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RIGIDITY OF 3D SPHERICAL CAPS VIA µ-BUBBLES

YUHAO HU, PENG LIU AND YUGUANG SHI

By using Gromov’s µ-bubble technique, we show that the 3-dimensional
spherical caps are rigid under perturbations that do not reduce the metric,
the scalar curvature, and the mean curvature along its boundary. Several
generalizations of this result will be discussed.

1. Introduction

In recent decades, a lot of progress has been made toward understanding the scalar
curvature of a Riemannian manifold; see [Gromov 2023]. A particular medium
for gaining such understanding is to answer whether one can perturb the metric
of a “model space” in certain ways without reducing its scalar curvature. This
viewpoint was famously represented by the positive mass theorem and its various
generalizations and analogues. One analogue, which motivated the current work,
is the following conjecture proposed by Min-Oo around 1995; see [Min-Oo 1998,
Theorem 4].

Conjecture 1.1 (Min-Oo). Suppose that g is a smooth Riemannian metric on the
(topological) hemisphere Sn

+
(n ≥ 3) with the properties:

(1) The scalar curvature Rg satisfies Rg ≥ n(n − 1) on Sn
+

.

(2) The boundary ∂ Sn
+

is totally geodesic with respect to g.

(3) The induced metric on ∂ Sn
+

agrees with the standard metric on Sn−1.

Then g is isometric to the standard metric on Sn
+

.

Unlike its counterparts modeled on Rn and Hn ,1 Min-Oo’s conjecture turned
out to admit counterexamples; see [Brendle et al. 2011]. Yet, its statement remains
interesting, especially when it is compared with the following theorem of Llarull
[1998, Theorem A].

Theorem 1.2 (Llarull). Let (Sn, ĝ) be the standard n-sphere (n ≥ 3). Suppose that
g is another Riemannian metric on Sn satisfying g ≥ ĝ and Rg ≥ Rĝ. Then g = ĝ.

MSC2020: primary 53C21; secondary 53C24.
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1See [Schoen and Yau 1979, Corollary 2; Gromov and Lawson 1983, Theorem A; Min-Oo 1989;
Andersson et al. 2008].
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A side-by-side view of Min-Oo’s conjecture and Llarull’s theorem suggests the
following.

Conjecture 1.3. Let (Sn
+
, ĝ) be the standard n-dimensional hemisphere. Then

Conjecture 1.1 holds under the additional assumption: g ≥ ĝ.

Our first result in this article is that Conjecture 1.3 holds when n = 3; here is a
more precise statement; also see Corollary 3.12 below.

Theorem 1.4. Let (S3
+
, ĝ) be the standard 3-dimensional hemisphere. Suppose that

g is another Riemannian metric on S3
+

with the properties:

(1) g ≥ ĝ and Rg ≥ Rĝ on S3
+

.

(2) the mean curvature Hg on ∂ S3
+

satisfies Hg ≥ 0.2

(3) The induced metrics on ∂ S3
+

satisfy g∂ S3
+

= ĝ∂ S3
+

.

Then g = ĝ.

As we will see below, Theorem 1.4 admits a somewhat direct proof. With more
technical work, we can generalize it in the following aspects: (i) the assumption (3)
in Theorem 1.4 will be removed; and (ii) the model space will not need to be the
standard hemisphere — it can be a “spherical cap” or, more generally, a geodesic
ball inside a space form. To make these points explicit, we now state our main
result; also see Theorem 5.3 below.

Theorem 1.5. For any suitable constants κ, µ, let (Bκ,µ, ĝκ) be a geodesic ball in
the 3-dimensional space form with sectional curvature κ such that ∂ Bκ,µ has mean
curvature µ. Suppose that g is another Riemannian metric on Bκ,µ satisfying

g ≥ ĝκ , Rg ≥ 6κ on Bκ,µ and Hg ≥ µ on ∂ Bκ,µ.

Then g = ĝκ .

In Gromov’s first preprint of [2019a], a (more general) version of Theorem 1.5
was stated as a “nonexistence” result (see [Gromov 2019b, Theorem 1]); an outline
of proof was sketched, which relied on a “generalized Llarull’s theorem”. Fol-
lowing Gromov’s main idea, we present a detailed and purely variational proof of
Theorem 1.5; this theorem also confirms, in the case of n = 3, a rigidity statement
mentioned in [Gromov 2019b, Remark (d)] without proof.

A simple modification of the proof of Theorem 1.5 yields the following; also
see Theorem 5.1.

2Given a domain � in a Riemannian manifold, unless we specify otherwise, we shall adopt the
(sign) convention for the mean curvature of ∂� to be H = tr(∇ν), where ν is the outward unit normal
along ∂�. Under this convention, the mean curvature of the boundary of the unit ball in Rn is n − 1.
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Theorem 1.6. Let (S3
\ {O, O ′

}, ĝ) be the standard 3-sphere with a pair of antipo-
dal points removed, and let h ≥ 1 be a smooth function on S3

\ {O, O ′
}. Suppose

that g is another Riemannian metric on S3
\ {O, O ′

} satisfying

g ≥ h4ĝ and Rg ≥ h−2 Rĝ.

Then h ≡ 1, and g = ĝ.

When h ≡ 1, Theorem 1.6 is a special case of Gromov’s theorem of “extremality
of doubly punctured spheres” (see [Gromov 2023, Sections 5.5 and 5.7]), and it
implies Theorem 1.2 in the case of n = 3. We also remark that Theorem 1.6 would
fail without the assumption h ≥ 1 (see Remark 5.2 below). We tend to believe that
the conclusion of Theorem 1.6 still holds when the condition g ≥ h4ĝ is replaced
by g ≥ h2ĝ; a condition such as inf h > 0 would still be needed, otherwise, the
metric in Remark 5.2 would serve as a counterexample.

Before sketching our technical ingredients, let us remind the reader that since
the early 1980s, two different approaches — variational and spinorial — have been
developed for studying the scalar curvature. Yet, for more than two decades,
extensions of Llarull’s rigidity theorem, like Llarull’s original proof, had been
mainly carried out from the spinorial approach. See, for example, [Goette and
Semmelmann 2002; Herzlich 2005; Listing 2009; Cecchini and Zeidler 2022,
especially Theorem 1.15, Corollary 1.17; Lott 2021; Su et al. 2022; Zhang 2020]. It
is relatively recent that variational methods have also become available for proving
results of Llarull type.3 A key in this new development, which is also a main tool
for the current paper, is Gromov’s µ-bubble technique [2023, Section 5].

Roughly speaking, given a function µ on a Riemannian manifold (Mn, g), a
µ-bubble is a minimizer (and a critical point) of the functional

(1-1) � 7→ voln−1(∂�) −

∫
�

µ

defined for suitable subsets � ⊂ M ; given a µ-bubble, useful geometric information
can be extracted from its first and second variation formulae. In order to guarantee
that a nondegenerate µ-bubble exists, (M, g) is often assumed to be a Riemannian
band,4 and µ is often required to satisfy a barrier condition (see (2-2) below),
which prevents minimizing sequences from collapsing either to a point or into ∂ M .

In some cases, even without the assumption of either a Riemannian band or
a barrier condition, a µ-bubble may still be found by direct observation of the
functional (1-1). This is the case with our proof of Theorem 1.4. In fact, if we

3To our best knowledge, a purely variational proof of Llarull’s original theorem remains to be
found.

4See Section 2A below for definition, and see [Gromov 2018; Räde 2021] for related discussion.
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modify (1-1) by considering the new functional

(1-2) � 7→ voln−1(∂�) +

∫
S3

+\�

µ,

the variational properties remain unchanged; in our situation, the new functionals
associated to g and ĝ admit an inequality, which becomes an equality when � =

S3
+

, and then direct comparison shows that S3
+

is a µ-bubble (see the proof of
Corollary 3.12). We note that this argument crucially relies on the assumption (3)
in Theorem 1.4.

