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MULTIVARIATE CORRELATION INEQUALITIES
FOR P-PARTITIONS

SWEE HONG CHAN AND IGOR PAK

Motivated by the Lam–Pylyavskyy inequalities for Schur functions, we give a
far reaching multivariate generalization of Fishburn’s correlation inequality
for the number of linear extensions of posets. We then give a multivari-
ate generalization of the Daykin–Daykin–Paterson inequality proving log-
concavity of the order polynomial of a poset. We also prove a multivariate
P-partition version of the cross-product inequality by Brightwell, Felsner
and Trotter. The proofs are based on a multivariate generalization of the
Ahlswede–Daykin inequality.

1. Introduction

Arguably, linear extensions play as much a central role in poset theory as standard
Young tableaux in algebraic combinatorics. While the former combinatorial objects
obviously generalize the latter, this connection is yet to be fully explored. In fact,
the development in the two areas seem to move along parallel tracks as we explain
below.

The story of this paper is an interplay between these two areas of combinatorics,
which makes both the motivation and presentation of the results somewhat less
accessible. To mitigate this, we include two separate (and almost completely
nonoverlapping) versions of the introduction addressing audiences with different
background (see also Section 11A).

The results themselves are postponed to later sections and assume fluency in
both areas. While the reader may choose to read only the results that are closer to
their interests, reading both sides of the story can enhance the experience. To help
navigate between the areas, we include detailed notation and some background in
Section 2.
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Poset theoretic perspective. Our first result (Theorem 3.4) is a self-dual gener-
alization of the remarkable Fishburn’s correlation inequality (Theorem 3.1) for
the numbers of linear extensions of poset order ideals. We further extend it to
a correlation inequality for order polynomials, and then even further to their q-
analogues and multivariate q-analogues (Theorems 4.9 and 4.10). To understand
the proofs it is worth examining the historical background and motivation behind
earlier results.

Following up on the works by Harris (1960) and Kleitman (1966), Fortuin, Kaste-
leyn and Ginibre introduced the celebrated FKG inequality [21]. This correlation
inequality was further generalized in a series of papers, most notably by Ahlswede
and Daykin [2], who proved a very general AD inequality (Theorem 5.1), which is
also called the four functions theorem [3, Section 6.1]. This result is so general that
it has an elementary albeit somewhat involved proof by induction [loc. cit.]. For the
many followup investigations of correlation inequalities; see, e.g., [1, Section 15],
[33, Section 5], and earlier overviews in [20; 22; 43].

In a direct application to posets, Shepp [36] was able to use the FKG inequality
and a clever limit argument to prove the XYZ inequality (see, e.g., [3, Section 6.4]),
the most remarkable correlation inequality for linear extensions of posets, conjec-
tured earlier by Rival and others. This brings us to Fishburn [18], who established
Fishburn’s correlation inequality (Theorem 3.1) as a tool in his proof of the strict
version of the XYZ inequality. We note that Shepp’s limit argument does not imply
the strict version, so Fishburn’s proof uses the AD inequality instead.

Motivated by enumerative applications and Fishburn’s work, Björner [5] proved
the q-FKG inequality generalizing the FKG inequality. Christofides [15] then found
the q-AD inequality, answering Björner’s question. In a joint work with Panova
[13], we employed Björner’s q-FKG inequality to obtain q-analogues of inequalities
for order polynomials of interest in enumerative combinatorics.

In our most recent paper [11], we find several correlation inequalities whose
proof required the combinatorial atlas technique and does not have a natural q-
analogue. Among other results, we proved a series of upper bounds on correlation
inequalities (when they are written in the form of a ratio ≥ 1), in some cases serving
as a counterpart to the Fishburn’s inequality.

The generality of our upper bounds in [11] and the self-dual nature of related re-
sults on Young tableaux naturally leads to our self-dual generalization of Fishburn’s
inequality. Just like the original proofs by Shepp and Fishburn, our proof is via the
order polynomial, which naturally arises in this setting. Curiously, to prove our
main theorem (Theorem 4.9), we use a multivariate generalization (Theorem 6.1)
of Christofides’s q-AD inequality.

At this point one would want to compare our results (notably Theorem 4.10), to
those by Lam and Pylyavskyy [28], which are closely related and partly inspired
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this paper. They also prove a multivariate correlation inequality for order preserving
maps on posets, which in some cases coincides with ours (see Corollary 4.5 and
Remark 8.1). Unfortunately, their meet and join operations on order ideals are
noncommutative and are therefore distinct from the more traditional definitions that
we use. Thus, while the results in [28] might appear similar and even more general
at a first glance (partially because they use the same notation), in full generality the
similarity is misleading.

Now, Lam and Pylyavskyy’s cell transfer theorem [28, Theorem 3.6] has a more
general setting given by certain functions on poset’s Hasse diagram. When it comes
to skew Young diagrams, this allows the authors to recover the same reverse plane
partitions results that we do, as well as semistandard Young tableaux results. We
also recover their correlation inequality for Schur functions by making additional
arguments (Section 8).

To summarize the comparison, neither result implies the other. Our meet and
join notions are more standard, leading to a self-dual generalization of Fishburn’s
inequality. We are also using a more standard tool: the generalized AD inequality.
On the other hand, the Lam and Pylyavskyy’s ad hoc definitions allow them to
recover the same Young tableaux results with an advantage of their proof giving an
explicit combinatorial injection (see Section 11B).

We give two applications of the multivariate AD inequality to poset inequali-
ties. First, we prove a multivariate cross-product inequality for order preserving
maps on posets (Theorem 10.1), giving a variation on the cross-product inequality
by Brightwell, Felsner and Trotter [9]. This result is new even for the usual
(unweighted) setting. Note that the (original) cross-product inequality remains a
conjecture in full generality (Remark 10.2).

Finally, we give a multivariate extension of the Daykin–Daykin–Paterson (DDP)
inequality (Theorem 9.1), which was originally conjectured by Graham in [22],
and proved in [17] by an ingenuous direct injection.1 In fact, Graham originally
suggested that the DDP inequality could be proved by the AD inequality (see
Remark 9.2). We provide such a proof in Section 9A. Then, motivated by the
structure of the multivariate AD inequality, we give a multivariate generalization of
the DDP inequality (Theorem 9.3). We conclude with a multivariate log-concavity
of the order polynomial (Corollary 9.5), generalizing our recent joint result with
Panova [13].

Algebraic combinatorics perspective. Our main result is a generalization of the re-
markable Lam–Pylyavskyy correlation inequality (Theorem 4.1) for Schur functions
and reverse plane partitions to a self-dual (multivariate) correlation inequalities for

1This injection eluded us in the first version [13], when we were not aware of [17] and proved an
asymptotic version of the DDP inequality which we called Graham’s conjecture.
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general posets (Theorems 4.9 and 4.10). Specializations of our main result give
correlation inequalities for q-analogues of the number standard Young tableaux for
both straight and skew shapes, which generalize Björner’s inequality (Corollary 3.2).

To understand the proofs it is worth examining the historical background and
motivation behind earlier results. The study of inequalities for the symmetric
functions goes back to Newton (1707), who proved the log-concavity e2

k ≥ ek+1ek−1

of elementary symmetric polynomials ek(x1, . . . , xn), for all xi ∈ R. We refer to
[32; 41] for a thorough treatment of symmetric functions.

Over the past century, symmetric functions have received a great deal of attention
due to their connections and applications in representation theory, as well as a host
of other fields (enumerative algebraic geometry, integrable probability, etc.) With
many identities came inequalities, which were often proved by tools from other
areas. We refer to [7; 8; 40] for somewhat dated surveys and to [6; 23] for a more
recent overviews of positivity results.

Some recent highlights include inequalities for values of Schur functions con-
jectured by Cuttler, Greene and Skandera [16] and proved by Sra [37], the log-
concavity of normalized Schur polynomials by Huh, Matherne, Mészáros and St.
Dizier [24], and the Schur positivity correlation inequality by Lam, Postnikov
and Pylyavskyy [30] (see Remark 4.2). See also [25] for most recent results on
correlation inequalities in the context of matroids.

Building on the ideas which go back to MacMahon (1915), Stanley introduced
in his thesis [38] the P-partition theory, which is closely related to the study of the
order polynomial of posets, and to the major index statistics on linear extensions
[41, Section 3.15]. Motivated by applications to plane partitions, the study of
P-partitions became an important subject of its own. The order polynomial of a
poset turned out to coincide with the Ehrhart polynomial of the order polytope; see,
e.g., [41, Section 4.6.2].

The Lam and Pylyavskyy paper [28] uses Stanley’s P-partition theory to obtain
inequalities for the numbers of P-partitions with multivariate weights. The authors
presented an explicit combinatorial injection called the cell transfer, which proves
inequalities in a very general setting. As the main application they succeeded
in establishing the monomial positivity correlation inequality for Schur functions
(Theorem 4.1), which was soon overshadowed by the stronger Schur positivity LPP
correlation inequality mentioned above. Their approach also extends to monotonicity
of quasisymmetric functions which arise from P-partitions [29].

In this paper, we take the core part of the Lam–Pylyavskyy general inequality
and generalize it in the direction which is more natural from the poset theoretic
point of view (Theorem 4.10). Since multivariate inequalities are uncommon in
poset theory, we give a multivariate extension of the AD inequality, an important
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tool in the area. We then show that our multivariate extension is strong enough to
also imply the above mentioned Lam–Pylyavskyy monomial positivity.

Finally, we show that this multivariate approach can be used to prove new
inequalities for general posets. Notably, we prove a new cross-product inequality
(Theorem 10.1), and extend DDP and CPP log-concave inequalities for general
posets (Theorem 9.3 and Corollary 9.5).

Paper structure. We start with a lengthy Section 2 with the background in both
algebraic combinatorics and poset theory. We encourage the reader not to skip this
section as we make some minor changes in definitions and standard notation to
accommodate partly contradictory traditions in the two areas.

In the next two sections we present both known and new results in the order of
increasing generality, pointing out the implications between results along the way.
These implications tend to be quick and straightforward, and are included for clarity.
In general, we opted for a complete and detailed presentation of all corollaries and
special cases as a way to fully explain connections between the results.

In a short Section 3, we present results only about linear extensions and standard
Young tableaux. While the results are easy consequences of the P-partition results in
Section 4, the idea is to make the linear extension’s story completely self-contained.
Our most general results (Theorems 4.9 and 4.10) are given at the end of Section 4.

We then proceed to the proofs. In Section 5, we give a self-contained simple
proof of the generalized Fishburn’s inequality (Theorem 3.4) deducing it from
its order polynomial generalization (Theorem 4.8), which is proved via the AD
inequality (Theorem 5.1). This proof is based on Fishburn’s approach [19], and is
included here as a gentle introduction to our multivariate version.

In Section 6, we present the multivariate AD inequality (Theorem 6.1). This
is the main tool of the paper, which we use to prove our main results in a short
Section 7. In Section 8, we give a new proof of the Lam–Pylyavskyy inequality for
Schur functions, also via the multivariate AD inequality.

In Section 9, we give a new proof and then a multivariate generalization of the
DPP inequality (Theorem 9.3). We follow this with the cross-product inequality for
P-partitions (Theorem 10.1) in Section 10. We conclude with final remarks and
open problems in Section 11.

2. Background, definitions and notation

2A. Basic notations. We use N={0,1,2, . . . }, N≥1={1,2, . . . }, [n]={1,2, . . . ,n}
and R+={x ≥ 0}. To simplify the notation, for an element a ∈ X , we use X − a to
denote the subset X ∖ {a}. Similarly, for a subset Y ⊆ X , we write X − Y in place
of more general X ∖ Y .
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For variables q = (q1, . . . , qn) and a vector a = (a1, . . . , an) ∈ Nn , we write
qa
:= qa1

1 · · · q
an
n . For a polynomial F ∈ R[z1, . . . , zn], we write that F ≥ 0 if

F(z1, . . . , zn) ≥ 0 for all z ∈ Rn . For two polynomials F,G ∈ R[z1, . . . , zn], we
write F ≥ G if F −G ≥ 0.

For polynomials F,G ∈R[z], we write F ⩾z G if F−G ∈R+[z] is a polynomial
with nonnegative coefficients. For multivariate polynomials F,G ∈ R[z1, . . . , zn],
we define F ⩾z G analogously. We drop the subscript in ⩾ when the variables are
clear. Obviously, F ⩾ G implies F ≥ G, but not vice versa, e.g., x2

+ y2
≥ 2xy

but x2
+ y2
̸⩾ 2xy.

2B. Posets. We refer to [41, Chapter 3] and [42] for standard definitions and
notation. Let P = (X,≺) be a partially ordered set on the ground set X of size
|X | = n, and with the partial order “≺”. A subposet is an induced poset (Y,≺) on
the subset Y ⊆ X . For an element x ⊆ X , we denote by P − x the subposet of P
on X − x .

For a poset P = (X,≺), denote by P∗ = (X,≺∗) the dual poset with x ≺∗ y if
and only if y ≺ x , for all x, y ∈ X . For posets P = (X,≺P) and Q= (Y,≺Q), the
parallel sum P +Q= (Z ,≺) is the poset on the disjoint union Z = X ⊔ Y , where
elements of X retain the partial order of P , elements of Y retain the partial order
of Q, and elements x ∈ X and y ∈ Y are incomparable. Similarly, the linear sum
P ⊕Q= (Z ,≺), where x ≺ y for every two elements x ∈ X and y ∈ Y and other
relations as in the parallel sum.

We use Cn and An to denote the n-element chain and antichain, respectively.
Clearly, Cn = C1⊕ · · ·⊕ C1 (n times) and An = C1+ · · ·+ C1 (n times).

A lattice is a poset L = (L,≺) with meet x ∨ y (least upper bound) and join
x ∧ y (greatest lower bound) well defined, for all x, y ∈ L. We also use (L,∨,∧)
to denote the lattice and the join and meet operations. The lattice L= (L,∨,∧) is
distributive if it satisfied the distributive law x ∧ (y∨ z)= (x ∧ y)∨ (x ∧ z). Finally,
for all X, Y ⊆ L, we denote

X ∨ Y := {x ∨ y : x ∈ X, y ∈ Y } and X ∧ Y := {x ∧ y : x ∈ X, y ∈ Y }.

2C. Linear extensions and P-partitions. A linear extension of P is a bijection
L : X→ [n] that is order-preserving: x ≺ y implies L(x) < L(y), for all x, y ∈ X .
Denote by E(P) the set of linear extensions of P , and let e(P) := |E(P)| be the
number of linear extensions. Observe that e(P)= e(P∗) and e(P⊕Q)= e(P)·e(Q).

A subset A ⊆ X is an upper ideal if x ∈ A and y ≻ x implies y ∈ A. Similarly,
a subset A ⊆ X is a lower ideal if x ∈ A and y ≺ x implies y ∈ A. We denote by
e(A) the number of linear extensions of the subposet (A,≺).

Let P = (X,≺), where X = {x1, . . . , xn}. We will always assume that X has a
natural labeling, i.e., L : xi → i is a linear extension. A P-partition is an order
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preserving map A : X → N, i.e., maps which satisfy A(x) ≤ A(y) for all x ≺ y.
Denote by PP(P) the set of P-partitions and let PP(P, t) be the set of P-partitions
with values at most t .2

Let �(P, t) := |PP(P, t)| be the number of P-partitions. This is the order
polynomial corresponding to the poset P .3 It is well-known and easy to see that

(2-1) �(P, t)∼
e(P)tn

n!
as t→∞, where |X | = n.

Denote |A| :=
∑

x∈X A(x) the sum of the entries in a P-partition. Let

(2-2) �q(P, t) :=
∑

A∈PP(P,t)

q |A|.

Stanley showed, see [41, Theorem 3.15.7], that there is a statistics maj : E(P)→N,
such that

(2-3) �q(P,∞)=
1

(1− q)(1− q2) · · · (1− qn)

∑
A∈E(P)

qmaj(A).

More generally, let

(2-4) �q(P, t) :=
∑

A∈PP(P,t)

q A(x1)
1 · · · q A(xn)

n .

We call this GF the multivariate order polynomial. Note that Stanley gave a gener-
alization of (2-3) for �q(P,∞) which we will not need; see [41, Theorem 3.15.5].
Finally, for N ≥ 0, define

(2-5) Kz(P, N ) :=
∑

A∈PP(P,N )

zm0(A)
0 · · · zm N (A)

N ,

where mi (A) := |A−1(i)| is the number of values i in the P-partition A.

2D. Young diagrams and Young tableaux. We refer to [32; 35] and [41, Chapter 7]
for standard definitions and notation. Let λ= (λ1, . . . , λℓ) be an integer partition
of n, write λ⊢ n, where λ1≥ λ2≥ · · · ≥ λℓ> 0 and λ1+· · ·+λℓ= n. Let ℓ(λ) := ℓ
denotes the number of parts. A conjugate partition λ′ = (λ′1, λ

′

2, . . . ) is defined by
λ′j = |{i : λi ≥ j}|.

