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IRREDUNDANT BASES FOR FINITE GROUPS OF LIE TYPE

NICK GILL AND MARTIN W. LIEBECK

We prove that the maximum length of an irredundant base for a primitive
action of a finite simple group of Lie type is bounded above by a function
which is a polynomial in the rank of the group. We give examples to show
that this type of upper bound is best possible.

1. Introduction

1A. Main results. Let G be a group acting on a set �. Let ℓ be a nonnegative
integer and let 3 = [ω1, . . . , ωℓ] be a sequence of points ω1, . . . , ωℓ drawn from �;
we write G(3) or Gω1,ω2,...,ωℓ

for the pointwise stabilizer. If ℓ = 0, so 3 is empty,
then we set G(3) = G.

The sequence 3 is called a base if G(3) = {1}; the sequence 3 is called irredun-
dant if

Gω1,...,ωk−1 ⪈ Gω1,...,ωk−1,ωk

for all k = 1, . . . , ℓ. The size of the longest possible irredundant base is denoted
I(G, �).

The main result of this paper shows that for any primitive action of a simple
group of Lie type, the size of an irredundant base is bounded by a polynomial
function of the rank of the group.

Theorem 1. If G is a simple group of Lie type of rank r acting primitively on
a set �, then I(G, �) ≤ Cr8, where C is an absolute constant. This holds with
C = 174.

The degree 8 of the polynomial bound is probably far from sharp but, as discussed
in Section 1B, there are examples showing that this degree must be at least 2. Also
there is no general complementary lower bound for I(G, �) that grows with r , as
shown by Example 4.5.

An upper bound on I(G, �) implies an upper bound on a host of other statistics
associated with the action of G on �. Consider, again, the sequence 3, defined
above. We call 3 a minimal base if it is a base and, furthermore, no proper
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subsequence of 3 is a base. We denote the minimum size of a minimal base
b(G, �), and the maximum size of a minimal base B(G, �).

We say that 3 is independent if, for all k = 1, . . . , ℓ, we have G(3) ̸= G(3\ωk).
We define the height of G to be the maximum size of an independent sequence, and
we denote this quantity H(G, �).

The last statistic of interest to us is the relational complexity of the action of G
on �, denoted RC(G, �). The definition of this is slightly involved and can be
found in [8] where it is given the name arity.

It is easy to verify the inequalities [10]

(1-1) b(G, �) ≤ B(G, �) ≤ H(G, �) ≤ I(G, �).

Less obvious, but still rather elementary is the inequality [10]

(1-2) RC(G, �) ≤ H(G, �)+ 1.

Theorem 1 and inequalities (1-1) and (1-2) immediately yield the following
corollary.

Corollary 2. If G is simple of Lie type of rank r acting primitively on a set �, then
each of b(G, �), B(G, �), H(G, �) and I(G, �) is at most Cr8 while RC(G, �)

is less than Cr8
+ 1, where C is as in Theorem 1.

We can also deduce an upper bound for primitive actions of almost simple groups:

Corollary 3. Let G be an almost simple group, with socle a simple group of Lie
type of rank r over Fq , where q = p f (p prime). If G acts primitively on a set �,
then

I(G, �) ≤ 177r8
+ π( f ),

where π( f ) is the number of primes, counted with multiplicity, dividing the inte-
ger f .

Example 5.1 shows that the term π( f ) in the upper bound cannot be avoided.
Our main tool for proving Theorem 1 is the following result on maximal sub-

groups of finite groups of Lie type. In the statement, we let G(q)= (G F )′ be a simple
group of Lie type over Fq , where G is the corresponding simple adjoint algebraic
group over Fq and F is a Frobenius endomorphism. Let p be the characteristic of Fq .
For a rational representation ρ : G 7→ GLn(Fq), and a closed subgroup H of G,
we define degρ(H) to be the degree of the image ρ(H) as a subvariety of GLn(Fq).
We give some basic definitions and results about degree in Section 2. Also denote
by H 0 the connected component of H .

Theorem 4. Let G(q) = (G F )′ be a finite simple group of Lie type as above, and
let G be an almost simple group with socle G(q). Let M be a maximal subgroup
of G, and set M0 = M ∩ G(q). Let d = dim G. Then one of the following holds:
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(1) M0 = M F
∩ G(q), where M is a closed F-stable subgroup of G of positive

dimension; moreover,

(a) |M : M0
| ≤ |W (G)|, the order of the Weyl group of G, and

(b) excluding the cases where (G, M, p) = (Cr , Dr , 2) or (C3, G2, 2), if we
let ad : G 7→ GL(L(G)) be the adjoint representation, then

degad(M) ≤ |W (G)| degad(G) ≤ |W (G)| 2d2
.

(2) M0 = G(q0), a subgroup of the same type as G (possibly twisted) over a
subfield Fq0 of Fq .

(3) |M0| ≤ 2d2
.

1B. Context for, and possible improvements to, Theorem 1. We think of Theorem 1
as being a version of the Cameron–Kantor conjecture for irredundant bases. The
Cameron–Kantor conjecture, which was stated in [6; 7] and proved in [20], asserts
the existence of an absolute upper bound for b(G, �) for the nonstandard actions
of the almost simple groups. (A standard action of an almost simple group G with
socle S is a transitive action where either S = An and the action is on subsets or
uniform partitions of {1, . . . , n}, or G is classical and the action is a subspace action.)

In Section 6 we explain exactly how Theorem 1 is connected to the Cameron–
Kantor conjecture and we give a number of examples that clarify why Theorem 1
is, in a certain sense, the best possible “Cameron–Kantor-like statement” that can
be made for irredundant bases. In particular, we give examples to show that:

(i) Even for nonstandard actions, the bound Cr8 in Theorem 1 really needs to
depend on r and is not absolute.