Now let us continue to take Theorem 1.4 as an example to explain how to obtain
rigidity results from having an “initial” µ-bubble �. Although � need not be S3

+
,

we do, for a technical reason, require that ∂� has a connected component 60 whose
projection onto S2 has nonzero degree (see (3-6)) — for simplicity, let us call such
a 60 a “good component”. By using the second variation and the Gauss–Bonnet
formulae, we show that, under certain extra assumptions, 60 must be a 2-sphere
parallel (with respect to ĝ) to the equator ∂ S3

+
; furthermore, along 60 the ambient

metric g must agree with ĝ (Proposition 3.4). This obtained, a standard foliation
lemma (Lemma 3.8) and minimality of � imply that g must agree with ĝ in a
neighborhood of 60 (Lemma 3.10). Finally, with an “open-closed” argument and
standard facts in geometric measure theory, we show that such a neighborhood can
be extended to the whole manifold, thus completing the proof (Proposition 3.11).

In the more general setting of Theorem 1.5, the existence of an “initial” µ-bubble
becomes less direct to prove. For simplicity, let us still assume that the model
space is the standard hemisphere. Although (S3

+
, g) is not a Riemannian band, we

may consider creating one from it by removing a small geodesic ball centered at
the north pole O ∈ (S3

+
, ĝ), but an immediate problem arises: the natural choice

µ = Ĥ (see (3-3)), which corresponds to the mean curvature of the geodesic spheres
centered at O with respect to ĝ, may not satisfy the barrier condition.

To address this problem, we construct a sequence of perturbations µϵ (see (4-3);
also see [Zhu 2021, Section 3]) of Ĥ that do satisfy the barrier conditions on a
corresponding sequence of Riemannian bands Mϵ ⊂ S3

+
. In particular, in each Mϵ

there exists a µϵ-bubble �ϵ (Lemma 4.1). By construction, µϵ tends to Ĥ , and Mϵ

tends to S3
+

, as ϵ approaches 0. However, two new questions arise:

(a) As ϵ tends to 0, do the �ϵ subconverge to an Ĥ-bubble � in (S3
+
, g)?

(b) If so, does ∂� possess a component whose projection to S2 has nonzero degree?

To put these in a slightly different way, regarding (a), we worry that �ϵ may become
degenerate in the limit; regarding (b), we worry that the “good components” of
∂�ϵ may either approach the north pole O and thus lose the “degree” property, or
“meet and cancel” each other so that none of them is actually preserved in the limit.
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In Sections 4C and 4D, we answer both questions (a) and (b) in the affirmative. A
key step is to argue that each ∂�ϵ not only possesses a “good component” 6ϵ

0 , but
such a component must be disjoint from a fixed neighborhood of O ∈ S3

+
provided

that ϵ is small (Proposition 4.7), which is, again, enforced by the Gauss–Bonnet
theorem. This step allows us to obtain a universal upper bound for the norm of the
second fundamental form on 6ϵ

0 , which is then used to prove the existence of a
limiting hypersurface 60 that is indeed a component of ∂� (Lemma 4.11).

Once having an “initial” µ-bubble, one may complete the proof of Theorem 1.5
by the foliation argument described above.

Regarding Theorem 1.6, we may consider Riemannian bands in S3
\ {O, O ′

}

bounded by small geodesic spheres in (S3, ĝ) centered at O and O ′, but because of
the lack of mean curvature information with respect to g along those boundaries,
perturbations of the form (4-3) are no longer adequate for meeting the barrier
condition. To address this issue, we construct new functions µα by composing the
function Ĥ with dilations of S3

\ {O, O ′
} in the “longitude” direction, and then µα

will satisfy the desired barrier conditions; see Section 5 for more detail. The rest of
the proof is similar to the other cases.

Remark 1.7. After our paper was submitted, an analogous result of Theorem 1.5 for
higher dimensional spherical domains was proved in [Lee and Tam 2022]. Relying
on harmonic maps flow and Ricci flow their argument works only for the case of
compact domains in sphere for the time being.

2. Elements of Gromov’s µ-bubble technique

In this section we recall some elements of Gromov’s µ-bubble technique. Our
discussion follows Section 5 of [Gromov 2023], Section 2 of [Zhu 2021] and
Section 3 of [Zhou and Zhu 2020].

2A. µ-bubbles in a Riemannian band. Let (Mn, g) be a compact Riemannian
manifold whose boundary ∂ M is expressed as a disjoint union ∂ M = ∂− ⊔ ∂+

where both ∂− and ∂+ are closed hypersurfaces. Such a quadruple (M, g; ∂−, ∂+)

is called a Riemannian band. Given a Riemannian band, let �0 ⊂ M be a fixed
smooth Caccioppoli set that contains a neighborhood of ∂− and is disjoint from
a neighborhood of ∂+;5 we call such an �0 a reference set. Let C�0 denote the
collection of Caccioppoli sets � ⊂ M satisfying �1�0 ⋐ M̊ (“⋐” reads “is
compactly contained in”); here �1�0 denotes the symmetric difference between
� and �0, and M̊ stands for the interior of M .

5Also known as “sets of locally finite perimeter”; see [Giusti 1984] for details.
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Let µ be either a smooth function on M , or a smooth function defined on M̊
satisfying µ → ±∞ on ∂∓. For � ∈ C�0 consider the brane action

(2-1) Aµ
�0

(�) := Hn−1(∂�) −Hn−1(∂�0) −

∫
M

(χ� − χ�0)µ dHn

where Hk is the k-dimensional Hausdorff measure induced by g and χ� denotes
the characteristic function associated to �. A minimizer � of (2-1) is called a
µ-bubble.

Remark 2.1. (1) For �1, �2 ∈ C�0 , we have Aµ
�0

(�2)−Aµ
�1

(�2)=Aµ
�0

(�1); thus,
in a sense, minimizers are independent of the choice of a reference set. (2) The
brane action (2-1) may be defined on manifolds that are not necessarily Riemannian
bands; in those cases, one may replace Hn−1(∂�) by Hn−1(∂(�∩K )) and similarly
for Hn−1(∂�0), where K is a compact set such that �1�0 ⊂ K .

2B. Existence and regularity.

Definition 2.2. Given a Riemannian band (M, g; ∂−, ∂+), a function µ is said
to satisfy the barrier condition if either µ ∈ C∞(M̊) with µ → ±∞ on ∂∓, or
µ ∈ C∞(M) with

(2-2) µ|∂−
> H∂−

, µ|∂+
< H∂+

where H∂−
is the mean curvature of ∂− with respect to the inward normal and H∂+

is the mean curvature of ∂+ with respect to the outward normal.

Lemma 2.3 [Zhu 2021, Proposition 2.1]. Let (Mn, g; ∂−, ∂+) be a Riemannian
band with n ≤ 7, and let �0 be a reference set. If µ satisfies the barrier condition,
then there exists an � ∈ C�0 with smooth boundary such that

Aµ
�0

(�) = inf
�′∈C�0

Aµ
�0

(�′).

Remark 2.4. In Lemma 2.3 the smooth hypersurface 6 := ∂� \ ∂− is homologous
to ∂+.

2C. Variational properties. Let � be a smooth µ-bubble in a Riemannian band
(Mn, g; ∂−, ∂+), and let 6 = ∂� \ ∂−. One may derive variation formulae for Aµ

at �; see (2.3) in [Zhu 2021] and the unnumbered equation above it. Specifically,
the first variation implies that the mean curvature of 6 (with its outward normal ν)
is equal to µ|6; the second variation implies that the Jacobi operator

(2-3) J6 := −16 +
1
2(R6 − Rg − µ2

− |II|2) − ν(µ)

is nonnegative, where 16 and R6 are respectively the g-induced Laplacian and
scalar curvature of 6; Rg is the scalar curvature of (M, g); and II is the second
fundamental form of 6.
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Definition 2.5. Let µ be a smooth function on a Riemannian manifold (Mn, g).
A smooth two-sided hypersurface S ⊂ M with unit normal ν is said to be a µ-
hypersurface if its mean curvature taken with respect to ν is equal to µ|S .

Clearly, (2-3) also makes sense when 6 is replaced by a µ-hypersurface; this
motivates the following notion of stability.

Definition 2.6. A µ-hypersurface S ⊂ M with unit normal ν is said to be stable if
JS is nonnegative on C∞

0 (S).

