Pacific
 Journal of Mathematics

 MODULE OF SOME NUMBER FIELDSAli Mouhib

THE STRUCTURE OF THE UNRAMIFIED ABELIAN IWASAWA MODULE OF SOME NUMBER FIELDS

Ali Mouhib

Abstract

For a given positive integer \boldsymbol{m}, we determine an explicit infinite family of real quadratic number fields \boldsymbol{F}, such that the unramified abelian Iwasawa module over the \mathbb{Z}_{2}-extension of F, is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{2^{m}}$.

1. Introduction

Let p be a prime number and \mathbb{Z}_{p} be the ring of p-adic integers. We denote by K a number field, K_{∞} be the cyclotomic \mathbb{Z}_{p}-extension of K, and for each nonnegative integer n, K_{n} be the n-th layer of K_{∞}. For any nonnegative integer n, we denote by $A_{n}(K)$ the p-class group of K_{n}. We simply denote by $A(K):=A_{0}(K)$ the p-class group of K. The unramified abelian Iwasawa module $X_{\infty}(K)$ of K is defined by

$$
X_{\infty}(K):=\underset{\rightleftarrows}{\lim } A_{n}(K),
$$

where the projective limit is defined with respect to the norm mappings. It is well known, by Iwasawa's results that $X_{\infty}(K)$ is a finitely generated torsion $\Lambda:=\mathbb{Z}_{p} \llbracket T \rrbracket$ module and for large n, we have

$$
\left|A_{n}(K)\right|=p^{\lambda_{p}(K) n+\mu_{p}(K) p^{n}+v_{p}(K)},
$$

where $\lambda_{p}(K), \mu_{p}(K)$ and $v_{p}(K)$ are so called Iwasawa invariants of K_{∞} / K. In the case where K is abelian over \mathbb{Q}, we have $\mu_{p}(K)=0$ [3]. It is conjectured that for totally real number fields $K, \lambda_{p}(K)=\mu_{p}(K)=0$ [5]. This conjecture, called Greenberg's conjecture, is considered as one of the fascinating problems in Iwasawa theory of \mathbb{Z}_{p}-extensions. So proving the finiteness of $X_{\infty}(K)$, leads us to ask the following questions:

- What about the structure of $X_{\infty}(K)$?
- What is the least nonnegative integer n such that $X_{\infty}(K) \simeq A_{n}(K)$?

[^0]We will deal with these questions in a special case of totally real quadratic number fields.

Next, for each group G which is a finitely generated \mathbb{Z}_{p}-module, we denote by $\mathrm{rk}_{p}(G)$ the p-rank of G, that is, the dimension of the \mathbb{F}_{p}-vectorial space G / G^{p}.

Note that M. Ozaki [13] constructed a nonexplicit infinite family of cyclic number fields K of degree p, verifying Greenberg's conjecture and such that $\mathrm{rk}_{p}\left(X_{\infty}(K)\right)$ is arbitrarily large.

For $p=2$, several articles tackled the Greenberg's conjecture for some totally real quadratic number fields. Precisely, for the prime numbers ℓ and ℓ^{\prime}, the quadratic number fields $F=\mathbb{Q}\left(\sqrt{\ell \ell^{\prime}}\right)$ has been studied intensively, where ℓ and ℓ^{\prime} are prime numbers such that $\ell \equiv-\ell^{\prime} \equiv 1(\bmod 4)$. In particular, Y. Mizusawa [9] proved that for certain quadratic number fields F, the Galois groups of the maximal unramified pro-2-extensions over the cyclotomic \mathbb{Z}_{2}-extension of F are metacyclic pro-2-groups; he also studied the finiteness of $X_{\infty}(F)$ in relation with Greenberg's conjecture. Clearly in this case $X_{\infty}(F)$ is of rank equal to 2 . Let us mention the articles $[4 ; 8 ; 9 ; 10 ; 11 ; 12 ; 14]$, where we have found selected explicit totally real quadratic number fields F satisfying Greenberg's conjecture.

The common point in all these articles is that the unramified abelian Iwasawa module $X_{\infty}(F)$ for the selected number fields F, is of small rank equal to 1 or 2 .

Our contribution is to check Greenberg's conjecture for a new family of fields $F=\mathbb{Q}\left(\sqrt{\ell \ell^{\prime}}\right)$. Precisely, we give the structure of $X_{\infty}(F)$ and determine the least positive integer m from which the groups $A_{n}(F)$ stabilize. The main result of this article is the following theorem.
Theorem 1.1. Let ℓ and ℓ^{\prime} be prime numbers such that $\ell \equiv-\ell^{\prime} \equiv 1(\bmod 4)$, $F=\boldsymbol{Q}\left(\sqrt{\ell \ell^{\prime}}\right)$. Put $v_{2}(\ell-1)-2=m$ and $v_{2}\left(\ell^{\prime}+1\right)-2=m^{\prime}$. Assume that $\left(\ell / \ell^{\prime}\right)=-1$ and $m^{\prime} \geq m$. Then we have

$$
A_{n}(F) \simeq(\mathbb{Z} / 2 \mathbb{Z})^{2^{n}} \quad \text { for all } n \leq m \text { and } X_{\infty}(F) \simeq A_{m}(F) \simeq(\mathbb{Z} / 2 \mathbb{Z})^{2^{m}}
$$

2. Totally real quadratic number fields verifying Greenberg's conjecture and the structure of the unramified abelian Iwasawa module

Let p be a prime number, K a number field and K_{n} the layers of the cyclotomic \mathbb{Z}_{p}-extension of K. For each nonnegative integer n, let L_{n} be the Hilbert p class field of K_{n} and L_{n}^{\prime} be the maximal extension of K_{n} contained in L_{n} in which all p-adic places of K_{n} split completely. By class field theory, we have $A_{n}(K) \simeq \operatorname{Gal}\left(L_{n} / K_{n}\right)$ and the subgroup $D_{n}(K)$ of $A_{n}(K)$ generated by the classes of p-adic primes fixes L_{n}^{\prime}, in order that $\operatorname{Gal}\left(L_{n} / L_{n}^{\prime}\right) \simeq D_{n}(K)$. Also, for any nonnegative integer n, we denote by $A_{n}^{\prime}(K)$ the group of p-ideal p-classes of K_{n}, that is, $A_{n}(K) / D_{n}(K)$. We simply denote by $A^{\prime}(K):=A_{0}^{\prime}(K)$ the group of p-ideal p-classes of K, that is, $A(K) / D(K)$. We define $L_{\infty}:=\bigcup L_{n}, L_{\infty}^{\prime}=\bigcup L_{n}^{\prime}$ and the

Iwasawa module $X_{\infty}^{\prime}(K)$ as the projective limit of the groups $A_{n}^{\prime}(K)$ with respect to the norm maps

$$
X_{\infty}^{\prime}(K)=\lim _{\leftrightarrows} A_{n}^{\prime}(K) \simeq \lim \operatorname{Gal}\left(L_{n}^{\prime} / K_{n}\right)=\operatorname{Gal}\left(L_{\infty}^{\prime} / K_{\infty}\right)
$$

where the second projective limit is defined with respect to the restriction maps. Also, we define the group $D_{\infty}(K)$ as the projective limit of the groups $D_{n}(K)$, with respect to the norm maps

$$
D_{\infty}(K):=\lim D_{n}(K)
$$

Let γ be a topological generator of $\operatorname{Gal}\left(K_{\infty} / K\right)$, let $w_{0}=T=\gamma-1$, and for each positive integer n, we denote by $w_{n}=\gamma^{p^{n}}-1=(1+T)^{p^{n}}-1, \nu_{n}=w_{n} / w_{0}$ and $\Lambda=\mathbb{Z}_{p} \llbracket T \rrbracket$ the ring of formal power series, which is a local ring of maximal ideal (p, T).

