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ON WEAK CONVERGENCE
OF QUASI-INFINITELY DIVISIBLE LAWS

ALEXEY KHARTOV

We study a new class of so-called quasi-infinitely divisible laws, which is a
wide natural extension of the well-known class of infinitely divisible laws
through the Lévy–Khinchin representations. We are interested in criteria
of weak convergence within this class. Under rather natural assumptions,
we state assertions, which connect a weak convergence of quasi-infinitely
divisible distribution functions with one special type of convergence of their
Lévy–Khinchin spectral functions. The latter convergence is not equivalent
to the weak convergence. So we complement known results by Lindner, Pan,
and Sato (2018) in this field.

1. Introduction

This paper is devoted to the questions concerning weak convergence within a new
class of so-called quasi-infinitely divisible probability laws.

Let F be a distribution function of a probability law on the real line R with the
characteristic function

f (t) :=

∫
R

ei t x d F(x), t ∈ R.

Recall that F (and the corresponding law) is called infinitely divisible if for every
positive integer n there exists a distribution function F1/n such that F = (F1/n)

∗n ,
where ∗ is the convolution, i.e., F is n-fold convolution power of F1/n . It is well
known that F is infinitely divisible if and only if the characteristic function f is
represented by the Lévy–Khinchin formula:

(1) f (t)= exp
{

i tγ +

∫
R

(
ei t x

− 1 −
i t
τ

sin(τ x)
)

1 + x2

x2 dG(x)
}
, t ∈ R,

with some τ > 0, shift parameter γ ∈ R, and with a bounded nondecreasing
spectral function G : R → R that is assumed to be right-continuous with condition
G(−∞)= 0 (all over the paper, G(±∞) denote the limits at ±∞ correspondingly).
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We use u 7→
1
τ

sin(τu) as the centering function in the integral in (1) following
Zolotarev [33; 34]. If (1) holds for some τ = τ0 > 0, then it holds for any τ > 0,
where γ will depend on τ , but G will not. It is well known that the spectral pair
(γ,G) is uniquely determined by f and hence by F . The Lévy–Khinchin formula
plays a fundamental role in probability theory; it also has a lot of applications in
related fields (see [3; 30; 31]).

It turns out that there exists a rather wide class of probability laws that are very
similar to infinitely divisible laws. This class of so-called quasi-infinitely divisible
laws was introduced by Lindner and Sato [22]. Following them, a distribution
function F (and the corresponding law) is called quasi-infinitely divisible if its
characteristic function f admits the representation (1) with some shift parameter
γ ∈ R, spectral function G : R → R of bounded variation on R (not necessarily
monotone), and for some (any) τ > 0. Here G is assumed to be right-continuous
with condition G(−∞)= 0 as before and so f (and F) uniquely determines the
spectral pair (γ,G) (see [13, p. 80]). Observe that, due to the Jordan decomposition,
we can represent

G(x)= G+(x)− G−(x), x ∈ R,

with some bounded nondecreasing functions G+ and G− on R. Also we can always
write γ = γ+

− γ− with some numbers γ+ and γ− from R. Then it is clear that

f (t)= f +(t)/ f −(t), t ∈ R,

where f + and f − are characteristic functions of some two infinitely divisible
distribution functions F+ and F− with the spectral pairs (γ+,G+) and (γ−,G−)

correspondingly, and so F ∗ F−
= F+. Starting from this point of view, it is

rather natural to call distribution function F (and the corresponding law) rationally
infinitely divisible. So every infinitely divisible law is quasi-infinitely divisible, but
the converse is not true. There are a lot of interesting examples of quasi-infinitely
divisible laws, which are not infinitely divisible (see [13, pp. 82–83; 24, p. 165; 25,
pp. 123–124]). Moreover, it seems that the class of quasi-infinitely divisible laws is
essentially wider than the class of infinitely divisible ones. In particular, it is clearly
seen within discrete probability laws (see [2; 18; 19; 23]).

Various forms of definition and the first detailed analysis of the class of quasi-
infinitely divisible laws on R was performed in [23], the multivariate case is consid-
ered in the recent papers [6; 7; 21]. There are some results for discrete probability
laws in this field (see [1; 2; 17; 18; 19]) and for mixed laws (see [4; 5]). It should
be noted that quasi-infinitely divisible laws now have interesting applications in
theory of stochastic processes (see [22; 28]), number theory (see [26]), physics (see
[11; 12]), and insurance mathematics (see [32]).

We now focus on a weak convergence of quasi-infinitely divisible laws. Recall
that, by definition, the sequence (Fn)n∈N (where N is the set of positive integers) of
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distribution functions weakly converges to a distribution function F (we will write
Fn

w
−→ F , n → ∞) if

(2)
∫

R
h(x) d Fn(x)→

∫
R
h(x) d F(x), n → ∞

for any bounded continuous function h : R → R. It is a well known fact that this is
equivalent to the following convergence:

(3) Fn(x)→ F(x), n → ∞ for any x ∈ S,

where S is an arbitrary dense subset of R and, in particular, it can be chosen as the
set of all continuity points of F . The latter convergence is usually called weak too
(see [25]).

The weak convergence is also introduced for the class of real-valued functions of
bounded variation on the real line (or for corresponding signed measures). Following
Bogachev [10], it is analogously defined by (2), but instead of Fn , n ∈ N, and F we
write some functions of bounded variation Gn , n ∈ N, and G correspondingly. We
will save the notation Gn

w
−→ G, n → ∞, in this case. It should be noted that weak

convergence here is not equivalent to the analog of convergence (3) with functions
of bounded variation (see [10, Section 1.4]).

There are rather general results by Lindner, Pan, and Sato in [23] concerning the
weak convergence of quasi-infinitely divisible distribution functions. The authors
state the conditions under which the weak convergence of distribution functions
implies the weak convergence of the corresponding spectral functions together with
the convergence of the shift parameters and vice versa. Namely, let (Fn)n∈N be a
sequence of quasi-infinitely divisible distribution functions and let (γn,Gn) be the
spectral pair of Fn for every n ∈ N. Let F be a quasi-infinitely divisible distribution
function with the spectral pair (γ,G). Then the results from [23] are in fact the
following: (1) If γn → γ and Gn

w
−→ G, n → ∞, then Fn

w
−→ F , n → ∞. (2) If

we suppose Fn
w

−→ F , n → ∞, then, under some assumptions on tightness and
uniform boundedness for (Gn)n∈N, we have γn → γ and Gn

w
−→ G, n → ∞. Here

we omitted some details, the full formulation will be given in Section 3.
In this work we complement the results by Lindner, Pan, and Sato [23]. We

connect the weak convergence of quasi-infinitely divisible distribution functions
with one type of convergence of their spectral functions. The latter convergence is
a special modification of the convergence (3) (see the next section for details), and
we think that it is more natural and explicit than the weak convergence for the class
of functions of bounded variation. A very similar convergence has appeared in [10,
Theorem 1.4.7], but we are not aware of the existence of a definition for such a
convergence. So we introduce the necessary definition in Section 2. We also show
that the introduced convergence for functions of bounded variation follows from
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the pointwise convergence of their Fourier–Stieltjes transforms under some natural
assumptions. This and other close propositions are key tools for our main results
devoted to the weak convergence of quasi-infinitely divisible distribution functions.
The main results are presented in Section 3. All proofs are provided in Section 4.

2. Preliminaries and tools

Let us consider the class of all functions G : R → R of bounded variations on R.
Since we will be interested in the functions G, which generate the Lebesgue–
Stieltjes signed measures µG , we will focus only on right-continuous functions G.
So for the measures we will have µG((a, b])= G(b)− G(a) for all a, b ∈ R and
a ⩽ b. Recall that all intervals (a, b] constitute the generating semiring for µG . So
if there are two right-continuous functions G1 and G2 of bounded variations such
that G2(x)= G1(x)+C , x ∈ R, where C ∈ R is a constant, then the corresponding
measures are the same. Therefore we will consider only functions G that satisfy
G(−∞)= 0.

Let V denote the class of all functions G : R → R of bounded variation on R,
which are right-continuous at every point x ∈ R and satisfy G(−∞)= 0. For every
G ∈ V its total variation on R will be denoted by ∥G∥ and the total variation on
(−∞, x] by |G|(x), x ∈ R. So we have

(4) |G(x)| ⩽ |G|(x)⩽ ∥G∥ for any x ∈ R

and |G|(+∞)= ∥G∥.
We now introduce a special type of convergence on the class V . Suppose that

a whole sequence (Gn)n∈N and a function G are from V . We say that (Gn)n∈N

converges basically to G, and write Gn ⇒ G, n → ∞, if each of its subsequences
contains a further subsequence (Gnk )k∈N such that

Gnk (x2)− Gnk (x1)→ G(x2)− G(x1), k → ∞

for any x1, x2 ∈ R except at most a countable set, which in general depends on the
choice of the subsequences.

