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LOCAL MAASS FORMS AND EICHLER–SELBERG
RELATIONS FOR NEGATIVE-WEIGHT VECTOR-VALUED

MOCK MODULAR FORMS

JOSHUA MALES AND ANDREAS MONO

By comparing two different evaluations of a modified (à la Borcherds) higher
Siegel theta lift on even lattices of signature (r, s), we prove Eichler–Selberg
relations for a wide class of negative-weight vector-valued mock modular
forms. In doing so, we detail several properties of the lift, as well as showing
that it produces an infinite family of local (and locally harmonic) Maaß forms
on Grassmanians in certain signatures.

1. Introduction

Theta lifts have a storied history in the literature, receiving a vast amount of
attention in the past few decades with applications throughout mathematics. We are
concerned with generalizations of the Siegel theta lift originally studied by Borcherds
in the celebrated paper [2]. The classical Siegel lift maps half-integral weight
modular forms to those of integral weight, and has seen a wide number of important
applications. For example, in arithmetic geometry [14; 21], deep results in number
theory [10], fundamental work of Bruinier and Funke [9], among many others.

More recently, Bruinier and Schwagenscheidt [12] investigated the Siegel theta
lift on Lorentzian lattices (that is, even lattices of signature (1, n)), and in doing so
provided a construction of recurrence relations for mock modular forms of weight 3

2 ,
as well as commenting as to how one could provide a similar structure for those of
weight 1

2 , thereby including Ramanujan’s classical mock theta functions.
In the last few years, several authors have also considered so-called “higher”

Siegel theta lifts of the shape (k :=
1
2(1 − n), j ∈ N0)∫ reg

F
⟨R j

k−2 j f,2L(τ, z)⟩vk dµ(τ),
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where Rn
κ := Rn−2◦Rn−4◦· · ·◦Rκ is an iterated version of the Maaß raising operator

Rκ := 2i ∂
∂τ

+
κ
v

, f is weight k − 2 j harmonic Maaß form, and 2L is the standard
Siegel theta function associated to an even lattice L of signature (1, n). Here and
throughout, τ = u + iv ∈ H and z ∈ Gr(L), the Grassmanian of L . Furthermore,
⟨ · , · ⟩ denotes the natural bilinear pairing. For example, they were considered by
Bruinier and Ono (for k = 0, j = 1) in the influential work [11], by Bruinier, Ehlen
and Yang in the breakthrough paper [8] in relation to the Gross–Zagier conjecture,
and by Alfes-Neumann, Bringmann, Males and Schwagenscheidt in [1] for n = 2
and generic j .

In [32], Mertens investigated the classical Hurwitz class numbers, denoted
by H(n) for n ∈ N. Using techniques in (scalar-valued) mock modular forms, he
gave an infinite family of class number relations for odd n, two of which are

(1-1)
∑
s∈Z

H(n − s2)+ λ1(n)=
1
3σ1(n),

∑
s∈Z

(4s2
− n)H(n − s2)+ λ3(n)= 0,

where λk(n)=
1
2

∑
d|n min

(
d, n

d

)k and σk is the usual k-th power divisor function.
Because of their close similarity to the classical formula of Kronecker [28] and
Hurwitz [24; 25] ∑

s∈Z

H(n − s2)− 2λ1(n)= 2σ1(n),

and those arising from the Eichler–Selberg trace formula, Mertens referred to the
relationships (1-1) as Eichler–Selberg relations. More generally, let [ · , · ]ν denote
the ν-th Rankin–Cohen bracket (see Section 2). In general, the Rankin–Cohen
bracket [ f, g] is a mixed mock modular form of degree ν. It is of inherent interest
to determine its natural completion, say 3, to a holomorphic modular form. Then
following Mertens [33], we say that a (mock-) modular form f satisfies an Eichler–
Selberg relation if there exists some holomorphic modular form g and some form 3

such that
[ f, g]ν +3

is a holomorphic modular form. In the influential paper [33], Mertens showed the
beautiful result that all mock-modular forms of weight 3

2 with holomorphic shadow
satisfy Eichler–Selberg relations, using the powerful theory of holomorphic projec-
tion and the Serre–Stark theorem stating that unary theta series form a basis for the
spaces of holomorphic modular forms of the dual weight 1

2 .1 In particular, Mertens
explicitly describes the form 3 which completes the Rankin–Cohen brackets.

Following previous examples, to demonstrate the statement, let H denote the
generating function of Hurwitz class numbers, let ϑ =

∑
n∈Z qn2

, where τ ∈ H, and

1Mertens also provides results for mock theta functions in weight 1
2 , but since there is no analogue

of Serre–Stark in the dual weight 3
2 this is a real restriction.
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qn
= e2π inτ throughout. Then Mertens’ results show that [33, p. 377]

[H, ϑ]ν + 2−2ν−1
(

2ν
ν

)(∑
r≥1

2
∑

m2
−n2

=r
m,n≥1

(m − n)2ν−1 qr
+

∑
r≥1

r2ν+1 qr
)

is a holomorphic modular form of weight 2ν+ 2 for all ν ≥ 1, and a quasimodular
form of weight 2 if ν = 0.

In [31], Males combined techniques of [1; 12] during a further investigation of
the higher Siegel lift on Lorentzian lattices. This lift was shown to be central in
producing certain Eichler–Selberg relations in the vector-valued case, providing
an analogue of the scalar-valued weight 3

2 case of Mertens. We remark that the
shape of the form 3 in the case of signature (1, 1) is very close to that of Mertens
(see [31, Theorem 1.1]), though we do not recall it here to save on complicated
definitions in the introduction.

In the current paper, we develop the theory for even generic signature (r, s)
lattices L and more general modified Siegel theta functions as in Borcherds [2],
and consider the lift

9
reg
j ( f, z) :=

∫ reg

F
⟨R j

k−2 j ( f )(τ ),2L(τ, ψ, p)⟩vk dµ(τ),

where2L is a modified Siegel theta function as in Borcherds [2], essentially obtained
by including a certain polynomial p in the summand of the usual vector-valued
Siegel theta function. We require p to be homogenous and spherical of degree
d+

∈ N0 in the first r variables, and d−
∈ N0 in the last s variables (see (2-2) for

precise definitions). Here, ψ is an isometry which in turn defines z; see (2-3).
Modifying the theta function in this way preserves modular properties of 2L , while
allowing us to obtain different weights of output functions. Furthermore, since the
case j = 0 is well-understood in the literature, we assume throughout that j > 0. We
remark that the signature (1, 2) with j = 0 case has also been studied in [16; 17].

In particular, we evaluate the higher lift in the now-standard ways of unfolding in
Corollary 3.2, as well as recognizing it as a constant term in the Fourier expansion
of the Rankin–Cohen bracket of a holomorphic modular form and a theta function
(up to a boundary integral that vanishes for a certain class of input functions) in
Theorem 3.3. For the second of these theorems, we use that at special points w, one
may define positive- and negative-definite sublattices P := L ∩w and N := L ∩w⊥.
In the simplest case, which we assume for the introduction, we have that L = P ⊕ N .
Then the theta series splits as 2L =2P ⊗2N , where 2P is a positive-definite theta
series and 2N a negative-definite one. Then we let G+

P be the holomorphic part
of a preimage of 2P under ξκ := 2ivκ ∂

∂τ̄
. For the sake of simplicity, we assume

that G+

P + g in the statement of Theorem 1.1 is bounded at i∞ in the introduction;
we overcome this assumption in Theorem 3.4 and offer a precise relation there.
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Following the ideas of [31], by comparing these two evaluations of our lift and
invoking Serre duality, we obtain the following theorem.