A Young diagram is the set of squares {(i, j) ∈ N2
: 1≤ j ≤ λi , 1≤ i ≤ ℓ}. In a

mild abuse of notation, we use λ to also denote the corresponding Young diagram,

2Stanley [38; 41], uses P-partitions to denote order-reversing rather than order-preserving maps.
We adopt this version for clarity and to unify the notation. Displeased readers can always think of
dual posets.

3A standard definition for order polynomial is �(P, t − 1) as the values in the P-partition are
traditionally ≥ 1. We adopt this version to simplify the notation and hope this does not lead to
confusion.
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and refer to it as the straight shape. Let µ= (µ1, µ2, . . . ) be a partition such that
µi ≤ λi for all 0≤ i ≤ ℓ. The difference of Young diagrams is denoted by λ/µ and
called the skew Young diagram of shape λ/µ, or simply the skew shape λ/µ. We
use |λ/µ| for the size, i.e., the number of squares in λ/µ.

A standard Young tableau of shape λ/µ is a bijection A : λ/µ→ [n] which
increases in rows and columns: A(i, j) < A(i + 1, j) and A(i, j) < A(i, j + 1)
whenever these are defined. Denote by SYT(λ/µ) the set of standard Young
tableaux of shape λ/µ. We note that |SYT(λ)| can be computed by the hook-length
formula, see, e.g., [41, Section 7.21]. Similarly, the number |SYT(λ/µ)| can be
computed by the Aitken–Feit determinant formula, see, e.g., [41, Section 7.16].

Let poset Pλ/µ = (λ/µ,≺) be defined by (i, j) ≼ (i ′, j ′) if i ≤ i ′ and j ≤ j ′.
For example, P31/11 ≃ C2 and P321/21 ≃ A3. The set of linear extensions E(Pλ/µ)
is in bijection with SYT(λ/µ), so e(Pλ/µ)= |SYT(λ/µ)|.

2E. Schur functions and reverse plane partitions. Let A : λ/µ→N be a function
which increases in rows and columns. In this context, function A is called a
reverse plane partition.4 Let RPP(λ/µ) denote the set of reverse plane partition of
shape λ/µ. We think of A as a Young tableau with integers written in squares of λ/µ.
If A ∈ RPP(λ/µ) is also increasing in columns and has all entries ≥ 1, it is called
a semistandard Young tableau. The set of such tableaux is denoted SSYT(λ/µ).
We use RPP(λ/µ, t) and SSYT(λ/µ, t) to denote reverse plane partitions and
semistandard Young tableaux with entries ≤ t .

Schur polynomial is a symmetric polynomial associated with the skew shape
λ/µ and can be defined as

(2-6) sλ/µ(z1, . . . , zN )=
∑

A∈SSYT(λ/µ,N )

zm1(A)
1 · · · zm N (A)

N ,

where mi (A)= |A−1(i)| is the number of i’s in A. Schur functions are the stable
limits of Schur polynomials as n→∞. They form a linear basis in the space of all
symmetric functions.

For reverse plane partitions, observe the connection to the order polynomial

(2-7) �(λ/µ, t) :=�(Pλ/µ, t)=
∑

A∈RPP(λ/µ,t)

t |A|.

In similar manner, consider the following multivariate GF for the reverse plane
partitions:

Fλ/µ(z0, z1, . . . , zN )=
∑

A∈RPP(λ/µ,N )

zm0(A)
0 zm1(A)

1 · · · zm N (A)
N ,

Note the notation above, we have Fλ/µ(z0, z1, . . . , zN )= Kz(Pλ/µ, N ).

4Note that reverse plane partitions for λ/µ are actually Pλ/µ – partitions. This is another notational
compromise we make between the areas.
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3. Linear extensions

3A. Fishburn’s inequality. We start with the following fundamental inequality:

Theorem 3.1 (Fishburn’s inequality [18]). Let P = (X,≺) be a finite poset, and let
A, B ⊂ X be lower ideals of P. Then

(3-1)
e(A∪ B) · e(A∩ B)

e(A) · e(B)
≥
|A∪ B|! · |A∩ B|!
|A|! · |B|!

.

Using the notation

f (P) :=
e(P)
|X |!

,

Fishburn’s inequality can be rewritten in a more concise form as a correlation
inequality for probabilities:

(3-2) f (A∪ B) · f (A∩ B)≥ f (A) · f (B).

The original proof of Fishburn’s inequality uses the AD inequality. Note that it is
tight for the antichain P =An .

3B. Björner’s inequality. For a skew Young diagram |λ/µ| = n, we similarly
denote

f (λ/µ) := f (Pλ/µ)=
|SYT(λ/µ)|

n!
.

Now (3-2) gives:

Corollary 3.2 (Björner’s inequality [5, Section 6]). Let µ and ν be Young diagrams.
Then

(3-3) f (µ∨ ν) · f (µ∧ ν)≥ f (µ) · f (ν),

where ∨ and ∧ refer to the union and intersection of the Young diagrams.

Björner’s proof used another Fishburn’s result combined with the some calcula-
tions using the hook-length formula. The following result has an ambiguous status
of being nominally new, yet it easily follows from the LP inequality (see Section 4A
below).

Corollary 3.3 (generalized Björner’s inequality). Let µ/α and ν/β be skew Young
diagrams. Then

(3-4) f (µ/α∨ ν/β) · f (µ/α∧ ν/β)≥ f (µ/α) · f (ν/β).

where µ/α∨ ν/β := (µ∨ ν)/(α∨β) and µ/α∧ ν/β := (µ∧ ν)/(α∧β).

In contrast with Björner’s inequality, the generalized Björner inequality does not
follow from Fishburn’s inequality, at least not directly.
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3C. Generalized Fishburn’s inequality. Our first new result is a common general-
ization of both the Fishburn’s and the generalized Björner’s inequalities.

Theorem 3.4. Let P = (X,≺) be a finite poset. Let A, B ⊆ X be lower ideals, and
let C, D ⊆ X be upper ideals of P , such that A∩C = B ∩ D =∅. Then

(3-5) f (X − V ) · f (X −W )≥ f (X − A−C) · f (X − B− D),

where V := (A∩ B)∪ (C ∪ D) and W := (A∪ B)∪ (C ∩ D).

Note that Fishburn’s inequality (Theorem 3.1) is a special case C = D =∅, and
that Theorem 3.4 is self-dual. We prove the theorem using the AD inequality in
Section 5.

Proof of Theorem 3.4⇒ Corollary 3.3. Let P := Pλ, where λ := µ∨ ν. In the
notation of Theorem 3.4, we have X = λ. Consider the following four subsets of
the Young diagram λ:

(3-6) A := α, B := β, C := λ/µ, D := λ/ν.

Now observe that

X − A−C = µ/α, X − B− D = ν/β,

X − V = (µ∧ ν)/(α∧β), X −W = (µ∨ ν)/(α∨β).

Thus, (3-5) implies (3-4), as desired. □

4. P-partitions

4A. Schur functions. The following LP inequality is the key result which inspired
this paper.

Theorem 4.1 (Lam–Pylyavskyy inequality for Schur polynomials [28, Theorem 4.5]).
Let µ/α and ν/β be skew Young diagrams, and let z = (z1, . . . , zN ), where
N ≥ ℓ(µ), ℓ(ν). Then

(4-1) sµ∨ν(z) · sµ∧ν(z)⩾z sµ(z) · sν(z).

More generally, we have

(4-2) sµ/α∨ν/β(z) · sµ/α∧ν/β(z)⩾z sµ/α(z) · sν/β(z),

where µ/α∨ ν/β := (µ∨ ν)/(α∨β) and µ/α∧ ν/β := (µ∧ ν)/(α∧β).

The original proof is completely combinatorial and uses an explicit injection.
For completeness, we include a short argument showing how the LP inequality
implies the Björner’s and the generalized Björner’s inequality.
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Proof of (4-2) ⇒ (3-4). Recall the following analogue of (2-3) for skew Schur
functions

(4-3) sλ/τ (1, q, q2, . . . )=
1

(1− q)(1− q2) · · · (1− q |λ/τ |)

∑
T∈SYT(λ/τ)

qmaj(T ),

where maj : SYT(λ/τ)→ N is the major index of a tableau, see, e.g., [41, Theo-
rem 7.19.11].

Let n := |µ/α| + |ν/β|. Substituting (4-3) into each of the four Schur functions
in the LP inequality (4-2), multiplying both sides by (1− q)n and letting q→ 1,
gives the generalized Björner’s inequality (3-3). □

Remark 4.2. The following truly remarkable Lam–Postnikov–Pylyavskyy inequality
further extended (4-2) and resolved several open problems in the area

(4-4) sµ/α∨ν/β · sµ/α∧ν/β ⩾s sµ/α · sν/β .

Here “⩾s” stands for Schur positivity, which is saying that the difference is a
nonnegative sum of Schur functions. Although we will not need this extension, it
does give a more conceptual proof of Björner’s inequality.

In a different direction, Richards [34] gave an analytic generalization of (4-1)
for real λ,µ ∈Rℓ and the determinant definition of Schur polynomials. It would be
natural to conjecture that (4-4) also generalizes to this setting.

Proof of (4-4)⇒ (3-3). Recall that for all µ ⊢ k, ν ⊢ n− k, we have

sµ · sν =
∑
λ⊢n

cλµνsλ and χµ⊗χν ↑
Sn
Sk×Sn−k

=

∑
λ⊢n

cλµνχ
λ,

where cλµν are the Littlewood–Richardson coefficients; see, e.g., [35, Section 4.9].
Equating dimensions in the second equality gives

f (µ) · f (ν)=
∑
λ⊢n

cλµν f (λ).

Thus ϕ : sλ→ f (λ) is a ring homomorphism from the ring of symmetric function
to Q which maps Schur positive symmetric function to Q+. Applying ϕ to the
inequality (4-4) for α = β =∅ gives the desired inequality (3-3). □

4B. RPP variation. The following RPP variation is an easy corollary of the LP
inequality (4-2):

Corollary 4.3. Let µ and ν be Young diagrams and let t ≥ 0. Then

(4-5) �(µ∨ ν, t) ·�(µ∧ ν, t)≥�(µ, t) ·�(ν, t).

Similarly, for the q-statistics we have

(4-6) �q(µ∨ ν,∞) ·�q(µ∧ ν,∞)⩾q �q(µ,∞) ·�q(ν,∞).
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More generally, we have

(4-7) �q(µ∨ ν, t) ·�q(µ∧ ν, t)⩾q �q(µ, t) ·�q(ν, t).

Proof of (4-1)⇒ (4-6). Setting N ←∞ and z = (z1, z2, . . . )← (q, q, . . . ), we
get

(4-8) sλ(q, q, . . . )=�q(λ,∞) · qn(λ), where n(λ)=
∑
(i, j)∈λ

i.

Note that n(µ∨ ν)+ n(µ∧ ν) = n(µ)+ n(ν). Substituting (4-8) into (4-1) and
dividing both sides by qn(µ)+n(ν) gives (4-6). □

Corollary 4.4. Let P = (X,≺) be a finite poset, let t ≥ 0, and let A, B ⊂ X be
lower ideals of P. Then

(4-9) �(A∪ B, t) ·�(A∩ B, t)≥�(A, t) ·�(B, t).

More generally, we have

(4-10) �q(A∪ B, t) ·�q(A∩ B, t)⩾q �q(A, t) ·�q(B, t).

Proof of (4-9)⇒ (3-2). Let t→∞ and apply (2-1) to each term in (4-9). □

Corollary 4.4 is a direct generalization of Corollary 4.3, which follows by taking
A←µ and B← ν. Our next result is a multivariate generalization of Corollary 4.3.

Corollary 4.5. Let µ and ν be Young diagrams and let N ≥ 0. Then

(4-11) Fµ∨ν(z) ·Fµ∧ν(z)⩾z Fµ(z) ·Fν(z),

where z = (z0, z1, . . . , zN ).

Proof of (4-11)⇒ (4-7). Let N ← t , and set zi ← q i for all 0≤ i ≤ N . □

This result is implicit in [28] and follows from the following general theorem:

Theorem 4.6 (Lam–Pylyavskyy inequality for multivariate order polynomials [28,
Proposition 3.7]). Let P = (X,≺) be a finite poset, let A, B ⊂ X be lower ideals of
P , and let N ≥ 0. Then

(4-12) Kz(A∪ B, N ) ·Kz(A∩ B, N )⩾z Kz(A, N ) ·Kz(B, N ).

This is the most general version of the LP inequality that we discuss in this paper.
Note that (4-12)⇒ (4-11) by taking A← µ and B← ν.

Remark 4.7. As we mention in the introduction, the ultimate Lam–Pylyavskyy
generalization uses the meet and join operations which are incompatible with those
we employ in this paper. They are in fact, noncommutative and designed to allow
the “cell transfer” direct injection.
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Notably, (4-2) does not follow from (4-12), but from the proof of this ultimate
Lam–Pylyavskyy generalization which happens to apply to skew shapes. We give a
more streamlined derivation of (4-2) from our generalization below.

4C. Main results. We begin with the order polynomial extension of the generalized
Fishburn’s inequality (Theorem 3.4) and the Lam–Pylyavskyy order polynomial
inequality (Corollary 4.4).

Theorem 4.8. Let P = (X,≺) be a finite poset. Let A, B ⊆ X be lower ideals, and
let C, D ⊆ X be upper ideals of P , such that A∩C = B ∩ D =∅. Then

(4-13) �(X − V, t) ·�(X −W, t)≥�(X − A−C, t) ·�(X − B− D, t),

where V := (A∩ B)∪ (C ∪ D) and W := (A∪ B)∪ (C ∩ D). More generally, we
have

(4-14) �q(X − V, t) ·�q(X −W, t)⩾q �q(X − A−C, t) ·�q(X − B− D, t).

Corollary 4.4 is a special case of the theorem when C = D =∅.

Proof of (4-13)⇒ (3-5). Let t→∞ and apply (2-1) to each term in (4-13). □

Here is our most general result in this direction, and the ultimate multivariate
generalization of Fishburn’s inequality (Theorem 3.1).

Theorem 4.9. Let P = (X,≺) be a finite poset. Let A, B ⊆ X be lower ideals, and
let C, D ⊆ X be upper ideals of P , such that A∩C = B ∩ D =∅. Then

(4-15) �q(X − V, t) ·�q(X −W, t)⩾q �q(X − A−C, t) ·�q(X − B− D, t),

where V := (A∩ B)∪ (C ∪ D) and W := (A∪ B)∪ (C ∩ D).

Proof of (4-15)⇒ (4-14). Take q← (q, . . . , q). □

Finally, we present another generalization of Theorem 4.8 for different choices
of rank functions, and furthermore generalizes Lam–Pylyavskyy Theorem 4.6. We
prove both theorems in Section 7.

Theorem 4.10. Let P = (X,≺) be a finite poset. Let A, B ⊆ X be lower ideals,
and let C, D ⊆ X be upper ideals of P , such that A∩C = B ∩ D =∅. Then

(4-16) Kz(X−V, N ) ·Kz(X−W, N )⩾z Kz(X− A−C, N ) ·Kz(X−B−D, N ),

where V := (A∩ B)∪ (C ∪ D) and W := (A∪ B)∪ (C ∩ D).

Proof of (4-16)⇒ (4-14). Take z← (1, q, q2, . . . , q N ). □

In particular, these two theorems imply the following corollary for skew Young
diagrams.
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Corollary 4.11. Let µ/α and ν/β be skew Young diagrams. Then

(4-17) �q(µ/α∨ ν/β, t) ·�q(µ/α∧ ν/β, t)⩾q �q(µ/α, t) ·�q(ν/β, t),

and

(4-18) Fµ/α∨ν/β(z) ·Fµ/α∧ν/β(z)⩾z Fµ/α(z) ·Fν/β(z),

where z = (z0, z1, . . . , zN ).

Proof. Let P, A, B,C, D be as in (3-6). By applying the same argument as in the
proof of the [Theorem 3.4⇒ Corollary 3.3] implication, the inequality (4-17) now
follows from (4-15), while the inequality (4-18) follows from (4-16). □

Remark 4.12. Although the inequalities (4-18) and (4-17) do not appear in [28],
they follow from the approach in that paper.

5. The Ahlswede–Daykin inequality

In this section, we prove the first part of Theorem 4.8 by using the Ahlswede–Daykin
(AD) inequality. Our approach is based on the proof in [18]. For every ρ : Z→R+

and every X ⊆ Z , denote

(5-1) ρ(X) :=
∑
x∈X

ρ(x).

Theorem 5.1 (Ahlswede–Daykin inequality [2]). Let L = (L,∨,∧) be a finite
distributive lattice, and let α, β, γ, δ : L→ R+ be nonnegative functions on L.
Suppose we have

(5-2) α(x) ·β(y)≤ γ (x ∨ y) · δ(x ∧ y) for every x, y ∈ L.

