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THE STRUCTURE OF THE UNRAMIFIED ABELIAN IWASAWA
MODULE OF SOME NUMBER FIELDS

ALI MOUHIB

For a given positive integer m, we determine an explicit infinite family of
real quadratic number fields F, such that the unramified abelian Iwasawa
module over the Z2-extension of F, is isomorphic to (Z/2Z)2m .

1. Introduction

Let p be a prime number and Zp be the ring of p-adic integers. We denote by K a
number field, K∞ be the cyclotomic Zp-extension of K , and for each nonnegative
integer n, Kn be the n-th layer of K∞. For any nonnegative integer n, we denote
by An(K ) the p-class group of Kn . We simply denote by A(K ) := A0(K ) the
p-class group of K . The unramified abelian Iwasawa module X∞(K ) of K is
defined by

X∞(K ) := lim
←−−

An(K ),

where the projective limit is defined with respect to the norm mappings. It is well
known, by Iwasawa’s results that X∞(K ) is a finitely generated torsion 3 :=Zp[[T ]]-
module and for large n, we have

|An(K )| = pλp(K )n+µp(K )pn
+νp(K ),

where λp(K ), µp(K ) and νp(K ) are so called Iwasawa invariants of K∞/K . In the
case where K is abelian over Q, we have µp(K ) = 0 [3]. It is conjectured that
for totally real number fields K , λp(K )= µp(K )= 0 [5]. This conjecture, called
Greenberg’s conjecture, is considered as one of the fascinating problems in Iwasawa
theory of Zp-extensions. So proving the finiteness of X∞(K ), leads us to ask the
following questions:

• What about the structure of X∞(K )?

• What is the least nonnegative integer n such that X∞(K )≃ An(K )?
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We will deal with these questions in a special case of totally real quadratic number
fields.

Next, for each group G which is a finitely generated Zp-module, we denote by
rkp(G) the p-rank of G, that is, the dimension of the Fp-vectorial space G/G p.

Note that M. Ozaki [13] constructed a nonexplicit infinite family of cyclic number
fields K of degree p, verifying Greenberg’s conjecture and such that rkp(X∞(K ))

is arbitrarily large.
For p= 2, several articles tackled the Greenberg’s conjecture for some totally real

quadratic number fields. Precisely, for the prime numbers ℓ and ℓ′, the quadratic
number fields F = Q(

√
ℓℓ′) has been studied intensively, where ℓ and ℓ′ are

prime numbers such that ℓ ≡ −ℓ′ ≡ 1 (mod 4). In particular, Y. Mizusawa [9]
proved that for certain quadratic number fields F , the Galois groups of the maximal
unramified pro-2-extensions over the cyclotomic Z2-extension of F are metacyclic
pro-2-groups; he also studied the finiteness of X∞(F) in relation with Greenberg’s
conjecture. Clearly in this case X∞(F) is of rank equal to 2. Let us mention the
articles [4; 8; 9; 10; 11; 12; 14], where we have found selected explicit totally real
quadratic number fields F satisfying Greenberg’s conjecture.

The common point in all these articles is that the unramified abelian Iwasawa
module X∞(F) for the selected number fields F , is of small rank equal to 1 or 2.

Our contribution is to check Greenberg’s conjecture for a new family of fields
F =Q(

√
ℓℓ′). Precisely, we give the structure of X∞(F) and determine the least

positive integer m from which the groups An(F) stabilize. The main result of this
article is the following theorem.

