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CONJUGACY CLASSES OF π -ELEMENTS
AND NILPOTENT/ABELIAN HALL π -SUBGROUPS

NGUYEN N. HUNG, ATTILA MARÓTI AND JUAN MARTÍNEZ

Let G be a finite group and π be a set of primes. We study finite groups with
a large number of conjugacy classes of π -elements. In particular, we obtain
precise lower bounds for this number in terms of the π-part of the order of
G to ensure the existence of a nilpotent or abelian Hall π -subgroup in G.

1. Introduction

Let G be a finite group. The number k(G) of conjugacy classes of G is an important
and much investigated invariant in group theory. It is equal to the number of
complex irreducible representations of G. The probability Pr(G) that two uniformly
and randomly chosen elements from G commute is given by k(G)/|G| where
|G| denotes the order of G. This is called the commuting probability or the
commutativity degree of G and it has a large literature; see [Gustafson 1973;
Neumann 1989; Lescot 2001; Guralnick and Robinson 2006; Eberhard 2015]. The
commuting probability has also been studied for infinite groups; see [Tointon 2020].

A starting point of our work is a much cited theorem of Gustafson [1973] stating
that Pr(G) > 5

8 for a finite group G if and only if it is abelian. Let p be the smallest
prime divisor of the order of a finite group G. It was observed by Guralnick and
Robinson [2006, Lemma 2] that if Pr(G) > 1/p, then G is nilpotent. Moreover,
Burness, Guralnick, Moretó and Navarro [Burness et al. 2021, Lemma 4.2] recently
showed that if Pr(G) > (p2

+ p −1)/p3, then G is abelian. An aim of this paper is
to give a generalization of all three of these results.
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Let π be a set of primes. A positive integer is called a π-number if it is not
divisible by any prime outside π . The π -part nπ of a positive integer n is the largest
π-number which divides n. An element of a finite group is called a π-element if
its order is a π-number. The set of all π-elements in a finite group is a union of
conjugacy classes of the group. Let kπ (G) be the number of conjugacy classes of
π -elements in a finite group G and let

dπ (G) := kπ (G)/|G|π .

This invariant is always at most 1 by an old result of Robinson; see [Malle et al.
2021, Lemma 3.5]. The main theorem of the paper [Maróti and Nguyen 2014] is
that if dπ (G) > 5

8 for a finite group G and a set of primes π , then G possesses an
abelian Hall π-subgroup. The following result is a far reaching generalization of
this statement.

Theorem 1.1. Let G be a finite group and let π be a set of primes. Let p be the
smallest member of π . If dπ (G) > 1/p, then G has a nilpotent Hall π-subgroup,
whose derived subgroup has size at most p. Moreover, if dπ (G) > (p2

+ p −1)/p3,
then G has an abelian Hall π -subgroup.

A well-known theorem of Wielandt [1954] states that if a finite group G contains
a nilpotent Hall π-subgroup for some set of primes π then all Hall π-subgroups
of G are conjugate and every π -subgroup of G is contained in a Hall π -subgroup.
Therefore, the π-subgroups of a group satisfying the hypothesis of Theorem 1.1
behave like Sylow subgroups.

There are several results in the literature on the existence of abelian or nilpotent
Hall subgroups in finite groups. For example [Beltrán et al. 2016, Theorem B]
states that if G is a finite group and π a set of primes, then G has nilpotent Hall
π -subgroups if and only if for every pair of distinct primes p, q in π the class sizes
of the p-elements of G are not divisible by q .

For certain sets π , Tong-Viet [2020] proved some nice results on the existence
of normal π-complements in finite groups G under the condition that dπ (G) is
large. For example, [Tong-Viet 2020, Theorem E] states that if p > 2 is the smallest
prime in π and dπ (G) > (p + 1)/2p, then G contains not only an abelian Hall
π-subgroup but also a normal π-complement. Another is [loc. cit., Theorem A],
which states that if d2(G) > 1

2 then G has a normal 2-complement. We in fact make
use of this result to prove Theorem 1.1 in the case 2 ∈ π . As a consequence, the
proof for this case does not depend on the classification of finite simple groups.
The other case 2 /∈ π , however, is more challenging and our proof has to rely on
the classification.

The paper is organized as follows. In Section 2 we prove some preliminary
results on the commuting probability Pr(G). In Section 3 we prove some basic
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properties of the π -class invariant dπ (G) and, in particular, we show in Theorem 3.4
that in order to prove the main result, it suffices to show the existence of a nilpotent
Hall π -subgroup under the hypothesis dπ (G) > 1

p . We then establish this statement
in Section 4, modulo a result on finite simple groups (Theorem 4.9) that will be
proved in Section 5. Finally, in Section 6, we present examples showing that the
converse of Theorem 1.1 is false and that the obtained bounds are sharp in general.

2. Commuting probability

In this section we recall and prove some results about the commuting probability
Pr(G) that will be needed later.

The first lemma is a generalization of Gustafson’s result [1973] mentioned earlier.
The inequality part is due to Burness, Guralnick, Moretó, and Navarro [2021].

Lemma 2.1. Let G be a finite group and p the smallest prime dividing |G|. If
G is not abelian, then Pr(G) ≤ (p2

+ p − 1)/p3 with equality if and only if
G/Z(G) = C p × C p.

Proof. The first part of the lemma is [Burness et al. 2021, Lemma 4.2]. Following
its proof, we see that the equality Pr(G) = (p2

+ p − 1)/p3 holds if and only if
G/Z(G) = C p ×C p and |xG

| = p for every x ∈ G \ Z(G). It suffices to prove that
if G/Z(G) = C p × C p, then |xG

| = p for every x ∈ G \ Z(G).
Assume that G/Z(G) = C p ×C p and let x ∈ G \ Z(G). Since x ∈ CG(x)\ Z(G),

we have that Z(G) < CG(x). Therefore, |xG
| = |G|/|CG(x)| is a proper divisor

of |G|/|Z(G)| = p2. On the other hand, since x is not central, |xG
| > 1. Thus,

|xG
| = p, and the claim follows. □

Note that if G is an extra-special p-group of order p3 with p odd or if G is a
dihedral group when p = 2, then G/Z(G) = C p × C p. Therefore, the bound in
Lemma 2.1 is sharp for all p.

