 1977. MR Zbl

[25] E. Lukacs, Characteristic functions, 2nd ed., Hafner, New York, 1970. MR Zbl

[26] T. Nakamura, “A complete Riemann zeta distribution and the Riemann hypothesis”, Bernoulli
21:1 (2015), 604–617. MR Zbl

[27] I. P. Natanson, Theory of functions of a real variable, revised ed., Ungar, New York, 1983.

[28] R. Passeggeri, “Spectral representations of quasi-infinitely divisible processes”, Stochastic
Process. Appl. 130:3 (2020), 1735–1791. MR Zbl

[29] R. S. Phillips, “On Fourier–Stieltjes integrals”, Trans. Amer. Math. Soc. 69 (1950), 312–323.
MR Zbl

[30] A. Rocha-Arteaga and K.-i. Sato, Topics in infinitely divisible distributions and Lévy processes,
Aportaciones Mat. Investigación 17, Soc. Mat. Mexicana, Mexico City, 2003. MR Zbl

[31] K.-i. Sato, Lévy processes and infinitely divisible distributions, Cambridge Stud. Adv. Math. 68,
Cambridge Univ. Press, 1999. MR Zbl

[32] H. Zhang, Y. Liu, and B. Li, “Notes on discrete compound Poisson model with applications to
risk theory”, Insurance Math. Econom. 59 (2014), 325–336. MR Zbl

[33] V. M. Zolotarev, One-dimensional stable distributions, Transl. Math. Monogr. 65, Amer. Math.
Soc., Providence, RI, 1986. MR Zbl

[34] V. M. Zolotarev, Modern theory of summation of random variables, de Gruyter, Berlin, 1997.
MR Zbl

Received June 15, 2022.

ALEXEY KHARTOV

LABORATORY FOR APPROXIMATION PROBLEMS OF PROBABILITY

SMOLENSK STATE UNIVERSITY

SMOLENSK

RUSSIA

alexeykhartov@gmail.com

http://msp.org/idx/mr/0428382
http://msp.org/idx/zbl/0358.60020
http://msp.org/idx/mr/0346874
http://msp.org/idx/zbl/0201.20404
http://dx.doi.org/10.3150/13-BEJ581
http://msp.org/idx/mr/3322332
http://msp.org/idx/zbl/1328.60048
http://dx.doi.org/10.1016/j.spa.2019.05.014
http://msp.org/idx/mr/4058288
http://msp.org/idx/zbl/1471.60073
http://dx.doi.org/10.2307/1990361
http://msp.org/idx/mr/39106
http://msp.org/idx/zbl/0039.33101
http://msp.org/idx/mr/2042245
http://msp.org/idx/zbl/1054.60019
http://msp.org/idx/mr/1739520
http://msp.org/idx/zbl/0973.60001
http://dx.doi.org/10.1016/j.insmatheco.2014.09.012
http://dx.doi.org/10.1016/j.insmatheco.2014.09.012
http://msp.org/idx/mr/3283233
http://msp.org/idx/zbl/1306.60050
http://dx.doi.org/10.1090/mmono/065
http://msp.org/idx/mr/854867
http://msp.org/idx/zbl/0589.60015
http://dx.doi.org/10.1515/9783110936537
http://msp.org/idx/mr/1640024
http://msp.org/idx/zbl/0907.60001
mailto:alexeykhartov@gmail.com




PACIFIC JOURNAL OF MATHEMATICS
Vol. 322, No. 2, 2023

https://doi.org/10.2140/pjm.2023.322.369

C∗-IRREDUCIBILITY OF COMMENSURATED SUBGROUPS

KANG LI AND EDUARDO SCARPARO

Given a commensurated subgroup 3 of a group 0, we completely character-
ize when the inclusion 3 ≤ 0 is C∗-irreducible and provide new examples
of such inclusions. In particular, we obtain that PSL(n, Z) ≤ PGL(n, Q) is
C∗-irreducible for any n ∈ N, and that the inclusion of a C∗-simple group
into its abstract commensurator is C∗-irreducible.

The main ingredient that we use is the fact that the action of a commensu-
rated subgroup 3 ≤ 0 on its Furstenberg boundary ∂F3 can be extended
in a unique way to an action of 0 on ∂F3. Finally, we also investigate the
counterpart of this extension result for the universal minimal proximal space
of a group.

1. Introduction

A group 0 is said to be C∗-simple if its reduced C∗-algebra C∗
r (0) is simple. After

the breakthrough characterizations of C∗-simplicity in [Kalantar and Kennedy 2017;
Breuillard et al. 2017], several directions of research applying the new methods in
different settings arose.

One of the recent interesting directions is investigating when inclusions of groups
3 ≤ 0 are C∗-irreducible, in the sense that every intermediate C∗-algebra B in
C∗

r (3) ⊂ B ⊂ C∗
r (0) is simple. Rørdam [2021] started a systematic study of

this property and provided a dynamical criterion for an inclusion of groups to be
C∗-irreducible. Together with results in [Amrutam 2021; Ursu 2022; Bédos and
Omland 2023], this has provided a complete characterization of C∗-irreducibility
of an inclusion in the case that 3 is a normal subgroup of 0.

Recall that a subgroup 3 of a group 0 is said to be commensurated if, for any
g ∈ 0, 3 ∩ g3g−1 has finite index in 3. This is a much more flexible general-
ization of normal subgroups and finite-index subgroups. For example, for every
n ≥ 2, PSL(n,Z) is an infinite-index commensurated subgroup of the simple group
PSL(n,Q).
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In this work, we generalize the above characterization of C∗-irreducibility to com-
mensurated subgroups (see Theorem 3.5). The main ingredient in our proof is the
fact that the action of 3 on its Furstenberg boundary ∂F3 can be uniquely extended
to an action of 0 on ∂F3 if3 is a commensurated subgroup in 0 (see Theorem 3.1).

As one of the applications, we show that if 0 is a C∗-simple group, then the
inclusion of 0 in its abstract commensurator Comm(0) is C∗-irreducible (see
Corollary 3.14). To our best knowledge, this is also the first observation of the fact
that if 0 is a C∗-simple group, then Comm(0) is C∗-simple as well.

Given a subgroup3 of a group 0, Ursu [2022] introduced a universal3-strongly
proximal 0-boundary B(0,3) and showed that if 3⊴0, then B(0,3)= ∂F3. In
Section 4, we generalize this fact to commensurated subgroups and also observe
that, in general, B(0,3) is not extremally disconnected.

Finally, we also show that, given a commensurated subgroup 3 of a group 0,
the action of 3 on its universal minimal proximal space ∂p3 can also be extended
in a unique way to an action of 0 on ∂p3 (see Theorem 5.1). We use this fact
for concluding that, for a certain locally finite commensurated subgroup G of
Thompson’s group V , the resulting action of V on ∂pG is free (see Example 5.4).

2. Preliminaries

Given a compact Hausdorff space X , we denote by Prob(X) the space of regular
probability measures on X . An action of a group 0 on X by homeomorphisms is
said to be minimal if X does not contain any nontrivial closed invariant subset, and
to be topologically free if, for any g ∈ 0 \ {e}, the set {x ∈ X : gx = x} has empty
interior (if 0 is countable, then 0↷X is topologically free if and only if the set of
points in X which are not fixed by any nontrivial element of 0 is dense in X ). The
action is said to be proximal if, given x,y ∈ X , there is a net (gi ) ⊂ 0 such that
the nets (gi x) and (gi y) converge and lim gi x = lim gi y. We say that the action
is strongly proximal if the induced action 0↷Prob(X) is proximal. The action is
called a boundary action (or X is a 0-boundary) if it is both minimal and strongly
proximal. We denote by ∂F0 the Furstenberg boundary of 0, i.e., the universal
0-boundary (see [Glasner 1976, Section III.1]). The group 0 is C∗-simple if and
only if 0↷∂F0 is free [Breuillard et al. 2017, Theorem 3.1].

Given 0-boundaries X and Y , if there exists ϕ : X → Y a homeomorphism
which is 0-equivariant (0-isomorphism), then it follows from [Glasner 1976,
Lemma II.4.1] that ϕ is the unique 0-isomorphism between X and Y .

Let 3 ≤ 0 be a finite-index subgroup. Then any strongly proximal 0-action
is also 3-strongly proximal [Glasner 1976, Lemma II.3.1] and any 0-boundary
is also a 3-boundary [Glasner 1976, Lemma II.3.2]. Furthermore, by [Glasner
1976, Theorem II.4.4], which is stated for the universal minimal proximal space
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but whose proof also works for the Furstenberg boundary, the action 3↷∂F3

can be extended to 0↷∂F3 and ∂F3 is 0-isomorphic to ∂F0. In particular, ∂F3

and ∂F0 are also 3-isomorphic.
Given a group isomorphism ψ : 01 → 02, by universality there is a unique

homeomorphism ψ̃ : ∂F01 → ∂F02 such that ψ̃(gx)= ψ(g)ψ̃(x) for any g ∈ 01

and x ∈ ∂F01.
Given a group 0, let Sub(0) be the space of subgroups of 0 endowed with the

pointwise convergence topology and with the 0-action given by conjugation. Given
a subgroup 3≤ 0, a 3-uniformly recurrent subgroup (URS) is a nonempty closed
3-invariant minimal set U ⊂ Sub(0). Moreover, we say that U is amenable if one
(equivalently all) of its elements is amenable. By [Kennedy 2020, Theorem 4.1],
a group 0 is C∗-simple if and only if it does not admit any nontrivial amenable
0-uniformly recurrent subgroup.

An inclusion of groups 3≤ 0 is said to be C∗-irreducible if every intermediate
C∗-algebra of C∗

r (3)⊂ C∗
r (0) is simple.

Given3≤0 and g ∈0, let g3 := {hgh−1
: h ∈3}. We say that 0 is icc relatively

to 3 if, for any g ∈ 0 \ {e}, |g3| < ∞. The group 0 is said to be icc if it is icc
relatively to itself.

3. C*-irreducibility of commensurated subgroups

Let 0 be a group. Two subgroups 31,32 ≤ 0 are said to be commensurable if
[31 :31 ∩32]<∞ and [32 :31 ∩32]<∞. Notice that this is an equivalence
relation.

A subgroup 3≤ 0 is said to be commensurated if, for any g ∈ 0, 3 is commen-
surable with g3g−1. Equivalently, for any g ∈ 0, [3 :3∩ g3g−1

]<∞. In this
case, we write 3 ≤c 0. In the literature, this notion is also referred to by saying
that 3 is an almost normal subgroup of 0 or that (0,3) is a Hecke pair.

The following result generalizes [Glasner 1976, Theorem II.4.4] and [Ozawa
2014, Lemma 20]:

Theorem 3.1. Let 3 ≤c 0. Then 3↷∂F3 extends in a unique way to an action
of 0 on ∂F3.

Proof. Given g ∈ 0, let ϕg : ∂F3 → ∂F (3 ∩ g3g−1) be the (3 ∩ g3g−1)-
isomorphism. Also, let ψg : ∂F (3 ∩ g−13g) → ∂F (3 ∩ g3g−1) be the home-
omorphism such that for all h ∈ 3 ∩ g−13g and x ∈ ∂F (3 ∩ g−13g) we have
ψg(hx) = ghg−1ψg(x). Let Tg := (ϕg)

−1ψgϕg−1 : ∂F3 → ∂F3. We claim that
g 7→ Tg is a 0-action which extends 3↷∂F3.

Given h ∈ 3 ∩ g−13g and x ∈ ∂F3, one can readily check that Tg(hx) =

ghg−1Tg(x).
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Given g, h ∈ 0, we have that [3 : 3∩ h−13h ∩ (gh)−13(gh)] <∞. Further-
more, given k ∈ 3 ∩ h−13h ∩ (gh)−13(gh) and x ∈ ∂F3, we have Tgh(kx) =

(gh)k(gh)−1Tgh(x). On the other hand, TgTh(kx) = (gh)k(gh)−1TgTh(x). In
particular, (TgTh)

−1Tgh is a (3∩ h−13h ∩ (gh)−13(gh))-automorphism, hence
Tgh = TgTh .

Finally, given g ∈3, we have that x 7→g−1Tg(x) is a (3∩g−13g)-automorphism,
so that g−1Tg = Id∂F3. □

Remark 3.2. The existence part of Theorem 3.1 was shown by Dai and Glas-
ner [2019, Theorem 6.1] using a different method and assuming that 0 is countable.

Given a subset S of a group 0, let C0(S) be the centralizer of S in 0. In the
next result, we follow the argument of [Breuillard et al. 2017, Lemma 5.3].

Lemma 3.3. Let3≤c 0 and consider 0↷∂F3. Given s ∈0, if s ∈ C0(3∩s−13s),
then Fix(s) = ∂F3. Conversely, if 3↷ ∂F3 is free and Fix(s) ̸= ∅, then s ∈

C0(3∩ s−13s).

Proof. If s ∈ C0(3∩ s−13s), then, given h ∈ 3∩ s−13s and x ∈ ∂F3, we have
s(hx) = hs(x). Since [3 : 3 ∩ s−13s] < ∞, we conclude that s acts trivially
on ∂F3.

Suppose now that 3↷∂F3 is free and Fix(s) ̸= ∅. Given t ∈ A, with

A := {t ∈3∩ s−13s : t Fix(s)∩ Fix(s) ̸= ∅},

the actions of sts−1 and t coincide on Fix(s) ∩ t−1 Fix(s). Since sts−1, t ∈ 3

and 3↷∂F3 is free, we obtain that t = sts−1. Since, by [Breuillard et al. 2017,
Lemma 5.1], A generates 3∩ s−13s, we conclude that s ∈ C0(3∩ s−13s). □

The proof of the following result is an adaptation of the argument in [Kennedy
2020, Remark 4.2] and its hypothesis is the same as in [Rørdam 2021, Theo-
rem 5.3 (ii)]:

Proposition 3.4. Let 3≤ 0. Suppose that there exists a 0-boundary X such that,
for any µ ∈ Prob(X), there exists a net (gi )⊂3 such that giµ converges to δx , for
some x ∈ X , on which 0 acts freely. Then 0 does not admit any nontrivial amenable
3-URS.

Proof. Suppose U is a nontrivial amenable 3-URS, and take K ∈ U . Since K is
amenable, there exists µ ∈ Prob(X) fixed by K . Let (gi ) ⊂ 3 be a net such that
giµ→ δx , for some x ∈ X , on which 0 acts freely. By taking a subnet, we may
assume that gi K g−1

i → L ∈ Sub(0). Take g ∈ L \ {e} and (ki ) ⊂ K such that
gi ki g−1

i = g for i sufficiently big. Then

δx = lim giµ= lim gi kiµ= lim gi ki g−1
i giµ= gδx ,

contradicting the fact that 0 acts freely on x . □
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The following result generalizes [Ursu 2022, Theorems 1.3 and 1.9] and [Bédos
and Omland 2023, Theorem 6.4], as well as the claim about finite-index subgroups
in [Rørdam 2021, Theorem 5.3]:

Theorem 3.5. Let 3≤c 0. The following conditions are equivalent:

(1) 3≤ 0 is C∗-irreducible;

(2) 3 is C∗-simple and 0 is icc relatively to 3;

(3) 3 is C∗-simple and, for any s ∈ 0 \ {e}, we have that s /∈ C0(3∩ s−13s);

(4) 0↷∂F3 is free;

(5) There is no nontrivial amenable 3-URS of 0;

(6) 3 is C∗-simple and 0↷∂F3 is faithful.

Proof. (1)=⇒ (2): Follows from [Rørdam 2021, Remark 3.8 and Proposition 5.1].

(2)=⇒ (3): Suppose that there is s ∈ 0 \ {e} such that s ∈ C0(3∩ s−13s). Take
g1, . . . , gn ∈3 left coset representatives for 3/(3∩ s−13s). Then

s3 = {gi ksk−1g−1
i : 1 ≤ i ≤ n, k ∈3∩ s−13s} = {gi sg−1

i : 1 ≤ i ≤ n}

is finite.

(3)=⇒ (4): Follows from Lemma 3.3.

(4)=⇒ (1): Follows from [Rørdam 2021, Theorem 5.3].

(5)=⇒ (2): If3 is not C∗-simple, then it contains a nontrivial amenable3-uniformly
recurrent subgroup. If 0 is not icc relatively to 3, there exists s ∈ 0 \ {e} such that
s3 is finite. Hence, the 3-orbit of ⟨s⟩ is a finite nontrivial amenable 3-uniformly
recurrent subgroup.

(4)=⇒ (5): Follows from Proposition 3.4.

(3)⇐⇒ (6): Follows from Lemma 3.3. □

Remark 3.6. Rørdam [2021, Theorem 5.3] showed that an inclusion 3≤ 0 satis-
fying the hypothesis of Proposition 3.4 is C∗-irreducible, and asked whether the
converse holds. We do not know whether the converse of Proposition 3.4 holds and
whether the absence of nontrivial amenable 3-URS of 0 is equivalent to 3 ≤ 0

being C∗-irreducible in general.

Corollary 3.7. Given n ∈ N, the inclusion

PSL(n,Z)≤ PGL(n,Q)

is C∗-irreducible.
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Proof. It was shown in [Bekka et al. 1994] that PSL(n,Z) is C∗-simple.
Let U (n,Z) be the group of units of the ring Mn(Z). By [Krieg 1990, Corol-

lary V.5.3], U (n,Z) ≤c GL(n,Q). Since [U (n,Z) : SL(n,Z)] = 2, we conclude
that SL(n,Z) ≤c GL(n,Q) as well. Since taking quotients preserves being com-
mensurated, it follows that PSL(n,Z)≤c PGL(n,Q).

Let (ei j )1≤i, j≤n ∈ Mn(Z) be the matrix units and fix [a] ∈ PGL(n,Q) \ {[Id]}.
By taking conjugates of [a] by elements of the form [Id + m · ei j ] ∈ PSL(n,Z),
m ∈ Z, 1 ≤ i ̸= j ≤ n, it is easy to see that [a]

PSL(n,Z) is infinite, so that PGL(n,Q)

is icc relatively to PSL(n,Z).
The conclusion then follows from Theorem 3.5. □

Remark 3.8. Let us sketch a different proof of Corollary 3.7 which gives the
stronger statement that PSL(n,Z)≤PGL(n,R) is C∗-irreducible, where PGL(n,R)

is seen as a discrete group.
Clearly, it suffices to show that, for any countable group 0 such that PSL(n,Z)≤

0 ≤ PGL(n,R), the inclusion PSL(n,Z)≤ 0 is C∗-irreducible. By the argument
in [Bryder 2017, Example 3.4.3], the action of PGL(n,R) on the projective space
Pn−1(R) is topologically free. Since PSL(n,Z)↷Pn−1(R) is a boundary action,
the result follows from [Rørdam 2021, Theorem 5.3].

Corollary 3.9. Let 3 be a finite-index subgroup of a group 0. If 0 is C∗-simple,
then 3 ≤ 0 is C∗-irreducible. Conversely, if 3 is C∗-simple, then 0 is icc if and
only if 3≤ 0 is C∗-irreducible.

Proof. If 0 is C∗-simple, then 0↷∂F0 is free. Since ∂F0 is 0-isomorphic to ∂F3,
it follows that 3≤ 0 is C∗-irreducible.

If 0 is icc, then, since [0 :3]<∞, it is also icc relatively to 3, hence 3≤ 0 is
C∗-irreducible by Theorem 3.5. The last implication is immediate. □

Example 3.10. The inclusion given by the Sanov subgroup F2 ≤ PSL(2,Z) is
finite-index, hence it is C∗-irreducible by Corollary 3.9.

Free groups. Fix m, n ∈ N such that 2 ≤ m < n and consider the free groups
Fm = ⟨a1, . . . , am⟩ ≤ ⟨a1, . . . , an⟩ = Fn . Rørdam [2021, Example 5.4] observed
that Fm ≤ Fn is C∗-irreducible. Notice that Fm is far from being commensurated
in Fn . In fact, given g ∈ Fn \ Fm , we have that Fm ∩ gFm g−1

= {e} (i.e., Fm is
malnormal in Fn). In particular, this example is not covered by Theorems 3.1
and 3.5. Nonetheless, there does exist an extension to Fn of the action Fm↷∂F Fm ,
but it is far from being unique, since the generators am+1, . . . , an can be mapped
into any homeomorphisms on ∂F Fm .

Furthermore, we claim that Fm ≤ Fn satisfies condition (5) in Theorem 3.5. We
will prove this by using Proposition 3.4.
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Let

∂Fn :=
{
(xi ) ∈

∏
N

{a1, a−1
1 , . . . , an, a−1

n } : ∀i ∈ N, xi+1 ̸= x−1
i

}
be the Gromov boundary of Fn , and consider the action of Fn on ∂Fn by left
multiplication. Fix µ∈ Prob(∂Fn), and we will show that there is w ∈ ∂Fn on which
Fn acts freely and such that δw ∈ Fmµ.

Let z+ := (a1)i∈N ∈ ∂Fn , and let z− := (a−1
1 )i∈N ∈ ∂Fn . Notice that, for all

y ∈ ∂Fn \ {z−}, we have that, as k → +∞, ak
1 y → z+. Furthermore, a1 fixes z−.

It follows from the dominated convergence theorem that

ak
1µ→ µ({z−})δz−

+ (1 −µ({z−}))δz+
,

as k → +∞. In particular, ν := µ({z−})δz−
+ (1 −µ({z−}))δz+

∈ Fnµ.
Let w := a1a1

2a1a2
2a1a3

2 · · · a1al
2a1al+1

2 · · · ∈ ∂Fn . Since w is not eventually
periodic, we have that Fn acts freely on w. Given k ∈ N, let gk :=w1 · · ·wka2 ∈ Fm .
We have that gkz± =w1 · · ·wka2z± →w, as k →+∞. Therefore, δw ∈ Fmν⊂ Fmµ,
thus showing the claim.

Abstract commensurator. Let 0 be a group and � be the set of isomorphisms
between finite-index subgroups of 0. Given α, β ∈�, we say that α ∼ β if there
exists a finite-index subgroup H ≤ dom(α)∩ dom(β) such that α|H = β|H . Recall
that the abstract commensurator of 0, denoted by Comm(0), is the group whose
underlying set is�/∼, with product given by composition (defined up to finite-index
subgroup).

Let 3 be a commensurated subgroup of 0. Given g ∈ 0, let

βg : 3∩ g−13g →3∩ g3g−1, h 7→ ghg−1,

and j03 : 0 → Comm(3) be the homomorphism given by j03(g) := [βg]. In order
to ease the notation, we will sometimes denote j03 simply by j , and it will always
be clear from the context what the involved groups are. Let us now collect a few
elementary facts about j .

Lemma 3.11. Let 0 be a group. Then j00 (0)≤c Comm(0).

Proof. Fix [α] ∈ Comm(0). Given g ∈ dom(α), we have that [α] j (g)[α]
−1

=

j (α(g)). In particular, j (0)∩ [α] j (0)[α]
−1

⊃ j (Im(α)). Since [0 : Im(α)]<∞,
we conclude that

[
j (0) : j (0)∩ [α] j (0)[α]

−1
]
<∞. □

Lemma 3.12. Let 3≤c 0. Then ker j03 = {g ∈ 0 : |g3|<∞}.

Proof. Given g ∈ ker j , there exists a finite-index subgroup H ≤ 3 ∩ g−13g
such that, for all h ∈ H , ghg−1

= h, which implies that |g3| < ∞. Conversely,
if |g3| < ∞, then H := {k ∈ 3 : kg = gk} is a finite-index subgroup of 3 and
g ∈ ker j . □
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As a consequence of Lemma 3.12, if 0 is an icc group, then j : 0 → Comm(0)
is injective [Kida 2011, Lemma 3.8 (i)]. The next result is known [Kida 2011,
Lemma 3.8 (iii)]. For the convenience of the reader, we provide the proof here.

Lemma 3.13. If 0 is an icc group, then Comm(0) is icc relatively to 0.

Proof. Given [α] ∈ Comm(0) and g ∈ dom(α), we have

j (g)[α] j (g−1)= j (gα(g−1))[α].

