
Pacific
Journal of
Mathematics

COMBINATORIAL PROPERTIES OF
NONARCHIMEDEAN CONVEX SETS

ARTEM CHERNIKOV AND ALEX MENNEN

Volume 323 No. 1 March 2023



PACIFIC JOURNAL OF MATHEMATICS
Vol. 323, No. 1, 2023

https://doi.org/10.2140/pjm.2023.323.1

COMBINATORIAL PROPERTIES OF
NONARCHIMEDEAN CONVEX SETS

ARTEM CHERNIKOV AND ALEX MENNEN

We study combinatorial properties of convex sets over arbitrary valued
fields. We demonstrate analogs of some classical results for convex sets
over the reals (for example, the fractional Helly theorem and Bárány’s
theorem on points in many simplices), along with some additional properties
not satisfied by convex sets over the reals, including finite breadth and
VC dimension. These results are deduced from a simple combinatorial
description of modules over the valuation ring in a spherically complete
valued field.

1. Introduction

Convexity in the context of nonarchimedean valued fields was introduced in a
series of papers by Monna [1946], and has been extensively studied since then
in nonarchimedean functional analysis (see for instance the monographs [Perez-
Garcia and Schikhof 2010; Schneider 2002] on the subject). Convexity here is
defined analogously to the real case, with the role of the unit interval played instead
by a valuational unit ball (see Definition 2.1). Convex subsets of Rd admit rich
combinatorial structure, including many classical results around the theorems of
Helly, Radon, Carathéodory, Tverberg, etc. — we refer to [De Loera et al. 2019]
for a recent survey of the subject. In the case of R, or more generally a real
closed field, there is a remarkable parallel between the combinatorial properties of
convex and semialgebraic sets (which correspond to definable sets from the point
of view of model theory). They share many (but not all) properties in the form of
various restrictions on the possible intersection patterns, including the fractional
Helly theorem and existence of (weak) ε-nets. A well-studied phenomenon in
model theory establishes strong parallels between definable sets in R and in many
nonarchimedean valued fields such as the p-adics Qp or various fields of power
series (see for instance [van den Dries 2014]). In this paper we focus on the
combinatorial study of convex sets over general valued fields, trying to understand
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if there is similarly a parallel theory. On the one hand, we demonstrate valued field
analogs of some classical results for convex sets over the reals (e.g., the fractional
Helly theorem and Bárány’s theorem on points in many simplices). On the other
hand, we establish some additional properties not satisfied by convex sets over the
reals, including finite breadth and VC dimension. This suggests that in a sense
convex sets over valued fields are the best of both worlds combinatorially, and
satisfy various properties enjoyed either by convex or by semialgebraic sets over
the reals.

We give a quick outline of the paper. Section 2 covers some basics concerning
convexity for subsets of K d over an arbitrary valued field K , in particular discussing
the connection to modules over the valuation ring. These results are mostly standard
(or small variations of standard results), and can be found in [Perez-Garcia and
Schikhof 2010; Schneider 2002] under the unnecessary assumption that K is spheri-
cally complete and (0, +)⊆ (R>0, ×); we provide some proofs for completeness. In
Section 3 we give a simple combinatorial description of the submodules of K d over
the valuation ring OK in the case of a spherically complete field K (Theorem 3.6
and Corollary 3.12), and an analog for finitely generated modules over arbitrary
valued fields (Corollary 3.14). We also give an example of a convex set over the
field of Puiseux series demonstrating that the assumption of spherical completeness
is necessary for our presentation in the nonfinitely generated case (Example 3.11).
In Section 4 we use this description of modules to deduce various combinatorial
properties of the family of convex subsets ConvK d of K d over an arbitrary valued
field K . First we show that ConvK d has breadth d (Theorem 4.3), VC dimension
d + 1 (Theorem 4.8), dual VC dimension d (Theorem 4.10) — in stark contrast, all
of these are infinite for the family of convex subsets of Rd for d ≥ 2. On the other
hand, we obtain valued field analogs of the following classical results: the family
ConvK d has Helly number d + 1 (Theorem 4.5), fractional Helly number d + 1
(Theorem 4.14), satisfies a strong form of Tverberg’s theorem (Theorem 4.15) and
the Boros–Füredi/Bárány theorem on the existence of a common point in a positive
fraction of all geometric simplices generated by an arbitrary finite set of points
in K d (Theorem 4.16). Some of the proofs here are adaptations of the classical
arguments, and some rely crucially on the finite breadth property specific to the
valued field context. Finally, in Section 5A we point out some further applications,
for example a valued field analog of the celebrated (p, q)-theorem of Alon and
Kleitman [1992] (Corollary 5.1), and that all convex sets over a spherically complete
field are externally definable in the sense of model theory (Remark 5.7); as well
as pose some questions and conjectures. We also discuss some other notions of
convexity over nonarchimedean fields appearing in the literature in Section 5B, and
place our work in the context of the study of abstract convexity spaces in discrete
geometry and combinatorics in Section 5C.
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2. Preliminaries on convexity over valued fields

Notation. For n ∈ N≥1, we write [n] = {1, . . . , n} and ⟨ · ⟩ denotes the span in
vector spaces. Throughout the paper, K will denote a valued field, with value
group 0 = 0K , and valuation ν = νK : K → 0∞ := 0 ⊔ {∞}, valuation ring
O =OK = ν−1([0, ∞]), maximal ideal m=mK = ν−1((0, ∞]), and residue (class)
field k = O/m. The residue map O → k will be denoted α 7→ ᾱ. For a ring R,
R× denotes its group of units.

The following definition of convexity is analogous to the usual one over R, with
the unit interval replaced by the (valuational) unit ball.

Definition 2.1. (1) For d ∈ N≥1, a set X ⊆ K d is convex if, for any n ∈ N≥1,
x1, . . . , xn ∈ X , and α1, . . . , αn ∈ O such that α1 + · · · + αn = 1 we have
α1x1 + · · · +αnxn ∈ X (in the vector space K d ).

(2) The family of convex subsets of K d will be denoted ConvK d .

It is immediate from the definition that the intersection of any collection of
convex subsets of K d is convex.

Definition 2.2. Given an arbitrary set X ⊆ K d , its convex hull conv(X) is the
convex set given by the intersection of all convex sets containing X , equivalently

conv(X) =

{ n∑
i=1

αi xi : n ∈ N, αi ∈ O, xi ∈ X,
n∑

i=1
αi = 1

}
.

Definition 2.3. A (valuational) quasiball is a set B = {x ∈ K : ν(x − c) ∈ 1}

for some c ∈ K and an upwards closed subset 1 of 0∞. In this case we say
that B is around c, and refer to 1 as the quasiradius of B. We say that B is a
closed (respectively, open) ball if additionally 1 = {γ ∈ 0 : γ ≥ r} (respectively,
1 = {γ ∈ 0 : γ > r}) for some r ∈ 0, and just ball if B is either an open or a closed
ball (in which case we refer to r as its radius).

Remark 2.4. (1) If the value group 0 is Dedekind complete, then every quasiball
is a ball (except for K itself, which is a quasiball of quasiradius 0∞).

(2) If B is a quasiball of quasiradius 1 around c and c′
∈ B is arbitrary, then B is

also a quasiball of quasiradius 1 around c′.

(3) Thus, any two quasiballs are either disjoint, or one of them contains the other.

Example 2.5. (1) The convex subsets of K = K 1 are exactly ∅ and the quasiballs
(see Proposition 2.10 and Example 2.11).

(2) If e1, . . . , ed is the standard basis of the vector space K d , then

conv({0, e1, . . . , ed}) = Od .
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(3) The image and the preimage of a convex set under an affine map are convex.
In particular, a translate of a convex set is convex, and a projection of a
convex set is convex. (Recall that given two vector spaces V, W over the same
field K , a map f : V → W is affine if f (αx + βy) = α f (x) + β f (y) for all
x, y ∈ V, α, β ∈ K , α + β = 1.)

One might expect, by analogy with real convexity, that the definition of a convex
set could be simplified to: if x, y ∈ X , α, β ∈O such that α+β =1, then αx+βy ∈ X .
The following two propositions show that this is the case if and only if the residue
field is not isomorphic to F2, and that in general we have to require closure under
3-element convex combinations.

Proposition 2.6. Let K be a valued field and X ⊆ K d . If X is closed under 3-
element convex combinations (in the sense that if x, y, z ∈ X and α, β, γ ∈ O such
that α + β + γ = 1, then αx + βy + γ z ∈ X ), then X is convex.

Proof. Suppose X is closed under 3-element convex combinations. We will show
by induction on n that then X is closed under n-element convex combinations. Let
n ≥ 3, x1, . . . , xn ∈ X and α1, . . . , αn ∈ O such that α1 + · · · + αn = 1 be given.
Then one of the following two cases holds.

Case 1. α1 + α2 ∈ O×. Then α1/(α1 + α2) and α2/(α1 + α2) are elements of O
that sum to 1, so

α1
α1+α2

x1 +
α2

α1+α2
x2 ∈ X

by assumption. But then

α1x1 + · · · +αnxn = (α1 + α2)
(

α1
α1+α2

x1 +
α2

α1+α2
x2

)
+ α3x3 + · · · +αnxn ∈ X

by the induction hypothesis, as it is a convex combination of n − 1 elements of X .

Case 2. α1 + α2 ∈ m. Then, as ν
(∑n

i=1 αi
)

= 0, there must exist some i with
3 ≤ i ≤ n such that αi ∈ O×. Hence α1 + α2 + αi ∈ O×, so α1/(α1 + α2 + αi ),
α2/(α1 + α2 + αi ), and αi/(α1 + α2 + αi ) are elements of O that sum to 1. Thus

α1
α1+α2+αi

x1 +
α2

α1+α2+αi
x2 +

αi
α1+α2+αi

xi ∈ X

by assumption, and so

α1x1+· · ·+αnxn = (α1+α2+αi )
(

α1
α1+α2+αi

x1+
α2

α1+α2+αi
x2+

αi
α1+α2+αi

xi

)
+ α3x3 + · · · +αi−1xi−1 + αi+1xi+1 + · · · +αnxn ∈ X

by the induction hypothesis, as it is a convex combination of n−2 elements of X . □

Proposition 2.7. For any valued field K , the following are equivalent:

(1) For every d ≥ 1, every set in K d that is closed under 2-element convex combi-
nations is convex.
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(2) The residue field k is not isomorphic to F2.

Proof. (1) implies (2). If k = F2, consider the set

X := {(a1, a2, a3) | a1, a2, a3 ∈ O, ∃i such that ai ∈ m} ⊆ K 3.