Theorem 1.1. Let ℓ and ℓ′ be prime numbers such that ℓ ≡ −ℓ′ ≡ 1 (mod 4),
F = Q(

√
ℓℓ′). Put v2(ℓ− 1)− 2 = m and v2(ℓ

′
+ 1)− 2 = m′. Assume that

(ℓ/ℓ′)=−1 and m′ ≥ m. Then we have

An(F)≃ (Z/2Z)2n
for all n ≤ m and X∞(F)≃ Am(F)≃ (Z/2Z)2m

2. Totally real quadratic number fields verifying Greenberg’s conjecture and
the structure of the unramified abelian Iwasawa module

Let p be a prime number, K a number field and Kn the layers of the cyclotomic
Zp-extension of K . For each nonnegative integer n, let Ln be the Hilbert p-
class field of Kn and L ′n be the maximal extension of Kn contained in Ln in
which all p-adic places of Kn split completely. By class field theory, we have
An(K )≃Gal(Ln/Kn) and the subgroup Dn(K ) of An(K ) generated by the classes
of p-adic primes fixes L ′n , in order that Gal(Ln/L ′n) ≃ Dn(K ). Also, for any
nonnegative integer n, we denote by A′n(K ) the group of p-ideal p-classes of Kn ,
that is, An(K )/Dn(K ). We simply denote by A′(K ) := A′0(K ) the group of p-ideal
p-classes of K , that is, A(K )/D(K ). We define L∞ :=

⋃
Ln , L ′

∞
=

⋃
L ′n and the
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Iwasawa module X ′
∞

(K ) as the projective limit of the groups A′n(K ) with respect
to the norm maps

X ′
∞

(K )= lim
←−−

A′n(K )≃ lim
←−−

Gal(L ′n/Kn)= Gal(L ′
∞

/K∞),

where the second projective limit is defined with respect to the restriction maps.
Also, we define the group D∞(K ) as the projective limit of the groups Dn(K ), with
respect to the norm maps

D∞(K ) := lim
←−−

Dn(K ).

Let γ be a topological generator of Gal(K∞/K ), let w0= T =γ−1, and for each
positive integer n, we denote by wn = γ pn

− 1= (1+ T )pn
− 1, νn = wn/w0 and

3 = Zp[[T ]] the ring of formal power series, which is a local ring of maximal
ideal (p, T ).

Preparation to the proof of the main theorem. We will prove the following general
result giving the least layer of the cyclotomic Zp-extension of K , from which the
elementary groups A′n(K )/p of the layers Kn stabilize.

Proposition 2.1. Let p be a prime number and K a number field containing a unique
p-adic place that is totally ramified in K∞. Suppose there exists a nonnegative
integer m such that rkp(A′m(K )) < pm . Then we have

X ′
∞

(K )/p ≃ A′m(K )/p.

Proof. Since K contains a unique p-adic place which is totally ramified in K∞,
then the maximal abelian extension of Kn contained in L ′

∞
is K∞L ′n , and hence

wn X ′
∞

(K ) fixes K∞L ′n [6]. We obtain

X ′
∞

(K )/w0 X ′
∞

(K )≃ Gal(K∞L ′0/K∞)≃ Gal(L ′0/K )≃ A′(K ),

X ′
∞

(K )/wn X ′
∞

(K )≃ Gal(K∞L ′n/K∞)≃ Gal(L ′n/Kn)≃ A′n(K ).

Let r be a nonnegative integer such that rkp(A′(K ))= r :

A′(K )/p ≃ (Z/pZ)r .

Hence from Nakayama’s lemma, X ′
∞

(K ) is a finitely generated 3-module with
r generators. Thus the elementary p-group X ′

∞
(K )/p is a Fp[[T ]]-module with

r generators:

X ′
∞

(K )/p ≃
r⊕

i=1

Fp[[T ]]
(T ni )

,

where ni are positive integers. Clearly we have

rkp(X ′
∞

(K ))=

r∑
i=1

ni .
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As reported above, the groups A′n(K ) are determined by giving quotient of X ′
∞

(K )

over wn . Hence we obtain

X ′
∞

(K )/(p, wn)≃ A′n(K )/p ≃
r⊕

i=1

Fp[[T ]]
(wn, T ni )

.

Hence

rkp(A′m(K ))=

r∑
i=1

(
min(deg(wm), ni )

)
=

r∑
i=1

(
min(pm, ni )

)
.