If [α] ̸= e, then H := {g ∈ dom(α) : g = α(g)} has infinite-index in dom(α). Given
g1, g2 ∈ dom(α) such that g1 H ̸= g2 H , one can readily check that g1α(g1)

−1
̸=

g2α(g2)
−1. From this, it follows immediately that [α]

0 is infinite. □

Bédos and Omland [2023, Corollary 6.6] showed that if 0 is a C∗-simple group,
then 0 ≤ Aut(0) is C∗-irreducible. The same conclusion holds when we consider
the abstract commensurator:

Corollary 3.14. Given a C∗-simple group 0, we have that 0 ≤ Comm(0) is C∗-
irreducible.

Proof. Recall that any C∗-simple group is icc (this follows, e.g., from Theorem 3.5).
The result is then a consequence of Theorem 3.5 and Lemma 3.13. □

Remark 3.15. Corollary 3.14 generalizes the fact proven in [Le Boudec and
Matte Bon 2018, Corollary 4.4] that, if Thompson’s group F is C∗-simple, then
Comm(F) is C∗-simple.

Remark 3.16. Let Fn be a nonabelian free group of finite rank. Then Corollary 3.14
implies that Comm(Fn) is C∗-simple. In particular, it does not admit any nontrivial
amenable normal subgroup. It is an open problem whether Comm(Fn) is a simple
group [Caprace and Monod 2018, Problem 7.2].

4. Relative boundaries

Given groups3≤0, Ursu [2022, Proposition 4.1] introduced a3-strongly proximal
0-boundary B(0,3) which is universal with these properties.

Consider 0 :=PSL(2,Z) and the boundary action 0↷R∪{∞}. The stabilizer 0∞

of ∞ is isomorphic to Z and consists of the translations gn(x) := x + n, n ∈ Z,
x ∈ R.

Proposition 4.1. The action of 0 = PSL(2,Z) on B(0, 0∞) is topologically free
but nonfree. In particular, B(0, 0∞) is not extremally disconnected.

Proof. For any x ∈ R ∪ {∞}, we have gn(x)→ ∞ as n → +∞. As a consequence
of the dominated convergence theorem, it follows easily that 0∞↷R ∪ {∞} is
strongly proximal. Hence, there is a 0-equivariant map B(0, 0∞) → R ∪ {∞}.
Since 0∞↷B(0, 0∞) is strongly proximal, it follows from amenability of 0∞ that
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0∞ fixes some point in B(0, 0∞). In particular, 0↷B(0, 0∞) is not free. On the
other hand, since 0↷R ∪ {∞} is topologically free, it follows from [Breuillard
et al. 2017, Lemma 3.2] that 0↷B(0, 0∞) is topologically free. As a consequence
of [Frolík 1971, Theorem 3.1], B(0, 0∞) is not extremally disconnected. □

Remark 4.2. Let 0 be a group. One of the key properties in the applications of ∂F0

to C∗-simplicity of 0 is the fact that C(∂F0) is injective, shown in [Kalantar and
Kennedy 2017, Theorem 3.12]. Proposition 4.1 implies that C(B(0,3)) is not
injective, in general. We believe that this is evidence that B(0,3) is not likely to
play the same role as the Furstenberg boundary in C∗-algebraic applications.

Our next aim is to show that, given 3≤c 0, it holds that B(0,3)= ∂F3. We
start with a result which we believe has its own interest.

Theorem 4.3. Let3≤c 0 and 0↷X be a minimal action on a compact space such
that 3↷X is proximal. Then 3↷X is minimal as well.

Proof. Let M ⊂ X be a closed nonempty 3-invariant set. For any g ∈ 0, we have
that gM is g3g−1-invariant.

Fix g1, . . . , gn ∈ 0. We have that H :=3∩ g13g−1
1 ∩ · · · ∩ gn3g−1

n has finite
index in 3. In particular, H↷X is proximal and admits a unique minimal compo-
nent K . Since each gi M is gi3g−1

i -invariant, we conclude that K ⊂
⋂n

i=1 gi M .
By compactness of X , we obtain that L :=

⋂
g∈0 gM ̸=∅. Since L is 0-invariant,

we have X = L ⊂ M . □

The following is an immediate consequence of the previous theorem:

Corollary 4.4. Let3≤c 0. If X is a 0-boundary which is also3-strongly proximal,
then X is a 3-boundary.

By arguing as in [Ursu 2022, Corollary 4.3], we conclude the following:

Corollary 4.5. If 3≤c 0, then B(0,3)= ∂F3.

5. Commensurated subgroups and proximal actions

Given a group 0, there exists a universal minimal proximal 0-space ∂p0 [Glasner
1976, Theorem II.4.2]. It was shown in [Frisch et al. 2019, Proposition 2.12] and
[Glasner et al. 2021, Theorem 1.5] that a countable group 0 is icc if and only if
0↷∂p0 is faithful if and only if 0↷∂p0 is free.

One can easily check that the statements of Theorem 3.1 and Lemma 3.3 hold
with ∂p3 instead of ∂F3, with the exact same proofs (in particular, [Breuillard
et al. 2017, Lemma 5.1], which is needed in the proof of Lemma 3.3, uses only
proximality). Thus, we obtain:
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Theorem 5.1. Let 3 ≤c 0. Then 3↷∂p3 extends in a unique way to an action
of 0 on ∂p3. Furthermore, given s ∈ 0, if s ∈ C0(3∩ s−13s), then Fix(s)= ∂p3.
Conversely, if 3↷∂p3 is free and Fix(s) ̸= ∅, then s ∈ C0(3∩ s−13s).

As a consequence, we obtain the following:

Theorem 5.2. Let 3 ≤c 0 and suppose that 3↷ ∂p3 is free. The following
conditions are equivalent:

(1) 0 is icc relatively with 3;

(2) for any s ∈ 0 \ {e}, we have that s /∈ C0(3∩ s−13s);

(3) 0↷∂p3 is free;

(4) 0↷∂p3 is faithful.

Proof. The implications (1)=⇒ (2)=⇒ (3)=⇒ (4) are proven as in Theorem 3.5.

(4)=⇒ (1): Suppose that there is g ∈ 0 \ {e} such that |g3|<∞. Then it follows
that H := {h ∈ 3 : gh = hg} is a finite-index subgroup of 3, hence H ↷ ∂p3

is also minimal and proximal. Since the homeomorphism on ∂p3 given by g is
H -equivariant, we conclude that g acts trivially on ∂p3. □

Remark 5.3. Given a group 0, let L(0) be its group von Neumann algebra. Given
3≤ 0, it follows from [Rørdam 2021, Proposition 5.1] and [Bédos and Omland
2023, Corollary 4.3] that 0 is icc relatively to 3 if and only if any intermediate
von Neumann algebra of L(3)⊂ L(0) is a factor if and only if any intermediate
C∗-algebra of C∗

r (3)⊂ C∗
r (0) is prime.

Let us now apply Theorem 5.2 to a certain locally finite commensurated subgroup
of Thompson’s group V .

Example 5.4. Let X := {0, 1} and, given n ≥ 0, let Xn be the set of words in X of
length n. Givenw∈ Xn , let C(w) :={(sn)∈ XN

: s[1,n] =w}. Recall that Thompson’s
group V is the group of homeomorphisms on XN consisting of elements g for which
there exist two partitions {C(w1), . . . , C(wm)} and {C(z1), . . . , C(zm)} of {0, 1}

N

such that g(wi s)= zi s for every 1 ≤ i ≤ m and s ∈ XN.
Let us define inductively groups Gn acting by permutations on Xn . Let G1 := Z2

acting nontrivially on X and, for n ∈ N,

Gn+1 :=

( ⊕
w∈Xn

Z2

)
⋊Gn,

where the action of Gn+1 on Xn+1 is defined as follows: given v ∈ Xn , x ∈ X ,
σ ∈ Gn and f ∈

⊕
Xn Z2,

( f, σ )(vx) := σ(v) fσ(v)(x).
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Let G := limn∈N Gn . Then G acts faithfully on XN and, as observed in [Le Boudec
2017, Proposition 7.11], G ≤c V .

We claim that V is icc relatively with G. Given u ∈ Xn , let the rigid stabilizer
of u, denoted by ristG(u), be the subgroup of G consisting of the elements which,
for every v ∈ Xn

\{u}, act as the identity on C(v). Given g ∈ G, there is g̃ ∈ ristG(u)
such that g̃(us)= ug(s) for any s ∈ XN. Clearly, the map g 7→ g̃ is an isomorphism
from G to ristG(u). Fix h ∈ V \ {e} and take w ∈ Xn and z ∈ Xm such that w ̸= z,
n ≥ m and h(ws) = zs for any s ∈ XN. Furthermore, take v ∈ Xn−m such that
zv ̸= w. Given s ∈ XN, we have that

(1) {g̃hg̃−1(wvs) : g̃ ∈ ristG(zv)} = {zvg(s) : g ∈ G}.

Since G↷XN is faithful, it follows from (1) that |hG
| = ∞, thus proving the claim.

From [Glasner et al. 2021, Theorem 1.5], we obtain that G↷∂pG is free and
from Theorem 5.2, we conclude that V ↷∂pG is free.

Remark 5.5. Le Boudec and Matte Bon [2018, Theorem 1.5] showed that Thomp-
son’s group V is C∗-simple, hence V ↷∂F V is free. However, their proof is done
by showing that V does not admit nontrivial amenable URS, not by exhibiting
a concrete topologically free V -boundary. It seems as an interesting problem to
determine whether V ↷∂pG is strongly proximal, thus providing an alternative
proof of C∗-simplicity of V .

Remark 5.6. In [Breuillard et al. 2017, Theorem 1.4], it was shown that the class
of C∗-simple groups is closed by taking normal subgroups. Obviously, this class
is not closed by taking commensurated subgroups, since any finite subgroup is
commensurated. Moreover, Example 5.4 shows that, given 3≤c 0 such that 0 is
icc relatively to 3, C∗-simplicity of 0 does not pass to 3 in general.

References

[Amrutam 2021] T. Amrutam, “On intermediate subalgebras of C∗-simple group actions”, Int. Math.
Res. Not. 2021:21 (2021), 16193–16204. MR Zbl

[Bédos and Omland 2023] E. Bédos and T. Omland, “C∗-irreducibility for reduced twisted group
C∗-algebras”, J. Funct. Anal. 284:5 (2023), art. id. 109795. MR Zbl

[Bekka et al. 1994] M. Bekka, M. Cowling, and P. de la Harpe, “Simplicity of the reduced C∗-algebra
of PSL(n,Z)”, Int. Math. Res. Not. 1994:7 (1994), 285–291. MR Zbl

[Breuillard et al. 2017] E. Breuillard, M. Kalantar, M. Kennedy, and N. Ozawa, “C∗-simplicity and
the unique trace property for discrete groups”, Publ. Math. Inst. Hautes Études Sci. 126 (2017),
35–71. MR Zbl

[Bryder 2017] R. S. Bryder, Boundaries, injective envelopes, and reduced crossed products, Ph.D.
thesis, University of Copenhagen, 2017, available at https://web.math.ku.dk/noter/filer/phd17rsb.pdf.

[Caprace and Monod 2018] P.-E. Caprace and N. Monod, “Future directions in locally compact
groups: a tentative problem list”, pp. 343–355 in New directions in locally compact groups, edited by

http://dx.doi.org/10.1093/imrn/rnz291
http://msp.org/idx/mr/4338217
http://msp.org/idx/zbl/1491.46064
http://dx.doi.org/10.1016/j.jfa.2022.109795
http://dx.doi.org/10.1016/j.jfa.2022.109795
http://msp.org/idx/mr/4521733
http://msp.org/idx/zbl/07640883
http://dx.doi.org/10.1155/S1073792894000322
http://dx.doi.org/10.1155/S1073792894000322
http://msp.org/idx/mr/1283024
http://msp.org/idx/zbl/0827.22002
http://dx.doi.org/10.1007/s10240-017-0091-2
http://dx.doi.org/10.1007/s10240-017-0091-2
http://msp.org/idx/mr/3735864
http://msp.org/idx/zbl/1391.46071
https://web.math.ku.dk/noter/filer/phd17rsb.pdf
http://dx.doi.org/10.1017/9781108332675.021
http://dx.doi.org/10.1017/9781108332675.021


380 KANG LI AND EDUARDO SCARPARO

P.-E. Caprace and N. Monod, Lond. Math. Soc. Lect. Note Ser. 447, Cambridge Univ. Press, 2018.
MR Zbl

[Dai and Glasner 2019] X. Dai and E. Glasner, “On universal minimal proximal flows of topological
groups”, Proc. Amer. Math. Soc. 147:3 (2019), 1149–1164. MR Zbl

[Frisch et al. 2019] J. Frisch, O. Tamuz, and P. Vahidi Ferdowsi, “Strong amenability and the infinite
conjugacy class property”, Invent. Math. 218:3 (2019), 833–851. MR Zbl

[Frolík 1971] Z. Frolík, “Maps of extremally disconnected spaces, theory of types, and applications”,
pp. 131–142 in General topology and its relations to modern analysis and algebra, III (Kanpur,
India, 1968), edited by S. P. Franklin et al., Academia, Prague, 1971. MR Zbl

[Glasner 1976] S. Glasner, Proximal flows, Lecture Notes in Math. 517, Springer, 1976. MR Zbl

[Glasner et al. 2021] E. Glasner, T. Tsankov, B. Weiss, and A. Zucker, “Bernoulli disjointness”, Duke
Math. J. 170:4 (2021), 615–651. MR Zbl

[Kalantar and Kennedy 2017] M. Kalantar and M. Kennedy, “Boundaries of reduced C∗-algebras of
discrete groups”, J. Reine Angew. Math. 727 (2017), 247–267. MR Zbl

[Kennedy 2020] M. Kennedy, “An intrinsic characterization of C∗-simplicity”, Ann. Sci. École Norm.
Sup. (4) 53:5 (2020), 1105–1119. MR Zbl

[Kida 2011] Y. Kida, “Rigidity of amalgamated free products in measure equivalence”, J. Topol. 4:3
(2011), 687–735. MR Zbl

[Krieg 1990] A. Krieg, Hecke algebras, Mem. Amer. Math. Soc. 435, Amer. Math. Soc., Providence,
RI, 1990. MR Zbl

[Le Boudec 2017] A. Le Boudec, “Compact presentability of tree almost automorphism groups”,
Ann. Inst. Fourier (Grenoble) 67:1 (2017), 329–365. MR Zbl

[Le Boudec and Matte Bon 2018] A. Le Boudec and N. Matte Bon, “Subgroup dynamics and C∗-
simplicity of groups of homeomorphisms”, Ann. Sci. École Norm. Sup. (4) 51:3 (2018), 557–602.
MR Zbl

[Ozawa 2014] N. Ozawa, “Lecture on the Furstenberg boundary and C∗-simplicity”, lecture notes,
2014, available at http://www.kurims.kyoto-u.ac.jp/~narutaka/notes/yokou2014.pdf.

[Rørdam 2021] M. Rørdam, “Irreducible inclusions of simple C∗-algebras”, 2021. To appear in
Enseign. Math. arXiv 2105.11899

[Ursu 2022] D. Ursu, “Relative C∗-simplicity and characterizations for normal subgroups”, J. Opera-
tor Theory 87:2 (2022), 471–486. MR Zbl

Received December 30, 2022.

KANG LI

FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG

ERLANGEN

GERMANY

kang.li@fau.de

EDUARDO SCARPARO

CENTER FOR ENGINEERING

FEDERAL UNIVERSITY OF PELOTAS

PELOTAS

BRAZIL

eduardo.scarparo@ufpel.edu.br

http://msp.org/idx/mr/3793295
http://msp.org/idx/zbl/1398.22006
http://dx.doi.org/10.1090/proc/14292
http://dx.doi.org/10.1090/proc/14292
http://msp.org/idx/mr/3896063
http://msp.org/idx/zbl/1433.37008
http://dx.doi.org/10.1007/s00222-019-00896-z
http://dx.doi.org/10.1007/s00222-019-00896-z
http://msp.org/idx/mr/4022081
http://msp.org/idx/zbl/1429.37018
https://eudml.org/doc/220559
http://msp.org/idx/mr/0295305
http://msp.org/idx/zbl/0248.54045
http://dx.doi.org/10.1007/BFb0080139
http://msp.org/idx/mr/0474243
http://msp.org/idx/zbl/0322.54017
http://dx.doi.org/10.1215/00127094-2020-0093
http://msp.org/idx/mr/4280091
http://msp.org/idx/zbl/1481.37009
http://dx.doi.org/10.1515/crelle-2014-0111
http://dx.doi.org/10.1515/crelle-2014-0111
http://msp.org/idx/mr/3652252
http://msp.org/idx/zbl/1371.46044
http://dx.doi.org/10.24033/asens.2441
http://msp.org/idx/mr/4174855
http://msp.org/idx/zbl/1482.46075
http://dx.doi.org/10.1112/jtopol/jtr012
http://msp.org/idx/mr/2832574
http://msp.org/idx/zbl/1288.20032
http://dx.doi.org/10.1090/memo/0435
http://msp.org/idx/mr/1027069
http://msp.org/idx/zbl/0706.11029
http://dx.doi.org/10.5802/aif.3084
http://msp.org/idx/mr/3612334
http://msp.org/idx/zbl/1483.20050
http://dx.doi.org/10.24033/asens.2361
http://dx.doi.org/10.24033/asens.2361
http://msp.org/idx/mr/3831032
http://msp.org/idx/zbl/1409.37014
http://www.kurims.kyoto-u.ac.jp/~narutaka/notes/yokou2014.pdf
http://msp.org/idx/arx/2105.11899
http://dx.doi.org/10.7900/jot
http://msp.org/idx/mr/4396944
http://msp.org/idx/zbl/07606516
mailto:kang.li@fau.de
mailto:eduardo.scarparo@ufpel.edu.br


PACIFIC JOURNAL OF MATHEMATICS
Vol. 322, No. 2, 2023

https://doi.org/10.2140/pjm.2023.322.381

LOCAL MAASS FORMS AND EICHLER–SELBERG
RELATIONS FOR NEGATIVE-WEIGHT VECTOR-VALUED

MOCK MODULAR FORMS

JOSHUA MALES AND ANDREAS MONO

By comparing two different evaluations of a modified (à la Borcherds) higher
Siegel theta lift on even lattices of signature (r, s), we prove Eichler–Selberg
relations for a wide class of negative-weight vector-valued mock modular
forms. In doing so, we detail several properties of the lift, as well as showing
that it produces an infinite family of local (and locally harmonic) Maaß forms
on Grassmanians in certain signatures.

1. Introduction

Theta lifts have a storied history in the literature, receiving a vast amount of
attention in the past few decades with applications throughout mathematics. We are
concerned with generalizations of the Siegel theta lift originally studied by Borcherds
in the celebrated paper [2]. The classical Siegel lift maps half-integral weight
modular forms to those of integral weight, and has seen a wide number of important
applications. For example, in arithmetic geometry [14; 21], deep results in number
theory [10], fundamental work of Bruinier and Funke [9], among many others.

More recently, Bruinier and Schwagenscheidt [12] investigated the Siegel theta
lift on Lorentzian lattices (that is, even lattices of signature (1, n)), and in doing so
provided a construction of recurrence relations for mock modular forms of weight 3

2 ,
as well as commenting as to how one could provide a similar structure for those of
weight 1

2 , thereby including Ramanujan’s classical mock theta functions.
In the last few years, several authors have also considered so-called “higher”

Siegel theta lifts of the shape (k :=
1
2(1 − n), j ∈ N0)∫ reg

F
⟨R j

k−2 j f,2L(τ, z)⟩vk dµ(τ),
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where Rn
κ := Rn−2◦Rn−4◦· · ·◦Rκ is an iterated version of the Maaß raising operator

Rκ := 2i ∂
∂τ

+
κ
v

, f is weight k − 2 j harmonic Maaß form, and 2L is the standard
Siegel theta function associated to an even lattice L of signature (1, n). Here and
throughout, τ = u + iv ∈ H and z ∈ Gr(L), the Grassmanian of L . Furthermore,
⟨ · , · ⟩ denotes the natural bilinear pairing. For example, they were considered by
Bruinier and Ono (for k = 0, j = 1) in the influential work [11], by Bruinier, Ehlen
and Yang in the breakthrough paper [8] in relation to the Gross–Zagier conjecture,
and by Alfes-Neumann, Bringmann, Males and Schwagenscheidt in [1] for n = 2
and generic j .

In [32], Mertens investigated the classical Hurwitz class numbers, denoted
by H(n) for n ∈ N. Using techniques in (scalar-valued) mock modular forms, he
gave an infinite family of class number relations for odd n, two of which are

(1-1)
∑
s∈Z

H(n − s2)+ λ1(n)=
1
3σ1(n),

∑
s∈Z

(4s2
− n)H(n − s2)+ λ3(n)= 0,

where λk(n)=
1
2

∑
d|n min

(
d, n

d

)k and σk is the usual k-th power divisor function.
Because of their close similarity to the classical formula of Kronecker [28] and
Hurwitz [24; 25] ∑

s∈Z

H(n − s2)− 2λ1(n)= 2σ1(n),

and those arising from the Eichler–Selberg trace formula, Mertens referred to the
relationships (1-1) as Eichler–Selberg relations. More generally, let [ · , · ]ν denote
the ν-th Rankin–Cohen bracket (see Section 2). In general, the Rankin–Cohen
bracket [ f, g] is a mixed mock modular form of degree ν. It is of inherent interest
to determine its natural completion, say 3, to a holomorphic modular form. Then
following Mertens [33], we say that a (mock-) modular form f satisfies an Eichler–
Selberg relation if there exists some holomorphic modular form g and some form 3

such that
[ f, g]ν +3

is a holomorphic modular form. In the influential paper [33], Mertens showed the
beautiful result that all mock-modular forms of weight 3

2 with holomorphic shadow
satisfy Eichler–Selberg relations, using the powerful theory of holomorphic projec-
tion and the Serre–Stark theorem stating that unary theta series form a basis for the
spaces of holomorphic modular forms of the dual weight 1

2 .1 In particular, Mertens
explicitly describes the form 3 which completes the Rankin–Cohen brackets.

Following previous examples, to demonstrate the statement, let H denote the
generating function of Hurwitz class numbers, let ϑ =

∑
n∈Z qn2

, where τ ∈ H, and

1Mertens also provides results for mock theta functions in weight 1
2 , but since there is no analogue

of Serre–Stark in the dual weight 3
2 this is a real restriction.
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qn
= e2π inτ throughout. Then Mertens’ results show that [33, p. 377]

[H, ϑ]ν + 2−2ν−1
(

2ν
ν

)(∑
r≥1

2
∑

m2
−n2

=r
m,n≥1

(m − n)2ν−1 qr
+

∑
r≥1

r2ν+1 qr
)

is a holomorphic modular form of weight 2ν+ 2 for all ν ≥ 1, and a quasimodular
form of weight 2 if ν = 0.

In [31], Males combined techniques of [1; 12] during a further investigation of
the higher Siegel lift on Lorentzian lattices. This lift was shown to be central in
producing certain Eichler–Selberg relations in the vector-valued case, providing
an analogue of the scalar-valued weight 3

2 case of Mertens. We remark that the
shape of the form 3 in the case of signature (1, 1) is very close to that of Mertens
(see [31, Theorem 1.1]), though we do not recall it here to save on complicated
definitions in the introduction.

In the current paper, we develop the theory for even generic signature (r, s)
lattices L and more general modified Siegel theta functions as in Borcherds [2],
and consider the lift

9
reg
j ( f, z) :=

∫ reg

F
⟨R j

k−2 j ( f )(τ ),2L(τ, ψ, p)⟩vk dµ(τ),

where2L is a modified Siegel theta function as in Borcherds [2], essentially obtained
by including a certain polynomial p in the summand of the usual vector-valued
Siegel theta function. We require p to be homogenous and spherical of degree
d+

∈ N0 in the first r variables, and d−
∈ N0 in the last s variables (see (2-2) for

precise definitions). Here, ψ is an isometry which in turn defines z; see (2-3).
Modifying the theta function in this way preserves modular properties of 2L , while
allowing us to obtain different weights of output functions. Furthermore, since the
case j = 0 is well-understood in the literature, we assume throughout that j > 0. We
remark that the signature (1, 2) with j = 0 case has also been studied in [16; 17].