Then

(5-3) α(X) ·β(Y )≤ γ (X ∨ Y ) · δ(X ∧ Y ) for every X, Y ⊆ L.

Proof of the first part of Theorem 4.8. Let P = (X,≺) be a poset, and let t ≥ 0.
We denote by L(P, t)= (L,∨,∧) the distributive lattice on the set L⊆ {0, . . . , t}X

given by

(5-4) L :=PP(P, t)={T : X→{0, . . . , t} :T (x)≤T (y) for all x, y∈ Xs.t.x≺ y},

with the join and meet operation given by

[S ∨ T ](x)=max{S(x), T (x)}

and
[S ∧ T ](x)=min{S(x), T (x)}
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for every x ∈ X . Recall that �(P, t)= |L|. Let α, β, γ, δ : L→ R+ be given by

(5-5)

α(T ) := 1{T (x)= 0 for all x ∈ A, T (y)= t for all y ∈ C},

β(T ) := 1{T (x)= 0 for all x ∈ B, T (y)= t for all y ∈ D},

γ (T ) := 1{T (x)= 0 for all x ∈ A∩ B, T (y)= t for all y ∈ C ∪ D},

δ(T ) := 1{T (x)= 0 for all x ∈ A∪ B, T (y)= t for all y ∈ C ∩ D}.

Note that

α(L)=�(X − A−C, t), β(L)=�(X − B− D, t),

γ (L)=�(X − V, t), δ(L)=�(X −W, t).

By the AD inequality (5-3), it thus suffices to verify (5-2), which in this case states

(5-6) α(S) ·β(T )≤ γ (S ∨ T ) · δ(S ∧ T ) for every S, T ∈ L.

Let S, T ∈ L be such that α(S)= β(T )= 1. Then

S(x)= 0 for x ∈ A, S(y)= t for y ∈ C,

T (x)= 0 for x ∈ B, T (y)= t for y ∈ D.

This gives

max{S(x), T (x)} = 0 for x ∈ A∩ B, max{S(y), T (y)} = t for x ∈ C ∪ D,

min{S(x), T (x)} = 0 for x ∈ A∪ B, min{S(y), T (y)} = t for x ∈ C ∩ D.

The first equation implies γ (S∨T )=1, while the second equation implies δ(S∧T )=
1. This implies (5-6) and completes the proof of (4-13). □

Remark 5.2. For the second (more general) part of Theorem 4.8, one can use
the same approach with the AD inequality in Theorem 5.1 replaced with q-AD
inequality by Christofides [15]. Our proof of Theorem 4.9 given below, extends
Theorem 4.8 using the multivariate q-AD inequality.

6. Multivariate AD inequality

6A. The statement. Let L := (L,∧,∨) be a finite distributive lattice. Throughout
this section, fix variables q1, . . . , qℓ, and modular functions r1, . . . , rℓ : L→ N

defined to satisfy

ri (x)+ ri (y)= ri (x ∨ y)+ ri (x ∧ y) for all x, y ∈ L and 1≤ i ≤ ℓ.

Write q := (q1, . . . , qℓ) and r := (r1, . . . , rℓ). For x ∈ L, write

r(x) := (r1(x), . . . , rℓ(x)) and q r(x)
:= qr1(x)

1 · · · qrℓ(x)
ℓ .
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For a function ρ : L→ R+ and subset X ⊆ L, define

(6-1) ρ⟨q,r⟩(X) :=
∑
x∈X

ρ(x)q r(x)
∈ R+[q1, . . . , qℓ].

Note that (6-1) is a multivariate q-analogue of (5-1). We can now state the multi-
variate q-analogue of the Ahlswede–Daykin inequality (Theorem 5.1).

Theorem 6.1 (multivariate AD inequality). Let L= (L,∧,∨) be a finite distributive
lattice, and let α, β, γ, δ : L→ R+ be nonnegative functions on L. Suppose we
have

(6-2) α(x) ·β(y)≤ γ (x ∨ y) · δ(x ∧ y) for every x, y ∈ L.

Then

(6-3) α⟨q,r⟩(X) ·β⟨q,r⟩(Y )⩽q γ⟨q,r⟩(X ∨ Y ) · δ⟨q,r⟩(X ∧ Y ) for every X, Y ⊆ L.

Our proof is strongly inspired by those of Björner [5] and Christofides [15]. We
closely follow the presentation from the former while incorporating some ideas
from the latter paper.

6B. The proof. We start by proving the following special case of Theorem 6.1,
which we use to obtain the theorem in the full generality.

Proposition 6.2. Let L= (L,∧,∨), α, β, γ , δ be as in Theorem 6.1. Then

(6-4) α⟨q,r⟩(L)β⟨q,r⟩(L)⩽q γ⟨q,r⟩(L)δ⟨q,r⟩(L).

Proof of Proposition 6.2⇒ Theorem 6.1. Let α′, β ′, γ ′, δ′ : L→ R+ be functions
given by

α′ := α ◦ 1X , β ′ := β ◦ 1Y , γ ′ := γ ◦ 1X∨Y , δ := δ′ ◦ 1X∧Y .

Note that

(6-5) α′(x) ·β ′(y)≤ γ ′(x ∨ y) · δ′(x ∧ y) for every x, y ∈ L.

Indeed, the LHS of (6-5) is equal to 0 if x /∈ A or y /∈ B, so suppose that x ∈ A, y ∈ B.
Then the inequality reduces to (6-2), which is part of the assumption. The inequality
(6-3) then follows from (6-4) by noting that

α′
⟨q,r⟩(L)= α⟨q,r⟩(X), β ′

⟨q,r⟩(L)= β⟨q,r⟩(Y ),

γ ′
⟨q,r⟩(L)= γ⟨q,r⟩(X ∨ Y ), δ′

⟨q,r⟩(L)= δ⟨q,r⟩(X ∧ Y ),

as desired. □
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Proof of Proposition 6.2. Let

8(q, r) := α⟨q,r⟩(L) ·β⟨q,r⟩(L)− γ⟨q,r⟩(L) · δ⟨q,r⟩(L).

For x, y ∈ L, we also define

φ(x, y) := α(x) ·β(y)− γ (x) · δ(y).

A simple computation shows that

8(q, r)=
∑

(x,y)∈L2

φ(x, y)q r(x)+r(y).

Let d := (d1, . . . , dℓ) ∈ Nℓ be an arbitrary integer vector. Denote by

8d := [q
d1
1 · · · q

dℓ
ℓ ]8(q)

the coefficient of the monomial qd in 8(q). We then have

8d =
∑

(x,y)∈L2,
r(x)+r(y)=d

φ(x, y).

We now consider another, slightly coarser, grouping of terms. For u, v ∈ L
satisfying u ≺⋄ v, so in particular u ̸= v, let C(u, v) denote the set of (ordered)
pairs (x, y) in the interval [u, v] such that x ∧ y = v and x ∨ y = u. Let

ψ(u, v) :=
∑

(x,y)∈C(u,v)

φ(x, y).

It follows from the modularity of r1, . . . , rℓ that

8d =
∑

u≺⋄v,
r(u)+r(v)=d

ψ(u, v)+
∑
u∈L,

2r(u)=d

φ(u, u).

Since φ(u, u)= α(u)β(u)− γ (u)δ(u)≤ 0 by (6-2), the proposition follows from
Claim 6.3 below. □

Claim 6.3. In notation above, for every u, v ∈ L such that u ≺⋄ v, we have
ψ(u, v)≤ 0.

Proof of Claim 6.3. Note that ψ(u, v) depends only on elements in the poset interval
[u, v], so by restricting to [u, v] if necessary, we can without loss of generality
assume that u = 0̂ is the unique minimal element of L, and v = 1̂ is the unique
maximal element of L.

For x ∈ L, a complement of x is an element y ∈ L such that x ∧ y = 0̂ and
x ∨ y = 1̂. Note that in a finite distributive lattice every element has at most one
complement (see e.g., [4, Theorem 10, page 12]), and we denote this element by xc
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if it exists. Note that ψ(0̂, 1̂) depends only on elements that have a complement in
L, and that the set of complemented elements in a finite distributive lattice form a
sublattice of L (see e.g., [4, page 18]). By restricting to this sublattice if necessary,
without loss of generality we can assume that every element x ∈ L has a unique
complement xc (i.e., when L is a Boolean lattice).

Define four new functions α′, β ′, γ ′, δ′ : L→ R+ as follows:

α′(x) := α(x)β(xc). β ′(x) := α(xc)β(x).

γ ′(x) := γ (x)δ(xc). δ′(x) := γ (xc)δ(x).

Note that

ψ(0̂, 1̂)=
∑
x∈L

φ(x, xc)=
∑
x∈L

α(x)β(xc)− γ (x)δ(xc)= α′(L)− γ ′(L).

It thus suffices to show that α′(L)≤ γ ′(L). Now observe that, for any x, y ∈ L, we
have

α′(x)β ′(y)= (α(x)β(y))(α(yc)β(xc))

≤(6-2) (γ (x ∨ y)δ(x ∧ y))(γ (yc
∨ xc)δ(yc

∧ xc))

≤ γ (x ∨ y)δ((y ∨ x)c)γ ((y ∧ x)c)δ(x ∧ y)

= γ ′(x ∨ y)δ′(x ∧ y).

It then follows from the (usual) AD inequality (5-3), that

(6-6) α′(L)β ′(L)≤ γ ′(L)δ′(L).

On the other hand, note that β ′(L)= α′(L) and γ ′(L)= δ′(L) by definition of the
functions. Since the functions are nonnegative, (6-6) gives α′(L) ≤ γ ′(L). This
completes the proof. □

7. Proof of main results

7A. Proof of Theorem 4.9. Let α, β, γ, δ : L→R+ be as in (5-5). Note that these
functions satisfy the assumption (5-6) of the multivariate AD inequality.

Let q := (q1, . . . , qn) be variables, with n= |X |. For any i ∈ [n], let ri :L→R+

be the modular function given by ri (T ) := T (xi ). For a subset Y ⊆ X , denote

qn(Y )
:=

∏
xi∈Y

(qi )
t .



MULTIVARIATE CORRELATION INEQUALITIES FOR P -PARTITIONS 241

Then
α⟨q,r⟩(L)=�q(X − A−C, t) · qn(C),

β⟨q,r⟩(L)=�q(X − B− D, t) · qn(D),

γ⟨q,r⟩(L)=�q(X − V, t) · qn(C∪D),

δ⟨q,r⟩(L)=�q(X −W, t) · qn(C∩D).

The theorem now follows from the multivariate AD inequality (6-3). □

7B. Proof of Theorem 4.10. Let α, β, γ, δ : L→ R+ be as in (5-5), with t← N .
Note that these functions satisfy the assumption of the multivariate AD inequality
(see (5-6)). Let q := (q0, . . . , qN ) be variables. For any i ∈ {0, . . . , N }, let ri :L→
R+ be the modular function where ri (T ) := |{x ∈ X : T (x)= i}| is the number of
i’s in T . Then

α⟨q,r⟩(L)= Kz(X − A−C, N ) · q |A|0 q |C |N ,

β⟨q,r⟩(L)= Kz(X − B− D,M) · q |B|0 q |D|N ,

γ⟨q,r⟩(L)= Kz(X − V, N ) · q |A∩B|
0 q |C∪D|

N ,

δ⟨q,r⟩(L)= Kz(X −W,M) · q |A∪B|
0 q |C∩D|

N .

The theorem now follows from the multivariate AD inequality (6-3). □

8. Back to Schur polynomials

In this section we give a new proof of the Lam–Pylyavskyy inequality (4-2) for
Schur polynomials via the multivariate AD inequality.

Proof of Theorem 4.1. Let P := Pλ be the poset of the Young diagram of shape
λ, where λ := µ ∨ ν. Let L := (L′,∧′,∨′) be the distributive lattice given by
L′ := RPP(λ, N ), with the ∨′ and ∧′ operation given by

(S ∨′ T )(i, j) :=max{S(i, j), T (i, j)}, (S ∧′ T )(i, j) :=min{S(i, j), T (i, j)}.

For a skew Young diagram π/τ such that π ⊂ λ, let φπ/τ : L′ → R+ be the
characteristic function of the reverse plane partition T ∈ RPP(λ, N ) satisfying all
these properties:

T (i. j)≥ 1 for (i, j) ∈ λ,

T (i, j)= 1 for (i, j) ∈ τ and T (i, j)= N for (i, j) ∈ λ/π,

T (i, j) < T (i + 1, j) if (i, j), (i + 1, j) ∈ π/τ .

Note that these reverse plane partitions are in bijection with semistandard Young
tableau of π/τ in SSYT(π/τ, N ).
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We define functions ζ, η, ξ, ρ : L→ R+ as follows:

ζ := φµ/α. η := φν/β . ξ := φµ/α∧ν/β . ρ := φµ/α∨ν/β .

We now show that these functions satisfy the assumption of the multivariate AD
inequality, i.e., for any S, T ∈ L:

ζ(S) · η(T )≤ ξ(S ∨ T ) · ρ(S ∧ T ).

The equation is vacuously true if ζ(S)= 0 or η(T )= 0, so assume ζ(S)= η(T )= 1.
We show only the proof that ξ(S ∨ T )= 1, as the proof of ρ(S ∧ T )= 1 is similar.
First, for (i, j) ∈ λ, we have

[S ∨ T ](i, j)=max{S(i, j), T (i, j)} ≥ 1.

Second, for (i, j) ∈ α∧β,

[S ∨ T ](i, j)=max{S(i, j), T (i, j)} = 1.

Third, for (i, j) ∈ λ/(µ∧ ν),

[S ∨ T ](i, j)=max{S(i, j), T (i, j)} = N .

Fourth, let (i, j), (i + 1, j) ∈ (µ∧ ν)/(α∧β). We will need to show that

(8-1) [S ∨ T ](i, j) < [S ∨ T ](i + 1, j).

Note that we must have either (i, j)∈ (µ∧ν)/α or (i, j)∈ (µ∧ν)/β. Without loss
of generality, we assume the former holds. Then it follows that (i+1, j)∈ (µ∧ν)/α.
Since ζ(S)= 1, this implies that

S(i, j) < S(i + 1, j)≤max{S(i + 1, j), T (i + 1, j)} = [S ∨ T ](i + 1, j).

Thus (8-1) follows if T (i, j) ≤ S(i, j), so suppose instead that T (i, j) > S(i, j).
This then implies T (i, j) > 1. Since η(T )= 1, this implies that (i, j) ∈ (µ∧ ν)/β,
which in turn implies that (i + 1, j) ∈ (µ∧ ν)/β. Thus we have

[S ∨ T ](i, j)= T (i, j) < T (i + 1, j)≤ [S ∨ T ](i + 1, j),

which completes the proof of (8-1).
Let z := (z1, . . . , zN ) be variables, and let ri : L→ N, i ∈ [N ], be the modular

function defined as follows: ri (T ) := mi (T ) is the number of i’s in T . It then
follows that

A⟨z,r⟩ = sµ/α · q
|α|

1 q |λ|−|µ|N , B⟨z,r⟩ = sν/β · q
|β|

1 q |λ|−|ν|N ,

C⟨z,r⟩ = sµ/α∧ν/β · q
|α∧β|

1 q |λ|−|µ∧ν|N , D⟨z,r⟩ = sµ/α∧ν/β · q
|α∨β|

1 q |λ|−|µ∨ν|N .

The theorem now follows from the multivariate AD inequality (6-3). □
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Remark 8.1. By the arguments analogous to the proofs in this and previous section,
specifically the proof of (8-1) to account for strict comparisons, the multivariate AD
inequality can be used to prove results analogous to Theorem 4.8 and Theorem 4.10
for both strict and nonstrict (P, ω)-partitions; see definitions in [41, Section 3.15.1].
Similarly, we can extend out results to the more general T-labeled (P, O) tableaux
defined in [28]. We omit the details for brevity.

9. Multivariate Daykin–Daykin–Paterson inequality

9A. The DDP inequality. Let P = (X,≺) be a partially ordered set on |X | =
n elements. Fix t ≥ 0 and an element z ∈ X . For integer 0 ≤ k ≤ t , denote
by PP(P, t; z, k) the set of P-partitions A ∈ PP(P, t) such that A(z) = k. Let
�(P, t; z, k) := |PP(P, t; z, k)| be the number of such P-partitions. The following
inequality was conjectured by Graham [22] and proved by Daykin, Daykin and
Paterson [17].

Theorem 9.1 (Daykin–Daykin–Paterson inequality). Let P = (X,≺) be a finite
poset, let t ∈ N, and let z ∈ X. Then, for every 0≤ k ≤ t , we have

(9-1) �(P, t; z, k)2 ≥�(P, t; z, k− 1) ·�(P, t; z, k+ 1).

More generally, for every positive integers a, b ≥ 1,

(9-2) �(P, t; z, k+ a) ·�(P, t; z, k+ b)≥�(P, t; z, k) ·�(P, t; z, k+ a+ b).

We give a new proof of Theorem 9.1 as an application of the AD inequality (5-3).
The proof below sets the stage for the multivariate generalization of the theorem.