(ii) Theorem 1 only holds for primitive actions of simple groups of Lie type – it
does not extend to actions of almost simple groups in general (although we do
prove Corollary 3 for these).

(iii) Likewise, Theorem 1 does not extend to transitive actions of simple groups of
Lie type in general.

Although (i) implies that the upper bound given in Theorem 1 is necessarily a
function of r , it is undoubtedly true that the particular function of r we have given —
174r8 — can be improved. A construction of Freedman, Kelsey and Roney-Dougal
(personal communication) implies that any polynomial upper bound must have
degree at least 2; our guess is that an upper bound which is quadratic in r may hold
in general.

A heuristic supporting this guess follows from the fact that I(G, �) ≤ ℓ(G),
where ℓ(G) is the maximum length of a subgroup chain in the simple group of
Lie type G. Writing p for the field characteristic, U for a Sylow p-subgroup
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of G, and 8+ for the associated set of positive roots, we know that there exist
constants c1, c2 such that

c1r2 logp q ≤ |8+
| logp q = ℓ(U ) < ℓ(G) < log2 |G| ≤ c2r2 log2 q.

More information about ℓ(G) can be found in [23].
Theorem 1 is the second recent success in trying to extend well-known results

about bases to statements about irredundant bases; the first was achieved by Kelsey
and Roney-Dougal [12] extending a result of Liebeck [14].

1C. Proofs and the structure of the paper. In Section 2 we present a number of
definitions and results pertaining to the degree of an affine variety; these include, in
particular, a statement of (one version of) Bézout’s theorem on the degree of the
intersection of a number of algebraic varieties.

In Section 3 we prove Theorem 4. The proof uses various results from the
literature on the subgroup structure of algebraic groups [15; 18].

In Section 4 we prove Theorem 1; the proof makes use of both Theorem 4 and
Bézout’s theorem. Corollary 3 is deduced in Section 5.

The comparison of Theorem 1 with the Cameron-Kantor conjecture, and the
relevant examples mentioned above, are given in Section 6.

2. Degree of an affine variety

Our proof of Theorem 1 is carried out by combining Theorem 4 with Bézout’s
theorem on the degree of the intersection of a number of algebraic varieties. We
need a version of Bézout’s theorem that holds for affine varieties and is due to
Heintz [11].

In what follows we consider subsets of some affine space, An , over an alge-
braically closed field k. A set X in An is called locally closed if X = V ∩ W , where
V is open and W is closed (in the Zariski topology). A set X is called constructible
if it is a finite disjoint union of locally closed sets. Note that the intersection of a
finite number of constructible sets is constructible. Note too that any variety in An

is constructible. From here on X is a constructible set.

Definition 2.1 [11, Definition 1 and Remark 2]. If X is an irreducible variety of
dimension r in An , then the degree of X , written deg(X), is defined to be

sup{|E∩X | : E is an (n − r)-dimensional affine subspace of An with E ∩ X finite}.

If X is a constructible set and C is the set of irreducible components of the closure
of X , then we define

(2-1) deg(X) =
∑

C∈C
deg(C).
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Note that if X is an irreducible variety of dimension 0, then we have deg(X) = 1.
Thus, if X is any variety of dimension 0, irreducible or not, deg(X) = |X |.

Now the main result that we need concerning degree is the following version of
Bézout’s theorem.

Proposition 2.2 [11, Theorem 1]. Let X and Y be constructible sets in An . Then

deg(X ∩ Y ) ≤ deg(X) · deg(Y ).

This proposition obviously generalizes to the intersection of more than two
varieties: If X1, X2, . . . , Xk are constructible sets in An , then

deg(X1 ∩ X2 ∩ · · · ∩ Xk) ≤ deg(X1) · deg(X2) · · · deg(Xk).

(We are implicitly using the fact that the intersection of two constructible sets is
constructible.)

A useful corollary of Proposition 2.2 is the following fact connecting the degree
of an affine variety to the degree of its defining polynomials. We make use of the
fact, noted by Heintz [11, p. 247], that the degree of a hypersurface in An is equal
to the degree of its defining polynomial.

Lemma 2.3. Suppose that an affine variety X in An is defined by polynomials
f1, . . . , fr of degree at most e. Then

deg(X) ≤ er .

Proof. By definition X = V ( f1, . . . , fr ) =
⋂r

i=1V ( fi ) where, for i = 1, . . . , r ,
V ( fi ) is the hypersurface defined by the polynomial fi . We noted that deg(V ( fi ))=

deg( fi ), and hence Proposition 2.2 implies that

deg(X) ≤ deg(V ( f1)) · · · deg(V ( fr )) = deg( f1) · · · deg( fr ) ≤ er . □

As mentioned in the introduction, if G is an affine algebraic group over an
algebraically closed field k, then for a rational representation ρ : G 7→ GLn(k), and
a closed subgroup H of G, we define degρ(H) to be the degree of the image ρ(H)

as a subvariety of GLn(k). From (2-1), we have

(2-2) degρ(H) = |H : H 0
| degρ(H 0) ≥ degρ(H 0).