In particular, we evaluate the higher lift in the now-standard ways of unfolding in
Corollary 3.2, as well as recognizing it as a constant term in the Fourier expansion
of the Rankin–Cohen bracket of a holomorphic modular form and a theta function
(up to a boundary integral that vanishes for a certain class of input functions) in
Theorem 3.3. For the second of these theorems, we use that at special points w, one
may define positive- and negative-definite sublattices P := L ∩w and N := L ∩w⊥.
In the simplest case, which we assume for the introduction, we have that L = P ⊕ N .
Then the theta series splits as 2L =2P ⊗2N , where 2P is a positive-definite theta
series and 2N a negative-definite one. Then we let G+

P be the holomorphic part
of a preimage of 2P under ξκ := 2ivκ ∂

∂τ̄
. For the sake of simplicity, we assume

that G+

P + g in the statement of Theorem 1.1 is bounded at i∞ in the introduction;
we overcome this assumption in Theorem 3.4 and offer a precise relation there.
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Following the ideas of [31], by comparing these two evaluations of our lift and
invoking Serre duality, we obtain the following theorem.

Theorem 1.1. Let L be an even lattice of signature (r, s), with associated Weil
representation ρL . Let g be any holomorphic vector-valued modular form of weight
2−

( r
2 +d+

)
for ρL . Suppose that G+

P +g is bounded at i∞. Then G+

P +g satisfies an
explicit Eichler–Selberg relation. In particular, the form 3 is explicitly determined.

The concept of so-called locally harmonic Maaß forms was introduced by Bring-
mann, Kane and Kohnen in [4]. These are functions that behave like classical
harmonic Maaß forms, except for an exceptional set of density zero, where they
have jump singularities. Since their inception, locally harmonic Maaß forms have
seen applications throughout number theory, for example, in relation to central
values of L-functions of elliptic curves [20], as well as traces of cycle integrals
and periods of meromorphic modular forms [1; 30] among many others. Examples
of such locally harmonic Maaß forms are usually achieved in the literature via
similar theta lift machinery to that studied here. In addition to the direction of
Theorem 1.1, we also discuss the action of the Laplace–Beltrami operator on the
lift 9reg

j in Theorem 4.2. In doing so, we prove the following theorem, thereby
providing an infinite family of local Maaß forms (and locally harmonic Maaß forms)
in signatures (2, s). To state the result, we let Fm,k−2 j,s be a Maaß–Poincaré series
as defined in (2-1).

Theorem 1.2. Let L be an even isotropic lattice of signature (2, s). Then the lift
9

reg
j (Fm,k−2 j,s, z) is a local Maaß form on Gr(L) with eigenvalue

(
s− k

2

)(
1−s− k

2

)
under the Laplace–Beltrami operator.

We provide an example of an input function to our lift. To this end, we specialize
our setting to signature (1, 2), in which case vector-valued modular forms can be
identified with the usual scalar-valued framework on the complex upper half-plane,
and in particular Gr(L)∼=H. (We explain the required choices in Section 5.) In 1975,
Cohen [15] defined the generalized class numbers

H(ℓ− 1, |D|)

:=


0 if D ̸= 0, 1 (mod 4),
ζ(3 − 2ℓ) if D = 0,
L
(
2 − ℓ,

( D0
·

))∑
d| jµ(d)

( D0
d

)
dℓ−2 σ2ℓ−3

( j
d

)
, else,

where D = D0 j2, as well as their generating functions

Hℓ(τ ) :=

∑
n≥0

H(ℓ, n) qn, ℓ ∈ N \ {1}.

Here, ζ refers to the Riemann zeta function, L(s, χ) to the Dirichlet L-function
twisted by a Dirichlet character χ , and µ is the Möbius function. The functions Hℓ
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are known as Cohen–Eisenstein series today, and can be viewed as half integral
weight analogues of the classical integral weight Eisenstein series. Note that the
numbers H(2, n) are precisely the Hurwitz class numbers introduced above, and
H2 = H. Cohen proved that Hℓ ∈ Mℓ−(1/2)(00(4)), the space of scalar-valued
modular forms of weight 1

2 on the usual congruence subgroup 00(4), and the
coefficients satisfy Kohnen’s plus space condition by definition. (See [6, (2.13)–
(2.15), Corollary 2.25] for more details on this.)

However, evaluating our lift requires negative weight and a nonconstant principal
part of the input function. To overcome both obstructions, we let

f−2ℓ,N (τ )= q−N
+

∑
n>m

c−2ℓ(N , n) qn, N ≥ −m,

m :=

{⌊
−2ℓ
12

⌋
− 1 if − 2ℓ≡ 2 (mod 12),⌊

−2ℓ
12

⌋
, else

be the unique weakly holomorphic modular form of weight −2ℓ for SL2(Z) with
such a Fourier expansion, an explicit description of f−2ℓ,N was given by Duke and
Jenkins [18], and by Duke, Imamoḡlu and Tóth [19, Theorem 1]. Our machinery
now enables us to obtain Eichler–Selberg relations for the weakly holomorphic
function f−2ℓ,N (τ )Hℓ(τ ) along the lines of [15, Section 6], as well as the following
variant of Theorem 1.2.

Theorem 1.3. The lift 9reg
j ( f−2ℓ,N Hℓ, z) is a local Maaß form on H for every

j ∈ N, ℓ ∈ N \ {1}, and −m ≤ N ∈ N with exceptional set given by the net of
Heegner geodesics

N⋃
D=1

{z = x + iy ∈ H : ∃a, b, c ∈ Z, b2
− 4ac = D, a|z|2 + bx + c = 0}.

Remarks. (1) Theorem 1.3 generalizes immediately to any weakly holomorphic
modular form g. The exceptional set is given by the union of geodesics of discrimi-
nant D > 0, for which the coefficient of g at q−D is nonzero.

(2) Recently, Wagner [37] constructed a pullback of Hℓ under the ξ -operator,
namely a harmonic Maaß form Hℓ of weight −ℓ +

1
2 on 00(4) that satisfies

ξ(1/2)−ℓHℓ = Hℓ+2. An explicit definition of Hℓ can be found in [37, (1.5), (1.6)].
However, Hℓ is a harmonic Maaß form with noncuspidal image under ξ , and we
restrict ourselves to a more restrictive growth condition in the discussion of Maaß
forms (see Section 2) to ensure convergence of our lift. It would be interesting to
investigate different regularizations of our lift, and in particular, lift the function Hℓ.

The paper is organized as follows. We establish the overall framework in
Section 2. Section 3 is devoted to two evaluations of our theta lift and to the
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proof of Theorem 1.1. In Section 4, we compute the action of the Laplace–Beltrami
operator on our theta lift and prove Theorem 1.2. Lastly, Section 5 offers more
details on the specialization to signature (1, 2), a proof of Theorem 1.3, and an
indication on Eichler–Selberg relations for Cohen–Eisenstein series at the very end.

2. Preliminaries

We summarize some facts, which we require throughout.

The Weil representation. We recall the metaplectic double cover

0̃ :=Mp2(Z) :=

{
(γ, φ) :γ =

(
a b
c d

)
∈SL2(Z), φ :H→C holomorphic, φ2(τ )=cτ+d

}
of SL2(Z), which is generated by the pairs

T̃ :=

((
1 1
0 1

)
, 1

)
, S̃ :=

((
0 −1
1 0

)
,
√
τ

)
,

where we fix a suitable branch of the complex square root throughout. Furthermore,
we define 0̃∞ as the subgroup generated by T̃ .

We let L be an even lattice of signature (r, s), and Q be a quadratic form on L
with associated bilinear form ( · , · )Q . Moreover, we denote the dual lattice of L
by L ′, and the group ring of L ′/L by C[L ′/L]. The group ring C[L ′/L] has a
standard basis, whose elements will be called eµ for µ ∈ L ′/L . We recall that there
is a natural bilinear form ⟨ · , · ⟩ on C[L ′/L] defined by ⟨eµ, eν⟩ = δµ,ν .

Equipped with this structure, the Weil representation ρL of 0̃ associated to L is
defined on the generators by

ρL(T̃ )(eµ) := e(Q(µ))eµ, ρL(S̃)(eµ) :=
e
( 1

8(s − r)
)

√
|L ′/L|

∑
ν∈L ′/L

e(−(ν, µ)Q)eν,

where we stipulate e(x) := e2π i x throughout. We let L−
:= (L ,−Q) and call ρL−

the dual Weil representation of L .

The generalized upper half-plane and the invariant Laplacian. We follow the
introduction in [7, Sections 3.2, 4.1], and let the signature of L be (2, s) here. We
assume that L is isotropic, i.e., it contains a nontrivial vector x of norm 0, and
by rescaling we may assume that it is primitive, that is if x = cy for some y ∈ L
and c ∈ Z then c = ±1. Note that for s ≥ 3 all lattices contain such an isotropic
vector (see [2, Section 8]).

Let z ∈ L be a primitive norm 0 vector and z′
∈ L ′ with (z, z′)Q = 1. Let

K := L ∩ z⊥
∩ z′⊥. Let d ∈ K be a primitive norm 0 vector, and d ′

∈ K ′ with
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(d, d ′)Q = 1. It follows that D := K ∩ d⊥
∩ d ′⊥ is a negative-definite lattice, and

we write

Z = (d ′
− Q(d ′) d) z1 + z2 d + z3 d3 + · · · + zℓdℓ =: (z1, z2, . . . , zℓ) ∈ K ⊗ C,

since z3 d3 +· · ·+ zℓd ∈ D ⊗C. Each z j has a real part x j and a imaginary part y j ,
and we note that

Q(Y ) := Q(y1, . . . , yℓ)= y1 y2 − y2
3 − y2

4 − · · · − y2
ℓ .

This gives rise to the generalized upper half-plane

Hℓ := {Z ∈ K ⊗ C : y1 > 0, Q(Y ) > 0} ∼= Gr(L).

Letting

∂µ :=
∂

∂zµ
=

1
2

(
∂

∂xµ
− i

∂

∂yµ

)
, ∂̄µ :=

∂

∂ z̄µ
=

1
2

(
∂

∂xµ
+ i

∂

∂yµ

)
,

it can be shown that the invariant Laplacian on Hℓ has the coordinate representa-
tion [34]

� :=

ℓ∑
µ,ν=1

yµ yν ∂µ ∂̄ν − Q(Y )
(
∂1∂̄2 + ∂̄1∂2 −

1
2

ℓ∑
µ=3

∂µ ∂̄µ

)
.

Maaß forms. Let κ ∈
1
2 Z, (γ, φ) ∈ 0̃ and consider a function f : H → C[L ′/L].

The modular transformation in this setting is captured by the slash-operator

f |κ,ρL (γ, φ)(τ ) := φ(τ)−2κρ−1
L (γ, φ) f (γ τ),

which leads to vector-valued Maaß forms as follows [9].

Definition. Let f : H → C[L ′/L] be smooth. Then f is a Maaß form of weight κ
with respect to ρL if it satisfies the following three conditions.

(1) We have f |κ,ρL (γ, φ)(τ )= f (τ ) for every τ ∈ H and every (γ, φ) ∈ 0̃.

(2) The function f is an eigenfunction of the weight κ hyperbolic Laplace operator,
which is explicitly given by

1κ := −v2
(
∂2

∂u2 +
∂2

∂v2

)
+ iκv

(
∂

∂u
+ i

∂

∂v

)
.

(3) There exists a polynomial2 in q denoted by P f : {0 < |w| < 1} → C[L ′/L]

such that f (τ )− P f (q) ∈ O(e−εv) as v → ∞ for some ε > 0.

We call f a harmonic Maaß form if the eigenvalue equals 0.

2Such a polynomial is called the principal part of f .
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We write Hκ,L for the vector space of harmonic Maaß forms of weight κ with
respect to ρL , and M !

κ,L ⊆ Hκ,L for the subspace of weakly holomorphic vector
valued modular forms. The subspace S!

κ,L ⊆ M !

κ,L collects all forms that vanish at
all cusps, and such forms are referred to as weakly holomorphic cusp forms.

Bruinier and Funke [9] proved that a harmonic Maaß form f of weight κ ̸= 1
decomposes as a sum f = f +

+ f − of a holomorphic and a nonholomorphic part,
whose Fourier expansions are of the shape

f +(τ )=

∑
µ∈L ′/L

∑
n∈Q

n≫−∞

c+

f (µ, n) qneµ,

f −(τ )=

∑
µ∈L ′/L

∑
n∈Q
n<0

c−

f (µ, n)0(1 − κ, 4π |n|v) qneµ,

where 0(t, x) :=
∫

∞

x ut−1e−u du denotes the incomplete gamma function.
Harmonic Maaß forms can be inspected via the action of various differential

operators. We require the antiholomorphic operator

ξκ := 2ivκ ∂
∂τ̄
,

as well as the Maaß raising and lowering operators

Rκ := 2i ∂
∂τ

+
κ

v
, Lκ := −2iv2 ∂

∂τ̄
.

The operator ξκ defines a surjective map from Hκ,L to S!

2−κ,L− [9]. In particular, it
intertwines with the slash operator introduced above, and the space M !

κ,L is precisely
the kernel of ξκ when restricted to Hκ,L . Hence, every f ∈ Hκ,L has a cuspidal
shadow in our case.

The operators Rκ and Lκ increase and decrease the weight κ by 2 respectively,
but do not preserve the eigenvalue under 1κ . For any n ∈ N0, we let

R0
κ := id, Rn

κ := Rκ+2n−2 ◦ · · · ◦ Rκ+2 ◦ Rκ ,

L0
κ := id, Ln

κ := Lκ−2n+2 ◦ · · · ◦ Lκ−2 ◦ Lκ

be the iterated Maaß raising and lowering operators, which increase or decrease the
weight κ by 2n.

Remark. If one relaxes the growth condition (iii) to linear exponential growth,
that is, f (τ ) ∈ O(eεv) as v → ∞ for some ε > 0, then f − is permitted to have an
additional (constant) term of the form c−

f (µ, 0)v1−κeµ. In this case, ξκ maps such
a form to a weakly holomorphic modular form instead of a weakly holomorphic
cusp form.
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Local Maaß forms. Locally harmonic Maaß forms were introduced by Bringmann,
Kane and Kohnen [4] for negative weights, and independently by Hövel [23] for
weight 0. We generalize the exposition due to Bringmann, Kane and Kohnen
here and provide a definition in our setting on Grassmannians and for arbitrary
eigenvalues.

Definition. A local Maaß form of weight κ with closed exceptional set X ⊊ Hℓ of
measure zero is a function f : Hℓ → C[L ′/L], which satisfies four properties:

(1) For all (γ, φ) ∈ 0̃ and all Z ∈ Hℓ it holds that f |κ,ρL (γ, φ)(Z)= f (Z).

(2) For every Z ∈ Hℓ \ X , there exists a neighborhood of Z , in which f is real
analytic and an eigenfunction of �.

(3) We have

f (Z)=
1
2 lim
ε↘0

(
f (Z + (iε, 0, . . . , 0)t)+ f (Z − (iε, 0, . . . , 0)t)

)
for every Z ∈ X .

(4) The function f is of at most polynomial growth towards all cusps.

Paralleling the definition of harmonic Maaß forms, we call a local Maaß form
locally harmonic if the eigenvalue from the second condition is 0.

Poincaré series.

Weakly holomorphic Poincaré series. Following Knopp and Mason [27, Section 3],
we let m ∈ Z, κ ∈

1
2 N satisfying κ > 2, µ ∈ L ′/L , and define

Fµ,m,κ(τ ) :=
1
2

∑
(γ,φ)∈0̃∞\0̃

(
e((m + 1)τ )eµ

)
|κ,ρL (γ, φ).

Knopp and Mason [27] prove that Fµ,m,κ converges absolutely, and that it defines a
weakly holomorphic modular form of weight κ for ρL . In addition, they computed
the Fourier expansion of Fµ,m,κ , which is of the shape

Fµ,m,κ(τ )=

∑
ν∈L ′/L

(
δµ,νqm+1

+

∑
n≥0

c(n) qn+1
)
eν .

The Fourier coefficients c(n) can be found in [27, Theorem 3.2] explicitly.

Maaß–Poincaré series. We recall an important example of harmonic Maaß forms.
To this end, let κ ∈ −

1
2 N, let Mµ,ν be the usual M-Whittaker function (see [35,

Section 13.14]), and define the auxiliary function

Mκ,s(y) := |y|
−
κ
2 Msgn(y) κ2 ,s−

1
2
(|y|), y ∈ R \ {0}.
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We average Mκ over 0̃ with respect to the parameters µ ∈ L ′/L , m ∈ N \ {Q(µ)},
and κ , s. This yields the vector-valued Maaß–Poincaré series [7]

(2-1) Fµ,m,κ,s(τ ) :=
1

20(2s)

∑
(γ,φ)∈0̃∞\0̃

(Mκ,s(4πmv) e(−mu)eµ)|κ,ρL (γ, φ).

By our choice of parameters and taking cosets, the series converges absolutely.
The eigenvalue under 1κ is given by

(
s −

κ
2

)(
1 − s −

κ
2

)
. Hence if s =

κ
2 or

s = 1 −
κ
2 , then we have Fµ,m,κ,s ∈ Hκ,L . The principal part of Fµ,m,κ,s is given by

e(−mτ)(eµ + e−µ) in this case, and ξκFµ,−m,κ,s is a weight 2 − κ cusp form.
Furthermore, the Maaß–Poincaré series have the following useful property thanks

to their simple principal part.

Lemma 2.1. Let f ∈ Hκ,L with κ ∈ −
1
2 N, and principal part

P f (τ )=

∑
µ∈L ′/L

∑
n<0

c+

f (µ, n) e(nτ)eµ ∈ C[L ′/L][e(−τ)].

Then, we have

f (τ )=
1
2

∑
µ∈L ′/L

∑
m>0

c+

f (µ,−m)Fµ,m,κ,1−
κ
2
(τ ).

Additionally, we require the following computational lemma, which is taken
from [1, Lemma 2.1], and follows inductively from [8, Proposition 3.4].

Lemma 2.2. For any n ∈ N0 it holds that

Rn
κ (Fµ,m,κ,s)(τ )= (4πm)n

0
(
s+ n +

κ
2

)
0

(
s+

κ
2

) Fµ,m,κ+2n,s(τ ).

Restriction, trace maps, and Rankin–Cohen brackets. As before, we fix an even
lattice L . We let Aκ,L be the space of smooth functions f : H → C[L ′/L], which
are invariant under the weight κ slash operator with respect to the representation ρL .
Moreover, let K ⊆ L be a finite index sublattice. Hence, we have L ′

⊆ K ′, and thus

L/K ⊆ L ′/K ⊆ K ′/K .

This induces a map
L ′/K → L ′/L , µ 7→ µ̄.

If µ ∈ K ′/K , f ∈ Aκ,L , g ∈ Aκ,K , and µ is a fixed preimage of µ̄ in L ′/K , we
define

( fK )µ :=

{
fµ̄ if µ ∈ L ′/K ,
0 if µ ̸∈ L ′/K ,

(gL)µ̄ =

∑
α∈L/K

gα+µ.
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Lemma 2.3 [13, Section 3]. In the notation above, there are two natural maps

resL/K : Aκ,L → Aκ,K , trL/K : Aκ,K → Aκ,L ,

f 7→ fK , g 7→ gL ,

satisfying
⟨ f, ḡL

⟩ = ⟨ fK , ḡ⟩

for any f ∈ Aκ,L , g ∈ Aκ,K .

Let κ, ℓ ∈
1
2 Z, f ∈ Aκ,K , g ∈ Aℓ,L . Writing

f =

∑
µ

fµ eµ, g =

∑
ν

gν eν

and letting n ∈ N0, we define the tensor product of f and g as well as the n-th
Rankin–Cohen bracket of f and g as

f ⊗ g :=

∑
µ,ν

fµgν eµ+ν ∈ Aκ+ℓ,K⊕L ,

[ f, g]n :=
1

(2π i)n
∑
r,s≥0

r+s=n

(−1)r 0(κ + n)0(ℓ+ n)
0(s + 1)0(κ + n − s)0(r + 1)0(ℓ+ n − r)

f (r) ⊗ g(s),

where f (r) and g(s) are usual higher derivatives of f and g. Then we have the
following vector-valued analogue of [8, Proposition 3.6].

Lemma 2.4. Let f ∈ Hκ,L1 and g ∈ Hℓ,L2 . For n ∈ N0 it holds that

( − 4π)n Lκ+ℓ+2n([ f, g]n)

=
0(κ + n)
n!0(κ)

Lκ( f )⊗ Rn
ℓ (g)+ (−1)n

0(ℓ+ n)
n!0(ℓ)

Rn
κ ( f )⊗ Lℓ(g).

Finally, we have the following lemma, which can be verified straightforwardly
(see [1, Proof of Theorem 4.1]).

Lemma 2.5. Let h be a smooth function, g be holomorphic, and κ , ℓ ∈ R. Then it
holds that

Rℓ−κ(vκ ḡ ⊗ h)= vk ḡ ⊗ Rℓh.

Theta functions and special points. We fix an even lattice L of signature (r, s)
and extend the quadratic form on L to L ⊗ R in the natural way. We denote the
orthogonal projection of λ ∈ L +µ onto the linear subspaces spanned by z and its
orthogonal complement with respect to ( · , · )Q by λz and λz⊥ respectively. In other
words, we have

L ⊗ R = z ⊕ z⊥, λ= λz + λz⊥ .
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Let Gr(L) be the Grassmannian of r -dimensional subspaces of L⊗R. Let Z ⊆Gr(L)
be the set of all such subspaces on which Q is positive definite. One can endow Z
with the structure of a smooth manifold.

Let pr : Rr,0
→ C and ps : R0,s

→ C be spherical polynomials, which are
homogeneous of degree d+, d−

∈ N0 respectively. Define

(2-2) p := pr ⊗ ps

and let ψ : L ⊗ R → Rr,s be an isometry. We set

(2-3) z := ψ−1(Rr,0) ∈ Z , z⊥
= ψ−1(R0,s).

For a positive-definite lattice (K , Q) of rank n and a homogeneous spherical
polynomial p of degree d, we define the usual theta function

2K (τ, ψK , p) :=

∑
λ∈K ′

p(ψK (λ)) e(Q(λ)τ ),

where ψK is the isometry associated to K . It is a holomorphic modular form of
weight n

2 + d for ρK . If the isometry is trivial, we write 2K (τ, p).
Following Borcherds [2] and Hövel [23], we define the general Siegel theta

function as follows.3

Definition. Let τ ∈ H and assume the notation above. Then we put

2L(τ, ψ, p) := v
s
2 +d−

∑
µ∈L ′/L

∑
λ∈L+µ

p(ψ(λ)) e(Q(λz)τ + Q(λz⊥)τ̄ )eµ.

One can check that the function2L converges absolutely on H×Z . The following
result is [23, Satz 1.55], which follows directly from [2, Theorem 4.1].

Lemma 2.6. Let (γ, φ) ∈ 0̃. Then we have

2L(γ τ, ψ, p)= φ(τ)r+2d+
−(s+2d−)ρL(γ, φ)2L(τ, ψ, p).

Thus, we define
k :=

r−s
2 + d+

− d−.

The following terminology is borrowed from [12].

Definition. An element w ∈ Gr(L) is called a special point if it is defined over Q,
that is, w ∈ L ⊗ Q.

3In fact, Borcherds considered a slightly more general theta function, where the polynomial p does
not necessarily vanish under 1κ . For us however, this more general case would not yield spherical
theta functions as we desire.



LOCAL MAASS FORMS AND EICHLER–SELBERG RELATIONS 393

We observe that if w is a special point, then w⊥ is a special point as well. This
yields the splitting

L ⊗ Q = w⊕w⊥,

which in turn yields the positive and negative-definite lattices

P := L ∩w, N := L ∩w⊥.

Clearly, P ⊕ N is a sublattice of L of finite index, and according to Lemma 2.3,
the theta functions associated to both lattices are related by

2L = (2P⊕N )
L .