We claim that X is closed under 2-element convex combinations. That is, given
arbitrary (a1, a2, a3), (b1, b2, b3) ∈ X and α, β ∈ O with α +β = 1, we must show
that α(a1, a2, a3)+β(b1, b2, b3) ∈ X . We have ᾱ + β̄ = 1 in k = F2, so necessarily
one of ᾱ and β̄ is 1 and the other is 0. Without loss of generality ᾱ = 1 and β̄ = 0.
Then β ∈ m. By definition of X , ai ∈ m for some i . Then αai ∈ m, and βbi ∈ m as
bi ∈ O, so αai +βbi ∈m. Thus (αa1 +βb1, αa2 +βb2, αa3 +βb3) ∈ X . However
X is not convex: for an arbitrary a ∈ m we have (0, 0, 0), (1, 0, 0), (0, 1, 1) ∈ X ,
1, −1 ∈O, but (−1)(0, 0, 0)+1(1, 0, 0)+1(0, 1, 1) = (1, 1, 1) /∈ X . (This example
can be modified to work in K 2.)

(2) implies (1). If k ̸∼=F2, suppose X is closed under 2-element convex combinations.
By Proposition 2.6, we only need to check that it is then closed under 3-element
convex combinations. Let x, y, z ∈ X , and α, β, γ ∈ O such that α + β + γ = 1.
Then one of the following two cases holds.

Case 1. At least one of α +β, β + γ, α + γ is an element of O×. Without loss of
generality, α + β ∈ O×. Then (α/(α + β))x + (β/(α + β))y ∈ X by assumption,
and thus

αx + βy + γ z = (α + β)
(

α

α+β
x +

β

α+β
y
)

+ γ z ∈ X.

Case 2. α +β, β +γ, α +γ ∈ m. In the residue field, ᾱ + β̄ = β̄ + γ̄ = ᾱ + γ̄ = 0,
and ᾱ+ β̄+ γ̄ = 1, hence necessarily ᾱ = β̄ = γ̄ = 1, and char(k) = 2. Since k ̸∼= F2,
there is δ ∈O such that δ̄ /∈ {0, 1}. Then ᾱ+ δ̄ = 1+ δ̄ ̸= 0 and β̄ − δ̄+ γ̄ = δ̄ ̸= 0, so

αx + βy + γ z =

(α + δ)
(

α

α+δ
x +

δ

α+δ
y
)

+ (β − δ + γ )
(

β−δ

β−δ+γ
y +

γ

β−δ+γ
z
)

∈ X. □

The following proposition gives a very strong form of Radon’s theorem (not only
do we obtain a partition into two sets with intersecting convex hulls, but moreover
one of the points is in the convex hull of the other ones).

Proposition 2.8. Let K be a valued field. For any d + 2 points x1, . . . , xd+2 ∈ K d ,
one of them is in the convex hull of the others.

Proof. There exist a1, . . . , ad+2 ∈ K , not all 0, such that
∑d+2

i=1 ai xi = 0 and∑d+2
i=1 ai = 0 (because those are d + 1 linear equations on d + 2 variables, as

we are working in K d). Let i ∈ [d + 2] be such that ν(ai ) is minimal among
ν(a1), . . . , ν(ad+2), in particular ai ̸= 0. Then xi =

∑
j ̸=i (−a j/ai )x j , and this is a
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convex combination: for i ̸= j we have −a j/ai ∈O (as ν(−a j/ai )=ν(a j )−ν(ai )≥

0 by the choice of i) and
∑

j ̸=i (−a j/ai ) =
(
−

∑
j ̸=i a j

)
/ai = ai/ai = 1. □

By a repeated application of Proposition 2.8 we immediately get a very strong
form of Carathéodory’s theorem:

Corollary 2.9. Let K be a valued field. Then the convex hull of any finite set in K d

is already given by the convex hull of at most d + 1 points from it.

Convex sets over valued fields have a natural algebraic characterization.

Proposition 2.10. (1) A subset C ⊆ K d is an O-submodule of K d if and only if it
is convex and contains 0.

(2) Nonempty convex subsets of K d are precisely the translates of O-submodules
of K d .

Proof. (1) O-submodules of K d are clearly convex and contain 0. Now suppose
C ⊆ K d is convex and 0 ∈C . Then for any α ∈O and x ∈C , αx =αx+(1−α)0 ∈C .
And for any x, y ∈ C , x +y = 1·x +1·y−1·0 ∈ C . Therefore C is an O-submodule.

(2) Given a nonempty convex C ⊆ K d , we can choose a ∈ K d such that the translate
C+a contains 0 and is still convex, hence C+a is an O-submodule of K d by (1). □

Example 2.11. Let C be an O-submodule of K , and take 1 := ν(C). Then 1 is
nonempty because it contains ∞ = ν(0), and upward-closed because for γ ∈ 1

and δ > γ , there is x ∈ C with ν(x) = γ , and α ∈ K with ν(α) = δ − γ ; then
αx ∈ C and ν(αx) = δ. Clearly C ⊆ {x ∈ K | ν(x) ∈ 1} by definition of 1. To
show C ⊇ {x ∈ K | ν(x) ∈ 1}, given any x ∈ K with ν(x) ∈ 1, there is y ̸= 0 ∈ C
with ν(y) = ν(x), and x/y ∈ O, so x = (x/y)y ∈ C . Thus C = {x ∈ K | ν(x) ∈ 1}

is a quasiball around 0.

Corollary 2.12. The convex hull of any finite set in K d is the image of Od under an
affine map.

Proof. By Corollary 2.9, the convex hull of a finite subset of K d is the convex hull
of some d + 1 points x0, . . . , xd from it (possibly with xi = x j for some i, j). Let
e1, . . . , ed be the standard basis for K d , and let f be an affine map f : K d

→ K d

such that f (0)= x0 and f (ei )= xi for 1≤ i ≤d (we can take f to be the composition
of two affine maps: the linear map sending ei to xi −x0 for 1 ≤ i ≤ d , and translation
by x0). Then we have conv({x0, . . . , xd}) = f (conv{0, e1, . . . , ed}) = f (Od), by
Example 2.5(2). □

Proposition 2.13. For any convex C ⊆ K d and a ∈ K d , the translate C + a :=

{x + a | x ∈ C} is either equal to or disjoint from C.

Proof. If x ∈ C ∩ (C + a), then y + a = y + x − (x − a) ∈ C for all y ∈ C since
that is a convex combination, and conversely y = (y + a) − x + (x − a) ∈ C if
y + a ∈ C . □
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Definition 2.14. Given a valued field K , by a valued K -vector space we mean a K -
vector space V equipped with a surjective map ν =νV : V →0∞ =0∪{∞} such that
ν(x)=∞ if and only if x =0, ν(x+y)≥min{ν(x), ν(y)} and ν(αx)=νK (α)+ν(x)

for all x, y ∈ V and α ∈ K .

Remark 2.15. Here we restrict to the case when V has the same value group
as K , and refer to [Fuchs 1975] for a more general treatment (see also [Johnson
2016, Section 6.1.3; Hrushovski 2014, Section 2.5; Aschenbrenner et al. 2017,
Section 2.3]).

By a morphism of valued K -vector spaces we mean a morphism of vector
spaces preserving valuation. If V and W are valued K -vector spaces, their direct
sum V ⊕ W is the direct sum of the underlying vector spaces equipped with the
valuation ν(x, y) := min{νV (x), νW (y)}. In particular, the vector space K d is a
valued K -vector space with respect to the valuation νK d : K d

→ 0∞ given by

νK d (x1, . . . , xd) := min{νK (x1), . . . , νK (xd)}.

Note that for any scalar α ∈ K and vector v ∈ K d we have νK d (αv)=νK (α)+νK d (v).
By a (valuational) ball in K d we mean a set of the form {x ∈ K d

: νK d (x − c)□r}

for some center c ∈ K d , radius r ∈ 0∪{∞} and □∈ {>, ≥} (corresponding to open
or closed ball, respectively). The collection of all open balls forms a basis for the
valuation topology on K d turning it into a topological vector space. Note that due
to the “ultrametric” property of valuations, every open ball is also a closed ball, and
vice versa. Equivalently, this topology on K d is just the product topology induced
from the valuation topology on K .

Recall that the affine span aff(X) of a set X ⊆ K d is the intersection of all affine
sets (i.e., translates of vector subspaces of K d ) containing X , equivalently

aff(X) =

{ n∑
i=1

αi xi : n ∈ N≥1, αi ∈ K , xi ∈ X,
n∑

i=1
αi = 1

}
.

We have conv(X) ⊆ aff(X) for any X .

Proposition 2.16. Any convex set in K d is open in its affine span.

Proof. For x ∈ C ⊆ K d , C convex, let d ′
≤ d be the dimension of the affine span

of C , and let y1, . . . , yd ′ ∈ C be such that x, y1, . . . , yd ′ are affinely independent,
and thus have the same affine span as C . Then the map (α1, . . . , αd ′) 7→ x +

α1(y1 − x)+· · ·+αd ′(yd ′ − x) is a homeomorphism from K d ′

to the affine span of
C , and sends Od ′

(which is open in K d ′

) to a neighborhood of x contained in C . □

Corollary 2.17. Convex sets in K d are closed.

Proof. For convex C ⊆ K d and x ∈ aff(C) \ C , C + x is an open subset of aff(C)

that is disjoint from C , so C is a closed subset of its affine span, and hence closed
in K d , since affine subspaces are closed. □
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3. Classification of O-submodules of K d

In this section we provide a simple description for the O-submodules of K d over
a spherically complete valued field K (and over an arbitrary valued field K in
the finitely generated case). Combined with the description of convex sets in
terms of O-submodules from Section 2, this will allow us to establish various
combinatorial properties of convex sets over valued fields in the next section. In
the following lemma, the construction of the valuation ν is a special case of the
standard construction of the quotient norm, when modding out a normed space by
a closed subspace, while the second part is more specific to our situation.

Lemma 3.1. Let K be a valued field, and V ⊆ K d a subspace. Then the quotient
vector space K d/V is a valued K -vector space equipped with the valuation

ν(u) := max{νK d (v) | π(v) = u, v ∈ K d
},

for u ∈ K d/V , where π : K d
→ K d/V is the projection map (and the maximum is

taken in 0∞). If dim(V ) = n, then K d/V ∼= K d−n as valued K -vector spaces, and
there is a valuation preserving embedding of K -vector spaces f : K d/V ↪→ K d so
that π ◦ f = idK d/V .

Proof. First we prove the lemma for n = 1. Let V ⊆ K d be one-dimensional.
There exists i ∈ [d] such that νK d ((x1, . . . , xd)) = νK (xi ) for all (x1, . . . , xd) ∈ V
(indeed, if νK (xi ) = min{νK (x1), . . . , νK (xd)} for some (x1, . . . , xd) ∈ V , then
we also have νK (αxi ) = νK (α) + νK (xi ) = νK (α) + min{νK (x1), . . . , νK (xd)} =

min{νK (αx1), . . . , νK (αxd)} for any α ∈ K ). Given any (x1, . . . , xd) ∈ K d with
xi = 0 and (y1, . . . , yd) ∈ V , we have

(3-1) νK d (x1 + y1, . . . , xd + yd) = min
j∈[d]

{νK (x j + y j )}

= min{νK (yi ), min
j ̸=i

{νK (x j + y j )}} ≤ νK (yi )

= νK d (y1, . . . , yd).