We next give a bound for Pr(G) in terms of the smallest prime factor of the order
of G and the order of its derived subgroup G ′.

Lemma 2.2. If p is the smallest prime dividing the order of a finite group G, then

Pr(G) ≤
1 + (p2

− 1)/|G ′
|

p2 .

Proof. Let Irr(G) denote the set of all irreducible complex characters of G. We
have

|G| =

∑
χ∈Irr(G)

χ(1)2
≥ |G/G ′

| + p2(k(G) − |G/G ′
|),
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since χ(1) divides |G| for every χ ∈ Irr(G). After dividing both sides of the
previous inequality by |G|, we obtain 1 ≥ 1/|G ′

|+ p2(Pr(G)−1/|G ′
|). This yields

Pr(G) ≤ (1 + (p2
− 1)/|G ′

|)/p2, as we claimed. □

Lemma 2.3. Let G be a finite group and p the smallest prime dividing |G|. Suppose
that |G ′

| ≤ p. Then G ′
≤ Z(G), and thus G/Z(G) is abelian. In particular, G is

nilpotent.

Proof. The case |G ′
| = 1 is obvious, so we assume |G ′

| = p. Since G ′ is normal
and its order is the smallest prime dividing |G|, we deduce that G ′ is central in G,
and the result follows. □

Next we refine Lemma 2.1. It follows from [Guralnick and Robinson 2006,
Lemma 2(xiii)] that if Pr(G) > 1/p, where p is the smallest prime dividing |G|,
then G is nilpotent.

Theorem 2.4. Let G be a finite group and p the smallest prime dividing |G|. Then
1/p < Pr(G) ≤ (p2

+ p − 1)/p3 if and only if |G ′
| = p. Moreover, in such case,

Pr(G) =
1
p

+
p − 1

p|G : Z(G)|
.

Proof. By Lemma 2.1 we may assume that G is nonabelian. Assume that |G ′
| > p.

Then |G ′
| ≥ p + 1 and hence, applying Lemma 2.2, we have Pr(G) ≤ 1/p. The

only if part is therefore done.
Conversely, assume that |G ′

| = p. Then G ′
≤ Z(G) by Lemma 2.3. By [Isaacs

1976, Proble 2.13], we have χ(1)2
= |G : Z(G)| for every χ ∈ Irr(G) with χ(1) > 1.

We deduce that

|G| =

∑
χ∈Irr(G)

χ(1)2
= |G|/p + |G : Z(G)|(k(G) − |G|/p),

and it follows that

Pr(G) =
1
p

+
p − 1

p|G : Z(G)|
>

1
p
,

as stated. □

Remark 2.5. It is worth noting that if G/Z(G) ∼= C p × C p, then, by Lemma 2.1,
we have Pr(G) = (p2

+ p − 1)/p3 > 1/p, and hence |G ′
| = p by Theorem 2.4.

Let us denote

gp(x) :=
1 + (p2

− 1)/x
p2 .

We note that the function gp(x) is decreasing in terms of x . Also, gp(1) = 1,
gp(p) = (p2

+ p − 1)/p3, and gp(p + 1) = 1/p. These values of gp, that appear
in our main result, explain the relevance of gp.
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The next theorem could be compared with a result of Lescot [2001] stating that
Pr(G) =

1
2 if and only if G is isoclinic to the symmetric group 63.

Theorem 2.6. Let G be a finite group and p the smallest prime dividing |G|. If
|G ′

| > p, then

Pr(G) ≤
n(p) + p2

− 1
p2n(p)

≤
1
p
,

where n(p) denotes the smallest prime larger than p. Moreover, Pr(G) = 1/p if
and only if p = 2 and G/Z(G) ∼= 63.

Proof. By Bertrand’s postulate, we know that n(p) < 2p ≤ p2. Therefore, if
|G ′

| > p then |G ′
| ≥ n(p) and hence, applying Lemma 2.2, we have

Pr(G) ≤ gp(n(p)) =
n(p) + p2

− 1
p2n(p)

.

The second inequality holds because gp(n(p)) ≤ gp(p + 1) = 1/p.
Suppose that Pr(G) = 1/p. This forces n(p) = p + 1, which implies that p = 2

and |G ′
| = 3. We claim that Pr(G) =

1
2 if and only if G/Z(G) = 63. Assume first

that G/Z(G) = 63. Let q be a prime dividing |G| and let Q ∈ Sylq(G). Since
G/Z(G) = 63, we deduce that |Q : Z(Q)| ≤ q and hence Q is abelian. It follows
that G possesses an abelian Sylow q-subgroup for every prime q dividing |G|. Thus,
by [Guralnick and Robinson 2006, Lemma 2(xiii)], we have

Pr(G) = Pr(G/Z(G)) = Pr(63) =
1
2 .

The other direction of the claim follows from the above-mentioned theorem of
Lescot [2001] since if G is isoclinic to 63, then G/Z(G) = 63. □

3. Hall π -subgroups

In this section we prove that the second statement of Theorem 1.1 follows from the
first.

Let Dπ be the collection of all finite groups G such that G has a Hall π -subgroup,
any two Hall π -subgroups of G are conjugate, and any π -subgroup of G is contained
in a Hall π-subgroup. Of course Dπ is everything when π is a single prime by
Sylow’s theorems. Also, Dπ contains all π-separable groups. The following easy
observation is useful to bound dπ (G) in the case G ∈ Dπ .

Lemma 3.1. Let G be a finite group in Dπ . If H is a Hall π -subgroup of G, then

dπ (G) ≤ Pr(H).

Proof. Since |H | = |G|π , it suffices to see that kπ (G) ≤ k(H). If x, y ∈ H are not
conjugate in G, then they cannot be conjugate in H . Since G ∈ Dπ , every G-class
of π -elements has a representative in H . □
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From this, we can easily prove Theorem 1.1 in case G ∈ Dπ .

Theorem 3.2. Let π be a set of primes and G a finite group in Dπ . Then Theorem 1.1
holds for G.

Proof. By hypothesis, G has a Hall π -subgroup H and all the Hall π -subgroups of
G are G-conjugates of H . Thus, by Lemma 3.1, we have dπ (G) ≤ Pr(H). Let p
be the smallest prime in π . Assume that dπ (G) > 1/p. We then have

Pr(H) >
1
p
.