We identify C[(P ⊕ N )′/(P ⊕ N )] with C[P ′/P] ⊗ C[N ′/N ], and let ψP , ψN be
the restrictions of ψ onto P , N respectively. Consequently, we have the splitting

2P⊕N (τ, ψ, p)=2P(τ, ψP , pr )⊗ v
s
2 +d−

2N−(τ, ψN , ps)

at a special point w, which can be verified straightforwardly. Furthermore, we
observe that 2P(τ, ψP , pr ) is holomorphic and of weight r

2 + d+ as a function
of τ , while v

s
2 +d−

2N−(τ, ψN , ps) is of weight −
s
2 − d− with respect to τ .

Serre duality.

Proposition 2.7 [29, Proposition 2.5, Serre duality]. Let L be an even lattice and
κ ∈

1
2 Z. Assume that

g(τ )=

∑
h∈L ′/L

∑
n≥0

cg(h, n)e(nτ)eh

is bounded at the cusp i∞. Then g is a holomorphic modular form of weight κ for
the Weil representation ρL if and only if we have∑

h∈L ′/L

∑
n≥0

cg(h, n) c f (h,−n)= 0

for every weakly holomorphic modular form f of weight 2 − κ for ρ̄L .

3. The theta lift

We consider the theta lift 9reg
j ( f, z) and evaluate it in two different ways. Using

Serre duality goes back to Borcherds [3].

Evaluation in terms of 2 F1. We begin by evaluating the higher modified lift as a
series involving Gauß hypergeometric functions as follows.
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Evaluating the theta lift of Maaß–Poincaré series for general spectral parameters.
Let s ∈ C be such that

Fm,κ,s(τ ) :=

∑
µ∈L ′/L

Fµ,m,κ,s(τ )

converges absolutely, that is, Re(s) > 1 −
κ
2 .

Theorem 3.1. We have

9
reg
j (Fm,k−2 j,s, z)= (4πm) j+1−k−

s
2 −d− 0

(
s+

k
2

)
0

( k+s
2 + d−

− 1 + s
)

20(2 − k + 2 j)0
(
s+

k
2 − j

)
×

∑
µ∈L ′/L

∑
λ∈L+µ

Q(λ)=−m

p(ψ(λ))
(

Q(λ)
Q(λz⊥)

)k+s
2 +d−

−1+s

× 2 F1

(
k + s,

k + s
2

+ d−
− 1 + s; 2s;

Q(λ)
Q(λz⊥)

)
.

Remark. Choosing the homogeneous polynomial in the theta kernel function to
be the constant function 1 and computing the action of R j

k−2 j on Fm,k−2 j,s by
Lemma 2.2, this result becomes [7, Theorem 2.14].

Proof. We summarize the argument from [7, Theorem 2.14] for convenience of the
reader. We need to evaluate

9
reg
j (Fm,k−2 j,s, z)=

∫ reg

F
⟨R j

k−2 j (Fm,k−2 j,s)(τ ),2L(τ, ψ, p)⟩vk dµ(τ).

Consequently, we compute the action of the raising operator first, and have

9
reg
j (Fm,k−2 j,s, z)= (4πm) j 0

(
s+

k
2

)
0

(
s+

k
2 − j

) ∫ reg

F
⟨(Fm,k,s)(τ ),2L(τ, ψ, p)⟩vk dµ(τ)

by Lemma 2.2. Secondly, we insert the definitions of both functions and unfold the
integral, obtaining

9
reg
j (Fm,k−2 j,s, z)=

(4πm) j0
(
s+

k
2

)
20(2 − k + 2 j)0

(
s+

k
2 − j

) ∑
µ∈L ′/L

∑
λ∈L+µ

p(ψ(λ))

×

∫ 1

0

∫
∞

0
(4πmv)−

k
2 M

−
k
2 ,s−

1
2
(4πmv) e(−mu)

× e(Q(λz)τ + Q(λz⊥)τ̄ )v
s
2 +d−

+k−2 dv du.

Third, we compute the integral over u using that e(w)= e(−w) and that∫ 1

0
e(−mu) e(−Q(λz)u − Q(λz⊥)u) du =

{
1 if Q(λz)+ Q(λz⊥)= −m,
0, else.
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Hence, we obtain

9
reg
j (Fm,k−2 j,s, z)=

(4πm) j− k
20

(
s+

k
2

)
20(2 − k + 2 j)0

(
s+

k
2 − j

) ∑
µ∈L ′/L

∑
λ∈L+µ

Q(λ)=−m

p(ψ(λ))

×

∫
∞

0
M

−
k
2 ,s−

1
2
(4πmv) e−2πv(Q(λz)−Q(λz⊥ ))v

s+k
2 +d−

−2 dv.

The integral is a Laplace transform. Using that

m
2m

+
Q(λz)− Q(λz⊥)

2m
=

Q(λz⊥)

Q(λ)

along with [35, (13.23.1)], it evaluates∫
∞

0
M

−
k
2 ,s−

1
2
(4πmv) e−2πv(Q(λz)−Q(λz⊥ ))v

k+s
2 +d−

−2 dv

=
(4πm)1−

k+s
2 −d−

0
( k+s

2 + d−
− 1 + s

)
( Q(λz)−Q(λz⊥ )

2m +
1
2

) k+s
2 +d−−1+s

× 2 F1

(
k + s,

k + s
2

+ d−
− 1 + s; 2s;

1
1
2 +

Q(λz)−Q(λz⊥ )

2m

)
.

We recall Q(λ)= Q(λz)+ Q(λz⊥)= −m and rewrite the argument of the hyperge-
ometric function to

m
2m

+
Q(λz)− Q(λz⊥)

2m
=

Q(λz⊥)

Q(λ)
.

Thus, we arrive at

9
reg
j (Fm,k−2 j,s, z)= (4πm) j+1−k−

s
2 −d− 0

(
s+

k
2

)
0

( k+s
2 + d−

− 1 + s
)

20(2 − k + 2 j)0
(
s+

k
2 − j

)
×

∑
µ∈L ′/L

∑
λ∈L+µ

Q(λ)=−m

p(ψ(λ))
(

Q(λ)
Q(λz⊥)

)k+s
2 +d−

−1+s

× 2 F1

(
k + s,

k + s
2

+ d−
− 1 + s; 2s;

Q(λ)
Q(λz⊥)

)
,

as claimed. □

Combining the previous result with Lemma 2.1 yields the following consequence.
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Corollary 3.2. Let j ∈ N0 and f ∈ Hk−2 j,L . Assume that k −2 j < 0. Then we have

9
reg
j ( f, z)=

(4π) j+1−k−
s
2 −d−

j !0
( s

2 + d−
+ j

)
40(2 − k + 2 j)

∑
λ∈L ′

Q(λ)<0

c+

f (λ, Q(λ)) p(ψ(λ))

×
|Q(λ)|2 j+1−k

|Q(λz⊥)|
s
2 + j+d− 2 F1

(
1 + j,

s
2

+ d−
+ j; 2 − k + 2 j;

Q(λ)
Q(λz⊥)

)
.

Proof. Since the weight of f is negative, we have

f (τ )=
1
2

∑
h∈L ′/L

∑
m≥0

c+

f (h,−m)Fh,m,k−2 j,1−
k
2 + j (τ )

according to Lemma 2.1. We observe that the term corresponding to m = 0 will
vanish due to c+

f (h, 0)= 0 by our more restrictive growth condition on Maaß forms.
Consequently, we have

9
reg
j ( f, z)=

1
2

∑
µ∈L ′/L

∑
m>0

c+

f (µ,−m)9reg
j (Fµ,m,k−2 j,1−

k
2 + j , z).

We insert the spectral parameter s = 1 −
k−2 j

2 into Theorem 3.1, which yields the
claim. □

Evaluation in terms of the constant term in a Fourier expansion. Next we de-
termine the lift as a constant term in a Fourier expansion plus a certain boundary
integral that vanishes for a certain class of input function.

Theorem 3.3. Let f ∈ Hk−2 j,L andw be a special point, and G+

P be the holomorphic
part of a preimage of 2P under ξ2−( r

2 +d+). Then we have

9
reg
j ( f, w)=

j ! (4π) j 0
(
2 −

r
2 − d+

)
0

(
2 −

r
2 − d+ + j

)
×

(
CT(⟨ fP⊕N (τ ), [G+

P (τ ),2N−(τ )] j ⟩)

−

∫ reg

F
⟨Lk−2 j ( fP⊕N )(τ ), [G+

P (τ ),2N−(τ )] j ⟩v
−2 dτ

)
.

Remark. In general, the coefficients of G+

P are expected to be transcendental.
However, in weights 1

2 and 3
2 the function G+

P may be chosen to have rational
coefficients — a situation which is expected to also hold for ξ -preimages of CM
modular forms. It is therefore expected that one obtains rationality (up to powers
of π ) of the modified higher lift only in these cases, and stipulating that f is weakly
holomorphic meaning that the final integral vanishes.

By a slight abuse of notation, we write 2L(τ, w, p) for the theta function evalu-
ated at an isometry ψ that produces a special point w.
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Proof of Theorem 3.3. We restrict to special points w ∈ Gr(L). So we can write

⟨R j
k−2 j ( f )(τ ),2L(τ, w, p)⟩ = ⟨R j

k−2 j ( fP⊕N )(τ ),2P⊕N (τ, w, p)⟩.

Next, we use that the raising and lowering operator are adjoint to each other (see
[7, Lemma 4.2]), which gives

9
reg
j ( f, w)=

∫ reg

F
⟨ fP⊕N (τ ), L j−1

k (2P⊕N (τ, w, p))⟩vk−2 dτ.

We observe that the boundary terms disappear in the same fashion as during the
proof of [7, Lemma 4.4]. Next, we rewrite

9
reg
j ( f, w)= (−1) j

∫ reg

F
⟨ fP⊕N (τ ), R j

−k(2P⊕N (τ, w, p)vk)⟩v−2 dτ

and recall that

2P⊕N (τ, w, p)=2P(τ, pr )⊗v
s
2 +d−

2N−(τ, ps)=v
s
2 +d−

2P(τ, pr )⊗2N−(τ, ps).

Consequently, we obtain

R j
−k(2P⊕N (τ, w, p)vk)= R j

−k(v
k+

s
2 +d−

2P(τ, pr )⊗2N−(τ, ps))

= vk+
s
2 +d−

2P(τ, pr )⊗ (R j
s
2 +d−2N−(τ, ps))

by Lemma 2.5. In particular, we note that vk+
s
2 +d−

2P(τ, pr ) has weight

−k −
s
2 − d−

= −
r
2 − d+.

We choose a preimage GP of 2P(τ, pr ) under ξ2−( r
2 +d+), namely

2P(τ, pr )= ξ2−
r
2 −d+ GP(τ )= v−

r
2 −d+

L2−
r
2 −d+ GP ,

which yields

R j
−k(2P⊕N (τ, w, p)vk)= L2−

r
2 −d+ GP(τ )⊗ (R j

s
2 +d−2N−(τ, ps)).

We apply the computation of the Rankin–Cohen brackets given in Lemma 2.4 noting
that Lℓ2N− = 0, and that it suffices to deal with the holomorphic part G+

P of GP

(both by virtue of holomorphicity in computing the Rankin–Cohen bracket). Thus,

R j
−k(2P⊕N (τ, w, p)vk)

=
j !(−4π) j0(2 − k)
0(2 − k + j)

v−
s
2 −d−

L2−k+
s
2 +d−+2 j [G+

P (τ ),2N−(τ, ps)] j .
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Hence, the theta lift becomes

9
reg
j ( f, w)

=
j !(4π) j0

(
2 −

r
2 − d+

)
0

(
2 −

r
2 − d+ + j

) ∫ reg

F
⟨ fP⊕N (τ ), L2−k+2 j [G+

P (τ ),2N−(τ, ps)] j ⟩v
−2 dτ.

The last step is to apply Stokes’ theorem, compare the proof of [7, Lemma 4.2] for
example, which yields

9
reg
j ( f, w)=

j !(4π) j0
(
2 −

r
2 − d+

)
0

(
2 −

r
2 − d+ + j

)
×

(
lim

T →∞

∫ 1+iT

iT
⟨ fP⊕N (τ ), [G+

P (τ ),2N−(τ, ps)] j ⟩v
−2 dτ

−

∫ reg

F
⟨Lk−2 j ( fP⊕N )(τ ), [G+

P (τ ),2N−(τ, ps)] j ⟩v
−2 dτ

)
,

utilizing again that boundary terms vanish. We observe that the left integral can
be regarded as the Fourier coefficient of index 0 in the Fourier expansion of the
integrand, see the bottom of page 14 in [12]. This proves the claim. □

We end this section by noting that to obtain recurrence relations, as in [12],
one would need to compute the Fourier expansion of the lift. In general, this is a
lengthy but straightforward process, and since we do not require it in this paper we
omit the details. In essence, one follows the calculations of Borcherds [2] by using
Lemma 2.2. A resulting technicality is to then take care of the different spectral
parameter. One may overcome this by relating the coefficients of Maaß–Poincaré
series to those with other spectral parameters, again using the action of the iterated
Maaß raising operator as in Lemma 2.2.

Eichler–Selberg relations. We now prove a refined version of Theorem 1.1. To
this end, we define the function

(3-1) 3L(ψ, p, j) :=
(4π)1−

r
2 −d+

0
( s

2 + j + d−
)
0

(
2 −

r
2 − d+

+ j
)

40(2 − k + 2 j)0
(
2 −

r
2 − d+

)
×

∑
m≥1,λ∈L ′

Q(λ)=−m

p(ψ(λ))
|Q(λ)|2 j+1−k

|Q(λz⊥)|
s
2 + j+d−

× 2 F1

(
1 + j,

s
2

+ j + d−
; 2 − k + 2 j;

Q(λ)
Q(λz⊥)

)
qm

for j > 0. We write

G+

P (τ )=

∑
µ∈L ′/L

∑
n≫−∞

a(n) qn eµ
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and furthermore define

G +

P (τ ) := G+

P (τ )−
∑
µ∈L ′/L

∑
n<0

a(n)Fµ,n−1,2 j+2−k(τ ).

Since one may add any weakly holomorphic modular form of appropriate weight
for ρL to G+

P , Theorem 1.1 follows directly from the following result (noting that
the linear combination of Maaß–Poincaré series may change).

Theorem 3.4. Let L be an even lattice of signature (r, s), let p be as before, and
w be a special point defined by the isometry ψ . Let j > 0 and k be such that
2 j + 2 − k > 2. Then the function

[G +

P (τ ),2N−(τ, ps)]
L
j −3L(ψ, p, j)

is a holomorphic vector-valued modular form of weight 2 j + 2 − k for ρL .

Remarks. (1) This provides the general vector-valued analogue, assuming that
the lattice is chosen such that 2 j + 2 − k > 2, of Mertens’ scalar-valued results in
weights 1

2 and 3
2 [33].

(2) Note that the slight correction of G+

P by Poincaré series was missing in [31].

(3) In certain cases the hypergeometric function may be simplified (for example, the
n = 1 case as in [12; 31], which yields a form very similar to Mertens’ scalar-valued
result). It appears to be possible that one should be able to prove the same results
via holomorphic projection acting on vector-valued modular forms (see [26]) in
much the same way as Mertens’ original scalar valued proofs in [33].

Proof of Theorem 3.4. Let f be a weakly holomorphic form of weight k − 2 j with
Fourier coefficients c+

f . By construction, the form G +

P is holomorphic at i∞, and
hence

CT(⟨ fP⊕N (τ ), [G
+

P (τ ),2N−(τ, ps)]
L
j ⟩)

contains only the Fourier coefficients of nonpositive index of f . We note that
Lk−2 j f = 0, and subtract the resulting expressions of the lift from Corollary 3.2
and Theorem 3.3. We obtain

0 = CT(⟨ fP⊕N (τ ), [G
+

P (τ ),2N−(τ, ps)]
L
j ⟩)

−
(4π)1−

r
2 −d+

0
( s

2 + j + d−
)
0

(
2 −

r
2 − d+

+ j
)

40(2 − k + 2 j)0
(
2 −

r
2 − d+

)
×

∑
m≥1,λ∈L ′

Q(λ)=−m

c+

f (λ,−m) p(ψ(λ))
|Q(λ)|2 j+1−k

|Q(λz⊥)|
s
2 + j+d−

× 2 F1

(
1 + j,

s
2

+ j + d−
; 2 − k + 2 j;

Q(λ)
Q(λz⊥)

)
.



400 JOSHUA MALES AND ANDREAS MONO

The Rankin–Cohen bracket is bilinear and a linear combination of vector-valued
Poincaré series is modular itself. We apply Proposition 2.7 and the claim follows. □

In a similar way to [33, Corollary 5.4], we obtain the following structural corollary
by rewriting Theorem 3.4, keeping the same notation as throughout this paper.

Corollary 3.5. Let θ denote the space generated by all 2N− functions of weight
s
2 + d− for ρN− . Then the equivalence classes 3L(ψ, p, j)+ M !

2 j+2−k,L generate
the C-vector space

[Mmock
2 j+2−k,P , θ]

L
j /M !

2 j+2−k,L .

4. The action of the Laplace–Beltrami operator

In this section, we prove Theorem 1.3. To this end, we compute the action of the
Laplace–Beltrami operator on the lift, and show that for certain spectral parameters,
we obtain a local Maaß form. We recall that the signature of L is assumed here to
be (2, s). Moreover, we observe that our Siegel theta function 2L and the Siegel
theta function inspected by Bruinier depend in the same way on Z , and thus the
following result applies.

Proposition 4.1 [7, Proposition 4.5]. The Siegel theta function 2L(τ, Z , p) consid-
ered as a function on H × Hℓ satisfies the differential equation

�2L(τ, Z , p)v
ℓ
2 = −

1
21k2L(τ, Z , p)v

ℓ
2 .

Our next step is to inspect the action of � on our theta lift. By Lemma 2.1 it
suffices to investigate

9
reg
j (Fm,k−2 j,s, Z)=

∫ reg

F
⟨R j

k−2 j (Fm,k−2 j,s)(τ ),2L(τ, Z , p)⟩vk dµ(τ).

Let
H(m) :=

⋃
µ∈L ′/L

⋃
λ∈µ+L

Q(λ)=−m

λ⊥
⊆ Gr(L),

which collects the singularities of 9reg
j (Fm,k−2 j,s, Z) as a function of Z . We apply

the previous proposition to our theta lift, which yields a variant of [7, Theorem 4.6].

Theorem 4.2. Let Z ∈ Hℓ \ H(m) and Re(s) > 1 −
k
2 . Then it holds that

�9
reg
j (Fm,k−2 j,s, Z)=

(
s−

k
2

)(
1 − s−

k
2

)
9

reg
j (Fm,k−2 j,s, Z).

Proof. First, we note that

�9
reg
j (Fm,k−2 j,s, Z)=

∫ reg

F
⟨R j

k−2 j (Fm,k−2 j,s)(τ ),�2L(τ, Z , p)v
ℓ
2 ⟩vk−

ℓ
2 dµ(τ),
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because all partial derivatives with respect to Z converge locally uniformly in Z as
T → ∞ (see [7, p. 99]). By the previous proposition, we infer that

�9
reg
j (Fm,k−2 j,s, Z)

= −
1
2

∫ reg

F
⟨R j

k−2 j (Fm,k−2 j,s)(τ ),1k2L(τ, Z , p)v
ℓ
2 ⟩vk−

ℓ
2 dµ(τ).

By the splitting1k = Rk−2 Lk and the adjointness of both operators (see [7, Lemmas
4.2–4.4]), we obtain

�9
reg
j (Fm,k−2 j,s, Z)

= −
1
2

∫ reg

F
⟨1k R j

k−2 j (Fm,k−2 j,s)(τ ),2L(τ, Z , p)v
ℓ
2 ⟩vk−

ℓ
2 dµ(τ).

Lastly, we observe that 1k and R j
k−2 j commute by virtue of Lemma 2.2, namely

1k R j
k−2 j (Fm,k−2 j,s)(τ )=

(
s−

k
2

)(
1 − s−

k
2

)
R j

k−2 j (Fm,k−2 j,s)(τ ),

and this establishes the claim by rewriting

⟨R j
k−2 j (Fm,k−2 j,s)(τ ),2L(τ, Z , p)v

ℓ
2 ⟩vk−

ℓ
2

= ⟨R j
k−2 j (Fm,k−2 j,s)(τ ),2L(τ, Z , p)⟩vk

again. □

Proof of Theorem 1.2. By Theorem 4.2, the lift is an eigenfunction of the Laplace–
Beltrami operator with the quoted eigenvalue. Since 9reg

j (Fm,k−2 j,s, Z) is an
eigenfunction of an elliptic differential operator, it is real-analytic in Gr(L) outside
of H(m). The other conditions for the lift to be a vector-valued local Maaß form
can be easily seen by applying the proof of [5, Theorem 1.1] mutatis mutandis.
When s =

k
2 or s =

k
2 − 1, we obtain locally harmonic Maaß forms. □

5. Cohen–Eisenstein series

We specialize the framework from Section 2 following [12, Section 4.4] (or [36,
Section 2.2]). We fix the signature (1, 2) as mentioned in the introduction, and the
rational quadratic space

V :=

{
X =

(
x2 x1

x3 −x2

)
∈ Q2×2

}
,

with quadratic form Q(X)= det(X). The Grassmannian of positive lines in V ⊗ R

can be identified with H via

λ(x+iy)=
1

√
2y

(
−x x2

+y2

−1 x

)
.
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We choose the lattice

L :=

{(
b c

−a −b

)
: a, b, c ∈ Z

}
,

with dual lattice
L ′

=

{( b
2 c

−a −
b
2

)
: a, b, c ∈ Z

}
.

We observe that L ′ can be identified with the set of integral binary quadratic forms
of discriminant

det
( b

2 c
−a −

b
2

)
= −

1
4 (b

2
−4ac).

Furthermore, L ′/L ∼= Z/2Z with quadratic form x 7→ −
1
4 x2. According to [12,

p. 22], it holds that

Q
(( b

2 c
−a −

b
2

)
x+iy

)
=

1
4y2 (a(x

2
+ y2)+ bx + c)2,

Q
(( b

2 c
−a −

b
2

)
(x+iy)⊥

)
= −

1
4y2 |[a, b, c](x + iy, 1)|2.

We remark that both are invariant under modular substitutions. By a result from
Eichler and Zagier [22, Theorem 5.4], the space of vector-valued modular forms of
weight k for ρL is isomorphic to the space M+

k (00(4)) of scalar-valued modular
forms satisfying the Kohnen plus space condition via the map

f0(τ )e0 + f1(τ )e1 7→ f0(4τ)+ f1(4τ).

This enables us to use scalar-valued forms as inputs for our theta lift.

Proof of Theorem 1.3. As outlined in the introduction, the function f (τ ) :=

f−2ℓ,N (τ )Hℓ(τ ) is of weight −ℓ−
1
2 < 0 for 00(4), has nonconstant principal part

at the cusp i∞, and its image under ξ is trivial, and hence in particular cuspidal.
This enables us to apply Corollary 3.2 to f . To this end, we have the parameters

k = −
1
2 + d+

+ d−, k − 2 j = −ℓ−
1
2 .

Rewriting those yields
j =

ℓ+d+
+d−

2
,

and the hypergeometric function from Theorem 3.1 becomes

2 F1

(
ℓ+2+d+

+d−

2
,
ℓ+2+d+

+3d−

2
, 5

2 + ℓ,
4my2

|[a, b, c](z, 1)|2

)
.

Inspecting the parameters, we have the condition ℓ+ d+
+ d−

∈ 2N by j ∈ N,
and combining with d+, d−

∈ N0, ℓ ∈ N \ {1}, the smallest possible values are
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(ℓ, d+, d−)= (2, 0, 0), (2, 2, 0), (2, 1, 1), (2, 0, 2). For example, the corresponding
hypergeometric functions for the cases (ℓ, d+, d−)= (2, 0, 0), (2, 1, 1) are

2 F1
(
2, 2, 9

2 , z̃
)
= −

35(11z̃ − 15)
12z̃3 −

35(2z̃2
− 7z̃ + 5) arcsin(

√
z̃)

4z̃
7
2
√

1 − z̃
,

2 F1
(
3, 4, 9

2 , z̃
)
= −

35(8z̃2
− 26z̃ + 15)

128z̃3(z̃ − 1)2
+

105(8z̃2
− 12z̃ + 5) arcsin(

√
z̃)

128z̃
7
2
√

1 − z̃(z̃ − 1)2
,

and the other cases are of similar shape. Analogous expressions can be obtained for
higher integer parameters via Gauß’ contiguous relations for the hypergeometric
function, which can be found in [35, Section 15.5(ii)] for instance.