Let us show that the basic convergence is equivalent to the weak convergence
for distribution functions. Let (Fn)n∈N be a sequence of distribution functions and
let F be a distribution function. Suppose that Fn

w
−→ F , n → ∞. Then we have (3),

where S is the set of all continuity points of F . Hence

Fn(x2)− Fn(x1)→ F(x2)− F(x1), n → ∞ for all x1, x2 ∈ S.

Since R\S is at most countable set, we conclude that Fn ⇒ F , n →∞, by definition.
We now suppose that Fn ⇒ F , n → ∞. Let (Fnk )k∈N be an arbitrary subsequence
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of (Fn)n∈N such that

(5) Fnk (x2)− Fnk (x1)→ F(x2)− F(x1), k → ∞

for any x1, x2 ∈ R except at most a countable set D. Let us fix ε > 0 and choose
rε > 0 such that ±rε ∈ R\ D and 1 − F(rε)+ F(−rε) < ε. We define

Tk(r) := 1 − Fnk (r)+ Fnk (−r), k ∈ N, r > 0.

Due to (5), there exists kε ∈ N such that Tk(rε) < ε for all k ⩾ kε. Taking rε greater
to provide Tk(rε) < ε for all k < kε, we obtain supk∈N Tk(rε) < ε because, due to
monotonicity of every Fnk , the inequality Tk(rε) < ε still holds for all k ⩾ kε. Thus
supk∈N Tk(r)→ 0, r → ∞, and in particular, supk∈N Fnk (−r)→ 0, r → ∞. Due
to the latter, it is easy to check that (5) yields the convergence Fnk (x)→ F(x) for
any x ∈ R except at most countable set D. Since R\ D is a dense subset of R, we
have Fnk

w
−→ F , k → ∞. Thus, according to definition of basic convergence, every

subsequence of (Fn)n∈N contains a further subsequence (Fnk )k∈N that satisfies (5)
and hence weakly converges to F . By the well-known fact in [8, p. 337], it means
that the whole sequence (Fn)n∈N weakly converges to F .

The proved assertion can be generalized for bounded nondecreasing functions
F ∈ V and Fn ∈ V , n ∈ N, but here the basic convergence Fn ⇒ F , n → ∞, must
be taken together with an additional condition that Fn(+∞)→ F(+∞), n → ∞

(see [13, p. 39]). It should be noted that basic and weak convergences are not
equivalent in a general case for functions from V . Indeed, the weak convergence
implies the basic one that will follow from Theorem 5 below, and also it is seen
from Theorem 1.4.7 in [10]. However, the converse is not true. The latter assertion
is concluded from the following simple examples. Below 1a with fixed a ∈ R

denotes the following functions: 1a(x)= 1 for x ⩾ a and 1a(x)= 0 for x < a.

Example 1. Let us define Gn(x) := 1n(x)−1n+1(x), x ∈ R, n ∈ N. It is easily seen
that Gn ∈ V , n ∈N, and Gn(x)→0, n →∞ for all x ∈R. Setting G(x) :=0, x ∈R,
we have the basic convergence Gn ⇒ G, n →∞. Here Gn(+∞)= G(+∞)=0 and
∥Gn∥ = 2, n ∈ N. However, for the continuous and bounded function x 7→ cos(πx),
x ∈ R, we conclude that∫

R
cos(πx) dGn(x)↛

∫
R
cos(πx) dG(x)= 0, n → ∞.

Indeed,∫
R
cos(πx) dGn(x)= cos(πn)− cos(π(n + 1))

= (−1)n − (−1)n+1
= 2 · (−1)n ↛ 0, n → ∞.

Thus (Gn)n∈N doesn’t weakly converge to G. □
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Example 2. Let Gn(x) := n10(x)− n11/n2(x), x ∈ R, n ∈ N. So Gn ∈ V , n ∈ N,
and Gn(x)→ 0, n → ∞ for all x ̸= 0. We set G(x) := 0, x ∈ R, and we obtain that
Gn ⇒ G, n →∞. Observe that ∥Gn∥= 2n →∞, n →∞. Hence (Gn)n∈N cannot
be weak convergent sequence, because, under the weak convergence, total variations
must be uniformly bounded (see Proposition 1.4.4. in [10, p. 22]). Moreover, it
even fails to hold that

(6)
∫

R
h(x) dGn(x)→

∫
R
h(x) dG(x), n → ∞

for any continuous function h with compact support. Indeed, let h(x) :=
√

x for
x ∈ [0, 1], h(x) :=

√
2 − x for x ∈ [1, 2], and h(x) := 0 for x /∈ [0, 2]. Obviously,

the function h satisfies the required properties. So we have∫
R
h(x) dGn(x)= h(0) · n − h(1/n2) · n = 0 −

√
1/n2

· n = −1 for every n ∈ N,

but
∫

R
h(x) dG(x)= 0. Thus (6) does not hold. However, it is interesting to note

that there is a convergence of Fourier–Stieltjes transforms. Indeed, for any t ∈ R∫
R
ei t x dGn(x)=(1−ei t/n2

)·n =−
i t
n
(1+o(1))→0=

∫
R
ei t x dG(x), n →∞. □

The next example shows that the use of the subsequences in the definition of
basic convergence is essential.

Example 3. For any n ∈ N we set kn ∈ N ∪ {0} satisfying 2kn ⩽ n < 2kn+1. We
define

Gn(x) := 1an (x)− 1bn (x), x ∈ R,

where
an :=

n − 2kn

2kn
and bn :=

n + 1 − 2kn

2kn
, n ∈ N.

It is seen that the interval [an, bn] is vanishing (bn − an = 2−kn → 0) and shifting
over [0, 1] as n → ∞. Let h : R → R be a bounded continuous function. Due to
the uniform continuity of h on [0, 1], we have that∫

R
h(x) dGn(x)= h(an)− h(bn)→ 0, n → ∞.

So (Gn)n∈N weakly converges to G(x) := 0 for all x ∈ R. Then, by the comments
above, (Gn)n∈N basically converges to G that can be also checked directly by
definition. However, for any x0, x1, x2 ∈ [0, 1) there is no limit either for Gn(x0)

or Gn(x2)− Gn(x1) as n → ∞, because Gn(x) takes an infinite number of times
each of the values 1 or 0, when x ∈ [an, bn) or not correspondingly. Note that, due
to the weak convergence of (Gn)n∈N, there is a convergence of Fourier–Stieltjes
transforms:∫

R
ei t x dGn(x)→

∫
R
ei t x dG(x)= 0 as n → ∞ for every t ∈ R. □
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The following example shows that it is important to use the differences of values
of the functions at points x1 and x2 in the definition of the basic convergence in
order to stay within V .

Example 4. For every n ∈ N we define Gn(x) := 1+
x
n for x ∈ [−n, n], Gn(x)= 0

for x<−n, and Gn(x)=2 for x>n. So Gn are nondecreasing continuous functions
and Gn(+∞) = ∥Gn∥ = 2, n ∈ N. We see that Gn(x) → 1 as n → ∞ for any
x ∈ R. However, an identical 1 doesn’t belong to V (it must be 0 at −∞). At the
same time for any real x1 and x2 we have Gn(x2)− Gn(x1)→ 0, n → ∞, and we
conclude that (Gn)n∈N basically converges to the function G(x) := 0 for all x ∈ R,
which is from V . Of course, (Gn)n∈N doesn’t weakly converge to G here, because∫

R
dGn(x)= 2 ↛

∫
R
dG(x)= 0, n → ∞.

Note that for t ̸= 0 we have∫
R
ei t x dGn(x)=

1
n

∫ n

−n
ei t x dx =

ei tn
−e−i tn

i tn
→ 0, n → ∞

and ∫
R
ei t x dGn(x)|t=0 =

∫
R
dGn(x)= Gn(+∞)= 2, n ∈ N.

Thus the Fourier–Stieltjes transforms of Gn , n ∈ N, pointwisely converge to the
Fourier–Stieltjes transform of G (i.e., to identical 0) for almost all t ∈ R. □

We now consider a general question about the relationship between the basic
convergence of functions from V and the convergence of their Fourier–Stieltjes
transforms. We do not pretend to study this question in full here; instead, we present
only those assertions that will be used in the main results of the article.

Let (Gn)n∈N be a sequence of functions from V . Let us define the corresponding
sequence of Fourier–Stieltjes integrals:

gn(t)=

∫
R
ei t x dGn(x), t ∈ R, n ∈ N.