Proof of Theorem 9.1. We denote by L= (L,∨,∧) the distributive lattice on the set
L given by

L := {T : X→ {−b,−b+ 1, . . . , t} : T (x)≤ T (y)∀x, y ∈ X s.t. x ≺ y},

the set of order-preserving functions such that −b≤ T (x)≤ t for every x ∈ X . The
join and meet operation are given by

[S ∨ T ](x) :=max{S(x), T (x)} and [S ∧ T ](x) :=min{S(x), T (x)},

for every x ∈ X . It is straightforward to verify that L is a distributive lattice.
Let α, β, γ, δ : L→ R+ be characteristic function of subsets of L defined as

follows:

α := 1{T (z)= k and T (x)≥ 0, for all x ∈ X}.

β := 1{T (z)= k+ a and T (x)≤ t − b, for all x ∈ X}.

γ := 1{T (z)= k+ a and T (x)≥ 0, for all x ∈ X}.

δ := 1{T (z)= k and T (x)≤ t − b, for all x ∈ X}.
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We will now verify the assumption of AD inequality, i.e., for every S, T ∈ L, we
have

(9-3) α(S) ·β(T )≤ γ (S ∨ T ) · δ(S ∧ T ).

Without loss of generality we can assume that α(S)= β(T )= 1. Note that

[S ∨ T ](z)=max{S(z), T (z)} =max{k, k+ a} = k+ a.

Also note that, for every x ∈ X ,

[S ∨ T ](x)=max{S(x), T (x)} ≥ S(x)≥ 0.

This shows that γ (S ∨ T )= 1. Similarly, note that

[S ∧ T ](z)=min{S(z), T (z)} =min{k, k+ a} = k.

Also note that, for every x ∈ X ,

[S ∧ T ](x)=min{S(x), T (x)} ≤ T (x)≤ t − b.

This shows that δ(S ∧ T )= 1, and completes the proof of (9-3).
Now note that

α(L)= |{T ∈ L : T (z)= k and 0≤ T (x)≤ t ∀x ∈ X}| =�(P, t; z, k), and

γ (L)= |{T ∈ L : T (z)= k+ a and 0≤ T (x)≤ t∀x ∈ X}| =�(P, t; z, k+ a).

Also note that

(9-4) β(L)= |{T ∈ L : T (z)= k+ a and − b ≤ T (x)≤ t − b ∀x ∈ X}|

= |{T ′ ∈ L : T ′(z)= k+ a+ b and 0≤ T ′(x)≤ t∀x ∈ X}|

=�(P, t; z, k+ a+ b),

where the second equality is obtained through the substitution T ′(x)← T (x)+ b.
Similarly, by the same substitution we have

(9-5) δ(L)= |{T ∈ L : T (z)= k and − b ≤ T (x)≤ t − b ∀x ∈ X}|

= |{T ′ ∈ L : T ′(z)= k+ b and 0≤ T ′(x)≤ t∀x ∈ X}|

=�(P, t; z, k+ b).

Now (9-2) follows from the AD inequality (5-3). □

Remark 9.2. The original proof of the DDP inequality was through an explicit
injection [17]. Curiously, Graham believed that there should exist a proof based on
the FKG or AD inequalities. He lamented “such a proof has up to now successfully
eluded all attempts to find it” [22, page 15]. The proof above validates Graham’s
supposition.
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We should also mention that if the order-preserving functions are replaced with
linear extensions, the DPP inequality (9-1) becomes Stanley’s inequality [39], a
major result in the area for which finding a direct combinatorial proof remains a
challenging open problem. We refer to [33, Section 6.3] for an extensive discussion
and further references.

9B. Multivariate DDP inequality. Let q := (q1, . . . , qn) be variables, and fix a
natural labeling X = {x1, . . . , xn}. Define

�q(P, t; z, k) :=
∑

A∈PP(P,t;z,k)

q A(x1)
1 · · · q A(xn)

n .

We now present the multivariate version of DDP inequality (9-1), proved by the
multivariate AD inequality (6-3).

Theorem 9.3 (multivariate DDP inequality). Let P = (X,≺) be a finite poset, let
t ∈ N, and let z ∈ X. Then, for every 0≤ k ≤ t , we have

(9-6) �q(P, t; z, k)2 ⩾q �q(P, t; z, k− 1) ·�q(P, t; z, k+ 1).

More generally, for every integer a, b ≥ 1, we have

(9-7) �q(P, t; z, k+a)·�q(P, t; z, k+b)⩾q�q(P, t; z, k)·�q(P, t; z, k+a+b).

Note that in contrast with the DPP inequality (9-1), the generalized log-concavity
(9-7) does not follow from the (usual) log-concavity (9-6) via telescoping.

Proof. Let L, α, β, γ, δ be as in the proof of Theorem 9.1. Note that these functions
satisfy the assumption (6-2) of the multivariate AD inequality (6-3). For all 1≤ i ≤n,
let ri : L→ R+ be the modular function given by ri (A) := A(xi ), where A ∈ L.
Then

α⟨q,r⟩(L)=�q(P, t; z,k), β⟨q,r⟩(L)=�q(P, t; z,k+a+b)·(q1 · · ·qn)
−b,

γ⟨q,r⟩(L)=�q(P, t; z,k+a), δ⟨q,r⟩(L)=�q(P, t; z,k+b)·(q1 · · ·qn)
−b.

The second part of the theorem now follows from the multivariate AD inequality
(6-3), and thus also the first part (which is a special case). □

Remark 9.4. In the context of Remark 8.1, Theorem 9.3 holds by the same argu-
ment if the order-preserving functions are replaced with the strict order-preserving
functions. This approach can be extended to general T-labeled (P, O) tableaux.
However, the analogue of (9-6) does not hold if �q is replaced with Kz. This is
because the weight functions for Kz is not invariant under the translation transfor-
mation used in (9-4) and (9-5) in the proof of Theorem 9.1.
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9C. Log-concavity of the multivariate order polynomial. The following corollary
follows immediately from Theorem 9.3, and can be viewed as a multivariate gener-
alization of [13, Theorem 4.7], and a poset generalization of the first formula in the
proof of Lemma 6.13 in [31, page 550].

Corollary 9.5. Let P = (X,≺) be a finite poset, and let t ∈ N≥1 be a positive
integer. Then

�q(P, t)2 ⩾q �q(P, t − 1) ·�q(P, t + 1).

More generally, for every integers a, b ≥ 1, we have

�q(P, t + a) ·�q(P, t + b)⩾q �q(P, t) ·�q(P, t + a+ b).

Proof. Let n := |X |. Let P ′ := P⊕ z be the linear sum of P and an extra element z,
which is the unique maximal element in P ′. Since we use natural labeling, element
z corresponds to the variable qn+1.

Note that for every ℓ, t ∈ N, we have

(9-8) �q(P ′, t; z, ℓ)=�q(P, ℓ) · qℓn+1.

On the other hand, it follows from applying Theorem 9.3 to P ′ that

�q(P ′, t; z, k+a) ·�q(P ′, t; z, k+ b)⩾q �q(P ′, t; z, k) ·�q(P ′, t; z, k+a+ b).

The corollary now follows by applying (9-8) to the equation above. □

Remark 9.6. Our proof of the q = 1 version in [13, Theorem 4.7] goes along
similar lines, but uses the FKG rather than the AD inequality. Note that our [13,
Theorem 4.8] gives a strict log-concavity for order polynomials, with a substantially
more involved proof.

10. Cross–product inequality for P-partitions

10A. The statement. Let P = (X,≺) be a poset on |X | = n elements. Fix t ≥ 0
and distinct elements x, y, z ∈ X . For integers k, ℓ≥ 0, denote by

SPP(P, t; x, y, z; k, ℓ) := {A ∈ PP(P, t) : A(y)− A(x)= k and A(z)− A(y)= ℓ}.

Denote
3q(k, ℓ) :=

∑
A∈SPP(P,t;x,y,z;k,ℓ)

q |A|,

3q(k, ℓ) :=
∑

A∈SPP(P,t;x,y,z;k,ℓ)

q A(x1)
1 · · · q A(xn)

n ,

and let F(k, ℓ) :=31(k, ℓ)= |SPP(P, t; x, y, z; k, ℓ)|.
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Theorem 10.1 (cross-product inequality for P-partitions). Let P = (X,≺) be a
finite poset, let x, y, z ∈ P , and let t ∈ N≥1 be a positive integer. Then, for every
k, ℓ≥ 0, we have

(10-1) F(k, ℓ+ 1) · F(k+ 1, ℓ)≥ F(k, ℓ) · F(k+ 1, ℓ+ 1).

More generally

(10-2) 3q(k, ℓ+ 1) ·3q(k+ 1, ℓ)⩾q 3q(k, ℓ) ·3q(k+ 1, ℓ+ 1).

Even more generally

(10-3) 3q(k, ℓ+ 1) ·3q(k+ 1, ℓ)⩾q 3q(k, ℓ) ·3q(k+ 1, ℓ+ 1).

Remark 10.2. Note that already the unweighted inequality (10-1) appears to be new.
Note also that if the order-preserving functions are replaced with linear extensions,
then a version of (10-1) is known as the cross–product conjecture [9, Conjecture 3.1],
a major open problem in the area. We refer to [12] for an extensive discussion and
further references.

10B. Proof of Theorem 10.1. We denote by L= (L,∨,∧) the distributive lattice
on the set of order-preserving functions from X to {0, 1, . . . , t}:

L := {T : X→ {0, 1, . . . , t} : T (v)≤ T (w)∀v,w ∈ X s.t. v ≺ w}.

The join and meet operation are given by

[S ∨ T ](w) :=max{S(w)− S(y), T (w)− T (y)}+min{S(y), T (y)},

[S ∧ T ](w) :=min{S(w)− S(y), T (w)− T (y)}+max{S(y), T (y)},

for every w ∈ X . This lattice was proved distributive by Shepp [36, Equations 2.4,
2.5], in his proof of the XY Z inequality; see also [3, Section 6.4].

Let α, β, γ, δ : L→ R+ be characteristic function of subsets of L defined as
follows:

α := 1{T (y)− T (x)= k and T (z)− T (y)= ℓ}.

β := 1{T (y)− T (x)= k+ 1 and T (z)− T (y)= ℓ+ 1}.

γ := 1{T (y)− T (x)= k and T (z)− T (y)= ℓ+ 1}.

δ := 1{T (y)− T (x)= k+ 1 and T (z)− T (y)= ℓ}.

We will now verify the assumption (6-2) of the multivariate AD inequality

(10-4) α(S) ·β(T )≤ γ (S ∨ T ) · δ(S ∧ T ),
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for every S, T ∈L. Without loss of generality we can assume that α(S)= β(T )= 1.
We have

[S ∨ T ](x)− [S ∨ T ](y)=max{S(x)− S(y), T (x)− T (y)}

=max{−k,−k− 1} = −k,

[S ∨ T ](z)− [S ∨ T ](y)=max{S(z)− S(y), T (z)− T (y)}

=max{ℓ, ℓ+ 1} = ℓ+ 1,

[S ∧ T ](x)− [S ∧ T ](y)=min{S(x)− S(y), T (x)− T (y)}

=min{−k,−k− 1} = −k− 1,

[S ∧ T ](z)− [S ∧ T ](y)=min{S(z)− S(y), T (z)− T (y)}

=min{ℓ, ℓ+ 1} = ℓ.

This shows that γ (S ∨ T )= δ(S ∧ T )= 1 and proves (10-4).
Finally, consider modular functions ri : L→ R+, for all 1 ≤ i ≤ n, given by

ri (T ) := T (xi ). Then we have

α⟨q,r⟩(L)=3q(k, ℓ), β⟨q,r⟩(L)=3q(k+ 1, ℓ+ 1),

γ⟨q,r⟩(L)=3q(k, ℓ+ 1), δ⟨q,r⟩(L)=3q(k+ 1, ℓ).

The theorem now follows from the multivariate AD inequality (6-3). □

Remark 10.3. Let us also mention that the proof in [12, Section 3.1] shows that
Theorem 10.1 implies a (multivariate) P-partition version of the Kahn–Saks inequal-
ity [27, Theorem 2.5]. On the other hand, while the KS inequality easily implies
Stanley’s inequality discussed earlier in Remark 9.2 (see e.g., [14, Section 1.2]), the
multivariate DPP inequality (Theorem 9.3) does not similarly follow from cross–
product inequality for P-partitions (Theorem 10.1). This is also demonstrated by
the fact that different lattices are used in the proofs of the two theorems.

11. Final remarks and open problems

11A. This paper grew out of [11, Section 4.1] where we obtained superficially
similar correlation inequalities which appear to have a very different nature and
whose only known proof uses the combinatorial atlas technology. Our investigation
was also partly motivated by the desire to bridge the gap between the two areas
of combinatorics. Notably, we would like to emphasize the importance of the
AD inequality to algebraic combinatorics, and the multivariate weighting to poset
theory.

Note that there is a weighted version of e(P) introduced in [10, Section 1.16].
While the results in [11] translate verbatim to the weighted setting, these weights
seem incompatible with q-weights in this paper. Similarly, the q-weight on e(P) in
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[12] is also of different nature. On the other hand, the q-weighted order polynomial
in [13] is exactly �q(P, t).

11B. One distinguishing feature of poset inequalities is the difficulty of getting the
equality conditions, see, e.g., [13, Section 9.9] for an overview. We are not aware
of any equality conditions for the inequalities in this paper, proved or conjectured.

Another difficulty is finding a combinatorial interpretation for the difference of
two sides. This was a major motivation for our investigation in [10]. We show
in [26, Section 7.4] that the AD inequality (5-3) does not have a combinatorial
interpretation in full generality, in a sense of being in #P. Of course, the Lam–
Postnikov–Pylyavskyy deep algebraic approach in [30] (see Remark 4.2) is even
less likely to give a combinatorial interpretation. We refer to [33, Section 6] for an
extensive survey.

Now, the Lam–Pylyavskyy’s injective approach in [28] shows that the difference
of coefficients on both sides in (4-12) has a combinatorial interpretation. By contrast,
the limit arguments we use throughout this paper do not give a combinatorial
interpretation for Fishburn’s inequality (3-1). It would be interesting to see if (3-1)
and the generalized Fishburn inequality (3-5) can be proved by a direct combinatorial
argument giving a combinatorial interpretation.
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VIA HIGHER REPRESENTATIONS
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We equip the basic local crossing bimodules in Ozsváth–Szabó’s theory
of bordered knot Floer homology with the structure of 1-morphisms of 2-
representations, categorifying the Uq(gl(1|1)+)-intertwining property of the
corresponding maps between ordinary representations. Besides yielding a
new connection between bordered knot Floer homology and higher repre-
sentation theory in line with work of Rouquier and Manion, this structure
gives an algebraic reformulation of a “compatibility between summands”
property for Ozsváth and Szabó’s bimodules that is important when building
their theory up from local crossings to more global tangles and knots.
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1. Introduction

Ozsváth and Szabó’s theory [2018; 2019a; 2019b; 2020] of bordered knot Floer
homology, or bordered HFK, has proven to be highly efficient for computations
(see [Ozsváth and Szabó 2023] for a fast computer program based on the theory).
It works by assigning certain dg algebras to sets of n tangle endpoints (oriented up
or down) and certain A∞ bimodules to tangles; one recovers HFK for closed knots
by taking appropriate tensor products of these bimodules.

Manion [2019] showed that the dg algebras of bordered HFK categorify repre-
sentations of the quantum supergroup Uq(gl(1|1)) and that the tangle bimodules
categorify intertwining maps between these representations. While Manion [2019]
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did not consider a categorified action of the quantum group on the bordered HFK
algebras, such an action (for Khovanov’s categorification U [2014] of the positive
half Uq(gl(1|1)+) = C(q)[E]/(E2)) was defined in [Lauda and Manion 2021],
compatibly (via [Lekili and Polishchuk 2020; Manion et al. 2020]) with a more
general family of higher actions defined in [Manion and Rouquier 2020].

Since Ozsváth and Szabó’s tangle bimodules categorify intertwining maps
between representations, it is natural to ask whether the bimodules themselves
intertwine the higher actions of U on the bordered HFK algebras. Since a higher
action of U on a dg algebra A amounts to a dg bimodule E over A together with some
extra data, one (roughly) asks whether tangle bimodules X satisfy X ⊗AE ∼= E⊗A X .
A structured way to require such commutativity is to equip X with the data of a
1-morphism between 2-representations of U .

The main result of this paper is that one can naturally equip Ozsváth and Szabó’s
local crossing bimodules with this 1-morphism structure.

Theorem 1.1. Ozsváth and Szabó’s local bimodules P and N , for a positive and
negative crossing between two strands, can be equipped with the structure of 1-
morphisms of 2-representations over U , encoding the commutativity of P and N
with the 2-action bimodule E .