The hypothesis, rkp(A′m(K )) < pm , implies ni < pm for each i = 1, . . . , r . We
conclude that

rkp(X ′
∞

(K ))=

r∑
i=1

ni = rkp(A′m(K ). □

Below we consider the quadratic number field F = Q(
√

ℓℓ′), where ℓ and ℓ′ are
prime numbers such that ℓ≡−ℓ′≡ 1 (mod 4). Let m+2 and m′+2 be respectively
the 2-adic valuations of ℓ− 1 and ℓ′+ 1:

v2(ℓ− 1)− 2= m and v2(ℓ
′
+ 1)− 2= m′.

Clearly in terms of decomposition in the cyclotomic Z2-extension of Q, we have
Qm and Qm′ respectively the decomposition fields of ℓ and ℓ′.

For each positive integer n, denote αn = 2 cos(2π/2n+2). The n-th layer of the
cyclotomic Z2-extension of Q is Qn= Q(αn). One can verify that αn+1=

√
2+αn .

We have N Qn/ Q(2+αn)= 2 and (2+αn)o Qn is the unique prime ideal of Qn lying
over 2, and hence

2o Qn = (2+αn)
2n

o Qn .

Put for each positive integer n, βn = 2+αn , so

βn+1 = 2+αn+1 = 2+
√

2+αn = 2+
√

βn.

Then we have
Qn = Q(βn) and Qn+1 = Qn(

√
βn).

Next, we denote by E Qn (resp. E ′Qn
), the group of units (resp. the group of 2-units)

of Qn . Clearly, the group E ′Qn
is generated by βn and E Qn .

Proposition 2.2. Suppose that m′ ≥ m. We have:

(1) If m = 0, then A′n(F)= 0 for each nonnegative integer n.

(2) If m ≥ 1, then 1
2 X ′
∞

(F)≃ Z/2Z⊕2m
−1, precisely we have

1
2 An(F)≃ 1

2 A′n(F)≃ Z/2Z⊕2n
for all n ≤ m− 1,(2-1)

Dn ≃ Z/2Z, 1
2 A′n(F)≃ Z/2Z⊕2m

−1, 1
2 An(F)≃ Z/2Z⊕2m

for all n ≥ m.(2-2)
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Proof. By genus theory, we have A(F)≃ Z/2Z. Since F contains a unique 2-adic
place, then X ′

∞
(F)/T ≃ A′(F) is cyclic (possible trivial). Suppose that m= 0, then

ℓ is inert in Q1, which is equivalent to (2/ℓ)=−1. Hence, the 2-adic place of F
is inert in Q(

√
ℓ,
√

ℓ′) the genus field of F , thus A′(F) is trivial. In that case, by
Nakayama’s lemma X ′

∞
(F) is trivial, then we have (1). Next suppose that m ≥ 1.

Then ℓ splits in Q1, so the 2-adic place of F splits in Q(
√

ℓ,
√

ℓ′), thus A′(F) is
cyclic nontrivial.

On the other hand, since A( Qn) is trivial, then each class of An(F) of order 2 is
an ambiguous class relative to the extension Fn/ Qn . Hence we obtain

1
2 An(F)≃ An(F)G and 1

2 A′n(F)≃ A′n(F)G,

where G = Gal(Fn/ Qn).
From A′ version of ambiguous class number formula applied to the exten-

sion Fn/ Qn (see, for instance, [2]), we have, for each nonnegative integer n

|A′n(F)G
| =


22n
+2n
[E ′Qn

: E ′Qn
∩ NFn/ Qn (F∗n )]−1 for all n ≤ m− 1,

22m
+2n
[E ′Qn

: E ′Qn
∩ NFn/ Qn (F∗n )]−1 for all m ≤ n ≤ m′,

22m
+2m′

[E ′Qn
: E ′Qn

∩ NFn/ Qn (F∗n )]−1 for all n ≥ m′.