Theorem 1.1. Let L be an even lattice of signature (r, s), with associated Weil
representation ρL . Let g be any holomorphic vector-valued modular form of weight
2−

( r
2 +d+

)
for ρL . Suppose that G+

P +g is bounded at i∞. Then G+

P +g satisfies an
explicit Eichler–Selberg relation. In particular, the form 3 is explicitly determined.

The concept of so-called locally harmonic Maaß forms was introduced by Bring-
mann, Kane and Kohnen in [4]. These are functions that behave like classical
harmonic Maaß forms, except for an exceptional set of density zero, where they
have jump singularities. Since their inception, locally harmonic Maaß forms have
seen applications throughout number theory, for example, in relation to central
values of L-functions of elliptic curves [20], as well as traces of cycle integrals
and periods of meromorphic modular forms [1; 30] among many others. Examples
of such locally harmonic Maaß forms are usually achieved in the literature via
similar theta lift machinery to that studied here. In addition to the direction of
Theorem 1.1, we also discuss the action of the Laplace–Beltrami operator on the
lift 9reg

j in Theorem 4.2. In doing so, we prove the following theorem, thereby
providing an infinite family of local Maaß forms (and locally harmonic Maaß forms)
in signatures (2, s). To state the result, we let Fm,k−2 j,s be a Maaß–Poincaré series
as defined in (2-1).

Theorem 1.2. Let L be an even isotropic lattice of signature (2, s). Then the lift
9

reg
j (Fm,k−2 j,s, z) is a local Maaß form on Gr(L) with eigenvalue

(
s− k

2

)(
1−s− k

2

)
under the Laplace–Beltrami operator.

We provide an example of an input function to our lift. To this end, we specialize
our setting to signature (1, 2), in which case vector-valued modular forms can be
identified with the usual scalar-valued framework on the complex upper half-plane,
and in particular Gr(L)∼=H. (We explain the required choices in Section 5.) In 1975,
Cohen [15] defined the generalized class numbers

H(ℓ− 1, |D|)

:=


0 if D ̸= 0, 1 (mod 4),
ζ(3 − 2ℓ) if D = 0,
L
(
2 − ℓ,

( D0
·

))∑
d| jµ(d)

( D0
d

)
dℓ−2 σ2ℓ−3

( j
d

)
, else,

where D = D0 j2, as well as their generating functions

Hℓ(τ ) :=

∑
n≥0

H(ℓ, n) qn, ℓ ∈ N \ {1}.

Here, ζ refers to the Riemann zeta function, L(s, χ) to the Dirichlet L-function
twisted by a Dirichlet character χ , and µ is the Möbius function. The functions Hℓ
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are known as Cohen–Eisenstein series today, and can be viewed as half integral
weight analogues of the classical integral weight Eisenstein series. Note that the
numbers H(2, n) are precisely the Hurwitz class numbers introduced above, and
H2 = H. Cohen proved that Hℓ ∈ Mℓ−(1/2)(00(4)), the space of scalar-valued
modular forms of weight 1

2 on the usual congruence subgroup 00(4), and the
coefficients satisfy Kohnen’s plus space condition by definition. (See [6, (2.13)–
(2.15), Corollary 2.25] for more details on this.)

However, evaluating our lift requires negative weight and a nonconstant principal
part of the input function. To overcome both obstructions, we let

f−2ℓ,N (τ )= q−N
+

∑
n>m

c−2ℓ(N , n) qn, N ≥ −m,

m :=

{⌊
−2ℓ
12

⌋
− 1 if − 2ℓ≡ 2 (mod 12),⌊

−2ℓ
12

⌋
, else

be the unique weakly holomorphic modular form of weight −2ℓ for SL2(Z) with
such a Fourier expansion, an explicit description of f−2ℓ,N was given by Duke and
Jenkins [18], and by Duke, Imamoḡlu and Tóth [19, Theorem 1]. Our machinery
now enables us to obtain Eichler–Selberg relations for the weakly holomorphic
function f−2ℓ,N (τ )Hℓ(τ ) along the lines of [15, Section 6], as well as the following
variant of Theorem 1.2.

Theorem 1.3. The lift 9reg
j ( f−2ℓ,N Hℓ, z) is a local Maaß form on H for every

j ∈ N, ℓ ∈ N \ {1}, and −m ≤ N ∈ N with exceptional set given by the net of
Heegner geodesics

N⋃
D=1

{z = x + iy ∈ H : ∃a, b, c ∈ Z, b2
− 4ac = D, a|z|2 + bx + c = 0}.

Remarks. (1) Theorem 1.3 generalizes immediately to any weakly holomorphic
modular form g. The exceptional set is given by the union of geodesics of discrimi-
nant D > 0, for which the coefficient of g at q−D is nonzero.

(2) Recently, Wagner [37] constructed a pullback of Hℓ under the ξ -operator,
namely a harmonic Maaß form Hℓ of weight −ℓ +

1
2 on 00(4) that satisfies

ξ(1/2)−ℓHℓ = Hℓ+2. An explicit definition of Hℓ can be found in [37, (1.5), (1.6)].
However, Hℓ is a harmonic Maaß form with noncuspidal image under ξ , and we
restrict ourselves to a more restrictive growth condition in the discussion of Maaß
forms (see Section 2) to ensure convergence of our lift. It would be interesting to
investigate different regularizations of our lift, and in particular, lift the function Hℓ.

The paper is organized as follows. We establish the overall framework in
Section 2. Section 3 is devoted to two evaluations of our theta lift and to the
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proof of Theorem 1.1. In Section 4, we compute the action of the Laplace–Beltrami
operator on our theta lift and prove Theorem 1.2. Lastly, Section 5 offers more
details on the specialization to signature (1, 2), a proof of Theorem 1.3, and an
indication on Eichler–Selberg relations for Cohen–Eisenstein series at the very end.

2. Preliminaries

We summarize some facts, which we require throughout.

The Weil representation. We recall the metaplectic double cover

0̃ :=Mp2(Z) :=

{
(γ, φ) :γ =

(
a b
c d

)
∈SL2(Z), φ :H→C holomorphic, φ2(τ )=cτ+d

}
of SL2(Z), which is generated by the pairs

T̃ :=

((
1 1
0 1

)
, 1

)
, S̃ :=

((
0 −1
1 0

)
,
√
τ

)
,

where we fix a suitable branch of the complex square root throughout. Furthermore,
we define 0̃∞ as the subgroup generated by T̃ .

We let L be an even lattice of signature (r, s), and Q be a quadratic form on L
with associated bilinear form ( · , · )Q . Moreover, we denote the dual lattice of L
by L ′, and the group ring of L ′/L by C[L ′/L]. The group ring C[L ′/L] has a
standard basis, whose elements will be called eµ for µ ∈ L ′/L . We recall that there
is a natural bilinear form ⟨ · , · ⟩ on C[L ′/L] defined by ⟨eµ, eν⟩ = δµ,ν .

Equipped with this structure, the Weil representation ρL of 0̃ associated to L is
defined on the generators by

ρL(T̃ )(eµ) := e(Q(µ))eµ, ρL(S̃)(eµ) :=
e
( 1

8(s − r)
)

√
|L ′/L|

∑
ν∈L ′/L

e(−(ν, µ)Q)eν,

where we stipulate e(x) := e2π i x throughout. We let L−
:= (L ,−Q) and call ρL−

the dual Weil representation of L .