In fact, the algebra over which P and N are defined has two natural 2-actions
of U , and we prove Theorem 1.1 for both 2-actions. Below we comment a bit more
on the motivation and potential applications for Theorem 1.1, as well as future
directions for study.

Remark 1.2. Theorem 1.1 is an algebraic expression of an important “compat-
ibility between summands” property of the bordered HFK bimodules. Indeed,
like the general strands algebras A(Z) of bordered Heegaard Floer homology,
Ozsváth–Szabó’s bordered HFK algebras have a direct sum decomposition indexed
by Z (in Heegaard diagram terms this index describes occupancy number, while
representation-theoretically it encodes a gl(1|1) weight space decomposition). The
A∞ bimodules for tangles respect this decomposition, and there is a certain com-
patibility between the bimodule summands for different k. In [Ozsváth and Szabó
2018], this compatibility is encoded in a graph from which one can define all
summands of the bimodules. Because of how the 2-action bimodules E interact
with the index of the direct sum decomposition, Theorem 1.1 is a more algebraic
way to formulate this compatibility.

In [Ozsváth and Szabó 2018], this compatibility is the key ingredient in the
“global extension” of the two-strand crossing bimodules to bimodules, over larger
algebras, for n strands with one crossing between two adjacent strands (this extension
is necessary when using the theory of Ozsváth and Szabó [2018] to compute HFK
for knots). The global extension is one of the most technical parts of [Ozsváth and
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Szabó 2018]; the main hoped-for application of the results of this paper is a more
algebraic treatment of the global extension, based on higher representation theory.

Remark 1.3. The 1-morphism structure of Theorem 1.1 can be interpreted as an
instance of an extra layer of the connection between higher representation theory
and cornered Heegaard Floer homology, beyond what was explored in [Manion
and Rouquier 2020]. This extra layer involves 3-manifolds, not just 1- and 2-
manifolds, and begins to relate to the parts of cornered Heegaard Floer homology
that use holomorphic disk counts and domains in Heegaard diagrams with corners.
Generalizing from Theorem 1.1, there should be a general family of Heegaard
diagrams (with the diagrams underlying the bordered HFK bimodules as special
cases) whose bimodules can be upgraded to 1-morphisms of 2-representations, and
the data needed for this upgrade should come from counting holomorphic disks
whose domains have positive multiplicities at the corners of the Heegaard diagram.

Remark 1.4. This paper is focused on the local two-strand aspects of bordered
HFK, since these are the elementary building blocks to which one wants to apply a
global extension procedure to obtain n-strand tangle invariants. One could also ask
whether the globally extended n-strand tangle bimodules of bordered HFK give
1-morphisms of 2-representations of U ; we expect this to be true. Furthermore,
the local bimodules considered here are adapted to two strands pointing in the
same direction (downwards, in the conventions of [Ozsváth and Szabó 2018]). For
strands with other orientations, one has a choice of more elaborate theories from
[Ozsváth and Szabó 2018; 2019b; 2019a], some involving curved dg algebras. We
expect that the bimodules of these more elaborate theories also give 1-morphisms
of 2-representations of U , once, e.g., 2-representations are appropriately defined on
the curved dg algebras.

Remark 1.5. Since it follows from [Lekili and Polishchuk 2020; Manion et al. 2020]
that the local Ozsváth–Szabó algebras appearing in this paper are quasiisomorphic
to certain (larger) dg strands algebras A(Z), it is natural to ask whether there are
bimodules corresponding to P and N over the larger algebras, and if so, whether
these bimodules give 1-morphisms between the 2-representation structures on A(Z)

defined directly in [Manion and Rouquier 2020]. The answer in both cases appears
to be “yes;” the authors of [Manion et al. 2020] hope to address this question in
work in preparation.

Remark 1.6. Along with E , there is another odd generator F of Uq(gl(1|1)); since
we are discussing actions of E here, it is natural to ask about F as well. While
the framework of [Manion and Rouquier 2020] is based on a categorification of
Uq(gl(1|1)+) and fundamentally gives us E but not F , one can categorify at least a
relative F ′ of F by taking homomorphisms of left A-modules from the E bimodule
into A (as discussed e.g., in [Lauda and Manion 2021, Theorem 1.3] with slightly
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different conventions, as well as in [Manion and Rouquier 2020]). If we take
E to be projective on the left (“type D A”) as in this paper, then the bimodule
F ′

:= HomA on left(E,A) will be projective on the right (“type AD”), so since X is
type D A and has higher A∞ actions on the right, it’s more natural to look at the
bimodules E ⊗A X and X ⊗A E than the bimodules F ′

⊗A X and X ⊗A F ′.
If we did define F ′

⊗A − and − ⊗A F ′ appropriately, then we would expect
adjunctions in the homotopy category (E ⊗A −) ⊣ (F ′

⊗A −) and (− ⊗A F ′) ⊣

(− ⊗A E). Specifying maps X ⊗A E → E ⊗A X and X ⊗A F ′
→ F ′

⊗A X
would be equivalent, up to homotopy, to specifying maps X ⊗A E → E ⊗A X and
E ⊗A X → X ⊗A E .

In our case, we will show that E ⊗A X and X ⊗A E are literally the same up to
a renaming of basis elements, so that neither direction is singled out and we have
maps both ways giving an isomorphism. Based on the above, after making the right
definitions one would get a map X ⊗A F ′

→ F ′
⊗A X up to homotopy; since we

only have an adjunction one way, it’s not immediate that this map would be an
isomorphism in the homotopy category, although it seems likely that X ⊗A F ′ ∼=

F ′
⊗AX is still true here. We will not investigate further, though; work in preparation

of the second author at the decategorified level suggests that in some settings, but
not the one under consideration, one should legitimately have actions of both odd
generators E and F of gl(1|1), whereas here we only have E along with whatever
modifications we want to do to it algebraically.

Organization. In Section 2 we review algebraic definitions from bordered Heegaard
Floer homology, including a matrix-based notation from [Manion 2020] that will
be useful here. In Section 3 we review what we need from Ozsváth and Szabó’s
theory of bordered HFK. In Section 4 we review the relevant input from higher
representation theory and define 2-actions of U on the local bordered HFK algebras.
In Section 5 we show that Theorem 1.1 holds for Ozsváth–Szabó’s local positive-
crossing bimodule P , and in Section 6 we do the same for the local negative-crossing
bimodule N .

2. Bordered algebra

2A. D A bimodules. We will work with D A bimodules, as defined by Lipshitz,
Ozsváth and Thurston [Lipshitz et al. 2015, Section 2.2.4], over associative algebras
with no differentials. We will assume that these associative algebras A are defined
over a field k of characteristic 2 and come equipped with a finite collection of
orthogonal idempotents {I1, . . . , In} such that I1 + · · · + In = 1. We will refer to
the I j as distinguished idempotents.

Remark 2.1. An equivalent perspective is to view A as a k-linear category with
objects {I1, . . . , In}.
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For such an algebra A, we will let IA denote the ring of idempotents of A, i.e.,
a finite direct product of copies of k (one for each idempotent I j ), viewed as a
subalgebra of A.

We will also assume that A is equipped with two Z-gradings which we will
call the intrinsic and homological gradings; we let [1] denote an upward shift by 1
in the homological grading (we use upward rather than downward shifts because,
following the conventions of [Lipshitz et al. 2015; Ozsváth and Szabó 2018], we
use differentials that decrease the homological grading by 1).

Definition 2.2. Let A and B be graded associative algebras over a field k of charac-
teristic 2. A D A bimodule over (A,B) is given by the data (X, (δ1

i )
∞

i=1) where X
is a Z ⊕ Z-graded bimodule over (IA, IB) and, for i ≥ 1,

δ1
i : X ⊗B[1]

⊗(i−1)
→ A[1] ⊗ X

(tensor products are over IA or IB as appropriate) is a bidegree-preserving morphism
of bimodules over (IA, IB) such that the D A bimodule relations are satisfied, i.e.,
such that∑
j1+ j2=i+1

(µA ⊗ idX ) ◦ (idA ⊗δ1
j1) ◦ (δ1

j2 ⊗ idB⊗( j1−1))

+

i−2∑
j=1

δ1
i−1 ◦ (idB⊗( j−1) ⊗µB ⊗ idB⊗(i− j−2)) = 0

for all i ≥ 1, where µA and µB are the multiplication operations on A and B.

We will often refer to (X, (δ1
i )

∞

i=1) simply as X . We say that X is strictly unital
if δ1

2(x, 1) = 1 ⊗ x for all x ∈ X and δ1
i (x, b1, . . . , bi−1) = 0 if i > 2 and any b j is

in the idempotent ring IB.
If we have a k-basis for X and x, x ′ are basis elements with a ⊗ x ′ appearing

as a nonzero term of δ1
i (x ⊗ b1 ⊗ · · ·⊗ bi−1) (where a ∈ A and b1, . . . , bi−1 ∈ B),

we will sometimes depict the situation using a “D A module operation graph” as
in [Lipshitz et al. 2015, Definition 2.2.45]. See Figure 1 for an example. In this
notation, the D A bimodule relations are shown in Figure 2.

Remark 2.3. For all D A bimodules (X, (δ1
i )

∞

i=1) considered in this paper, X will be
finite-dimensional over k, as well as left and right bounded in the sense of [Lipshitz
et al. 2015, Definition 2.2.46].

Remark 2.4. If X is a D A bimodule over (A,B), then A⊗IA X is an A∞ bimodule
over (A,B) such that the left action of A has no higher A∞ terms and such that, as
a left A-module, X is a direct sum of projective modules A · I for distinguished
idempotents I of A (disregarding the differential). One can think of the definition
of D A bimodule as a convenient way of specifying and reasoning about such A∞

bimodules.
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Figure 1. A D A module operation graph showing a term a ⊗ x ′ of
the action of δ1

i on x ⊗ b1 ⊗ · · ·⊗ bi−1; this notation allows i = 1
in which case there are no edges to the right of the vertical line
from x to x ′.

Figure 2. The DA bimodule relations in Definition 2.2.

2B. The box tensor product. Let A,B, C be associative algebras as in Section 2A
and let X and Y be D A bimodules over (A,B) and (B, C) respectively. Assuming
X is left bounded or Y is right bounded, Lipshitz–Ozsváth–Thurston define a D A
bimodule X ⊠ Y in [Lipshitz et al. 2015, Section 2.3.2].

Definition 2.5. As a bimodule over (IA, IC), X ⊠ Y is defined to be X ⊗IB Y .
For i ≥ 1, the D A bimodule operation δ

⊠,1
i on X ⊠ Y is defined in terms of the

operations δX,1
∗

on X and δY,1
∗

on Y by

δ
⊠,1
i =

∑
j≥0

∑
i1+···+i j =i+ j−1

(δ
X,1
j ⊗ idY ) ◦ (idX ⊗ idB⊗( j−1) ⊗δ

Y,1
i j

)

◦ (idX ⊗ idB⊗( j−2) ⊗δ
Y,1
i j−1

⊗ idA⊗(i j −1))

◦ · · · ◦ (idX ⊗δ
Y,1
i1

⊗ idA⊗(i2+···+i j − j+1)).

In terms of D A module operation graphs, the general pattern for the operation
δ
⊠,1
i on X ⊠ Y is shown in Figure 3.

Remark 2.6. By [Lipshitz et al. 2015, Proposition 2.3.10], if X and Y are both left
bounded then so is X ⊠ Y .

Remark 2.7. Assuming suitable boundedness, the box tensor product X ⊠ Y is a
convenient way of working with the derived tensor product (A⊗IA X)⊗̃B(B⊗IB Y );
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Figure 3. The general pattern for the operation δ
⊠,1
i on X ⊠ Y .

indeed, by [Lipshitz et al. 2015, Proposition 2.3.18] we have

A⊗IA (X ⊠ Y ) ≃ (A⊗IA X)⊗̃B(B⊗IB Y )

where ≃ denotes homotopy equivalence of D A bimodules; see [Lipshitz et al. 2015,
Section 2.2.4].

2C. Matrix notation. We will describe D A bimodules using the matrix-based
notation of [Manion 2020, Section 2.2]; we recall this notation here. When using
this notation to describe a D A bimodule over (A,B), it is assumed that B comes
equipped with a choice of k-basis such that:

• Distinguished idempotents of B are basis elements.

• Each basis element b satisfies I ·b · I ′
= b for unique distinguished idempotents

I of A and I ′ of B (called the left and right idempotents of b respectively)
with Ĩ · b · Ĩ ′

= 0 whenever Ĩ , Ĩ ′ are distinguished idempotents of A and B
with Ĩ ̸= I or Ĩ ′

̸= I ′.

• Each basis element of B is homogeneous with respect to the bigrading.

Definition 2.8. To specify a D A bimodule (X, (δ1
i )

∞

i=1) over (A,B) (finite-
dimensional over k), we specify two matrices, a primary matrix and a secondary
matrix:

• The primary matrix is a set-valued matrix (each entry is a finite set with a Z⊕Z-
bidegree specified for each element) with columns indexed by the distinguished
idempotents of B and rows indexed by the distinguished idempotents of A.
Given such a matrix, the bimodule X over (IA, IB) is taken to have a k-basis
given by the union of the sets in each entry (with each basis element given its
specified bidegree). More specifically, the left-action of IA and right-action of
IB are fixed by saying that, for distinguished idempotents I of A and I ′ of B,
the vector space I · X · I ′ has a basis given by the set in row I and column I ′.
For an element x of this set, we say that I is the left idempotent of x and I ′ is
the right idempotent of x .
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• The secondary matrix is a matrix whose entries are formal sums of expressions
a (for a ∈ A) and a ⊗ (b1, . . . , bi−1) (for a ∈ A and each b j a basis element
for B). The sums are allowed to be infinite, but there should be finitely many
terms of the form a (without the ⊗ symbol) and finitely many terms for each
given sequence (b1, . . . , bi−1). The rows and columns of the secondary matrix
are each indexed by the union of all entries of the primary matrix, in some
fixed order. Given such a matrix, the operations δ1

i on X are defined as follows
for a basis element x of X (a column label of the secondary matrix):

– δ1
1(x) is the sum of all elements a ⊗ y where a is a term (without the ⊗

symbol) of a secondary matrix entry in column x and y is the row label of
the entry containing this term.

– For i > 1 and a sequence (b1, . . . , bi−1) of basis elements of B, δ1
i (x ⊗

b1 ⊗· · ·⊗bi−1) is the sum of all elements a ⊗ y where a ⊗ (b1, . . . , bi−1)

is a term of a secondary matrix entry in column x and y is the row label
of the entry containing this term.

An example of a D A bimodule specified by primary and secondary matrices can
be found in Definition 3.3 below. We use the following conventions:

Convention 2.9. If indices such as k or l appear in entries of the secondary matrix,
we take an infinite sum over all k ≥ 0 or l ≥ 0 unless otherwise specified.

Convention 2.10. When using matrix notation to specify a strictly unital D A
bimodule, the above rules would say that in each diagonal entry of the secondary
matrix (corresponding to an entry x of the primary matrix), there is a term I ⊗ I ′

where I and I ′ are the left and right idempotents of x respectively (it should also
be the case that no basis element b j appearing in an entry a ⊗ (b1, . . . , bi−1) is a
distinguished idempotent). However, we will omit the terms I ⊗ I ′ when we write
the secondary matrix.

If the primary or secondary matrix has block form, we will often give each block
separately.

Remark 2.11. One advantage of this matrix-based notation is that the D A bimodule
relations can be checked using linear-algebraic manipulations. Indeed, to check the
D A bimodule relations, one forms two new matrices from the secondary matrix.
The first matrix, which we will call the “squared secondary matrix,” is obtained by
multiplying the secondary matrix by itself. When doing so, one will need to take
products of secondary matrix entries; these products are defined by:

• a · a′
= a′a.

• a · (a′
⊗ (b′

1, . . . , b′

i−1)) = a′a ⊗ (b′

1, . . . , b′

i−1).

• (a ⊗ (b1, . . . , bi−1)) · a′
= a′a ⊗ (b1, . . . , bi−1).

• (a⊗(b1, . . . , bi−1))·(a′
⊗(b′

1, . . . , b′

j−1))=a′a⊗(b′

1, . . . , b′

j−1, b1, . . . , bi−1).
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The second matrix, which we will call the “multiplication matrix,” is obtained by,
for each b j in an entry a ⊗(b1, . . . , bi−1) and each pair of B-basis elements (b′, b′′)

(neither a distinguished idempotent in the strictly unital case) such that Cb j is a
term of the basis expansion of b′b′′ for some nonzero element C ∈ k, adding the
term Ca ⊗ (b1, . . . , b j−1, b′, b′′, b j+1, . . . , bi−1) to the corresponding entry of the
multiplication matrix.

Once these two matrices are formed, the D A bimodule relations amount to
saying that the squared secondary matrix and the multiplication matrix sum to zero.