Hence to compute the unit index [E ′Qn
: E ′Qn

∩ NFn/ Qn F∗n ], it suffices to look
to the units of Qn and βn whether or not they are norms in the extension Fn/ Qn .
Clearly, the unit index [E ′Qn

: E ′Qn
∩NFn/ Qn (F∗n )] is less than or equal to 22n

+1; we
will compute this unit index. It is well known that an element u ∈ E ′Qn

is a norm
in the extension Fn/ Qn if and only if the quadratic norm residue symbol

( u,ℓℓ′

P
)

relatively to the extension Fn/ Qn , is trivial for each prime ideal P of Qn ramified
in Fn . Note that there is only one 2-adic place Q of Qn ramified in Fn . Then from
the product formula ∏

L|ℓ

(
u, ℓℓ′

L

) ∏
L′|ℓ′

(
u, ℓℓ′

L′

)(
u, ℓℓ′

Q

)
= 1,

u is a norm in the extension Fn/ Qn if and only if
( u,ℓℓ′

P
)
= 1, for each prime ideal P

of Qn dividing ℓℓ′. In particular, since each ℓ-adic (resp. ℓ′-adic) place L (resp. L′)
of Qn is unramified in Qn(

√
ℓ′) (resp. Qn(

√
ℓ)), and by the fact that u is a 2-unit,

we obtain(
u, ℓ

L′

)
=
√

ℓ

(
Qm (
√

βm )/ Qm
L′

)−vL′ ((u))

−1
=1,

(
u, ℓ′

L

)
=
√

ℓ′

(
Qm (
√

βm )/ Qm
L

)−vL((u))

−1
=1,

where
(
∗/∗

∗

)
denotes the Artin symbol and vP((u)) is the P-adic valuation of the

ideal (u) of Qn generated by u, so vP((u))= 0.
Hence, since for each prime ideal P dividing ℓℓ′, we have

( u,ℓℓ′

P
)
=

( u,ℓ
P

)( u,ℓ′

P
)
,

then u is a norm in the extension Fn/ Qn if and only if u is a norm in the extensions
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Qn(
√

ℓ)/ Qn and Qn(
√

ℓ′)/ Qn . Thus, we have the following surjective maps:

f : E ′Qn
/E ′Qn

∩ NFn/ Qn F∗n ↠ E ′Qn
/E ′Qn

∩ N Qn(
√

ℓ′)/ Qn
Qn(
√

ℓ′)∗,

E Qn/E Qn ∩ NFn/ Qn F∗n ↠ E Qn/E Qn ∩ N Qn(
√

ℓ′)/ Qn
Qn(
√

ℓ′)∗.

Since Q(
√

ℓ′) contains a unique 2-adic place which is totally ramified in the
Z2-extension ( Q(

√
ℓ′))∞, then X ′

∞
( Q(
√

ℓ′))/T ≃ A′0( Q(
√

ℓ′)), which is trivial.
Hence A′n( Q(

√
ℓ′)) is trivial for each nonnegative integer n. Thus from the am-

biguous class number formula applied to the quadratic extension Qn(
√

ℓ′)/ Qn , we
obtain

[E ′Qn
: E ′Qn

∩ N Qn(
√

ℓ′)/ Qn
Qn(
√

ℓ′)∗] =

{
22n

for all n ≤ m′,

22m′

for all n ≥ m′.

Similarly, we obtain the maximality of the following unit index for n ≤ m′:

[E Qn : E Qn ∩ N Qn(
√

ℓ′)/ Qn
Qn(
√

ℓ′)∗] =

{
22n

for all n ≤ m′,

22m′

for all n ≥ m′.

It follows from the above maps that

[E ′Qn
: E ′Qn

∩ NFn/ Qn F∗n ] ≥
{

22n
for all n ≤ m′,

22m′

for all n ≥ m′,

[E Qn : E Qn ∩ NFn/ Qn F∗n ] ≥
{

22n
for all n ≤ m′,

22m′

for all n ≥ m′.

Therefore, since [E Qn : E Qn ∩ NFn/ Qn F∗n ] ≤ 22n
, we obtain the maximality of the

following unit index:

[E Qn : E Qn ∩ NFn/ Qn F∗n ] = 2n for all n ≤ m′.