Preparation to the proof of the main theorem. We will prove the following general result giving the least layer of the cyclotomic \mathbb{Z}_{p}-extension of K, from which the elementary groups $A_{n}^{\prime}(K) / p$ of the layers K_{n} stabilize.

Proposition 2.1. Let p be a prime number and K a number field containing a unique p-adic place that is totally ramified in K_{∞}. Suppose there exists a nonnegative integer m such that $\mathrm{rk}_{p}\left(A_{m}^{\prime}(K)\right)<p^{m}$. Then we have

$$
X_{\infty}^{\prime}(K) / p \simeq A_{m}^{\prime}(K) / p
$$

Proof. Since K contains a unique p-adic place which is totally ramified in K_{∞}, then the maximal abelian extension of K_{n} contained in L_{∞}^{\prime} is $K_{\infty} L_{n}^{\prime}$, and hence $w_{n} X_{\infty}^{\prime}(K)$ fixes $K_{\infty} L_{n}^{\prime}$ [6]. We obtain

$$
\begin{aligned}
& X_{\infty}^{\prime}(K) / w_{0} X_{\infty}^{\prime}(K) \simeq \operatorname{Gal}\left(K_{\infty} L_{0}^{\prime} / K_{\infty}\right) \simeq \operatorname{Gal}\left(L_{0}^{\prime} / K\right) \simeq A^{\prime}(K) \\
& X_{\infty}^{\prime}(K) / w_{n} X_{\infty}^{\prime}(K) \simeq \operatorname{Gal}\left(K_{\infty} L_{n}^{\prime} / K_{\infty}\right) \simeq \operatorname{Gal}\left(L_{n}^{\prime} / K_{n}\right) \simeq A_{n}^{\prime}(K)
\end{aligned}
$$

Let r be a nonnegative integer such that $\operatorname{rk}_{p}\left(A^{\prime}(K)\right)=r$:

$$
A^{\prime}(K) / p \simeq(\mathbb{Z} / p \mathbb{Z})^{r}
$$

Hence from Nakayama's lemma, $X_{\infty}^{\prime}(K)$ is a finitely generated Λ-module with r generators. Thus the elementary p-group $X_{\infty}^{\prime}(K) / p$ is a $\mathbb{F}_{p} \llbracket T \rrbracket$-module with r generators:

$$
X_{\infty}^{\prime}(K) / p \simeq \bigoplus_{i=1}^{r} \frac{\mathbb{F}_{p} \llbracket T \rrbracket}{\left(T^{n_{i}}\right)},
$$

where n_{i} are positive integers. Clearly we have

$$
\operatorname{rk}_{p}\left(X_{\infty}^{\prime}(K)\right)=\sum_{i=1}^{r} n_{i}
$$

As reported above, the groups $A_{n}^{\prime}(K)$ are determined by giving quotient of $X_{\infty}^{\prime}(K)$ over w_{n}. Hence we obtain

$$
X_{\infty}^{\prime}(K) /\left(p, w_{n}\right) \simeq A_{n}^{\prime}(K) / p \simeq \bigoplus_{i=1}^{r} \frac{\mathbb{F}_{p} \llbracket T \rrbracket}{\left(w_{n}, T^{n_{i}}\right)}
$$

Hence

$$
\operatorname{rk}_{p}\left(A_{m}^{\prime}(K)\right)=\sum_{i=1}^{r}\left(\min \left(\operatorname{deg}\left(w_{m}\right), n_{i}\right)\right)=\sum_{i=1}^{r}\left(\min \left(p^{m}, n_{i}\right)\right)
$$

The hypothesis, $\operatorname{rk}_{p}\left(A_{m}^{\prime}(K)\right)<p^{m}$, implies $n_{i}<p^{m}$ for each $i=1, \ldots, r$. We conclude that

$$
\operatorname{rk}_{p}\left(X_{\infty}^{\prime}(K)\right)=\sum_{i=1}^{r} n_{i}=\operatorname{rk}_{p}\left(A_{m}^{\prime}(K)\right.
$$

Below we consider the quadratic number field $F=\boldsymbol{Q}\left(\sqrt{\ell \ell^{\prime}}\right)$, where ℓ and ℓ^{\prime} are prime numbers such that $\ell \equiv-\ell^{\prime} \equiv 1(\bmod 4)$. Let $m+2$ and $m^{\prime}+2$ be respectively the 2 -adic valuations of $\ell-1$ and $\ell^{\prime}+1$:

$$
v_{2}(\ell-1)-2=m \quad \text { and } \quad v_{2}\left(\ell^{\prime}+1\right)-2=m^{\prime}
$$

Clearly in terms of decomposition in the cyclotomic \mathbb{Z}_{2}-extension of \boldsymbol{Q}, we have \boldsymbol{Q}_{m} and $\boldsymbol{Q}_{m^{\prime}}$ respectively the decomposition fields of ℓ and ℓ^{\prime}.

For each positive integer n, denote $\alpha_{n}=2 \cos \left(2 \pi / 2^{n+2}\right)$. The n-th layer of the cyclotomic \mathbb{Z}_{2}-extension of \boldsymbol{Q} is $\boldsymbol{Q}_{n}=\boldsymbol{Q}\left(\alpha_{n}\right)$. One can verify that $\alpha_{n+1}=\sqrt{2+\alpha_{n}}$. We have $N_{\boldsymbol{Q}_{n} / \boldsymbol{Q}}\left(2+\alpha_{n}\right)=2$ and $\left(2+\alpha_{n}\right) o \boldsymbol{Q}_{n}$ is the unique prime ideal of \boldsymbol{Q}_{n} lying over 2 , and hence

$$
2 o \boldsymbol{Q}_{n}=\left(2+\alpha_{n}\right)^{2^{n}} o \boldsymbol{Q}_{n}
$$

Put for each positive integer $n, \beta_{n}=2+\alpha_{n}$, so

$$
\beta_{n+1}=2+\alpha_{n+1}=2+\sqrt{2+\alpha_{n}}=2+\sqrt{\beta_{n}}
$$

Then we have

$$
\boldsymbol{Q}_{n}=\boldsymbol{Q}\left(\beta_{n}\right) \quad \text { and } \quad \boldsymbol{Q}_{n+1}=\boldsymbol{Q}_{n}\left(\sqrt{\beta_{n}}\right)
$$