3. Proof of Theorem 4

As in Theorem 4, let G(q) = (G F )′ be a simple group of Lie type over Fq , where
G is a simple algebraic group over K = Fq , and let G be an almost simple group
with socle G(q). Let M be a maximal subgroup of G, and set M0 = M ∩ G(q).
Let d = dim G and let p be the characteristic of Fq . Denote by Lie(p) the set of
finite simple groups of Lie type over fields of characteristic p.
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Suppose first that G(q) is a classical group, so that G is the corresponding
classical algebraic group. Let V be the natural module for G, and let n = dim V .
We shall apply [15, Theorems 1′ and 2]. We postpone consideration of the cases
where G(q) = PSLn(q), Sp4(2

e) or P�+

8 (q) and the group G contains an element
in the coset of a graph automorphism (a triality graph automorphism in the last
case). Assuming that these cases do not pertain, in [15], six classes Ci of closed
subgroups of G are defined, and it is proved that one of the following holds:

(i) M0 = M F
∩ G(q) for some F-stable member M ∈ C :=

⋃6
1Ci .

(ii) M0 = G(q0), a subgroup of the same type as G(q) (possibly twisted) over a
subfield Fq0 of Fq .

(iii) M0 is almost simple, and F∗(M0) is irreducible on V (and not of the same
type as G(q)).

In case (ii), conclusion (2) of Theorem 4 holds.
Consider now case (i). The only finite members of C are:

• Subgroups of type O1(K ) wr Sn = 2n.Sn in On(K ) with p ̸= 2 (these lie in
the class C2).

• Extraspecial-type subgroups r2m . Sp2m(r) (r prime, n = rm) or 22m .O±

2m(2)

(n = 2m) (these lie in the class C5).

A simple check shows that these subgroups have order less than 2d2
, as required

for conclusion (3) of Theorem 4.
All the other members of C are infinite, in which case

(3-1) M0 = M F
∩ G(q),

where M is a maximal closed F-stable subgroup of G of positive dimension, as
in (1) of Theorem 4.

Now consider case (iii) above. If F∗(M) ̸∈ Lie(p), then an unpublished man-
uscript of Weisfeiler [24], subsequently improved and developed in [9], shows
that |M | < n4(n + 2)!, which is less than 2d2

, as in (3) of Theorem 4. And if
F∗(M) ∈ Lie(p), then [22, Theorem 1] shows that (3-1) holds.

To complete the proof of Theorem 4 in the case where G is classical (apart
from the postponed cases), it remains to prove the bounds for |M : M0

|, degad(M)

and degad(G) for M in (1) of Theorem 4. The bound |M : M0
| ≤ |W (G)| follows

by simply inspecting the structure of the members of C; equality occurs when
M = NG(T ), where T is a maximal torus (these subgroups are in class C2 for
SL(V ) and SO(V )).

To establish the degree bounds, we first prove:
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Claim: Let M0 = M F
∩ G(q) be as in (3-1). Then with two exceptions, M0 acts

reducibly on some G-composition factor of the adjoint module L(G). The two
exceptions are (G, M, p) = (Spn, SOn, 2) or (Sp6, G2, 2).

Proof of Claim. The composition factors of L(G) are given in [16, Proposition 1.10].
Also L(M) ⊆ L(G). First consider M0 = M F

∩ G(q) as in (i). Inspecting M0

for M ∈ C, we see that L(M) maps to a proper subspace of some composition factor
of L(G), with the exception of (G, M, p)= (Spn, SOn, 2), proving the claim for M0

as in (i). Finally, for M0 as in (iii), the group M0 is simple, and [16, Theorem 4]
shows that the only case where L(M) does not map to a proper subspace of some
composition factor of L(G) is (G, M, p) = (Sp6, G2, 2). This completes the proof
of the Claim.

We now use the Claim to deduce the required degree bounds. Let M, M be as
in (3-1), and exclude the exceptions in the Claim, so that M0 acts reducibly on
some composition factor of L(G). If also M is reducible, then as it is maximal
there is a subspace W of L(G) such that

M = stabG(W ).

This defines M by the polynomials defining G in the adjoint representation, together
with some linear equations, and hence by Lemma 2.3, we have

degad(M) ≤ degad(G).

On the other hand, if M acts irreducibly on every composition factor of L(G), then
by the Claim, there is a composition factor V such that V ↓ M0

=
⊕t

1Vi , where
each Vi is irreducible for M0 and t ≥ 2. Set

M1
=

t⋂
1

stab(Vi ),

so that M0
≤ M1

◁ M . As above we see that degad(M1) ≤ degad(G), and so by the
remarks after Lemma 2.3, we have degad(M) ≤ |M : M1

| degad(G). We have seen
that |M : M0

| ≤ |W (G)|, so it follows that

degad(M) ≤ |W (G)| degad(G),

as required for (1) of Theorem 4. Finally, in the adjoint representation, G is defined
by d2 quadratic polynomials expressing preservation of the Lie bracket on L(G),
so degad(G) ≤ 2d2

. Note that the exceptional cases (Spn, SOn, 2), (Sp6, G2, 2) in
the Claim are also excepted in part (i)(b) of Theorem 4. Hence the proof of the
theorem for G classical is now complete, apart from the postponed cases where
G(q) = PSLn(q), Sp4(2

e) or P�+

8 (q) and G contains an element in the coset of a
graph automorphism.
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Now consider the excluded cases. Suppose first that G(q) = PSLn(q). In this
case, the collection C is extended in [15] to a collection C′, and it is proved that
conclusion (i), (ii) or (iii) above holds, with C′ replacing C. The only subgroups
in C′

\C are stabilizers of pairs {U, W } of subspaces of V such that either U ⊆ W or
V = U ⊕ W . The above proof shows that these subgroups satisfy (1) of Theorem 4.
In the other cases, where G(q) = Sp4(2

e) or P�+

8 (q), the maximal subgroups of G
are listed in [1, Tables 8.14, 8.50]. Inspection of these lists shows that (1), (2) or (3)
of Theorem 4 holds (using the same argument as above to bound the degree of M).
This completes the proof of Theorem 4 for G(q) a classical group.