The results below in fact show that, under the rather weak and natural assumptions,
the pointwise convergence of gn implies the basic convergence of Gn as n → ∞.

We will use the following assumption:

(7) lim
n→∞

∥Gn∥ = B <∞.

Theorem 5. Let (Gn)n∈N satisfy (7). Suppose that gn(t) → g(t), n → ∞, for
almost all t ∈ R with some function g : R → C. Then there exists a function G ∈ V
such that ∥G∥ ⩽ B and the equality

(8) g(t)=

∫
R
ei t x dG(x)
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holds for almost all t ∈ R including all continuity points of the function g. The
function G is uniquely determined in the class V , and Gn ⇒ G, n → ∞. If
also gn(0) → g(0), n → ∞, and g is continuous at t = 0, then additionally
Gn(+∞)→ G(+∞), n → ∞.

We are not aware of any results with such assertion. There are some close remarks
in [9] and [29]. It is seen that this theorem complements and partially generalizes
the well-known Levy’s continuity theorem, which was stated for sequences of
probability distribution functions.

Suppose that the sequence (Gn)n∈N weakly converges to a function G from V
with Fourier–Stieltjes transform g. Then (7) is satisfied (see Proposition 1.4.4. in
[10, p. 22]) and gn(t)→ g(t), n → ∞ for every t ∈ R. According to the theorem,
we have the basic convergence Gn ⇒ G and also Gn(+∞)→ G(+∞), n → ∞.
Thus we showed that the weak convergence implies the basic convergence.

We next formulate the analog of Theorem 5 using the decompositions

(9) Gn(x)= G+

n (x)− G−

n (x), x ∈ R, n ∈ N,

where G+
n and G−

n are nondecreasing functions from V . Note that (9) are not
necessarily corresponding to the Hahn–Jordan decomposition (see (13) below).
Here we assume

(10) lim
n→∞

G−

n (+∞)= M <∞,

which can sometimes be more convenient for checking than (7).

Proposition 6. Let (Gn)n∈N satisfy (10) for some decompositions (9). Suppose that
gn(0)→ c ∈ R, n → ∞. Then (7) holds with some B ⩽ c + 2M.

Thus if there is a convergence of gn , n ∈N, at t =0, then for some (9) assumptions
(7) and (10) are equivalent. So we come to the following assertion.

Theorem 7. Let (Gn)n∈N satisfy (10) for some decompositions (9). Suppose that
gn(t) → g(t), n → ∞, for almost all t ∈ R including t = 0 with some function
g : R → C. Then g(0) ∈ R, the condition (7) is satisfied with B ⩽ g(0)+ 2M , and
the assertions of Theorem 5 hold. If also g is continuous at t = 0, then additionally
Gn(+∞)→ G(+∞), n → ∞.

3. Main results

Let (Fn)n∈N be a sequence of quasi-infinitely divisible distribution function with
corresponding sequence of characteristic function ( fn)n∈N. Let every fn admit the
representation

(11) fn(t)= exp
{

i tγn+

∫
R

(
ei t x

−1−
i t
τ

sin(τ x)
)

1 + x2

x2 dGn(x)
}
, t ∈R, n ∈N,
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where γn ∈ R, Gn ∈ V , n ∈ N, and τ > 0 is a fixed number. We are interested in
criteria of the weak convergence of (Fn)n∈N in terms of the spectral pairs (γn,Gn),
n ∈ N.

Assertions of the following Theorems 8 and 9 were obtained by Lindner, Pan,
and Sato in [23] (where the results were presented in another form).

Theorem 8. If γn → γ and Gn
w

−→ G, n → ∞, with some γ ∈ R and G ∈ V , then
(γ,G) is the spectral pair for some quasi-infinitely divisible distribution function
F , and (Fn)n∈N weakly converges to F.

We next use the decompositions

(12) Gn(x)= G+

n (x)− G−

n (x), x ∈ R, n ∈ N,

where G+
n and G−

n are nondecreasing functions from V . There exists an important
way of choosing G+

n and G−
n . Let µGn be the signed measure that is generated

by Gn for every n ∈ N, i.e., such that µGn ((a, b])= Gn(b)−Gn(a) for all a, b ∈ R,
a ⩽ b, n ∈ N. Every measure µGn is uniquely represented by the Hahn–Jordan
decomposition µGn = µ+

Gn
− µ−

Gn
, where µ+

Gn
and µ−

Gn
are nonnegative finite

measures concentrated on some disjoint sets (see [10, p. 3]). So we can choose

(13) G+

n (x)= µ+

Gn
((−∞, x]) and G−

n (x)= µ−

Gn
((−∞, x]), x ∈ R, n ∈ N.

In this case we will have (12) and additionally that |Gn|(x) = G+
n (x)+ G−

n (x),
x ∈ R, n ∈ N.

Theorem 9. Let F be a distribution function and (Fn)n∈N weakly converge to F.
Suppose that G+

n and G−
n from (12) are defined according to the Hahn–Jordan

decomposition by (13) for every n ∈ N. Suppose that the sequence (G−
n )n∈N

satisfies the assumptions

sup
n∈N

∥G−

n ∥<∞ and lim
r→∞

sup
n∈N

(1 − |G−

n |(r)+ |G−

n |(−r))= 0

(uniform boundedness in variation and tightness, correspondingly). Then F is
quasi-infinitely divisible with some spectral pair (γ,G). Moreover, γn → γ and
Gn

w
−→ G, n → ∞.

Theorems 8 and 9 connect the weak convergence of quasi-infinitely divisible
distribution functions with the weak convergence of their spectral functions. We
are interested in analogs of these theorems but with the basic convergence of the
spectral functions.

We will use the following assumption:

(14) lim
n→∞

∥Gn∥ = B <∞.
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Theorem 10. Suppose that (Fn)n∈N satisfies (14) with some B ⩾ 0. Let (Fn)n∈N

weakly converge to a distribution function F. Then F is quasi-infinitely divisible
with some spectral pair (γ,G), where γ ∈ R and G ∈ V with ∥G∥ ⩽ B. Moreover,
γn → γ , Gn ⇒ G and Gn(+∞)→ G(+∞), n → ∞.

The next theorem is an analog of this one, but with the assumption

(15) lim
n→∞

G−

n (+∞)= M <∞

on decompositions (12) for Gn , n ∈ N. If we choose G+
n and G−

n according to
the Hahn–Jordan decomposition by (13) for every n ∈ N, then (15) is weaker
than (14). Also observe that (15) is satisfied, when we deal with nondecreasing
functions Gn , n ∈ N. It should be noted, however, that it is not required in the
theorems and corollaries below that G+

n and G−
n in (12) must be chosen according

to the Hahn–Jordan decomposition.

Theorem 11. Suppose that (Fn)n∈N satisfies (15) with some M ⩾ 0 and for some
decompositions (12). Let (Fn)n∈N weakly converge to a distribution function F.
Then (14) holds for some B ⩾ 0 and all assertions of Theorem 10 are true. Also we
have that B ⩽ G(+∞)+ 2M.

Theorems 10 and 11 yield necessary conditions for the weak convergence within
the class of quasi-infinitely divisible distribution functions under the assumption (14)
or (15).

Corollary 12. Suppose that (Fn)n∈N satisfies (14) or (15) for some decomposi-
tions (12). Let F be a quasi-infinitely divisible distribution function F with spectral
pair (γ,G), where γ ∈ R and G ∈ V . If the sequence (Fn)n∈N weakly converges
to F , then γn → γ , Gn ⇒ G and Gn(+∞)→ G(+∞), n → ∞.

Also Theorems 10 and 11 state sufficient conditions for membership of the class
of quasi-infinitely divisible distribution functions.

Corollary 13. A distribution function F is quasi-infinitely divisible if it is a weak
limit of a sequence (Fn)n∈N of quasi-infinitely divisible distribution functions (with
characteristic functions (11)), which satisfies (14) or (15) for some decomposi-
tions (12).

Note that this corollary is a stronger version of the same assertion in Theorem 9,
because we don’t assume the tightness for (G−

n )n∈N and we don’t require the use
of the Hahn–Jordan decomposition.

It is known (see [23, p. 17]) that a weak limit of quasi-infinitely divisible distri-
bution functions is not necessarily quasi-infinitely divisible. Hence assumptions
(14) or (15) cannot be simply omitted in Corollary 13. However, it seems that they
can be done weaker (see [23, Example 4.4]).
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We will use a notion of relative compactness for (Fn)n∈N in the next theorem.
Recall that (Fn)n∈N is said to be relatively compact if every its subsequence contains
a further subsequence that weakly converges to a distribution function. It is clear
that a weakly convergent sequence of distribution functions is relatively compact.
In general, the property of relative compactness is not difficult for checking due
to Prokhorov’s theorem and various probability inequalities. Also some criteria of
relative compactness are known for particular important sequences of distribution
functions (for example, see [15; 16; 17]).