We infer a local behavior as sketched in the introduction by virtue of (4m = D =

b2
− 4ac)

arcsin(
√

z̃)= arcsin
( √

Dy
|az2 + bz + c|

)
= arctan

∣∣∣ √
Dy

a|z|2 + bx + c

∣∣∣,
which in turn follows by

(b2
− 4ac)y2

+ (a|z|2 + bx + c)2 = |az2
+ bz + c|2,

compare [4, Section 3]. The denominator a|z|2 +bx + c vanishes if and only if z is
located on the Heegner geodesic associated to Q = [a, b, c]. Since the principal
part of f is given by

N∑
n=0

H(ℓ, n) qn−N
+ O(qm+1), m =

{⌊
−2ℓ
12

⌋
− 1 if − 2ℓ≡ 2 (mod 12),⌊

−2ℓ
12

⌋
, else,

we conclude that f has the exceptional set

N⋃
D=1

{z = x + iy ∈ H : ∃a, b, c ∈ Z, b2
− 4ac = D, a|z|2 + bx + c = 0}.

In other words, the exceptional set of f is a finite union of nets of Heegner geodesics.
Furthermore, we recall that the spectral parameter in Corollary 3.2 is s = 1 −

k−2 j
2 ,

and hence the eigenvalue under 1−ℓ−(1/2) is(
s−

k
2

)(
1 − s−

k
2

)
= (1 − k + j)(− j)= j

(
j − ℓ−

3
2

)
. □

Eichler–Selberg relations for Cohen–Eisenstein series. Eichler–Selberg relations
for Cohen–Eisenstein series could be obtained as follows. On one hand, the input
function f (τ )= f−2ℓ,N (τ )Hℓ(τ ) is weakly holomorphic, thus we do not need to
deal with the additional term∫ reg

F
⟨Lk−2 j ( fP⊕N )(τ ), [G+

P (τ ),2N−(τ )] j ⟩v
−2 dτ
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arising from Theorem 3.3. Further, the function 3L from (3-1) simplifies to

3L(ψ, p, j)=
43d−

π
1
2 −d+

0( j + 1 + d−)0
( 3

2 − d+
+ j

)
0

(
ℓ+

1
2

)
0

( 3
2 − d+

)
×

∑
D≥1

∑
Q∈QD

p(ψ(Q))
Dℓ+ 3

2 y2+2 j+2d−

|Q(z, 1)|2+2 j+2d−

× 2 F1

(
ℓ+2+d+

+d−

2
,
ℓ+2+d+

+3d−

2
, 5

2 + ℓ,
Dy2

|Q(z, 1)|2

)
q D,

where QD denotes the set of integral binary quadratic forms of discriminant D.
After evaluating the hypergeometric function as in the previous proof, one may
follow our proof of Theorem 3.4, namely subtract the two evaluations of 9reg

j ( f, z)
from each other and apply Serre duality to the resulting expression. Computing the
principal part of G+

P in addition, this yields the desired result. However, we do not
pursue this here explicitly as the resulting expression is rather lengthy.
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REPRESENTATIONS OF
ORIENTIFOLD KHOVANOV–LAUDA–ROUQUIER ALGEBRAS

AND THE ENOMOTO–KASHIWARA ALGEBRA

TOMASZ PRZEŹDZIECKI

We consider an “orientifold” generalization of Khovanov–Lauda–Rouquier
algebras, depending on a quiver with an involution and a framing. Their
representation theory is related, via a Schur–Weyl duality type functor, to
Kac–Moody quantum symmetric pairs, and, via a categorification theorem,
to highest weight modules over an algebra introduced by Enomoto and
Kashiwara. Our first main result is a new shuffle realization of these
highest weight modules and a combinatorial construction of their PBW
and canonical bases in terms of Lyndon words. Our second main result is
a classification of irreducible representations of orientifold KLR algebras
and a computation of their global dimension in the case when the framing
is trivial.
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1. Introduction

Khovanov–Lauda–Rouquier (KLR) algebras were introduced in [Khovanov and
Lauda 2009; Rouquier 2008] in the context of categorification of quantum groups.
They have since played an increasingly important role in representation theory.
Broadly speaking, KLR algebras can be regarded, via the Brundan–Kleshchev–
Rouquier isomorphism [Brundan and Kleshchev 2009; Rouquier 2008], as a gen-
eralization of the affine Hecke algebra Ĥ(Am) of type A. This generalization is
twofold. Firstly, KLR algebras naturally possess a nontrivial grading, which is
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difficult to discern in the affine Hecke algebra. Secondly, KLR algebras constitute
the correct replacement for Ĥ(Am) from the point of view of Schur–Weyl duality.
Indeed, Kang, Kashiwara and Kim [Kang et al. 2018] have constructed functors
relating categories of modules over KLR algebras and quantum affine algebras
of any type, generalizing the relationship between Ĥ(Am) and Uq(ŝln) established
earlier by Chari and Pressley [1996].

It is natural to ask whether it is possible to construct a KLR-type generalization
of affine Hecke algebras of other classical types. A positive answer to this question
was given by Varagnolo and Vasserot [2011], as well as by Poulain d’Andecy
and Walker [2020]. We will refer to the new graded algebras introduced there as
orientifold KLR algebras (see Remark 2.5 for an explanation of the origin of this
name). It must be stressed that orientifold KLR algebras are very different from
the usual KLR algebras associated to Cartan data of other classical types. From
the point of view of categorification, their representation theory is related to an
algebra introduced by Enomoto and Kashiwara [2006], depending on a Dynkin
diagram together with an involution. More precisely, it was shown in [Varagnolo
and Vasserot 2011] that orientifold KLR algebras categorify irreducible highest
weight modules θV(λ) over the Enomoto–Kashiwara algebra. In analogy to Uq(n−),
these modules also admit a geometric construction in terms of perverse sheaves on
the stack of orthogonal representations of a quiver with a contravariant involution
[Enomoto 2009], as well as a Ringel–Hall–type construction [Young 2016].

Our main motivation for studying orientifold KLR algebras is related to Schur–
Weyl duality. In [Appel and Przeździecki 2022], we construct functors between
categories of modules over orientifold KLR algebras and coideal subalgebras Bc,s
of quantum affine algebras Uq(ĝ) (see [Kolb 2014]), respectively. The parameter λ

is related to the parameters c and s via an additional datum in the definition of an
orientifold KLR algebra, given by a framing dimension vector. Our intention is to use
these functors to develop the graded representation theory of Kac–Moody quantum
symmetric pairs. The study of finite-dimensional representations of orientifold KLR
algebras is the first step in this program.

Let us describe our results in more detail. In Section 2, we introduce a somewhat
more general definition of orientifold KLR algebras (Definition 2.4) associated to
hermitian matrices with an additional symmetry. We construct a faithful polyno-
mial representation (Proposition 2.7) and prove a PBW theorem (Proposition 2.9).
Section 3 is dedicated to the Enomoto–Kashiwara algebra. Inspired by the work of
Leclerc [2004] and Kleshchev and Ram [2011], we construct a shuffle realization
of the modules θV(λ) (Definition 3.6 and Proposition 3.9). This allows us to apply
the combinatorics of Lyndon words to obtain PBW and canonical bases for these
modules, in the case λ = 0 (Theorem 3.28, Corollary 3.30), somewhat simplifying
the original construction of these bases [Enomoto and Kashiwara 2008]. In Section 4,
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we apply these results to the representation theory of orientifold KLR algebras.
A key ingredient is Varagnolo and Vasserot’s categorification theorem [2011],
identifying θV(λ) with the Grothendieck group of the category of finite-dimensional
representations of orientifold KLR algebras. In our main result (Theorem 4.10), we
classify irreducible representations of orientifold KLR algebras in terms of θ -good
Lyndon words, and construct them as heads (respectively, socles) of certain induced
(respectively, coinduced) modules. As an application, we prove that orientifold
KLR algebras have finite global dimension when λ = 0.

Future work. The present paper lays the foundations for a broader programme con-
necting the representation theory of quantum symmetric pairs with orientifold KLR
algebras via generalized Schur–Weyl duality functors. In [Appel and Przeździecki
2022], the results of the present paper, together with a number of new techniques,
including k-matrices for KLR algebras and localization for module categories, are
used to construct Hernandez–Leclerc–type categories [2010; 2015] for coideal
subalgebras Bc,s in affine type A.III with generic parameters c, s.

In future work, we would like to generalize these results to nongeneric parameters
and coideals of type D.IV. This will, in turn, require the development of the
representation theory of orientifold KLR algebras associated to nontrivial framings λ

and quivers of affine type D. To achieve this, we will combine the combinatorial
techniques from the present paper with an in-depth study of the geometry of framed
symplectic and orthogonal quiver representations.

We expect that further study of orientifold KLR algebras with nontrivial fram-
ings will also provide new information about the representation theory of (affine)
Hecke algebras of types B and C with unequal parameters, including the so-called
nonasymptotic case, which is still only partially understood.

In yet another direction, the connection to Hernandez–Leclerc categories suggests
that the combinatorics of the dual canonical bases of the modules θV(λ) should
have an interesting interpretation in terms of cluster theory.

2. Orientifold KLR algebras

2A. Some combinatorics. Let k be a field. Let Sn = ⟨s1, . . . , sn−1⟩ denote the
symmetric group on n letters, and let Wn =⟨s0, s1, . . . , sn−1⟩ denote the Weyl group
of type Bn , i.e., (Z/2Z)n ⋊Sn . We regard them as Coxeter groups in the usual
way. Given 0 ≤ m ≤ n, let Dm,n−m (respectively, θDm,n−m) denote the set of shortest
left coset representatives with respect to the parabolic subgroup Sm ×Sn−m ⊂ Sn

(respectively, Wm ×Sn−m ⊂ Wn). Let w0 ∈ Sn (respectively, θw0 ∈ Wn) be the
longest element, and let θw ∈ Wn be the longest element in θD0,n , i.e., the signed
permutation

θw(l) = −(n − l + 1).
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Let J be a set and θ : J → J an involution. We denote by J θ the subset of fixed
points of θ . Let N[J ] be the commutative semigroup freely generated by J . We call
elements of N[J ] dimension vectors. Given a dimension vector β =

∑
i∈J β(i) · i ,

we set ∥β∥ =
∑

i∈J β(i) and supp(β) = {i ∈ J | β(i) ̸= 0}. We call a sequence
ν = ν1 · · · νn ∈ J n a composition of β of length ℓ(ν) = n if |ν| =

∑n
k=1 νk = β. We

also set ∥ν∥ = n. Let Jβ denote the set of all compositions of β. There is a left
action of Sn on J n by permutations

(2-1) sk · ν1 · · · νn = ν1 · · · νk+1νk · · · νn, 1 ≤ k ≤ n − 1,

whose orbits are the sets Jβ for all β with ∥β∥ = n.
Let J •

=
⋃

β∈N[J ]
Jβ be the set of compositions of all dimension vectors. We

also refer to elements of J • as words in J and denote the empty word by ∅. We
consider J • as a monoid with respect to concatenation: νµ = ν1 · · · νℓνµ1 · · · µℓµ,
with ∅ as the identity.

The involution θ induces an involution θ : N[J ] → N[J ]. We call dimension
vectors in N[J ]

θ self-dual. We will always assume, for any β ∈ N[J ]
θ , that if i ∈ J θ ,

then β(i) is even. Set ∥β∥θ = ∥β∥/2 and

θ(−) : N[J ] → N[J ]
θ , β 7→

θβ = β + θ(β).

We call a sequence ν = ν1 · · · νn ∈ J n an isotropic composition of β if θ
|ν| =∑n

k=1
θνi = β. We abbreviate ν−k = θ(νk). Let θJβ denote the set of all isotropic

compositions of β. There is a left action of Wn on J n extending (2-1), given by

s0 · ν1 · · · νn = θ(ν1)ν2 · · · νn,

whose orbits are the sets θJβ for all self-dual β with ∥β∥θ = n. Let θJ •
=⋃

β∈N[J ]θ
θJβ be the set of all isotropic compositions of all self-dual dimension

vectors. The identity map defines a bijection J • ∼=
θJ •.

We will consider algebras depending on matrices and vectors with polynomial
entries. Below we introduce some terminology for the latter.

Definition 2.1. We call a matrix Q = (Qi j )i, j∈J with entries in k[u, v] a coefficient
matrix. We say that Q is:

(M1) regular if Qi i = 0 for all i ∈ J ,

(M2) θ -symmetric if Qi j (u, v) = Qθ( j)θ(i)(−v, −u) for all i, j ∈ J ,

(M3) nonvanishing if Qi j ̸= 0 for all i ̸= j ∈ J ,

(M4) hermitian if Qi j (u, v) = Q j i (v, u) for each i, j ∈ J .

Moreover, we call a vector Q′
= (Qi )i∈J with entries in k[u] a coefficient vector.

We say that Q′ is:

(V1) regular if Qi = 0 for all i ∈ J θ ,
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(V2) nonvanishing if Qi ̸= 0 for all i /∈ J θ ,

(V3) self-conjugate if Qi (u) = Qθ(i)(−u).

If a coefficient matrix satisfies (M1)–(M4), respectively, if a coefficient vector
satisfies (V1)–(V3), we call it perfect.

2B. Reminder on KLR algebras. Let β ∈ N[J ] with ∥β∥ = n, and let Q be a
regular coefficient matrix.

Definition 2.2. The KLR algebra R(β) associated to (J, Q, β) is the unital k-
algebra generated by e(ν) with ν ∈ Jβ , xl with 1 ≤ l ≤ n and τk with 1 ≤ k ≤ n −1,
subject to the following relations:

• idempotent relations:

e(ν)e(ν ′) = δν,ν′e(ν), xle(ν) = e(ν)xl, τke(ν) = e(sk · ν)τk,

• polynomial relations:
xl xl ′ = xl ′ xl,

• quadratic relations:

τ 2
k e(ν) = Qνk ,νk+1(xk+1, xk)e(ν),

• deformed braid relations:

τkτk′ = τk′τk, if k ̸= k ′
±1,

(τk+1τkτk+1−τkτk+1τk)e(ν) = δνk ,νk+2

Qνk ,νk+1(xk+1, xk)−Qνk ,νk+1(xk+1, xk+2)

xk−xk+2
e(ν),

• mixed relations:

(τk xl − xsk(l)τk)e(ν) =


−e(ν), if l = k, νk = νk+1,

e(ν), if l = k + 1, νk = νk+1,

0, else.

Whenever we want to emphasize the dependence of the KLR algebra on the full
datum (J, Q, β), we will write R(J, Q, β).

Lemma 2.3. If the coefficient matrix Q is hermitian, then there is an algebra
isomorphism R(β) → R(β) sending

(2-2) e(ν) 7→ e(w0(ν)), xl 7→ xn−l+1, τk 7→ −τn−k .

If the coefficient matrix Q is hermitian and θ-symmetric, then there is an algebra
isomorphism R(β) → R(θ(β)) sending

(2-3) e(ν) 7→ e(θw(ν)), xl 7→ −xn−l+1, τk 7→ −τn−k .

Proof. The first statement can be found in, e.g., [Rouquier 2008, §3.2.1]. The
second statement follows from a direct check of the relations using θ -symmetry. □
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If M is an R(β)-module, we will denote by M† the corresponding R(θ(β))-
module with the action twisted by the inverse of the isomorphism given in (2-3).

2C. Orientifold KLR algebras. Let β ∈ N[J ]
θ with ∥β∥θ = n, let Q be a regular

θ -symmetric coefficient matrix and Q′ a regular coefficient vector.

Definition 2.4. Associated to (J, θ, Q, Q′, β), we define the orientifold KLR al-
gebra θR(β) to be the unital k-algebra generated by e(ν) with ν ∈

θJβ , xl with
1 ≤ l ≤ n, τ0 and τk with 1 ≤ k ≤ n − 1 subject to the following relations:

• idempotent relations:

e(ν)e(ν ′) = δν,ν′e(ν), xle(ν) = e(ν)xl,

τke(ν) = e(sk · ν)τk, τ0e(ν) = e(s0 · ν)τ0,

• polynomial relations:
xl xl ′ = xl ′ xl,

• quadratic relations:

τ 2
k e(ν) = Qνk ,νk+1(xk+1, xk)e(ν), τ 2

0 e(ν) = Qν1(−x1)e(ν),

• deformed braid relations:

τkτk′ = τk′τk, if k ̸= k ′
± 1, τ0τk = τkτ0, if k ̸= 1,

(τk+1τkτk+1−τkτk+1τk)e(ν)= δνk ,νk+2

Qνk ,νk+1(xk+1, xk)−Qνk ,νk+1(xk+1, xk+2)

xk −xk+2
e(ν),(

(τ1τ0)
2
−(τ0τ1)

2)e(ν)

=



Qν2(x2)−Qν1(x1)

x1+x2
τ1e(ν), if ν1 ̸= ν2, ν2 = θ(ν1)

Qν1,ν2(x2, −x1)−Qν1,ν2(−x2, −x1)

x2
τ0e(ν), if ν1 ̸= θ(ν1), ν2 = θ(ν2),

Qν1,ν2(x2, −x1)−Qν1,ν2(x2, x1)

x1x2
(x1τ0+1)e(ν), if θ(ν1)= ν1 ̸= ν2 = θ(ν2),

0 else,

• mixed relations:

(τk xl − xsk(l)τk)e(ν) =


−e(ν), if l = k, νk = νk+1,

e(ν), if l = k + 1, νk = νk+1,

0, else,

(τ0x1 + x1τ0)e(ν) =

{
0, if ν1 ̸= θ(ν1),

−2e(ν), if ν1 = θ(ν1),

τ0xl = xlτ0, if l ̸= 1.
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By convention, we set θR(0) = k. Whenever we want to emphasize the depen-
dence of the orientifold KLR algebra on the full datum (J, θ, Q, Q′, β), we will
write θR(J, Q, Q′, β).

Remark 2.5. In the case when the matrices Q and Q′ arise from a quiver with a
contravariant involution and a framing (see Section 2F), under the assumption that
the involution has no fixed points, the algebra θR(β) was introduced by Varagnolo
and Vasserot [2011]. The case of an involution with possible fixed points was first
considered by Poulain d’Andecy and Walker [2020], and later by Poulain d’Andecy
and Rostam [2021]. The latter paper takes a somewhat similar approach to ours —
the definition of the algebra depends on polynomials Qi j , but they are less general
than ours, and the polynomials Qi are absent.

In the literature, these algebras are typically referred to as “generalizations of
KLR algebras for types BCD”. However, we feel that this name may lead to confusion
between, for example, the algebra θR(β) and the KLR algebra R(β) associated
to a quiver of type D. To avoid this confusion, we propose to introduce the name
“orientifold KLR algebras” for θR(β). The motivation comes from the connection
with orientifold Donaldson–Thomas theory, see [Przeździecki 2019; Young 2020].

Proposition 2.6. We list several isomorphisms between orientifold KLR algebras:

(1) If Q is hermitian and Q′ self-conjugate, then there is an algebra automorphism

(2-4) θR(β) ∼
−→

θR(β), e(ν) 7→ e(θw0(ν)), xl 7→ −xl, τk 7→ −τk,

with ν ∈
θJβ , 1 ≤ l ≤ n and 0 ≤ k ≤ n − 1.

(2) If Q is hermitian and Q′ self-conjugate, then there is an algebra isomorphism

(2-5) ω :
θR(β) ∼

−→
θR(β)op, e(ν) 7→e(ν), xle(ν) 7→xle(ν), τke(ν) 7→τke(sk ·ν).

(3) Given {ζi }i∈J in k satisfying ζi = −ζθ(i), as well as {ηi j }i, j∈J and {ηi }i∈J

in k× satisfying: ηi j = ηθ( j)θ(i) for all i, j ∈ J and ηi = ηi i for i ∈ J θ , let
Q̂i j (u, v) = ηi jη j i (η j j u + ζ j , ηi iv + ζi ) and Q̂i (u) = ηiηθ(i)Qi (ηi i u − ζi ).
Then there is an algebra isomorphism θR(J, Q̂, Q̂′, β) ∼

−→
θR(J, Q, Q′, β)

given by

e(ν) 7→ e(ν), xle(ν) 7→ η−1
νl ,νl

(xl − ζνl )e(ν),

τke(ν) 7→ ηνk ,νk+1τke(ν), τ0e(ν) 7→ ην1τ0e(ν).

Proof. The result follows by a direct computation from the defining relations. □

2D. Polynomial representation. Set

Pν = k[x1, . . . , xn]e(ν), P̂ν = kJx1, . . . , xnKe(ν), K̂ν = k((x1, . . . , xn))e(ν),

θPβ =
⊕

ν∈θJβ

Pν,
θ P̂β =

⊕
ν∈θJβ

P̂ν,
θ K̂β =

⊕
ν∈θJβ

K̂ν .
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We abbreviate x−l = −xl for 1 ≤ l ≤ n. The group Wn acts on k((x1, . . . , xn))

from the left by w · xl = xw(l). This induces an action on θ K̂β according to the rule

(2-6) w · f e(ν) = w( f )e(w · ν),

for w ∈ Wn and f ∈ k((x1, . . . , xn)).
Let P = (Pi j )i, j∈J be a coefficient matrix satisfying (M1)–(M3) and P ′

= (Pi )i∈J

a coefficient vector satisfying (V1)–(V2). Set

(2-7)
Qi j (u, v) = Pi j (u, v)Pj i (v, u),

Qi (u) = Pi (u)Pθ(i)(−u),

with i, j ∈ J . Then Q = (Qi j ) is a perfect coefficient matrix and Q′
= (Qi ) a

perfect coefficient vector.

Proposition 2.7. The algebra θR(β) has a faithful polynomial representation
on θPβ , given by:

• e(ν), where ν ∈
θJβ , acting as a projection onto Pν ,

• x1, . . . , xn acting naturally by multiplication,

• τ1, . . . , τn−1 acting via

τk · f e(ν) =


sk( f ) − f
xk − xk+1

e(ν), if νk = νk+1,

Pνk ,νk+1(xk, xk+1)sk( f )e(sk · ν), otherwise,

• τ0 acting via

τ0 · f e(ν) =

{s0( f ) − f
x1

e(ν), if θ(ν1) = ν1,

Pν1(x1)s0( f )e(s0 · ν), otherwise.

Whenever we want to emphasize the dependence of the above representa-
tion on (P, P ′), we will write θP

P,P ′

β .

Proof. The proof that the operators defined above satisfy all the relations from
Definition 2.4 not involving τ0 is the same as in the case of the KLR algebra, and
can be found in, e.g., the proof of [Rouquier 2008, Proposition 3.12]. The other
relations are easy to check, with the exception of the deformed braid relations. We
prove these explicitly below.
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To simplify exposition, we omit the idempotents. We also abbreviate i = ν1 and
j = ν2. First consider the case where i ̸= j and j = θ(i). Then:

τ1τ0τ1τ0( f ) = τ1τ0τ1 Pi (x1)s0( f ) = τ1τ0
Pi (x2)s1s0( f )−Pi (x1)s0( f )

x1−x2

= τ1 Pj (x1)
Pi (x2)s0s1s0( f )−Pi (−x1) f

−x1−x2

= Pi j (x1, x2)Pj (x2)
Pi (x1)s1s0s1s0( f )−Pi (−x2)s1( f )

−x1−x2
,

τ0τ1τ0τ1( f ) = τ0τ1τ0 Pi j (x1, x2)s1( f ) = τ0τ1 Pj (x1)Pi j (−x1, x2)s0s1( f )

= τ0
Pj (x2)Pi j (−x2, x1)s1s0s1( f )−Pj (x1)Pi j (−x1, x2)s0s1( f )

x1−x2

= Pi (x1)
Pj (x2)Pi j (−x2, −x1)s0s1s0s1( f )−Pj (−x1)Pi j (x1, x2)s1( f )

−x1−x2
.