For n ≤ m− 1, from the hypotheses, the ℓ-adic and ℓ′-adic places of Qn split in
Qn+1 = Qn(

√
βn), then for each prime ideal P|ℓℓ′, by the properties of the norm

residue symbol, βn is a norm in the extension Fn/ Qn:(
βn, ℓℓ

′

P

)
=

(
ℓℓ′, βn

P

)
=

√
βn

(
Qn (
√

βn )/ Qn
P

)−vP ((ℓℓ′))

−1
=

( Qn+1/ Qn
P

)−1
(
√

βn)
√

βn
= 1,

where vP((ℓℓ′)) = 1 is the P-adic valuation of the ideal (ℓℓ′) of Qn generated
by ℓℓ′. Hence we obtain

[E ′Qn
: E ′Qn

∩ NFn/ Qn (F∗n )] = [E Qn : E Qn ∩ NFn/ Qn (F∗n )] = 22n
.

It follows from the ambiguous class number formula that∣∣ 1
2 An(F)

∣∣= ∣∣ 1
2 A′n(F)

∣∣= |A′n(F)G
| = 22n

+2n
[E ′Qn

: E ′Qn
∩ NFn/ Qn (F∗n )]−1

= 22n
.

Hence we obtain (2-1) of Proposition 2.2.
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Suppose now that n ≥ m, especially when n = m, we have

|A′m(F)G
| = 22m+1

[E ′Qm
: E ′Qm

∩ NFm/ Qm (F∗m)]−1.

We will prove that the unit index [E ′Qm
: E ′Qm

∩ NFm/ Qm (F∗m)] is maximal equal
to 22m

+1. If we denote by U a fundamental system of units of Qm , it suffices to
look if the system of the classes of units

{−1, β̄m, ū | u ∈U }

is a base of the F2-vectorial space E ′Qm
/E ′Qm

∩ NFn/ Qm (F∗m). From the equalities

[E ′Qm
: E ′Qm

∩ N Qm(
√

ℓ′)/ Qm
Qm(
√

ℓ′)∗] = [E Qm : E Qm ∩ N Qm(
√

ℓ′)/ Qm
Qm(
√

ℓ′)∗]

= 2m,

it is clear that {−1, ū | u ∈U } is a base of the F2-vectorial space

E ′Qm
/E ′Qm

∩ N Qm(
√

ℓ′)/ Qm
Qm(
√

ℓ′)∗.

Therefore, {−1, ū | u ∈U }, is a free system of the F2-vectorial space

E ′Qm
/E ′Qm

∩ NFn/ Qm (F∗m).

On the other hand, from the hypotheses, the ℓ-adic places of Qm are inert
in Qm+1. Hence βm is not norm in the extension Fm/ Qm , precisely for each ℓ-adic
place L of Qm , we have(

βm, ℓℓ′

L

)
=

(
ℓℓ′, βm

L

)
=

√
βm

(
Qm (
√

βm )/ Qm
L

)−vL((ℓℓ′))

−1
=

√
βm

(
Qm+1/ Qm

L

)−1
−1
=−1.

Hence βm is not norm in the extension Fm/ Qm .
Also, the ℓ′-adic places of Qm are inert in Qm+1 if and only if m=m′. Therefore,

one of the following two facts can occur:

(i) In the case where m′ ≥ m+ 1, for each ℓ′-adic place L′ of Qm , we have(
βm, ℓ′

L′

)
=

(
ℓ′, βm

L′

)
=

√
βm

(
Qm (
√

βm )/ Qm
L′

)−vL′ ((ℓ
′))

−1
=

√
βm

(
Qm+1/ Qm

L′

)−1
−1
= 1.

Hence, βm is norm in the extension Qm(
√

ℓ′)/ Qm , so the kernel of the previous
map f is nontrivial. Thus we obtain

ker( f )= β̄mF2.

(ii) In the case where m = m′, for each ℓ′-adic place L′ of Qm , we have(
βm, ℓ′

L′

)
=

(
ℓ′, βm

L′

)
=

√
βm

(
Qm (
√

βm )/ Qm
L′

)−vL′ ((ℓ
′))

−1
=

√
βm

(
Qm+1/ Qm

L′

)−1
−1
=−1.