The generalized upper half-plane and the invariant Laplacian. We follow the
introduction in [7, Sections 3.2, 4.1], and let the signature of L be (2, s) here. We
assume that L is isotropic, i.e., it contains a nontrivial vector x of norm 0, and
by rescaling we may assume that it is primitive, that is if x = cy for some y ∈ L
and c ∈ Z then c = ±1. Note that for s ≥ 3 all lattices contain such an isotropic
vector (see [2, Section 8]).

Let z ∈ L be a primitive norm 0 vector and z′
∈ L ′ with (z, z′)Q = 1. Let

K := L ∩ z⊥
∩ z′⊥. Let d ∈ K be a primitive norm 0 vector, and d ′

∈ K ′ with
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(d, d ′)Q = 1. It follows that D := K ∩ d⊥
∩ d ′⊥ is a negative-definite lattice, and

we write

Z = (d ′
− Q(d ′) d) z1 + z2 d + z3 d3 + · · · + zℓdℓ =: (z1, z2, . . . , zℓ) ∈ K ⊗ C,

since z3 d3 +· · ·+ zℓd ∈ D ⊗C. Each z j has a real part x j and a imaginary part y j ,
and we note that

Q(Y ) := Q(y1, . . . , yℓ)= y1 y2 − y2
3 − y2

4 − · · · − y2
ℓ .

This gives rise to the generalized upper half-plane

Hℓ := {Z ∈ K ⊗ C : y1 > 0, Q(Y ) > 0} ∼= Gr(L).

Letting

∂µ :=
∂

∂zµ
=

1
2

(
∂

∂xµ
− i

∂

∂yµ

)
, ∂̄µ :=

∂

∂ z̄µ
=

1
2

(
∂

∂xµ
+ i

∂

∂yµ

)
,

it can be shown that the invariant Laplacian on Hℓ has the coordinate representa-
tion [34]

� :=

ℓ∑
µ,ν=1

yµ yν ∂µ ∂̄ν − Q(Y )
(
∂1∂̄2 + ∂̄1∂2 −

1
2

ℓ∑
µ=3

∂µ ∂̄µ

)
.

Maaß forms. Let κ ∈
1
2 Z, (γ, φ) ∈ 0̃ and consider a function f : H → C[L ′/L].

The modular transformation in this setting is captured by the slash-operator

f |κ,ρL (γ, φ)(τ ) := φ(τ)−2κρ−1
L (γ, φ) f (γ τ),

which leads to vector-valued Maaß forms as follows [9].

Definition. Let f : H → C[L ′/L] be smooth. Then f is a Maaß form of weight κ
with respect to ρL if it satisfies the following three conditions.

(1) We have f |κ,ρL (γ, φ)(τ )= f (τ ) for every τ ∈ H and every (γ, φ) ∈ 0̃.

(2) The function f is an eigenfunction of the weight κ hyperbolic Laplace operator,
which is explicitly given by

1κ := −v2
(
∂2

∂u2 +
∂2

∂v2

)
+ iκv

(
∂

∂u
+ i

∂

∂v

)
.

(3) There exists a polynomial2 in q denoted by P f : {0 < |w| < 1} → C[L ′/L]

such that f (τ )− P f (q) ∈ O(e−εv) as v → ∞ for some ε > 0.

We call f a harmonic Maaß form if the eigenvalue equals 0.

2Such a polynomial is called the principal part of f .
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We write Hκ,L for the vector space of harmonic Maaß forms of weight κ with
respect to ρL , and M !

κ,L ⊆ Hκ,L for the subspace of weakly holomorphic vector
valued modular forms. The subspace S!

κ,L ⊆ M !

κ,L collects all forms that vanish at
all cusps, and such forms are referred to as weakly holomorphic cusp forms.

Bruinier and Funke [9] proved that a harmonic Maaß form f of weight κ ̸= 1
decomposes as a sum f = f +

+ f − of a holomorphic and a nonholomorphic part,
whose Fourier expansions are of the shape

f +(τ )=

∑
µ∈L ′/L

∑
n∈Q

n≫−∞

c+

f (µ, n) qneµ,

f −(τ )=

∑
µ∈L ′/L

∑
n∈Q
n<0

c−

f (µ, n)0(1 − κ, 4π |n|v) qneµ,

where 0(t, x) :=
∫

∞

x ut−1e−u du denotes the incomplete gamma function.
Harmonic Maaß forms can be inspected via the action of various differential

operators. We require the antiholomorphic operator

ξκ := 2ivκ ∂
∂τ̄
,

as well as the Maaß raising and lowering operators

Rκ := 2i ∂
∂τ

+
κ

v
, Lκ := −2iv2 ∂

∂τ̄
.

The operator ξκ defines a surjective map from Hκ,L to S!

2−κ,L− [9]. In particular, it
intertwines with the slash operator introduced above, and the space M !

κ,L is precisely
the kernel of ξκ when restricted to Hκ,L . Hence, every f ∈ Hκ,L has a cuspidal
shadow in our case.

The operators Rκ and Lκ increase and decrease the weight κ by 2 respectively,
but do not preserve the eigenvalue under 1κ . For any n ∈ N0, we let

R0
κ := id, Rn

κ := Rκ+2n−2 ◦ · · · ◦ Rκ+2 ◦ Rκ ,

L0
κ := id, Ln

κ := Lκ−2n+2 ◦ · · · ◦ Lκ−2 ◦ Lκ

be the iterated Maaß raising and lowering operators, which increase or decrease the
weight κ by 2n.

Remark. If one relaxes the growth condition (iii) to linear exponential growth,
that is, f (τ ) ∈ O(eεv) as v → ∞ for some ε > 0, then f − is permitted to have an
additional (constant) term of the form c−

f (µ, 0)v1−κeµ. In this case, ξκ maps such
a form to a weakly holomorphic modular form instead of a weakly holomorphic
cusp form.
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Local Maaß forms. Locally harmonic Maaß forms were introduced by Bringmann,
Kane and Kohnen [4] for negative weights, and independently by Hövel [23] for
weight 0. We generalize the exposition due to Bringmann, Kane and Kohnen
here and provide a definition in our setting on Grassmannians and for arbitrary
eigenvalues.

Definition. A local Maaß form of weight κ with closed exceptional set X ⊊ Hℓ of
measure zero is a function f : Hℓ → C[L ′/L], which satisfies four properties:

(1) For all (γ, φ) ∈ 0̃ and all Z ∈ Hℓ it holds that f |κ,ρL (γ, φ)(Z)= f (Z).

(2) For every Z ∈ Hℓ \ X , there exists a neighborhood of Z , in which f is real
analytic and an eigenfunction of �.

(3) We have

f (Z)=
1
2 lim
ε↘0

(
f (Z + (iε, 0, . . . , 0)t)+ f (Z − (iε, 0, . . . , 0)t)

)
for every Z ∈ X .

(4) The function f is of at most polynomial growth towards all cusps.

Paralleling the definition of harmonic Maaß forms, we call a local Maaß form
locally harmonic if the eigenvalue from the second condition is 0.

Poincaré series.