Theorem 2.4 and Lemma 2.3 then imply that |H ′
|≤ p and H is nilpotent, as claimed.

Moreover, if dπ (G) > (p2
+ p − 1)/p3 then H is abelian by Lemma 2.1. □

As a consequence of Theorem 3.2, we have that Theorem 1.1 holds if π = {p}

or if G is π -separable.
We also recall some facts on the groups in Dπ . The first one is a result of

Wielandt [1954] mentioned in the Introduction and the second one is due to Hall
[1956, Theorem D5].

Lemma 3.3. Let G be a finite group and π a set of primes:

(i) If G possesses a nilpotent Hall π -subgroup, then G ∈ Dπ .

(ii) If N possesses nilpotent Hall π-subgroups, G/N possesses solvable Hall
π -subgroups, and G/N ∈ Dπ , then G ∈ Dπ .

Theorem 3.4. The second statement of Theorem 1.1 follows from the first.

Proof. Let G be a group with dπ (G) > (p2
+ p − 1)/p3 > 1/p. By hypothesis, G

possesses a nilpotent Hall π -subgroup. It then follows that G ∈ Dπ by Lemma 3.3.
The result follows by Theorem 3.2. □

The rest of the paper is therefore devoted to prove that G has a nilpotent Hall
π -subgroup under the condition dπ (G) > 1/p.

4. Reducing to a problem on simple groups

In this section we prove Theorem 1.1, assuming a result on finite simple groups.

Reducing to simple groups. We begin by recalling two properties of dπ (G). The
first one is [Maróti and Nguyen 2014, Proposition 5], essentially due to Robinson.
The second is due to Fulman and Guralnick [2012, Lemma 2.3].

Lemma 4.1. Let G be a finite group and π a set of primes.

(i) Let µ ⊆ π . Then dπ (G) ≤ dµ(G).

(ii) dπ (G) ≤ dπ (N ) dπ (G/N ) for any normal subgroup N of G.
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Lemma 4.2. Let G be a finite group, π a set of primes, and p the smallest prime
in π . Let q ∈ π and Q ∈ Sylq(G). Suppose dπ (G) > 1/p. We have:

(i) Q/Z(Q) is abelian and |Q′
| ≤ q.

(ii) If q ∈ π \ {p}, then Q is abelian.

Proof. By Sylow’s theorems and Lemma 3.1 we have dq(G) ≤ Pr(Q). On the other
hand, by Lemma 4.1(i), we have dπ (G) ≤ dq(G). We deduce that

1
q

≤
1
p

< Pr(Q).

Theorem 2.4 and Lemma 2.3 now imply that Q/Z(Q) is abelian and |Q′
| ≤ q .

Suppose q > p. Then q ≥ p+1, and one can easily check that (q2
+q −1)/q3 <

1/p. Now Pr(Q) > (q2
+q −1)/q3, and thus Q must be abelian by Lemma 2.1. □

The next lemma is [Moretó 2013, Lemma 3.1], which allows us to work with a
set of two primes instead of an arbitrary set.

Lemma 4.3 (Moretó). Let G be a finite group and let π a set of primes. If G
possesses a nilpotent Hall τ -subgroup for every τ ⊆ π with |τ | = 2, then G
possesses a nilpotent Hall π -subgroup.

Proposition 4.4. Suppose that Theorem 1.1 is false for a group G. Then there exists
π = {p, q}, where p < q are two primes, such that G does not possess nilpotent
Hall π-subgroups and for all P ∈ Sylp(G) and Q ∈ Sylq(G), P/Z(P) is abelian,
|P ′

| ≤ p, and Q is abelian.

Proof. By Theorem 3.4, we may assume that there exists π , a set of primes, such
that dπ (G) > 1/p, but G does not possess nilpotent Hall π -subgroups, where p is
the smallest member of π .

If G has a nilpotent Hall τ -subgroup for every τ ⊆ π with |τ | = 2, then by
Lemma 4.3, G has nilpotent Hall π-subgroups. Thus, there exists {q, r} ⊆ π

with q < r such that G does not possess a nilpotent Hall {q, r}-subgroup. By
Lemma 4.1(i), we also have dπ (G) ≤ d{q,r}(G), and it follows that

1
q

≤
1
p

< dπ (G) ≤ d{q,r}(G).

Therefore, Theorem 1.1 fails for G and the set {q, r}, and hence we may assume
that |π | = 2, that is π = {p, q} with p < q .

Finally, the assertion on the Sylow subgroups follows from Lemma 4.2. □

Proposition 4.5. Let π be a set of primes and p the smallest member in π . Let G
be a finite group with minimal order subject to the conditions that dπ (G) > 1/p
and G does not possess nilpotent Hall π -subgroups. Then G is nonabelian simple.
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Proof. We may assume that G is nonabelian and not simple. Let N be a nontrivial
proper normal subgroup in G. By Lemma 4.1(ii), we have

1
p

< dπ (G) ≤ dπ (G/N ) dπ (N ).

It follows that 1/p < dπ (G/N ) and 1/p < dπ (N ), as both dπ (N ) and dπ (G/N )

are at most one; see [Malle et al. 2021, Lemma 3.5]. By the minimality of G,
N and G/N possess nilpotent Hall π-subgroups. Applying Lemma 3.3, we then
deduce that both N and G/N are members of Dπ . It follows that G/N ∈Dπ , G/N
possesses solvable Hall π -subgroups and N possesses nilpotent Hall π -subgroups.
By Lemma 3.3(ii), we have G ∈ Dπ . Therefore, by Theorem 3.2, we have that G
possesses nilpotent Hall π-subgroups, which is a contradiction. We conclude that
G is nonabelian simple. □

Reducing to a question on simple groups. The following is a consequence of a
result of Tong-Viet, which asserts that if d2(G) > 1

2 then G possesses a normal
2-complement.

Lemma 4.6. Let S be a nonabelian simple group and π be a set of primes containing
2. Then dπ (S) ≤

1
2 .