Now consider an arbitrary affine translate x + V of V , x = (x1, . . . , xd) ∈ K d .
Then there exists x ′

= (x ′

1, . . . , x ′

d) ∈ x + V so that x ′

i = 0. Indeed, fix any
0 ̸= y′

∈ V , then V = {αy′
: α ∈ K }. Take α′

:= −xi/y′

i (note that, by the choice of
i , y′

̸= 0 ⇒ νK d (y′) ̸= ∞ ⇒ νK (y′

i ) ̸= ∞ ⇒ y′

i ̸= 0), and let x ′
:= x + α′y′. We

claim that νK d (x ′) = max{νK d (z) : z ∈ x +V }, thus the valuation ν on K d/V is well
defined. Indeed, x + V = x ′

+ V , so fix any y ∈ V . If νK d (x ′) < νK d (x ′
+ y), we

must necessarily have νK d (x ′)= νK d (y), but by (3-1) we have νK d (x ′
+y)≤ νK d (y),

so νK d (y) < νK d (y) — a contradiction; thus νK d (x ′) ≥ νK d (x ′
+ y).

Let K ′
:={(x1, . . . , xd)∈ K d

| xi =0}, then we have K d
=V ⊕K ′ as vector spaces,

hence the projection of K d onto K ′ along V induces an isomorphism between K d/V
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and K ′, which in turn is naturally isomorphic to K d−1, and these isomorphisms
preserve the valuation and give the desired embedding f : K d/V → K d . The general
case follows by induction on n using the vector space isomorphism theorems. □

We recall an appropriate notion of completeness for valued fields. Recall that a
family {Ci : i ∈ I } of subsets of a set X is nested if for any i, j ∈ I , either Ci ⊆ C j

or C j ⊆ Ci .

Definition 3.2. A valued field K is spherically complete if every nested family of
(closed or open) valuational balls has nonempty intersection.

For the following standard fact, see for example Theorem 5 in Section II.3 and
Theorem 8 in Section II.6 of [Schilling 1950].

Fact 3.3. Every valued field K (with valuation νK , value group 0K and residue
field kK ) admits a spherical completion, i.e., a valued field K̃ (with valuation νK̃ ,
value group 0K̃ and residue field kK̃ ), so that:

(1) K̃ is an immediate extension of K , i.e., K̃ is a field extension of K , νK̃ ↾K = νK ,
0K̃ = 0K and kK̃ = kK .

(2) K̃ is spherically complete.

We remark that in general a valued field might have multiple nonisomorphic
spherical completions.

Lemma 3.4. If K is spherically complete, then every nested family of nonempty
convex subsets of K d has a nonempty intersection.

Proof. By induction on d. For d = 1, let {Ci }i∈I be a nested family of nonempty
convex sets, so each Ci is a quasiball; see Example 2.5(1). If there exists some
i ∈ I such that Ci is the smallest of these under inclusion, then any element of Ci

is in the intersection of the whole family. Hence we may assume that for each i ∈ I
there exists some i ′

∈ I such that Ci ′ ⊊ Ci . Let 1i and 1i ′ be the quasiradii of
Ci and Ci ′ , respectively. We may assume that both quasiballs are around the same
point xi ∈ Ci ′ (by Remark 2.4), hence necessarily 1i ′ ⊊ 1i . Let ri ∈ 1i \ 1i ′ , and
let C ′

i be a (open or closed) ball of radius ri around xi . We have C ′

i ⊆ Ci , so if⋂
i∈I C ′

i is nonempty, then so is
⋂

i∈I Ci . Hence it is sufficient to show that {C ′

i }i∈I

is nested, and then the intersection is nonempty by spherical completeness of K .
By construction for any i, j ∈ I there exists some ℓ ∈ I such that Cℓ ⊆ C ′

i ∩ C ′

j , so
C ′

i and C ′

j have nonempty intersection, and are thus nested as they are balls.
For d ≥ 2, let {Ci }i∈I be a nested family of nonempty convex sets, and let

π1 : K d
→ K be the projection onto the first coordinate. Then {π1(Ci )}i∈I is a

nested family of nonempty convex sets in K , hence has an intersection point x . Then
{π−1

1 (x) ∩ Ci }i∈I is a nested family of nonempty convex sets in π−1
1 (x) ∼= K d−1,

which is nonempty by the induction hypothesis. □
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Lemma 3.5. If C ⊆ K d is an O-module, and γ ∈ 0∞, then the set

Xγ = {(x1, . . . , xd−1) ∈ Od−1
| ∃α ∈ K , ν(α) = γ, (α, αx1, . . . , αxd−1) ∈ C}

is convex.

Proof. Let x = (x1, . . . , xd−1), y = (y1, . . . , yd−1), z = (z1, . . . , zd−1) ∈ Xγ

and β1, β2, β3 ∈ O with β1 + β2 + β3 = 1 be arbitrary. Then there exist some
α1, α2, α3 ∈ K with ν(αi ) = γ , so that

(α1, α1x1, . . . , α1xd−1), (α2, α2 y1, . . . , α2 yd−1), (α3, α3z1, . . . , α3zd−1) ∈ C.

Taking α := α1, we have

x ′
:= (α, αx1, . . . , αxd−1), y′

:= (α, αy1, . . . , αyd−1),

z′
:= (α, αz1, . . . , αzd−1) ∈ C,

as for every i ∈ [3], α/αi ∈ O, and hence (α/αi )v ∈ C for any v ∈ C as C is an
O-module. Using this and convexity of C we thus have

(α, α(β1x1 + β2 y1 + β3z1), . . . , α(β1xd−1 + β2 yd−1 + β3zd−1))

= β1(α, αx1, . . . , αxd−1) + β2(α, αy1, . . . , αyd−1) + β3(α, αz1, . . . , αzd−1)

= β1x ′
+ β2 y′

+ β3z′
∈ C.

This shows that β1x + β2 y + β3z ∈ Xγ , and hence that Xγ is convex using
Proposition 2.6. □

Combining the lemmas, we obtain a description of the OK -submodules of K d

for spherically complete K :

Theorem 3.6. Suppose K is a spherically complete valued field, d ∈ N≥1, and let
C ⊆ K d be an O-submodule. Then there exists a complete flag of vector subspaces
{0}⊊ F1 ⊊ · · ·⊊ Fd = K d and a decreasing sequence of nonempty, upwards closed
subsets 11 ⊇ 12 ⊇ · · · ⊇ 1d of 0∞ such that

C = {v1 + · · · + vd | vi ∈ Fi , ν(vi ) ∈ 1i }.

Remark 3.7. If Fi and 1i satisfy the conclusion of Theorem 3.6 for C , then
νK d (C ∩ F1) = νK d (C) = 11.

Indeed, any v ∈ C is of the form v = v1 +· · ·+ vd with vi ∈ Fi , ν(vi ) ∈ 1i and
11 ⊇ 1i for all i ∈ [d], hence ν(v) ≥ min{ν(vi ) : i ∈ [d]} ∈ 11, hence ν(v) ∈ 11

as 11 is upwards closed, so ν(C) ⊆ 11. Conversely, assume γ ∈ 11. If γ = ∞,
then ν(0) = ∞ and 0 ∈ F1. So assume γ ∈ 0 and let v be any nonzero vector
in F1, and define δ := ν(v) ∈ 0. Taking α ∈ K so that νK (α) = γ − δ, we have
αv ∈ F1 and νK d (αv) = νK (α) + νK d (v) = γ . Note also that αv = v1 + · · · + vd
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with v1 := αv, vi := 0 for 2 ≤ i ≤ d; in particular vi ∈ Fi and ν(vi ) ∈ 1i , so αv ∈ C ,
hence 11 ⊆ ν(F1 ∩ C).

Proof of Theorem 3.6. By induction on d. For d = 1, every O-submodule of K is
a quasiball C = {x ∈ K : ν(x) ∈ 1} for some upwards closed 1 ⊆ 0 ∪ {∞} (see
Example 2.11), hence we take F1 := K and 11 := 1.

For d > 1, let 11 := {γ ∈ 0∞ | ∃v ∈ C, νK d (v) = γ }. Note that 11 is nonempty
because it contains ∞ = ν(0). Then there is some i ∈ [d] such that every γ ∈ 11 is
the valuation of the i-th coordinate of some element of C . To see this, note that for
each i ∈ [d], the set

Si := {γ ∈ 0∞ | ∃v = (v1, . . . , vd) ∈ C such that νK d (v) = ν(vi ) = γ }

is upwards closed in 0∞. Indeed, assume v = (v1, . . . , vd) ∈ C , γ = ν(vi ) =

min{ν(vj ) : j ∈ [d]} and δ ≥ γ in 0∞. Let α ∈ K be arbitrary with ν(α) = δ − γ ,
then α ∈ O, hence αv ∈ C , and so νK d (αv) = min{ν(αvj ) : j ∈ [d]} = ν(αvj ) = δ.
As we also have 11 =

⋃
i∈[d]

Si , it follows that 11 = Si for some i ∈ [d] as wanted
(and thus 11 is upwards closed in 0∞).

Without loss of generality we may assume i = 1. Then, given any γ ∈11, there is
some (α, y1, . . . , yd−1) ∈ C such that γ = ν(α) ≤ min{ν(y j ) : j ∈ [d −1]}. Taking
x j := y j/α ∈ O, we thus have (α, αx1, . . . , αxd−1) ∈ C . Hence for any γ ∈ 11,
the set

Xγ := {(x1, . . . , xd−1) ∈ Od−1
| ∃α ∈ K , ν(α) = γ ∧ (α, αx1, . . . , αxd−1) ∈ C}

is nonempty and convex (by Lemma 3.5). Note that for γ <δ∈0∞ we have Xγ ⊆ Xδ ,
hence

⋂
γ∈11

Xγ ̸= ∅ by Lemma 3.4. That is, there exists (x1, . . . , xd−1) ∈ Od−1

such that for all γ ∈11, there exists α ∈ K with ν(α)=γ ∧(α, αx1, . . . , αxd−1)∈C .
Hence

(3-2) ∀α ∈ K , ν(α) ∈ 11 =⇒ (α, αx1, . . . , αxd−1) ∈ C,

since there exists β ∈ K such that ν(β) = ν(α) ∧ (β, βx1, . . . , βxd−1) ∈ C , so
α/β ∈ O and multiplying by it we get (α, αx1, . . . , αxd−1) ∈ C .

Let F1 := ⟨(1, x1, . . . , xd−1)⟩. Let π : K d ↠ K d/F1 be the projection map,
f : K d/F1 ↪→ K d the valuation preserving embedding given by Lemma 3.1, and
π ′

:= f ◦ π : K d
→ K d . Note that K d/F1 ∼= K d−1 as a valued K -vector space

by Lemma 3.1, and that C̃ := π(C) is still an O-submodule of K d/F1. By the
induction hypothesis there is a full flag {0}⊊ F̃2 ⊊ · · ·⊊ F̃d = K d/F1 and upwards
closed subsets νK d/F1

(C̃) = 12 ⊇ · · · ⊇ 1d of 0∞ satisfying the conclusion of the
theorem with respect to C̃ (the equality νK d/F1(C̃) = 12 is by Remark 3.7). Note
that

(3-3) ∀v ∈ K d , νK d (π ′(v)) = νK d/F1(π(v)) ≥ νK d (v).
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In particular we have 11 ⊇ 12.
Let the subspaces F2, . . . , Fd be the preimages of F̃2, . . . , F̃d in K d . We let

W := f (K d/F1) ⊆ K d be the image of the valuation preserving embedding f :

K d/F1 ↪→ K d . Then we have

(3-4) C = {v1 + w | v1 ∈ F1, νK d (v1) ∈ 11, w ∈ C ∩ W }.