Remark 2.7. If µ satisfies the barrier condition, then for any µ-bubble � each con-
nected component of ∂�\∂− with its outward unit normal is a stable µ-hypersurface.

Let S be a µ-hypersurface. Following [Gromov 2023, Section 5.1] we consider
the operator

(2-4) LS := −1S +
1
2(RS − Rµ

+)

where

(2-5) Rµ
+ := Rg +

n
n − 1

µ2
− 2|dµ|g.

In fact, LS is obtained from applying the obvious inequalities

(2-6) −∂νµ ≤ |dµ|g, |II|2 ≥
1

n − 1
µ2

to JS . One can easily verify that the following holds when S is stable:

(2-7) LS ≥ JS ≥ 0.

Example 2.8. Consider S2
× [t1, t2] (0 < t1 < t2 < π) equipped with the metric

g = (sin2 t)gS2 + dt2 where gS2 is the standard metric on S2. This represents an
annular region in the standard S3. Take µ(t) = 2 cot t . It is easy to see that each
t-level set St , with the unit normal ν = ∂t , is a µ-hypersurface. Moreover, on St we
have

Rg = 6, RSt =
2

sin2 t
, |II|2 = 2 cot2 t, ν(µ) = µ′(t) = −

2

sin2 t
.

In this case, both JSt and L St reduce to −1St .

The following lemma is a direct consequence of Theorem 3.6 in [Zhou and Zhu
2020].
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Lemma 2.9. Let (Mn, g) be a closed Riemannian manifold with 2 ≤ n ≤ 6, and let
µ ∈ C∞(M). Let S be an immersed stable µ-hypersurface contained in an open
subset V ⊂ M and satisfying ∂S ∩ V = ∅. If area(S) ≤ C for some constant C ,
then there exists a constant C1 = C1(M, n, ∥µ∥C3(M), C) such that

(2-8) |II|2(x) ≤
C1

dist2g(x, ∂V )
for all x ∈ S.

2D. Comparison with a warped-product metric. Given a Riemannian manifold
(N n−1, gN ), an interval I (with coordinate t) and a function ϕ : I → R+, consider
the warped product metric defined on N̂ := N × I

(2-9) ĝ := ϕ(t)2gN + dt2.

A standard calculation shows that the mean curvature on each slice N ×{t} with
respect to the ∂t -direction is

(2-10) Ĥ(t) = (n − 1)
ϕ′(t)
ϕ(t)

;

moreover, one may verify that the scalar curvature Rĝ of ĝ satisfies

(2-11) 0 = −Rĝ +
1
ϕ2 RN −

n
n − 1

Ĥ 2
− 2

d Ĥ
dt

,

where RN is the scalar curvature of (N , gN ).
Now suppose that f : M → N̂ is a smooth map from a Riemannian band

(M, g; ∂−, ∂+) to N̂ . By pulling back all functions in (2-11) via f and adding the
resulting equation with (2-5), we obtain

(2-12) Rµ
+ =

1
ϕ2 RN + (Rg − Rĝ) +

n
n − 1

(µ2
− Ĥ 2) − 2(∂t Ĥ + |dµ|g),

where pull-back symbols are omitted for clarity. The expression (2-12) will be
useful in our analysis of µ-bubbles.

3. Rigidity of 3D spherical caps

A spherical cap of radius T ∈ (0, π) in the standard S3 may be represented by the
closed ball BT := {x ∈ R3

: |x| ≤ T } equipped with the metric

(3-1) ĝ = ϕ(t)2gS2 + dt2 with ϕ(t) = sin t,

where t ∈ [0, T ] serves as the radial coordinate on BT and gS2 is the standard metric
on S2. For t ∈ (0, T ], let St := ∂ Bt . For 0 < t1 < t2 ≤ T , let B[t1,t2] := Bt2 \ B̊t1 ;
similarly, let B(t1,t2] := Bt2 \ Bt1 . Given a domain � ⊂ BT with smooth boundary
6, the outward normal along 6 with respect to the metric ĝ will be denoted by ν̂.
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The objective of this section and the next is to prove the following rigidity
theorem.

Theorem 3.1. Let (BT , ĝ) be the 3-dimensional spherical cap of radius T ∈ (0, π).
Suppose that g is another Riemannian metric on BT satisfying

(3-2) g ≥ ĝ, Rg ≥ Rĝ on BT , and Hg ≥ Hĝ = 2 cot T on ∂ BT .

Then g = ĝ.

Our proof begins by establishing a key ingredient: certain stable µ-hypersurfaces
are necessarily t-level sets in BT (Proposition 3.4), the justification of which hinges
on an integral inequality (see (3-14)) involving an application of the Gauss–Bonnet
formula. This result is followed by a classical foliation lemma (Lemma 3.8). Under
a suitable “minimality” assumption (Assumption 3.9), each leaf in that foliation
turns out to be stable, which implies local rigidity of the metric (Lemma 3.10).
Section 3 culminates at Proposition 3.11, which justifies Theorem 3.1 assuming
the existence of an “initial” minimizer (Assumption 3.9); this assumption will be
verified in Section 4 via a perturbation argument (see Proposition 4.12).

3A. Stable µ-hypersurfaces and t-level sets. The metric (3-1) is of the form (2-9);
thus, (2-10) applies to give

(3-3) Ĥ(t) = 2 cot t.

It will be useful to define, for µ = µ(t), the function (see the last two terms in
(2-12))

(3-4) Zµ(t) :=
3
2(µ(t)2

− Ĥ(t)2) − 2(Ĥ ′(t) − µ′(t))

=
3
2µ(t)2

+ 2µ′(t) − 6 cot2 t +
4

sin2 t
.

Notice, in particular, that Z Ĥ (t) ≡ 0. As t is a coordinate on BT , we may regard µ

and Zµ as functions defined on BT \ {0}.

Lemma 3.2. Let µ(t) be a smooth, decreasing function defined on (0, T ], and let g
be a Riemannian metric on BT satisfying (3-2). At a point q ∈ BT , if Zµ ≥ 0, then
Rµ

+ ≥ 2/ϕ2 > 0.

Proof. On the right-hand side of (2-12), the second term is nonnegative by assump-
tion. Moreover, g ≥ ĝ implies

(3-5) |dµ|g ≤ |dµ|ĝ = |∂tµ| = −µ′(t).

Substituting this in the last term of (2-12) and noticing that RS2 = 2, we obtain the
desired inequality. □
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Now let 60 be a hypersurface in B(0,T ], and let 8 denote the projection map
from 60 to S2, namely,

(3-6) 8 : 60 ↪→ B(0,T ]
∼= (0, T ] × S2

−→ S2.

Lemma 3.3. Let dσĝ be the area form on 60 induced by ĝ. We have

(3-7) dσĝ ≥ ϕ2
|8∗ dσS2 |

where the absolute-value sign is put to eliminate the ambiguity of orientation.

Proof. Let (θα) (α = 1, 2) be local coordinates on S2, and write gS2 = hαβdθαdθβ .
We get

(3-8) 8∗(gS2) = hαβ dθα dθβ ≤
1
ϕ2 (dt2

+ ϕ2hαβ dθα dθβ) =
1
ϕ2 ĝ60,

where the functions and forms are restricted to 60. The conclusion follows. □

Proposition 3.4. Let µ(t) be a smooth, decreasing function defined on (0, T ].
Suppose that 60 ↪→ (BT \ {0}, g) is a stable, closed µ-hypersurface with unit
normal ν, where g satisfies g ≥ ĝ and Rg ≥ Rĝ. Moreover, suppose that Zµ ≥ 0 on
60 and that the projection 8 from 60 to S2 has nonzero degree. Then:

(a) 60 = Sτ for some τ ∈ (0, T ].

(b) J60 = L60 = −160 ; see (2-3), (2-4).

(c) 60 ⊂ (BT , g) is umbilic with constant mean curvature µ(τ).

(d) g(p) = ĝ(p) at all points p ∈ 60; in particular, g60 = ĝ60 = (sin2)τgS2 .

(e) On 60, ν = ∂t .

(f) On 60, Rµ
+ = 2/ϕ2 and Zµ = 0.