Weakly holomorphic Poincaré series. Following Knopp and Mason [27, Section 3],
we let m ∈ Z, κ ∈

1
2 N satisfying κ > 2, µ ∈ L ′/L , and define

Fµ,m,κ(τ ) :=
1
2

∑
(γ,φ)∈0̃∞\0̃

(
e((m + 1)τ )eµ

)
|κ,ρL (γ, φ).

Knopp and Mason [27] prove that Fµ,m,κ converges absolutely, and that it defines a
weakly holomorphic modular form of weight κ for ρL . In addition, they computed
the Fourier expansion of Fµ,m,κ , which is of the shape

Fµ,m,κ(τ )=

∑
ν∈L ′/L

(
δµ,νqm+1

+

∑
n≥0

c(n) qn+1
)
eν .

The Fourier coefficients c(n) can be found in [27, Theorem 3.2] explicitly.

Maaß–Poincaré series. We recall an important example of harmonic Maaß forms.
To this end, let κ ∈ −

1
2 N, let Mµ,ν be the usual M-Whittaker function (see [35,

Section 13.14]), and define the auxiliary function

Mκ,s(y) := |y|
−
κ
2 Msgn(y) κ2 ,s−

1
2
(|y|), y ∈ R \ {0}.
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We average Mκ over 0̃ with respect to the parameters µ ∈ L ′/L , m ∈ N \ {Q(µ)},
and κ , s. This yields the vector-valued Maaß–Poincaré series [7]

(2-1) Fµ,m,κ,s(τ ) :=
1

20(2s)

∑
(γ,φ)∈0̃∞\0̃

(Mκ,s(4πmv) e(−mu)eµ)|κ,ρL (γ, φ).

By our choice of parameters and taking cosets, the series converges absolutely.
The eigenvalue under 1κ is given by

(
s −

κ
2

)(
1 − s −

κ
2

)
. Hence if s =

κ
2 or

s = 1 −
κ
2 , then we have Fµ,m,κ,s ∈ Hκ,L . The principal part of Fµ,m,κ,s is given by

e(−mτ)(eµ + e−µ) in this case, and ξκFµ,−m,κ,s is a weight 2 − κ cusp form.
Furthermore, the Maaß–Poincaré series have the following useful property thanks

to their simple principal part.

Lemma 2.1. Let f ∈ Hκ,L with κ ∈ −
1
2 N, and principal part

P f (τ )=

∑
µ∈L ′/L

∑
n<0

c+

f (µ, n) e(nτ)eµ ∈ C[L ′/L][e(−τ)].

Then, we have

f (τ )=
1
2

∑
µ∈L ′/L

∑
m>0

c+

f (µ,−m)Fµ,m,κ,1−
κ
2
(τ ).

Additionally, we require the following computational lemma, which is taken
from [1, Lemma 2.1], and follows inductively from [8, Proposition 3.4].

Lemma 2.2. For any n ∈ N0 it holds that

Rn
κ (Fµ,m,κ,s)(τ )= (4πm)n

0
(
s+ n +

κ
2

)
0

(
s+

κ
2

) Fµ,m,κ+2n,s(τ ).

Restriction, trace maps, and Rankin–Cohen brackets. As before, we fix an even
lattice L . We let Aκ,L be the space of smooth functions f : H → C[L ′/L], which
are invariant under the weight κ slash operator with respect to the representation ρL .
Moreover, let K ⊆ L be a finite index sublattice. Hence, we have L ′

⊆ K ′, and thus

L/K ⊆ L ′/K ⊆ K ′/K .

This induces a map
L ′/K → L ′/L , µ 7→ µ̄.

If µ ∈ K ′/K , f ∈ Aκ,L , g ∈ Aκ,K , and µ is a fixed preimage of µ̄ in L ′/K , we
define

( fK )µ :=

{
fµ̄ if µ ∈ L ′/K ,
0 if µ ̸∈ L ′/K ,

(gL)µ̄ =

∑
α∈L/K

gα+µ.
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Lemma 2.3 [13, Section 3]. In the notation above, there are two natural maps

resL/K : Aκ,L → Aκ,K , trL/K : Aκ,K → Aκ,L ,

f 7→ fK , g 7→ gL ,

satisfying
⟨ f, ḡL

⟩ = ⟨ fK , ḡ⟩

for any f ∈ Aκ,L , g ∈ Aκ,K .

Let κ, ℓ ∈
1
2 Z, f ∈ Aκ,K , g ∈ Aℓ,L . Writing

f =

∑
µ

fµ eµ, g =

∑
ν

gν eν

and letting n ∈ N0, we define the tensor product of f and g as well as the n-th
Rankin–Cohen bracket of f and g as

f ⊗ g :=

∑
µ,ν

fµgν eµ+ν ∈ Aκ+ℓ,K⊕L ,

[ f, g]n :=
1

(2π i)n
∑
r,s≥0

r+s=n

(−1)r 0(κ + n)0(ℓ+ n)
0(s + 1)0(κ + n − s)0(r + 1)0(ℓ+ n − r)

f (r) ⊗ g(s),

where f (r) and g(s) are usual higher derivatives of f and g. Then we have the
following vector-valued analogue of [8, Proposition 3.6].

Lemma 2.4. Let f ∈ Hκ,L1 and g ∈ Hℓ,L2 . For n ∈ N0 it holds that

( − 4π)n Lκ+ℓ+2n([ f, g]n)

=
0(κ + n)
n!0(κ)

Lκ( f )⊗ Rn
ℓ (g)+ (−1)n

0(ℓ+ n)
n!0(ℓ)

Rn
κ ( f )⊗ Lℓ(g).

Finally, we have the following lemma, which can be verified straightforwardly
(see [1, Proof of Theorem 4.1]).

Lemma 2.5. Let h be a smooth function, g be holomorphic, and κ , ℓ ∈ R. Then it
holds that

Rℓ−κ(vκ ḡ ⊗ h)= vk ḡ ⊗ Rℓh.

Theta functions and special points. We fix an even lattice L of signature (r, s)
and extend the quadratic form on L to L ⊗ R in the natural way. We denote the
orthogonal projection of λ ∈ L +µ onto the linear subspaces spanned by z and its
orthogonal complement with respect to ( · , · )Q by λz and λz⊥ respectively. In other
words, we have

L ⊗ R = z ⊕ z⊥, λ= λz + λz⊥ .
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Let Gr(L) be the Grassmannian of r -dimensional subspaces of L⊗R. Let Z ⊆Gr(L)
be the set of all such subspaces on which Q is positive definite. One can endow Z
with the structure of a smooth manifold.

Let pr : Rr,0
→ C and ps : R0,s

→ C be spherical polynomials, which are
homogeneous of degree d+, d−

∈ N0 respectively. Define

(2-2) p := pr ⊗ ps

and let ψ : L ⊗ R → Rr,s be an isometry. We set

(2-3) z := ψ−1(Rr,0) ∈ Z , z⊥
= ψ−1(R0,s).

For a positive-definite lattice (K , Q) of rank n and a homogeneous spherical
polynomial p of degree d , we define the usual theta function

2K (τ, ψK , p) :=

∑
λ∈K ′

p(ψK (λ)) e(Q(λ)τ ),

where ψK is the isometry associated to K . It is a holomorphic modular form of
weight n

2 + d for ρK . If the isometry is trivial, we write 2K (τ, p).
Following Borcherds [2] and Hövel [23], we define the general Siegel theta

function as follows.3

Definition. Let τ ∈ H and assume the notation above. Then we put

2L(τ, ψ, p) := v
s
2 +d−

∑
µ∈L ′/L

∑
λ∈L+µ

p(ψ(λ)) e(Q(λz)τ + Q(λz⊥)τ̄ )eµ.