Suppose finally that G(q) is an exceptional group of Lie type. The proof runs
along similar lines. First we use [17, Theorem 8], which gives the possibilities for
the maximal subgroup M . These are:

(i) M0 = M F
∩ G(q), where M is a maximal closed F-stable subgroup of G of

positive dimension.

(ii) M0 = G(q0), a subgroup of the same type as G (possibly twisted) over a
subfield Fq0 of Fq .

(iii) M0 is an “exotic local” subgroup:

33. SL3(3) < F4, 33+3. SL3(3) < E6, 53. SL3(5) < E8 or 25+10. SL5(2) < E8.

(iv) M0 is the “Borovik subgroup” (Alt5 × Alt6).22 < E8.

(v) M0 is almost simple with socle M1, and one of the following holds:

(a) M1 ̸∈ Lie(p): the possibilities for M0 are listed in [17, Theorem 4].

(b) M1 = M(q1) ∈ Lie(p), rank(M1) ≤
1
2 rank(G) satisfying

• q1 ≤ 9,
• M1 = A±

2 (16),
• M1 has rank 1 and q1 ≤ (2, p−1)·t (G), where t (G)=12, 68, 124, 388, 1312
according to G = G2, F4, E6, E7, E8, respectively.

In cases (iii), (iv) and (v) we check that |M0| < 2d2
, as in (3) of Theorem 4; and

case (ii) is (2) of the theorem. Finally, in case (i), the list of possibilities for M is
given in [17, Theorem 8]. We can check that |M : M0

| ≤ |W (G)|, and also that
M0 acts reducibly on some G-composition factor of L(G) (see also [19] for this).
Now we can argue exactly as in the classical case to obtain the required bounds on
degad(G) for M for (1) of Theorem 4. This completes the proof of Theorem 4. □

4. Proof of Theorem 1

Let G be a simple group of Lie type of rank r over Fq with G = (G F )′, where G is the
corresponding simple algebraic group over Fq and F is a Frobenius endomorphism.
Let d = dim G and p = char(Fq).
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We write G1 for a maximal subgroup of G. We consider the action of G on �,
the set of cosets of G1. We suppose that we have a stabilizer chain,

(4-1) G > G1 > G2 > · · · > Gk = {1}

where Gi = Gi−1 ∩ Ggi
1 for some gi ∈ G (i = 1, . . . , k).

Theorem 4 gives three possibilities for G1.

4A. Case 1 of Theorem 4. In this case we have G1 = G1
F

∩ G where G1 is a
closed F-stable subgroup of G of positive dimension. We start by proving three
lemmas where, in fact, the maximality assumption for G1 is not necessary.

Set ρ to be a rational representation of G and let c be an upper bound for
degρ(G1); note that, by (2-2), we also have |G1 : (G1)

0
| ≤ c.

For each i = 2, . . . , k, we define Gi = Gi−1 ∩ G1
gi where gi is the element of

G mentioned above. Thus we have a chain of subgroups

(4-2) G > G1 ≥ G2 ≥ · · · ≥ Gk .

Lemma 4.1. The subgroups G1, . . . , Gk in (4-1) satisfy Gi = Gi
F

∩ G for each
i = 1, . . . , k.

Proof. We proceed by induction on i . The result is true for i = 1. We assume
the result is true for i and prove it for i + 1. Note that Gi+1 = Gi ∩ Ggi+1

1 and
Gi+1 = Gi ∩ G1

gi+1 .
Let x ∈ Gi+1

F
∩ G. This is equivalent to

x ∈ (Gi ∩ G1
gi+1)F

∩ G ⇔ x ∈ (Gi
F

∩ (G1
gi+1)F ) ∩ G

⇔ x ∈ (Gi
F

∩ G) ∩ ((G1
gi+1)F

∩ G)

⇔ x ∈ (Gi
F

∩ G) ∩ ((G1
F )gi+1 ∩ G)

⇔ x ∈ (Gi
F

∩ G) ∩ (G1
F

∩ G)gi+1

⇔ x ∈ Gi ∩ Ggi+1
1 = Gi+1. □

The lemma implies, in particular, that all of the containments in (4-2) are proper.
Let d1 = dim(G1). Then of course d1 < d = dim G. Note that G1 is the largest
group in the chain (4-2) of dimension d1.

Now let k1, . . . , ks be the points in the chain (4-2) where the dimension drops:
that is, k1 = 1, and for each i ≥ 2, Gki is the largest group in the chain such that
dim Gki < dim Gki −1. Obviously s ≤ d1 + 1 ≤ d .

Lemma 4.2. We have degρ Gki ≤ ci .

Proof. We proceed by induction on i . For i = 1, Gk1 = G1 and this has degree at
most c. We assume the result is true for i and prove it for i + 1. In particular, this
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means that Gki has degree at most ci . Consider the chain

Gki > Gki +1 > Gki +2 > · · · > Gki+1 .

Notice that, all but the last listed group have the same dimension, and so have the
same identity component; what is more the number of components decreases as we
descend the chain from Gki to Gki+1−1. Thus (2-2) implies that

degρ(Gki+1−1) ≤ degρ(Gki ) ≤ ci .

Now Gki+1 is the intersection of Gki+1−1 and a conjugate of G1. The former has
degree at most ci , and the latter has degree at most c. Hence Proposition 2.2 implies
that degρ(Gki+1) ≤ ci+1, as required. □

Lemma 4.3. The length k of the stabilizer chain (4-1) satisfies

k ≤ d +
1
2 d(d + 1) log2 c.