Since, by θ -symmetry, we have Pi j (x1, x2) = Pi j (−x2, −x1), it follows that

(
(τ1τ0)

2
− (τ0τ1)

2)( f ) =
Pj (x2)Pi (−x2) − Pi (x1)Pj (−x1)

x1 + x2
Pi j (x1, x2)s1( f )

=
Q j (x2) − Qi (x1)

x1 + x2
τ1( f ).

Secondly, let i ̸= θ(i) and j = θ( j). Then:

τ1τ0τ1τ0( f )

= τ1τ0τ1 Pi (x1)s0( f ) = τ1τ0 Pθ(i), j (x1, x2)Pi (x2)s1s0( f )

= τ1
Pθ(i), j (−x1, x2)Pi (x2)s0s1s0( f )−Pθ(i), j (x1, x2)Pi (x2)s1s0( f )

x1

= Pj,θ(i)(x1, x2)
Pθ(i), j (−x2, x1)Pi (x1)s1s0s1s0( f )−Pθ(i), j (x2, x1)Pi (x1)s0( f )

x2
,

τ0τ1τ0τ1( f )

= τ0τ1τ0 Pi j (x1, x2)s1( f ) = τ0τ1
Pi j (−x1, x2)s0s1( f )−Pi j (x1, x2)s1( f )

x1

= τ0 Pj i (x1, x2)
Pi j (−x2, x1)s1s0s1( f )−Pi j (x2, x1) f

x2

= Pi (x1)Pj i (−x1, x2)
Pi j (−x2, −x1)s0s1s0s1( f )−Pi j (x2, −x1)s0( f )

x2
.
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Again, θ -symmetry implies that

((τ1τ0)
2
− (τ0τ1)

2)( f )

=
−Pj,θ(i)(x1, x2)Pθ(i), j (x2, x1) + Pi j (x2, −x1)Pj,i (−x1, x2)

x2
Pi (x1)s0( f )

=
Qi j (x2, −x1) − Qi j (−x2, −x1)

x2
τ0( f ).

Thirdly, let θ(i) = i ̸= j = θ( j). Then:

τ1τ0τ1τ0( f )

= τ1τ0τ1
s0( f )− f

x1
= τ1τ0 Pi j (x1, x2)

s1s0( f )−s1( f )

x2

= τ1
Pi j (−x1, x2)[s0s1s0( f )−s0s1( f )]−Pi j (x1, x2)[s1s0( f )−s1( f )]

x1x2

= Pj i (x1, x2)
Pi j (−x2, x1)[s1s0s1s0( f )−s1s0s1( f )]−Pi j (x2, x1)[s0( f )−( f )]

x1x2
,

τ0τ1τ0τ1( f )

= τ0τ1τ0 Pi j (x1, x2)s1( f ) = τ0τ1
Pi j (−x1, x2)s0s1( f )−Pi j (x1, x2)s1( f )

x1

= τ0 Pj i (x1, x2)
Pi j (−x2, x1)s1s0s1( f )−Pi j (x2, x1) f

x2

=
Pj i (−x1, x2)[Pi j (−x2, −x1)s0s1s0s1( f )−Pi j (x2, −x1)s0( f )]

x1x2

−
Pj i (x1, x2)[Pi j (−x2, x1)s1s0s1( f )−Pi j (x2, x1) f ]

x1x2
.

By θ -symmetry, we conclude that

(
(τ1τ0)

2
−(τ0τ1)

2)( f ) =
−Pj i (x1, x2)Pi j (x2, x1)+Pj i (−x1, x2)Pi j (x2, −x1)

x1x2
s0( f )

=
Qi, j (x2, −x1)−Qi, j (x2, x1)

x1x2
(x1τ0+1) f.

Fourthly, let i = θ(i) and j ̸= θ( j). One easily checks (using θ-symmetry)
that ((τ1τ0)

2
− (τ0τ1)

2)( f ) = g · s1s0s110( f ) − 10(g · s1s0s1( f )), where g is an
s0-invariant polynomial and 10 = x−1

1 (s0 − 1). It now follows from the properties
of Demazure operators that(
(τ1τ0)

2
− (τ0τ1)

2)( f )

= g · s1s0s110( f ) −
(
10(g) · s1s0s1( f ) + s0(g)10

(
s1s0s1( f )

))
= 0.
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Fifthly, let i = j and i ̸= θ(i). One checks, as above, that ((τ1τ0)
2
−(τ0τ1)

2)( f )=

11(g · s0s1s0( f )) − g · s0s1s011( f ), where g is an s1-invariant polynomial and
11 = (x1 − x2)

−1(s1 − 1). As above, it follows from the properties of Demazure
operators that ((τ1τ0)

2
− (τ0τ1)

2)( f ) = 0.
Finally, suppose that i = j = θ( j). Then each of τ0 and τ1 acts as a Demazure

operator, but Demazure operators satisfy the braid relation. This completes the
proof that θPβ is a representation of θR(β).

The proof of faithfulness is analogous to the case of KLR algebras, see, e.g.,
[Rouquier 2008, Proposition 3.12]. □

Next, for each i, j ∈ J , we choose holomorphic functions ci j (u, v) ∈ kJu, vK
such that

(2-8) ci j (u, v)c j i (v, u) = 1, ci i (u, v) = 1, ci j (u, v) = cθ( j)θ(i)(−v, −u).

Moreover, for each i ∈ J , we also choose holomorphic functions ci ∈k[[u]] such that

(2-9) ci (u) = cθ(i)(−u), i = θ(i) ⇒ ci (u) = 1.

Set
P̃i j (u, v) = Pi j (u, v)ci j (u, v) and P̃i (u) = Pi (u)ci (u).

Corollary 2.8. There is an injective θPβ-algebra homomorphism

(2-10) θR(β) ↪→ k[Wn]⋉ θ K̂β

given by

τ0e(ν) =

{
x−1

1 (s0 − 1)e(ν), if ν1 = θ(ν1),

P̃ν1(x1)s0e(ν), otherwise,

τke(ν) =

{
(xk − xk+1)

−1(sk − 1)e(ν), if νk = νk+1,

P̃νk ,νk+1(xk, xk+1)ske(ν), otherwise,

for 1 ≤ k ≤ n − 1.

Proof. This follows directly from Proposition 2.7. □

2E. PBW theorem. In this subsection, assume that Q is a coefficient matrix satisfy-
ing (M1)–(M3) and Q′ a coefficient vector satisfying (V1)–(V2). The algebra θR(β)

is filtered with deg xl , deg e(ν) = 0 and deg τk = 1. We say that θR(β) satisfies the
PBW property if gr θR(β) ∼=

0H
f
n ⋉ θPβ , where 0H

f
n is the (nonaffine) nil-Hecke

algebra of type Bn (see, e.g., [Kostant and Kumar 1986]).
For any w ∈ Wn , choose a reduced expression w = sk1 · · · skl and set τw =

τsk1
· · · τskl

. The definition of τw depends on the choice of reduced expression.

Proposition 2.9. Let n ≥ 1. The following are equivalent:

(1) θR(β) satisfies the PBW property,
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(2) θR(β) is a free k-module with basis{
τwxa1

1 . . . xan
n e(ν) | w ∈ Wn, (a1, . . . , an) ∈ Zn

≥0, ν ∈
θJβ

}
,

(3) Q and Q′ are perfect.

Proof. The proof is a straightforward generalization of the proof of [Rouquier 2008,
Theorem 3.7]. Let us briefly comment on the new features. Suppose that (2) holds,
and let ν1 ̸= θ(ν1). The quadratic relation then implies that

Qθ(ν1)(−x1)τ0e(ν) = τ 3
0 e(ν) = τ0 Qν1(−x1)e(ν) = Qν1(x1)τ0e(ν).

It follows that (
Qθ(ν1)(−x1) − Qν1(x1)

)
τ0e(ν) = 0.

Now (2) implies that Qθ(ν1)(−x1) − Qν1(x1) = 0, i.e., Q′ is self-conjugate. Con-
versely, if both Q and Q′ are perfect, then we can use Proposition 2.7, with Pi j = Qi j ,
Pj i = 1 with i < j , Pi = Qi and Pθ(i) = 1 with i < θ(i) for some ordering of J , to
deduce (2). □

2F. Orientifold KLR algebras associated to quivers. Let 0 = (J, �) be a quiver
with vertices J and arrows �. We assume that 0 does not have loops. Given an
arrow a ∈ �, let s(a) be its source, and t (a) its target. If i, j ∈ J , let �i j ⊂ � be the
subset of arrows a such that s(a) = i and t (a) = j . Let ai j = |�i j | and abbreviate
a i j= ai j + a j i . We assume that ai j < ∞ for all i, j ∈ J .

Definition 2.10. A (contravariant) involution of the quiver 0 is a pair of involutions
θ : J → J and θ : � → � such that:

(1) s(θ(a)) = θ(t (a)) and t (θ(a)) = θ(s(a)) for all a ∈ �,

(2) if t (a) = θ(s(a)), then a = θ(a).

Fix a quiver 0 with an involution θ and two dimension vectors β ∈ N[J ]
θ ,

λ ∈ N[J ] such that ∥β∥θ = n and λ(i) = 0 if i ∈ J θ . We call λ the framing
dimension vector. Note that λ need not be self-dual.

Set
Pi j (u, v) = δi ̸= j (v − u)ai j and Pi (u) = δi ̸=θ(i)(−u)λ(i)

for i, j ∈ J , and define (Q, Q′) as in (2-7). Since, by Definition 2.10, ai j = aθ( j)θ(i),
the coefficient matrix P is θ -symmetric and, therefore, (Q, Q′) is perfect.

Definition 2.11. The KLR algebra associated to (0, β) and the orientifold KLR
algebra associated to (0, θ, β, λ) are, respectively,

R0(β) = R(J, Q, β) and θR0(β; λ) =
θR(J, Q, Q′, β).
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We endow these algebras with the following grading:

deg e(ν) = 0,

deg xk = 2,

deg τke(ν) =

{
−2, if νk = νk+1,

aνk ,νk+1, otherwise,

deg τ0e(ν) =

{
−2, if θ(ν1) = ν1,
θλ(ν1), otherwise.

Most of the time we will omit 0 from the notation, as the choice of quiver is
clear from the context. Also note that, by Proposition 2.7, the algebra θR(β; λ) has
a faithful polynomial representation on θP

P,P ′

β .

3. Enomoto–Kashiwara algebra, quantum shuffle modules and Lyndon words

3A. Notation. Let J = {αk | k ∈ Zodd} and equip Q = Z[J ] with the symmetric
bilinear form

(3-1) αk · αl =


2, if k = l,
−1, if k = l ± 2,

0, otherwise.

Then (J, · ) is the Cartan datum associated to g = sl∞. We identify J with the set
of simple roots of the root system 8 of type A∞. Then 8+

= {βk,l | k ≤ l ∈ Zodd},
where βk,l = αk +αk+2 +· · ·+αl , is a set of positive roots. Let P = {λ ∈ Q ⊗Z Q |

λ · i ∈ Z for all i ∈ J } be the weight lattice, P+ = {λ ∈ P | λ · i ∈ Z≥0 for all i ∈ J }

be the set of dominant integral weights, and Q+ = N[J ]. Given β =
∑

i∈J ci i ∈Q+,
let N (β) =

1
2

(
β · β −

∑
i∈J ci i · i

)
.

Let θ : Q → Q be the involution sending αk 7→ α−k . The bilinear form (3-1)
restricts to Qθ . The image of 8 under the symmetrization map

Q → Qθ , αk 7→ αk + α−k

is isomorphic to the unreduced root system θ8 of type BC∞, and the image θ8+

of 8+ is a set of positive roots for θ8.
Let q be an indeterminate and set K = Q(q) and A = Z[q±1

]. Let ¯ : K → K be
the bar involution, i.e., the Q-algebra involution with q̄ = q−1. Set

[n] =
qn

− q−n

q − q−1 , [n]! = [n][n − 1] · · · [1], [2n]!! = [2n][2n − 2] · · · [2].

If A is a K-algebra, a ∈ A and n ∈ N, then a(n)
= an/[n]!. For ν = ν

a1
1 · · · ν

ak
k ∈ J •

with ν j ̸= ν j+1, set [ν]! = [a1]! · · · [ak]!.
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3B. The algebras f and f∗. Let f be the K-algebra generated by the elements fi ,
where i ∈ J , subject to the q-Serre relations:∑

k+l=1−i · j
(−1)k f (k)

i f j f (l)
i = 0, where i ̸= j.

The algebra f is Q-graded with fi in degree −i . We denote by −|u| the Q-degree of
a homogeneous element u ∈ f. Given ν = ν1 · · · νn ∈ J •, let fν = fν1 · · · fνn . We will
use notation of this form more generally, i.e., given any collection of elements yi

labeled by i ∈ J , we write yν = yν1 · · · yνn .
Kashiwara [1991] introduced q-derivations e′

i , e∗

i ∈ EndK(f) characterized by

e′

i ( f j ) = δi j , e′

i (uv) = e′

i (u)v + q−i ·|u|ue′

i (v),

e∗

i ( f j ) = δi j , e∗

i (uv) = q−i ·|v|e∗

i (u)v + ue∗

i (v),

for all homogeneous elements u, v ∈ f. Both {e′

i | i ∈ J } and {e∗

i | i ∈ J } satisfy the
q-Serre relations.

There is a unique nondegenerate symmetric bilinear form ( · , · ) on f such that
(1, 1) = 1 and (e′

i (u), v) = (u, fiv) for u, v ∈ f and i ∈ J . This form differs
slightly from the form ( · , · )L introduced by Lusztig [1993, Proposition 1.2.3] —
see [Leclerc 2004, §2.2] for the precise relationship. Let fA be the integral form
of f, i.e., the A-subalgebra generated by the f (k)

i , with i ∈ J and k ∈ N, and let

f ∗

A = {u ∈ f | (u, v) ∈ A for all v ∈ fA}

be its dual.

3C. Enomoto–Kashiwara algebra. The subalgebra of EndK(f) generated by the e′

i
and left multiplication by fi is called the reduced q-analogue of U (g). The genera-
tors satisfy the relation

e′

i f j = q−αi ·α j f j e′

i + δi j .

Enomoto and Kashiwara [2006] defined a related algebra, which also depends on
the involution θ . As it appears, this algebra does not have a distinctive name in the
literature, so we call it the Enomoto–Kashiwara algebra.

Definition 3.1. The Enomoto–Kashiwara algebra θB(g) is the K-algebra generated
by Ei , Fi and the invertible elements Ti , with i ∈ J , subject to the following
relations:

• the Ti commute,

• Tθ(i) = Ti for any i ,

• Ti E j T −1
i = q(i+θ(i))· j E j and Ti F j T −1

i = q−(i+θ(i))· j F j for i, j ∈ J ,

• Ei F j = q−i · j F j Ei + δi j + δθ(i) j Ti for all i, j ∈ J ,

• the Ei and the Fi satisfy the q-Serre relations.
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Proposition 3.2. Let λ ∈ P+.

(1) There exists a θB(g)-module θV(λ) generated by a nonzero vector vλ such that:

(a) Eivλ = 0 for any i ∈ J ,
(b) Tivλ = q

θλ·ivλ for any i ∈ J ,
(c) {u ∈

θV(λ) | Ei u = 0 for any i ∈ J } = Kvλ.

(2) θV(λ) is irreducible and unique up to isomorphism.

(3) There exists a unique symmetric bilinear form ( · , · ) on θV(λ) such that
(vλ, vλ) = 1 and (Ei u, v) = (u, Fiv) for any i ∈ J and u, v ∈

θV(λ). It is
nondegenerate.

(4) There is a unique endomorphism · of θV(λ), called the bar involution, such
that vλ = vλ and av = āv̄, Fiv = Fi v̄ for a ∈ K and v ∈

θV(λ).

(5) Let θ Ṽ (λ) be the free f-module with generator ṽλ and a θB(g)-module structure
given by

Ti (uṽλ) = q
θλ·i−(i+θ(i))·|u|uṽλ,(3-2)

Ei (uṽλ) = e′

i (u)ṽλ,(3-3)

Fi (uṽλ) = ( fi u + q
θλ·i−i ·|u|u fθ(i))ṽλ,(3-4)

for any i ∈ J and u ∈ f. Then the subspace of θ Ṽ (λ) spanned by the vectors
Fν · ṽλ is a θB(g)-submodule isomorphic to θV(λ).

Proof. See [Enomoto and Kashiwara 2008, Proposition 2.11, Lemma 2.15]. □

From now on, let us identify f with the subalgebra of θB(g) generated by the Fi .
Note that it follows from Proposition 3.2 that θV(λ) = f · vλ. The module θV(λ) has
a Pθ -grading:

θV(λ) =

⊕
µ∈Pθ

θV(λ)µ,

where θV(λ)µ = {v ∈
θV(λ) | Ti · v = qµ·i u}. If v ∈

θV(λ)µ, write µv := µ and
θ
|v| = µv . The integral and dual integral forms are defined as θV(λ)low

A = fAvλ and
θV(λ)

up
A =

{
v ∈

θV(λ) |
(
θV(λ)low

A , v
)
∈ A

}
, respectively.

The operators Ei satisfy a kind of “twisted derivation” property.

Lemma 3.3. We have

Ei y · v = q−i ·|y|yEi · v + (e′

i (y) + q−i ·|e∗

θ(i)(y)|e∗

θ(i)(y)Ti ) · v

for any y ∈ f and v ∈
θV(λ).

Proof. This is [Enomoto and Kashiwara 2008, Lemma 2.9]. □
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3D. Quantum shuffle algebra. The quantum shuffle algebra F is the Q-graded
K-algebra with basis J •, where degQ ν = −|ν|, and multiplication given by

(3-5) ν ◦ ν ′
=

∑
w∈D∥β∥,∥β′∥

q−d(ν,ν′,w)w · νν ′

for ν ∈ Jβ and ν ′
∈ Jβ ′

, where νν ′
= i1 · · · i∥β+β ′∥ and

(3-6) d(ν, ν ′, w) =
∑

k≤∥β∥<l,
w(k)>w(l)

iw−1(k) · iw−1(l).

To ν = i1 · · · ik ∈ J • one associates the q-derivation ∂ν = e∗

i1
· · · e∗

ik
∈ EndK(f).

There is a K-linear map

(3-7) 9 : f −→ F, 9(u) =
∑

ν∈J •,
|ν|=|u|

∂ν(u) · ν

for a homogeneous element u ∈ f.
Let e′

i , e∗

i ∈ EndK(F) be the left and right deletion operators:

e′

i (i1 · · · ik) = δi,i1 i2 · · · ik, e∗

i (i1 · · · ik) = δi,ik i1 · · · ik−1, e′

i (∅) = e∗

i (∅) = 0,

respectively.

Proposition 3.4. The map (3-7) is an injective Q-graded algebra homomorphism
satisfying

e′

i ◦ 9 = 9 ◦ e′

i and e∗

i ◦ 9 = 9 ◦ e∗

i .

Proof. This follows directly from [Leclerc 2004, Lemma 3 and Theorem 4]. The
proof for left deletions is analogous. □

We will now consider some antiautomorphisms of f and F. Set

(3-8) σ : J •
→ J •, ν 7→ w0(ν), θσ : J •

→ J •, ν 7→
θw(ν).

We extend these maps to K-linear maps σ : F → F and θσ : F → F. We use the
same symbols to denote the K-linear maps

σ : f → f, fν 7→ fσ(ν),
θσ : f → f, fν 7→ fθσ(ν),

respectively.

Lemma 3.5. The maps σ and θσ are algebra antiautomorphisms satisfying σ ◦9 =

9 ◦ σ and θσ ◦ 9 = 9 ◦
θσ , respectively.

Proof. The case of σ is [Leclerc 2004, Proposition 6]. The case of θσ follows easily
from (3-5) and (3-6). □
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3E. Quantum shuffle module. We will now realize the modules θV(λ) in terms of
modules over the shuffle algebra.

Definition 3.6. We define the quantum shuffle module θF(λ) to be the Pθ -graded
K-vector space with basis θJ •, where degPθ ν =

θλ−
θ
|ν|, and a right F-action given

by

(3-9) ν 4 ν ′
=

∑
w∈θ D∥β∥θ ,∥β′∥

q−d(ν,ν′,w)w · νν ′

for ν ∈
θJβ and ν ′

∈ Jβ ′

, where

d(ν, ν ′, w) =
∑

1≤k<l≤N ,
w(k)>w(l)

iw−1(k) · iw−1(l) +
∑

1≤k<l≤N ,
w(−k)>w(l)

iw−1(−k) · iw−1(l) −
∑

∥β∥θ<l,
w(l)<w(−l)

θλ · il,

with N = ∥β∥θ + ∥β ′
∥.

Remark 3.7. We have chosen to define θV(λ) as a left θB(g)-module, but θF(λ) as
a right F-module. This choice is a compromise. On the one hand, we wanted to be
consistent with the conventions of [Enomoto and Kashiwara 2006; 2008]. On the
other hand, as shown in [Appel and Przeździecki 2022], θV(λ) can be categorified
via quantum symmetric pairs, which are, by convention (see, e.g., [Kolb 2014]),
right coideal subalgebras.

Let Ei ∈ EndK(θF(λ)) be the right deletion operator:

Ei (i1 · · · ik) = δi,ik i1 · · · ik−1, Ei (∅) = 0.

Lemma 3.8. Formula (3-9) defines a right F-action on θF(λ). Moreover, the
endomorphisms Ei satisfy

Ei (v 4 z) = q−i ·|z|Ei (v) 4 z + v 4 e∗

i (z) + q−i ·|e′

θ(i)(z)|+µv ·iv 4 e′

θ(i)(z).

Proof. The first statement follows easily from the definitions, so we omit a proof.
Let us prove the second statement. It suffices to consider v and z of the form v = ν j
and z = kµl, for ν ∈

θJ •, µ ∈ J • and j, k, l ∈ J . Then (3-9) implies

v 4 z = ν j 4 kµl = (v 4 kµ)l + q−d(v,z,w)(ν 4 z) j + q−d(v,z,w′)(v 4 µl)θ(k),

where w transposes j and z while w′ sends k to θ(k) and transposes it with µl.
One easily sees that d(v, z, w) = j · |z| and d(v, z, w′) = θ(k) · |e′

k(z)| −µv(θ(k)).
Hence,

Ei (v 4 z) = δi,l(v 4 kµ) + δi, j q−i ·|z|(ν 4 z) + δi,θ(k)q
−i ·|e′

θ(i)(z)|+µv ·i (v 4 µl).

The statement follows. □
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To ν = ν1 · · · νk ∈ J • one associates the operator θ∂ν = Eν1 · · · Eνk ∈ End(θV(λ)).
There is a K-linear map

(3-10) θ9 :
θV(λ) →

θF(λ), θ9(u) =
∑

ν∈
θJ •,

θ
|ν|=

θ
|u|

θ∂ν(u) · σ(ν)

for a homogeneous element u ∈
θV(λ). Let us abbreviate

U = 9(f) and θV(λ) =
θ9(θV(λ)).

Proposition 3.9. The map (3-10) is injective, Ei ◦
θ9 =

θ9 ◦ Ei and the diagram

f F
↷ ↶

θV(λ) θF(λ)

9

θ9

commutes.