Theorem 14. Suppose that (Fn)n∈N satisfies (14). If (Fn)n∈N is relatively compact
and γn → γ , Gn ⇒ G, n → ∞, with some γ ∈ R and G ∈ V , then (γ,G) is
the spectral pair for a quasi-infinitely divisible distribution function F and the
sequence (Fn)n∈N weakly converges to F.

This theorem yields sufficient conditions for the weak convergence within the
class of quasi-infinitely divisible distribution functions under the assumption (14).

Corollary 15. Suppose that (Fn)n∈N satisfies (14). Let F be a quasi-infinitely
divisible distribution function F with spectral pair (γ,G), where γ ∈ R and G ∈ V .
If (Fn)n∈N is relatively compact and γn → γ , Gn ⇒ G, n → ∞, then (Fn)n∈N

weakly converges to F.

Corollaries 12 and 15 directly yield the following criterion.

Theorem 16. Suppose that (Fn)n∈N satisfies (14). Let F be a quasi-infinitely
divisible distribution function F with spectral pair (γ,G), where γ ∈ R and G ∈ V .
The sequence (Fn)n∈N weakly converges to F if and only if (Fn)n∈N is relatively
compact and γn → γ , Gn ⇒ G, n → ∞. Moreover, the convergence Gn(+∞)→

G(+∞), n → ∞, can be added to the necessary conditions.

We now formulate the analogs of Theorems 14 and 16, and of Corollary 15 under
the assumption (15). They are directly stated due to the following simple note.

Suppose that a sequence (Gn)n∈N from V satisfies (15) for some decomposi-
tions (12). If limn→∞Gn(+∞) is finite, then (14) holds. Indeed, according to (12),
it follows from the inequalities

∥Gn∥⩽∥G+

n ∥+∥G−

n ∥= G+

n (+∞)+G−

n (+∞)= Gn(+∞)+2G−

n (+∞), n ∈N.

So we obtain the following results.

Theorem 17. Suppose that (Fn)n∈N satisfies (15) for some decompositions (12). If
(Fn)n∈N is relatively compact and γn → γ , Gn ⇒ G, and Gn(+∞) → G(+∞),
n → ∞, with some γ ∈ R and G ∈ V , then all assertions of Theorem 14 hold.

So Theorems 14 and 17 complement Theorem 8: we use weaker convergence for
the spectral functions (Gn)n∈N, but we additionally assume the relative compactness
of (Fn)n∈N.
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Corollary 18. Suppose that (Fn)n∈N satisfies (15) for some decompositions (12).
Let F be a quasi-infinitely divisible distribution function F with the spectral pair
(γ,G), where γ ∈ R and G ∈ V . If (Fn)n∈N is relatively compact and γn → γ ,
Gn ⇒ G and Gn(+∞)→ G(+∞), n → ∞, then (Fn)n∈N weakly converges to F.

Corollaries 12 and 18 directly yield the following criterion.

Theorem 19. Suppose that (Fn)n∈N satisfies (15) for some decompositions (12). Let
F be a quasi-infinitely divisible distribution function F with spectral pair (γ,G),
where γ ∈ R and G ∈ V . The sequence (Fn)n∈N weakly converges to F if and only
if (Fn)n∈N is relatively compact and γn → γ , Gn ⇒ G, and Gn(+∞)→ G(+∞),
n → ∞.

On account of comments before Example 1 in Section 2, Theorems 16 and
19 complement similar well-known results for the weak convergence of infinitely
divisible distribution functions (see [13, p. 87]).

4. Proofs

Proof of Theorem 5. First, observe that the function g is measurable, because it is
an almost everywhere limit of continuous (hence measurable) functions gn , n ∈ N.
So we have

(16)
∫

R
gn(t)ρ(t) dt →

∫
R

g(t)ρ(t) dt, n → ∞

for any function ρ ∈ L1(R). Indeed, due to (7), there exists a constant B0 > 0 such
that |gn(t)|⩽ ∥Gn∥⩽ B0 for all n ∈ N, and convergence (16) holds by the Lebesgue
dominated convergence theorem.

Let us define the function

ϕ(x) :=

∫
R
ei t xρ(t) dt, x ∈ R.

Observe that for every n ∈ N we have

(17)
∫

R
gn(t)ρ(t) dt =

∫
R

(∫
R
ei t x dGn(x)

)
ρ(t) dt

=

∫
R

(∫
R
ei t xρ(t) dt

)
dGn(x)=

∫
R
ϕ(x) dGn(x).

Let us consider the last integral. Due to (4) and (7), by Helly’s first theorem (see [27,
pp. 222 and 240]), there exists a subsequence (Gnk )k∈N in (Gn)n∈N and a function
of bounded variation G∗ : R → R such that Gnk (x)→ G∗(x) as k →∞ for all x ∈ R.
Note that, in general, G∗ may not be right-continuous (see Example 3). But ϕ is
bounded and continuous on R and hence there exists the Riemann–Stieltjes integral∫

R
ϕ(x) dG∗(x). Also the (Lebesgue–Stieltjes) integrals

∫
R
ϕ(x) dGn(x) coincide

with the corresponding Riemann–Stieltjes integrals. Next, due to the well-known
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fact that ϕ(x)→ 0 as x → ±∞, by Helly’s second theorem (see [27, p. 240]), we
have the following convergence for the Riemann–Stieltjes integrals:∫

R
ϕ(x) dGnk (x)→

∫
R
ϕ(x) dG∗(x), k → ∞.

Let us define G(x) := G∗(x+)− G∗(−∞), x ∈ R (note that G∗(−∞) ̸= 0 in
general, see Example 4). So G is right-continuous on R and G(−∞) = 0, i.e.,
G ∈ V . Since G(x) equals G∗(x)−G∗(−∞) for all x ∈ R except at most countable
set, due to the continuity of ϕ, we have∫

R
ϕ(x) dG∗(x)=

∫
R
ϕ(x) dG(x),

where the integral on the right-hand side can be considered as Lebesgue–Stieltjes
integral. Thus we have the following convergence with the Lebesgue–Stieltjes
integrals: ∫

R
ϕ(x) dGnk (x)→

∫
R
ϕ(x) dG(x), k → ∞.

The integral on the right-hand side admits the following representation analogously
to (17): ∫

R
ϕ(x) dG(x)=

∫
R

(∫
R
ei t x dG(x)

)
ρ(t) dt.

Due to (16) and (17), we also have∫
R
ϕ(x) dGnk (x)→

∫
R

g(t)ρ(t) dt, k → ∞.

Thus we obtain

(18)
∫

R
g(t)ρ(t) dt =

∫
R

(∫
R
ei t x dG(x)

)
ρ(t) dt

for any function ρ ∈ L1(R). This implies that

(19) g(t)=

∫
R
ei t x dG(x) for almost every t ∈ R.

Indeed, conversely, suppose that there exists a bounded set E of nonzero Lebesgue
measure such that 1(t) := g(t)−

∫
R

ei t x dG(x) ̸= 0, t ∈ E . Let us introduce the
sets

E1 := {t ∈ E : Re1(t) > 0}, E2 := {t ∈ E : Re1(t) < 0},

E3 := {t ∈ E : Im1(t) > 0}, E4 := {t ∈ E : Im1(t) < 0}.

It is easily seen that E = E1 ∪ E2 ∪ E3 ∪ E4. Hence at least one E j has nonzero
Lebesgue measure. We denote any such set by E∗. Next, according to the property
of strict positivity of integral, we obtain∣∣∣∫

E∗

1(t) dt
∣∣∣⩾ ∣∣∣∫

E∗

Re1(t) dt
∣∣∣ =

∫
E∗

|Re1(t)| dt > 0 for E∗ = E1 or E∗ = E2,
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and∣∣∣∫
E∗

1(t) dt
∣∣∣⩾ ∣∣∣∫

E∗

Im1(t) dt
∣∣∣ =

∫
E∗

|Im1(t)| dt > 0 for E∗ = E3 or E∗ = E4.

Thus we have∣∣∣∫
E∗

g(t) dt −

∫
E∗

(∫
R
ei t x dG(x)

)
dt

∣∣∣ =

∣∣∣∫
E∗

1(t) dt
∣∣∣> 0.

This contradicts (18) when we choose ρ as follows: ρ(t)= 1, t ∈ E∗ and ρ(t)= 0,
t /∈ E∗. It is valid since ρ ∈ L1(R) due to the boundedness E∗ ⊂ E . Thus (19) is true.