To see this, given an arbitrary v ∈ C , let w := π ′(v) and v1 := v − w. As π ◦ f =

idK d/F1 by assumption, we have π(w)=π(π ′(v))=π( f (π(v)))=π(v), hence v1 ∈

F1. By (3-3) we have νK d (w)≥νK d (v), and thus νK d (v1)≥min{νK d (v), νK d (w)}≥

νK d (v) as well. Thus νK d (v1) ∈ 11, and v1 ∈ F1, which together with (3-2) and
the definition of F1 implies v1 ∈ C ; hence w = v − v1 ∈ C as well. The opposite
inclusion is obvious.

Furthermore, applying the isomorphism f : K d/F1 → W to

C̃ = C/F1 = {v2 + · · · + vd | vi ∈ F̃i , νK d/F1(vi ) ∈ 1i },

we get
C ∩ W = {v2 + · · · + vd | vi ∈ Fi ∩ W, νK d (vi ) ∈ 1i },

which together with (3-4) implies

C = {v1 + · · · + vd | vi ∈ Fi , ν(vi ) ∈ 1i , vi ∈ W for i ≥ 2}.

Now C = {v1 + · · · + vd | vi ∈ Fi , ν(vi ) ∈ 1i } follows because for any such
vectors v1, . . . , vd , the vector vi (for i ≥ 2) can be moved into W by subtracting
an element of F1 with valuation in 11, and collecting the differences in with v1.
That is, given arbitrary vi ∈ Fi with ν(vi ) ∈ 1i , let wi := π ′(vi ) ∈ W for i ≥ 2, and
let w1 := v1 + (v2 −π ′(v2))+ · · ·+ (vd −π ′(vd)). As above, using (3-3), for each
i ≥ 2 we have νK d (vi −π ′(vi )) ≥ min{νK d (vi ), νK d (π ′(vi ))} ≥ νK d (vi ) ∈ 1i ⊆ 11.
Hence νK d (w1) ≥ min{v1, v2 − π ′(v2), . . . , vd − π ′(vd)} ∈ 11. We also have
νK d (wi ) ≥ νK d (vi ) ∈ 1i for i ≥ 2 by (3-3). Using that f is a one-sided inverse of
π as above, we also have vi − π ′(vi ) ∈ F1 ⊆ Fi for i ≥ 2. It follows that wi ∈ Fi

for all i ∈ [d]. Putting all of this together, we get w1 + · · · + wd = v1 + · · · + vd ,
wi ∈ Fi , ν(wi ) ∈ 1i , and wi ∈ W for i ≥ 2. □

Remark 3.8. Note that as Fd = K d in Theorem 3.6, we have

1d = {γ ∈ 0∞ | ∀v ∈ K d , ν(v) = γ =⇒ v ∈ C}.

That is, 1d is the quasiradius of the largest quasiball around 0 contained in C .

Remark 3.9. Given a convex set 0 ∈ C ⊆ K d and any Fi and 1i , i ∈ [d] satisfying
the conclusion of Theorem 3.6 with respect to it, for every j ∈ [d] we have

C ∩ F j = {v1 + · · · + vj | vi ∈ Fi , ν(vi ) ∈ 1i for all j ∈ [i]}.
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Indeed, if x ∈ C ∩ F j , then x = v1 +· · ·+vd ∈ F j for some vi ∈ Fi with ν(vi ) ∈ 1i

for i ∈ [d]. Then, using that the Fi are increasing under inclusion and 1i are
increasing under inclusion and upwards closed, vj+1 + · · · + vd ∈ F j and taking
v′

j := vj + · · · + vd we have v′

j ∈ F j , ν(v′

j ) ≥ min{ν(vi ) : j ≤ i ≤ d} ∈ 1 j and
x = v1 + · · · + vj−1 + v′

j . Conversely, any element x = v1 + · · · + vj with vi ∈ Fi ,
ν(vi ) ∈ 1i for i ∈ [ j] can be written as x = v1 + · · · + vd with vi := 0 ∈ Fi and
ν(vi ) = ∞ ∈ 1i for j + 1 ≤ i ≤ d . So x ∈ C ∩ F j .

Remark 3.10. (1) It follows from the conclusion of Theorem 3.6 that the subspace
Fd−1 is a linear hyperplane in K d , and every element of C differs from an element
of Fd−1 (and hence of Fd−1 ∩ C in view of Remark 3.9) by a vector in K d with
valuation in 1d (with 1d as in Remark 3.8).

(2) Conversely, Fd−1 can be chosen to be any linear hyperplane H in K d such that
every element of C differs from an element of H by a vector in K d with valuation
in 1d . To see this, let H be such a hyperplane in K d . Then C ∩ H is a convex
subset of H ∼= K d−1 containing 0, hence an O-submodule of H by Proposition 2.10.
Applying Theorem 3.6 to C ∩ H in H (with the induced valuation on H ), there
are 11 ⊇ 12 ⊇ · · · ⊇ 1d−1 and a full flag {0} ⊊ F1 ⊊ · · · ⊊ Fd−1 = H , such that
C ∩ H = {v1 + · · · + vd−1 | vi ∈ Fi , ν(vi ) ∈ 1i }. Then

{v1 + · · · + vd | vi ∈ Fi , ν(vi ) ∈ 1i } = {w + vd | w ∈ C ∩ H, ν(vd) ∈ 1d} = C.

Example 3.11. The assumption of spherical completeness of K is necessary in
Theorem 3.6. For example, let K :=

⋃
n≥1 k((t1/n)) be the field of Puiseux series

over a field k, and let K̃ := k[[tQ
]] be the field of Hahn series over k with rational

exponents. The field K̃ is the spherical completion of K (both fields have value
group Q and valuation ν(x) = q where x has leading term tq ; see [Aschenbrenner
et al. 2017, Example 3.3.23] for instance). In particular

∑
n≥1 t1−1/n

∈ K̃ \K , and let

C̃ :=

{
α
(

1,
∑
n≥1

t1−1/n
)

+ v
∣∣ α ∈ K̃ , v ∈ K̃ 2, νK̃ (α) ≥ 0, νK̃ 2(v) ≥ 1

}
⊆ K̃ 2,

as well as C := C̃ ∩ K 2. Then C̃ is convex in K̃ 2, and hence C is also convex
as a subset of K 2. The basic idea behind why C is not of the form described in
Theorem 3.6 is that C is close enough to C̃ , and the subspace F1 appearing in the
conclusion of Theorem 3.6 for C̃ must be close to

〈(
1,

∑
n≥1 t1−1/n

)〉
; specifically,

it must be
〈(

1, x +
∑

n≥1 t1−1/n
)〉

for some x ∈ K 2 with ν(x) ≥ 1, but K 2 contains
no such subspaces.

Indeed, by Remark 3.7, given any Fi and 1i satisfying the conclusion of
Theorem 3.6 with respect to C , the valuation of every element of C must also
be the valuation of some element of F1 ∩ C . So, to show that C is not of the form
described in Theorem 3.6, it suffices to show that C contains elements of valuation
arbitrarily close to 0, but that for every 1-dimensional subspace F1 ⊂ K 2, there is
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some q > 0 in 0 such that every element of F1 ∩ C has valuation at least q (and
note that from the definition of C , every element in it has positive valuation).

Claim. For every n ∈ N≥1, there is some v ∈ C with νK 2(v) = 1/n.

Proof. To see this, note that

t1/n
(

1,

n−1∑
m=1

t1−1/m
)

= t1/n
(

1,
∑
m≥1

t1−1/m
)

− t1/n
(

0,
∑
m≥n

t1−1/m
)

∈ C

as νK (t1/n) = 1/n ≥ 0 and νK 2
(
t1/n

(
0,

∑
m≥n t1−1/m

))
= 1/n + (1 − 1/n) ≥ 1. □

Claim. For every 1-dimensional subspace F1 ⊂ K 2, there is some n ∈ Nn≥1 such
that every element of F1 ∩ C has valuation at least 1/n.

Proof. We prove this by breaking into two cases.

Case 1. F1 =⟨(0, 1)⟩. Assume x ∈ F1∩C , then x = (x1, x2)=α
(
1,

∑
n≥1 t1−1/n

)
+v

for some α ∈ K , v = (v1, v2) ∈ K̃ 2 with νK̃ (α) ≥ 0, νK̃ 2(v) ≥ 1, and x1 = 0, so
α = −v1. But 1 ≤ νK̃ 2(v) = min{νK̃ (v1), νK̃ (v2)}, hence νK̃ (α) ≥ 1 as well. Since
νK̃

(∑
n≥1 t1−1/n

)
= 0, it follows that

νK̃ 2(x) = min
{
νK̃ (0), νK̃

(
α
( ∑

n≥1
t1−1/n

))}
≥ 1.

Thus every element of F1 ∩ C has valuation at least 1.

Case 2. F1 = ⟨(1, x)⟩ for some x ∈ K . Given any x ∈ K , there must exist some
n ∈ N such that νK̃

(
x −

∑
m≥1 t1−1/m

)
≤ 1 − 1/n. Given any v ∈ F1 ∩ C , we have

v = α(1, x) = β

(
1,

∑
m≥1

t1−1/m
)

+ w

for some α ∈ K , some β ∈ K̃ with νK̃ (β) ≥ 0 and w = (w1, w2) ∈ K̃ 2 with
νK̃ 2(w) ≥ 1. Without loss of generality, α ̸= 0, so we have

x =
αx
α

=

(
w2 + β

∑
m≥1

t1−1/m
)

(w1 + β)−1
=

(
w2

β
+

∑
m≥1

t1−1/m
)(

1 +
w1

β

)−1

.

If νK̃ (β) < 1/n, then

νK̃

(
w1
β

)
> 1 −

1
n
, νK̃

(
w2
β

)
> 1 −

1
n
,

νK̃

((
1 +

w1
β

)−1)
= 0, νK̃

((
1 +

w1
β

)−1
− 1

)
> 1 −

1
n
,

so

ν

(
x−

∑
m≥1

t1−1/m
)

=ν

(
w2

β
(w1+β)−1

+

( ∑
m≥1

t1−1/m
)((

1+
w1
β

)−1
−1

))
>1−

1
n
,

a contradiction to the choice of n. Thus ν(β) ≥ 1/n, and hence ν(v) ≥ 1/n. □
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Thus no 1-dimensional subspace F1 of K 2 can fill its desired role in the presen-
tation for C .

Theorem 3.6 implies the following simple description of convex sets over spheri-
cally complete valued fields.