2D. Box tensor products in matrix notation. Suppose we have D A bimodules
X over (A,B) and Y over (B, C) as in Section 2B. To specify X ⊠ Y in matrix
notation, one can do the following manipulations:

• The primary matrix for X ⊠ Y is the matrix product of the primary matrix for
X (on the left) and the primary matrix for Y (on the right). When multiplying
two entries of these primary matrices, one uses the Cartesian product of sets,
and when adding these products together, one uses the disjoint union.

• Let (x, y) and (x ′, y′) be two elements of the primary matrix for X ⊠ Y . To
obtain the secondary matrix element in row (x ′, y′) and column (x, y), there
are two cases to consider:

– For entries a (with no ⊗ symbol) in row x ′ and column x of the secondary
matrix for X , if y = y′ then add an entry a to the secondary matrix for
X ⊠ Y in row (x ′, y′) and column (x, y). If y ̸= y′, do not add such an
entry.

– For entries a ⊗ (b1, . . . , bi−1) in row x ′ and column x of the secondary
matrix for X , look for all sequences (y = y1, y2, . . . , yi = y′) of primary
matrix entries for Y such that, for 1 ≤ j ≤ i − 1, there is a term b ⊗

(c j
1, . . . , c j

m j −1) in row y j+1 and column y j of the secondary matrix for
Y such that C j b j is a term of the basis expansion of b for some nonzero
C j ∈ k. For all such sequences (y1, . . . , yi ) and all such choices of terms
b ⊗ (c j

1, . . . , c j
m j −1), add an entry

C1 · · · Ci−1a ⊗ (c1
1, . . . , c1

m1−1, . . . , ci−1
1 , . . . , ci−1

mi−1−1)

to the secondary matrix of X ⊠ Y in row (x ′, y′) and column (x, y).

3. Bordered HFK

3A. Algebras. We now review Ozsváth and Szabó’s algebra B(2) =
⊕3

k=0 B(2, k)

from [Ozsváth and Szabó 2018, Section 3.2], which is an algebra over F2.

Definition 3.1. The algebra B(2, 0) is F2. The algebra B(2, 1) is the path algebra
of the quiver shown in Figure 4 modulo the relations [Ri , U j ] = 0, [L i , U j ] = 0,
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Figure 4. The quiver for B(2, 1).

Figure 5. The quiver for B(2, 2).

Ri L i = Ui , L i Ri = Ui , R1 R2 = 0, L2L1 = 0, U2 = 0 at the leftmost node, and
U1 = 0 at the rightmost node.

The algebra B(2, 2) is the path algebra of the quiver shown in Figure 5 modulo
the relations [RiU j ] = 0, [L i , U j ] = 0, Ri L i = Ui , and L i Ri = Ui . The algebra
B(2, 3) is F2[U1, U2]. We set B(2) =

⊕3
k=0 B(2, k).

Our definition matches Ozsváth and Szabó’s by [Manion et al. 2021, Theo-
rem 1.1]; also see [Ozsváth and Szabó 2018, Figure 10] for B(2, 1), although in this
figure Ozsváth and Szabó leave out some of the relations. We define an intrinsic
grading on B(2) by setting deg(Ri ) = deg(L i ) = 1 and deg(Ui ) = 2; this grading is
twice Ozsváth and Szabó’s single Alexander grading (the doubling is related to the
expression t = q2 when obtaining the Alexander polynomial from representations
of Uq(gl(1|1))). We define the homological grading to be identically zero on the
generators of B(2).

The algebras B(2, 1) and B(2, 2) each have three distinguished idempotents given
by the length-zero paths at each node. Ordering the nodes from left to right and
following Ozsváth and Szabó’s notation, for B(2, 1) we can call these idempotents
I0, I1, and I2. For B(2, 2) we can call them I01, I02, and I12. The unique nonzero
element of B(2, 0) is its distinguished idempotent and we can call it I∅; for B(2, 3)

the distinguished idempotent is 1 ∈ F2[U1, U2] and we can call it I012.
To avoid subscripts as much as possible, we will relabel these idempotents as

follows:
∅ := I∅,

A := I0, B := I1, C := I2,

AB := I01, AC := I02, BC := I12,

ABC := I012.

To clarify the conventions: in Figure 4 the left and right idempotents of R1 are A
and B respectively, while in Figure 5 the left and right idempotents of R1 are AC
and BC respectively.
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The following proposition can be deduced from the definition of B(2).

Proposition 3.2. A F2-basis for B(2, 1) is given by

{U k
1 (A), U k

1 (B), U k
2 (B), U k

2 (C), R1U k
1 , L1U k

1 , R2U k
2 , L2U k

2 }

(k runs over all integers ≥ 0). A F2-basis for B(2, 2) is given by

{U k
1 U l

2(AB), U k
1 U l

2(AC), U k
1 U l

2(BC), R1U k
1 U l

2, L1U k
1 U l

2, R2U k
1 U l

2, L2U k
1 U l

2}

(k and l run over all integers ≥ 0).

The algebra B(2, 0) = F2 has a unique F2-basis, and for B(2, 3) we use the basis
of monomials U k

1 U l
2 for k, l ≥ 0.

3B. Bimodules. Next we review, in matrix notation, Ozsváth and Szabó’s D A
bimodules P and N over B(2). One thinks of these bimodules as being associated
to two-strand tangles consisting of a single positive crossing and a single negative
crossing respectively and containing the minimal amount of data necessary to
build the bimodules for n-strand single-crossing tangles. They can be obtained by
counting holomorphic disks in the Heegaard diagrams shown in Section 3B3 below.

3B1. The bimodule P . This bimodule is defined in [Ozsváth and Szabó 2018,
Section 5.1]; here we translate Ozsváth and Szabó’s definition into matrix notation.

Definition 3.3. The primary matrix for P has rows and columns indexed by the
distinguished idempotents

∅, A, B, C, AB, AC, BC, ABC

of B(2). The matrix has block-diagonal form with blocks specified by the following
matrices:

[ ∅

∅ ∅S∅
]


A B C

A {A SA} ∅ ∅
B {B WA} {B NB} {B EC}

C ∅ ∅ {C SC}




AB AC BC

AB {AB NAB} {AB E AC} ∅
AC ∅ {AC SAC} ∅
BC ∅ {BC WAC} {BC NBC}


[ ABC

ABC {ABC NABC}
]
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Below we will abuse notation slightly and omit the braces { }, writing e.g., A SA

instead of {A SA}. The secondary matrix for P has a corresponding block-diagonal
form; the blocks are:

[ ∅S∅

∅S∅ 0
]



A SA B WA B NB B EC C SC

A SA 0 L1 0 0 0
B WA 0 U k+1

2 ⊗U k+1
1 U k+1

2 ⊗L1U k
1 0 L2U k

2 ⊗(L2, L1U k
1 )

B NB R1U k
1 ⊗(R1,U k+1

2 ) U k
2 ⊗R1U k

1 U k+1
2 ⊗U k+1

1 +U k+1
1 ⊗U k+1

2 U k
1 ⊗L2U k

2 L2U k
2 ⊗(L2,U k+1

1 )

B EC R1U k
1 ⊗(R1, R2U k

2 ) 0 U k+1
1 ⊗R2U k

2 U k+1
1 ⊗U k+1

2 0
C SC 0 0 0 R2 0




AB NAB AB E AC AC SAC BC WAC BC NBC

AB NAB U l
1U k

2 ⊗U k
1 U l

2 U k
1 ⊗L2U k

2 ∗1 L1L2U k
2 ⊗L2U k+1

1 L1L2U l
1U k

2 ⊗L1L2U k
1 U l

2

AB E AC U l+1
1 U k

2 ⊗R2U k
1 U l

2 U k+1
1 ⊗U k+1

2 ∗2 L1L2U k
2 ⊗U k+1

1 L1L2U l
1U k

2 ⊗L1U k
1 U l

2
AC SAC 0 R2 0 L1 0
BC WAC R2 R1U l

1U k
2 ⊗R2U k

1 U l
2 R2 R1U k

1 ⊗U k+1
2 ∗3 U k+1

2 ⊗U k+1
1 U l

1U k+1
2 ⊗L1U k

1 U l
2

BC NBC R2 R1U l
1U k

2 ⊗R2 R1U k
1 U l

2 R2 R1U k
1 ⊗R1U k+1

2 ∗4 U k
2 ⊗R1U k

1 U l
1U k

2 ⊗U k
1 U l

2


[ ABC NABC

ABC NABC U l
1U k

2 ⊗U k
1 U l

2

]
.

The entries ∗i for 1 ≤ i ≤ 4 are specified below; also, in any entry of the form
U l

1U k
2 ⊗ U k

1 U l
2, we disallow (k, l) = (0, 0) to match Convention 2.10. The entry ∗1

in column AC SAC and row AB NAB is

L2U t
1U n

2 ⊗ (U n+1
1 , L2U t

2) (0 ≤ n < t)

+ L2U t
1U n

2 ⊗ (R1U n
1 , L1L2U t

2) (0 ≤ n < t)

+ L2U t
1U n

2 ⊗ (L2U n+1
1 , U t

2) (0 ≤ n < t)

+ L2U t
1U n

2 ⊗ (L2U t
2, U n+1

1 ) (1 ≤ t ≤ n)

+ L2U t
1U n

2 ⊗ (U t
2, L2U n+1

1 ) (1 ≤ t ≤ n)

+ L2U t
1U n

2 ⊗ (R1U t
2, L1L2U n

1 ) (1 ≤ t ≤ n)

+ L2U n
2 ⊗ (L2, U n+1

1 ) (0 ≤ n).

The entry ∗2 in column AC SAC and row AB E AC is

L2U t
1U n

2 ⊗ (U n+1
1 , U t

2) (0 ≤ n < t)

+ L2U t
1U n

2 ⊗ (R1U n
1 , L1U t

2) (0 ≤ n < t)

+ L2U t
1U n

2 ⊗ (L2U n+1
1 , R2U t−1

2 ) (0 ≤ n < t)

+ L2U t
1U n

2 ⊗ (U t
2, U n+1

1 ) (1 ≤ t ≤ n)

+ L2U t
1U n

2 ⊗ (R1U t
2, L1U n

1 ) (1 ≤ t ≤ n)

+ L2U t
1U n

2 ⊗ (L2U t−1
2 , R2U n+1

1 ) (1 ≤ t ≤ n).
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The entry ∗3 in column AC SAC and row BC WAC is

R1U t
1U n

2 ⊗ (U t+1
2 , U n

1 ) (0 ≤ t < n)

+ R1U t
1U n

2 ⊗ (L2U t
2, R2U n

1 ) (0 ≤ t < n)

+ R1U t
1U n

2 ⊗ (R1U t+1
2 , L1U n−1

1 ) (0 ≤ t < n)

+ R1U t
1U n

2 ⊗ (U n
1 , U t+1

2 ) (1 ≤ n ≤ t)

+ R1U t
1U n

2 ⊗ (L2U n
1 , R2U t

2) (1 ≤ n ≤ t)

+ R1U t
1U n

2 ⊗ (R1U n−1
1 , L1U t+1

2 ) (1 ≤ n ≤ t)

The entry ∗4 in column AC SAC and row BC NBC is

R1U t
1U n

2 ⊗ (U t+1
2 , R1U n

1 ) (0 ≤ t < n)

+ R1U t
1U n

2 ⊗ (L2U t
2, R2 R1U n

1 ) (0 ≤ t < n)

+ R1U t
1U n

2 ⊗ (R1U t+1
2 , U n

1 ) (0 ≤ t < n)

+ R1U t
1U n

2 ⊗ (R1U n
1 , U t+1

2 ) (1 ≤ n ≤ t)

+ R1U t
1U n

2 ⊗ (U n
1 , R1U t+1

2 ) (1 ≤ n ≤ t)

+ R1U t
1U n

2 ⊗ (L2U n
1 , R2 R1U t

2) (1 ≤ n ≤ t)

+ R1U t
1 ⊗ (R1, U t+1

2 ) (0 ≤ t).

3B2. The bimodule N . The bimodule N is defined in [Ozsváth and Szabó 2018,
Section 5.5] using a symmetry relationship with P . Explicitly, N has the same
primary matrix as P . The blocks of the secondary matrix of N are:

[ ∅S∅

∅S∅ 0
]



A SA B WA B NB B EC C SC

A SA 0 0 L1U k
1 ⊗(U k+1

2 , L1) L1U k
1 ⊗(L2U k

2 , L1) 0
B WA R1 U k+1

2 ⊗U k+1
1 U k

2 ⊗L1U k
1 0 0

B NB 0 U k+1
2 ⊗R1U k

1 U k+1
2 ⊗U k+1

1 +U k+1
1 ⊗U k+1

2 U k+1
1 ⊗L2U k

2 0
B EC 0 0 U k

1 ⊗R2U k
2 U k+1

1 ⊗U k+1
2 L2

C SC 0 R2U k
2 ⊗(R1U k

1 , R2) R2U k
2 ⊗(U k+1

1 , R2) 0 0




AB NAB AB E AC AC SAC BC WAC BC NBC

AB NAB U l
1U k

2 ⊗U k
1 U l

2 U l+1
1 U k

2 ⊗L2U k
1 U l

2 0 L1L2U l
1U k

2 ⊗L2U k
1 U l

2 L1L2U l
1U k

2 ⊗L1L2U k
1 U l

2

AB E AC U k
1 ⊗R2U k

2 U k+1
1 ⊗U k+1

2 L2 L1L2U k
1 ⊗U k+1

2 L1L2U k
1 ⊗L1U k+1

2
AC SAC ∗

′

1 ∗
′

2 0 ∗
′

3 ∗
′

4

BC WAC R2 R1U k
2 ⊗R2U k+1

1 R2 R1U k
2 ⊗U k+1

1 R1 U k+1
2 ⊗U k+1

1 U k
2 ⊗L1U k

1

BC NBC R2 R1U l
1U k

2 ⊗R2 R1U k
1 U l

2 R2 R1U l
1U k

2 ⊗R1U k
1 U l

2 0 U l
1U k+1

2 ⊗R1U k
1 U l

2 U l
1U k

2 ⊗U k
1 U l

2



[ ABC NABC

ABC NABC U l
1U k

2 ⊗U k
1 U l

2

]
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where in any entry of the specific form U l
1U k

2 ⊗ U k
1 U l

2 we disallow (k, l) = (0, 0)

to match Convention 2.10. The entry ∗
′

1 in column AB NAB and row AC SAC is:

R2U t
1U n

2 ⊗ (R2U t
2, U n+1

1 ) (0 ≤ n < t)

+ R2U t
1U n

2 ⊗ (R2 R1U t
2, L1U n

1 ) (0 ≤ n < t)

+ R2U t
1U n

2 ⊗ (U t
2, R2U n+1

1 ) (0 ≤ n < t)

+ R2U t
1U n

2 ⊗ (U n+1
1 , R2U t

2) (1 ≤ t ≤ n)

+ R2U t
1U n

2 ⊗ (R2U n+1
1 , U t

2) (1 ≤ t ≤ n)

+ R2U t
1U n

2 ⊗ (R2 R1U n
1 , L1U t

2) (1 ≤ t ≤ n)

+ R2U n
2 ⊗ (U n+1

1 , R2) (0 ≤ n).

The entry ∗
′

2 in column AB E AC and row AC SAC is

R2U t
1U n

2 ⊗ (U t
2, U n+1

1 ) (0 ≤ n < t)

R2U t
1U n

2 ⊗ (R1U t
2, L1U n

1 ) (0 ≤ n < t)

R2U t
1U n

2 ⊗ (L2U t−1
2 , R2U n+1

1 ) (0 ≤ n < t)

R2U t
1U n

2 ⊗ (U n+1
1 , U t

2) (1 ≤ t ≤ n)

R2U t
1U n

2 ⊗ (R1U n
1 , L1U t

2) (1 ≤ t ≤ n)

R2U t
1U n

2 ⊗ (L2U n+1
1 , R2U t−1

2 ) (1 ≤ t ≤ n).

The entry ∗
′

3 in column BC WAC and row AC SAC is

L1U t
1U n

2 ⊗ (U n
1 , U t+1

2 ) (0 ≤ t < n)

L1U t
1U n

2 ⊗ (L2U n
1 R2U t

2) (0 ≤ t < n)

L1U t
1U n

2 ⊗ (R1U n−1
1 , L1U t+1

2 ) (0 ≤ t < n)

L1U t
1U n

2 ⊗ (U t+1
2 , U n

1 ) (1 ≤ n ≤ t)

L1U t
1U n

2 ⊗ (L2U t
2, R2U n

1 ) (1 ≤ n ≤ t)

L1U t
1U n

2 ⊗ (R1U t+1
2 , L1U n−1

1 ) (1 ≤ n ≤ t).
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The entry ∗
′

4 in column BC NBC and row AC SAC is

L1U t
1U n

2 ⊗ (L1U n
1 , U t+1

2 ) (0 ≤ t < n)

L1U t
1U n

2 ⊗ (L1L2U n
1 , R2U t

2) (0 ≤ t < n)

L1U t
1U n

2 ⊗ (U n
1 , L1U t+1

2 ) (0 ≤ t < n)

L1U t
1U n

2 ⊗ (U t+1
2 , L1U n

1 ) (1 ≤ n ≤ t)

L1U t
1U n

2 ⊗ (L1U t+1
2 , U n

1 ) (1 ≤ n ≤ t)

L1U t
1U n

2 ⊗ (L1L2U t
2, R2U n

1 ) (1 ≤ n ≤ t)

L1U t
1 ⊗ (U t+1

2 , L1) (0 ≤ t).