Let us show that (19) holds for every continuity point of the function g. Let T be
the set of all t ∈ R for which (19) holds. Hence the Lebesgue measure of R\T equals
zero. Let g be continuous at the fixed point t0. So we can choose tm ∈ T , m ∈ N

such that tm → t0, m → ∞. Then g(tm)→ g(t0), m → ∞, and at the same time

g(tm)=

∫
R
ei tm x dG(x)→

∫
R
ei t0x dG(x), m → ∞

due to continuity of the function t 7→
∫

R
ei t x dG(x) on R. Thus we have

g(t0)=

∫
R
ei t0x dG(x).

According to (19), the function g almost everywhere coincides with the continu-
ous function t 7→

∫
R

ei t x dG(x), t ∈ R. So the latter function is uniquely determined
by g within the class of all continuous complex-valued functions on R. Next, it
is well known that t 7→

∫
R

ei t x dG(x), t ∈ R, uniquely determines G within the
class V . Therefore g uniquely determines G in the class V .

Let’s return to the sequence (Gnk )k∈N. From the above we know that Gnk (x)→

G∗(x) for all x ∈ R and G(x)= G∗(x)− G∗(−∞) for all x ∈ R except at most a
countable set D where G∗ is not right-continuous. Then for all x1, x2 ∈R\D we have

(20) Gnk (x2)− Gnk (x1)

→ (G(x2)+G∗(−∞))− (G(x1)+G∗(−∞))= G(x2)−G(x1), k → ∞.

Let (Gml )l∈N be an arbitrary subsequence of (Gn)n∈N. Analogously to the
above, there exists a further subsequence (Gm′

k
)k∈N in (Gmk )k∈N, which pointwise

converges to some function of bounded variation H∗ : R → R, i.e., Gm′

k
(x)→ H∗(x),

k → ∞ for all x ∈ R. Defining H(x) := H∗(x+)− H∗(−∞), x ∈ R, we as before
will obtain g(t) =

∫
R

ei t x d H(x) for almost all t ∈ R, with H ∈ V . Since G is a
unique function within V , which represents g by (8), we have H(x)= G(x), x ∈ R.
We also have

Gm′

k
(x2)− Gm′

k
(x1)→ G(x2)− G(x1), k → ∞

for all x1, x2 ∈ R except at most countable set D′ where H∗ is not right-continuous
(in general D′

̸= D). So we proved that Gn ⇒ G, n → ∞.
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Let us consider the numbers gn(0) =
∫

R
dGn(x) = Gn(+∞), n ∈ N. If we

suppose that g is continuous at t = 0, then, by the above remarks, we will have
g(0)=

∫
R

dG(x)= G(+∞). Therefore, assuming to hold gn(0)→ g(0), n → ∞,
we will obtain Gn(+∞)→ G(+∞), n → ∞.

It remains to prove that ∥G∥ ⩽ B. On the contrary, suppose that this is false.
Then we can find y0, y1, . . . , yN ∈ R such that

(21) B <
N∑

j=1
|G(y j )− G(y j−1)| ⩽ ∥G∥.

Let us take our sequence (Gnk )k∈N and the set D, which is at most countable. Since
G is right-continuous and the set R\D is dense, we can assume that y0, y1, . . . , yN

are chosen from R \ D. Next, due to the convergence (20) and assumption (7), we
have

N∑
j=1

|G(y j )− G(y j−1)| = lim
k→∞

N∑
j=1

|Gnk (y j )− Gnk (y j−1)| ⩽ lim
n→∞

∥Gn∥ ⩽ B,

which contradicts (21). □

Proof of Proposition 6. By the assumption gn(0)→ c ∈ R, n → ∞. Since gn(0)=∫
R

dGn(x)= Gn(+∞), n ∈ N, we have the convergence Gn(+∞)→ c, n → ∞.
Let us consider decompositions (9). We have Gn(+∞)= G+

n (+∞)− G−
n (+∞),

n ∈ N. Also observe that

∥Gn∥⩽∥G+

n ∥+∥G−

n ∥= G+

n (+∞)+G−

n (+∞)= Gn(+∞)+2G−

n (+∞), n ∈N.

Therefore

B = lim
n→∞

∥Gn∥ ⩽ lim
n→∞

Gn(+∞)+ 2 lim
n→∞

G−

n (+∞)= c + 2M.

Thus we have (7) with B ⩽ g(0)+ 2M . □

Proof of Theorem 7. By the assumption gn(0) → g(0), n → ∞. Since gn(0) =∫
R

dGn(x)= Gn(+∞), n ∈N, we have the convergence Gn(+∞)→ g(0), n →∞.
So the sequence Gn(+∞) ∈ R, n ∈ N, has a finite limit g(0) that must be real.
According to Proposition 6, condition (7) holds with some B ⩽ g(0)+ 2M . Using
Theorem 5, we get all its assertions. So g(t) =

∫
R

ei t x dG(x) holds for some
G ∈ V and for all t ∈ R that are continuity points of the function g. Under the
assumption, g is continuous at t = 0, and we have g(0) =

∫
R

dG(x) = G(+∞).
Since Gn(+∞)→ g(0), n → ∞, we obtain that

Gn(+∞)→ G(+∞), n → ∞. □

We need the following lemma for proving Theorem 10.
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Lemma 20. For any t ∈ R and τ > 0 the following representations hold:

ei t x
− 1 −

i t
τ

sin(τ x)=

∫
At,τ

eisx dUt,τ (s),(
ei t x

− 1 −
i t
τ

sin(τ x)
)

1
x2 =

∫
At,τ

eisx dVt,τ (s),

(22)

(
ei t x

− 1 −
i t
τ

sin(τ x)
)

1 + x2

x2 =

∫
At,τ

eisx dWt,τ (s), x ∈ R,(23)

where At,τ :=
{
s ∈ R : |s| ⩽ max{|t |, τ }

}
, and

Ut,τ (s) := 1t(s)− 10(s)− t
2τ (1τ (s)− 1−τ (s)), s ∈ R,(24)

Vt,τ (s) :=

∫ s

−∞

ρt,τ (y) dy,

ρt,τ (s) := −
1
2

(
|s − t | − |s| − t

2τ (|s − τ | − |s + τ |)
)
, s ∈ R,

(25)

Wt,τ (s) := Ut,τ (s)+ Vt,τ (s), s ∈ R.(26)

For any t ∈ R and τ > 0 it is true that Ut,τ (s)= 0 and ρt,τ (s)= 0 for all s /∈ At,τ ,
ρt,τ is a continuous function on R with a broken-line graph, and, in particular,
ρt,τ ∈ L1(R), the functions Ut,τ , Vt,τ , and Wt,τ belong to the class V .

Proof of Lemma 20. Let us fix t ∈ R, τ > 0, and define At,τ as in the formulation.
We write

(27) ei t x
−1−

i t
τ

sin(τ x)= ei t x
−1−

t
2τ
(eiτ x

−e−iτ x)=

∫
R

eisx dUt,τ (s), x ∈R,

where Ut,τ is defined by (24). Using the definition of the function 1a( · ), a ∈ R,
it is easily seen that Ut,τ is an right-continuous function on R, Ut,τ (s)= 0 for all
s /∈ At,τ , and in particular, Ut,τ ∈ V . Therefore the set R can be changed by At,τ in
the integral (27).

Let us consider the function

ϕt,τ (x) :=

(
ei t x

− 1 −
i t
τ

sin(τ x)
)

1
x2 , x ∈ R.

Observe that ϕt,τ ∈ L1(R). So we define

(28) ρt,τ (s) :=
1

2π

∫
R

e−isxϕt,τ (x) dx, s ∈ R.

Let us find an explicit formula for ρt,τ (s) for every s ∈ R. Observe that x 7→

Reϕt,τ (x), x ∈ R, is an even function and x 7→ Imϕt,τ (x), x ∈ R, is an odd
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function. Therefore

ρt,τ (s)=
1

2π

∫
R

(
Reϕt,τ (x) cos(sx)+ Imϕt,τ (x) sin(sx)

)
dx

=
1
π

∫
∞

0

(
Reϕt,τ (x) cos(sx)+ Imϕt,τ (x) sin(sx)

)
dx

=
1
π

∫
∞

0

(
cos(t x)−1

x2 cos(sx)+
sin(t x)− t

τ
sin(τ x)

x2 sin(sx)
)

dx, s ∈ R.