Corollary 3.12. If K is a spherically complete valued field and d ∈ N≥1, then the
nonempty convex subsets of K d are precisely the affine images of ν−1(11)× · · ·×

ν−1(1d) for some upwards closed 11, . . . ,1d ⊆ 0∞.

Proof. Let C ⊆ K d be an affine image of ν−1(11) × · · · × ν−1(1d) for some
upwards closed 11, . . . ,1d ⊆ 0∞. Note that ν−1(11)× · · ·× ν−1(1d) is convex,
and an image of a convex set under an affine map is convex (Example 2.5), hence
C is convex.

Conversely, let ∅ ̸= C ⊆ K d be convex. Since the affine images of O-submodules
of K d give us all nonempty convex sets by Proposition 2.10, without loss of
generality 0 ∈ C and C is an O-submodule of K d . Let {0} ⊊ F1 ⊊ · · · ⊊ Fd = K d

and νK d (C) = 11 ⊇ 12 ⊇ · · · ⊇ 1d be as given by Theorem 3.6 for C . Using
Lemma 3.1 we can choose v1, . . . , vd ∈ K d such that for every i ∈ [d] we have:

(1) v1, . . . , vi is a basis for Fi .

(2) ν(vi ) = 0.

(3) ν(vi + x) ≤ 0 for all x ∈ Fi−1.

Then C is the image of ν−1(11) × · · · × ν−1(1d) under the linear map f : K d
→

K d such that f (ei ) = vi , where ei is the i-th standard basis vector. Indeed, if
x ∈ f (ν−1(11)× · · ·× ν−1(1d)) then x =

∑d
i=1 civi for some ci with ν(ci ) ∈ 1i .

Using (2) this implies ν(civi ) = ν(ci ) ∈ 1i , and civi ∈ Fi , hence x ∈ C . Conversely,
let x be an arbitrary element of C , then x = w1 + · · · +wd for some wi ∈ Fi with
ν(wi ) ∈ 1i . Each wi is a linear combination of v1, . . . , vi , say wi =

∑i
j=1 ci, jvj .

Now we claim that for any i ∈ [d], α ∈ K and v ∈ Fi−1 we have ν(αvi + v) =

min{ν(αvi ), ν(v)}. Indeed, replacing v and α by α−1v ∈ Fi−1 and α−1α ∈ K ,
respectively, changes both sides of the claimed equality by the same amount, hence
we may assume that α = 0 or α = 1. The first case holds trivially, in the second
case we need to show that ν(vi + v) = min{ν(vi ), ν(v)}. If ν(vi ) ̸= ν(v) this holds
by the ultrametric inequality, so we assume ν(vi ) = ν(v) = 0 (using (2)). Then,
using (3), 0 ≥ ν(vi + v) ≥ min{ν(vi ), ν(v)} = 0, so ν(vi + v) = 0 as well.

Applying this claim by induction on i ∈ [d], we get

ν

( i∑
j=1

ci, jvj

)
= min

j
{ν(ci, jvj )},

which using (2) implies ν(wi ) = ν
(∑i

j=1 ci, jvj
)
= min j {ν(ci, j )} for each i ∈ [d].

As for each i ∈ [d], we have ν(wi ) ∈ 1i and 1i is upwards closed, it follows that
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ν(ci, j ) ∈ 1i for all i ∈ [d], j ∈ [i]. Regrouping the summands ci, jvi , it follows that
x = w1 +· · ·+wd is a linear combination of v1, . . . , vd where the coefficient of vi

has valuation in 1i , hence x belongs to f (ν−1(11) × · · · × ν−1(1d)). □

We can eliminate the assumption of spherical completeness of the field when
only considering convex hulls of finite sets. We will say that a convex set is finitely
generated if it is the convex hull of a finite set of points.

Lemma 3.13. A subset C ⊆ K d is a finitely generated O-module if and only if it is
a finitely generated convex set and contains 0.

Proof. If an O-module C ⊆ K d is generated as an O-module by some finite set X ,
then it is the convex hull of X ∪ {0}. If a set C is the convex hull of some finite set
X and contains 0, then it is an O-module by Proposition 2.10, clearly generated as
an O-module by X . □

We have the following analog of Theorem 3.6 in the finitely generated case over
an arbitrary valued field.

Corollary 3.14. Let K be an arbitrary valued field and C a finitely generated
convex set containing 0. Then there is a full flag {0} ⊊ F1 ⊊ · · · ⊊ Fd = K d and an
increasing sequence γ1 ≤ γ2 ≤ · · · ≤ γd ∈ 0∞ such that

C = {v1 + · · · + vd | vi ∈ Fi , ν(vi ) ≥ γi }.

Proof. Let C ∋ 0 be the convex hull of some finite set X ⊆ K d . By a repeated
application of Proposition 2.8, C is the convex hull of some d+1 elements v0, . . . , vd

from X (possibly with xi = x j for some i, j ). As 0 ∈ C , we have 0 =
∑d

i=0 αivi for
some αi ∈O with

∑d
i=0 αi = 1. Let j be such that ν(αj ) is minimal among {ν(αi ) :

0≤ i ≤d}. In particular αj ̸=0, hence vj =
(
1−

∑
i ̸= j αi/αj

)
0+

∑
i ̸= j (αi/αj )vi . By

the choice of j we have αi/αj ∈O for all i ̸= j , hence also 1−
∑

i ̸= j αi/αj ∈O, thus
vj ∈ conv({0}∪{vi : i ̸= j}), and so also C = conv({0}∪{vi : i ̸= j}). Reordering if
necessary, we can thus assume that C is the convex hull of some {0, v1, . . . , vd}⊆ C
with ν(v1) ≤ ν(vi ) for each i ∈ [d].

Let F1 := ⟨v1⟩ and γ1 := ν(v1). Let π1 : K d ↠ K d/F1 be the projection map,
f1 : K d/F1 ↪→ K d the valuation preserving embedding given by Lemma 3.1,
V1 := f1(K d/F1) and π ′

1 := f1 ◦ π1 : K d
→ K d .

For i ≥ 2, as we explained after (3-4) in the proof of Theorem 3.6, we have
vi −π ′

1(vi )∈ F1; and by (3-3) and our assumption we have ν(π ′

1(vi ))≥ν(vi )≥ν(v1).
So vi − π ′

1(vi ) ∈ Ov1 for all i ≥ 2, which implies

conv({0, v1, π
′

1(v2), . . . , π
′

1(vd)}) = conv({0, v1, . . . , vd}) = C.

Without loss of generality we suppose ν(π ′

1(v2)) ≤ ν(π ′

1(vi )) for i ≥ 3, and let
F2 := ⟨v1, π

′

1(v2)⟩ and γ2 := ν(π ′

1(v2)) ≥ ν(v1) = γ1 by assumption. By definition
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of the valuation on the quotient space, using the properties of f , we have

νK (π ′

1(vi )) = νK d/F1(π1(vi )) = νK d/F1(π1(π
′

1(vi ))) ≥ νK d (π ′

1(vi ) + αv1)

for all α ∈ K . As in the proof of Corollary 3.12, this implies ν(βπ ′

1(vi ) + αv1) =

min{βν(π ′

1(vi )), ν(αv1))} for all i ≥ 2 and α, β ∈ K . It follows that

{nv1 + mπ ′

1(v2) | n, m ∈ O} = {w1 + w2 | wi ∈ Fi , ν(wi ) ≥ γi }.

To see that the set on the right is contained in the set on the left, assume x =

w1 + w2 for some wi ∈ Fi , ν(wi ) ≥ γi . Then w1 = α1v1 and w2 = α2v1 +

βπ ′

1(v2) for some α1, α2, β ∈ K , and by the observation above γ2 ≤ ν(w2) =

min{ν(α2v1), ν(βπ ′

1(v2))}. So x = (α1 +α2)v1 +βπ ′

1(v2), ν((α1 +α2)v1) ≥ γ1 =

ν(v1), so (α1 + α2) ∈ O, and ν(β) ≥ γ2, as wanted.
Now we replace vi by π ′

1(vi ) for i ≥ 2, and let π2 : K d ↠ K d/F2 be the projection
map, f2 : K d/F2 ↪→ K d the valuation preserving embedding given by Lemma 3.1,
V2 := f2(K d/F2) and π ′

2 := f2 ◦ π2 : K d
→ K d . For i ≥ 3, vi − π ′

2(vi ) ∈ F2 and
vi − π ′

2(vi ) ∈ Ov1 + Ov2, so again replacing vi with π ′

2(vi ) for i ≥ 3 does not
change the convex hull. Again we may assume ν(π ′

2(v3)) ≤ ν(π ′

2(vi )) for i ≥ 4,
and let F3 := ⟨v1, v2, v3⟩ and γ3 := ν(π ′

2(v3)). Repeating this argument as above d
times, we have chosen vectors vi , increasing spaces Fi =⟨v1, . . . , vi ⟩ and increasing
γi = ν(vi ) ∈ 0 for i ∈ [d], so that

C = conv({0, v1, . . . , vd}) = {n1v1 + · · · + ndvd | ni ∈ O}

= {w1 + · · · +wd | wi ∈ Fi , ν(wi ) ≥ γi }. □

4. Combinatorial properties of convex sets

The following definition is from [Aschenbrenner et al. 2016, Section 2.4].

Definition 4.1. Given a set X and d ∈ N≥1, a family of subsets F ⊆ P(X) has
breadth d if any nonempty intersection of finitely many sets in F is the intersection
of at most d of them, and d is minimal with this property.

Lemma 4.2. Let K be a valued field and S a convex subset of K d .

(1) If 0 ∈ S and S is finitely generated, then it is generated as an O-module by a
finite linearly independent set of vectors.

(2) Let K̃ be a valued field extension of K and S̃ := convK̃ d (S) ⊆ K̃ d . Then
S̃ ∩ K d

= S.

Proof. (1) By Lemma 3.13, S is generated as an O-module by some finite set
v1, . . . , vn ∈ S. Assume these vectors are not linearly independent, then 0 =∑

i∈[n]
αivi for αi ∈ K not all 0. Let i ∈ [n] be such that ν(αi )≤ ν(αj ) for all j ∈ [n],

and αi ̸= 0. Then vi =
∑

j ̸=i (αj/(−αi ))vj and ν(αj/(−αi )) = ν(αj ) − ν(αi ) ≥ 0,
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hence αj/(−αi ) ∈O for all j ̸= i , and S is still generated as an O-module by the set
{vj : j ̸= i}. Repeating this finitely many times, we arrive at a linearly independent
set of generators.