We prepare our proof of this proposition with the following two lemmas.

Lemma 3.5. Under the assumption of Proposition 3.4, 60 is homeomorphic to S2.

Proof. By stability, the operator L60 defined by (2-4) is nonnegative. Let u ∈

C∞(60) be a principal eigenfunction of L60 , and let λ1 ≥ 0 be the corresponding
eigenvalue. By the maximum principle, we can always choose u to be strictly
positive. Thus,

(3-9) −u−1160u +
1
2(R60 − Rµ

+) = λ1 ≥ 0.

Expanding

(3-10) div(u−1
∇60u) = −u−2

|∇60u|
2
+ u−1160u,
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applying it in the previous equation and integrating over 60, we obtain

(3-11) 1
2

∫
60

(R60 − Rµ
+) dσg =

∫
60

(λ1 + u−2
|∇60u|

2) dσg ≥ 0.

From (3-11), the Gauss–Bonnet formula, and Lemma 3.2, we deduce

(3-12) 4πχ(60) =

∫
60

R60 dσg ≥

∫
60

Rµ
+ dσg > 0;

since 60 is a connected oriented surface, it is homeomorphic to S2. □

Remark 3.6. Lemma 3.5 remains true if we assume Rµ
+ > 0 instead of Zµ ≥ 0

on 60.

Lemma 3.7. Under the assumption of Proposition 3.4, if J60 = L60 = −160 , then:

(i) 60 ⊂ (BT , g) is umbilic.

(ii) 60 = Sτ for some τ ∈ (0, T ].

(iii) µ|60 = µ(τ).

Proof. By assumption, (2-6) must be equalities. In particular, the traceless part
of II60 must vanish, and thus 60 ⊂ (BT , g) is umbilic, justifying (i). Moreover,
−ν(µ) = |dµ|g, and so ν must be parallel to ∇gµ. Thus, for any tangent vector X ∈

T 60, we have that dµ(X) = g(∇gµ, X) is proportional to g(ν, X) = 0; this implies
that µ is constant along 60. Combining with the fact that 60 ∼= S2 (Lemma 3.5), we
conclude that 60 is a level set Sτ , justifying (ii), and (iii) immediately follows. □

Proof of Proposition 3.4. The assumption g ≥ ĝ implies the relation between area
forms on 60:

(3-13) dσg ≥ dσĝ.

We deduce

(3-14)
∫

60

Rµ
+ dσg ≥

∫
60

2
ϕ2 dσĝ

≥ 2
∫

60

|8∗ dσS2 |

≥ 2
∣∣∣∣∫

60

8∗ dσS2

∣∣∣∣
= 2k

∫
S2

dσS2

= 8kπ,
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where k := |deg(8)| ≥ 1 by assumption. In (3-14), the first inequality is due
to (3-13) and Lemma 3.2; the second inequality follows from Lemma 3.3; the
remaining (in)equalities are obvious.

On combining (3-12) with (3-14), we obtain

(3-15) 8π =

∫
60

R60 dσg ≥

∫
60

Rµ
+ dσg ≥ 8kπ, (k ≥ 1).

This enforces the two inequalities in (3-15) to become equalities. Saturation of the
first inequality, which we deduced from (3-11), implies that λ1 = 0 and that u is
a constant; hence, by (3-9), R60 = Rµ

+; then, by (2-4), L60 = −160 . With this
established, the relation (2-7) would enforce that J60 = L60 = −160 , justifying (b).
By Lemma 3.7, (a) and (c) follow.

Next consider saturation of the second inequality in (3-15), or rather (3-14).
Because we have already deduced that 60 is a t-level set, the second and third
inequalities in (3-14) automatically become equalities. Saturation of the first in-
equality in (3-14), on the other hand, has two implications:

dσg = dσĝ and Rµ
+ =

2
ϕ(τ)2 .

The former, along with g ≥ ĝ, implies that

(3-16) g60 = ĝ60 = ϕ(τ)2gS2;

the latter, along with the proof of Lemma 3.2, implies that Zµ(τ ) = 0 and |dµ|g =

|dµ|ĝ, which is just −ν(µ)=|∂tµ| (see the proof of Lemma 3.7). Hence, ν = ∂t +X
for some vector field X on 60 = Sτ . Note that

(3-17) 1 = |ν|g ≥ |ν|ĝ =

√
|∂t |

2
ĝ + |X |

2
ĝ =

√
1 + |X |

2
ĝ;

we have X = 0 and ν = ∂t . Combining this with (3-16), we get g(p) = ĝ(p) for all
p ∈ 60. This justifies (d), (e) and (f), completing the proof. □

3B. Foliation, minimality and rigidity. The following “foliation” lemma is stan-
dard; see [Ye 1991; Andersson et al. 2008; Nunes 2013; Zhu 2021].

Lemma 3.8. Suppose that 60 ⊂ (BT , g) is a µ-hypersurface (with unit normal ν)
on which the stability operator J (see (2-3)) reduces to −160 . Then there exists an
interval I and a map φ : 60 × I → BT such that:6

(1) φ is a diffeomorphism onto a neighborhood of 60 ⊂ BT .

(2) The family 6s = φ(60, s) is a normal variation of 60 with ∂sφ = ν along 60.

(3) On each 6s , the difference H6s − µ is a constant ks .

6If 0 < τ < T , I can be taken to be an open interval containing 0; if τ = T , I is of the form (a, 0];
and if τ = δ, I is of the form [0, b).
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Proof. The proof is the same as that of Lemma 3.4 in [Zhu 2021], except for the
extra step: once having obtained a foliation, we reexpress it as a normal variation
by using a vector field normal to all its leaves; see [Andersson et al. 2008, page 6,
second paragraph]. □

Before proceeding further, let us state a recurring assumption.

Assumption 3.9. Let g be a metric on BT satisfying (3-2), and let � ⊂ (BT , g) be
a Caccioppoli set such that ∂� \ {0} is smooth and embedded. Define the class C�

of Caccioppoli sets by

(3-18) C� := {�′
⊂ BT Caccioppoli set : �′1� ⋐ BT \ {0}}.

Suppose that � is a minimizer in the sense that for any �′
∈C�, we have AĤ

� (�′)≥0;
and assume that there is a connected component 60 ⊂ ∂� that is a stable Ĥ -
hypersurface,7 disjoint from 0 ∈ BT and with nonzero-degree projection onto S2.
Assume that distg(60, ∂� \ 60) > 0.

Lemma 3.10 (compare to [Gromov 2023, Section 5.7]). If Assumption 3.9 holds,
then:

(1) There exists a constant τ ∈ (0, T ] such that 60 = Sτ with outward normal ∂t .

(2) There exists an open neighborhood U of 60 = Sτ , disjoint from ∂� \ 60, on
which g = ĝ.

Proof. Since 60 is assumed to be a stable, closed Ĥ -hypersurface, and since Z Ĥ ≡ 0
(see (3-4)), Proposition 3.4 applies and yields (1).

To prove (2), first note that Proposition 3.4 and Lemma 3.8 together imply that
a neighborhood U of 60 is foliated by a normal variation {6s} (s ∈ I ) of 60;
moreover, on each leaf 6s the difference H6s − Ĥ is a constant ks . Since 0 /∈ 60

and distg(60, ∂� \ 60) > 0, U can be chosen to be disjoint from both ∂� \ 60

and 0.
For s1, s2 ∈ I with s1 < s2 define 6[s1,s2] ⊂ BT to be the (compact) subset with

boundary 6s1 ∪ 6s2 ; then consider �s defined by

(3-19) �s :=

{
� ∪ 6[0,s] if s ≥ 0,

� \ 6[−s,0] if s < 0.

Clearly, these �s belong to the class C�. Let us denote AĤ
� (�s) by A(s) for brevity,

and write us =⟨∂sφ, νs⟩> 0 where νs is the (suitably oriented) unit normal along 6s .
By Lemma 3.8 and the first variation formula,

(3-20) A′(s) =

∫
6s

ksus .

7We allow 60 to overlap with ∂ BT .
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Since A(0) attains the minimum, it is necessary that:

(i) Either A(s) ≡ 0 for all s ≥ 0, or A′(s) > 0 (equivalently, ks > 0) for some s > 0.