Next, we denote by $E_{\boldsymbol{Q}_{n}}$ (resp. $E_{\boldsymbol{Q}_{n}}^{\prime}$), the group of units (resp. the group of 2-units) of \boldsymbol{Q}_{n}. Clearly, the group $E_{\boldsymbol{Q}_{n}}^{\prime}$ is generated by β_{n} and $E_{\boldsymbol{Q}_{n}}$.
Proposition 2.2. Suppose that $m^{\prime} \geq m$. We have:
(1) If $m=0$, then $A_{n}^{\prime}(F)=0$ for each nonnegative integer n.
(2) If $m \geq 1$, then $\frac{1}{2} X_{\infty}^{\prime}(F) \simeq \mathbb{Z} / 2 \mathbb{Z}^{\oplus 2^{m}-1}$, precisely we have

$$
\begin{equation*}
\frac{1}{2} A_{n}(F) \simeq \frac{1}{2} A_{n}^{\prime}(F) \simeq \mathbb{Z} / 2 \mathbb{Z}^{\oplus 2^{n}} \quad \text { for all } n \leq m-1 \tag{2-1}
\end{equation*}
$$

(2-2) $D_{n} \simeq \mathbb{Z} / 2 \mathbb{Z}, \frac{1}{2} A_{n}^{\prime}(F) \simeq \mathbb{Z} / 2 \mathbb{Z}^{\oplus 2^{m}-1}, \quad \frac{1}{2} A_{n}(F) \simeq \mathbb{Z} / 2 \mathbb{Z}^{\oplus 2^{m}}$ for all $n \geq m$.

Proof. By genus theory, we have $A(F) \simeq \mathbb{Z} / 2 \mathbb{Z}$. Since F contains a unique 2 -adic place, then $X_{\infty}^{\prime}(F) / T \simeq A^{\prime}(F)$ is cyclic (possible trivial). Suppose that $m=0$, then ℓ is inert in \boldsymbol{Q}_{1}, which is equivalent to $(2 / \ell)=-1$. Hence, the 2-adic place of F is inert in $\boldsymbol{Q}\left(\sqrt{\ell}, \sqrt{\ell^{\prime}}\right)$ the genus field of F, thus $A^{\prime}(F)$ is trivial. In that case, by Nakayama's lemma $X_{\infty}^{\prime}(F)$ is trivial, then we have (1). Next suppose that $m \geq 1$. Then ℓ splits in \boldsymbol{Q}_{1}, so the 2-adic place of F splits in $\boldsymbol{Q}\left(\sqrt{\ell}, \sqrt{\ell^{\prime}}\right)$, thus $A^{\prime}(F)$ is cyclic nontrivial.

On the other hand, since $A\left(\boldsymbol{Q}_{n}\right)$ is trivial, then each class of $A_{n}(F)$ of order 2 is an ambiguous class relative to the extension $F_{n} / \boldsymbol{Q}_{n}$. Hence we obtain

$$
\frac{1}{2} A_{n}(F) \simeq A_{n}(F)^{G} \quad \text { and } \quad \frac{1}{2} A_{n}^{\prime}(F) \simeq A_{n}^{\prime}(F)^{G}
$$

where $G=\operatorname{Gal}\left(F_{n} / \boldsymbol{Q}_{n}\right)$.
From A^{\prime} version of ambiguous class number formula applied to the extension $F_{n} / \boldsymbol{Q}_{n}$ (see, for instance, [2]), we have, for each nonnegative integer n

$$
\left|A_{n}^{\prime}(F)^{G}\right|= \begin{cases}2^{2^{n}+2^{n}}\left[E_{\boldsymbol{Q}_{n}}^{\prime}: E_{\boldsymbol{Q}_{n}}^{\prime} \cap N_{F_{n} / \boldsymbol{Q}_{n}}\left(F_{n}^{*}\right)\right]^{-1} & \text { for all } n \leq m-1 \\ 2^{2^{m}+2^{n}}\left[E_{\boldsymbol{Q}_{n}}^{\prime}: E_{\boldsymbol{Q}_{n}}^{\prime} \cap N_{F_{n} / \boldsymbol{Q}_{n}}\left(F_{n}^{*}\right)\right]^{-1} & \text { for all } m \leq n \leq m^{\prime} \\ 2^{2^{m}+2^{m^{\prime}}}\left[E_{\boldsymbol{Q}_{n}}^{\prime}: E_{\boldsymbol{Q}_{n}}^{\prime} \cap N_{F_{n} / \boldsymbol{Q}_{n}}\left(F_{n}^{*}\right)\right]^{-1} & \text { for all } n \geq m^{\prime}\end{cases}
$$

Hence to compute the unit index $\left[E_{\boldsymbol{Q}_{n}}^{\prime}: E_{\boldsymbol{Q}_{n}}^{\prime} \cap N_{F_{n} / \boldsymbol{Q}_{n}} F_{n}^{*}\right]$, it suffices to look to the units of \boldsymbol{Q}_{n} and β_{n} whether or not they are norms in the extension $F_{n} / \boldsymbol{Q}_{n}$. Clearly, the unit index $\left[E_{\boldsymbol{Q}_{n}}^{\prime}: E_{\boldsymbol{Q}_{n}}^{\prime} \cap N_{F_{n} / \boldsymbol{Q}_{n}}\left(F_{n}^{*}\right)\right]$ is less than or equal to $2^{2^{n}+1}$; we will compute this unit index. It is well known that an element $u \in E_{\boldsymbol{Q}_{n}}^{\prime}$ is a norm in the extension $F_{n} / \boldsymbol{Q}_{n}$ if and only if the quadratic norm residue symbol $\left(\frac{u, \ell \ell^{\prime}}{\mathcal{P}}\right)$ relatively to the extension $F_{n} / \boldsymbol{Q}_{n}$, is trivial for each prime ideal \mathcal{P} of \boldsymbol{Q}_{n} ramified in F_{n}. Note that there is only one 2-adic place \mathcal{Q} of \boldsymbol{Q}_{n} ramified in F_{n}. Then from the product formula

$$
\prod_{\mathcal{L} \mid \ell}\left(\frac{u, \ell \ell^{\prime}}{\mathcal{L}}\right) \prod_{\mathcal{L}^{\prime} \mid \ell^{\prime}}\left(\frac{u, \ell \ell^{\prime}}{\mathcal{L}^{\prime}}\right)\left(\frac{u, \ell \ell^{\prime}}{\mathcal{Q}}\right)=1
$$