Next, using the known trigonometric formulas, we write

ρt,τ (s)

=
1
π

∫
∞

0

(
cos(t x) cos(sx)+ sin(t x) sin(sx)− cos(sx)

x2 −

t
τ

sin(τ x) sin(sx)
x2

)
dx

=
1
π

∫
∞

0

(
cos((s − t)x)− cos(sx)

x2 −
t
τ

cos((s − τ)x)− cos((s + τ)x)
2x2

)
dx

=
1
π

∫
∞

0

cos(|s − t |x)− cos(|s|x)
x2 dx

−
t

2τ
·

1
π

∫
∞

0

cos(|s − τ |x)− cos(|s + τ |x)
x2 dx, s ∈ R.

It is known (see [14, p. 447, formula 3.782(2)]) that∫
∞

0

1 − cos(ax)
x2 dx =

aπ
2
, a ⩾ 0.

Hence
ρt,τ (s)= −

1
2

(
|s − t | − |s| − t

2τ (|s − τ | − |s + τ |)
)
, s ∈ R,

as in (25). We see that ρt,τ is a continuous function with a broken-line graph. Also
observe that ρt,τ (s)= 0 for all s /∈ At,τ . Indeed, if s >max{|t |, τ }, then

ρt,τ (s)=−
1
2

(
s−t−s− t

2τ (s−τ−(s+τ))
)
=−

1
2

(
−t− t

2τ ·(−2τ)
)
=−

1
2(−t+t)=0,

and if s <− max{|t |, τ }, then

ρt,τ (s)=−
1
2

(
−(s−t)+s−

t
2τ (−(s−τ)+s+τ)

)
=−

1
2

(
t− t

2τ ·2τ
)
=−

1
2(t−t)= 0.

Thus ρt,τ ∈ L1(R). By the way, observe that Vt,τ , which is defined by (25), is a
continuous function on R and it vanishes at −∞, i.e., Vt,τ ∈ V . Then, according to
these remarks and (28), we have

ϕt,τ (x)=

∫
R

eisxρt,τ (s) ds =

∫
At,τ

eisxρt,τ (s) ds =

∫
At,τ

eisx dVt,τ (s), x ∈ R.

Next, summing the proved equalities in (22), we get (23) with Wt,τ defined
by (26). Since Ut,τ and Vt,τ belong to V , we conclude that Wt,τ ∈ V . □
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Proof of Theorem 10. Let f be a characteristic function of the limit distribution
function F . By the continuity theorem, we have

(29) fn(t)→ f (t), n → ∞ for every t ∈ R.

Moreover, it is well known (see [25]) that

(30) sup
t∈[−T,T ]

| fn(t)− f (t)| → 0, n → ∞ for any T > 0.

First let us recall that characteristic functions of quasi-infinitely divisible distri-
butions have no zeroes on the real line (see [23] or (32) below). So, in particular,
fn(t) ̸= 0, t ∈ R, n ∈ N. We now show that f (t) ̸= 0 for all t ∈ R. For any fixed
n ∈ N and t ∈ R we consider

| fn(t)| = exp
{∫

R

(
cos(t x)− 1

)1 + x2

x2 dGn(x)
}

⩾ exp
{
−

∣∣∣∫
R

(
cos(t x)− 1

)1 + x2

x2 dGn(x)
∣∣∣}

⩾ exp
{
−

∫
R

(
1 − cos(t x)

)1 + x2

x2 d|Gn|(x)
}
.

Let us estimate the inner function x 7→ (1 − cos(t x)) 1+x2

x2 , x ∈ R, which is equal

to t2

2 at x = 0 for the continuity by the well known convention. Due to the inequality

1 − cos y ⩽ y2

2 , y ∈ R, for the case |t x | ⩽ 2 we have

(1 − cos(t x))
1 + x2

x2 ⩽
t2x2

2
·

1 + x2

x2 =
t2

+ t2x2

2
⩽

t2

2
+ 2.

Using the simple inequality 1 − cos y ⩽ 2, y ∈ R, for the case |t x |> 2 we obtain

(1 − cos(t x))
1 + x2

x2 ⩽ 2 ·
1 + x2

x2 = 2 ·

(
1
x2 + 1

)
⩽ 2 ·

(
t2

4
+ 1

)
=

t2

2
+ 2.

Thus

(31) (1 − cos(t x))
1 + x2

x2 ⩽
t2

2
+ 2 for any x ∈ R, t ∈ R.

Thus for any n ∈ N and t ∈ R we obtain

(32) | fn(t)| ⩾ exp
{
−

∫
R

( t2

2 + 2
)

d|Gn|(x)
}

= exp
{
−

( t2

2 + 2
)
∥Gn∥

}
> 0.

Hence, due to (14) and (29), we have

| f (t)|= lim
n→∞

| fn(t)|⩾ exp
{
−

( t2

2 +2
)

lim
n→∞

∥Gn∥
}
= exp

{
−

( t2

2 +2
)
B

}
>0, t ∈R,

i.e., f (t) ̸= 0 for any t ∈ R.
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Due to the above remarks, the distinguished logarithms t 7→ Ln f (t) and t 7→

Ln fn(t), n ∈ N, are defined for all t ∈ R. According to (11), we have

(33) Ln fn(t)= i tγn +

∫
R

(
ei t x

−1−
i t
τ

sin(τ x)
)

1 + x2

x2 dGn(x), t ∈ R, n ∈ N.

Due to the convergence (29), we have that

(34) Ln fn(t)→ Ln f (t), n → ∞ for every t ∈ R.

Hence, in particular,

γn =
Im(Ln fn(τ ))

τ
→

Im(Ln f (τ ))
τ

∈ R, n → ∞.

We denote this limit by γ . So we have

(35) γn → γ, n → ∞.

We next introduce the following functions

ψ(t, s) := Ln f (t)− 1
2(Ln f (t − s)+ Ln f (t + s)), t ∈ R, s ⩾ 0,

and analogously

(36) ψn(t, s) := Ln fn(t)− 1
2(Ln fn(t −s)+Ln fn(t +s)), t ∈ R, s ⩾ 0, n ∈ N.

From (34) we conclude that

(37) ψn(t, s)→ ψ(t, s), n → ∞ for any t ∈ R, s ⩾ 0.

Moreover, since (30) implies the convergence (see [20, p. 15], or [31, p. 34])

sup
t∈[−T,T ]

|Ln fn(t)− Ln f (t)| → 0, n → ∞ for any T > 0,

it is clear that

(38) sup
t,s∈[−T,T ]

|ψn(t, s)−ψ(t, s)| → 0, n → ∞ for any T > 0.

We next show that ψn , n ∈ N, are uniformly bounded over t ∈ R and n ∈ N for
any fixed s ⩾ 0. Using (33) in (36), we have

(39) ψn(t, s)

= i tγn +

∫
R

(
ei t x

− 1 −
i t
τ

sin(τ x)
)

1 + x2

x2 dGn(x)

−
1
2

(
i2tγn +

∫
R

(
ei t x(e−isx

+ eisx)− 2 −
i2t
τ

sin(τ x)
)

1 + x2

x2 dGn(x)
)

=

∫
R

ei t x(1 − cos(sx))
1 + x2

x2 dGn(x), t ∈ R, s ⩾ 0, n ∈ N.
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The estimate (31) yields

sup
t∈R

|ψn(t, s)| ⩽ sup
t∈R

∫
R

∣∣∣ei t x(1 − cos(sx))
1 + x2

x2

∣∣∣ d|Gn|(x)

=

∫
R

(1−cos(sx))
1+x2

x2 d|Gn|(x)⩽
(

s2

2
+1

)
∥Gn∥, s ⩾ 0, n ∈ N.

According to (14), there exists a constant B0 ⩾ 0 such that ∥Gn∥⩽ B0 for all n ∈ N.
Then we conclude

(40) sup
n∈N

sup
t∈R

|ψn(t, s)| ⩽ B0 ·

(
s2

2
+ 1

)
, s ⩾ 0.

Additionally, in view of (37), we obtain

(41) sup
t∈R

|ψ(t, s)| ⩽ B0 ·

(
s2

2
+ 1

)
, s ⩾ 0.

Next, since
∫

∞

0 (s2
+ 1) e−s ds <∞, we can define the functions

gn(t) :=
∫

∞

0
ψn(t, s) e−s ds, n ∈N and g(t) :=

∫
∞

0
ψ(t, s) e−s ds, t ∈R,

and, due to (37), conclude at once by the Lebesgue dominated convergence theorem
that

gn(t)→ g(t), n → ∞ for every t ∈ R.

Let us prove that

(42) sup
t∈[−T,T ]

|gn(t)− g(t)| → 0, n → ∞ for any T > 0.

We fix any T > 0 and ε > 0. It is clear that for every n ∈ N

(43) sup
t∈[−T,T ]

|gn(t)− g(t)| ⩽
∫

∞

0
sup

t∈[−T,T ]

|ψn(t, s)−ψ(t, s)| e−s ds.