(ii) Either A(s) ≡ 0 for all s ≤ 0, or A′(s) < 0 (equivalently, ks < 0) for some s < 0.

To complete the proof, it suffices to show that A(s) ≡ 0 for all s ∈ I . If this does
not hold, first suppose that ks > 0 for some s > 0. Then on the Riemannian band
6[0,s] with ∂− = 60 and ∂+ = 6s define the function

(3-21) µ̃(t) = Ĥ(t) +
ϵ

sin3 t
,

which is smooth and decreasing in t . By choosing sufficiently small ϵ, we can
arrange that µ̃ > H60 on 60 and that µ̃ < H6s on 6s . Thus, by Lemma 2.3, there
exists a µ̃-bubble �̃ in 6[0,s]; in particular, 6̃ = ∂�̃ \ 60 has a component 6̃0

whose projection to S2 has nonzero degree. However, by a direct calculation using
(3-4), we get

(3-22) Zµ̃(t) =
3ϵ2

2 sin6 t
> 0,

contradicting Proposition 3.4(f).
The case when ks < 0 for some s < 0 may be similarly and independently ruled

out; it suffices to consider 6[s,0] with ∂− = 6s and ∂+ = 60 and the following
analogue of (3-21): µ̃(t) = Ĥ(t) − ϵ sin−3 t .

Finally, since we have proved that all �s are AĤ -minimizing in the class C�,
each 6s must be a t-level set. By Proposition 3.4(d), g = ĝ on U , and this completes
the proof. □

Proposition 3.11. If Assumption 3.9 holds, then g = ĝ on BT .

Proof. By Lemma 3.10, 60 = Sτ for some τ ∈ (0, T ], and its outward normal is ∂t .
Without loss of generality, we assume τ ∈ (0, T ). Let I = (t1, t2) be the maximum
open interval containing τ such that B(t1,t2) is disjoint from ∂� \60 and that g = ĝ
on B(t1,t2). For t ∈ I , let �t denote � \ B(t,τ ] if t < τ and � ∪ B[τ,t] if t ≥ τ . In
particular, ∂�t = (∂� \ 60) ∪ St .

It suffices to show that t1 = 0 and t2 = T , and we argue by contradiction. First
suppose that t1 > 0. Then �t1 is in the class C�, and it satisfies AĤ

� (�t1) = 0. If St1
were disjoint from ∂� \60, then, by Lemma 3.10, the interval I can be extended
further, violating its maximality. On the other hand, if St1 were to touch a connected
component 6′

⊂ ∂� \60, then by smoothness and embeddedness ∂�t1 \ {0} (see
[Zhou and Zhu 2020, Theorem 2.2]), 6′ must be equal to 6t1 but with the opposite
outward normal, violating Proposition 3.4(e). Thus, we conclude that t1 = 0. The
proof of t2 = T is similar. □
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With Proposition 3.11, it becomes clear that Theorem 3.1 would follow if one
can verify Assumption 3.9. To illustrate this point, we now discuss a special case
of Theorem 3.1 which admits a more direct proof. (The general situation is more
subtle and will be addressed in the next section.)

Corollary 3.12. Let (BT , ĝ) be the 3-dimensional spherical cap of radius T ∈

(0, π/2]. Suppose that g is another Riemannian metric on BT satisfying g ≥ ĝ and
Rg ≥ Rĝ on BT ; in addition, suppose that Hg ≥ Hĝ = 2 cot T and g∂ BT = ĝ∂ BT on
∂ BT . Then g = ĝ.

Proof. Take µ = Ĥ , which is in L1(BT ). Since adding a constant to a functional
does not affect its variational properties, we may consider, instead of (2-1),

(3-23) Bµ(�) := H2(∂�) +

∫
BT \�

µ dH3,

for all smooth Caccioppoli sets � ⊂ BT with �1BT ⋐ BT \ {0}, and underlying
metrics will be specified in subscripts. Since Ĥ = div(∂t) on BT \ {0}, we have

(3-24) Bµ

ĝ (�) = H2
ĝ(∂�) −

∫
∂�

⟨∂t , ν̂⟩ĝ dH2
ĝ +H2

ĝ(ST ) ≥ H2
ĝ(ST ) = Bµ

ĝ (BT ),

where the first equality is an application of the divergence formula, and the inequality
is derived from the relation ⟨∂t , ν̂⟩ĝ ≤ 1. Now, since g ≥ ĝ and µ ≥ 0 on BT

(T ≤π/2), we have Bµ
g (�)≥Bµ

ĝ (�); moreover, by g∂ BT = ĝ∂ BT , we have Bµ

ĝ (BT )=

Bµ
g (BT ). Combining these with (3-24) gives Bµ

g (�) ≥ Bµ
g (BT ); and using Hg ≥

2 cot T = Ĥ |∂ BT , we deduce that Hg = 2 cot T and hence, for any φ ∈ Lip(ST ) and
φ ≥ 0, we have

D2A(φ, φ) :=

∫
ST

|∇φ|
2
+

∫
ST

(RST − Rg − Ĥ 2
− |II|2 − 2ν(Ĥ))φ2

≥ 0,

and then clearly, for all ϕ ∈ C∞(ST ) we have

D2A(ϕ, ϕ) ≥ D2A(|ϕ|, |ϕ|) ≥ 0,

hence, ST is a stable Ĥ -hypersurface. Now it is easy to see that the pair (BT , ST )

satisfies Assumption 3.9. The conclusion then follows from Proposition 3.11. □

4. Existence of an initial minimizer

Throughout this section, let g be a Riemannian metric on BT satisfying (3-2). Our
goal is to obtain an “initial” minimizer � and a connected component 60 ⊂ ∂�

which satisfy Assumption 3.9. To achieve this, we consider perturbations µϵ of
Ĥ = 2 cot t (see (4-3)). For each ϵ, we find a Riemannian band Mϵ ⊂ BT on which
µϵ satisfies the barrier condition; thus, a µϵ-bubble �ϵ exists, and ∂�ϵ ∩ M̊ϵ has
a component 6ϵ

0 which projects onto S2 with nonzero degree. One may wonder



104 YUHAO HU, PENG LIU AND YUGUANG SHI

whether this “degree” property is preserved in the limit as ϵ → 0; this led us to find
that each 6ϵ

0 must be disjoint from a fixed open neighborhood of 0 ∈ BT , provided
ϵ is small (Proposition 4.7). Then we verify Assumption 3.9 by analyzing the limits
of �ϵ and 6ϵ

0 (Proposition 4.12).

4A. A choice of µϵ . Let ϵ > 0 be a small constant, and define

(4-1) tc := min
{

π
4 , T

2

}
.

Moreover, we shall fix a function β ∈ C∞((0, T ]) which is strictly decreasing and
satisfies

(4-2) β(t) = cot t on (0, tc] and β(T ) = −1;

such a β clearly exists. Now consider the function defined on (0, T ]:

(4-3) µϵ(t) ≡ Ĥ(t) + ϵβ(t) = 2 cot t + ϵβ(t).

Writing Z ϵ for Zµϵ
, we have (see (3-4))

(4-4) Z ϵ(t) =
3
2 [ϵβ(t)]2

+ 2ϵβ ′(t) + 6ϵ(cot t)β(t),

and, in particular,

(4-5) Z ϵ(t) =
ϵ

2 sin2 t
[(3ϵ + 12) cos2 t − 4] > 0 for t ∈ (0, tc].

Moreover, by (4-4), it is clear that there exists a constant b0 > 0, depending only
on β, such that

(4-6) Z ϵ(t) ≥ −ϵ b0 for t ∈ (0, T ].

4B. Existence of a µϵ-bubble. Let S(r, g) (resp., B(r, g)) denote the geodesic
sphere (resp., open geodesic ball) of radius r , taken with respect to the metric g
and centered at 0 ∈ BT . An asymptotic expansion of the mean curvature function
(see Lemma 3.4 of [Fan et al. 2009]) gives: for small r > 0 and all q ∈ S(r, g),

(4-7) HS(r,g)(q) =
2
r

+ O(r), Ĥ(q) =
2

t (q)
+ O(t (q)).