Proof. The injectivity of θ9 follows directly from Proposition 3.2 (1c). Let
θ9 ′

:
θV(λ) →

θF(λ) be the map sending y · vλ 7→ ∅ 4 8(σ(y)) for y ∈ f. Note
that θ9 ′ is defined on all of θV(λ) since θV(λ) = f · vλ. We claim that θ9 ′ in-
tertwines the actions of f and F, and that θ9 =

θ9 ′. For the first claim, note
that (3-9) implies that ν 4 i = ν ◦ i + q

θλ(i)−i ·|v|θ(i) ◦ ν, for i ∈ J and ν ∈ J •.
Hence, by Proposition 3.2 (5) and (3-4), the first claim follows. Lemma 3.3 and
Lemma 3.8 imply that Ei ◦

θ9 ′
=

θ9 ′
◦ Ei . Let v ∈

θV(λ) be homogeneous, and
let ν ∈

θJ • with θ
|v| =

θ
|ν|. Let γν(v) be the coefficient of σ(ν) in θ9 ′(v). Then

γν(v) = Eσ(ν) ◦
θ9 ′(v) =

θ∂ν(v). Hence θ9 =
θ9 ′, which completes the proof. □

3F. θ-good words. We fix a total order on the set J and equip J • with the corre-
sponding antilexicographic order. Both are denoted by ≤ . Given a linear combina-
tion u of words, let max(u) be the largest word appearing in u.

Lemma 3.10. If µ′
≤ µ, ν ′

≤ ν and θw(ν ′) ≤
θw(ν), for µ, µ′

∈
θJ • and ν, ν ′

∈ J •

(with ∥µ∥ = ∥µ′
∥ and ∥ν∥ = ∥ν ′

∥), then max(µ′ 4 ν ′) ≤ max(µ 4 ν). If any of the
former three inequalities is strict, then the last inequality is strict, too.

Proof. If w ∈
θD∥µ∥θ ,∥ν∥, then the condition in the hypothesis forces w · µ′ν ′ to be

smaller than or equal to w · µν. □

A word ν ∈ J • is called good if ν = max(9(x)) for some homogeneous x ∈ f.
Let J •

+
denote the set of good words and Jβ

+ = J •

+
∩ Jβ . We now define the analogue

of good words for quantum shuffle modules.

Definition 3.11. A word ν ∈
θJ • is called θ-good if ν = max(θ9(u)) for some

homogeneous u ∈
θV(λ). Let θJ •

+
denote the set of all θ-good words, and let

θJβ
+ =

θJ •

+
∩

θJβ .
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In [Leclerc 2004], a monomial basis {mν = 9( fσ(ν)) | ν ∈ J •

+
} of U was con-

structed. An analogous basis exists for θV(λ).

Lemma 3.12. There is a unique basis of homogeneous vectors {
θm∗

ν | ν ∈
θJ •

+
} of

θV(λ) such that Eµ(θmν) = δµ,ν for any µ with θ
|µ| =

θ
|ν|. The adjoint basis is

{
θmν =

θ9(Fσ(ν) · vλ)}.

Proof. The proof is analogous to the proof of [Leclerc 2004, Proposition 12]. □

Let Ffr be the free associative K-algebra generated by J (with multiplication
given by concatenation of letters), and let V fr be its right regular representation.
There is an algebra homomorphism

4 : Ffr
→ F, ν = ν1 · · · νk 7→ ν1 ◦ · · · ◦ νk = 9( fν)

and a linear map
θ4λ : V fr

→
θV(λ), ν 7→ ∅ 4 4(ν) =

θmν .

intertwining the actions of Ffr and F. We have the following characterization of
θ -good words:

Lemma 3.13. The following are equivalent:

(1) ν ∈
θJ • is θ -good,

(2) ν cannot be expressed modulo ker θ4λ as a linear combination of words µ > ν.

Proof. Let u ∈
θV(λ) and ν ∈

θJ • satisfy θ
|u|=

θ
|ν| and Eν(u) ̸=0. Proposition 3.2 (3)

implies that 0 ̸= (Eν(u),∅) = (u, θmν). If ν could be expressed modulo ker θ4λ as
a linear combination of words µ > ν, then there would exist a relation of the form

(3-11) θmν =
∑
µ>ν

cµ
θmµ

for some cν ∈ K. Hence,

0 ̸= Eν(u) =
∑
µ>ν

cµEµ(u).

Therefore, Eµ(u) ̸= 0 for some µ > ν, which implies that µ is not θ-good. This
proves the implication (1) =⇒ (2).

Conversely, let ˜θJ •

+ be the set of words in θJ • satisfying (2). We have shown
that θJ •

+
⊆ ˜θJ •

+. Lemma 3.12 implies that the set {
θmν | ν ∈ ˜θJ •

+} contains a basis
of θV(λ). Moreover, it is linearly independent. Indeed, if there was a linear relation
between words of ˜θJ •

+, one could express the smallest one in terms of the others
and it would not belong to ˜θJ •

+. □

Lemma 3.14. The θ -good words have the following properties:

(1) If ν is θ -good and ν = µ1µ2, then µ1 is θ -good.

(2) If ν is θ -good, then ν is good.
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Proof. By Proposition 3.9, θV(λ) is stable under the operators Ei . Pick u ∈
θV(λ)

with max(u) = ν. Then max(Eµ2(u)) = Eµ2(max(u)) = µ1. This proves the first
part. Next, suppose that ν is not good. Then, by [Leclerc 2004, Lemma 21], we have
a relation of the form mν =

∑
µ>ν cµmµ. Applying both sides to ∅, we get (3-11).

Hence, by Lemma 3.13, ν is not θ -good. This proves the second part. □

3G. Lyndon words. A nontrivial word ν ∈ J • is called Lyndon if it is smaller than all
its proper left factors. Note that our definition uses the opposite of the convention of
[Leclerc 2004; Kleshchev and Ram 2011], where right factors are used instead. Let
L denote the set of Lyndon words and L+ = L ∩ J •

+
the set of good Lyndon words.

Proposition 3.15. Lyndon words have the following properties:

(1) Every word ν ∈ J • has a unique factorization ν = ν⟨k⟩
· · · ν⟨1⟩ into Lyndon

words such that ν⟨1⟩
≥ · · · ≥ ν⟨k⟩.

(2) The word ν is good if and only if each ν⟨m⟩ is good.

(3) The map ν 7→ |ν| yields a bijection L+
∼
−→ 8+. The induced order on 8+ is

convex.

(4) Let µ ∈ L\J and write µ = µ(1)µ(2) with µ(2) a proper Lyndon subword of
maximal length. Then µ(1) ∈ L.

Proof. For part (1), see, e.g., [Lothaire 2002, Theorem 11.5.1]. For parts (2) and (3),
see [Leclerc 2004, Propositions 17, 18 and 26]. For part (4), see [Leclerc 2004,
Lemma 14]. □

We call the factorization from Proposition 3.15 (1) the Lyndon factorization and
the Lyndon words in this factorization Lyndon factors. We will write it in two ways:
ν = ν⟨k⟩

· · · ν⟨1⟩ for ν⟨1⟩
≥ · · · ≥ ν⟨k⟩ or ν = (ν⟨l⟩)nl · · · (ν⟨1⟩)n1 for ν⟨1⟩ > · · · > ν⟨l⟩.

The factorization from Proposition 3.15 (4) is called the standard factorization of a
Lyndon word.

Given x, y ∈ F, let [x, y]q = xy −q |x |·|y|yx . One defines a map [ ] : L → J • by
induction on the standard factorization: [i] = i for i ∈ J , and [ν] = [ν(2), ν(1)]q if
ν = ν(1)ν(2) is the standard factorization of ν. Next, given ν = ν⟨k⟩

· · · ν⟨1⟩
∈ J •, let

[ν] = [ν⟨k⟩
] · · · [ν⟨1⟩

]. For ν ∈ J •

+
, set

lν = 4([ν]), ν ∈ J •

+
, θ lν =

θ4λ([ν]), ν ∈
θJ •

+
.

Proposition 3.16. For any ν ∈ J •, we have min([ν]) = ν. Moreover, the set
{lν | ν ∈ J •

+
} is a basis of U.

Proof. See [Leclerc 2004, Propositions 19 and 22]. □

The basis from Proposition 3.16 is called the Lyndon basis.
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Lemma 3.17. The set {
θ lν | ν ∈

θJ •

+
} is a basis of θV(λ). Moreover, the transition

matrix (cνµ) from {
θ lν | ν ∈

θJ •

+
} to {

θmµ | µ ∈
θJ •

+
} is triangular with cνν =∏k

i=1(−1)ℓ(ν
⟨k⟩)−1q−N (|ν⟨k⟩

|).

Proof. By Proposition 3.16, we can write [ν] = cννν +
∑

ν<µ cνµµ, for some
cνµ ∈ K. Applying θ4λ to both sides, we get θ lν = cνν

θmν +
∑

µ>ν cνµ
θmµ. By

Lemma 3.13, this can be rewritten as θ lν = cνν
θmν +

∑
ν<µ∈θJ •

+
c′
νµ

θmµ. Hence
the transition matrix is triangular. To show the last statement of the lemma, one
uses the same calculation as in [Leclerc 2004, Proposition 30]. □

Assumption 1. From now on, we assume that we are working with the standard
ordering of J , i.e., αk ≤ αl if and only if k ≤ l. In this case, the map θσ in (3-8)
preserves L+.

Before stating the next lemma, we need to introduce some notation. Given
µ, µ′

∈ L+ with |µ| = βk,l , |µ′
| = βm,n , we write

µ ⊂ µ′
⇐⇒ m < k and l < n.

Lemma 3.18. The following hold:

(1) If ν ∈ L+, then lν is a multiple of ν.

(2) If ν, µ ∈ L+ and µ ⊂ ν, then ν ◦ µ = µ ◦ ν.

Proof. It suffices to prove the first statement for ν = ν1 · · · νl ∈ L+. We proceed
by induction on l. The base case l = 1 is clear. Let ν = ν(1)ν(2) be the standard
factorization of ν. Since we are working with the standard ordering on J , ν(1) = i for
some i ∈ J . By induction, we get that lν = 4([ν]) = 4([ν(2)])◦ i −q−1i ◦4([ν(2)])

is a multiple of ν(2)◦i −q−1i ◦ν(2). Write ν(2) = jν ′

(2) with j ∈ J . Then (3-5) implies
that ν(2) ◦ i − q−1i ◦ ν(2) =

(
j (ν ′

(2) ◦ i) + qiν(2)

)
− q−1

(
iν(2) + q j (i ◦ ν ′

(2))
)
= [2]ν.

This completes the proof of the first statement. The second statement now follows
directly from [Leclerc 2004, Proposition 30] and [Enomoto and Kashiwara 2008,
Proposition 3.14 (3)]. □

Definition 3.19. We say that ν ∈ L is θ -Lyndon if ν ≥
θw(ν). Let θL be the set of

θ -Lyndon words, and θL+ = J •

+
∩

θL. Let θJ •

+,0 denote the set of all θ -good words
µ = ν⟨k⟩

· · · ν⟨1⟩, with ν⟨k⟩, · · · , ν⟨1⟩
∈

θL+. Moreover, if µ = ν⟨k⟩
· · · ν⟨1⟩

∈
θJ •

+

and ν⟨k⟩, · · · , ν⟨1⟩ /∈ θL+, then µ is called θ-cuspidal. Let θJ •

+,c denote the set of
all θ -cuspidal words.

Lemma 3.20. The θ -good Lyndon words have the following properties:

(1) If ν ∈ L+, then ν ∈ U.

(2) Let µ ∈
θJ • and ν ∈

θL with ν ≥ µ. Then µν = max(µ 4 ν).

(3) θL+ ⊆ L ∩
θJ •

+
.
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(4) Let µ ∈
θJ •

+
and ν ∈

θL+ with ν ≥ µ. Then µν ∈
θJ •

+
.

(5) If all of the Lyndon factors of ν are in θL+, then ν ∈
θJ •

+
.

(6) The map ν 7→
θ
|ν| yields a bijection θL+

∼
−→

θ8+.

Proof. Since ν is good, there exists some homogeneous x ∈ U such that x = ν + y
with ν greater than any word µ in y. By Assumption 1 and [Leclerc 2004, §8.1], ν is
of the form αkαk−2 · · · αk−2l , which implies that ν is the smallest word of weight |ν|,
so x = ν. The proof of (2) is similar to the proof of [Leclerc 2004, Lemma 15]. If
ν ∈

θL+, then, by definition, ν ∈ L+ and ν ≥
θw(ν). Hence, max(∅ 4 ν) = ν. By

part (1), ν ∈ U, so ν ∈
θJ •

+
. This proves (3).

Let us prove (4). If µ = ∅, then the statement reduces to (3). Otherwise, choose
a homogeneous element ∅ ̸= x ∈

θV(λ) such that µ = max(x). Then, after possible
rescaling, x = µ + r , where r is a linear combination of words < µ. We have
x 4 ν = µ 4 ν + r 4 ν. Part (2) implies that max(µ 4 ν) = µν. It follows from
Lemma 3.10 that max(µ 4 ν) > max(r 4 ν).

Next, we prove (5). Suppose that each factor of ν = ν⟨k⟩
· · · ν⟨1⟩ is θ -Lyndon. If

k = 1, then ν is θ -good by (3). By induction on the number of Lyndon factors, we
can assume that ν ′

= ν⟨k⟩
· · · ν⟨2⟩ is θ-good. The statement now follows from (4).

Part (6) is clear from the definitions. □

Given ν = ν⟨s⟩
· · · ν⟨1⟩, ν ′

= ν⟨t⟩
· · · ν⟨s+1⟩

∈ J •

+
, let sh(ν, ν ′) = µ⟨t⟩

· · · µ⟨1⟩ be
the good word obtained by shuffling the Lyndon factors of ν and ν ′ in such a way
that µ⟨t⟩

≤ · · · ≤ µ⟨1⟩.

Lemma 3.21. The map

θJ •

+,c ×
θJ •

+,0 →
θJ •

+
, (ν, ν ′) 7→ sh(ν, ν ′),

is a well-defined injection.

Proof. It is clear the map is injective, so we only have to show that sh(ν, ν ′) is θ-
good. We argue by induction on the number k of Lyndon factors in ν ′

= ν⟨k⟩
· · · ν⟨1⟩.

If k =0, then ν is θ -good by assumption. Otherwise, letting ν ′′
=ν⟨k⟩

· · · ν⟨2⟩, we can
assume that sh(ν, ν ′′) is θ-good. If ν⟨1⟩

≥ sh(ν, ν ′), then sh(ν, ν ′) = sh(ν, ν ′′)ν⟨1⟩,
and we conclude that sh(ν, ν ′) ∈

θJ •

+
from Lemma 3.20 (4).

If ν⟨1⟩ <sh(ν, ν ′), then we require the following generalization of Lemma 3.20 (4):
given a ∈

θJ •

+
and b ∈

θL+ with b < a, we have sh(a, b) ∈
θJ •

+
. The old proof

carries over except that instead of invoking Lemma 3.20 (2), we need to show that
max(a 4 b) = sh(a, b). Without loss of generality, we may assume a is Lyndon.
Since b ≥

θw(b), we have max(a 4 b) = max(a ◦ b). Let us write a = an · · · a1 and
b = bm · · · b1. Since an ≥ · · · ≥ a1 > b1, it follows that max(a ◦ b) = ba. □

Given β ∈ Qθ
+

, let θkpf(β) denote the number of ways to write β as a sum of
roots in θ8+.



ORIENTIFOLD KLR ALGEBRAS AND ENOMOTO–KASHIWARA ALGEBRAS 429

Proposition 3.22. If λ = 0, then: (i) θL+ = L ∩
θJ •

+
, and (ii) θJ •

+
=

θJ •

+,0. Hence,
dimq

θVβ =
θkpf(β).

Proof. Let S be the set of all words ν = ν⟨k⟩
· · · ν⟨1⟩ with ν⟨1⟩

≥ · · · ≥ ν⟨k⟩ and
each ν⟨i⟩

∈
θJ •

+
. Lemma 3.12 and Lemma 3.20 (5) imply that {

θmν | ν ∈ S} is
contained in the monomial basis {

θmν | ν ∈
θJ •

+
} of θV. Let θV′

⊆
θV be the

span of the former. By construction, the generating series of the dimensions of the
homogeneous components of θV′ is equal to

∏
β∈θ8+ 1/(1 − exp β). On the other

hand, it follows from [Enomoto and Kashiwara 2008, Theorem 4.15] that this is
also the generating series of the dimensions of the homogeneous components of θV.
Hence, θV′

=
θV. The statement follows. □

Remark 3.23. Instead of appealing to [Enomoto and Kashiwara 2008, Theo-
rem 4.15] in the proof of Proposition 3.22, one could alternatively use the cat-
egorification theorem [Varagnolo and Vasserot 2011, Theorem 8.31] (cited as
Theorem 4.5 below), together with the geometric realization of orientifold KLR
algebras from [Varagnolo and Vasserot 2011] and the classification of isomorphism
classes of symplectic/orthogonal representations of symmetric quivers from [Derk-
sen and Weyman 2002]. Indeed, this approach appears promising in generalizing
the construction of bases for θV(λ) to the λ ̸= 0 case.

3H. Symmetric words. A word ν ∈
θL+ is called symmetric if θw(ν) = ν and

nonsymmetric otherwise. Given ν ∈
θJ •

+
, let νθ be the word obtained from ν by

deleting its symmetric Lyndon factors and νθ the word obtained by deleting the
nonsymmetric ones. We say that ν ∈

θJ •

+
is symmetric if ν = νθ . For each k ≥ 1,

let ξk be the unique symmetric word in θL+ with |ξk | = β−2k+1,2k−1.

Lemma 3.24. Let ν ∈
θL+. If ν < ξk , then ξk+1 is a subword of ν. Hence, ξk > ξl

if and only if k < l.

Proof. The statement follows immediately from Lemma 3.20 (6). □

Assumption 2. From now until the end of Section 3, we assume that λ = 0. We
abbreviate θF =

θF(0) and θV =
θV (0).

Lemma 3.25. Suppose that ν ∈
θJ •

+
is symmetric or ν ∈

θL+. Then ν is the smallest
word in θJ

θ
|ν|

+ .

Proof. Abbreviate β =
θ
|ν|. First assume that ν ∈

θJ •

+
is symmetric. Let ν =

ν⟨k⟩
· · · ν⟨1⟩ be its Lyndon factorization. Suppose that there exists a word µ =

µ⟨l⟩
· · · µ⟨1⟩

∈
θJ

θ
|ν|

+ with µ<ν. Then, as explained before Lemma 4.1 in [Melançon
1992], there is an a such that µ⟨b⟩

= ν⟨b⟩ for b < a and µ⟨a⟩ < ν⟨a⟩. Hence,
ν⟨a⟩ > µ⟨a⟩

≥ · · · ≥ µ⟨l⟩. Write ν̄ = ν⟨k⟩
· · · ν⟨a⟩ and µ̄ = µ⟨l⟩

· · · µ⟨a⟩.
Since ν⟨a⟩ is symmetric, we have ν⟨a⟩

= ξd for some d ≥ 1. By Proposition 3.22
and Lemma 3.24, ξd+1 is a subword of each µ⟨i⟩, where i ≥ a. In particular,
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each µ⟨i⟩ contains α±(2d−1) and α±(2d+1). Hence, if we write θ
|ν̄| =

θ
|µ̄| =∑

i∈Nodd
ci (αi + α−i ), then c2d+1 = c2d−1. On the other hand, since each ν⟨i⟩,

where i ≥ a, is a symmetric good Lyndon word smaller than ν⟨a⟩, Lemma 3.24
implies that each ν⟨i⟩ contains ν⟨a⟩ as a subword. Hence c2d+1 < c2d−1, which is a
contradiction.

Secondly, assume that ν ∈
θL+. We may assume ν is not symmetric. In that

case, observe that if θ
|µ| =

θ
|ν| for some µ ∈

θJ •

+
, then |µ| = |ν|. The result now

follows from [Kleshchev and Ram 2011, Lemma 5.9]. □

3I. PBW and canonical bases. Let us first recall some basic facts about PBW
bases. For the moment let us restrict (J, · ) to a finite Cartan subdatum of type Am .
By [Leclerc 2004, Proposition 26], the antilexicographic order ν⟨1⟩ > · · · > ν⟨N ⟩ on
the set of good Lyndon words induces, via the bijection from Proposition 3.15 (3),
a convex order β1 > · · · > βN on the set of positive roots. This convex order arises
from a unique reduced decomposition w0 = siN · · · si1 in the usual way: βN =

αiN , βN−1 = siN (αiN−1), . . ., β1 = siN · · · si2(α1). Let Pν⟨k⟩ = T ′′

iN ,1 · · · T ′′

ik+1,1( fik ),
where T ′′

i,1 is the braid group operation from [Lusztig 1993, §37.1] with e = −1
and υi = q. Set P (l)

ν⟨k⟩ = (1/[l]!)P l
ν and, given ν = (ν⟨N ⟩)lN · · · (ν⟨1⟩)l1 ∈ J •

+
, let

Pν = P (lN )

ν⟨N ⟩ · · · P (l1)

ν⟨1⟩ and Pν = 9(Pν). Taking an appropriate limit m → ∞, [Lusztig
1993, Proposition 41.1.4] implies that {Pν | ν ∈ J •

+
} is an A-basis of fA.

Next, given ν ∈
θL+, let

P [n]

ν =

P (n)
ν , if ν is not symmetric,
1

[2n]!!
Pn

ν , if ν is symmetric.

Given ν = (ν⟨l⟩)nl · · · (ν⟨1⟩)n1 ∈
θJ •

+
, define

θPν = σ
( ∏

1≤i≤l
P [ni ]

ν⟨i⟩

)
· v0 and θPν =

θ9(Pν).

Proposition 3.26. The set {
θPν | ν ∈

θJ •

+
} is an A-basis of θV low

A .

Proof. See [Enomoto and Kashiwara 2008, Lemma 5.1]. Note that the weaker state-
ment that {

θPµ} is a K-basis of θV low
A follows from Lemma 3.17 and Lemma 3.27 (1)

below. □

We call {θPν |ν ∈
θJ •

+
} the PBW basis of θVlow

A . By [Leclerc 2004, Proposition 30],
for any ν ∈ J •

+
, there exists κν = κν ∈ A with lν = κνPν . Since we are working with

the standard ordering of J , [Leclerc 2004, Proposition 56] implies that κν = 1 for
any ν ∈ L+. If ν = (ν⟨l⟩)nl · · · (ν⟨1⟩)n1 ∈

θJ •

+
, then κν =

∏l
i=1[ni ]!. Set

θκν = κν ·

l∏
i=1

ν⟨i⟩symm

ni∏
j=1

(q j
+ q− j ) =

l∏
i=1,

ν⟨i⟩symm

[ni ]!! ·
l∏

i=1,

ν⟨i⟩nonsymm

[ni ]!.
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Lemma 3.27. Let ν ∈
θJ •

+
.

(1) θ lν =
θκν

θPν and θκν = θκν ∈ A.

(2) We have
θPν =

θPν +
∑
µ>ν

dνµ
θPµ

for some dνµ ∈ A.

Proof. The first part follows directly from the definitions. Let AP, Am and A be
the transition matrices between {

θPν} and {θPν}, {mν} and {mν}, as well as {
θPν}

and {mν}, respectively. By definition, Am = id. Hence, AP = AA−1. Lemma 3.17
implies that A and A−1 are both lower triangular, with eigenvalues θκν and θκ−1

ν .
Part (1) now implies that AP is indeed lower unitriangular. Since {

θPν} forms an
A-basis of θVlow

A and θVlow
A =

θVlow
A , we have dνµ ∈ A. □

Theorem 3.28. There is a unique A-basis {
θbν | ν ∈

θJ •

+
} of θVlow

A , called the
canonical basis, such that

θbν =
θPν +

∑
µ>ν

cνµ
θPµ,

cνµ ∈ qZ[q] and θbν =
θbν . Moreover,

(θbν,
θbµ)q=0 = δν,µ.

Proof. The proof is an application of a standard argument, see, e.g., [Lusztig 1990,
§7.10]. □

Remark 3.29. Theorem 3.28 also appears in [Enomoto and Kashiwara 2008] as
Theorem 5.5. The proof in loc. cit. is somewhat different from ours, in particular, it
does not involve shuffle modules.

Let {
θP∗

ν | ν ∈
θJ •

+
} and {

θb∗
ν | ν ∈

θJ •

+
} be the bases of θVup

A dual, with respect to
the bilinear form ( · , · ), to the PBW and the canonical bases of θVlow

A , respectively.

Corollary 3.30. We have

(3-12) θb∗

ν =
θP∗

ν +
∑
µ<ν

(
θb∗

ν,
θPµ

)
θP∗

µ.