One can check that the function2L converges absolutely on H×Z . The following
result is [23, Satz 1.55], which follows directly from [2, Theorem 4.1].

Lemma 2.6. Let (γ, φ) ∈ 0̃. Then we have

2L(γ τ, ψ, p)= φ(τ)r+2d+
−(s+2d−)ρL(γ, φ)2L(τ, ψ, p).

Thus, we define
k :=

r−s
2 + d+

− d−.

The following terminology is borrowed from [12].

Definition. An element w ∈ Gr(L) is called a special point if it is defined over Q,
that is, w ∈ L ⊗ Q.

3In fact, Borcherds considered a slightly more general theta function, where the polynomial p does
not necessarily vanish under 1κ . For us however, this more general case would not yield spherical
theta functions as we desire.
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We observe that if w is a special point, then w⊥ is a special point as well. This
yields the splitting

L ⊗ Q = w⊕w⊥,

which in turn yields the positive and negative-definite lattices

P := L ∩w, N := L ∩w⊥.

Clearly, P ⊕ N is a sublattice of L of finite index, and according to Lemma 2.3,
the theta functions associated to both lattices are related by

2L = (2P⊕N )
L .

We identify C[(P ⊕ N )′/(P ⊕ N )] with C[P ′/P] ⊗ C[N ′/N ], and let ψP , ψN be
the restrictions of ψ onto P , N respectively. Consequently, we have the splitting

2P⊕N (τ, ψ, p)=2P(τ, ψP , pr )⊗ v
s
2 +d−

2N−(τ, ψN , ps)

at a special point w, which can be verified straightforwardly. Furthermore, we
observe that 2P(τ, ψP , pr ) is holomorphic and of weight r

2 + d+ as a function
of τ , while v

s
2 +d−

2N−(τ, ψN , ps) is of weight −
s
2 − d− with respect to τ .

Serre duality.

Proposition 2.7 [29, Proposition 2.5, Serre duality]. Let L be an even lattice and
κ ∈

1
2 Z. Assume that

g(τ )=

∑
h∈L ′/L

∑
n≥0

cg(h, n)e(nτ)eh

is bounded at the cusp i∞. Then g is a holomorphic modular form of weight κ for
the Weil representation ρL if and only if we have∑

h∈L ′/L

∑
n≥0

cg(h, n) c f (h,−n)= 0

for every weakly holomorphic modular form f of weight 2 − κ for ρ̄L .

3. The theta lift

We consider the theta lift 9reg
j ( f, z) and evaluate it in two different ways. Using

Serre duality goes back to Borcherds [3].

Evaluation in terms of 2 F1. We begin by evaluating the higher modified lift as a
series involving Gauß hypergeometric functions as follows.
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Evaluating the theta lift of Maaß–Poincaré series for general spectral parameters.
Let s ∈ C be such that

Fm,κ,s(τ ) :=

∑
µ∈L ′/L

Fµ,m,κ,s(τ )

converges absolutely, that is, Re(s) > 1 −
κ
2 .

Theorem 3.1. We have

9
reg
j (Fm,k−2 j,s, z)= (4πm) j+1−k−

s
2 −d− 0

(
s+

k
2

)
0

( k+s
2 + d−

− 1 + s
)

20(2 − k + 2 j)0
(
s+

k
2 − j

)
×

∑
µ∈L ′/L

∑
λ∈L+µ

Q(λ)=−m

p(ψ(λ))
(

Q(λ)
Q(λz⊥)

)k+s
2 +d−

−1+s

× 2 F1

(
k + s,

k + s
2

+ d−
− 1 + s; 2s;

Q(λ)
Q(λz⊥)

)
.

Remark. Choosing the homogeneous polynomial in the theta kernel function to
be the constant function 1 and computing the action of R j

k−2 j on Fm,k−2 j,s by
Lemma 2.2, this result becomes [7, Theorem 2.14].

Proof. We summarize the argument from [7, Theorem 2.14] for convenience of the
reader. We need to evaluate

9
reg
j (Fm,k−2 j,s, z)=

∫ reg

F
⟨R j

k−2 j (Fm,k−2 j,s)(τ ),2L(τ, ψ, p)⟩vk dµ(τ).

Consequently, we compute the action of the raising operator first, and have

9
reg
j (Fm,k−2 j,s, z)= (4πm) j 0

(
s+

k
2

)
0

(
s+

k
2 − j

) ∫ reg

F
⟨(Fm,k,s)(τ ),2L(τ, ψ, p)⟩vk dµ(τ)

by Lemma 2.2. Secondly, we insert the definitions of both functions and unfold the
integral, obtaining

9
reg
j (Fm,k−2 j,s, z)=

(4πm) j0
(
s+

k
2

)
20(2 − k + 2 j)0

(
s+

k
2 − j

) ∑
µ∈L ′/L

∑
λ∈L+µ

p(ψ(λ))

×

∫ 1

0

∫
∞

0
(4πmv)−

k
2 M

−
k
2 ,s−

1
2
(4πmv) e(−mu)

× e(Q(λz)τ + Q(λz⊥)τ̄ )v
s
2 +d−

+k−2 dv du.

Third, we compute the integral over u using that e(w)= e(−w) and that∫ 1

0
e(−mu) e(−Q(λz)u − Q(λz⊥)u) du =

{
1 if Q(λz)+ Q(λz⊥)= −m,
0, else.
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Hence, we obtain

9
reg
j (Fm,k−2 j,s, z)=

(4πm) j− k
20

(
s+

k
2

)
20(2 − k + 2 j)0

(
s+

k
2 − j

) ∑
µ∈L ′/L

∑
λ∈L+µ

Q(λ)=−m

p(ψ(λ))

×

∫
∞

0
M

−
k
2 ,s−

1
2
(4πmv) e−2πv(Q(λz)−Q(λz⊥ ))v

s+k
2 +d−

−2 dv.

The integral is a Laplace transform. Using that

m
2m

+
Q(λz)− Q(λz⊥)

2m
=

Q(λz⊥)

Q(λ)

along with [35, (13.23.1)], it evaluates∫
∞

0
M

−
k
2 ,s−

1
2
(4πmv) e−2πv(Q(λz)−Q(λz⊥ ))v

k+s
2 +d−

−2 dv

=
(4πm)1−

k+s
2 −d−

0
( k+s

2 + d−
− 1 + s

)
( Q(λz)−Q(λz⊥ )

2m +
1
2

) k+s
2 +d−−1+s

× 2 F1

(
k + s,

k + s
2

+ d−
− 1 + s; 2s;

1
1
2 +

Q(λz)−Q(λz⊥ )

2m

)
.

We recall Q(λ)= Q(λz)+ Q(λz⊥)= −m and rewrite the argument of the hyperge-
ometric function to

m
2m

+
Q(λz)− Q(λz⊥)

2m
=

Q(λz⊥)

Q(λ)
.