u is a norm in the extension $F_{n} / \boldsymbol{Q}_{n}$ if and only if $\left(\frac{u, \ell \ell^{\prime}}{\mathcal{P}}\right)=1$, for each prime ideal \mathcal{P} of \boldsymbol{Q}_{n} dividing $\ell \ell^{\prime}$. In particular, since each ℓ-adic (resp. ℓ^{\prime}-adic) place \mathcal{L} (resp. \mathcal{L}^{\prime}) of \boldsymbol{Q}_{n} is unramified in $\boldsymbol{Q}_{n}\left(\sqrt{\ell^{\prime}}\right)$ (resp. $\boldsymbol{Q}_{n}(\sqrt{\ell})$), and by the fact that u is a 2-unit, we obtain
$\left(\frac{u, \ell}{\mathcal{L}^{\prime}}\right)=\sqrt{\ell} \frac{\left(\frac{Q_{m}\left(\sqrt{\beta_{m}}\right) / Q_{m}}{\mathcal{L}^{\prime}}\right)^{-v \mathcal{L}^{\prime}((u))}-1}{}=1, \quad\left(\frac{u, \ell^{\prime}}{\mathcal{L}}\right)={\sqrt{\ell^{\prime}}}^{\left(\frac{Q_{m}\left(\sqrt{\beta_{m}}\right) / Q_{m}}{\mathcal{L}}\right)^{-v \mathcal{L}((u))}-1}=1$,
where $\left(\frac{* * *}{*}\right)$ denotes the Artin symbol and $v_{\mathcal{P}}((u))$ is the \mathcal{P}-adic valuation of the ideal (u) of \boldsymbol{Q}_{n} generated by u, so $v_{\mathcal{P}}((u))=0$.

Hence, since for each prime ideal \mathcal{P} dividing $\ell \ell^{\prime}$, we have $\left(\frac{u, \ell \ell^{\prime}}{\mathcal{P}}\right)=\left(\frac{u, \ell}{\mathcal{P}}\right)\left(\frac{u, \ell^{\prime}}{\mathcal{P}}\right)$, then u is a norm in the extension $F_{n} / \boldsymbol{Q}_{n}$ if and only if u is a norm in the extensions
$\boldsymbol{Q}_{n}(\sqrt{\ell}) / \boldsymbol{Q}_{n}$ and $\boldsymbol{Q}_{n}\left(\sqrt{\ell^{\prime}}\right) / \boldsymbol{Q}_{n}$. Thus, we have the following surjective maps:

$$
\begin{aligned}
f: & E_{\boldsymbol{Q}_{n}}^{\prime} / E_{\boldsymbol{Q}_{n}}^{\prime} \cap N_{F_{n} / \boldsymbol{Q}_{n}} F_{n}^{*} \rightarrow E_{\boldsymbol{Q}_{n}}^{\prime} / E_{\boldsymbol{Q}_{n}}^{\prime} \cap N_{\boldsymbol{Q}_{n}\left(\sqrt{\ell^{\prime}}\right) / \boldsymbol{Q}_{n}} \boldsymbol{Q}_{n}\left(\sqrt{\ell^{\prime}}\right)^{*}, \\
& E_{\boldsymbol{Q}_{n}} / E_{\boldsymbol{Q}_{n}} \cap N_{F_{n} /} / \boldsymbol{Q}_{n} F_{n}^{*} \rightarrow E_{\boldsymbol{Q}_{n}} / E_{\boldsymbol{Q}_{n}} \cap N_{\boldsymbol{Q}_{n}\left(\sqrt{\ell^{\prime}}\right) / \boldsymbol{Q}_{n}} \boldsymbol{Q}_{n}\left(\sqrt{\ell^{\prime}}\right)^{*} .
\end{aligned}
$$

Since $\boldsymbol{Q}\left(\sqrt{\ell^{\prime}}\right)$ contains a unique 2 -adic place which is totally ramified in the \mathbb{Z}_{2}-extension $\left(\boldsymbol{Q}\left(\sqrt{\ell^{\prime}}\right)\right)_{\infty}$, then $X_{\infty}^{\prime}\left(\boldsymbol{Q}\left(\sqrt{\ell^{\prime}}\right)\right) / T \simeq A_{0}^{\prime}\left(\boldsymbol{Q}\left(\sqrt{\ell^{\prime}}\right)\right)$, which is trivial. Hence $A_{n}^{\prime}\left(\boldsymbol{Q}\left(\sqrt{\ell^{\prime}}\right)\right)$ is trivial for each nonnegative integer n. Thus from the ambiguous class number formula applied to the quadratic extension $\boldsymbol{Q}_{n}\left(\sqrt{\ell^{\prime}}\right) / \boldsymbol{Q}_{n}$, we obtain

$$
\left[E_{\boldsymbol{Q}_{n}}^{\prime}: E_{\boldsymbol{Q}_{n}}^{\prime} \cap N_{\boldsymbol{Q}_{n}\left(\sqrt{\ell^{\prime}}\right) / \boldsymbol{Q}_{n}} \boldsymbol{Q}_{n}\left(\sqrt{\ell^{\prime}}\right)^{*}\right]= \begin{cases}2^{2^{n}} & \text { for all } n \leq m^{\prime} \\ 2^{2^{m^{\prime}}} & \text { for all } n \geq m^{\prime}\end{cases}
$$

Similarly, we obtain the maximality of the following unit index for $n \leq m^{\prime}$:

$$
\left[E{\boldsymbol{\boldsymbol { Q } _ { n }}}: E_{\boldsymbol{Q}_{n}} \cap N_{\boldsymbol{Q}_{n}\left(\sqrt{\ell^{\prime}}\right) / \boldsymbol{Q}_{n}} \boldsymbol{Q}_{n}\left(\sqrt{\ell^{\prime}}\right)^{*}\right]= \begin{cases}2^{2^{n}} & \text { for all } n \leq m^{\prime} \\ 2^{2^{m^{\prime}}} & \text { for all } n \geq m^{\prime}\end{cases}
$$

It follows from the above maps that

$$
\begin{aligned}
& {\left[E_{\boldsymbol{Q}_{n}}^{\prime}: E_{\boldsymbol{Q}_{n}}^{\prime} \cap N_{F_{n} / \boldsymbol{Q}_{n}} F_{n}^{*}\right] \geq \begin{cases}2^{2^{n}} & \text { for all } n \leq m^{\prime}, \\
2^{2^{m^{\prime}}} & \text { for all } n \geq m^{\prime},\end{cases} } \\
& {\left[E_{\boldsymbol{Q}_{n}}: E_{\boldsymbol{Q}_{n}} \cap N_{F_{n} / \boldsymbol{Q}_{n}} F_{n}^{*}\right] \geq \begin{cases}2^{2^{n}} & \text { for all } n \leq m^{\prime}, \\
2^{2^{m^{\prime}}} & \text { for all } n \geq m^{\prime}\end{cases} }
\end{aligned}
$$

Therefore, since $\left[E_{\boldsymbol{Q}_{n}}: E_{\boldsymbol{Q}_{n}} \cap N_{F_{n}} / \boldsymbol{Q}_{n} F_{n}^{*}\right] \leq 2^{2^{n}}$, we obtain the maximality of the following unit index:

$$
\left[E_{\boldsymbol{Q}_{n}}: E_{\boldsymbol{Q}_{n}} \cap N_{F_{n} / \boldsymbol{Q}_{n}} F_{n}^{*}\right]=2^{n} \quad \text { for all } n \leq m^{\prime}
$$