Proof. The previous lemma asserts that the degree of Gki is at most ci and so we
also know that |Gki : (Gki )

0
| ≤ ci . Now, for each i = 1, . . . , s, we know that

Gki > Gki +1 > Gki +2 > · · · > Gki+1−1 ≥ (Gki )
0,

where Gki
0 is the identity component of all of the groups in this chain. Since

|Gki : (Gki )
0
| ≤ ci , the length of the chain

Gki > Gki +1 > Gki +2 > · · · > Gki+1−1

is at most log2(c
i ) = i log2 c; in particular, for i = 1, . . . , s, the length of the chain

from Gki to Gki+1 is at most i log2 c + 1. There are two further parts of the chain
that we have not considered.

First, at the top of the chain, the containment G > G1 = Gk1 adds 1 to the total
length. Second, at the bottom of the chain, Gks is of dimension 0 and degree at
most cs ; in other words Gks has cardinality at most cs and so there at most log2(c

s)

further containments at the end of the chain from Gks to {1}.
Our total chain length is, then, at most

1 +

s−1∑
i=1

(i log2 c + 1) + s log2 c = s +
1
2 s(s + 1) log2 c.

Since s ≤ d , the conclusion follows. □

We are ready to complete the proof of Theorem 1 in this case. We reinstate the
maximality supposition on G1. We consider the adjoint representation, ad, of G
and we set

c = |W (G)| · 2d2
.
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For the moment we exclude the exceptional cases (G, G1, p) = (Cn, Dn, 2) or
(C3, G2, 2) in Theorem 4(1)(b); then, by Theorem 4(1), c is an upper bound for
degad(G1) and also, by (2-2), for |G1 : (G1)

0
|.

Recall that r is the rank of G, and that d = dim G, so that d ≤ 4r2. Also

c = |W (G)| · 2d2
≤ 2r2

+d2
≤ 2r2

+16r4
.

Hence Lemma 4.3 gives

k ≤ 4r2
+

1
2(4r2)(4r2

+ 1)(r2
+ 16r4).

The right-hand side is at most Cr8 with C = 174, as required for Theorem 1.
It remains to deal with the excluded cases (G, G1, p)= (Cn, Dn,2) or (C3,G2,2).

In the former case [10, Lemma 6.11] implies that I(G, �)≤2r+1 and the conclusion
holds. In the latter case the action of G = C3(q) on � = (C3(q) : G2(q)) is
contained in (D4(q) : (D4(q) : B3(q)), since there is a factorization D4(q) = AB,
where A ∼= B ∼= B3(q) and A ∩ B ∼= G2(q) (see [21, p. 105]). For this action of
X := D4(q), we have I(X, �) ≤ 15 by [12, Theorem 3.1]. Hence I(G, �) ≤ 15.

This completes the proof of Theorem 1. □

4B. Case 2 of Theorem 4. In this case we have G1 = G(q0), a subgroup of the
same type as G (possibly twisted) over a subfield Fq0 of Fq . Writing G = (G F )′

as before, there is a Frobenius endomorphism F0 of G such that G1 = G F0 ∩ G,
where Fr

0 = F for some integer r ≥ 2.

Lemma 4.4. For x ∈ G we have

G1 ∩ Gx
1 = CG1(x−1x F0) = (CG(x−1x F0))F0 .

Note that the group CG(x−1x F0) may not be F0-stable.

Proof. We have

g ∈ G1 ∩ Gx
1 ⇔ g, gx−1

∈ G1 ⇔ gF0 = g and (xgx−1)F0 = xgx−1

⇔ gF0 = g and x F0 gx−F0 = xsx−1

⇔ g ∈ CG1(x−1x F0). □

Recall that we have a stabilizer chain G > G1 > G2 > · · · > Gk = 1, where
Gi = Gi−1 ∩ Ggi

1 for each i , and gi ∈ G. Define

G1 = G, G2 = CG(g−1
2 gF0

2 ),

and for 2 ≤ j ≤ k,

G j =

j⋂
i=2

CG(g−1
i gF0

i ).
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Then by Lemma 4.4, we have G j = G j
F0 for 1 ≤ j ≤ k, and so

G = G1 > G2 > · · · > Gk .

Given x ∈ G, we of course have CG(x) = {g ∈ G : gx = xg}, so this centralizer
consists of solutions of a system of linear equations in the entries of g, and hence
degad CG(x) ≤ degad G. Now we can bound the length k of the chain exactly as in
Case 1, and the proof is complete. □

4C. Case 3 of Theorem 4. This case is a triviality: clearly if |G1| ≤ 2d2
, then a

stabilizer chain has length at most d2. This observation completes the proof of
Theorem 1. □

Example 4.5. Here is an example that shows there is no general complementary
lower bound to go with the upper bound given in Theorem 1. Let G = SLr (2)

acting on �, the set of cosets of H where H is the normalizer of a Singer cycle,
with r an odd prime. Then H ∼= C2r −1 ⋊ Cr and H is maximal in G for r ≥ 13
(see [13, Table 3.5A]). Since distinct conjugates of the Singer cycle C2r −1 intersect
trivially, it follows that for this action we have I(G, �) ≤ 3. In particular, I(G, �)

does not necessarily grow as the rank increases, even when G is simple and the
action is primitive.