Proof. Suppose that dπ (S) > 1
2 . Then 1

2 < dπ (S) ≤ d2(S). By [Tong-Viet 2020,
Theorem A], S possesses a normal 2-complement, which is impossible. □

Proposition 4.7. Let G be a group and π a set of primes such that dπ (G) > 1/p,
where p is the smallest prime in π . Let q ∈ π but q ̸= p. Then q does not divide
|NG(P) : CG(P)| where P ∈ Sylp(G).

Proof. Assume by contradiction that q divides |NG(P)/CG(P)|. Let x be an
element of order q in NG(P)/CG(P) where P ∈ Sylp(G). Consider the action of
X = ⟨x⟩ on P . Let r be the number of elements of P fixed by X .

We claim that r > |P|/p2. Assume to the contrary that r ≤ |P|/p2. We have
|P| = r + t ·q , implying that t = (|P|−r)/q . Since each X -orbit on P is contained
in a conjugacy class of p-elements it is easy to see that kp(G) ≤ r + t . Now we
have

1
p

<dπ (G)≤dp(G)=
kp(G)

|P|
≤

r + t
|P|

=
1
q

(
(q−1)

r
|P|

+1
)

≤
1
q

(
(q−1)

1
p2 +1

)
.

It is not hard to see that this implies q ≤ p, which is a contradiction. We have
shown that r > |P|/p2.

Since r divides |P|, it follows that

r ∈ {|P|, |P|/p}.



CLASSES OF π -ELEMENTS AND NILPOTENT/ABELIAN HALL π -SUBGROUPS 193

If r = |P| then X centralizes P , which is impossible. Thus r = |P|/p and hence
there exists a subgroup H of order |P|/p that is centralized by X . That is,

H = CP(X) = {z ∈ P | zx
= z for all x ∈ X}.

Let L := P : X be the semidirect product of the relevant action of X on P . Then
L/H ∼= C : X for some C ∼= C p. Since H is maximal in P , the subgroup H is
normal in P , and it is X -invariant, applying [Isaacs 2008, Corollary 3.28], we have

CP/H (X) = CP(X)H/H = H/H,

and hence X acts nontrivially on C . Let O be a nontrivial orbit of the action of X
on C . We now have q = |X | = |O| ≤ |C | = p, which is a contradiction. □

Corollary 4.8. Let G be a group and π = {p, q} a set of primes with p < q such
that dπ (G) > 1/p. Let P ∈ Sylp(G). Then q divides |Sylp(G)| = |G : NG(P)| or
G possesses a nilpotent Hall π -subgroup.

Proof. We know that |G|q divides

|G| = |G : NG(P)||NG(P) : CG(P)||CG(P)|

but q cannot divide |NG(P) : CG(P)| by Proposition 4.7. Assume that q does
not divide |G : NG(P)|. Then |G|q divides |CG(P)|. Therefore, there exists
Q ∈ Sylq(G) with Q ≤ CG(P). Now P Q is a nilpotent Hall π -subgroup of G. □

Now we can prove Theorem 1.1, modulo the following statement about simple
groups whose proof is deferred to the next section.

Theorem 4.9. Let G be a nonabelian simple group and π = {p, q} be a set of two
odd primes with p < q. Assume that there exist P ∈ Sylp(G) and Q ∈ Sylq(G)

such that P/Z(P) is abelian, |P ′
| ≤ p, Q is abelian, and q divides |G : NG(P)|.

Then dπ (G) ≤ 1/p.

Observe that in Theorem 4.9 we may assume that both p and q divide the order
of G.

Theorem 4.10. Let G be a finite group, π be a set of primes, and p be the smallest
prime in π . Assume Theorem 4.9. If dπ (G) > 1/p then G has a nilpotent Hall
π -subgroup.

Proof. Assume that the theorem is false and let G be a minimal counterexam-
ple. In particular, dπ (G) > 1/p but G has no nilpotent Hall π-subgroups. By
Proposition 4.5, we know that G is nonabelian simple. Using Lemma 4.6, we know
furthermore that p ̸= 2.

By Proposition 4.4, there exists π = {p, q} with (odd) p < q such that dπ (G) >

1/p, P/Z(P) is abelian, |P ′
| ≤ p, and Q is abelian, where P ∈ Sylp(G) and

Q ∈ Sylq(G). We also have that q divides |G : NG(P)|, by Corollary 4.8. We now
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have all the hypotheses of Theorem 4.9, and therefore deduce that dπ (G) ≤ 1/p.
This is a contradiction. □

We remark that we have indeed proved Theorem 1.1 when the set π contains the
prime 2, and this result does not rely on the classification of finite simple groups.

5. Simple groups

In this section we prove Theorem 4.9, by using the classification. We begin with
the alternating groups.

Lemma 5.1. Let p be an odd prime, n ≥ 5 be an integer and P ∈ Sylp(An):

(i) If n ≥ p2, then P/Z(P) is not abelian.

(ii) If n < p2, then P is elementary abelian.

Proof. For (i) it is sufficient to exhibit a subgroup H of P such that H/Z(H) is
not abelian. If n ≥ p2, then H = C p ≀ C p is such a subgroup of P . Statement (ii)
follows from the description of the Sylow p-subgroups of An found in [Huppert
1967, Satz III.15.3]. □

Theorem 5.2. Let n ≥ 5, π = {p, q} be a set of two odd primes with p < q , and
P ∈ Sylp(An). Assume that both p and q divide the order of An . If P/Z(P) is
abelian, then dπ (An) ≤ 1/p. In particular, Theorem 4.9 holds for alternating
groups.

Proof. Let P ∈ Sylp(An) and Q ∈ Sylq(An). Since P/Z(P) is abelian, n < p2

by Lemma 5.1. Let n = r p + s = lq + t , where r, s ∈ {0, 1, . . . , p − 1} and
l, t ∈ {0, 1, . . . , q −1}. Then P = (C p)

r and Q = (Cq)l with both r and l at least 1.
It is easy to see that every π -element of An can be expressed as a product of the

form xy = yx , where x is a product of cycles of length p and y is a product of
cycles of length q. Since n < p2, the supports of x and y are disjoint.

Assume first that n ≥ p + q + 2. In this case we have that kp(An) = 1 + r ≤ p,
kq(An) = 1 + l ≤ q and |An|π = pr ql . Thus we have

dπ (An) =
kπ (An)

|An|π
≤

pq
pr ql .