(2) Since convexity is invariant under translates, we may assume 0 ∈ S. Since
every element in the convex hull of a set is in the convex hull of some finite
subset, we may also assume that S is finitely generated as an O-module, and
by (1) let v1, . . . , vn ∈ S be a linearly independent (in the vector space K d , so
n ≤ d) set of its generators. Let vn+1, . . . , vd ∈ K d be such that {vi : i ∈ [d]} is a
basis of K d , and say vi = (vi, j : j ∈ [d]) with vi, j ∈ K . Then the square matrix
A := (vi, j : i, j ∈ [d]) ∈ Md×d(K ) is invertible, so A−1

∈ Md×d(K ) ⊆ Md×d(K̃ ),
so A is also invertible in Md×d(K̃ ), hence {vi : i ∈ [d]} are linearly independent
vectors in K̃ d as well. But now if

∑
i∈[n]

αivi = u for some αi ∈ K̃ and u ∈ K d , then
necessarily αi ∈ K for all i (otherwise we would get a nontrivial linear combination
of v1, . . . , vd in K̃ d ). Thus, any element of the OK̃ -module generated by v1, . . . , vn

which is in K d already belongs to the OK -module generated by v1, . . . , vn , hence
S̃ ∩ K d

= S. □

We can now demonstrate an (optimal) finite bound on the breadth of the family
of convex sets over valued fields. In sharp contrast, over the reals there is no such
finite bound already for convex subsets of R2 (for any n, a convex n-gon in R2 is
the intersection of n half-planes, but not the intersection of any fewer of them).

Theorem 4.3. Let K be a valued field and d ≥ 1. Then the family ConvK d has
breadth d. That is, any nonempty intersection of finitely many convex subsets of K d

is the intersection of at most d of them.

Proof. The family ConvK d cannot have breadth less than d because the d coordinate-
aligned hyperplanes are convex, have common intersection {0}, but any d − 1 of
them intersect in a line.

We now show that ConvK d has breadth at most d, by induction on d. The case
d = 1 is clear by Example 2.5(1) since for any two quasiballs, they are either
disjoint or one is contained in the other. For d > 1, assume C1, . . . , Cn ∈ ConvK d

with n ≥ d are convex and satisfy
⋂

i∈[n]
Ci ̸= ∅. Translating, we may assume

0 ∈
⋂

i∈[n]
Ci .

We may also assume that K is spherically complete. Indeed, let K̃ be a spher-
ical completion of K as in Fact 3.3, and let C̃i := convK̃ d (Ci ) ∈ ConvK̃ d . By
Lemma 4.2(2), C̃i ∩ K d

= Ci for each i ∈ [n]. Hence
⋂

i∈[n]
C̃i ̸= ∅, and if⋂

i∈[n]
C̃i =

⋂
i∈S C̃i for some S ⊆ [n] with |S| ≤ d , then also

⋂
i∈[n]

Ci =
⋂

i∈S Ci .
Then let the vector subspaces {0}⊊ F1 ⊊ · · ·⊊ Fd = K d and the upwards closed

subsets 11 ⊇ 12 ⊇ · · · ⊇ 1d of 0∞ be as given by Theorem 3.6 for the convex set
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C := C1 ∩ · · · ∩ Cn . By Remark 3.8 we have

1d = {γ ∈ 0∞ | ∀v ∈ K d , ν(v) = γ =⇒ v ∈ C1 ∩ · · · ∩ Cn}.

It follows that there is some id ∈ [n] such that in fact

(4-1) 1d = {γ ∈ 0∞ | ∀v ∈ K d , ν(v) = γ =⇒ v ∈ Cid }.

(Since these are finitely many upwards closed sets in 0, their intersection is already
given by one of them.)

Let {0} ⊊ F ′

1 ⊊ · · · ⊊ F ′

d = K d and 1′

1 ⊇ 1′

2 ⊇ · · · ⊇ 1′

d be as given by
Theorem 3.6 for Cid . By Remark 3.10(1), F ′

d−1 is a linear hyperplane so that every
element of Cid differs from an element of F ′

d−1 ∩ Cid by a vector with valuation
in 1′

d . As 1d = 1′

d by (4-1) and C ⊆ Cid , by Remark 3.10(1) we may assume that
Fd−1 = F ′

d−1, hence every element in Cid differs from an element of Fd−1 ∩ Cid by
a vector with valuation in 1d .

Consider C ∩ Fd−1 = C1 ∩ · · · ∩ Cn ∩ Fd−1 = (C1 ∩ Fd−1) ∩ · · · ∩ (Cn ∩ Fd−1).
Note that each Ci ∩ Fd−1 is a convex subset of Fd−1 ∼= K d−1, so by induction
hypothesis there exist i1, . . . , id−1 ∈ [n] such that

(4-2) Ci1 ∩ · · · ∩ Cid−1 ∩ Fd−1 = C1 ∩ · · · ∩ Cn ∩ Fd−1 = C ∩ Fd−1.

Let x ∈ Ci1 ∩· · ·∩Cid be arbitrary. As x ∈ Cid , by the choice of Fd−1, x =w+vd

for some w ∈ Fd−1 and vd ∈ K d with ν(vd) ∈ 1d . By the choice of 1d we have
vd ∈Ci1 ∩· · ·∩Cid . And as each Ci is a module, it follows that also w∈Ci1 ∩· · ·∩Cid .
Combining this with (4-2) and using Remark 3.9 (for j = d − 1) we thus have

Ci1 ∩ · · · ∩ Cid = {w + vd | w ∈ Ci1 ∩ · · · ∩ Cid ∩ Fd−1, ν(vd) ∈ 1d}

= {w + vd | w ∈ C ∩ Fd−1, ν(vd) ∈ 1d} = {v1 + · · · + vd | vi ∈ Fi , ν(vi ) ∈ 1i }

= C1 ∩ · · · ∩ Cn. □

Definition 4.4. (1) A family of sets F ⊆P(X) has Helly number k ∈ N≥1 if given
any n ∈ N and any sets S1, . . . , Sn ∈ F , if every k-subset of {S1, . . . , Sn} has
nonempty intersection, then

⋂
i∈[n]

Si ̸= ∅.

(2) The Helly number of F refers to the minimal k with this property (or ∞ if it
does not exist).

(3) We say that F has the Helly property if it has a finite Helly number.

Theorem 4.5. Let K be a valued field and d ≥ 1. Then the Helly number of ConvK d

is d + 1.

Proof. The Helly number is bounded by the Radon number minus 1 in an arbitrary
convexity space (see Section 5C), but we include a proof for completeness. Let n
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be arbitrary, and let S1, . . . , Sn ⊆ K d be convex sets so that any d +1 of them have
a nonempty intersection. We will show by induction on n that S1 ∩ · · · ∩ Sn ̸= ∅.

Base case: n = d +2. By assumption for each i ∈ [d +2] there exists some xi ∈ K d

so that xi ∈
⋂

j∈[d+2]\{i} S j . By Proposition 2.8 there exists some i∗
∈ [d + 2] so

that xi∗ ∈ conv({xi | i ̸= i∗
}). By the choice of the xi we have xi∗ ∈ Si for all i ̸= i∗.

We also have xi ∈ Si∗ for all i ̸= i∗, Si∗ is convex and xi∗ ∈ conv({xi | i ̸= i∗
}),

hence xi∗ ∈ Si∗ . Thus xi∗ ∈
⋂

i∈[d+2]
Si , as wanted.

Inductive step: n > d + 2. Let S̃n−1 := Sn−1 ∩ Sn; in particular S̃n−1 is convex. By
induction hypothesis, any n−1 sets from {S1, . . . , Sn} have a nonempty intersection.
Hence any n − 2 sets from {S1, . . . , Sn−2, S̃n−1} have a nonempty intersection. As
n − 2 ≥ d + 1 by assumption, applying the induction hypothesis again we get

S1 ∩ · · · ∩ Sn = S1 ∩ · · · ∩ Sn−2 ∩ S̃n−1 ̸= ∅.

This completes the induction, and shows that ConvK d has Helly number d + 1.
It remains to show that ConvK d does not have Helly number d. Let ei ∈ K d be

the i-th standard basis vector. The set E := {0, e1, . . . , ed} is affinely independent,
hence the intersection of the affine spans of its d + 1 maximal proper subsets is
empty. The convex hull of a subset of K d is contained in its affine hull, hence the
intersection of the d + 1 convex hulls of its maximal proper subsets is also empty.
But for any d among the (d + 1) maximal proper subsets of E , some element of E
belongs to their intersection, and hence in particular the intersection of their convex
hulls is nonempty. □

We recall some terminology around the Vapnik–Chervonenkis dimension (and
refer to [Aschenbrenner et al. 2016, Sections 1 and 2] for further details).

Definition 4.6. Let F ⊆ P(X) be a family of subsets of X .

(1) For a subset Y ⊆ X , we let F ∩ Y := {S ∩ Y : S ∈ Y } ⊆ P(Y ).

(2) We say that F shatters a subset Y ⊆ X if F ∩ Y = P(Y ).

(3) The VC dimension of F , or VC(F), is the largest k ∈ N (if one exists) such
that F shatters some subset of X size k. If F shatters arbitrarily large finite
subsets of X , then it is said to have infinite VC dimension.

(4) The dual family F∗
⊆ P(F) is given by F∗

= {Sx | x ∈ X}, where Sx = {A ∈

F | x ∈ A}.

(5) The dual VC dimension of F , or VC∗(F), is the VC dimension of F∗. Equiva-
lently, it is the largest k ∈ N (or ∞ if no such k exists) such that there are sets
S1, . . . , Sk ∈ F that generate a Boolean algebra with 2k atoms, i.e., for any
distinct I, J ⊆ [k],

⋂
i∈I Si ∩

⋂
i∈[k]\I (X \ Si ) ̸=

⋂
i∈J Si ∩

⋂
i∈[k]\J (X \ Si ).
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(6) The shatter function πF : N → N of F is

πF (n) := max{|F ∩ Y | : Y ⊆ X, |Y | = n}.

(7) By the Sauer–Shelah lemma (see for instance [Aschenbrenner et al. 2016,
Lemma 2.1]), if VC(F) ≤ d, then πF (n) ≤ (e/d)dnd for all n ≥ d (and
πF (n) = 2n for all n if VC(F) = ∞).

(8) The VC density of F , or vc(F), is the infimum of all r ∈ R>0 such that
πF (n) = O(nr ), and ∞ if there is no such r . (In particular vc(F) ≤ VC(F).)

(9) Finally, we define the dual shatter function π∗
F := πF∗ and the dual VC-density

vc∗(F) := vc(F∗) of the family F .

Remark 4.7. Note that if F ⊆ P(X) and Y ⊆ X , then VC(F ∩ Y ) ≤ VC(F) and
VC∗(F ∩ Y ) ≤ VC∗(F).

The following results are in stark contrast with the situation for the family of
convex sets over the reals, where already the family of convex subsets of R2 has
infinite VC dimension (e.g., any set of points on a circle is shattered by the family
of convex hulls of its subsets).

Theorem 4.8. Let K be a valued field and d ≥ 1. Then the family ConvK d has VC
dimension d + 1.

Proof. We have VC(ConvK d ) ≥ d +1 since the set E := {0, e1, . . . , ed} ⊆ K d , with
ei the i-th vector of the standard basis, is shattered by ConvK d . Indeed, the convex
hull of any subset is contained in its affine span, and for any S ⊆ E , aff(S) does
not contain any of the points in E \ S.