Remark 4.6. It is possible to improve the polynomial bound of Theorem 1 in
particular cases. For example, consider parabolic actions of G = PSLn(q), i.e.,
transitive actions for which the stabilizer G1 is a parabolic subgroup. Set G =

SLn(Fq) and let ρ be the usual n-dimensional rational representation. In this
situation, parabolic subgroups G1 satisfy degρ(G1) ≤ n and so Lemma 4.3 gives
I(G, �) ≤ n4 log2 n.

5. Almost simple groups: proof of Corollary 3

Let G be an almost simple group, with socle S = G(q), a simple group of Lie type
of rank r over Fq , where q = p f (p prime). Let G act primitively on a set �, with
point-stabilizer G1, and let M1 = G1∩S. Note that G = G1S, and so G1/M1 ∼= G/S,
a subgroup of Out(S).

Now let G > G1 > G2 > · · ·> Gk ={1} be a stabilizer chain, where Gi = Gα1···αi

for 1 ≤ i ≤ k. Define Mi = Gi ∩ S. We obtain two chains:

S > M1 ≥ M2 ≥ · · · ≥ Mk = {1},

G/S = G1/M1 ≥ G2/M2 ≥ · · · ≥ Gk/Mk = {1}.

Observe that, for i = 1, . . . , k − 1, if Mi = Mi+1, then Gi/Mi > Gi+1/Mi+1. By
[13, Tables 5.1A, 5.1B], the order of Out(S) divides k f , for some integer k ≤ 6r ,
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and hence a proper subgroup chain in G/S has length at most log2(6r) + π( f ).
Now define

I = {i : 1 ≤ i ≤ k − 1 and Mi > Mi+1}

and write I = {i1, . . . , iℓ−1} where i j < i j+1 for j = 1, . . . , ℓ − 2. Setting iℓ = k
we have, firstly, that

(5-1) ℓ ≥ k − log2(6r) − π( f )

and, secondly, that

(5-2) S > Mi1 > Mi2 > · · · > Miℓ = {1}.

Note that i1 = 1, and (5-2) is the stabilizer chain S > Sα1 > Sα1αi2
> · · · for the

action of S on �.
Now Theorem 4 tells us that Sα1 satisfies (1), (2) or (3) of the conclusion of

that theorem. Hence, arguing exactly as in the proof of Theorem 1 we obtain that
ℓ ≤ 174r8. Combining this bound with (5-1) yields k ≤ 174r8

+ log2(6r)+π( f ),
which is less than 177r8

+ π( f ). This completes the proof of Corollary 3. □

Example 5.1. Here is an example that shows that the term π( f ) in the upper bound
in Corollary 3 cannot be avoided.

Let G = P0L2(q) with q = p f , and consider the action of G on the set of
1-subspaces of V = (Fq)2. We claim that I(G, �) = 3+π( f ). To see this, write the
prime factorization of f as f = r1r2 · · · rℓ where ℓ = π( f ), write {e1, e2} for the
natural basis of V over Fq , and consider the stabilizer chain obtained by successively
stabilizing the following 1-spaces (in order):

⟨e1⟩, ⟨e2⟩, ⟨e1 + e2⟩, ⟨e1 + ζ1e2⟩, ⟨e1 + ζ2e2⟩, . . . , ⟨e1 + ζℓe2⟩,

where, for i = 1, 2, . . . , ℓ, ζi is a primitive element of Fpr1r2···ri . This stabilizer chain
establishes that I(G, �) ≥ 3 + π( f ); on the other hand, the 3-transitivity of the
action of G implies that the stabilizer of any 3 distinct points is isomorphic to C f

and this implies that I(G, �) ≤ 3 + π( f ).

It seems possible, however, that one could do better for B(G, �) and/or H(G, �).
In the proof of Lemma 6.3 below we shall show that there exists a primitive action of
G = P0L2(q) for which B(G, �) ≥ πd( f ), where πd( f ) is the number of distinct
primes dividing the integer f .

Conjecture 5.2. There exists a function g : Z+
→ Z+ such that if G is an almost

simple group of Lie type of rank r over a field of order p f acting primitively on a
set �, then

B(G, �) ≤ H(G, �) < g(r) + πd( f ),

where πd( f ) is the number of distinct primes dividing the integer f .
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6. Theorem 1 and the Cameron–Kantor conjecture

The Cameron–Kantor conjecture (now a theorem due to Liebeck and Shalev [20])
asserts the following:

There exists a constant c > 0 such that if G is an almost simple primitive
nonstandard permutation group on a set �, then b(G, �) ≤ c.

(A standard action of an almost simple group G with socle S is a transitive action
where either S = An and the action is on subsets or uniform partitions of {1, . . . , n},
or G is classical and the action is a subspace action; see [2] for more detail.) This
statement is now known to be true with c = 7, by [2; 3; 4; 5].

Colva Roney-Dougal asked us whether a statement like the Cameron–Kantor
conjecture might be true for any of the statistics B(G, �), H(G, �) or I(G, �)

and Theorem 1 was our answer to this question. One naturally wonders, though,
whether it is possible to do better — to investigate this, given (1-1), the first question
one should ask is whether a stronger statement can be proved for B(G, �) (since
any such statement for H(G, �) or I(G, �) is necessarily true for B(G, �)). To
investigate this we need to clarify some things.

Primitivity and transitivity. Suppose that G is a transitive permutation group on �

and identify � with (G : H) where H is the stabilizer of a point. Now let F ≤ H
and let 0 = (G : F). Then it is true that b(G, 0) ≤ b(G, �) and hence, in particular,
the Cameron–Kantor conjecture gives information about all transitive almost simple
permutation groups G for which a point-stabilizer is a subgroup of a maximal
subgroup that is a point stabilizer for a nonstandard primitive action.