If (r, l) ̸= (1, 1), then dπ (An) ≤ 1/p. Assume now that r = l = 1. Then kπ (An) ≤

kp(An)kq(An)= 4 and hence dπ (An)≤ (4/q)(1/p)< 1/p, where the last inequality
holds because q ≥ 5.

Assume now that n ≤ p + q + 1 and so l = 1. In this case it may happen that
a 6n-conjugacy class of π-elements splits in two different An-conjugacy classes.
We thus have kπ (An) ≤ (1 + r)(1 + l) + 1 = 2(1 + r) + 1 = 2r + 3. It follows that
dπ (An) ≤ (2r + 1)/(pr q). If r ≥ 2, then (2r + 3)/(pr q) < 1/q < 1/p. If r = 1,
then 2r + 3 = 5 ≤ q and so once again dπ (An) ≤ 1/p. □
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For convenience, we will consider the Tits group 2 F4(2)′ as a sporadic simple
group.

Theorem 5.3. Let S be a sporadic simple group and π = {p, q} where p < q are
odd primes dividing |S|. If (S, π) ̸= (J1, {3, 5}) then dπ (S) ≤ 1/p. In particular,
Theorem 4.9 holds for S.

Proof. In what follows we use information in [Conway et al. 1985] without further
notice. We may assume that π is a set of primes such that kπ (S) ≥ 6, for otherwise

dπ (S) =
kπ (S)

|S|π
≤

5
pq

≤
1
p

There is no such π for the four smallest Mathieu groups. For each of the groups
M24, H S, J2 there are two possibilities for π . In each of the six cases kπ (S) is at
most |S|p or |S|q and this is sufficient to obtain the bound dπ (S) ≤ 1/p.

So we assume that S is not one of the groups already analyzed. If S is different
from Fi23, Fi ′

24 and J1, then we count the total number of conjugacy classes of
S of elements of odd order. These numbers are usually less that |S|r for a given
prime divisor r of |S|. If this is the case for a prime r , then we can assume that r
does not lie in π (otherwise we would be done). This gives strong restrictions on
the set π . In fact, given that kπ (S) ≥ 6, we find this way that S must be J4 and π is
either {3, 7} or {5, 7}. In each of these two cases we count the number of π -classes
in S to obtain our bound of 1/p for dπ (S).

If S is Fi23 or Fi ′

24, then we again count the number of conjugacy classes of S
of elements of odd order. This allows us to conclude that 3 cannot lie in π . We then
count the number of conjugacy classes of S whose elements have orders divisible
neither by 2 nor 3. This number is 8 in the first case and 14 in the second. By
looking at the prime factorization of |S|, the only case to consider is S = Fi ′

24 and
π = {11, 13}. But it turns out that kπ (S) = 3 in this case.

The only group remaining is S = J1. The number of conjugacy classes of S of
elements of odd order is 11 forcing π to be a subset of {3, 5, 7}. Then kπ (S) = 3
or π = {3, 5} and kπ (S) = 6, giving dπ (S) =

2
5 .

The last assertion follows from the fact that if P ∈ Syl3(J1), then 5 does not
divide |J1 : NJ1(P)|. □

We are left with the case of simple groups of Lie type S ̸=
2 F4(2)′. For the sake

of convenience, we rename the prime q in Theorem 4.9 to s in order to reserve q
for the size of the underlying field of S.

The proof of Theorem 4.9 for groups of Lie type is divided into two fundamentally
different cases: π contains the defining characteristic of S and π does not. The
former case is fairly straightforward.
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Theorem 5.4. Let S be a finite simple group of Lie type in characteristic p > 2 and
π = {p, s}, where s is an odd prime dividing |S|. Then,

dπ (S) ≤
1
s
.

In particular, Theorem 4.9 holds for simple groups of Lie type when π contains the
defining characteristic of S.

Proof. First we observe that the desired inequality is satisfied if kπ (S) ≤ |S|p. We
shall make use of well-known bounds of Fulman and Guralnick [2012] for the
numbers of conjugacy classes of finite Chevalley groups to show that, when S has
high enough rank, even the stronger inequality k(S) ≤ |S|p holds true.

Let S = PSL(n, q). Then k(S) ≤ min{2.5qn−1, qn−1
+ 3qn−2

} by [Fulman and
Guralnick 2012, Proposition 3.6]. This is certainly smaller than |S|p = qn(n−1)/2 if
n ≥ 4. Therefore, we just need to verify the theorem for n = 2 or 3. The theorem is in
fact straightforward to verify for these low rank cases, using the known information
on conjugacy classes of the group (see [Dornhoff 1971, Chapter 38] for n = 2 and
[Simpson and Frame 1973] for n = 3). The case S = PSU(n, q) is entirely similar.

Next, we consider PSp(2n, q) with n ≥ 3. Then k(S) ≤ 10.8qn for odd q, and
it easily follows that k(S) ≤ |S|p = qn2

. The case of orthogonal groups is similar,
with a remark that k(�(2n + 1, q)) ≤ 7.3qn for n ≥ 2 and k(P�±(2n, q)) ≤ 6.8qn

for n ≥ 4.
Now we turn to exceptional groups. Recall that the defining characteristic p of S

is odd, so we will exclude the types 2 B2 and 2 F4. By [Fulman and Guralnick 2012,
Table 1] (or [Lübeck ≥ 2023] for more details), we observe that k(S) is bounded
above by a polynomial with positive coefficients, say gS , evaluated at q . Suppose S
is one of 3 D4(q), F4(q), E6(q), 2 E6(q), E7(q), or E8(q). We then have

k(S) ≤ gS(1)qdeg(gS)
≤ 252qdeg(gS) and

qdeg(gS)

|S|p
≤

1
q8 .

Therefore,

dπ (S) ≤
k(S)

|S|p|S|s
≤

252
sq8 <

1
s
,

as wanted. The remaining cases of the types G2 and 2G2 are even easier, using the
more refined bounds k(G2(q)) ≤ q2

+ 2q + 9 and k(2G2(q)) ≤ q + 8. □

Lemma 5.5. Let G be a finite group and let π be a set of primes such that
|Z(G)|π = 1. Then, kπ (G) = kπ (G/Z(G)).