On the other hand, VC(ConvK d ) ≤ d + 1 as no subset Y of K d with |Y | ≥ d + 2
can be shattered by ConvK d . Indeed, by Proposition 2.8, at least one of the points
of Y belongs to every convex set containing all the other points of Y . □

The dual VC dimension of a family of sets is bounded by its breadth.

Fact 4.9 [Aschenbrenner et al. 2016, Lemma 2.9]. Let F ⊆ P(X) be a family of
subsets of X of breadth at most d. Then also VC∗(F) ≤ d.

Using this fact, we get the following:

Theorem 4.10. For any valued field K and d ≥ 1, the family ConvK d has dual VC
dimension d.

Proof. The dual VC dimension of ConvK d is at least d because the d coordinate-
aligned (convex) hyperplanes in K d generate a Boolean algebra with 2d atoms.

Conversely, the breadth of ConvK d is d by Theorem 4.3, hence by Fact 4.9 its
dual VC dimension is also at most d . □
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Definition 4.11. (1) A family of sets F ⊆ P(X) has fractional Helly number
k ∈ N≥1 if for every α ∈ R>0 there exists β ∈ R>0, so that for any n ∈ N and
any sets S1, . . . , Sn ∈ F (possibly with repetitions), if there are at least α

(n
k

)
k-element subsets of the multiset {S1, . . . , Sn} with a nonempty intersection,
then there are at least βn sets from {S1, . . . , Sn} with a nonempty intersection.

(2) The fractional Helly number of F refers to the minimal k with this property.
We say that F has the fractional Helly property if it has a fractional Helly
number.

Note that any finite family of sets trivially has fractional Helly number 1 by
choosing β sufficiently small with respect to the size of F . We will use the following
theorem of Matoušek.

Fact 4.12 [Matoušek 2004, Theorem 2]. Let F ⊆ P(X) be a set system whose dual
shatter function satisfies π∗

F (n) = o(nk), i.e., limn→∞ π∗
F (n)/nk

= 0, where k is a
fixed integer. Then F has fractional Helly number k.

Remark 4.13. Moreover, if VC∗(F) = d < ∞, then the fractional Helly number is
at most d + 1, and the β witnessing this can be chosen depending only on d and α

(and not on the family F).
Indeed, by Definition 4.6, if VC∗(F) ≤ d , then π∗

F (n) ≤ (e/d)dnd for all n ≥ d ,
hence π∗

F (n) ≤ cnd for all n ∈ N, where c = c(d) := (e/d)d
+ 2d . We can choose

m =m(d, α), so that π∗
F (m)< 1

4α
( m

d+1

)
. Then it follows from the proof of [Matoušek

2004, Theorem 2] that β = 1/(2m) works for all n ≥ m/β = 2m2, and trivially
β = 1/(2m2) works for all n ≤ 2m2, hence β := β(α, d) := 1/(2m2) works for all
n ∈ N.

Using this, we get the following:

Theorem 4.14. If K is a valued field, d ≥ 1, and X ⊆ K d is an arbitrary subset,
then the fractional Helly number of the family

ConvK d ∩X = {C ∩ X : C ∈ ConvK d } ⊆ P(X)

is at most d + 1. Moreover, β in Definition 4.11 can be chosen depending only on
d and α (and not on the field K or set X ). And if K is infinite, then the fractional
Helly number of the family ConvK d is exactly d + 1.

Proof. By Fact 4.12 we have that the fractional Helly number of a set system
is at most the smallest integer larger than its dual VC density. Dual VC density
is, in turn, at most its dual VC dimension. Also for any set X ⊆ K d we have
VC∗(ConvK d ∩X) ≤ VC∗(ConvK d ) by Remark 4.7. So ConvK d ∩X has dual VC
density at most d by Theorem 4.10, hence its fractional Helly number is at most
d + 1 by Fact 4.12. And an appropriate β can be chosen depending only on d and
α by Remark 4.13.
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To show that the fractional Helly number of ConvK d is at least d + 1 when K
is infinite, we can use the standard example with affine hyperplanes in general
position. We include the details for completeness. First note that as the field K is
infinite, for any K -vector space V of dimension k and v ∈ V \ {0} there exists an
infinite set S ⊆ V so that v ∈ S and any k vectors from S are linearly independent.
This is clear for k = 1 by taking any infinite set of nonzero vectors, so assume that
k > 1. By induction on i ∈ N≥k we can find sets Si such that v ∈ Si , |Si | ≥ i and
every k vectors from Si are linearly independent, for all i . Let Sk be any basis of V
containing v. Assume i > k and Si satisfies the assumption. Since K is infinite, V
is not a union of finitely many proper subspaces; in particular there exists some

w ∈ V \

⋃
s⊆Si ,|s|=k−1

⟨s⟩.

Let Si+1 := Si ∪ {w}. Since any s ⊆ Si with |s| = k − 1 is linearly independent by
the inductive assumption, it follows that s ∪ {w} is also linearly independent, hence
Si+1 satisfies the assumption. Finally, S :=

⋃
i∈N≥k

Si is as wanted.
In particular, we can find an infinite set of vectors S in K d

× K so that any d +1
of them are linearly independent and the standard basis vector ed+1 ∈ S. Then

X := {⟨v, −⟩ : v ∈ S} ⊆ (K d
× K )∗

is an infinite set of dual vectors such that any d +1 of them are linearly independent,
and it contains the projection map onto the last coordinate πd+1 := ⟨ed+1, −⟩ :

(x1, . . . , xd+1) 7→ xd+1. Consider the family

H := {ker( f ) | f ∈ X \ {πd+1}} ⊆ P(K d
× K )

of kernels of these dual vectors (excluding the projection map onto the last coordi-
nate), and let

H′
:= {{v ∈ K d

| (v, 1) ∈ H} | H ∈ H} ⊆ P(K d).

Then H′ is an infinite family of affine hyperplanes in K d , and we wish to show
that any d elements of H′ intersect in a point, and any d + 1 elements of H′ have
empty intersection. For any pairwise distinct f1, . . . , fd ∈ X \ {πd+1}, by linear
independence,

dim(ker( f1) ∩ · · · ∩ ker( fd)) = d + 1 − dim(⟨ f1, . . . , fd⟩) = 1.

And by their linear independence with πd+1,

dim(ker( f1) ∩ · · · ∩ ker( fd) ∩ ker(πd+1)) = 0.

That is, ker( f1) ∩ · · · ∩ ker( fd) is a line in K d
× K that intersects ker(πd+1) =

K d
×{0} only at the origin, and thus must also intersect K d

×{1} in a single point;
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this shows that every d elements of H′ intersect in a point. And any pairwise
distinct f1, . . . , fd+1 ∈ X \ {πd+1} span (K d

× K )∗ by linear independence, so
ker( f1) ∩ · · · ∩ ker( fd+1) = {0}, and thus has empty intersection with K d

× {1}.
This shows that every d + 1 elements of H′ have empty intersection.

Using α = 1, for any β > 0, take an arbitrary n ≥ (d +1)/β. Let H1, . . . , Hn ∈H′

be any distinct hyperplanes from this collection. All d-subsets, α
(n

d

)
of them, of

{H1, . . . , Hn} have an intersection point, but there are no βn ≥ d + 1 of them with
a common intersection point. Therefore ConvK d does not have fractional Helly
number d . □

Note that Theorems 4.5 and 4.14 replicate results for real convex sets, while
Theorems 4.3, 4.8, and 4.10 do not: as we have already remarked, ConvR2 has
infinite breadth, VC dimension, and dual VC dimension. The following result is
somewhere in between. The classical Tverberg theorem says that for any X ⊆ Rd

with |X |≥ (d+1)(r −1)+1, X can be partitioned into r disjoint subsets X1, . . . , Xr

whose convex hulls intersect: conv(X1)∩· · ·∩conv(Xr ) ̸=∅. Over valued fields, we
obtain a much stronger version (any element of the nonempty set Xr in the statement
of Theorem 4.15 belongs to the convex hulls of each of the sets X i , i ∈ [r ] — which
gives the usual conclusion of Tverberg’s theorem over the reals):

Theorem 4.15. Let K be a valued field and d, r ∈ N≥1. Then any set X ⊆ K d with

|X | ≥ (d + 1)(r − 1) + 1

points in K d can be partitioned into subsets X1, . . . , Xr such that |X i | = d + 1 for
i < r , |Xr | = |X | − (d + 1)(r − 1), and conv(X i ) ⊇ conv(X j ) for all i ≤ j ∈ [r ].

Proof. Since any finitely generated convex set is the convex hull of some d + 1
points from it by Corollary 2.9, we can find X1 ⊆ X with |X1| = d + 1 and
conv(X1)= conv(X), X2 ⊆ X \X1 with |X2|= d+1 and conv(X2)= conv(X \X1),
and so on: once X1, . . . , X i−1 have been chosen, pick X i ⊆ X \

(⋃i−1
j=1 X j

)
such

that |X i | = d + 1, conv(X i ) = conv
(
X \

⋃i−1
j=1 X j

)
, and then let Xr consist of

everything left over at the end. □

From this strong Tverberg theorem and the fractional Helly property, we finally
get an analog of the result due to Boros and Füredi [1984] and Bárány [1982] on
the common points in the intersections of many “simplices” over valued fields.
Note that the conclusion is actually stronger than over the reals: the common point
comes from the set X itself. This answers a question asked by Kobi Peterzil and
Itay Kaplan. Our argument is an adaptation of the second proof in [Matoušek 2002,
Theorem 9.1.1].

Theorem 4.16. For each d ≥ 1 there is a constant c = c(d) > 0 such that for any
valued field K and any finite X ⊆ K d (say n := |X |), there is some a ∈ X contained
in the convex hulls of at least c

( n
d+1

)
of the

( n
d+1

)
subsets of X of size d + 1.
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Proof. Let X ⊆ K d with |X | = n be given, and let

F := ConvK d ∩X = {C ∩ X : C ∈ ConvK d }

be the family of all subsets of X cut out by the convex subsets of K d . Let (Si )i∈[N ]

with Si ∈ ConvK d be the sequence listing all convex hulls of subsets of X of size
d + 1 in an arbitrary order (possibly with repetitions). Then N =

( n
d+1

)
, and for a

(d + 1)-element subset Y ⊆ X we let g(Y ) ∈ [N ] be the index at which conv(Y )

appears in this sequence. For each i ∈ [N ] let S′

i := Si ∩ X ∈ F . It is thus sufficient
to show that there exists some α > 0, depending only on d , such that at least α

( N
d+1

)
of the (d +1)-element subsets I ⊆[N ] satisfy

⋂
i∈I S′

i ̸=∅— as then Theorem 4.14
applied to F ⊆ P(X) shows the existence of c > 0 depending only on α and d , and
hence only on d, so that for some I ⊆ [N ] with |I | ≥ cN = c

( n
d+1

)
there exists

some a ∈
⋂

i∈I S′

i ⊆
⋂

i∈I Si (in particular a ∈ X ).
Now we find an appropriate α. For any (d + 1)2-element subset Y ⊆ X , by

Theorem 4.15 (with r := d +1), we can fix a partition of Y into d +1 disjoint parts
Y1, . . . , Yd+1, each of which having d+1 elements, and so that conv(Yi )⊇ conv(Y j )

for all i ≤ j ∈ [d + 1]. In particular any element of the nonempty set Y[d+1] ⊆ X
belongs to

⋂
i∈[d+1]

(conv(Yi ) ∩ X) =
⋂

i∈[d+1]
(S′

g(Yi )
). As g is a bijection, Y 7→

{g(Yi ) : i ∈ [d + 1]} gives a function f from (d + 1)2-element subsets of X to
(d + 1)-element subsets I ⊆ [N ], so that

⋂
i∈I S′

i ̸= ∅. Moreover, f is an injection.
Indeed, given a set { ji : i ∈ [d + 1]} in the image of f , as g is a bijection, there is a
unique set {Y1, . . . , Yd+1} with Yi ⊆ X disjoint of size d + 1, so that g(Yi ) = ji for
all i ∈ [d + 1], and there can be only one set Y ⊆ X of size (d + 1)2 for which it is
a partition. If follows that the number of sets I ⊆ [N ] with

⋂
i∈I S′

i ̸= ∅ is at least( n
(d+1)2

)
= �(n(d+1)2

) ≥ α
( N

d+1

)
for some sufficiently small α depending only on d . □

5. Final remarks and questions

5A. Some further results and future directions. The results of Section 4 imply
the following analog of the celebrated (p, q)-theorem of Alon and Kleitman [1992]
for convex sets over valued fields.