Hence, max(θb∗
ν) = ν and the coefficient of ν in θb∗

ν is θκν . In particular, if ν ∈
θL+

or ν is symmetric, then θb∗
ν =

θP∗
ν .

Proof. The proof is analogous to [Leclerc 2004, Proposition 40]. The last statement
follows from Lemma 3.25. □
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3J. Standard and costandard basis. Given ν = (ν⟨l⟩)nl · · · (ν⟨1⟩)n1 ∈
θJ •

+
, let

1ν = q−s(ν)(ν⟨l⟩)◦nl ◦ · · · ◦ (ν⟨1⟩)◦n1 and θ1ν = q−
θ s(ν)∅ 4 1ν,

where

(3-13) s(ν) =

l∑
i=1

ni (ni − 1)

2
and θ s(ν) =

l∑
i=1,

ν⟨i⟩symm

ni .

Lemma 3.31. If ν ∈
θJ •

+
, then: 1ν = 1νθ ◦1νθ

, max(θ1ν) = ν and the coefficient
of the word ν in θ1ν equals θκν .

Proof. We prove the first statement by induction on the number k of Lyndon factors
in the Lyndon factorization of νθ . If k = 0, the claim is obvious. Next, suppose that
there are k + 1 Lyndon factors in νθ , and let ξm be the smallest. If ξm is also the
smallest word in the standard factorization of ν, then, by induction, we are done.
Otherwise, let µ be a Lyndon factor of ν with µ < ξm . Since µ ∈

θL+, Lemma 3.24
implies that ξm ⊂ µ. By Lemma 3.18, we conclude that µ ◦ ξm = ξm ◦ µ. It now
follows by induction that 1ν = 1νθ ◦ 1νθ

.
We now prove the last two statements by induction on the number k of Lyndon

factors in ν. The base case k = 0 is trivial. Let ν ′
= ν⟨k⟩

· · · ν⟨2⟩. Lemma 3.14
implies that ν ′

∈
θJ •

+
. Hence, by induction, max(θ1ν′) = ν ′. Since λ = 0, we have

ν⟨1⟩
∈

θL+, and so ν⟨1⟩
≥

θw(ν⟨1⟩). It follows from Lemma 3.10 and Lemma 3.20 (2)
that max(θ1ν) = max(ν ′ 4 ν⟨1⟩) = ν. By induction, we may also assume that
dimq(θ1ν′)ν′ =

θκν′ . Let us call the result of applying w ∈
θD∥ν′∥θ ,∥ν⟨1⟩∥ to ν a

θ -shuffle. It is easy to see that the θ -shuffles equal to ν are precisely those arising
from one of the n1 (respectively, 2n1) standard insertions of ν⟨1⟩ between words
equal to ν⟨1⟩ in ν ′ if ν⟨1⟩ is not symmetric (respectively, is symmetric). We conclude
that dimq(θ1ν)ν =

θκν from the fact that the transposition of two words equal to
ν⟨1⟩ appears in the shuffle action with the coefficient q−2. □

Given ν ∈
θJ •

+
with ν = ν⟨k⟩

· · · ν⟨1⟩, let
θ
∇ν = q−

θ s(ν)−t (ν)∅ 4
(
θw(ν⟨k⟩) ◦ · · · ◦

θw(ν⟨1⟩)
)
,

where t (ν) is the degree of an element τw, with w the longest minimal length
coset representative with respect to the parabolic subgroup of Wn defined by the
decomposition of ν into Lyndon words (see [Lauda and Vazirani 2011, §2.3]).

Recall that we have fixed the standard order ≤ on J and equipped J • with the
antilexicographic order ≤ . Let ≤

′ denote both the opposite order on J and the
induced lexicographic order on J •. Given a linear combination u of words, let
max′(u) be the largest word appearing in u with respect to ≤

′.

Lemma 3.32. We have max′(θ∇ν) = ν and the coefficient of ν in θ
∇ν equals θκν .

Proof. It is an easy modification of the last paragraph in the proof of Lemma 3.31. □
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4. Finite-dimensional representation theory of orientifold KLR algebras

We again let λ be arbitrary until Section 4D, where we make the restriction λ = 0.
If A is a graded algebra, let A-Mod be the category of all graded left A-modules,

with degree-preserving module homomorphisms as morphisms. If M and N are
graded A-modules, let HomA(M, N )n denote the space of all homogeneous ho-
momorphisms of degree n, and HOMA(M, N ) =

⊕
n∈Z HomA(M, N )n . Let M{n}

denote the module obtained from M by shifting the grading by n. Let A-pMod
denote the full subcategory of finitely generated graded projective modules, and
A-fMod the full subcategory of graded finite dimensional modules. Given any of
these abelian categories C, we denote its Grothendieck group by [C].

We consider (orientifold) KLR algebras associated to the A∞ quiver 0 = (J, �),
with J as in Section 3A and � the standard linear orientation, as well as the
involution θ from Section 3A. Let 11 and θ1 denote the regular representations
(in degree zero) of the trivial algebras R(0) and θR(0; λ), respectively. For a fixed
λ ∈ N[J ], set

R-Mod =
⊕

β∈N[J ]

R(β)-Mod and θR(λ)-Mod =
⊕

β∈N[J ]θ

θR(β; λ)-Mod.

We use analogous notation for direct sums of categories of finite dimensional and
finitely generated projective modules.

4A. Reminder on categorification via KLR algebras. Basic information about the
representation theory of KLR algebras, including the definitions of the Khovanov–
Lauda pairing ( · , · ) : R(β)-pMod ×R(β)-fMod → A and the dualities P 7→ P♯

on R-pMod and M 7→ M♭ on R-fMod, can be found in, e.g., [Khovanov and Lauda
2009], [Kleshchev and Ram 2011, §3] or [Varagnolo and Vasserot 2011, §7]. Since
these definitions and the notations are standard, we will not explicitly recall them.
If M ∈ R(β)-Mod and ν ∈ J θ , we call Mν = e(ν)M the ν-weight space of M .

Let us recall the definition of the convolution product of modules over KLR
algebras. Let β, β ′

∈ N[J ], with ∥β∥ = n and ∥β ′
∥ = n′. Set

eβ,β ′ =
∑

ν∈Jβ+β′
,

ν1···νn∈Jβ

e(ν) ∈ R(β + β ′).

There is a nonunital algebra homomorphism

(4-1) ιβ,β ′ : R(β, β ′) := R(β) ⊗ R(β ′) → R(β + β ′)

given by e(ν) ⊗ e(µ) 7→ e(νµ) for ν ∈ Jβ , µ ∈ Jβ ′

and

(4-2) xl ⊗ 1 7→ xleβ,β ′, 1 ⊗ xl ′ 7→ xm+l ′eβ,β ′, with 1 ≤ l(′) ≤ n(′),

(4-3) τk ⊗ 1 7→ τkeβ,β ′, 1 ⊗ τk′ 7→ τm+k′eβ,β ′, with 1 ≤ k(′) < n(′).
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Let M be a graded R(β)-module and N be a graded R(β ′)-module. Their convolu-
tion product is defined as

M ◦ N = R(β + β ′)eβ,β ′ ⊗R(β,β ′) (M ⊗ N ).

It descends to a product on [R-pMod] and [R-fMod].
The embedding (4-1) generalizes to an embedding

(4-4) ιβ : R(β) := R(β1) ⊗ · · · ⊗ R(βm) → R(|β|)

for any β ∈ (N[J ])m . The embedding (4-4) gives rise to a triple of adjoint functors
(Indβ, Resβ, Coindβ) between categories of graded modules.

As explained in [Khovanov and Lauda 2009, §2.2] and [Kleshchev and Ram
2011, §3.6], convolution with the class of (an appropriate graded shift of) the
polynomial representation P(i (n)) of the nil-Hecke algebra R(ni) yields an A-
module homomorphism

θ
(n)
i = − ◦ [P(i (n))] : [R(β)-pMod] → [R(β + ni)-pMod].

Let us recall the fundamental categorification theorem from [Khovanov and
Lauda 2009, §3], see also [Kleshchev and Ram 2011, Theorem 4.4].

Theorem 4.1 (Khovanov–Lauda). There exists a unique pair of adjoint (with re-
spect to Lusztig’s form on f and the Khovanov–Lauda pairing) Q-graded A-linear
isomorphisms

γ : fA
∼
−→ [R-pMod] and γ ∗

: [R-fMod]
∼
−→ f ∗

A

such that γ (1) = [1] and γ (x f (n)
i ) = θ

(n)
i (γ (x)) for all x ∈ fA. These isomorphisms

intertwine: (i) multiplication in f with the convolution product, (ii) comultiplication
in f with restriction functors, and (iii) the bar involution on f with the involutions −

♯

and −
♭.

4B. Categorification via orientifold KLR algebras. We recall some fundamental
definitions and results concerning orientifold KLR algebras from [Varagnolo and
Vasserot 2011, §8]. We refer the reader to loc. cit. for a detailed exposition.

Let β ∈ N[J ]
θ and β ′

∈ N[J ], with ∥β∥θ = n and ∥β ′
∥ = n′. Set

θeβ,β ′ =
∑

ν∈
θJβ+

θβ′
,

ν1...νn∈
θJβ ,

νn+1...νn+n′∈Jβ′

e(ν) ∈
θR(β +

θβ ′
; λ).

There is an injective nonunital algebra homomorphism

(4-5) θ ιβ,β ′ :
θR(β, β ′

; λ) :=
θR(β; λ) ⊗ R(β ′) →

θR(β +
θβ ′

; λ)
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given by formulae (4-2)–(4-3), with ν ∈
θJβ and eβ,β ′ replaced by θeβ,β ′ , and

τ0⊗1 7→ τ0
θeβ,β ′ . The convolution action of N ∈R(β ′)-Mod on M ∈

θR(β; λ)-Mod
is defined as

M 4 N =
θR(β +

θβ ′
; λ) θe(β, β ′) ⊗θ R(β,β ′;λ) (M ⊗ N ).

Proposition 4.2. The category R-Mod is monoidal with product ◦ and unit 1.
Moreover, there is a right monoidal action (see, e.g., [Davydov 1998]) of R-Mod
on θR(λ)-Mod via 4.

Proof. It is routine to check that the conditions in the definition of a monoidal action
are satisfied. □

The embedding (4-5) generalizes to an embedding

(4-6) θ ιβ :
θR(β0, β; λ) :=

θR(β0; λ)⊗R(β1)⊗· · ·⊗R(βm) →
θR(β0 +

θ
|β|; λ)

for any β0 ∈ N[J ]
θ and β ∈ (N[J ])m . The embedding (4-6) gives rise to a triple

of adjoint functors (θ Indβ0,β, θResβ0,β, θCoindβ0,β) between categories of graded
modules.

Lemma 4.3. Let M0 ∈
θR(β; λ)-fMod and Mi ∈ R(βi )-fMod. Then, up to a

grading shift, we have

θCoindβ0,β

(
M0 ⊗

(
⊗Mi

))
∼=

θ Indβ0,θ(β)

(
M0 ⊗

(
⊗M†

i

))
∼=

θCoindβ0,|β|

(
M0 ⊗

(
Coindβ(⊗Mi )

))
,

where θ(β) = (θ(β1), . . . , θ(βm)) and −
† is the twist defined below Lemma 2.3.

Proof. The proof is analogous to that of [Lauda and Vazirani 2011, Theorem 2.2]. □

Let β0 ∈ N[J ]
θ and β1, β2 ∈ N[J ]. Define

M1 ◦̂ M2 = Coindβ1,β2(M1 ⊗ M2) and M0 4̂ M1 =
θCoindβ0,β1(M0 ⊗ M1),

for Mi as in Lemma 4.3.

Corollary 4.4. The category R-Mod is also monoidal with product ◦̂ and unit 1.
Moreover, there is a monoidal action of R-Mod on θR(λ)-Mod via 4̂.

The functors P 7→ P♯
= HOMθ Rm(λ)(P, θRm(λ)) and M 7→ M♭

= HOMk(P, k)

on θRm(λ)-pMod and θRm(λ)-fMod, respectively, descend to A-antilinear involu-
tions on the corresponding Grothendieck groups. We also have an analogue of the
Khovanov–Lauda pairing

( · , · ) : [
θR(β; λ)-pMod] × [

θR(β; λ)-fMod] → A,

([P], [M]) 7→ dimq(Pω
⊗θ R(β;λ) M),

where Pω is the twist of P by the antiinvolution (2-5).
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Moreover, set θRm(λ) =
⊕

∥β∥θ=n
θR(β; λ) and θem,β ′ = ⊕∥β∥θ=m

θeβ,β ′ . Abbre-
viate θ Indm+1

m,i =
θRm+1(λ)⊗θ Rm,i(λ)− and θCoindm+1

m,i =HOMθ Rm,i (λ)(
θRm+1(λ), −),

with θRm,i (λ) =
θRm(λ) ⊗ R(i). Setting

Fi (P) =
θ Indm+1

m,i (P ⊗ P(i)), Ei (P) = L(i) ⊗R(i)
θem−1,i P,

F∗

i (M) =
θCoindm+1

m,i (M ⊗ L(i)), E∗

i (M) =
θem−1,i M,

defines exact functors

θRm(λ)-pMod θRm+1(λ)-pMod

Fi

Ei

, θRm(λ)-fMod θRm+1(λ)-fMod

F∗

i

E∗

i

commuting with the dualities −
♯ and −

♭. We will use the same notation for the
induced operators on the corresponding Grothendieck groups.

We now recall the main theorem [Varagnolo and Vasserot 2011, Theorem 8.31]
on the categorification of modules over the Enomoto–Kashiwara algebra.

Theorem 4.5 (Varagnolo–Vasserot). The operators Fi and Ei (respectively, F∗

i
and E∗

i ) define a representation of θB(g) on K ⊗A [
θR(λ)-pMod] (respectively,

K ⊗A [
θR(λ)-fMod]). Moreover, there exists a unique pair of adjoint Pθ-graded

A-linear isomorphisms

θγ :
θV(λ)low

A
∼
−→ [

θR(λ)-pMod], θγ ∗
: [

θR(λ)-fMod]
∼
−→

θV(λ)
up
A

which, upon base change to K, become isomorphisms of θB(g)-modules. They
intertwine the bar involution on θV(λ) with the involutions −

♯ and −
♭.

If M ∈
θR(β; λ)-Mod and ν ∈

θJβ , we call Mν = e(ν)M the ν-weight space of M .
The character of a θR(β; λ)-module M is θchq(M)=

∑
ν dimq(e(ν)M)·ν ∈

θF(λ).

This gives rise to an A-linear map θchq : [
θR(λ)-fMod] →

θF(λ). We then call
max(θchq(M)), if it exists, the highest weight of M .

Corollary 4.6. The following triangle commutes:[
θR(λ)-fMod

]
θV(λ)

up
A

θF(λ)

θγ ∗ θ chq

θ9

The map θchq is injective and θchq(M 4 N ) =
θchq(M) 4 chq(N ).

Proof. The proof is analogous to [Kleshchev and Ram 2011, Theorem 4.4 (3)]. □
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4C. Reminder on KLR representation theory. An irreducible R(β)-module L is
called cuspidal if max(chq(L)) ∈ L+, i.e., its highest weight is a good Lyndon
word. By [Kleshchev and Ram 2011, Proposition 8.4], for each ν ∈ L+, there exists
a unique cuspidal irreducible R(|ν|)-module L(ν).

Let ν = (ν⟨l⟩)nl · · · (ν⟨1⟩)n1 ∈ Jβ
+ . The corresponding standard and costandard

modules are, respectively,

1(ν)= L(ν⟨l⟩)◦nl ◦ · · · ◦L(ν⟨1⟩)◦n1{s(ν)}, ∇(ν)= L(ν⟨l⟩)◦nl ◦̂ · · · ◦̂ L(ν⟨1⟩)◦n1{s(ν)},

with s(ν) as in (3-13).

Theorem 4.7 (Kleshchev–Ram, McNamara). Let ν ∈ Jβ
+ . Then:

(1) The standard R(β)-module 1(ν) has an irreducible head L(ν), and the co-
standard module ∇(ν) has L(ν) as its socle.

(2) The highest weight of L(ν) is ν, and dimq L(ν)ν = κν .

(3) L(ν) = L(ν)♭.

(4) {L(ν) | ν ∈ Jβ
+} is a complete and irredundant set of irreducible graded R(β)-

modules up to isomorphism and degree shift.

(5) If L(µ) is a composition factor of 1(ν) (respectively, ∇(ν)), then µ ≤ ν

(respectively, µ ≤
′ ν). Moreover, L(ν) appears in 1(ν) and ∇(ν) with multi-

plicity one.

(6) If ν = µn for a good Lyndon word µ, then 1(ν) = L(ν).

Proof. See [Kleshchev and Ram 2011, Theorem 7.2] and [McNamara 2015, Theo-
rem 3.1]. □

4D. Orientifold KLR: irreducibles and global dimension. Now assume λ = 0.

Lemma 4.8. If ν ∈
θJ •

+
is symmetric, then θL(ν) =

θ1 4 L(ν){θ s(ν)} is irreducible.
The highest weight of θL(ν) is ν, θchq

θL(ν) =
θb∗

ν , and dimq
θL(ν)ν =

θκν .

Proof. It follows from Lemma 3.10, Lemma 3.25, and Corollary 4.6 that all
composition factors of θL(ν) have highest weight ν. We know from Theorem 4.7 (2)
that max(chq(L(ν))) = ν and dimq L(ν)ν = κν . The last part of Corollary 4.6,
together with an argument analogous to that in the last paragraph of the proof of
Lemma 3.31, then shows that the highest weight of θL(ν) is ν and dimq

θL(ν)ν =
θκν .

Let β =
θ
|ν|. By Theorem 4.5, θchq

θL(ν) ∈
θVup

A,β . Since {
θb∗

µ | µ ∈
θJβ

+} is
an A-basis of θVup

A,β , we have θchq
θL(ν) =

∑
µ∈θJβ

+

cµ
θb∗

µ for some cµ ∈ A. By
Corollary 3.30, max(θb∗

µ) = µ, and, by Lemma 3.25, ν is the smallest word in θJβ
+ .

Hence, cµ = 0 unless µ = ν. Comparing the coefficients of ν in chq L(ν) and θb∗
ν ,

we conclude that cν = 1. The irreducibility of θL(ν) follows directly from the
equality θchq

θL(ν) =
θb∗

ν . □
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For ν ∈
θJβ

+ , let

θ1(ν) =
θ1 4 1(ν) and θ

∇(ν) =
θ1 4̂ ∇(ν).

Lemma 4.9. Let ν ∈
θJ •

+
. Then 1(ν) = 1(νθ ) ◦ 1(νθ ), max(θchq

θ1(ν)) = ν, and
dimq(θ1(ν))ν =

θκν .

Proof. The proof of the first statement is analogous to the proof of the first statement
of Lemma 3.31. Using the inductive argument and the notation from that proof,
one observes that µξm is the lowest good word of weight |µξm |. Theorem 4.7 (5)
then implies that L(µ) ◦ L(ξm) = 1(µξm) = L(µξm) = ∇(µξm) = L(ξm) ◦ L(µ),
allowing the induction to proceed.

Since dimq L(µ) = 1, for all µ ∈ L+ (see [Kleshchev and Ram 2011, §8.4]), we
have θchq(θ1(ν)) =

θ1ν . The second and third statements now follow from the
second and third statements of Lemma 3.31. □

Theorem 4.10. Let ν ∈
θJβ

+ . Then:

(1) The standard θR(β)-module θ1(ν) has an irreducible head θL(ν), and the
costandard θR(β)-module θ

∇(ν) has θL(ν) as its socle.

(2) The highest weight of θL(ν) is ν, and dimq
θL(ν) =

θκν .

(3) θL(ν) =
θL(ν)♭.

(4) {
θL(ν) | ν ∈

θJβ
+} is a complete and irredundant set of irreducible graded

θR(β)-modules up to isomorphism and degree shift.

(5) If θL(µ) is a composition factor of θ1(ν) (respectively, θ
∇(ν)), then µ ≤ ν

(respectively, µ ≤
′ ν). Moreover, θL(ν) appears in θ1(ν) and θ

∇(ν) with
multiplicity one.

(6) If ν is a Lyndon word or ν = νθ , then θ1(ν) =
θL(ν) is irreducible.

Proof. The structure of the proof is similar to [Kleshchev and Ram 2011, The-
orem 7.2], see also [McNamara 2015, Theorem 3.1]. Let us explain the main
points. If νθ = (ν⟨l⟩)nl · · · (ν⟨1⟩)n1 , let β0 =

θ
|νθ

|, β = (nl |ν
⟨l⟩

|, · · · , n1|ν
⟨1⟩

|), and
abbreviate

θResν =
θResβ0,β and θRν =

θR(β0, β).

Also, abbreviate

θL(ν⃗) =
θL(νθ ) ⊗ L(ν⟨l⟩)◦nl ⊗ · · · ⊗ L(ν⟨1⟩)◦n1{s(νθ )}.

Let L be an irreducible θR(β)-module in the head of θ1(ν). By adjunction and the
first part of Lemma 4.9, HOMθ R(β)(

θ1(ν), θ1(ν))= HOMθ Rν
(θL(ν⃗), θResν

θ1(ν))

and 0 ̸= HOMθ R(β)(
θ1(ν), L) = HOMθ Rν

(θL(ν⃗), θResν L). Hence, we get the
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commutative diagram

θL(ν⃗) θResν
θ1(ν) θ1(ν)

θL(ν⃗) θResν L L

The injectivity of the two arrows on the left follows from the θRν-module θL(ν⃗)

being irreducible, which is implied by Theorem 4.7 (5) and Lemma 4.8. Further,
Theorem 4.7 (2), Lemma 4.8, and Lemma 4.9 also imply that

dimq
θL(ν⃗)ν =

θκν = dimq
θ1(ν)ν .

Hence, dimq Lν =
θκν as well, implying that the head of θ1(ν) is irreducible. This

proves (1) in the case of standard modules, as well as (2). Note that the modules
θL(ν) we have thus constructed are pairwise nonisomorphic since they have different
highest weights.

Next, (3) follows from [Varagnolo and Vasserot 2011, Proposition 2] and the
fact that θκν is bar-invariant (Lemma 3.27). Part (4) follows from Proposition 3.22,
Theorem 4.5, and the fact that we have constructed θkpf(β) nonisomorphic irre-
ducible graded θR(β)-modules {

θL(ν) | ν ∈
θJβ

+}. Next, we return to (1) in the
case of costandard modules. An analogous argument to that in the case of standard
modules, using Lemma 3.32 and the adjunction between restriction and coinduction
now shows that θ

∇(ν) has an irreducible socle with highest weight ν, which, by (4),
must be isomorphic to θL(ν). Part (5) follows immediately from the facts that
ν = max

(
θchq(θ1(ν))

)
= max′

(
θchq(θ∇(ν))

)
and dimq

θ1(ν)ν = dimq
θ
∇(ν)ν =

dimq
θL(ν)ν . Next, part (6) follows from Lemma 3.25 and (5). □

Corollary 4.11. As a graded algebra, θR(β) has global dimension ∥β∥θ .

Proof. The proof is analogous to [McNamara 2015, Theorem 4.7]. For the
sake of simplicity, we ignore the grading shifts. Since λ = 0, the set θJ •

+
con-

tains no θ-cuspidal words. Let ν, µ ∈
θJβ

+ . If νθ = (ν⟨l⟩)nl · · · (ν⟨1⟩)n1 , we let
L(ν⃗)=L(νθ )⊗L(ν⟨l⟩)◦nl ⊗· · ·⊗L(ν⟨1⟩)◦n1 . Also let β =(|νθ

|,nl |ν
⟨l⟩

|, · · · ,n1|ν
⟨1⟩

|).
Then, Lemma 4.3 and adjunction between induction and restriction imply that

Exti
θ R(β)

(
θ
∇(ν), θ1(µ)

)
= Exti

R(β)

(
L(ν⃗), Resβ

θ1(µ)
)
,

which, by [McNamara 2015, Theorem 4.7] is zero for i > ∥β∥θ . The rest of the
proof is exactly the same as in [McNamara 2015]. □
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