Things are more complicated for us because it is not necessarily true that
B(G, 0) ≤ B(G, �), that H(G, 0) ≤ H(G, �) or that I(G, 0) ≤ I(G, �); the
examples below demonstrate this. Hence in investigating how to extend the state-
ment of the Cameron–Kantor conjecture we need to distinguish between statements
involving primitive groups and those involving transitive groups.

Rank-dependent constant versus absolute constant. Our investigations will focus
on almost simple groups with socle a group of Lie type. Our first example will
establish that it is not possible to give an absolute upper bound for B(G, �), even for
nonstandard actions. In light of this it is worth clarifying what the Cameron–Kantor
conjecture implies with regard to a rank-dependent upper bound:

For every positive integer r there exists a constant c > 0 such that if G is
an almost simple primitive permutation group on a set �, with socle a
group of Lie type of rank at most r , then b(G, �) ≤ c.

The point we are making here is that, if we allow our upper bound to be rank-
dependent, then we do not need to distinguish between standard and nonstandard
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actions — it is easy enough to establish that the standard actions also satisfy the
given statement. (For the C8 standard actions of Sp2m(q) this follows from [10,
Lemma 6.11]; for the C1 standard actions of the classical groups this follows from
[12, Theorem 3.1].)

Note, finally, that we have not considered the question of Cameron–Kantor-like
statements for irredundant bases of primitive actions of the alternating groups.

6A. Simple, primitive, absolute upper bound. In this subsection we show that the
following possible extension of the Cameron–Kantor conjecture is false:

There exists a constant c > 0 such that if G is a simple primitive nonstan-
dard permutation group on a set �, then B(G, �) ≤ c.

The key point here is that an upper bound on B(G, �) in this setting must depend
on r .

Lemma 6.1. For every n ≥ 13, q ≥ 5, there exists a nonstandard primitive action
(PSLn(q), �) such that B(PSLn(q), �) ≥ n − 1.

Proof. We consider the action of G = SLn(q) acting on the cosets of a C2-maximal
subgroup that is the normalizer of a split torus. For q ≥ 5, n ≥ 13 this induces a
primitive nonstandard action of PSLn(q) (see [13, Table 3.5A]); furthermore this
action of G is equivalent to the action of G on decompositions of V = (Fq)n as a
direct sum of n 1-dimensional subspaces.

Let {e1, . . . , en} be a basis of V over Fq . For i = 1, . . . , n − 1, we define a
decomposition Di of V as

Di = ⟨e1⟩ ⊕ ⟨e2⟩ ⊕ · · ·⊕ ⟨ei−1⟩ ⊕ ⟨ei + ei+1⟩ ⊕ ⟨ei+1⟩ ⊕ ⟨ei+2⟩ ⊕ · · ·⊕ ⟨en⟩.

Suppose, first, that g ∈ G fixes D1, . . . ,Dn−1. This implies that g fixes the
space ⟨en⟩ (since it is the only 1-space appearing in all n − 1 decompositions);
similarly, for j = 1, . . . , n − 1, g fixes the space ⟨e j ⟩ (since it is the only 1-space
appearing in all n − 1 decompositions except for D j ). Thus, for j = 1, . . . , n,
there exists λ j ∈ Fq such that eg

j = λ j e j . But now, for j = 1, . . . , n − 1, the space
⟨e j + e j+1⟩ occurs in decomposition D j and no others, hence this 1-space too is
fixed by g. This implies, finally, that, for j = 1, . . . , n −1, λ j = λ j+1 and so g acts
as a scalar. In particular, the set {D1, . . . ,Dn−1} is a base for the induced action of
PSLn(q).

On the other hand, for j ∈ 1, . . . , n − 1, define

3 j = {D1, . . . ,D j−1,D j+1, . . . ,Dn−1}

and set g j to be an element of G that swaps ⟨e j ⟩ and ⟨en⟩ while fixing ⟨ei ⟩ for
i = 1, . . . , j − 1, j + 1, . . . , n − 1. It is straightforward to check that g fixes all of
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the decompositions in 3 j . We conclude that 3 is a minimal base for this action of
size n − 1. □

In light of this lemma our remaining investigations will focus on almost simple
groups where the socle is a group of Lie type of bounded rank.

6B. Simple, transitive, rank-dependent upper bound. In this subsection we show
that the following possible extension of the Cameron–Kantor conjecture is false:

For every positive integer r there exists a constant c > 0 such that if G is
a simple transitive permutation group on a set �, with socle a group of
Lie type of rank at most r , then B(G, �) ≤ c.

The next lemma does the job:

Lemma 6.2. For every integer c > 1, there exists a transitive action (SL2(2c), �),
such that B(SL2(2c), �) ≥ c.

Proof. Let q = 2c, let G = SL2(q), let U be a Sylow 2-subgroup of G, let H be an
index 2 subgroup of U and let � be the set of right cosets of H in G. Since H =2c−1

it is clear that B(G, �) ≤ I(G, �) ≤ c. We claim that, in fact, B(G, �) = c.
To show this, let B = NG(U ) and let 1 be the set of right cosets of H in B.

Since B(B, 1) ≤ B(G, �) it is sufficient to show that B(B, 1) ≥ c.
Consider U as a c-dimensional vector space over F2. The action of B on 1 is

isomorphic to the action of B on the set of all affine hyperplanes — these are the
usual linear hyperplanes as well as their translates. Since we are working over F2,
each hyperplane has 2 cosets (itself and one other) thus |1| = 2(q − 1).