Proof. Let Z := Z(G). Every coset gZ of Z in G contains at most one π -element
of G since |Z |π = 1. The π-elements of G/Z are gZ where g runs through the
π-elements of G. If g is a π-element, then the conjugacy class of gZ in G/Z
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consists of h Z where h ∈ gG . Thus, there is a bijection between the π-conjugacy
classes of G and the π -conjugacy classes of G/Z . □

In the case when π does not contain the defining characteristic of S, the conjugacy
classes of π-elements of S will be semisimple classes, which can be conveniently
described via an ambient algebraic group of S and its Weyl group.

It is well-known that every simple group of Lie type S ̸=
2 F4(2)′ is of the form

S = GF/Z(GF ) for some simple algebraic group G of simply connected type
and a suitable Steinberg endomorphism F on G; see [Malle and Testerman 2011,
Theorem 24.17] for instance.

Theorem 5.6. Let S be a finite simple group of Lie type and G, F as above. Let
π = {p, s} with p < s be a set of primes not containing the defining characteristic
of S. Suppose that s divides |Sylp(S)|. Then

dπ (GF ) ≤
1
p
.

In particular, if |Z(GF )|π = 1, then dπ (S) ≤ 1/p.

Proof. Let G := GF . We first claim that a Hall π -subgroup of G, if exists, cannot
be abelian. Assume by contradiction that G does have such subgroup, say H . Then
H := H Z(G)/Z(G) would be an abelian Hall π-subgroup of S, implying that
NS(P) contains H , where P is a Sylow p-subgroup of S that is contained in H . It
follows that s does not divide |S : NS(P)|, violating the hypothesis.

Let T be an F-stable maximal torus of G, and let W = NG(T )/T be the Weyl
group of G. Since π does not contain the defining characteristic of S, the conjugacy
classes of π-elements of G are semisimple classes. According to [Carter 1985,
Proposition 3.7.3] and its proof, there is a well-defined bijection

τ : Clss(G) → (T/W )F

between the set Clss(G) of semisimple conjugacy classes of G and the set (T/W )F

of F-stable orbits of W on T . Malle, Navarro, and Robinson showed [Malle et al.
2021, Theorem 3.15] that this bijection τ preserves element orders, and therefore
the counting formula (and its proof) for the number of F-stable orbits of W on T
in [Carter 1985, Proposition 3.7.4] implies that

kπ (G) =
1

|W |

∑
w∈W

|Tw−1 F
|π .

It follows that

dπ (G) =
1

|W |

∑
w∈W

|Tw−1 F
|π

|G|π
.



198 NGUYEN N. HUNG, ATTILA MARÓTI AND JUAN MARTÍNEZ

Now, if |Tw−1 F
|π = |G|π for some w ∈ W then a Hall π-subgroup of Tw−1 F ,

which is abelian, would be a Hall π -subgroup of G, and this contradicts the above
claim. Thus

|Tw−1 F
|π

|G|π
≤

1
p

for every w ∈ W . It then follows that

dπ (G) ≤
1
p
,

proving the first part of the theorem.
For the second part, assume that |Z(G)|π = 1. By Lemma 5.5, we then have

dπ (S) = dπ (G/Z(G)) = dπ (G) ≤
1
p
,

as stated. □

Theorem 5.6 already proves Theorem 4.9 in several cases, as seen in the next
result. In what follows, to unify the notation, we use GLϵ , SLϵ and PSLϵ for linear
groups when ϵ = + and for unitary groups when ϵ = −. We also use E+

6 for E6

and E−

6 for 2 E6.

Theorem 5.7. Let S be a simple group of Lie type, π be a set of two odd primes
not containing the defining characteristic of S, and p be the smaller prime in π .
Assume that we are not in one of the following situations:

(i) S = Eϵ
6(q) and 3 ∈ π .

(ii) S = PSLϵ(n, q) with n ≥ 3 and gcd(n, q − ϵ)π ̸= 1.

Then dπ (S) ≤ 1/p.

Proof. Let G and F be as in Theorem 5.6. According to [Malle and Testerman
2011, Table 24.12], if we are not in one of the stated situations, then |Z(GF )|π = 1.
The result then follows from Theorem 5.6. □

Next we prove Theorem 4.9 for case (i) in Theorem 5.7.

Proposition 5.8. Let S = Eϵ
6(q) with (3, q) = 1 and P ∈ Syl3(S). Then |P ′

| > 3.
In particular, Theorem 4.9 holds in the case S = Eϵ

6(q) and 3 ∈ π .

Proof. Let G be a simple algebraic group of simply connected type and F : G → G
a Frobenius map such that S = GF/Z(GF ). By [Malle and Testerman 2011,
Theorem 25.17], we know that every Sylow 3-subgroup of GF lies in NGF (T )

for some maximal F-stable torus T of G. Therefore Sylow 3-subgroups of
NGF (T )/T F

= SO(5, 3) (the Weyl group of E6) are homomorphic images of
Sylow 3-subgroups of S = GF/Z(GF ). Since the size of the derived subgroup of
Sylow 3-subgroups of SO(5, 3) is 9, we deduce that |P ′

| > 3. □
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For the rest of this section, we will prove Theorem 4.9 for case (ii) in Theorem 5.7.

Lemma 5.9. Let p be an odd prime and S = PSLϵ(n, q). Assume that p divides
gcd(n, q−ϵ) and Sylow p-subgroups of S are abelian. Then n = p=3. Furthermore,
q − ϵ is divisible by 3 but not 9.

Proof. It is argued in Lemma 2.8 of [Koshitani and Sakurai 2021] that if Sylow
p-subgroups of S are abelian and p ≥ 5 then p cannot divide |Z(SLϵ(n, q))|.
Therefore our hypotheses imply that p = 3.

We first prove that n = 3. The condition p = 3 divides gcd(n, q − ϵ), implies
that n ≥ 3. Assume by contradiction that n > 3. Let w be the (unique) element of
order 3 of F×

q2 , and consider the element g := diag(In−2, w,w−1). We have

CGLϵ(n,q)(g) = GLϵ(n − 2, q) × GLϵ(1, q)2,

and so

|GLϵ(n, q) : CGLϵ(n,q)(g)| = q2n−1 (qn
− ϵn)(qn−1

− ϵn−1)

(q − ϵ)2 .