We denote by Jn(T ) the last integral for every n ∈ N. Let us choose a constant
hε > 0 such that

(44) B0

∫
∞

hε
(s2

+ 2) e−s ds < ε.

Then we write Jn(T )= Jn,1(T )+ Jn,2(T ), n ∈ N, where

Jn,1(T ) :=

∫ hε

0
sup

t∈[−T,T ]

|ψn(t, s)−ψ(t, s)| e−s ds,

Jn,2(T ) :=

∫
∞

hε
sup

t∈[−T,T ]

|ψn(t, s)−ψ(t, s)| e−s ds.
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All the integrals Jn(T ), Jn,1(T ), and Jn,2(T ) are nonnegative. Observe that

Jn,1(T )⩽ sup
t∈[−T,T ]

s∈[0,hε]

|ψn(t, s)−ψ(t, s)|
∫ hε

0
e−s ds

⩽ sup
t,s∈[−Tε,Tε]

|ψn(t, s)−ψ(t, s)|, n ∈ N,

where Tε := max{T, hε}. Due to (38), the last supremum vanishes as n → ∞. So
there exists nε ∈ N such that Jn,1(T ) < ε for any n ⩾ nε. Let us turn to Jn,2(T ).
According to (40), (41), and (44), we have

Jn,2(T )⩽
∫

∞

hε

(
sup
t∈R

|ψn(t, s)| + sup
t∈R

|ψ(t, s)|
)

e−s ds ⩽
∫

∞

hε
B0(s2

+ 2) e−s ds < ε.

Then Jn(T ) = Jn,1(T )+ Jn,2(T ) < 2ε for any n ⩾ nε. Since ε > 0 was chosen
arbitrarily, Jn(T )→ 0 as n → ∞. Thus, according to (43), we obtain (42). Since
g is a uniform limit of continuous functions gn on any segment [−T, T ] as n → ∞,
the function g is continuous on R.

Let us consider the functions gn , n ∈ N. Using (39), we write

gn(t)=

∫
∞

0
ψn(t, s) e−s ds

=

∫
∞

0

(∫
R

ei t x(1 − cos(sx))
1 + x2

x2 dGn(x)
)

e−s ds

=

∫
R

(∫
∞

0
(1 − cos(sx)) e−s ds

)
ei t x 1 + x2

x2 dGn(x), t ∈ R, n ∈ N.

The inner integral is calculated (see [14, p. 486, formula 3.893(2)]):∫
∞

0
(1−cos(sx)) e−s ds = 1−

∫
∞

0
cos(sx) e−s ds = 1−

1
1 + x2 =

x2

1 + x2 , x ∈ R.

Therefore we have

gn(t)=

∫
R

ei t x dGn(x), t ∈ R, n ∈ N.

We now use Theorem 5. So there exists a unique function G ∈ V such that
∥G∥ ⩽ B and the equality

g(t)=

∫
R

ei t x dG(x)

holds for all t ∈ R, because g is continuous on R. Moreover, due to the theorem,
we have Gn ⇒ G and also Gn(+∞)→ G(+∞), n → ∞.
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We now prove that for any t ∈ R and τ > 0

(45)
∫

R

(
ei t x

− 1 −
i t
τ

sin(τ x)
)

1 + x2

x2 dGn(x)

→

∫
R

(
ei t x

− 1 −
i t
τ

sin(τ x)
)

1 + x2

x2 dG(x), n → ∞.

Let us fix t ∈ R and τ > 0. From Lemma 20 we know that(
ei t x

− 1 −
i t
τ

sin(τ x)
)

1 + x2

x2 =

∫
At,τ

eisx dWt,τ (s), x ∈ R,

where At,τ =
{
s ∈ R : |s| ⩽ max{|t |, τ }

}
and Wt,τ ∈ V . Hence for every n ∈ N∫

R

(
ei t x

− 1 −
i t
τ

sin(τ x)
)

1 + x2

x2 dGn(x)

=

∫
R

(∫
At,τ

eisx dWt,τ (s)
)

dGn(x)

=

∫
At,τ

(∫
R

eisx dGn(x)
)

dWt,τ (s)=

∫
At,τ

gn(s) dWt,τ (s).

Also we have analogously that∫
R

(
ei t x

− 1 −
i t
τ

sin(τ x)
)

1 + x2

x2 dG(x)=

∫
At,τ

g(s) dWt,τ (s).

Thus (45) takes the form∫
At,τ

gn(s) dWt,τ (s)→

∫
At,τ

g(s) dWt,τ (s), n → ∞.

This convergence holds. Indeed, for every n ∈ N∣∣∣∫
At,τ

gn(s) dWt,τ (s)−
∫

At,τ

g(s) dWt,τ (s)
∣∣∣ ⩽ ∫

At,τ

|gn(s)− g(s)| d|Wt,τ |(s)

⩽ sup
s∈At,τ

|gn(s)− g(s)| · ∥Wt,τ∥,

where, due to (42), the supremum vanishes as n → ∞. Thus we proved (45).
From (33), (35), and (45), for any t ∈ R we have

Ln fn(t)= i tγn +

∫
R

(
ei t x

− 1 −
i t
τ

sin(τ x)
)

1 + x2

x2 dGn(x)

→ i tγ +

∫
R

(
ei t x

− 1 −
i t
τ

sin(τ x)
)

1 + x2

x2 dG(x), n → ∞.
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According to (34), we conclude that

Ln f (t)= i tγ +

∫
R

(
ei t x

− 1 −
i t
τ

sin(τ x)
)

1 + x2

x2 dG(x), t ∈ R,

where, as we have already proved, γ ∈ R and G ∈ V . Thus f has the Lévy–Khinchin
type representation with (γ,G), i.e., the distribution function F corresponding to f
is quasi-infinitely divisible. □

Proof of Theorem 11. Let f be a characteristic function of the limit distribu-
tion function F . So we have (29) and also (30) (see comments in the proof of
Theorem 10).

Recall that fn(t) ̸= 0, t ∈ R, n ∈ N. Let us choose δ > 0 such that f (t) ̸= 0,
|t | ⩽ δ (it is possible because f is continuous on R and f (0)= 1). Let us consider
values of the Khinchin functional χδ( · ) (see [24, p. 79]) with parameter δ on f
and fn , n ∈ N:

χδ( f )= −
1
δ

∫ δ

0
ln | f (s)| ds, χδ( fn)= −

1
δ

∫ δ

0
ln | fn(s)| ds, n ∈ N.

These quantities are finite and nonnegative. Due to (30), we have

(46) χδ( fn)→ χδ( f ), n → ∞.

Observe that

(47) χδ( fn)= −
1
δ

∫ δ

0

(∫
R

(cos(sx)− 1)
1 + x2

x2 dGn(x)
)

ds

=

∫
R

(
1
δ

∫ δ

0
(1 − cos(sx)) ds

)
1 + x2

x2 dGn(x)

=

∫
R

(
1 −

sin(δx)
δx

)
1 + x2

x2 dGn(x), n ∈ N.

where we set

(48) (cos(sx)− 1)
1 + x2

x2

∣∣∣
x=0

= −
s2

2
,

(
1 −

sin(δx)
δx

)
1 + x2

x2

∣∣∣
x=0

=
δ2

3!
,

according to known expansions cos y = 1 −
y2

2 + o(y2) and sin y = y −
y3

3!
+ o(y3),

y → 0. Let us consider the inner function of the integral in (47):

(49) x 7→

(
1 −

sin(δx)
δx

)
1 + x2

x2 , x ∈ R.

By convention (48), it is continuous at the point x = 0. We see that this function is
continuous and strictly positive on R. Also observe that it tends to 1 as x → ±∞.
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Hence it is clear that there exist positive constants cδ and Cδ such that

(50) 0< cδ ⩽
(

1 −
sin(δx)
δx

)
1 + x2

x2 ⩽ Cδ <∞, x ∈ R.

Let us take some decompositions (12) for Gn , n ∈ N. According to (47):

χδ( fn)

=

∫
R

(
1 −

sin(δx)
δx

)
1 + x2

x2 dG+

n (x)−
∫

R

(
1 −

sin(δx)
δx

)
1 + x2

x2 dG−

n (x), n ∈ N.

Due to (50), we obtain

χδ( fn)⩾ cδ

∫
R

dG+

n (x)− Cδ

∫
R

dG−

n (x)= cδ G+

n (+∞)− CδG−

n (+∞), n ∈ N.

From this we have

G+

n (+∞)⩽
χδ( fn)+ CδG−

n (+∞)

cδ
, n ∈ N.

