Download this article
 Download this article For screen
For printing
Recent Issues
Vol. 334: 1
Vol. 333: 1  2
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
On the theory of generalized Ulrich modules

Cleto B. Miranda-Neto, Douglas S. Queiroz and Thyago S. Souza

Vol. 323 (2023), No. 2, 307–335
Abstract

We further develop the theory of generalized Ulrich modules introduced in 2014 by Goto et al. Our main goal is to address the problem as to when the operations of taking the Hom functor and horizontal linkage preserve the Ulrich property. One of the applications is a new characterization of quadratic hypersurface rings. Moreover, in the Gorenstein case, we deduce that applying linkage to sufficiently high syzygy modules of Ulrich ideals yields Ulrich modules. Finally, we explore connections to the theory of modules with minimal multiplicity, and as a byproduct we determine the Chern number of an Ulrich module as well as the Castelnuovo–Mumford regularity of its Rees module.

Dedicated with gratitude to the memory of Professor Shiro Goto

Keywords
Ulrich module, maximal Cohen–Macaulay module, horizontal linkage, module of minimal multiplicity, blowup module
Mathematical Subject Classification
Primary: 13C05, 13C14, 13H10
Secondary: 13A30, 13C13, 13C40, 13D07
Milestones
Received: 18 August 2022
Revised: 15 March 2023
Accepted: 18 March 2023
Published: 2 June 2023
Authors
Cleto B. Miranda-Neto
Departamento de Matemática
Universidade Federal da Paraíba-UFPB
João Pessoa, PB
Brazil
Douglas S. Queiroz
Departamento de Matématica
Universidade Federal da Paraíba-UFPB
João Pessoa, PB
Brazil
Thyago S. Souza
Unidade Acadêmica de Matemática
Universidade Federal de Campina Grande-UFCG
Campina Grande, PB
Brazil

Open Access made possible by participating institutions via Subscribe to Open.