Observe that if H1 is a linear hyperplane, then the stabilizer of H1 in B is H1

itself (in particular, H1 is a conjugate of H ). Let e1, . . . , ec be the usual vectors in
the natural basis of U (so ei has 0’s in all places except the i-th where the entry
is 1). For i = 1, . . . , c, define

Hi := ⟨e1, . . . , ei−1, ei+1, . . . , ec⟩.

Then H1, . . . , Hc are linear hyperplanes in U hence are elements of 1 and con-
jugates of H . For i = j, . . . , c, define 3 j = {H1, . . . , H j−1, H j+1, . . . , Hc} and
observe that B(3 j ) = ⟨e j ⟩. Thus 3 = {H1, . . . , Hc} is a minimal base of size c. □

6C. Almost simple, primitive, rank-dependent upper bound. Here we show that
the following possible extension of the Cameron–Kantor conjecture is false:

For every positive integer r there exists a constant c > 0 such that if G is
an almost simple primitive permutation group on a set �, with socle a
group of Lie type of rank at most r , then B(G, �) ≤ c.

The next lemma does the job:
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Lemma 6.3. For all c>0, there exists a nonstandard primitive action (P0L2(q), �),
for some q , such that B(P0L2(q), �) > c.

Proof. Let G = 0L2(q) and consider the action on cosets of the normalizer of a
split torus. For q > 11 this induces a primitive nonstandard action of P0L2(q);
furthermore, this action of G is equivalent to the action of G on decompositions of
V = (Fq)2 as a direct sum of two 1-dimensional subspaces. Let q = pd and assume
that d = f1 · · · fk where k ≥ 3 and f1, . . . , fk are distinct primes.

Let {e1, e2} be the natural basis for V over Fq : e1 = (1 0) and e2 = (0 1). We
define decompositions Di for i = 1, . . . , k as

Di : ⟨e1⟩ ⊕ ⟨e1 + ζi e2⟩,

where ζi is a primitive element in Fp fi . To see that D1, . . . ,Dk form an indepen-
dent set we consider the action F = ⟨σ ⟩ < G where σ is the field automorphism
that acts on vectors by raising each entry to the p-th power.

For j ∈ 1, . . . , k, define 3 j = {D1, . . . ,D j−1,D j+1, . . . ,Dk}. The pointwise-
stabilizer of 3 j in F is ⟨σ d/ f j ⟩ and so the pointwise-stabilizers of 3 j are distinct
for j = 1, . . . , k; in particular we obtain that 3 = {D1, . . . ,Dk} is an independent
set of size k.

We claim that, in fact, 3 is a minimal base. To see this, we must prove that the
pointwise-stabilizer of 3 is trivial. Let g ∈ G(3) and write g = σ r x where r is
some positive integer and x ∈ GL2(q); without loss of generality we can assume
that r divides d. It is clear that ⟨e1⟩

g
= ⟨e1⟩, so there exists λ0 ∈ Fq such that

λ0e1 = eg
1 = eσ r x

1 = ex
1 .

Similarly, for i = 1, . . . , k, there exists λi ∈ Fq such that

λi (e1 + ζi e2) = (e1 + ζi e2)
g
= eg

1 + (ζi e2)
g
= ex

1 + ζ σ r

i ex
2 = λ0e1 + ζ

pr

i ex
2 .

Rearranging we obtain that

ex
2 = λiζ

1−pr

i e2 + ζ
−pr

i (λi − λ0) e1.

We conclude that, for distinct i, j ∈ {1, . . . , k} we have

λiζ
1−pr

i = λ jζ
1−pr

j and ζ
−pr

i (λi − λ0) = ζ
−pr

j (λ j − λ0).

The latter equation yields that

λi =

(
ζi

ζ j

)pr

λ j +

(
1 −

(
ζi

ζ j

)pr )
λ0,
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while the former yields that

λi =
ζ

pr
−1

i

ζ
pr −1
j

λ j .

Combining these two identities and rearranging yields(
ζ j/ζi − 1

(ζ j/ζi )pr
− 1

)
λ j = λ0.

If we fix j and choose ℓ, m ∈ {1, . . . , k} such that j , ℓ and m are all distinct, then
we obtain that

ζ j/ζℓ − 1
(ζ j/ζℓ)pr

− 1
=

ζ j/ζm − 1
(ζ j/ζm)pr

− 1

and, rearranging, we have (
ζ j/ζℓ − 1
ζ j/ζm − 1

)pr
−1

= 1.

We claim that the smallest field containing the quantity in parenthesis is either
Fp f j fℓ fm or Fp fℓ fm . To see this, denote this quantity η and suppose that η is contained
in Fp f j fℓ . Rearranging we obtain

ζm =
ζ jζℓη

ζ j − ζℓ + ζℓη
∈ Fp f j fℓ ,

a contradiction. A similar argument allows us to conclude that this quantity is not
contained in Fp f j fm and the claim follows.

We obtain that r is divisible by both fℓ and fm . Repeating this argument we
obtain that r is divisible by all primes f1, . . . , fk and thus g = x . But this implies
that λi = λ j = λ0 for all i, j = 1, . . . , k and g is a scalar, as required.

We conclude that 3 is a minimal base for this action. Since |3| = k, we need
only choose k > c to obtain that B(G, �) ≥ k > c as required. □

6D. Simple, primitive, rank-dependent upper bound. In light of the examples
given in the preceding sections, this is the only setting where a direct extension of
Cameron–Kantor conjecture is possible. As mentioned above, if we allow our upper
bound to be rank-dependent, then we can ignore the distinction between standard
and nonstandard actions, and hence the statement we end up with has the form of
Theorem 1.
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