Corollary 5.1. For any d, p, q ∈ N≥1 with p ≥ q ≥ d + 1 there exists T =

T (p, q, d) ∈ N such that if K is a valued field and F is a family of convex subsets
of K d such that among every p sets of F , some q have a nonempty intersection,
then there exists a T -element set Y ⊆ K d intersecting all sets of F .

Corollary 5.1 follows formally by applying [Alon et al. 2002, Theorem 8] since
the family ConvK d has fractional Helly property (Theorem 4.14) and is closed
under intersections. Alternatively, it follows with a slightly better bound on T by
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combining the fractional Helly property with the existence of ε-nets for families of
bounded VC dimension (Theorem 4.8), as outlined at the end of [Matoušek 2004,
Section 1]. The problem of determining the optimal bound on T (p, q, d) is widely
open over the reals (see [Bárány and Kalai 2022, Section 2.6]), and we expect that
it might be easier in the valued fields setting.

Kalai [1984] and Eckhoff [1985] proved that in the fractional Helly property
for convex sets over the reals, one can take β(d, α) = 1 − (1 −α)1/(d+1) (and this
bound is sharp).

Problem 5.2. What is the optimal dependence of β on d, α in Theorem 4.14?

Over R, Sierksma’s Dutch cheese conjecture predicts a lower bound for the num-
ber of Tverberg partitions (see for instance [De Loera et al. 2019, Conjecture 3.12]).
We expect the same bound to hold over valued fields:

Conjecture 5.3. For any valued field K and X ⊂ K d with |X | = (r −1)(d +1)+1,
there are at least ((r − 1)!)d partitions of X into parts whose convex hulls intersect.

Remark 5.4. In Theorem 4.15, we showed the existence of Tverberg partitions
satisfying the stronger property that the convex hulls of the parts are linearly
ordered by inclusion. It is not true that for X ⊆ K d with |X | = (d + 1)(r − 1) + 1,
there are at least ((r − 1)!)d different ways of partitioning X into X1, . . . , Xr

such that conv(X1) ⊇ · · · ⊇ conv(Xr ). Thus any attempt to prove Conjecture 5.3
would have to involve other Tverberg partitions that do not have this property.
For an example in K 2 where this bound fails, let x ∈ K with ν(X) ̸= 0, and let
X := {(xn, x−n) | n ∈ [3(r − 1)+ 1]}. For any partition of X into X1, . . . , Xr such
that conv(X1) ⊇ · · · ⊇ conv(Xr ), for each i < r , X i must consist of the points
corresponding to the lowest and highest values of n among all points not already in
X1 ∪ · · · ∪ X i−1, together with one of the other 3(r − i) − 1 remaining points, and
Xr must consist of whatever point is left over. So the number of partitions of X of
this form is

∏r−1
i=1 (3(r − i) − 1) <

∏r−1
i=1 3(r − i) = 3r−1(r − 1)! < ((r − 1)!)2 for

large enough r .

We expect that the colorful Tverberg theorem also holds over valued fields,
however the proofs for convex sets over R rely on topological arguments not readily
available in the valued field context:

Conjecture 5.5. For any integers r, d ≥ 2 there exists t ≥ r such that for any valued
field K and X ⊆ K d with |X | = t (d + 1), partitioned into d + 1 color classes
C1, . . . , Cd+1 each of size t , there exist pairwise disjoint X1, . . . , Xr ⊆ X with
|X i ∩ C j | = 1 for i ∈ [r ] and j ∈ [d + 1], and

⋂
i∈[r ]

conv(X i ) ̸= ∅.

It would formally imply (see [Matoušek 2002, Section 9.2]) the “second selection
lemma” over valued fields generalizing Theorem 4.16:
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Conjecture 5.6. For each d ∈ N≥1 there exist c, s > 0 such that for any valued
field K , α ∈ (0, 1] and n ∈ N, for every X ⊆ K d with |X | = n, and every family F
of (d + 1)-element subsets of X with |F | ≥ α

( n
d+1

)
, there is a point contained in

the convex hulls of at least cαs
( n

d+1

)
of the elements of F .

Corollary 3.12 has the following immediate model-theoretic application.

Remark 5.7. If K is a spherically complete valued field, then every convex subset
of K d is definable in the expansion of the field K by a predicate for each Dedekind
cut of the value group (so in particular definable in Shelah expansion of K by
all externally definable sets [Shelah 2009; Chernikov and Simon 2013]). And
conversely, every Dedekind cut of the value group is definable in the expansion of
K by a predicate for each O-submodule of K . In particular, if K has value group Z,
then all convex subsets of K d form a definable family.

Example 5.8. In contrast, naming a single (bounded) convex subset of R2 in the
field of reals allows to define the set of integers. Indeed, we can define a continuous
and piecewise linear function f : [0, 1] → [0, 1] such that

C := {(x, y) : x ∈ [0, 1], 0 ≤ y ≤ f (x)}

is convex but the set of points where f is not differentiable is exactly {1/n :n ∈N≥2}.
Now in the field of reals with a predicate for C we can define f and the set of
points where it is not differentiable, hence N is also definable.

5B. Other notions of convexity over nonarchimedean fields. We briefly overview
several other kinds of convexities over nonarchimedean fields considered in the
literature. The extension of Hilbert (projective) geometry to convex sets in a
generalized sense is a topic of high current interest, see for instance [Guilloux
2016]. In a different spirit, in tropical geometry, convex sets over real closed
nonarchimedean fields have been considered (unlike what is done here, this leads to
a combinatorial convexity similar to the classical one, since by Tarski’s completeness
theorem, polyhedral properties of a combinatorial nature are the same over all
real closed fields). Moreover, tropical polyhedra are obtained as images of such
polyhedra by the nonarchimedean valuation, see for instance [Develin and Yu
2007]. Polytopes and simplexes in p-adic fields are introduced in [Darnière 2017;
2019], and demonstrated to play in p-adically closed fields the role played by real
simplexes in the classical results of triangulation of semialgebraic sets over real
closed fields. Although we are not aware of any direct link of these results with the
present work, we hope for some connections to be found in the future.

5C. Abstract convexity spaces. Our results here can be naturally placed in the
context of abstract convexity spaces; we refer to [van de Vel 1993] for an introduction
to the subject. A convexity space is a pair (X, C), where X is a set and C ⊆ 2X is
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a family of subsets of X closed under intersection with ∅, X ∈ C. The sets in C
are called convex. Given a subset Y ⊆ X , the convex hull of Y , denoted conv(Y ),
is the smallest set in C containing Y (equivalently, the intersection of all sets in
C containing Y ). A convex set C ∈ C is called a half-space if its complement
is also convex. The convexity space (X, C) is separable if for every C ∈ C and
x ∈ X \C , there exists a half-space H ∈ C such that C ⊆ H and x /∈ H (equivalently,
if every convex set is the intersection of all half-spaces containing it). Separability
is an abstraction of the hyperplane separation (and more generally Hahn–Banach)
theorem. In particular, (Rd , ConvRd ) is a separable convexity space (see [Moran
and Yehudayoff 2019, Section 1.1] or [van de Vel 1993] for many other examples).
The Radon number1 of a convexity space (X, C) is the smallest k ∈ N≥1 (if it exists)
such that every Y ⊆ X with |Y | > k can be partitioned into two parts Y1, Y2 such
that conv(Y1)∩conv(Y2) ̸=∅. The classical Radon’s theorem states that the Radon
number of (Rd , ConvRd ) equals d +1. Given ∅ ̸= Y ⊆ X , a partition Y1, . . . , Yr of
Y is Tverberg if

⋂r
i=1 conv(Yi ) ̸= ∅. The r-th Tverberg number of (X, C) is the

smallest k such that every Y ⊆ X with |Y | > k has a Tverberg partition in r +1 parts.
Note that the first Tverberg number is the Radon number, and the classical theorem
of Tverberg says that the r -th Tverberg number of (Rd , ConvRd ) is r(d + 1).

Now let K be a valued field and d ∈ N≥1. Then (K d , ConvK d ) is a convexity
space, but we stress that it is not separable; in fact, ∅ and K d are the only half-
spaces. This is because for any nonempty proper convex set C , if we let x ∈ C ,
y ∈ K d

\C , and α ∈ K \O, then z := x +α(y−x) /∈ C , since y = α−1z+(1−α−1)x
is a convex combination. But then x = (1 −α)−1(z −αy) is a convex combination
of elements of K d

\ C , so K d
\ C is not convex.

Proposition 2.8 implies that the Radon number of (K d , ConvK d ) is d +1. By the
Levi inequality in an arbitrary convexity space [van de Vel 1993, Chapter II(1.9)],
it follows that the Helly number of ConvK d (Definition 4.4) is at most d + 1 (we
included a proof in Theorem 4.5 for completeness). It was also recently shown in
[Holmsen and Lee 2021] that in any convexity space (X, C) with Radon number k,
C has a fractional Helly number (Definition 4.11) bounded by some function of k. In
the case of (K d , ConvK d ) this general bound is much weaker than the optimal bound
d + 1 given in Theorem 4.14. Corollary 2.9 implies that the Carathéodory number
of (K d , ConvK d ) is d +1 (see [van de Vel 1993, Chapter II(1.5)] for the definition).
Finally, Theorem 4.15 implies that the r-th Tverberg number of (K d , ConvK d ) is
r(d+1); finiteness of the r -th Tverberg numbers for all r follows from the finiteness
of the Radon number in an arbitrary convexity space, with a much weaker bound
[van de Vel 1993, Chapter II(5.2)].

1An alternative definition uses ≥ instead of >, leading to a value higher by 1. The definition here
follows [van de Vel 1993, Chapter II].
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