Since g ≥ ĝ, we have r ≥ t (q); then by (4-3) and (4-2), as long as r < tc, we have

(4-8) µϵ(t (q)) =
2 + ϵ

t (q)
+ O(t (q)) ≥

2 + ϵ

r
+ O(t (q)), q ∈ S(r, g).

It is now clear that there exists an rϵ < ϵ such that µϵ > HS(rϵ ,g) on S(rϵ, g). On the
other hand, we have Hg ≥ 2 cot T > µϵ(T ) on ST , where the first inequality is part
of (3-2), and the second inequality is due to the choice of µϵ and β. Therefore, µϵ

satisfies the barrier condition (see Definition 2.2) applied to the Riemannian band
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(Mϵ, g), where Mϵ = BT \B(rϵ, g), with the distinguished boundaries: ∂− = S(rϵ, g)

and ∂+ = ST . The lemma below follows directly from Lemma 2.3.

Lemma 4.1. In the Riemannian band (Mϵ, g; S(rϵ, g), ST ) there exists a minimal
µϵ-bubble �ϵ ; moreover, ∂�ϵ \ S(rϵ, g) is disjoint from ST , and it has a connected
component 6ϵ

0 whose projection onto S2 has nonzero degree.

Lemma 4.2. 6ϵ
0 ∩ B[tc,T ] is nonempty.

Proof. Otherwise, Z ϵ > 0 on 6ϵ
0 , which contradicts Proposition 3.4(f). □

4C. A “no-crossing” property of 6ϵ
0 . From now on, let t∗ ∈ (0, tc) be fixed. We will

begin by assuming that 6ϵ
0 ∩ Bt∗ were nonempty; consequences of this hypothesis

will be developed progressively with three lemmas (Lemmas 4.3, 4.5 and 4.6).
Based on these lemmas, we prove that 6ϵ

0 must be disjoint from Bt∗ for small
enough ϵ (Proposition 4.7).

In the following, let ν̂ denote the outward-pointing unit normal on 6ϵ
0 with

respect to ĝ, and let 8 denote the projection map from 6ϵ
0 to S2; see (3-6).

Lemma 4.3. If 6ϵ
0 ∩ Bt∗ were nonempty, then there would exist a point q ∈ 6ϵ

0 ∩

B[t∗,T ] such that the angle ̸ ĝ(ν̂, ∂t) ∈ [α, π − α] at q , where

(4-9) α = min
{

arctan
(

tc − t∗
2π

)
,
π

4

}
.

Proof. We argue by contradiction, so let us assume that ̸ ĝ(ν̂, ∂t)∈[0, α)∪(π−α, π]

everywhere on 6ϵ
0 ∩ B[t∗,T ]. Because 6ϵ

0 is connected and intersects both St∗ (by
assumption) and Stc (by Lemma 4.2), the image of t |6ϵ

0
contains the interval [t∗, tc].

Let t ′
∈ (t∗, tc) be a regular value of t |6ϵ

0
that is sufficiently close to t∗. Because

6ϵ
0 is connected, there exists a connected component E ⊂6ϵ

0 ∩ B(t ′,tc] whose closure
Ē intersects both St ′ and Stc . On E , the angle ̸ ĝ(ν̂, ∂t) can only take value in one
of the intervals [0, α) and (π −α, π], but not both. Without loss of generality, let
us assume that ̸ ĝ(ν̂, ∂t) ∈ [0, α) on E .

Since t ′ is a regular value of t |6ϵ
0
, E meets St ′ transversely. In particular, C :=

E∩St ′ is a disjoint union of finitely many circles. It is easy to see that St ′\C =U1∪U2

for some open subsets Ui ⊂ St ′ with ∂Ui = C (i = 1, 2).
Both Ui and E are oriented, and the orientations are associated to the respective

normal directions, ∂t and ν̂, by the right-hand rule. The orientation on C induced
by E must completely agree with that induced by either U1 or U2; otherwise, gluing
E with either U1 or U2 along C and smoothing would yield a nonorientable closed
surface embedded in BT , which is impossible.

Thus, we can assume that U1 and E induce opposite orientations on C . Since
̸ ĝ(ν̂, ∂t) ∈ [0, α) on E , it is easy to see that the restriction of 8 to E ∪ U1 is a
local homeomorphism to S2. Since E ∪ U1 is compact, 8|E∪U1

is a covering map;
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this map must be a homeomorphism, since S2 is simply connected and E ∪ U1 is
connected.

Pick any x ∈ E ∩ Stc . Choose a shortest (regular) curve 0 : [0, 1] → 8(E)

connecting 0(0) = 8(x) and ∂(8(E)); in particular,

(4-10) lengthgS2
(0) ≤ π.

Now let γ = (8|E)
−1

◦ 0, and write its tangent vectors γ ′ as the sum of γ ′

N
(parallel to ∂t ) and γ ′

T (tangent to t-level sets). By ĝ ≤ gS2 +dt2 and the hypothesis
̸ ĝ(ν̂, ∂t) ∈ [0, α)∪ (π − α, π], we obtain the estimate

(4-11) |γ ′

N |ĝ ≤ (tan α)|γ ′

T |ĝ ≤ (tan α)|d8(γ ′)|gS2 .

Hence,

(4-12) tc − t ′
≤

∫
γ

|γ ′

N |ĝ ≤ (tan α) · lengthgS2
(8(γ )) ≤ π tan α ≤

1
2(tc − t∗),

where the first inequality holds because γ (0) ∈ Stc and γ (1) ∈ St ′ ; the second and
third inequalities are due to (4-11) and (4-10), respectively; the last inequality holds
by the choice of α. Since t ′ is close to t∗, (4-12) is a contradiction. □

Corollary 4.4. In Lemma 4.3 we can choose q such that: ̸ ĝ(ν̂, ∂t) = α or π − α

at q.

Proof. In 6ϵ
0 there exists a point at which t attains global maximum. At that point

ν̂ = ±∂t . Thus, by continuity of angle, there exists a point q ∈ 6ϵ
0 ∩ B[t∗,T ] at which

the angle between ν̂ and ∂t is equal to either α or π − α. □

Lemma 4.5. Let α be defined by (4-9). If 6ϵ
0 ∩ Bt∗ were nonempty, then there

would exist a constant S = S(g, ĝ, β, t∗) > 0, independent of ϵ, and an open subset
Uϵ ⊂ 6ϵ

0 ∩ B[t∗/2,T ] such that:

(1) At each point q ∈ Uϵ , ̸ ĝ(ν̂, ∂t) ∈ (α/2, 2α) ∪ (π − 2α, π − α/2).

(2)
∫

Uϵ
|8∗ dσS2 | ≥ S.

Proof. To begin with, let q be as in Corollary 4.4. For any unit tangent vector X
(with respect to ĝ) of 6ϵ

0 , we have

(4-13) |X⟨ν̂, ∂t ⟩ĝ| = |⟨∇̂X ν̂, ∂t ⟩ĝ + ⟨ν̂, ∇̂X∂t ⟩ĝ| ≤ |ÎI|ĝ + |∇̂∂t |ĝ.

where ∇̂ is the connection of ĝ. It is clear that there exists a constant C = C(ĝ, t∗)
such that |∇̂∂t |ĝ ≤ C on B[t∗/2,T ]. Moreover, by applying Lemma 2.9 ( if necessary,
extend g to a smooth metric on BT +δ0 for some fixed δ0 >0, and let V = B(t∗/2,T +δ0))
and by comparing between |II|g and |ÎI|ĝ, it is not difficult to see that there exists a
constant C ′

= C ′(g, ĝ, β, t∗) such that |ÎI|ĝ ≤ C ′ on 6ϵ
0 ∩ B[t∗/2,T ] for all sufficiently
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small ϵ. Thus, there exists a constant ρ = ρ(g, ĝ, β, t∗) > 0 such that on the
geodesic ball

Uϵ := {x ∈ 6ϵ
0 : distĝ6ϵ

0
(x, q) ≤ ρ}

we have

(4-14) ̸ ĝ(ν̂, ∂t) ∈
(

α
2 , 2α

)
∪

(
π − 2α, π −

α
2

)
.