Thus, we arrive at

9
reg
j (Fm,k−2 j,s, z)= (4πm) j+1−k−

s
2 −d− 0

(
s+

k
2

)
0

( k+s
2 + d−

− 1 + s
)

20(2 − k + 2 j)0
(
s+

k
2 − j

)
×

∑
µ∈L ′/L

∑
λ∈L+µ

Q(λ)=−m

p(ψ(λ))
(

Q(λ)
Q(λz⊥)

)k+s
2 +d−

−1+s

× 2 F1

(
k + s,

k + s
2

+ d−
− 1 + s; 2s;

Q(λ)
Q(λz⊥)

)
,

as claimed. □

Combining the previous result with Lemma 2.1 yields the following consequence.
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Corollary 3.2. Let j ∈ N0 and f ∈ Hk−2 j,L . Assume that k −2 j < 0. Then we have

9
reg
j ( f, z)=

(4π) j+1−k−
s
2 −d−

j !0
( s

2 + d−
+ j

)
40(2 − k + 2 j)

∑
λ∈L ′

Q(λ)<0

c+

f (λ, Q(λ)) p(ψ(λ))

×
|Q(λ)|2 j+1−k

|Q(λz⊥)|
s
2 + j+d− 2 F1

(
1 + j,

s
2

+ d−
+ j; 2 − k + 2 j;

Q(λ)
Q(λz⊥)

)
.

Proof. Since the weight of f is negative, we have

f (τ )=
1
2

∑
h∈L ′/L

∑
m≥0

c+

f (h,−m)Fh,m,k−2 j,1−
k
2 + j (τ )

according to Lemma 2.1. We observe that the term corresponding to m = 0 will
vanish due to c+

f (h, 0)= 0 by our more restrictive growth condition on Maaß forms.
Consequently, we have

9
reg
j ( f, z)=

1
2

∑
µ∈L ′/L

∑
m>0

c+

f (µ,−m)9reg
j (Fµ,m,k−2 j,1−

k
2 + j , z).

We insert the spectral parameter s = 1 −
k−2 j

2 into Theorem 3.1, which yields the
claim. □

Evaluation in terms of the constant term in a Fourier expansion. Next we de-
termine the lift as a constant term in a Fourier expansion plus a certain boundary
integral that vanishes for a certain class of input function.

Theorem 3.3. Let f ∈ Hk−2 j,L andw be a special point, and G+

P be the holomorphic
part of a preimage of 2P under ξ2−( r

2 +d+). Then we have

9
reg
j ( f, w)=

j ! (4π) j 0
(
2 −

r
2 − d+

)
0

(
2 −

r
2 − d+ + j

)
×

(
CT(⟨ fP⊕N (τ ), [G+

P (τ ),2N−(τ )] j ⟩)

−

∫ reg

F
⟨Lk−2 j ( fP⊕N )(τ ), [G+

P (τ ),2N−(τ )] j ⟩v
−2 dτ

)
.

Remark. In general, the coefficients of G+

P are expected to be transcendental.
However, in weights 1

2 and 3
2 the function G+

P may be chosen to have rational
coefficients — a situation which is expected to also hold for ξ -preimages of CM
modular forms. It is therefore expected that one obtains rationality (up to powers
of π ) of the modified higher lift only in these cases, and stipulating that f is weakly
holomorphic meaning that the final integral vanishes.

By a slight abuse of notation, we write 2L(τ, w, p) for the theta function evalu-
ated at an isometry ψ that produces a special point w.
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Proof of Theorem 3.3. We restrict to special points w ∈ Gr(L). So we can write

⟨R j
k−2 j ( f )(τ ),2L(τ, w, p)⟩ = ⟨R j

k−2 j ( fP⊕N )(τ ),2P⊕N (τ, w, p)⟩.

Next, we use that the raising and lowering operator are adjoint to each other (see
[7, Lemma 4.2]), which gives

9
reg
j ( f, w)=

∫ reg

F
⟨ fP⊕N (τ ), L j−1

k (2P⊕N (τ, w, p))⟩vk−2 dτ.

We observe that the boundary terms disappear in the same fashion as during the
proof of [7, Lemma 4.4]. Next, we rewrite

9
reg
j ( f, w)= (−1) j

∫ reg

F
⟨ fP⊕N (τ ), R j

−k(2P⊕N (τ, w, p)vk)⟩v−2 dτ

and recall that

2P⊕N (τ, w, p)=2P(τ, pr )⊗v
s
2 +d−

2N−(τ, ps)=v
s
2 +d−

2P(τ, pr )⊗2N−(τ, ps).

Consequently, we obtain

R j
−k(2P⊕N (τ, w, p)vk)= R j

−k(v
k+

s
2 +d−

2P(τ, pr )⊗2N−(τ, ps))

= vk+
s
2 +d−

2P(τ, pr )⊗ (R j
s
2 +d−2N−(τ, ps))

by Lemma 2.5. In particular, we note that vk+
s
2 +d−

2P(τ, pr ) has weight

−k −
s
2 − d−

= −
r
2 − d+.

We choose a preimage GP of 2P(τ, pr ) under ξ2−( r
2 +d+), namely

2P(τ, pr )= ξ2−
r
2 −d+ GP(τ )= v−

r
2 −d+

L2−
r
2 −d+ GP ,

which yields

R j
−k(2P⊕N (τ, w, p)vk)= L2−

r
2 −d+ GP(τ )⊗ (R j

s
2 +d−2N−(τ, ps)).

We apply the computation of the Rankin–Cohen brackets given in Lemma 2.4 noting
that Lℓ2N− = 0, and that it suffices to deal with the holomorphic part G+

P of GP

(both by virtue of holomorphicity in computing the Rankin–Cohen bracket). Thus,

R j
−k(2P⊕N (τ, w, p)vk)

=
j !(−4π) j0(2 − k)
0(2 − k + j)

v−
s
2 −d−

L2−k+
s
2 +d−+2 j [G+

P (τ ),2N−(τ, ps)] j .
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Hence, the theta lift becomes

9
reg
j ( f, w)

=
j !(4π) j0

(
2 −

r
2 − d+

)
0

(
2 −

r
2 − d+ + j

) ∫ reg

F
⟨ fP⊕N (τ ), L2−k+2 j [G+

P (τ ),2N−(τ, ps)] j ⟩v
−2 dτ.

The last step is to apply Stokes’ theorem, compare the proof of [7, Lemma 4.2] for
example, which yields

9
reg
j ( f, w)=

j !(4π) j0
(
2 −

r
2 − d+

)
0

(
2 −

r
2 − d+ + j

)
×

(
lim

T →∞

∫ 1+iT

iT
⟨ fP⊕N (τ ), [G+

P (τ ),2N−(τ, ps)] j ⟩v
−2 dτ

−

∫ reg

F
⟨Lk−2 j ( fP⊕N )(τ ), [G+

P (τ ),2N−(τ, ps)] j ⟩v
−2 dτ

)
,

utilizing again that boundary terms vanish. We observe that the left integral can
be regarded as the Fourier coefficient of index 0 in the Fourier expansion of the
integrand, see the bottom of page 14 in [12]. This proves the claim. □

We end this section by noting that to obtain recurrence relations, as in [12],
one would need to compute the Fourier expansion of the lift. In general, this is a
lengthy but straightforward process, and since we do not require it in this paper we
omit the details. In essence, one follows the calculations of Borcherds [2] by using
Lemma 2.2. A resulting technicality is to then take care of the different spectral
parameter. One may overcome this by relating the coefficients of Maaß–Poincaré
series to those with other spectral parameters, again using the action of the iterated
Maaß raising operator as in Lemma 2.2.