The starred terms in row AC SAC of middle block of the secondary matrix for N ,
as well as in the column AC SAC of the middle block of the secondary matrix for P ,
encode the A∞ terms of the right algebra actions on (the middle summands of) the
bimodules; see [Lipshitz et al. 2015, Section 2.2.4] for more context on these A∞

structures in general.
The symmetry relationship between P and N described in [Ozsváth and Szabó

2018, Section 5.5] can be summarized by saying the secondary matrix of N is
obtained from that of P by performing the following operations:

• Take the transpose of the secondary matrix of P .

• In each entry, replace L i with Ri and vice versa, while reversing the order of
multiplication when relevant (so e.g., L1L2 becomes R2 R1).

• For any entry a ⊗ (b1, b2), reverse the order of b1 and b2.

3B3. Heegaard diagram origins. We comment briefly here on the Heegaard di-
agram origins of the D A bimodules P and N . Roughly, they can be thought of
as D A bimodules associated to the bordered sutured Heegaard diagrams shown
in Figure 6 and Figure 7 respectively. A detailed study of the relationship of the
algebraically defined bimodules P and N to the holomorphic geometry associated
with these diagrams can be found in [Ozsváth and Szabó 2019a], although in that
paper Ozsváth and Szabó do not use the language of bordered sutured Heegaard
Floer homology.

Remark 3.4. The diagrams in Figures 6 and 7 do not satisfy all the hypotheses
necessary to be covered by Lipshitz, Ozsváth and Thurston’s results [2015] or
Zarev’s results [2011]; Ozsváth and Szabó [2019a] show that they can still be
analyzed using a generalization of the analytic setup of bordered or bordered
sutured Heegaard Floer homology. However, a more literal generalization of these
theories would yield bimodules over the larger dg algebras of [Lekili and Polishchuk
2020; Manion et al. 2020] rather than over the associative algebra B(2). The second
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Figure 6. The bordered sutured Heegaard diagram for P .

Figure 7. The bordered sutured Heegaard diagram for N .

author, with Marengon and Willis, hope to address this difference in future work,
defining D A bimodules over the larger dg algebras and relating them to P and N .

4. Higher representations

4A. General setup. We now briefly review how higher representation theory inter-
acts with bordered Heegaard Floer homology, as discussed in more generality in
[Manion and Rouquier 2020].

4A1. Monoidal category. The following differential monoidal category U was
defined in [Khovanov 2014], and 2-actions of U are a main subject of [Manion and
Rouquier 2020]; see also [Douglas and Manolescu 2014; Douglas et al. 2019].

Definition 4.1. Let U denote the strict differential monoidal category with objects
generated under ⊗ by a single object e and with morphisms generated under ⊗ and
composition by an endomorphism τ of e ⊗ e, subject to the relations τ 2

= 0 and

(ide ⊗τ) ◦ (τ ⊗ ide) ◦ (ide ⊗τ) = (τ ⊗ ide) ⊗ (ide ⊗τ) ⊗ (τ ⊗ ide),
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and with differential determined by d(τ ) = ide⊗e.

Remark 4.2. A grading on U is defined in [Khovanov 2014], making it into a dg
category. Here we will not need to work with this grading; indeed, in the 2-actions
of U we consider below, τ will act as zero.

The endomorphism algebra in U of e⊗m is the nil-Coxeter dg algebra denoted
by Nm in [Douglas and Manolescu 2014].

4A2. 2-representations. We will be especially concerned with 2-representations
of U on associative algebras in the setting of D A bimodules; we give a concrete
definition of this notion below.

Definition 4.3. Let A be an associative algebra (we make the same assumptions on
A as in Section 2A). A (D A bimodule) 2-representation of U on A is the data of
a D A bimodule E over A and a (typically nonclosed) D A bimodule morphism τ

from E ⊠ E to itself satisfying τ 2
= 0,

(idE ⊠τ) ◦ (τ ⊠ idE) ◦ (idE ⊠τ) = (τ ⊠ idE) ◦ (idE ⊠τ) ◦ (τ ⊠ idE),

and d(τ ) = 1. We also assume that E is left bounded in the sense of [Lipshitz et al.
2015, Definition 2.2.46].

We will write the above data as (A, E, τ ).

Remark 4.4. The definitions of D A bimodule morphisms, their tensor products,
and their differentials can be found in [Lipshitz et al. 2015, Section 2.2.4 and
Section 2.3.2], but we will refrain from spelling out these definitions here because
in the examples we will consider, E ⊠ E will be the zero D A bimodule and τ will
be the zero morphism.

4A3. 1-morphisms of 2-representations. We will also work with a D A bimodule
version of 1-morphisms between 2-representations of U .

Definition 4.5. Let (A, E, τ ) and (A′, E ′, τ ′) be (D A bimodule) 2-representations
of U on associative algebras A and A′. A (D A bimodule) 1-morphism of 2-
representations from (A, E, τ ) to (A′, E ′, τ ′) consists of a left bounded D A bimod-
ule X over (A′,A) together with a homotopy equivalence

α : X ⊠ E → E ′ ⊠ X,

satisfying

(τ ′ ⊠ idX ) ◦ (idE ′ ⊠α) ◦ (α⊠ idE) = (idE ′ ⊠α) ◦ (α⊠ idE) ◦ (idX ⊠τ)

as morphisms from X ⊠ E ⊠ E to E ′ ⊠ E ′ ⊠ X .
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Figure 8. The arc diagram Z such that A(Z) is quasiisomorphic
to B(2); the 2-to-1 matching is indicated by the arcs (red), and by
symmetry one may take any orientation on the circles and intervals.

Remark 4.6. We will not elaborate on the definition of homotopy equivalence of
D A bimodules here (it can be found in [Lipshitz et al. 2015, Section 2.2.4]); in
this paper the homotopy equivalences α will be isomorphisms given by bijections
between primary matrix entries such that the corresponding secondary matrices
agree.

4B. Actions on bordered HFK algebras. In [Manion and Rouquier 2020], 2-
representations of U are defined on the algebras A(Z) appearing in bordered sutured
Heegaard Floer homology. Here Z denotes an arc diagram, i.e., a finite collection
of oriented intervals and circles equipped with a 2-to-1 matching of finitely many
points in the interiors of the intervals and circles, and there is a 2-representation of
U on A(Z) for each interval in Z .

The algebra B(2) was shown in [Manion et al. 2020; Lekili and Polishchuk 2020]
to be quasiisomorphic to A(Z) where Z is the arc diagram shown in Figure 8. Since
Z has two intervals, we should expect two 2-actions of U on B(2); we define these
2-actions below; see [Lauda and Manion 2021] for a related 2-representation of U
on an n-strand Ozsváth–Szabó algebra from [Ozsváth and Szabó 2018]. In more
detail, we will define D A bimodules E1 and E2 over B(2); these bimodules will
satisfy Ei ⊠ Ei = 0, so that (A, Ei , 0) is a 2-representation of U .

Remark 4.7. The arc diagram shown in Figure 8 can also be seen on the front and
back edges of the Heegaard diagrams in Figure 6 and Figure 7, with the red arcs
in Figure 8 determined by the matching pattern of the red arcs in the Heegaard
diagrams.

Definition 4.8. The primary matrix for E1 has block form with the following blocks
(we write e.g., X1 for the singleton set {X1}):

[ A B C

∅ X1 ∅ ∅
] 

AB AC BC

A ∅ ∅ ∅
B X2 ∅ ∅
C ∅ X3 ∅

 
ABC

AB ∅
AC ∅
BC X4


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The secondary matrix for E1 has a corresponding block form with blocks:

[ X1

X1 0
]

[ X2 X3

X2 U k+1
1 ⊗ U k+1

1 + U k+1
2 ⊗ U k+1

2 L2U k
2 ⊗ L2U k

2
X3 R2U k

2 ⊗ R2U k
2 U k+1

2 ⊗ U k+1
2

]
[ X4

X4 U k
1 U l

2 ⊗ U k
1 U l

2

]
In the final block we disallow (k, l) = (0, 0) to match Convention 2.10.

Definition 4.9. The primary matrix for E2 has block form with the following blocks
(again we write e.g., Y1 for the singleton set {Y1}):

[ A B C

∅ ∅ ∅ Y1
] 

AB AC BC

A ∅ Y2 ∅
B ∅ ∅ Y3

C ∅ ∅ ∅

 
ABC

AB Y4

AC ∅
BC ∅


The secondary matrix for E2 has a corresponding block form with blocks:

[ Y1

Y1 0
]

[ Y2 Y3

Y2 U k+1
1 ⊗ U k+1

1 L1U k
1 ⊗ L1U k

1
Y3 R1U k

1 ⊗ R1U k
1 U k+1

1 ⊗ U k+1
1 + U k+1

2 ⊗ U k+1
2

]
[ Y4

Y4 U k
1 U l

2 ⊗ U1U l
2

]
In the final block we disallow (k, l) = (0, 0) to match Convention 2.10.

By multiplying the primary matrix for Ei by itself (i = 1, 2), one can see that
Ei ⊠ Ei has a primary matrix with each entry the empty set; in other words, Ei ⊠ Ei

is zero as claimed above.

5. 1-morphism structure for P

5A. Commutativity with E1.

5A1. The bimodule E1 ⊠ P . We give a matrix description for E1 ⊠ P following
Section 2D. To get the primary matrix for E1 ⊠P , we multiply the primary matrices
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for E1 and P . We can do this block-by-block, so the primary matrix for E1 ⊠P has
block form with blocks given by

[ A B C

∅ X1 ∅ ∅
]
·


A B C

A SA ∅ ∅
B W N E
C ∅ ∅ SC

 =
[ A B C

∅ X1SC ∅ ∅
]
,


AB AC BC

A ∅ ∅ ∅
B X2 ∅ ∅
C ∅ X3 ∅

 ·


AB AC BC

AB NAB E ∅
AC ∅ S ∅
BC ∅ W NBC

 =


AB AC BC

A ∅ ∅ ∅
B X2 NAB X2 E ∅
C ∅ X3 X ∅

,


ABC

AB ∅
AC ∅
BC X4

 ·
[ ABC

ABC N
]
=


ABC

AB ∅
AC ∅
BC X4 N

.

In these matrices, we indicate idempotents only when necessary to distinguish
primary matrix entries in the same block (so, for example, in the block with rows
and columns A, B, C , we distinguish between two types of S generators, but the
only N generator in this block is B NB so we omit the idempotents and just write N ).

The secondary matrix for E1 ⊠P also has block form with blocks given by:

[ X1 SC

X1 SC 0
]


X2 NAB X2 E X3 S

X2 NAB U k+1
2 ⊗ U k+1

1 + U k+1
1 ⊗ U k+1

2 U k
1 ⊗ L2U k

2 L2U k
2 ⊗ (L2, U k+1

1 )

X2 E U k+1
1 ⊗ R2U k

2 U k+1
1 ⊗ U k+1

2 0
X3 S 0 R2 0


[ X4 N

X4 N U l
1U k

2 ⊗ U k
1 U l

2

]

In the final block we disallow (k, l) = (0, 0). An explanation for the terms in the
secondary matrix is given in Figure 9, which uses the operation graph depictions of
Figure 3.
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Figure 9. Operation graphs for the terms in the secondary matrix
of E1 ⊠P .

5A2. The bimodule P ⊠ E1. Similarly, we give a matrix description for P ⊠ E1.
The primary matrix has block form with blocks

[ ∅

∅ S
]
·

[ A B C

∅ X1 ∅ ∅
]
=

[ A B C

∅ SX1 ∅ ∅
]
,


A B C

A SA ∅ ∅
B W N E
C ∅ ∅ SC

 ·


AB AC BC

A ∅ ∅ ∅
B X2 ∅ ∅
C ∅ X3 ∅

 =


AB AC BC

A ∅ ∅ ∅
B N X2 E X3 ∅
C ∅ SC X3 ∅

,


AB AC BC

AB NAB E ∅
AC ∅ S ∅
BC ∅ W NBC

 ·


ABC

AB ∅
AC ∅
BC X4

 =


ABC

AB ∅
AC ∅
BC NBC X4

.

The secondary matrix for P ⊠ E1 also has block form with blocks:

[ SX1

SX1 0
]


N X2 E X3 SC X3

N X2 U k+1
2 ⊗ U k+1

1 + U k+1
1 ⊗ U k+1

2 U k
1 ⊗ L2U k

2 L2U k
2 ⊗ (L2, U k+1

1 )

E X3 U k+1
1 ⊗ R2U k

2 U k+1
1 ⊗ U k+1

2 0
SC X3 0 R2 0


[ NBC X4

NBC X4 U l
1U k

2 ⊗ U k
1 U l

2

]
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Figure 10. Operation graphs for the terms in the secondary matrix
of P ⊠ E1.

In the final block we disallow (k, l) = (0, 0). An explanation for the terms in the
secondary matrix is given in Figure 10.

Corollary 5.1. The D A bimodules E1 ⊠P and P⊠E1 are isomorphic to each other.

Proof. The primary and secondary matrices for E1 ⊠P and P ⊠ E1 agree up to a
relabeling of primary matrix entries. □

5B. Commutativity with E2.

5B1. The bimodule E2 ⊠ P . Next we give a matrix description of E2 ⊠ P . The
primary matrix has block form with blocks

[ A B C

∅ ∅ ∅ Y1
]
·


A B C

A SA ∅ ∅
B W N E
C ∅ ∅ SC

 =
[ A B C

∅ ∅ ∅ Y1SC
]
,


AB AC BC

A ∅ Y2 ∅
B ∅ ∅ Y3

C ∅ ∅ ∅

 ·


AB AC BC

AB NAB E ∅
AC ∅ S ∅
BC ∅ W NBC

 =


AB AC BC

A ∅ Y2S ∅
B ∅ Y3W Y3 NBC

C ∅ ∅ ∅

,


ABC

AB Y4

AC ∅
BC ∅

 ·
[ ABC

ABC N
]
=


ABC

AB Y4 N
AC ∅
BC ∅

.
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The secondary matrix for E2 ⊠P also has block form with blocks:

[ Y1 SC

Y1 SC 0
]


Y2 S Y3W Y3 NBC

Y2 S 0 L1 0
Y3W 0 U k+1

2 ⊗ U k+1
1 U k+1

2 ⊗ L1U k
1

Y3 NBC R1U k
1 ⊗ (R1, U k+1

2 ) U k
2 ⊗ R1U k

1 U k+1
1 ⊗ U k+1

2 + U k+1
2 ⊗ U k+1

1


[ Y4 N

Y4 N U k
1 U l

2 ⊗ U l
1U k

2

]
In the final block we disallow (k, l) = (0, 0). One can draw operation graphs for
the secondary matrix entries as we did above in Figures 9 and 10, but we will omit
the graphs here.

5B2. The bimodule P ⊠ E2. The primary matrix for P ⊠ E2 has block form with
blocks

[ ∅

∅ S
]
·

[ A B C

∅ ∅ ∅ Y1
]
=

[ A B C

∅ ∅ ∅ SY1
]
,


A B C

A SA ∅ ∅
B W N E
C ∅ ∅ SC

 ·


AB AC BC

A ∅ Y2 ∅
B ∅ ∅ Y3

C ∅ ∅ ∅

 =


AB AC BC

A ∅ SAY2 ∅
B ∅ W Y2 NY3

C ∅ ∅ ∅

,


AB AC BC

AB NAB E ∅
AC ∅ S ∅
BC ∅ W NBC

 ·


ABC

AB Y4

AC ∅
BC ∅

 =


ABC

AB NABY4

AC ∅
BC ∅

.

The secondary matrix for P ⊠ E2 also has block form with blocks:

[ SY1

SY1 0
]


SAY2 W Y2 NY3

SAY2 0 L1 0
W Y2 0 U k+1

2 ⊗ U k+1
1 U k+1

2 ⊗ L1U k
1

NY3 R1U k
1 ⊗ (R1, U k+1

2 ) U k
2 ⊗ R1U k

1 U k+1
1 ⊗ U k+1

2 + U k+1
2 ⊗ U k+1

1


[ NAB Y4

NAB Y4 U k
1 U l

2 ⊗ U l
1U k

2

]
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In the final block we disallow (k, l) = (0, 0). As with E2 ⊠P , we will omit drawing
the operation graphs.

Corollary 5.2. The D A bimodules E2 ⊠P and P⊠E2 are isomorphic to each other.

Proof. The primary and secondary matrices for E2 ⊠P and P ⊠ E2 agree up to a
relabeling of primary matrix entries. □

6. 1-morphism structure for N

Here we summarize, with fewer details, the computations for N that are analogous
to those for P in Section 5.