For $n \leq m-1$, from the hypotheses, the ℓ-adic and ℓ^{\prime}-adic places of \boldsymbol{Q}_{n} split in $\boldsymbol{Q}_{n+1}=\boldsymbol{Q}_{n}\left(\sqrt{\beta_{n}}\right)$, then for each prime ideal $\mathcal{P} \mid \ell \ell^{\prime}$, by the properties of the norm residue symbol, β_{n} is a norm in the extension $F_{n} / \boldsymbol{Q}_{n}$:

$$
\left(\frac{\beta_{n}, \ell \ell^{\prime}}{\mathcal{P}}\right)=\left(\frac{\ell \ell^{\prime}, \beta_{n}}{\mathcal{P}}\right)=\sqrt{\beta_{n}}\left(\frac{Q_{n}\left(\sqrt{\beta_{n}}\right) / Q_{n}}{\mathcal{P}}\right)^{-v_{\mathcal{P}}\left(\left(\ell \ell^{\prime}\right)\right)}-1=\frac{\left(\frac{\boldsymbol{Q}_{n+1} / Q_{n}}{\mathcal{P}}\right)^{-1}\left(\sqrt{\beta_{n}}\right)}{\sqrt{\beta_{n}}}=1
$$

where $v_{\mathcal{P}}\left(\left(\ell \ell^{\prime}\right)\right)=1$ is the \mathcal{P}-adic valuation of the ideal $\left(\ell \ell^{\prime}\right)$ of \boldsymbol{Q}_{n} generated by $\ell \ell^{\prime}$. Hence we obtain

$$
\left[E_{\boldsymbol{Q}_{n}}^{\prime}: E_{\boldsymbol{Q}_{n}}^{\prime} \cap N_{F_{n} / \boldsymbol{Q}_{n}}\left(F_{n}^{*}\right)\right]=\left[E_{\boldsymbol{Q}_{n}}: E_{\boldsymbol{Q}_{n}} \cap N_{F_{n} / \boldsymbol{Q}_{n}}\left(F_{n}^{*}\right)\right]=2^{2^{n}}
$$

It follows from the ambiguous class number formula that

$$
\left|\frac{1}{2} A_{n}(F)\right|=\left|\frac{1}{2} A_{n}^{\prime}(F)\right|=\left|A_{n}^{\prime}(F)^{G}\right|=2^{2^{n}+2^{n}}\left[E_{\boldsymbol{Q}_{n}}^{\prime}: E_{\boldsymbol{Q}_{n}}^{\prime} \cap N_{F_{n} / \boldsymbol{Q}_{n}}\left(F_{n}^{*}\right)\right]^{-1}=2^{2^{n}}
$$

Hence we obtain (2-1) of Proposition 2.2.

Suppose now that $n \geq m$, especially when $n=m$, we have

$$
\left|A_{m}^{\prime}(F)^{G}\right|=2^{2^{m+1}}\left[E_{\boldsymbol{Q}_{m}}^{\prime}: E_{\boldsymbol{Q}_{m}}^{\prime} \cap N_{F_{m} / \boldsymbol{Q}_{m}}\left(F_{m}^{*}\right)\right]^{-1}
$$

We will prove that the unit index $\left[E_{\boldsymbol{Q}_{m}}^{\prime}: E_{\boldsymbol{Q}_{m}}^{\prime} \cap N_{F_{m} / \boldsymbol{Q}_{m}}\left(F_{m}^{*}\right)\right]$ is maximal equal to $2^{2^{m}+1}$. If we denote by U a fundamental system of units of \boldsymbol{Q}_{m}, it suffices to look if the system of the classes of units

$$
\left\{\overline{-1}, \bar{\beta}_{m}, \bar{u} \mid u \in U\right\}
$$

is a base of the \mathbb{F}_{2}-vectorial space $E_{\boldsymbol{Q}_{m}}^{\prime} / E_{\boldsymbol{Q}_{m}}^{\prime} \cap N_{F_{n} / \boldsymbol{Q}_{m}}\left(F_{m}^{*}\right)$. From the equalities

$$
\begin{aligned}
{\left[E_{\boldsymbol{Q}_{m}}^{\prime}: E_{\boldsymbol{Q}_{m}}^{\prime} \cap N_{\boldsymbol{Q}_{m}\left(\sqrt{\ell^{\prime}}\right) / \boldsymbol{Q}_{m}} \boldsymbol{Q}_{m}\left(\sqrt{\ell^{\prime}}\right)^{*}\right] } & =\left[E_{\boldsymbol{Q}_{m}}: E \boldsymbol{Q}_{m} \cap N_{\boldsymbol{Q}_{m}\left(\sqrt{\ell^{\prime}}\right) / \boldsymbol{Q}_{m}} \boldsymbol{Q}_{m}\left(\sqrt{\ell^{\prime}}\right)^{*}\right] \\
& =2^{m}
\end{aligned}
$$

it is clear that $\{\overline{-1}, \bar{u} \mid u \in U\}$ is a base of the \mathbb{F}_{2}-vectorial space

$$
E_{\boldsymbol{Q}_{m}}^{\prime} / E_{\boldsymbol{Q}_{m}}^{\prime} \cap N_{\boldsymbol{Q}_{m}\left(\sqrt{\ell^{\prime}}\right) / \boldsymbol{Q}_{m}} \boldsymbol{Q}_{m}\left(\sqrt{\ell^{\prime}}\right)^{*}
$$

Therefore, $\{\overline{-1}, \bar{u} \mid u \in U\}$, is a free system of the \mathbb{F}_{2}-vectorial space

$$
E_{\boldsymbol{Q}_{m}}^{\prime} / E_{\boldsymbol{Q}_{m}}^{\prime} \cap N_{F_{n} / \boldsymbol{Q}_{m}}\left(F_{m}^{*}\right)
$$