Eichler–Selberg relations. We now prove a refined version of Theorem 1.1. To
this end, we define the function

(3-1) 3L(ψ, p, j) :=
(4π)1−

r
2 −d+

0
( s

2 + j + d−
)
0

(
2 −

r
2 − d+

+ j
)

40(2 − k + 2 j)0
(
2 −

r
2 − d+

)
×

∑
m≥1,λ∈L ′

Q(λ)=−m

p(ψ(λ))
|Q(λ)|2 j+1−k

|Q(λz⊥)|
s
2 + j+d−

× 2 F1

(
1 + j,

s
2

+ j + d−
; 2 − k + 2 j;

Q(λ)
Q(λz⊥)

)
qm

for j > 0. We write

G+

P (τ )=

∑
µ∈L ′/L

∑
n≫−∞

a(n) qn eµ
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and furthermore define

G +

P (τ ) := G+

P (τ )−
∑
µ∈L ′/L

∑
n<0

a(n)Fµ,n−1,2 j+2−k(τ ).

Since one may add any weakly holomorphic modular form of appropriate weight
for ρL to G+

P , Theorem 1.1 follows directly from the following result (noting that
the linear combination of Maaß–Poincaré series may change).

Theorem 3.4. Let L be an even lattice of signature (r, s), let p be as before, and
w be a special point defined by the isometry ψ . Let j > 0 and k be such that
2 j + 2 − k > 2. Then the function

[G +

P (τ ),2N−(τ, ps)]
L
j −3L(ψ, p, j)

is a holomorphic vector-valued modular form of weight 2 j + 2 − k for ρL .

Remarks. (1) This provides the general vector-valued analogue, assuming that
the lattice is chosen such that 2 j + 2 − k > 2, of Mertens’ scalar-valued results in
weights 1

2 and 3
2 [33].

(2) Note that the slight correction of G+

P by Poincaré series was missing in [31].

(3) In certain cases the hypergeometric function may be simplified (for example, the
n = 1 case as in [12; 31], which yields a form very similar to Mertens’ scalar-valued
result). It appears to be possible that one should be able to prove the same results
via holomorphic projection acting on vector-valued modular forms (see [26]) in
much the same way as Mertens’ original scalar valued proofs in [33].

Proof of Theorem 3.4. Let f be a weakly holomorphic form of weight k − 2 j with
Fourier coefficients c+

f . By construction, the form G +

P is holomorphic at i∞, and
hence

CT(⟨ fP⊕N (τ ), [G
+

P (τ ),2N−(τ, ps)]
L
j ⟩)

contains only the Fourier coefficients of nonpositive index of f . We note that
Lk−2 j f = 0, and subtract the resulting expressions of the lift from Corollary 3.2
and Theorem 3.3. We obtain

0 = CT(⟨ fP⊕N (τ ), [G
+

P (τ ),2N−(τ, ps)]
L
j ⟩)

−
(4π)1−

r
2 −d+

0
( s

2 + j + d−
)
0

(
2 −

r
2 − d+

+ j
)

40(2 − k + 2 j)0
(
2 −

r
2 − d+

)
×

∑
m≥1,λ∈L ′

Q(λ)=−m

c+

f (λ,−m) p(ψ(λ))
|Q(λ)|2 j+1−k

|Q(λz⊥)|
s
2 + j+d−

× 2 F1

(
1 + j,

s
2

+ j + d−
; 2 − k + 2 j;

Q(λ)
Q(λz⊥)

)
.
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The Rankin–Cohen bracket is bilinear and a linear combination of vector-valued
Poincaré series is modular itself. We apply Proposition 2.7 and the claim follows. □

In a similar way to [33, Corollary 5.4], we obtain the following structural corollary
by rewriting Theorem 3.4, keeping the same notation as throughout this paper.

Corollary 3.5. Let θ denote the space generated by all 2N− functions of weight
s
2 + d− for ρN− . Then the equivalence classes 3L(ψ, p, j)+ M !

2 j+2−k,L generate
the C-vector space

[Mmock
2 j+2−k,P , θ]

L
j /M !

2 j+2−k,L .

4. The action of the Laplace–Beltrami operator

In this section, we prove Theorem 1.3. To this end, we compute the action of the
Laplace–Beltrami operator on the lift, and show that for certain spectral parameters,
we obtain a local Maaß form. We recall that the signature of L is assumed here to
be (2, s). Moreover, we observe that our Siegel theta function 2L and the Siegel
theta function inspected by Bruinier depend in the same way on Z , and thus the
following result applies.

Proposition 4.1 [7, Proposition 4.5]. The Siegel theta function 2L(τ, Z , p) consid-
ered as a function on H × Hℓ satisfies the differential equation

�2L(τ, Z , p)v
ℓ
2 = −

1
21k2L(τ, Z , p)v

ℓ
2 .

Our next step is to inspect the action of � on our theta lift. By Lemma 2.1 it
suffices to investigate

9
reg
j (Fm,k−2 j,s, Z)=

∫ reg

F
⟨R j

k−2 j (Fm,k−2 j,s)(τ ),2L(τ, Z , p)⟩vk dµ(τ).

Let
H(m) :=

⋃
µ∈L ′/L

⋃
λ∈µ+L

Q(λ)=−m

λ⊥
⊆ Gr(L),

which collects the singularities of 9reg
j (Fm,k−2 j,s, Z) as a function of Z . We apply

the previous proposition to our theta lift, which yields a variant of [7, Theorem 4.6].

Theorem 4.2. Let Z ∈ Hℓ \ H(m) and Re(s) > 1 −
k
2 . Then it holds that

�9
reg
j (Fm,k−2 j,s, Z)=

(
s−

k
2

)(
1 − s−

k
2

)
9

reg
j (Fm,k−2 j,s, Z).

Proof. First, we note that

�9
reg
j (Fm,k−2 j,s, Z)=

∫ reg

F
⟨R j

k−2 j (Fm,k−2 j,s)(τ ),�2L(τ, Z , p)v
ℓ
2 ⟩vk−

ℓ
2 dµ(τ),
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because all partial derivatives with respect to Z converge locally uniformly in Z as
T → ∞ (see [7, p. 99]). By the previous proposition, we infer that

�9
reg
j (Fm,k−2 j,s, Z)

= −
1
2

∫ reg

F
⟨R j

k−2 j (Fm,k−2 j,s)(τ ),1k2L(τ, Z , p)v
ℓ
2 ⟩vk−

ℓ
2 dµ(τ).

By the splitting1k = Rk−2 Lk and the adjointness of both operators (see [7, Lemmas
4.2–4.4]), we obtain

�9
reg
j (Fm,k−2 j,s, Z)

= −
1
2

∫ reg

F
⟨1k R j

k−2 j (Fm,k−2 j,s)(τ ),2L(τ, Z , p)v
ℓ
2 ⟩vk−

ℓ
2 dµ(τ).