It is easy to see that 8(Uϵ) contains a ball B of radius cos(2α)ρ in S2. The proof
is complete by taking S := areagS2 (B). □

Lemma 4.6. If 6ϵ
0 ∩ Bt∗ were nonempty, then we would have

(4-15)
∫

6ϵ
0

2
ϕ2 dσĝ − 2

∫
6ϵ

0

|8∗ dσS2 | ≥ A0

for some positive constant A0 that is independent of ϵ.

Proof. Up to sign, the area form dσĝ induced by ĝ on each tangent space of 6ϵ
0 is

equal to
1

cos(̸ ĝ(ν̂, ∂t))
ϕ28∗dσS2

provided that ν̂ is not orthogonal to ∂t . Thus, by Lemma 4.5, we have

(4-16)
∫

Uϵ

2
ϕ2 dσĝ ≥

∫
Uϵ

2
ϕ2

1
cos(α/2)

ϕ2
|8∗ dσS2 |

≥ 2S
(

1
cos(α/2)

− 1
)

+ 2
∫

Uϵ

|8∗ dσS2 |.

On the other hand, by Lemma 3.3,

(4-17)
∫

6ϵ
0\Uϵ

2
ϕ2 dσĝ ≥ 2

∫
6ϵ

0\Uϵ

|8∗ dσS2 |.

Adding (4-16) with (4-17) and rearranging terms, we get

(4-18)
∫

6ϵ
0

2
ϕ2 dσĝ − 2

∫
6ϵ

0

|8∗ dσS2 | ≥ 2S
(

1
cos(α/2)

− 1
)

.

The proof is complete by taking A0 to be the right-hand side of (4-18). □

Proposition 4.7. For sufficiently small ϵ, 6ϵ
0 must be disjoint from the set Bt∗ ⊂ BT .

Proof. By (4-6) and the proof of Lemma 3.2, we obtain

(4-19) Rµϵ

+ ≥
2
ϕ2 − 2b0ϵ on 6ϵ

0 .
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For small ϵ, Remark 3.6 and Lemma 3.5 imply that 6ϵ
0 is homeomorphic to S2.

Moreover, since �ϵ is a µϵ-bubble, the area of 6ϵ
0 with respect to g has an upper

bound C0 > 0, which can be chosen to depend only on the metric g and not on ϵ.
Now suppose that 6ϵ

0 ∩ Bt∗ ̸=∅. Then from (4-19), (3-13) and (4-15), we obtain

(4-20)
∫

6ϵ
0

Rµϵ

+ dσg ≥

∫
6ϵ

0

2
ϕ2 dσĝ − 2ϵb0C0 ≥ (A0 − 2ϵb0C0)+ 2

∫
6ϵ

0

|8∗ dσS2 |.

For small enough ϵ, A0 > 2ϵb0C0; by stability of 6ϵ
0 , the analogue of (3-12) reads

(4-21) 4πχ(S2) =

∫
6ϵ

0

R6ϵ
0

dσg ≥

∫
6ϵ

0

Rµϵ

+ dσg > 2
∫

6ϵ
0

|8∗ dσS2 | ≥ 8π;

a contradiction. □

Remark 4.8. There is another way to get (4-21), which does not rely on the
assumption of an upper bound C0 of areag(6

ϵ
0) but does rely on the fact that ϕ ≤ 1.

In fact, (4-19) implies that Rµϵ

+ ≥ 2ϕ−2(1 − b0ϵ), and again by (3-13), (4-15) and
the degree assumption we have∫

6ϵ
0

Rµϵ

+ dσg ≥ (1 − b0ϵ)(A0 + 2
∫

6ϵ
0

|8∗ dσS2 |) ≥ (1 − b0ϵ)(A0 + 8π) > 8π

for small enough ϵ.

4D. Existence of a minimizer. Let Mϵ , �ϵ and 6ϵ
0 be as in Lemma 4.1. We now

study how �ϵ and 6ϵ
0 behave as ϵ → 0.

Recall from (4-1) the definition of tc, and let t∗ ∈ (0, tc) be fixed. By considering
small enough ϵ, we can assume 6ϵ

0 to be homeomorphic to S2 and disjoint from Bt∗ .
For a fixed ϵ, since 6ϵ

0 is disjoint from ST , the Jordan–Brouwer separation
theorem applies. As a result, BT \6ϵ

0 has exactly two connected components, say
Uϵ

−
and Uϵ

+
. Without loss of generality, let us assume that ν points away from Uϵ

−

along 6ϵ
0 . Given any constant δ > 0, let us define

(4-22)
W ϵ

−δ := {x ∈ Uϵ
−

: distg(x, 6ϵ
0) ≤ δ},

W ϵ
+δ := {x ∈ Uϵ

+
: distg(x, 6ϵ

0) ≤ δ},

where distance is taken in (BT , g).

Lemma 4.9. There exists a constant δ > 0, independent of ϵ, such that for all small
enough ϵ we have W ϵ

−δ ⊂ �̊ϵ and W ϵ
+δ ∩ �ϵ = ∅.

Proof. Since in B[t∗/2,T ] all derivatives of µϵ are uniformly bounded, it follows
from Lemma 2.9 that the norm of the second fundamental form of ∂�ϵ ∩ B[t∗/2,T ]

is also uniformly bounded. If some other component 6′ in ∂�ϵ were to get
arbitrarily close to 6ϵ

0 , then a suitable surgery (i.e., a connected sum of 6ϵ
0 and 6′
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Figure 1. The shaded regions represent �′
ϵi

(left figure) and �∗
ϵi

(right figure).

performed within Mϵ) would yield a Caccioppoli set that has strictly less brane
action, contradicting the minimality of �ϵ . □

Now we fix a sequence {ϵi } → 0 and corresponding sequences of �ϵi and 6
ϵi
0 .

Lemma 4.10. The sequence {�ϵi } subconverges to a Caccioppoli set � ⊂ BT

where convergence is interpreted via the characteristic functions with respect to the
L1

loc-norm. Moreover:

(1) ∂� \ {0} is smooth and embedded.

(2) � is a minimizer in the sense that AĤ
� (�′) ≥ 0 for any Caccioppoli set �′ with

�′1� ⋐ BT \ {0}.

Proof. The existence of a convergent subsequence and that of � follow from
standard theory of BV functions (see [Giusti 1984, Theorem 1.20]), and let us
replace {�ϵi } by that subsequence.

Now let K ⊂ BT \{0} be any compact domain. For sufficiently large i , the second
fundamental form of ∂�ϵi ∩ K has a uniform upper bound, and thus ∂�ϵi ∩ K
subconverges to a smooth hypersurface S ⊂ K in the graph sense. By using
Lemma 4.9, it is easy to see that S is embedded and S = ∂� ∩ K . Since K is
arbitrary, we conclude (1).

To show that � is a minimizer, we argue by contradiction. Suppose that there
exists a Caccioppoli set �′ and a constant c > 0 such that �′1� ⋐ BT \ {0} and
AĤ

� (�′) ≤ −c < 0. Let us choose a compact domain K ⊂ BT \ {0} with smooth
boundary such that �′1�⋐ K̊ . Consider a thin tubular neighborhood T of ∂�∩ K
that is generated by the unit normal field along ∂� ∩ K ; as T is diffeomorphic
to (∂� ∩ K ) × I for some interval I , we may modify K such that the image of
(∂�∩∂K )× I is equal to ∂T ∩∂K (in particular, ∂� is transversal to ∂K ). Note that
for large i , S(rϵi , g) would be disjoint from K , and ∂�ϵi ∩ K would be completely
contained in T .

Now consider the following Caccioppoli sets (see Figure 1):

(4-23) �′

ϵi
:= (�ϵi \ K ) ∪ (�′

∩ K ), �∗

ϵi
:= (�ϵi \ K ) ∪ (� ∩ K ).
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We claim that, for sufficiently large i ,

(4-24) A
µϵi
�ϵi

(�∗

ϵi
) ≤

c
4
.