On the other hand, from the hypotheses, the ℓ-adic places of \boldsymbol{Q}_{m} are inert in \boldsymbol{Q}_{m+1}. Hence β_{m} is not norm in the extension $F_{m} / \boldsymbol{Q}_{m}$, precisely for each ℓ-adic place \mathcal{L} of \boldsymbol{Q}_{m}, we have
$\left(\frac{\beta_{m}, \ell \ell^{\prime}}{\mathcal{L}}\right)=\left(\frac{\ell \ell^{\prime}, \beta_{m}}{\mathcal{L}}\right)=\sqrt{\beta_{m}}\left(\frac{Q_{m}\left(\sqrt{\left.\beta_{m}\right)} / Q_{m}\right.}{\mathcal{L}}\right)^{-v_{\mathcal{L}}\left(\left(\ell \ell^{\prime}\right)\right)}-1=\sqrt{\beta_{m}}\left(\frac{Q_{m+1} / Q_{m}}{\mathcal{L}}\right)^{-1}-1=-1$.
Hence β_{m} is not norm in the extension $F_{m} / \boldsymbol{Q}_{m}$.
Also, the ℓ^{\prime}-adic places of \boldsymbol{Q}_{m} are inert in \boldsymbol{Q}_{m+1} if and only if $m=m^{\prime}$. Therefore, one of the following two facts can occur:
(i) In the case where $m^{\prime} \geq m+1$, for each ℓ^{\prime}-adic place \mathcal{L}^{\prime} of \boldsymbol{Q}_{m}, we have

$$
\left(\frac{\beta_{m}, \ell^{\prime}}{\mathcal{L}^{\prime}}\right)=\left(\frac{\ell^{\prime}, \beta_{m}}{\mathcal{L}^{\prime}}\right)=\sqrt{\beta_{m}}\left(\frac{\left(\frac{Q_{m}\left(\sqrt{\left.\beta_{m}\right)} / Q_{m}\right.}{\mathcal{L}^{\prime}}\right)^{\left.-v \mathcal{L}^{\prime}\left(\ell^{\prime}\right)\right)}-1}{}=\sqrt{\beta_{m}}\left(\frac{\underline{Q}_{m+1} / Q_{m}}{\mathcal{L}^{\prime}}\right)^{-1}-1 .\right.
$$

Hence, β_{m} is norm in the extension $\boldsymbol{Q}_{m}\left(\sqrt{\ell^{\prime}}\right) / \boldsymbol{Q}_{m}$, so the kernel of the previous map f is nontrivial. Thus we obtain

$$
\operatorname{ker}(f)=\bar{\beta}_{m} \mathbb{F}_{2}
$$

(ii) In the case where $m=m^{\prime}$, for each ℓ^{\prime}-adic place \mathcal{L}^{\prime} of \boldsymbol{Q}_{m}, we have

$$
\left(\frac{\beta_{m}, \ell^{\prime}}{\mathcal{L}^{\prime}}\right)=\left(\frac{\ell^{\prime}, \beta_{m}}{\mathcal{L}^{\prime}}\right)=\sqrt{\beta_{m}}\left(\frac{Q_{m}\left(\sqrt{\beta_{m}}\right) / Q_{m}}{\mathcal{L}^{\prime}}\right)^{-v \mathcal{L}^{\prime}\left(\left(\ell^{\prime}\right)\right)}-1=\sqrt{\beta_{m}}\left(\frac{Q_{m+1} / Q_{m}}{\mathcal{L}^{\prime}}\right)^{-1}-1=-1
$$

Thus β_{m} is not norm in the extension $\boldsymbol{Q}_{m}\left(\sqrt{\ell^{\prime}}\right) / \boldsymbol{Q}_{m}$, so $\bar{\beta}_{m} \notin \operatorname{ker}(f)$.

Also, for each ℓ-adic place \mathcal{L} and ℓ^{\prime}-adic place \mathcal{L}^{\prime} of \boldsymbol{Q}_{m}, we have

$$
\left(\frac{-1, \ell \ell^{\prime}}{\mathcal{L}}\right)=\left(\frac{-1, \ell}{\mathcal{L}}\right)=\left(\frac{-1}{\ell}\right)=1 \quad \text { and } \quad\left(\frac{-1, \ell^{\prime}}{\mathcal{L}^{\prime}}\right)=\left(\frac{-1}{\ell^{\prime}}\right)=-1 .
$$

Consequently, in this case, $-\beta_{m}$ is not norm in the extension $F_{m} / \boldsymbol{Q}_{m}$, but norm in the extension $\boldsymbol{Q}_{m}\left(\sqrt{\ell^{\prime}}\right) / \boldsymbol{Q}_{m}$. Hence the kernel of f is nontrivial:

$$
\operatorname{ker}(f)=-\bar{\beta}_{m} \mathbb{F}_{2}
$$

Consequently, we conclude that the system $\left\{\overline{-1}, \bar{\beta}_{m}, \bar{u} \mid u \in U\right\}$ is free. Thus, we find

$$
\left|\frac{1}{2} A_{m}^{\prime}(F)\right|=\left|A_{m}^{\prime}(F)^{G}\right|=2^{2^{m}+2^{m}}\left[E_{\boldsymbol{Q}_{m}}^{\prime}: E_{\boldsymbol{Q}_{m}}^{\prime} \cap N_{F_{m} / \boldsymbol{Q}_{m}}\left(F_{m}^{*}\right)\right]^{-1}=2^{2^{m}-1}
$$

So clearly, $D_{m}(F)$ is nontrivial. Moreover, since the 2-adic place of F_{m} is totally ramified in F_{∞}, then for $n \geq m$, the norm map $D_{n}(F) \rightarrow D_{m}(F)$ is onto, implies that $D_{n}(F)$ is nontrivial. Also, since F_{n} contains a unique 2-adic place and its square is trivial, then we have

$$
D_{n}(F) \simeq D_{m}(F) \simeq \mathbb{Z} / 2 \mathbb{Z}
$$

Furthermore, since $\mathrm{rk}_{2}\left(A_{m}^{\prime}(F)\right)=2^{m}-1<2^{m}$, it follows from Proposition 2.1 that

$$
\frac{1}{2} X_{\infty}^{\prime}(F) \simeq \frac{1}{2} A_{m}^{\prime}(F) \simeq \frac{1}{2} A_{n}^{\prime}(F) \simeq \mathbb{Z} / 2 \mathbb{Z}^{\oplus 2^{m}-1} \quad \text { for all } n \geq m
$$

In addition, by the ambiguous class number formula we conclude that for each $n \geq m$,

$$
\operatorname{rk}_{2}\left(A_{n}(F)\right)=\operatorname{rk}_{2}\left(A_{n}(F)^{G}\right)=2^{m}
$$

Corollary 2.3. We have

$$
X_{\infty}(F) \simeq X_{\infty}^{\prime}(F) \oplus D_{\infty}(F),
$$

where $D_{\infty}(F) \simeq \mathbb{Z} / 2 \mathbb{Z}$.
Proof. From Proposition 2.2, for each $n \geq m$, we have

$$
D_{n}(F) \simeq \mathbb{Z} / 2 \mathbb{Z}, \quad \operatorname{rk}_{2}\left(A_{n}^{\prime}(F)\right)=2^{m}-1 \quad \text { and } \quad \operatorname{rk}_{2}\left(A_{n}(F)\right)=2^{m}
$$

It follows that $A_{n} \simeq A_{n}^{\prime} \oplus D_{n}(F)$. Hence, passing to the projective limit with respect to the norm maps, we have the result.