Lastly, we observe that 1k and R j
k−2 j commute by virtue of Lemma 2.2, namely

1k R j
k−2 j (Fm,k−2 j,s)(τ )=

(
s−

k
2

)(
1 − s−

k
2

)
R j

k−2 j (Fm,k−2 j,s)(τ ),

and this establishes the claim by rewriting

⟨R j
k−2 j (Fm,k−2 j,s)(τ ),2L(τ, Z , p)v

ℓ
2 ⟩vk−

ℓ
2

= ⟨R j
k−2 j (Fm,k−2 j,s)(τ ),2L(τ, Z , p)⟩vk

again. □

Proof of Theorem 1.2. By Theorem 4.2, the lift is an eigenfunction of the Laplace–
Beltrami operator with the quoted eigenvalue. Since 9reg

j (Fm,k−2 j,s, Z) is an
eigenfunction of an elliptic differential operator, it is real-analytic in Gr(L) outside
of H(m). The other conditions for the lift to be a vector-valued local Maaß form
can be easily seen by applying the proof of [5, Theorem 1.1] mutatis mutandis.
When s =

k
2 or s =

k
2 − 1, we obtain locally harmonic Maaß forms. □

5. Cohen–Eisenstein series

We specialize the framework from Section 2 following [12, Section 4.4] (or [36,
Section 2.2]). We fix the signature (1, 2) as mentioned in the introduction, and the
rational quadratic space

V :=

{
X =

(
x2 x1

x3 −x2

)
∈ Q2×2

}
,

with quadratic form Q(X)= det(X). The Grassmannian of positive lines in V ⊗ R

can be identified with H via

λ(x+iy)=
1

√
2y

(
−x x2

+y2

−1 x

)
.
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We choose the lattice

L :=

{(
b c

−a −b

)
: a, b, c ∈ Z

}
,

with dual lattice
L ′

=

{( b
2 c

−a −
b
2

)
: a, b, c ∈ Z

}
.

We observe that L ′ can be identified with the set of integral binary quadratic forms
of discriminant

det
( b

2 c
−a −

b
2

)
= −

1
4 (b

2
−4ac).

Furthermore, L ′/L ∼= Z/2Z with quadratic form x 7→ −
1
4 x2. According to [12,

p. 22], it holds that

Q
(( b

2 c
−a −

b
2

)
x+iy

)
=

1
4y2 (a(x

2
+ y2)+ bx + c)2,

Q
(( b

2 c
−a −

b
2

)
(x+iy)⊥

)
= −

1
4y2 |[a, b, c](x + iy, 1)|2.

We remark that both are invariant under modular substitutions. By a result from
Eichler and Zagier [22, Theorem 5.4], the space of vector-valued modular forms of
weight k for ρL is isomorphic to the space M+

k (00(4)) of scalar-valued modular
forms satisfying the Kohnen plus space condition via the map

f0(τ )e0 + f1(τ )e1 7→ f0(4τ)+ f1(4τ).

This enables us to use scalar-valued forms as inputs for our theta lift.

Proof of Theorem 1.3. As outlined in the introduction, the function f (τ ) :=

f−2ℓ,N (τ )Hℓ(τ ) is of weight −ℓ−
1
2 < 0 for 00(4), has nonconstant principal part

at the cusp i∞, and its image under ξ is trivial, and hence in particular cuspidal.
This enables us to apply Corollary 3.2 to f . To this end, we have the parameters

k = −
1
2 + d+

+ d−, k − 2 j = −ℓ−
1
2 .

Rewriting those yields
j =

ℓ+d+
+d−

2
,

and the hypergeometric function from Theorem 3.1 becomes

2 F1

(
ℓ+2+d+

+d−

2
,
ℓ+2+d+

+3d−

2
, 5

2 + ℓ,
4my2

|[a, b, c](z, 1)|2

)
.

Inspecting the parameters, we have the condition ℓ+ d+
+ d−

∈ 2N by j ∈ N,
and combining with d+, d−

∈ N0, ℓ ∈ N \ {1}, the smallest possible values are
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(ℓ, d+, d−)= (2, 0, 0), (2, 2, 0), (2, 1, 1), (2, 0, 2). For example, the corresponding
hypergeometric functions for the cases (ℓ, d+, d−)= (2, 0, 0), (2, 1, 1) are

2 F1
(
2, 2, 9

2 , z̃
)
= −

35(11z̃ − 15)
12z̃3 −

35(2z̃2
− 7z̃ + 5) arcsin(

√
z̃)

4z̃
7
2
√

1 − z̃
,

2 F1
(
3, 4, 9

2 , z̃
)
= −

35(8z̃2
− 26z̃ + 15)

128z̃3(z̃ − 1)2
+

105(8z̃2
− 12z̃ + 5) arcsin(

√
z̃)

128z̃
7
2
√

1 − z̃(z̃ − 1)2
,

and the other cases are of similar shape. Analogous expressions can be obtained for
higher integer parameters via Gauß’ contiguous relations for the hypergeometric
function, which can be found in [35, Section 15.5(ii)] for instance.

We infer a local behavior as sketched in the introduction by virtue of (4m = D =

b2
− 4ac)

arcsin(
√

z̃)= arcsin
( √

Dy
|az2 + bz + c|

)
= arctan

∣∣∣ √
Dy

a|z|2 + bx + c

∣∣∣,
which in turn follows by

(b2
− 4ac)y2

+ (a|z|2 + bx + c)2 = |az2
+ bz + c|2,

compare [4, Section 3]. The denominator a|z|2 +bx + c vanishes if and only if z is
located on the Heegner geodesic associated to Q = [a, b, c]. Since the principal
part of f is given by

N∑
n=0

H(ℓ, n) qn−N
+ O(qm+1), m =

{⌊
−2ℓ
12

⌋
− 1 if − 2ℓ≡ 2 (mod 12),⌊

−2ℓ
12

⌋
, else,

we conclude that f has the exceptional set

N⋃
D=1

{z = x + iy ∈ H : ∃a, b, c ∈ Z, b2
− 4ac = D, a|z|2 + bx + c = 0}.

In other words, the exceptional set of f is a finite union of nets of Heegner geodesics.
Furthermore, we recall that the spectral parameter in Corollary 3.2 is s = 1 −

k−2 j
2 ,

and hence the eigenvalue under 1−ℓ−(1/2) is(
s−

k
2

)(
1 − s−

k
2

)
= (1 − k + j)(− j)= j

(
j − ℓ−

3
2

)
. □

Eichler–Selberg relations for Cohen–Eisenstein series. Eichler–Selberg relations
for Cohen–Eisenstein series could be obtained as follows. On one hand, the input
function f (τ )= f−2ℓ,N (τ )Hℓ(τ ) is weakly holomorphic, thus we do not need to
deal with the additional term∫ reg

F
⟨Lk−2 j ( fP⊕N )(τ ), [G+

P (τ ),2N−(τ )] j ⟩v
−2 dτ
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arising from Theorem 3.3. Further, the function 3L from (3-1) simplifies to

3L(ψ, p, j)=
43d−

π
1
2 −d+

0( j + 1 + d−)0
( 3

2 − d+
+ j

)
0

(
ℓ+

1
2

)
0

( 3
2 − d+

)
×

∑
D≥1

∑
Q∈QD

p(ψ(Q))
Dℓ+ 3

2 y2+2 j+2d−

|Q(z, 1)|2+2 j+2d−

× 2 F1

(
ℓ+2+d+

+d−

2
,
ℓ+2+d+

+3d−

2
, 5

2 + ℓ,
Dy2

|Q(z, 1)|2

)
q D,

where QD denotes the set of integral binary quadratic forms of discriminant D.
After evaluating the hypergeometric function as in the previous proof, one may
follow our proof of Theorem 3.4, namely subtract the two evaluations of 9reg

j ( f, z)
from each other and apply Serre duality to the resulting expression. Computing the
principal part of G+

P in addition, this yields the desired result. However, we do not
pursue this here explicitly as the resulting expression is rather lengthy.
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