Since 3 divides gcd(n, q −ϵ), we have that 3 must divide |GLϵ(n, q) : CGLϵ(n,q)(g)|.
In fact, we also have 3 divides |SLϵ(n, q) : CSLϵ(n,q)(g)|. On the other hand, as
1 is the only eigenvalue of g with multiplicity larger than 1 (recall that n > 3),
it is easy to see that CSLϵ(n,q)(g) is the full preimage of CPSLϵ(n,q)(ḡ) under the
natural projection from SLϵ to PSLϵ , where ḡ is the image of g in PSLϵ(n, q).
In particular, |SLϵ(n, q) : CSLϵ(n,q)(g)| = |PSLϵ(n, q) : CPSLϵ(n,q)(ḡ)|, and hence
3 divides |PSLϵ(n, q) : CPSLϵ(n,q)(ḡ)|, implying that Sylow 3-subgroups of S =

PSLϵ(n, q) are not abelian. We have shown that n = 3.
Finally, assume that 9 divides q − ϵ. Let λ be the element of order 9 in

F×

q2 and consider h := diag(λ, λ3, λ5) ∈ SLϵ(3, q), also of order 9. We then
have CGLϵ(3,q)(h) = GLϵ(1, q)3, so that |CSLϵ(3,q)(h)| = (q − ϵ)2. Moreover, as
{λ, λ3, λ5

}= {aλ, aλ3, aλ5
} if and only if a = 1, CSLϵ(3,q)(h) is the full preimage of

CPSLϵ(3,q)(h̄). We deduce that |CPSLϵ(3,q)(h̄)| = (q −ϵ)2/3. This is smaller than the
3-part of |PSLϵ(3, q)|, and thus Sylow 3-subgroups of PSLϵ(3, q) are not abelian,
violating the hypothesis. So 9 cannot divide q − ϵ, as stated. □

Theorem 5.10. Let p be an odd prime, n ≥ 4, and (n, p) ̸= (6, 3). Let G :=

SLϵ(n, q) defined in characteristic not equal to p, S := G/Z(G) = PSLϵ(n, q),
and P ∈ Sylp(S). Suppose that P/Z(P) is abelian. Then p does not divide |Z(G)|.

Proof. Assume by contradiction that p | |Z(G)| = gcd(n, q −ϵ). Lemma 5.9 already
shows that P is nonabelian, but we need to work harder to achieve that P/Z(P) is
nonabelian. Let λ ∈ F×

q2 be an element of order p and consider the p-element

x := diag(λ, λ−1, In−2) ∈ G.
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Let V = Fn
q , respectively Fn

q2 , denote the natural G-module for ϵ = +, respectively
ϵ = −. Fix a basis B = {v1, v2, . . . , vn} of V , and consider the permutation y on B
defined by

y := {v1 7→ v2, v2 7→ v3, . . . , vp−1 7→ vp, vp 7→ v1, vi 7→ vi for p < i ≤ n},

which is well-defined as p ≤ n. Note that, as p > 2, we have y ∈ G and ord(y) = p.
Direct calculation shows that

[x, y] = diag(λ−1, λ2, λ−1, In−3) =: s.

Suppose that the p-part of q − ϵ is pa and let C be the (unique) cyclic subgroup
of order pa of F×

q2 . As y permutes the diagonal matrices in G with diagonal entries
in C , one can form the corresponding semidirect product that is then a p-group. It
follows that x and y both belong to a Sylow p-subgroup, say P̂ , of G. We deduce
that s = [x, y] ∈ P̂ ′, which implies that s Z(G) ∈ P ′, where P ∈ Sylp(S) is the
image of P̂ under the natural projection SLϵ

→ PSLϵ .
We will show that s Z(G) does not belong to Z(P), which is enough to conclude

that P/Z(P) is not abelian.
Let G̃ := GLϵ(n, q). We have

CG̃(s) =

{
GLϵ(3, q) × GLϵ(n − 3, q) if p = 3,

GLϵ(1, q) × GLϵ(2, q) × GLϵ(n − 3, q) if p > 3.

It is easy to see that |S : CS(s Z(G))| = |G : CG(s)| = |G̃ : CG̃(s)|. Hence,

|S : CS(s Z(G))| =

{
|GLϵ(n,q)|

|GLϵ(3,q)||GLϵ(n−3,q)|
if p = 3,

|GLϵ(n,q)|

|GLϵ(1,q)||GLϵ(2,q)||GLϵ(n−3,q)|
if p > 3.

It follows that, if ℓ is the defining characteristic of S, then

|S : CS(s Z(G))|ℓ′ =

{
(qn

−ϵn)(qn−1
−ϵn−1)(qn−2

−ϵn−2)

(q−ϵ)(q2−1)(q3−ϵ3)
if p = 3,

(qn
−ϵn)(qn−1

−ϵn−1)(qn−2
−ϵn−2)

(q−ϵ)2(q2−1)
if p > 3.

Using the condition p | gcd(n, q − ϵ) and the assumption (n, p) ̸= (6, 3), we see
that this is divisible by p. It follows that s Z(G) does not belong to Z(P), and this
finishes the proof. □

Lemma 5.11. Let S = PSLϵ(n, q) with n ≥ 4. If 3 divides q − ϵ, then d3(S) ≤
1
3 .

In particular, if 3 divides q − ϵ and 3 ∈ π , then dπ (S) ≤
1
3 .

Proof. Assume, to the contrary, that d3(S) > 1
3 . Then d3(P) > 1

3 , and thus
|P ′

| ≤ 3 by Theorem 2.4. The proof of Theorem 5.10 shows that P ′ contains
two elements s Z(G) and t Z(G), where s = diag(λ−1, λ2, λ−1, In−3) and t =

diag(1, λ−1, λ2, λ−1, In−4). Obviously these elements generate a group of order
greater than 3, a contradiction. □
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Lemma 5.12. Let S = PSLϵ(3, q) and π a set of odd primes with 3 ∈ π . Then
dπ (S) ≤

1
3 .