Proof of the main theorem. From the hypotheses, we have $A(F)=A^{\prime}(F) \simeq \mathbb{Z} / 2 \mathbb{Z}$ and generated by the class of the ℓ-adic place. By Proposition 2.2, we have $\operatorname{rank}\left(A_{m}^{\prime}(F)\right)<2^{m}$, then $A^{\prime}(F)$ capitulates in F_{m} [15, Lemma 7]. Consider the
commutative diagram [6, Theorems 6 and 7]:

Since $A^{\prime}(F)$ capitulates in F_{m}, then the left vertical map is trivial, thus

$$
v_{m} X_{\infty}^{\prime}(F) \subset w_{m} X_{\infty}^{\prime}(F)
$$

Hence we obtain

$$
w_{m} X_{\infty}^{\prime}(F)=v_{m} X_{\infty}^{\prime}(F)=w_{0}\left(v_{m} X_{\infty}^{\prime}(F)\right)
$$

On the other hand, since $v_{m} X_{\infty}^{\prime}(F)$ is a finitely generated Λ-module and w_{0} is contained in (p, T), then by Nakayama's lemma we obtain $w_{m} X_{\infty}^{\prime}(F)=v_{m} X_{\infty}^{\prime}(F)=0$; hence $X_{\infty}^{\prime}(F) \simeq A_{m}^{\prime}(F)$. Consequently, from Corollary 2.3, we have

$$
X_{\infty}(F) \simeq X_{\infty}^{\prime}(F) \oplus D_{\infty}(F) \simeq A_{m}(F) \simeq A_{m}^{\prime}(F) \oplus \mathbb{Z} / 2 \mathbb{Z}
$$

Also, from Proposition 2.2, we have $\operatorname{rk}_{2}\left(A_{m-1}(F)\right)=2^{m-1}<\operatorname{rk}_{2}\left(A_{m}(F)\right)=2^{m}$, then $X_{\infty}(F) \not 千 A_{m-1}(F)$.

Now, we will prove that $X_{\infty}(F)$ is an elementary abelian 2-group. We will use other notations. For each nonnegative integer $n \leq m^{\prime}$, let S_{n} be the set of ℓ^{\prime}-adic places of F_{n}, and $D_{S_{n}}$ the subgroup of $A_{n}(F)$ generated by the classes of places in S_{n}. Let $A_{n}^{S_{n}}$ be the group of S_{n}-classes, that is, $A_{n}^{S_{n}}:=A_{n}(F) / D_{S_{n}}$. Let M_{n} be the maximal abelian unramified 2-extension over F_{n}, in which all places of S_{n} split completely. By class field theory, we have

$$
\operatorname{Gal}\left(M_{n} / F_{n}\right) \simeq A_{n}^{S_{n}}
$$

Since F contains a unique 2 -adic place which is totally ramified in F_{∞} and the ℓ^{\prime}-adic place of F splits completely in $F_{m^{\prime}}$, then the maximal abelian unramified extension of F contained in $M_{m^{\prime}}$ is $F_{m^{\prime}} M_{0}$. On the other hand, $A_{m^{\prime}}^{S_{m^{\prime}}}$ is a finitely generated $\Lambda=\mathbb{Z}_{2} \llbracket T \rrbracket$-module and $A_{m^{\prime}}^{S_{m^{\prime}}} / T \simeq A_{0}^{S_{0}}$. By the hypotheses, we have $\left(\ell / \ell^{\prime}\right)=-1$, then $A_{0}^{S_{0}}=0$ and by Nakayama's lemma, $A_{m^{\prime}}^{S_{m^{\prime}}}=0$. It follows that for each nonnegative integers $n \leq m^{\prime}$, we have $A_{n}(F) \simeq D_{S_{n}}$. But, all classes of places in S_{n} are trivial or of order 2, then $A_{n}(F)$ is an elementary 2-group, thus $X_{\infty}(F)$ is an elementary group isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{2^{m}}$.

Application to the \mathbb{Z}_{2}-torsion of $X_{\infty}(K)$, for some imaginary biquadratic number fields K. It is well known from the results of Ferrero and Kida [2; 7] that the \mathbb{Z}_{2}-torsion part $X_{\infty}^{0}(K)$ of the unramified abelian Iwasawa module $X_{\infty}(K)$ of any imaginary quadratic number field K is trivial or cyclic of order 2. As an application of the main theorem, we will determine an infinite family of imaginary biquadratic
number fields K, in which the \mathbb{Z}_{2}-torsion part of the Iwasawa module $X_{\infty}(K)$ is an elementary group of arbitrary large rank.
M. Atsuta [1] studied the minus quotient $X_{\infty}^{-}(K)$ of the Iwasawa module $X_{\infty}(K)$ for CM number fields K, that is,

$$
X_{\infty}^{-}(K)=X_{\infty}(K) /(1+J) X_{\infty}(K)
$$

where J is the complex conjugation. He determined the maximal finite submodule of X_{∞}^{-}under some mild assumptions. Precisely for a CM number field K such that its totally real maximal subfield K^{+}is unramified at 2 and contains a unique 2-adic place, then $X_{\infty}^{-}(K)$ has no nontrivial finite Λ-submodule [1, Example 2.8]. So from the exact sequence

$$
0 \rightarrow X_{\infty}\left(K^{+}\right) \rightarrow X_{\infty}(K) \rightarrow X_{\infty}^{-}(K) \rightarrow 0
$$

we have the maximal finite Λ-submodule of $X_{\infty}(K)$ which coincides with the maximal finite submodule of $X_{\infty}\left(K^{+}\right)$:

$$
X_{\infty}^{0}(K)=X_{\infty}^{0}\left(K^{+}\right)
$$

We reconsider now, the quadratic number field $F=\boldsymbol{Q}\left(\sqrt{\ell \ell^{\prime}}\right)$ of the main Theorem 1.1. Recall that ℓ and ℓ^{\prime} are two prime numbers such that

$$
\ell \equiv-\ell^{\prime} \equiv 1(\bmod 4) \quad \text { and } \quad\left(\ell / \ell^{\prime}\right)=-1
$$

The positive integers m and m^{\prime} are defined as

$$
v_{2}(\ell-1)-2=m \quad \text { and } \quad v_{2}\left(\ell^{\prime}+1\right)-2=m^{\prime} \quad\left(m^{\prime} \geq m\right)
$$

Then we have:
Proposition 2.4. For the imaginary biquadratic number field $K=F(i)$, we have the structure of the unramified abelian Iwasawa module $X_{\infty}(K)$ of K :

$$
X_{\infty}(K) \simeq \mathbb{Z}_{2}^{\lambda_{2}(K)} \oplus X_{\infty}^{0}(K)
$$

where $\lambda_{2}(K)=2^{m}+2^{m^{\prime}}-1$ and $X_{\infty}^{0}(K) \simeq X_{\infty}(F) \simeq(\mathbb{Z} / 2 \mathbb{Z})^{2^{m}}$.
Proof. From Kida's formula [7, Theorem 3], we see immediately that

$$
\lambda(K)=2^{m}+2^{m^{\prime}}-1
$$

On the other hand, since the quadratic extension K / K^{+}(here $K^{+}=F$) is unramified at 2-adic primes, then $X_{\infty}^{-}(K)$ has no nontrivial Λ-submodule [1, Corollary 1.4]. Hence, the \mathbb{Z}_{2}-torsion $X_{\infty}^{0}(K)$ of the Iwasawa module $X_{\infty}(K)$ coincides with the Iwasawa module $X_{\infty}(F)$:

$$
X_{\infty}^{0}(K)=X_{\infty}(F)
$$

Consequently from Theorem 1.1, we obtain

$$
X_{\infty}(K) \simeq \mathbb{Z}_{2}^{2^{m}+2^{m^{\prime}}-1} \oplus(\mathbb{Z} / 2 \mathbb{Z})^{2^{m}}
$$

Acknowledgement

The author is grateful to the referee for careful reading of the manuscript and for valuable comments and suggestions for the improvement of this article.