To see this, note that χ�∗
ϵi

− χ�ϵi
is just χ�ϵi ∩K − χ�∩K ; since µϵi |K is uniformly

bounded and χ�ϵi
→ χ� in L1, we have

(4-25)
∫

BT

(χ�∗
ϵi

− χ�ϵi
)µϵi → 0 (i → ∞).

Moreover, it is easy to see that

(4-26) H2(∂�∗

ϵi
)−H2(∂�ϵi ) ≤ [H2(∂�∩ K )−H2(∂�ϵi ∩ K )]+H2(∂T ∩ ∂K ).

Thus, by graph convergence of ∂�ϵi ∩ K , we can choose T and i such that

(4-27) H2(∂�∗

ϵi
) −H2(∂�ϵi ) ≤

c
8
.

On combining (4-25) and (4-27), we obtain (4-24) for large i .
Now, since µϵi → µ in L1(K ) and �′

ϵi
1�∗

ϵi
= �1�′ ⋐ K̊ , we have, for

sufficiently large i ,

(4-28) A
µϵi
�∗

ϵi
(�′

ϵi
) ≤ −

c
2
.

On comparing (4-24) and (4-28), we get A
µϵi
�ϵi

(�′
ϵi
) ≤ −c/4 < 0, contradicting the

minimality of �ϵi . This proves (2). □

Lemma 4.11. Let � be as in Lemma 4.10. The sequence {6
ϵi
0 } subconverges to a

smooth, closed stable Ĥ-hypersurface 60 ⊂ B[t∗,T ], which is a t-level set in BT ;
moreover, 60 ⊂ ∂� and ∂� \ 60 ⋐ BT \ 60.

Proof. By our choice of {ϵi }, all 6
ϵi
0 are contained in the compact set B[t∗,T ] and

have a uniform upper bound on their second fundamental form. Thus, by standard
minimal surface theory (see [Colding and Minicozzi 2011, Proposition 7.14]), {6

ϵi
0 }

subconverges to a smooth closed hypersurface 60 whose projection onto S2 has
nonzero degree. Now recall that each 6

ϵi
0 is a stable µϵi -hypersurface. Since all

derivatives of µϵi respectively and uniformly converge to those Ĥ , by passing
stability to limit, 60 is a stable Ĥ -hypersurface; hence, 60 is a t-level set, by
Proposition 3.4.

To see that 60 ⊂ ∂�, first suppose that 60 ̸= ST ; in this case, it suffices to show
that each open neighborhood of any x ∈ 60 must intersect both �̊ and BT \ �,
and this can be easily deduced from Lemma 4.9. The case of 60 = ST is similar.
Also by Lemma 4.9, 60 has a tubular neighborhood that is disjoint from all other
components of ∂�, hence distg(60, ∂� \ 60) > 0. □

On combining Lemmas 4.10 and 4.11, we immediately get the following.
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Proposition 4.12. Let g be a Riemannian metric on BT satisfying (3-2). Then there
exists a Caccioppoli set � ⊂ BT and a connected component 60 ⊂ ∂� that satisfy
Assumption 3.9.

Theorem 3.1 follows directly from Propositions 3.11 and 4.12.

5. Generalizations

In this section we discuss a few variants of Theorem 3.1.
To begin with, we consider a version of Gromov’s rigidity theorem for the doubly

punctured sphere (see [Gromov 2023, Sections 5.5 and 5.7]), restricted to the
3-dimensional case.

Theorem 5.1. Let (S3
\ {O, O ′

}, ĝ) be the standard 3-sphere with a pair of antipo-
dal points removed, and let h ≥ 1 be a smooth function on S3

\ {O, O ′
}. Suppose

that g is another Riemannian metric on S3
\ {O, O ′

} satisfying

(5-1) g ≥ h4ĝ and Rg ≥ h−2 Rĝ.

Then h ≡ 1, and g = ĝ.

Proof. For convenience, let us use slightly different notations than those intro-
duced at the beginning of Section 3 by representing S3

\ {O, O ′
} as B(−π/2,π/2)

∼=

S2
× (−π/2, π/2) with t being the coordinate on (−π/2, π/2). Under this repre-

sentation we have ϕ(t) = cos t and

(5-2) Ĥ(t) = −2 tan t

instead of (3-3). Now for α ∈ (0, π/2) sufficiently close to π/2, consider the
Riemannian band Bα := (B[−α,α], g; S−α, Sα) and the functions

(5-3) tα =
t
α

·
π

2
and µα = −2 tan tα on B(−α,α),

and consider the problem of finding µα-bubbles in Bα . Since µα →±∞ as t →∓α,
µα satisfies the barrier condition; thus, there exists a µα-bubble �α ⊂ Bα, which
satisfies analogous properties as described in Lemma 4.1. Let 6α

0 be a connected
component of ∂�α \ S−α whose projection to S2 has nonzero degree; 6α

0 is a stable
µα-hypersurface, on which

(5-4) Rµα

+ = Rg +
3
2(µα)2

− 2|dµα|g

≥
1
h2

(
RS2

ϕ2 −
3
2

Ĥ 2
+ 2|dĤ |ĝ

)
+

3
2
(µα)2

−
2
h2 |dµα|ĝ

≥
1
h2

(
RS2

ϕ2 + Zµα

)
where the last step follows from the assumption h ≥ 1 and the definition

Zµα
:=

3
2(µ2

α − Ĥ 2) + 2(∂tµα − ∂t Ĥ).
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By a careful estimate of Zµα
using the mean value theorem, it is not difficult to

show that there exists a constant tc > 0 such that

(5-5) Zµα
>0 for t ∈(−α,−tc)∪(tc,α) and ϕ2 Zµα

≥C(α) for t ∈(−α,α),

where C(α) < 0 is a constant depending only on α and satisfies C(α) → 0 as
α → π/2. Similar to the proof of Proposition 4.7, here (5-5) implies that 6α

0 is
contained in a fixed compact domain in B(−π/2,π/2) that is independent of the choice
of α. Thus, as α → π/2, such 6α

0 subconverge to a stable Ĥ -hypersurface, and an
analogue of Proposition 4.12 can be obtained. An analogue of Proposition 3.4 and
a foliation argument yield that h ≡ 1 and g = ĝ. □

Remark 5.2. The assumption h ≥ 1 is important for Theorem 5.1 to hold. With-
out this assumption, one may let g = cos2 t (dt2

+ gS2) ̸= ĝ on S3
\ {O, O ′

} ∼=

S2
× (−π/2, π/2) and take h = (cos t)1/2, and it is easy to check that (5-1) is

satisfied — in particular, Rg = (2 + 4 cos2 t)(cos t)−4 and h−2 Rĝ = 6(cos t)−1, so
Rg ≥ h−2 Rĝ.

Theorem 3.1 has Euclidean and hyperbolic analogues. Putting together, let us
take

(5-6) ĝκ = ϕκ(t)2gS2 + dt2 on BT

where

ϕκ(t) =


sin

√
κt, κ > 0,

t, κ = 0,

sinh
√

−κt, κ < 0,

and T ∈ (0, π/
√

κ) if κ > 0; T > 0 if κ ≤ 0. In particular, sec(ĝκ) = κ , and
Ĥκ(t) = 2ϕ′

κ(t)/ϕκ(t).

Theorem 5.3. Let BT , ĝκ be as above. Let g be a Riemannian metric on BT

satisfying

g ≥ h4ĝκ , Rg ≥ h−2 Rĝκ
, H∂ BT ≥ Ĥκ(T ),

for some smooth function h ≥ 1 defined on BT . Then h ≡ 1, and g = ĝκ .

As pointed out by Gromov [2023, Section 5.5], a key fact that allows the different
cases (corresponding to different choices of κ) in Theorem 5.3 to be treated similarly
is that the function ϕκ(t) is “log-concave” — in other words, Ĥκ(t) is strictly
decreasing in t ; see Lemma 3.2 and Proposition 3.4. Having this in mind, the
proof proceeds as that of either Theorem 3.1 or 5.1, and we leave the details to the
interested reader.

Remark 5.4. When κ ≤ 0 and T = +∞, whether Theorem 5.3 holds remains
unknown to us.
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