Thus βm is not norm in the extension Qm(
√

ℓ′)/ Qm , so β̄m ̸∈ ker( f ).
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Also, for each ℓ-adic place L and ℓ′-adic place L′ of Qm , we have(
−1, ℓℓ′

L

)
=

(
−1, ℓ

L

)
=

(
−1
ℓ

)
= 1 and

(
−1, ℓ′

L′

)
=

(
−1
ℓ′

)
=−1.

Consequently, in this case, −βm is not norm in the extension Fm/ Qm , but norm in
the extension Qm(

√
ℓ′)/ Qm . Hence the kernel of f is nontrivial:

ker( f )=−β̄mF2.

Consequently, we conclude that the system {−1, β̄m, ū | u ∈U } is free. Thus, we
find∣∣ 1

2 A′m(F)
∣∣= |A′m(F)G

| = 22m
+2m
[E ′Qm

: E ′Qm
∩ NFm/ Qm (F∗m)]−1

= 22m
−1.

So clearly, Dm(F) is nontrivial. Moreover, since the 2-adic place of Fm is totally
ramified in F∞, then for n ≥ m, the norm map Dn(F)→ Dm(F) is onto, implies
that Dn(F) is nontrivial. Also, since Fn contains a unique 2-adic place and its
square is trivial, then we have

Dn(F)≃ Dm(F)≃ Z/2Z.

Furthermore, since rk2(A′m(F))= 2m
−1 < 2m , it follows from Proposition 2.1 that

1
2 X ′
∞

(F)≃ 1
2 A′m(F)≃ 1

2 A′n(F)≃ Z/2Z⊕2m
−1 for all n ≥ m.

In addition, by the ambiguous class number formula we conclude that for each
n ≥ m,

rk2(An(F))= rk2(An(F)G)= 2m . □

Corollary 2.3. We have

X∞(F)≃ X ′
∞

(F)⊕ D∞(F),

where D∞(F)≃ Z/2Z.

Proof. From Proposition 2.2, for each n ≥ m, we have

Dn(F)≃ Z/2Z, rk2(A′n(F))= 2m
− 1 and rk2(An(F))= 2m .

It follows that An ≃ A′n⊕Dn(F). Hence, passing to the projective limit with respect
to the norm maps, we have the result. □

Proof of the main theorem. From the hypotheses, we have A(F)= A′(F)≃ Z/2Z

and generated by the class of the ℓ-adic place. By Proposition 2.2, we have
rank(A′m(F)) < 2m , then A′(F) capitulates in Fm [15, Lemma 7]. Consider the
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commutative diagram [6, Theorems 6 and 7]:

A′(F)
∼
//

��

X ′
∞

(F)/w0 X ′
∞

(F)

νm

��

A′m(F)
∼
// X ′
∞

(F)/wm X ′
∞

(F)

Since A′(F) capitulates in Fm , then the left vertical map is trivial, thus

νm X ′
∞

(F)⊂ wm X ′
∞

(F).

Hence we obtain

wm X ′
∞

(F)= νm X ′
∞

(F)= w0(νm X ′
∞

(F)).

On the other hand, since νm X ′
∞

(F) is a finitely generated 3-module and w0 is con-
tained in (p, T ), then by Nakayama’s lemma we obtain wm X ′

∞
(F)=νm X ′

∞
(F)=0;

hence X ′
∞

(F)≃ A′m(F). Consequently, from Corollary 2.3, we have

X∞(F)≃ X ′
∞

(F)⊕ D∞(F)≃ Am(F)≃ A′m(F)⊕Z/2Z.

Also, from Proposition 2.2, we have rk2(Am−1(F)) = 2m−1 < rk2(Am(F)) = 2m ,
then X∞(F) ̸≃ Am−1(F).