Proof. If 3 does not divide q − ϵ, then the result follows by Theorem 5.6. We
therefore assume that 3 divides q − ϵ. In particular, 3 divides q2

+ ϵq + 1. Denote
t := (q − ϵ)3/3. We have

|S|3 =
((q − ϵ)2(q + ϵ)(q2

+ ϵq + 1))3

3
≥ (q − ϵ)2

3 = 9t2.

On the other hand, counting the number of conjugacy classes of 3-elements
in PSLϵ(3, q) (see for example [Simpson and Frame 1973]) we have k3(S) =

(t2
+ t + 2)/2 ≤ 2t2. Therefore,

dπ (S) ≤ d3(S) =
k3(S)

|S|3
≤

2t2

9t2 <
1
3
,

as wanted. □

Proposition 5.13. Theorem 4.9 holds for S = PSLϵ(n, q) with n ≥ 3 and π = {p, s}
with p < s be odd primes such that q is not divisible by neither p nor s.

Proof. The result follows by Theorem 5.6 in the case gcd(n, q −ϵ)π = 1. So assume
that gcd(n, q − ϵ)π > 1, so that there exists r ∈ π such that r divides gcd(n, q − ϵ).
The case n = 3 is then done by Lemma 5.12. So we assume furthermore that n ≥ 4.

Let R ∈ Sylr (S). We have that R/Z(R) is abelian by hypothesis. This and the
condition r divides gcd(n, q − ϵ) contradict Theorem 5.10 if r ≥ 5. The remaining
case r = 3 is handled by Lemma 5.11. □

We have completed the proof of Theorem 4.9, by combining Theorems 5.2, 5.3,
5.4, 5.7 and Propositions 5.8 and 5.13.

As mentioned before, Theorem 1.1 follows from Theorems 4.9 and 4.10 together
with Theorem 3.4.

6. Examples and further discussion

In this section, we present examples showing that the converses of both statements
of Theorem 1.1 are false and the bounds are generically sharp.

Consider the converse of the first part of Theorem 1.1. Assume first that 2 ∈ π

and 3 ̸∈ π . If G is the direct product of 64 and an abelian group, then dπ (G) =
1
6 .

Now, let π have size at least 2 and p > 2. Let P be a finite p-group with |P ′
| = p.

Let C be the cyclic group which is the direct product of the groups Cq where q
runs over all primes in π except for p. Let T be the elementary abelian 2-group of
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rank |π | − 1. Let G = P × (C : T ) where C : T =
∏

p ̸=q∈π (Cq : C2). In this case

dπ (G) ≤

(
p2

+ p − 1
p3

)( ∏
p ̸=q∈π

q + 1
2q

)
≤

(
p2

+ p − 1
p3

)
·

(
p + 1
2p

)|π |−1

≤

(
p2

+ p − 1
p3

)
·

(
p + 1
2p

)
.

Since p ≥ 3, this is less than 5
6p , so the converse of the first statement is false.

Consider the converse of the second statement. Assume first that 2 ∈ π and
3 ̸∈ π . If G is the direct product of A4 and an abelian group, then dπ (G) =

1
6 . Now,

let p ̸= 2 and let |π | ≥ 3. Let C =
∏

q∈π Cq . Let T = C p−1 × (C2)
|π |−1 and set

G = C : T . Then

dπ (G) =
2
p

·

∏
p ̸=q∈π

q + 1
2q

.

Since |π | ≥ 3, q ≥ p + 2 and all primes q in π are odd, we get

dπ (G) ≤

(
2
p

)
·

(
(p + 2) + 1

2(p + 2)

)
·

(
(p + 4) + 1

2(p + 4)

)
≤

24
35p

.

Thus the converse of the second statement of Theorem 1.1 is also false.
The inequality dπ (G)>(p2

+p−1)/p3 in the second statement of Theorem 1.1 is
sharp for every set of primes π . Take G to be the direct product of a finite nonabelian
p-group P such that P/Z(P) is isomorphic to C p×C p with an abelian group. In this
case dπ (G) = (p2

+ p −1)/p3 and G does not contain an abelian Hall π -subgroup.
Let us consider now the inequality dπ (G) > 1/p of the first part. This condition

is best possible when p = 2 and 3 ∈ π , for if G is a direct product of 63 and an
abelian group, then dπ (G) =

1
2 and G does not contain a nilpotent Hall π -subgroup.

However the bound is certainly not best possible when p is odd. In fact, following
our proofs closely, it can be seen that in such case, the group G still possesses a
nilpotent Hall π -subgroup even when dπ (G) = 1/p.

Now let p be odd. We will show that in certain cases the inequality dπ (G)>1/2p
does not imply that G has a nilpotent Hall π-subgroup. To see this let π = {p, q}

where q = 2p + 1; that is, p is a Sophie Germain prime. Let G be the direct
product of Cq : C p and an abelian group. Elementary character theory gives
kπ (Cq : C p) = p + (q − 1)/p. Thus

dπ (G) = dπ (Cq : C p) =
1

2p + 1

(
1 +

2
p

)
,

which is strictly larger than 1/2p.
The last example naturally raises the following question: for π a set of odd primes,

what is the exact (lower) bound for dπ (G) to ensure the existence of a nilpotent
Hall π -subgroup in G? This seems nontrivial to us at the time of this writing.
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Let G be a finite group and let p be the smallest prime dividing |G|. If n(p)

denotes the smallest prime larger than p and

Pr(G) >
n(p) + p2

− 1
p2n(p)

=: f (p),

then |G ′
| ≤ p and thus G is nilpotent by Theorem 2.6 and Lemma 2.3. Note that

f (p) ≤ 1/p and equality occurs if and only if p = 2.
Now let π be a set of primes and p be the smallest member in π . It is perhaps

true that if dπ (G) > f (p) then G possesses a nilpotent Hall π-subgroup, but this
would require significant more effort, especially on the part of simple groups of Lie
type in characteristic not belong to π . We have decided to work with the bound
1/p instead in order to make our arguments flowing smoothly. We certainly do not
claim that f (p) is the (conjectural) best possible bound for dπ (G) to ensure the
existence of a nilpotent Hall π -subgroup in G, and thus the question we just raised
above remains open.
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