References

[1] M. Atsuta, "Finite Λ-submodules of Iwasawa modules for a CM-field for $p=2$ ", J. Théor. Nombres Bordeaux 30:3 (2018), 1017-1035. MR Zbl
[2] B. Ferrero, "The cyclotomic \mathbf{Z}_{2}-extension of imaginary quadratic fields", Amer. J. Math. 102:3 (1980), 447-459. MR Zbl
[3] B. Ferrero and L. C. Washington, "The Iwasawa invariant μ_{p} vanishes for abelian number fields", Ann. of Math. (2) 109:2 (1979), 377-395. MR Zbl
[4] T. Fukuda and K. Komatsu, "On the Iwasawa λ-invariant of the cyclotomic \mathbf{Z}_{2}-extension of a real quadratic field", Tokyo J. Math. 28:1 (2005), 259-264. MR Zbl
[5] R. Greenberg, "On the Iwasawa invariants of totally real number fields", Amer. J. Math. 98:1 (1976), 263-284. MR Zbl
[6] K. Iwasawa, "On \mathbf{Z}_{l}-extensions of algebraic number fields", Ann. of Math. (2) 98 (1973), 246-326. MR Zbl
[7] Y. Kida, "Cyclotomic \mathbf{Z}_{2}-extensions of J-fields", J. Number Theory $\mathbf{1 4 : 3}$ (1982), 340-352. MR Zbl
[8] N. Kumakawa, "On the Iwasawa λ-invariant of the cyclotomic \mathbb{Z}_{2}-extension of $\mathbb{Q}(\sqrt{p q})$ and the 2-part of the class number of $\mathbb{Q}(\sqrt{p q}, \sqrt{2+\sqrt{2}}) "$, Int. J. Number Theory 17:4 (2021), 931-958. MR Zbl
[9] Y. Mizusawa, "On unramified Galois 2-groups over \mathbb{Z}_{2}-extensions of real quadratic fields", Proc. Amer. Math. Soc. 138:9 (2010), 3095-3103. MR Zbl
[10] A. Mouhib, "Sur la 2-extension maximale non ramifiée de la \mathbf{Z}_{2}-extension cyclotomique de certains corps quadratiques", An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 22:1 (2014), 207-214. MR
[11] A. Mouhib and A. Movahhedi, "Cyclicity of the unramified Iwasawa module", Manuscripta Math. 135:1-2 (2011), 91-106. MR Zbl
[12] Y. Nishino, "On the Iwasawa invariants of the cyclotomic \mathbf{Z}_{2}-extensions of certain real quadratic fields", Tokyo J. Math. 29:1 (2006), 239-245. MR Zbl
[13] M. Ozaki, "Construction of real abelian fields of degree p with $\lambda_{p}=\mu_{p}=0$ ", Int. J. Open Probl. Comput. Sci. Math. 2:3 (2009), 342-351. MR Zbl
[14] M. Ozaki and H. Taya, "On the Iwasawa λ_{2}-invariants of certain families of real quadratic fields", Manuscripta Math. 94:4 (1997), 437-444. MR Zbl
[15] M. Ozaki and G. Yamamoto, "Iwasawa λ_{3}-invariants of certain cubic fields", Acta Arith. 97:4 (2001), 387-398. MR Zbl

Received October 25, 2022. Revised February 28, 2023.

Ali Mouhib
Department of Mathematics
Sciences and Engineering Laboratory
Polydisciplinary Faculty of Taza
Sidi Mohamed Ben Abdellah University
TaZA-Gare
Morocco
ali.mouhib@usmba.ac.ma

PACIFIC JOURNAL OF MATHEMATICS

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)
msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics University of California
Los Angeles, CA 90095-1555
blasius@math.ucla.edu

Matthias Aschenbrenner
Fakultät für Mathematik
Universität Wien
Vienna, Austria
matthias.aschenbrenner@univie.ac.at
Robert Lipshitz
Department of Mathematics
University of Oregon
Eugene, OR 97403
lipshitz@uoregon.edu

Paul Balmer

Department of Mathematics University of California
Los Angeles, CA 90095-1555
balmer@math.ucla.edu

Kefeng Liu

Department of Mathematics
University of California
Los Angeles, CA 90095-1555 liu@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics University of California
Riverside, CA 92521-0135 chari@math.ucr.edu

Sorin Popa

Department of Mathematics
University of California
Los Angeles, CA 90095-1555 popa@math.ucla.edu

Paul Yang
Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

[^1]The Pacific Journal of Mathematics (ISSN 1945-5844 electronic, 0030-8730 printed) at the University of California, c/o Department of Mathematics, 798 Evans Hall \#3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.
PUBLISHED BY

E. mathematical sciences publishers

nonprofit scientific publishing
http://msp.org/
© 2023 Mathematical Sciences Publishers

PACIFIC JOURNAL OF MATHEMATICS

Volume 323 No. 1 March 2023
Combinatorial properties of nonarchimedean convex sets 1Artem Chernikov and Alex Mennen
Generalisations of Hecke algebras from loop braid groups 31
Celeste Damiani, Paul Martin and Eric C. Rowell
Backström algebras 67
Yuriy Drozd
Rigidity of 3D spherical caps via μ-bubbles 89
Yuhao Hu, Peng Liu and Yuguang Shi
The deformation space of Delaunay triangulations of the sphere 115
Yanwen Luo, TianQi Wu and Xiaoping Zhu
Nonexistence of negative weight derivations of the local k-th Hessian 129 algebras associated to isolated singularities
Guorui Ma, Stephen S.-T. Yau and Huaiqing Zuo
The structure of the unramified abelian Iwasawa module of some 173 number fields
Ali Mouhib
Conjugacy classes of π-elements and nilpotent/abelian Hall 185 π-subgroups
Nguyen N. Hung, Attila Maróti and Juan Martínez
The classification of nondegenerate uniconnected cycle sets 205
Wolfgang Rump

[^0]: MSC2020: 11R23, 11R29, 11R32, 11R37.
 Keywords: class group, unit group, capitulation problem, Z_{2}-extension.

[^1]: See inside back cover or msp.org/pjm for submission instructions.
 The subscription price for 2023 is US $\$ 605 /$ year for the electronic version, and $\$ 820 /$ year for print and electronic.
 Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