Now, we will prove that X∞(F) is an elementary abelian 2-group. We will use
other notations. For each nonnegative integer n ≤ m′, let Sn be the set of ℓ′-adic
places of Fn , and DSn the subgroup of An(F) generated by the classes of places
in Sn . Let ASn

n be the group of Sn-classes, that is, ASn
n := An(F)/DSn . Let Mn be

the maximal abelian unramified 2-extension over Fn , in which all places of Sn split
completely. By class field theory, we have

Gal(Mn/Fn)≃ ASn
n .

Since F contains a unique 2-adic place which is totally ramified in F∞ and the
ℓ′-adic place of F splits completely in Fm′ , then the maximal abelian unramified
extension of F contained in Mm′ is Fm′M0. On the other hand, ASm′

m′ is a finitely
generated 3 = Z2[[T ]]-module and ASm′

m′ /T ≃ AS0
0 . By the hypotheses, we have

(ℓ/ℓ′) = −1, then AS0
0 = 0 and by Nakayama’s lemma, ASm′

m′ = 0. It follows that
for each nonnegative integers n ≤ m′, we have An(F) ≃ DSn . But, all classes of
places in Sn are trivial or of order 2, then An(F) is an elementary 2-group, thus
X∞(F) is an elementary group isomorphic to (Z/2Z)2m

. □

Application to the Z2-torsion of X∞(K ), for some imaginary biquadratic number
fields K. It is well known from the results of Ferrero and Kida [2; 7] that the
Z2-torsion part X0

∞
(K ) of the unramified abelian Iwasawa module X∞(K ) of any

imaginary quadratic number field K is trivial or cyclic of order 2. As an application
of the main theorem, we will determine an infinite family of imaginary biquadratic
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number fields K , in which the Z2-torsion part of the Iwasawa module X∞(K ) is
an elementary group of arbitrary large rank.

M. Atsuta [1] studied the minus quotient X−
∞

(K ) of the Iwasawa module X∞(K )

for CM number fields K , that is,

X−
∞

(K )= X∞(K )/(1+ J )X∞(K ),

where J is the complex conjugation. He determined the maximal finite submodule
of X−

∞
under some mild assumptions. Precisely for a CM number field K such

that its totally real maximal subfield K+ is unramified at 2 and contains a unique
2-adic place, then X−

∞
(K ) has no nontrivial finite 3-submodule [1, Example 2.8].

So from the exact sequence

0→ X∞(K+)→ X∞(K )→ X−
∞

(K )→ 0,

we have the maximal finite 3-submodule of X∞(K ) which coincides with the
maximal finite submodule of X∞(K+):

X0
∞

(K )= X0
∞

(K+).

We reconsider now, the quadratic number field F = Q(
√

ℓℓ′) of the main
Theorem 1.1. Recall that ℓ and ℓ′ are two prime numbers such that

ℓ≡−ℓ′ ≡ 1 (mod 4) and (ℓ/ℓ′)=−1.

The positive integers m and m′ are defined as

v2(ℓ− 1)− 2= m and v2(ℓ
′
+ 1)− 2= m′ (m′ ≥ m).

Then we have:

Proposition 2.4. For the imaginary biquadratic number field K = F(i), we have
the structure of the unramified abelian Iwasawa module X∞(K ) of K :

X∞(K )≃ Z
λ2(K )
2 ⊕ X0

∞
(K ),

where λ2(K )= 2m
+ 2m′

− 1 and X0
∞

(K )≃ X∞(F)≃ (Z/2Z)2m
.

Proof. From Kida’s formula [7, Theorem 3], we see immediately that

λ(K )= 2m
+ 2m′

− 1.

On the other hand, since the quadratic extension K/K+ (here K+= F) is unramified
at 2-adic primes, then X−

∞
(K ) has no nontrivial 3-submodule [1, Corollary 1.4].

Hence, the Z2-torsion X0
∞

(K ) of the Iwasawa module X∞(K ) coincides with the
Iwasawa module X∞(F):

X0
∞

(K )= X∞(F).
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Consequently from Theorem 1.1, we obtain

X∞(K )≃ Z2m
+2m′
−1

2 ⊕ (Z/2Z)2m
. □
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