Hence, due to (15) and (46), we get

(51) lim
n→∞

G+

n (+∞)⩽ 1
cδ

(
lim

n→∞
χδ( fn)+ Cδ lim

n→∞
G−

n (+∞)
)

=
1
cδ
(χδ( f )+ CδM) <∞.

According to (12) and conventions there, it is true that

(52) ∥Gn∥ ⩽ ∥G+

n ∥ +∥G−

n ∥ = G+

n (+∞)+ G−

n (+∞), n ∈ N.

So we conclude from (15) and (51) that (14) holds for some B <∞.
Thus all assertions of Theorem 10 hold. In particular, Gn ⇒ G and Gn(+∞)→

G(+∞), n → ∞, where G is some function from V . It remains to prove that
B ⩽ G(+∞)+ 2M . Using inequality (52), we write

B = lim
n→∞

∥Gn∥ ⩽ lim
n→∞

(G+

n (+∞)+ G−

n (+∞))

⩽ lim
n→∞

(G+

n (+∞)− G−

n (+∞))+ 2 lim
n→∞

G−

n (+∞),

but Gn(+∞)= G+
n (+∞)− G−

n (+∞), n ∈ N, and we obtain

B ⩽ lim
n→∞

Gn(+∞)+ 2 lim
n→∞

G−

n (+∞)= G(+∞)+ 2M,

as required. □

Proof of Theorem 14. Let (Fnk )k∈N be an arbitrary subsequence of (Fn)n∈N, which
weakly converges to some distribution function F∗. Due to the assumption of
relative compactness of (Fn)n∈N, such subsequence exists. By Theorem 10, F∗ is
quasi-infinitely divisible with some spectral pair (γ∗,G∗), where γ∗ ∈ R and G∗ ∈ V .
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Moreover, γnk → γ∗ and Gnk ⇒ G∗, k → ∞. According to the assumption that
γn → γ , n → ∞, we conclude that γ∗ = γ . Let us show that G∗ = G. By definition,
the convergence Gnk ⇒ G∗, k → ∞, implies the existence of a subsequence
(Gn′

l
)l∈N in (Gnk )k∈N such that

Gn′

l
(x2)− Gn′

l
(x1)→ G∗(x2)− G∗(x1), l → ∞

for all x1, x2 ∈ R except at most countable set D′. Due to the assumption that
Gn ⇒ G, n → ∞, we can choose a further subsequence (Gn′′

l
)l∈N in (Gn′

l
)l∈N such

that
Gn′′

l
(x2)− Gn′′

l
(x1)→ G(x2)− G(x1), l → ∞

for all x1, x2 ∈ R except at most countable set D′′ (and let D′
̸= D′′ in general).

Therefore
G∗(x2)− G∗(x1)= G(x2)− G(x1)

for all x1, x2 ∈ R except at most countable set D′
∪ D′′. Letting x1 → −∞ over

x1 ∈ R \ (D′
∪ D′′) we have G∗(x2) = G(x2) for every x2 ∈ R \ (D′

∪ D′′) and,
consequently for all x2 ∈ R, because G∗,G ∈ V , i.e., they are right-continuous and

G∗(−∞)= G(−∞)= 0.

Thus we proved that γ∗ = γ and G∗ = G.
The previous remark means that (γ,G) is the spectral pair for some quasi-

infinitely divisible distribution function F . We also saw that every subsequence
(Fnk )k∈N, which weakly converges to some distribution function, converges exactly
to F , because a spectral pair uniquely determines a distribution function. Therefore,
since (Fn)n∈N is relatively compact, we conclude that whole sequence (Fn)n∈N

weakly converges to F (this is a known fact, see [8, p. 337]). □

5. Acknowledgment

This research was supported by the Ministry of Science and Higher Education
of the Russian Federation, agreement 075-15-2019-1620 date 08/11/2019 and
075-15-2022-289 date 06/04/2022.

References

[1] I. A. Alexeev and A. A. Khartov, “On convergence and compactness in variation with a shift of
discrete probability laws”, Vestn. St.-Peterbg. Univ. Mat. Mekh. Astron. 8:3 (2021), 385–393. In
Russian; translated in Vestnik St. Petersburg Univ. Math. 54:3 (2021), 221–226. MR Zbl

[2] I. Alexeev and A. Khartov, “Spectral representations of characteristic functions of discrete
probability laws”, Bernoulli 29:2 (2023), 1392–1409. MR Zbl

[3] D. Applebaum, Lévy processes and stochastic calculus, Cambridge Stud. Adv. Math. 93, Cam-
bridge Univ. Press, 2004. MR Zbl

http://dx.doi.org/10.21638/spbu01.2021.301
http://dx.doi.org/10.21638/spbu01.2021.301
https://doi.org/10.1134/S106345412103002X
http://msp.org/idx/mr/4341965
http://msp.org/idx/zbl/1476.60034
http://dx.doi.org/10.3150/22-bej1503
http://dx.doi.org/10.3150/22-bej1503
http://msp.org/idx/mr/4550228
http://msp.org/idx/zbl/07666823
http://dx.doi.org/10.1017/CBO9780511755323
http://msp.org/idx/mr/2072890
http://msp.org/idx/zbl/1073.60002


366 ALEXEY KHARTOV

[4] D. Berger, “On quasi-infinitely divisible distributions with a point mass”, Math. Nachr. 292:8
(2019), 1674–1684. MR Zbl

[5] D. Berger and M. Kutlu, “Quasi-infinite divisibility of a class of distributions with discrete part”,
Proc. Amer. Math. Soc. 151:5 (2023), 2211–2224. MR Zbl

[6] D. Berger and A. Lindner, “A Cramér–Wold device for infinite divisibility of Zd -valued distribu-
tions”, Bernoulli 28:2 (2022), 1276–1283. MR Zbl

[7] D. Berger, M. Kutlu, and A. Lindner, “On multivariate quasi-infinitely divisible distributions”,
pp. 87–120 in A lifetime of excursions through random walks and Lévy processes, edited by L.
Chaumont and A. E. Kyprianou, Progr. Probab. 78, Birkhäuser, Cham, 2021. MR Zbl

[8] P. Billingsley, Probability and measure, 3rd ed., Wiley, New York, 1995. MR Zbl

[9] S. Bochner, “A theorem on Fourier–Stieltjes integrals”, Bull. Amer. Math. Soc. 40:4 (1934),
271–276. MR Zbl

[10] V. I. Bogachev, Weak convergence of measures, Math. Surv. Monogr. 234, Amer. Math. Soc.,
Providence, RI, 2018. MR Zbl

[11] H. Chhaiba, N. Demni, and Z. Mouayn, “Analysis of generalized negative binomial distributions
attached to hyperbolic Landau levels”, J. Math. Phys. 57:7 (2016), art. id. 072103. MR Zbl

[12] N. Demni and Z. Mouayn, “Analysis of generalized Poisson distributions associated with higher
Landau levels”, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 18:4 (2015), art. id. 1550028.
MR Zbl

[13] B. V. Gnedenko and A. N. Kolmogorov, Limit distributions for sums of independent random
variables, Addison-Wesley, Cambridge, MA, 1954. MR Zbl

[14] I. S. Gradshteyn and I. M. Ryzhik, “Definite integrals of elementary functions”, pp. 249–519 in
Table of integrals, series, and products, 7th ed., Elsevier, Amsterdam, 2007. MR Zbl

[15] A. A. Khartov, “Characteristic functions and compactness of distributions of sums of independent
random variables”, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 454:24
(2016), 292–308. In Russian; translated in J. Math. Sci. (N.Y.) 229:6 (2018), 792–802. MR Zbl

[16] A. A. Khartov, “Criteria of relative and stochastic compactness for distributions of sums of inde-
pendent random variables”, Teor. Veroyatn. Primen. 63:1 (2018), 70–88. In Russian; translated
in Theory Probab. Appl. 63:1 (2018), 57–71. MR Zbl

[17] A. A. Khartov, “Compactness criteria for quasi-infinitely divisible distributions on the integers”,
Statist. Probab. Lett. 153 (2019), 1–6. MR Zbl

[18] A. A. Khartov, “A criterion of quasi-infinite divisibility for discrete laws”, Statist. Probab. Lett.
185 (2022), art. id. 109436. MR Zbl

[19] A. A. Khartov and I. A. Alexeev, “Quasi-infinite divisibility and three-point probability laws”,
Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 495:29 (2020), 305–316. In
Russian; translated in J. Math. Sci. (N.Y.) 268:5 (2022), 731–738. MR Zbl

[20] A. Y. Khinchin, Predel~nye zakony dl� summ nezavisimyh sluqaĭnyh veliqin,
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