6A. Commutativity with E1.

6A1. The bimodule E1 ⊠N . The primary matrix for E1 ⊠N has block form with
the same blocks as for E1 ⊠P , namely

[ A B C

∅ ∅ ∅ X1SC
]
,


AB AC BC

A ∅ ∅ ∅
B X2 NAB X2 E ∅
C ∅ X3 X ∅

,


ABC

AB ∅
AC ∅
BC X4 N

.

The secondary matrix for E1 ⊠N has block form with blocks given by:

[ X1 SC

X1 SC 0
]


X2 NAB X2 E X3 S

X2 NAB U k+1
2 ⊗ U k+1

1 + U k+1
1 ⊗ U k+1

2 U k+1
1 ⊗ L2U k

2 0
X2 E U k

1 ⊗ R2U k
2 U k+1

1 ⊗ U k+1
2 L2

X3 S R2U k
2 ⊗ (U k+1

1 , R2) 0 0


[ X4 N

X4 N U l
1U k

2 ⊗ U k
1 U l

2

]
In the final block we disallow (k, l) = (0, 0).

6A2. The bimodule N ⊠ E1. The primary matrix for N ⊠ E1 has block form with
the same blocks as for P ⊠ E1, namely

[ A B C

∅ SX1 ∅ ∅
]
,


AB AC BC

A ∅ ∅ ∅
B N X2 E X3 ∅
C ∅ SC X3 ∅

,


ABC

AB ∅
AC ∅
BC NBC X4

.
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The secondary matrix for N ⊠ E1 has block form with blocks given by

[ SX1

SX1 0
]


N X2 E X3 SC X3

N X2 U k+1
2 ⊗ U k+1

1 + U k+1
1 ⊗ U k+1

2 U k+1
1 ⊗ L2U k

2 0
E X3 U k

1 ⊗ R2U k
2 U k+1

1 ⊗ U k+1
2 L2

SC X3 R2U k
2 ⊗ (U k+1

1 , R2) 0 0


[ NBC X4

NBC X4 U l
1U k

2 ⊗ U k
1 U l

2

]
In the final block we disallow (k, l) = (0, 0).

Corollary 6.1. The D A bimodules E1 ⊠N and N ⊠ E1 are isomorphic to each
other.

6B. Commutativity with E2.

6B1. The bimodule E2 ⊠N . The primary matrix for E2 ⊠N has block form with
the same blocks as for E2 ⊠P , namely

[ A B C

∅ ∅ ∅ Y1SC
]
,


AB AC BC

A ∅ Y2S ∅
B ∅ Y3W Y3 NBC

C ∅ ∅ ∅

,


ABC

AB Y4 N
AC ∅
BC ∅

.

The secondary matrix for E2 ⊠N has block form with blocks given by

[ Y1 SC

Y1 SC 0
]


Y2 S Y3W Y3 NBC

Y2 S 0 0 L1U k
1 ⊗ (U k+1

2 , L1)

Y3W R1 U k+1
2 ⊗ U k+1

1 U k
2 ⊗ L1U k

1
Y3 NBC 0 U k+1

2 ⊗ R1U k
1 U k+1

1 ⊗ U k+1
2 + U k+1

2 ⊗ U k+1
1


[ Y4 N

Y4 N U k
1 U l

2 ⊗ U l
1U k

2

]
In the final block we disallow (k, l) = (0, 0).
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6B2. The bimodule N ⊠ E2. The primary matrix for N ⊠ E2 has block form with
the same blocks as for P ⊠ E2, namely

[ A B C

∅ ∅ ∅ SY1
]
,


AB AC BC

A ∅ SAY2 ∅
B ∅ W Y2 NY3

C ∅ ∅ ∅

,


ABC

AB NABY4

AC ∅
BC ∅

.

The secondary matrix for N ⊠ E2 has block form with blocks given by

[ SY1

SY1 0
]


SAY2 W Y2 NY3

SAY2 0 0 L1U k
1 ⊗ (U k+1

2 , L1)

W Y2 R1 U k+1
2 ⊗ U k+1

1 U k
2 ⊗ L1U k

1
NY3 0 U k+1

2 ⊗ R1U k
1 U k+1

1 ⊗ U k+1
2 + U k+1

2 ⊗ U k+1
1


[ NAB Y4

NAB Y4 U k
1 U l

2 ⊗ U l
1U k

2

]
In the final block we disallow (k, l) = (0, 0).

Corollary 6.2. The D A bimodules E2 ⊠N and N ⊠ E2 are isomorphic to each
other.
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THE FOX–HATCHER CYCLE AND A VASSILIEV INVARIANT
OF ORDER THREE

SAKI KANOU AND KEIICHI SAKAI

We show that the integration of a 1-cocycle I (X) of the space of long knots in
R3 over the Fox–Hatcher 1-cycles gives rise to a Vassiliev invariant of order
exactly three. This result can be seen as a continuation of the previous work
of the Sakai (2011), proving that the integration of I (X) over the Gramain
1-cycles is the Casson invariant, the unique nontrivial Vassiliev invariant of
order two (up to scalar multiplications). The result in the present paper is
also analogous to part of Mortier’s result (2015). Our result differs from,
but is motivated by, Mortier’s one in that the 1-cocycle I (X) is given by the
configuration space integrals associated with graphs while Mortier’s cocycle
is obtained in a combinatorial way.

1. Introduction

Spaces of smooth embeddings of manifolds are receiving a lot of attention in
topology, on the ground that various important methods in algebraic and geometric
topology are being applied to the spaces. In this paper we study the space of
(framed) long knots in R3.

Definition 1.1. A long knot is an embedding f : R1 ↪→ R3 satisfying f (x) =

(x, 0, 0) for any x ∈ R1 with |x | ≥ 1. A framed long knot is a smooth map
f̃ = ( f, w) : R1

→ R3
× SO(3) such that f is a long knot, the first column of

w(x) ∈ SO(3) is equal to f ′(x)/| f ′(x)| and w(x) is the identity matrix for any
x ∈ R1 with |x | ≥ 1. The space of all long knots (respectively framed long knots)
is denoted by K (respectively K̃).

The recent studies of K (and its high dimensional analogues) are revealing
relations between the topological nature of K and the Vassiliev invariants (see for
example [12]) for knots and links. In [17] Sakai has constructed a de Rham 1-cocycle
I (X) of K (see Section 3), by means of the integrations over configuration spaces
associated with a graph cocycle X (see Figure 6), and has shown that the integration
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of I (X) over the Gramain cycles of K gives rise to the Casson invariant v2, the
Vassiliev invariant of order two uniquely characterized by v2(trivial knot)= 0 and
v2(trefoil knot)= 1. This may be seen as a real valued version of [19, Theorem 2].
After that Mortier has given another 1-cocycle α1

3 of K in a combinatorial way and
has shown that its evaluations over the Gramain cycles and the Fox–Hatcher cycles
FH are Vassiliev invariants of orders respectively two and three [14, Theorem 4.1].
In [7; 8; 10] 1-cocycles on K are also studied in detail from a combinatorial
viewpoint.

The main result in the present paper is analogous to the order three part of
Mortier’s result.

Theorem 1.2. The integration of I (X) over the Fox–Hatcher cycles gives rise to a
Vassiliev invariant of order three for framed long knots. More precisely we have

(1-1)
∫

p∗FH f̃

I (X)= 6v3( f )− lk( f̃ )v2( f ),

where

• p : K̃ → K is the first projection and f = p( f̃ ),

• v2 is the Casson invariant, and v3 is the Vassiliev invariant of order three
characterized by the conditions

(1-2) v3(trivial knot)= 0, v3(3+

1 )= 1, v3(3−

1 )= −1

(3+

1 and 3−

1 are respectively the right-handed and the left-handed trefoil knots),
and

• lk( f̃ ) ∈ Z is the framing number of f̃ (see Remark 1.3 below).

Remark 1.3. The framing number lk( f̃ ) is the linking number of f = p( f̃ ) and
f ′, where f ′ is the long knot obtained by moving f slightly into the direction of the
second column of w. In fact the map p× lk : K̃→K×Z is a homotopy equivalence
[5, Proposition 9], and the framing number uniquely determines the framing w up
to homotopy. Thus we may regard a framed long knot as a pair ( f, w) of f ∈ K
and w ∈ Z.

The 1-cocycle I (X) is constructed by means of the configuration space integral
associated with graphs, that was developed in [1; 4; 13] to describe Vassiliev
invariants and was generalized in [6] to obtain a cochain map from a graph complex
to �∗

DR(K) (up to some correction terms, that vanish in the cases of the spaces of
long knots in high dimensional spaces). Vassiliev invariants (which are examples
of 0-cocycles of K) are obtained from trivalent graphs, while our 1-cocycle I (X)
comes from nontrivalent graphs (see Figure 6). It is very interesting, although not
strange, that nontrivalent graphs may also have information of Vassiliev invariants.
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We note that the right hand side of (1-1) coincides with the formula for Mortier’s
invariant of order three. We thus expect that the 1-cocycle I (X) is cohomologous
to Mortier’s α1

3 . This is true on the connected components of torus and hyperbolic
knots, since I (X) agrees with α1

3 on the Gramain and the Fox–Hatcher cycles by
Theorem 1.2, [17, Theorem 3.1] and [14, Theorem 4.1], and these cycles generate
π1 of the components of torus and hyperbolic knots [11, page 2].

This paper is organized as follows: In Section 2 the Fox–Hatcher cycle is
introduced, and in Section 3 the construction of the 1-cocycle I (X) is reviewed. Our
invariant v, the left hand side of (1-1), is shown to be of order three in Corollary 4.2.
The key ingredient is Theorem 4.1 and is proved in Section 4B. The formula (1-1)
is verified in Section 4C.

2. The Fox–Hatcher cycle

2A. The Fox–Hatcher cycle. The Fox–Hatcher cycle was introduced in [9], and
was later studied in [11] from the viewpoint of the space of knots. If f = p( f̃ )
is not trivial, it then gives a nonzero element of π1(K̃ f̃ ), where K̃ f̃ is the path
component of K̃ containing f̃ .

The Fox–Hatcher cycle is defined as follows. A framed long knot can be seen
as a based embedding f : S1 ↪→ S3 (we see S3 as in R4

≈ C2) together with
a framing w, with a prescribed behavior near the basepoint. For t ∈ S1, w(t)
is an orthonormal basis of T f (t)S3 whose first vector is f ′(t)/| f ′(t)|. There ex-
ists an S1-action on the space of such embeddings defined by (θ · ( f, w))(t) :=

(A(θ)−1 f (t − θ), A(θ)−1w(t − θ)), where A(θ) ∈ SO(4) is the matrix given by
A(θ)= (w(θ), f (θ)). For any f̃ ∈ K̃, this action determines a 1-cycle FH f̃ : S1

→

K̃ f̃ and we call it the Fox–Hatcher cycle. We notice that the S1-action looks very
similar to the natural S1-action on free loop spaces by the reparametrization, and in
fact this action defines a BV-operation on H∗(K̃) [18].

Practically it is convenient to describe FH on knot diagrams. In this paper a
framed long knot is drawn in a usual knot diagram with so-called blackboard
framing.

Definition 2.1. Let D be a knot diagram of f̃ with blackboard framing and c the
“left-most” crossing, namely the crossing that we meet first when traveling from
f (−1) along the natural orientation of f . We call the transformation shown in
Figure 1 the Fox–Hatcher move (FH-move for short) on c.

The left-most crossing c disappears after the FH-move on c and the right-most
crossing c′ is created. If the arc that moves in the FH-move is the over-arc (resp.
under-arc) at c, then after the FH-move it becomes the over-arc (resp. under-arc)
at c′. We arrive the original diagram D after performing the FH-moves for all
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Figure 1. The Fox–Hatcher move on c.

c1

c2

c3

c1 c1c2 c2c3 c3

Figure 2. A knot diagram and its Gauss diagram.

the other crossings c of D and the newborn crossings c′. The sequence of these
FH-moves realizes FH f̃ .

2B. FH moves and Gauss diagrams. The configuration of crossings of a knot
diagram is encoded by (linear) Gauss diagrams. Here we see how the FH-move on
the left-most crossing changes the Gauss diagram.

Definition 2.2. A (linear) Gauss diagram is a partition of {1, 2, . . . , 2n} for some
natural number n into a union

⋃
1≤k≤n{ik, jk} of n subsets of cardinality 2.

A Gauss diagram can be seen as a graph on R1 with an even number of vertices
all of which are on R1 and with each vertex joined by exactly one edge with another
vertex. Here segments in R1 interposed between two vertices are not regarded as
edges. See Figure 2 for example.

Definition 2.3 [17, Definition 3.3]. Let c1, . . . , cn be (part of the) crossings of a
knot diagram of f ∈ K such that each ci corresponds to f (pi ) and f (qi ), with
−1< p1 < · · ·< pn < 1 and pi < qi for any i = 1, . . . , n. We say that the crossings
c1, . . . , cn respect a Gauss diagram G if G is isomorphic to the Gauss diagram
Gc1,...,cn obtained by joining pi and qi for i = 1, . . . , n. See Figure 2.

Under the setting of Definition 2.3, the left-most crossing is c1. Let G be the
Gauss diagram that c1, . . . , cn respect. Then the new knot diagram obtained by
performing the FH-move on c1 has crossings c2, . . . , cn, c′

1 that respect the Gauss
diagram G ′ obtained by moving the left-most vertex (corresponding to c1) to the
right-most one. See Figure 3.

We eventually arrive the original Gauss diagram after performing the FH-moves
on all the crossings c of the original diagram and the newborn crossings c′. This
sequence produces a cycle of Gauss diagrams (see Figures 7, 8, 9). In this way the
set of all the Gauss diagrams is decomposed into the disjoint cycles.
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c0

1
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Figure 3. The FH-move on c1 on the Gauss diagram.

� �

�

�

�

� � �

1 2 3 4 5 6

7 8

Figure 4. An example of graphs; the i-vertices are those labeled
by 1, . . . , 6 and the f-vertices are those labeled by 7, 8, and there
is a loop at the i-vertex labeled by 6.

3. The cocycle I (X)

In this section we give a quick review of the construction of differential forms on
K associated with graphs. See also [1; 4; 6; 13; 20] for details.

By a graph we mean the oriented real line R1 together with two kind of vertices,
one is called interval and the other free, and oriented edges connecting them (see
Figure 4).

The interval vertices (or i-vertices for short) are placed on the oriented line while
the free vertices (or f-vertices for short) are not on the line. The i-vertices and
the f-vertices of a graph X are labeled by respectively the numbers 1, . . . , vi and
vi + 1, . . . , vi + vf, where vi and vf are respectively the numbers of the i-vertices
and the f-vertices of X , so that the labels of the i-vertices respect the orientation
of the real line. We allow graphs to have loops, where a loop is an edge that has
exactly one i-vertex as its endpoint (see Figure 4).

For a graph X , let EX be the configuration space

(3-1) EX :=
{
( f, (y1, . . . , yvi+vf)) ∈ K× Confvi+vf(R

3)

| yi = f (xi ) for some xi ∈ R1 for i = 1, . . . , vi
}
,

where

(3-2) Confk(M) := {(x1, . . . , xk) ∈ M×k
| xi ̸= x j if i ̸= j}

is the space of k-point configurations on a space M .
To an oriented edge α of X from the i-th vertex to the j-th vertex (i ̸= j), we

assign a map

(3-3) ϕα : EX → S2, ϕα( f, (y1, . . . , yvi +v f )) :=
y j − yi

|y j − yi |
.
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˛

X
f .x1/

f .x2/

'

'˛

�

�

1 2

Figure 5. The graph X in Example 3.2 (the left), configurations
where the image of ϕα is contained in supp(vol) (the center), the
Hopf link (the right).

To a loop α at k-th i-vertex (1 ≤ i ≤ vi) we assign

(3-4) ϕα : EX → S2, ϕα( f, (y1, . . . , yvi +v f )) :=
f ′(xk)

| f ′(xk)|
,

where xk ∈ R1 satisfies yk = f (xk).
Let vol ∈�2

DR(S
2) be a unit volume form of S2 that is antisymmetric, meaning

that i∗ vol = − vol for the antipodal map i : S2
→ S2. Define ωX ∈�2e

DR(EX ) by

(3-5) ωX :=

∧
edges α of X

ϕ∗

α(vol),

where e is the number of edges of X . The order of the edges is not important
because deg vol = 2 is even.

Let πX : EX → K be the first projection. This is a fiber bundle with fiber

(3-6) π−1
X ( f )={y ∈Confvi+vf(R

3) | yi = f (xi ) for some xi ∈R1 for i =1, . . . ,vi}

of dimension vi + 3vf. Integrating ωX along the fiber, we get

(3-7) I (X) := πX∗(ωX ) ∈�
2e−vi−3vf
DR (K).

Remark 3.1. The integration (3-7) converges since we can compactify all the fibers
of πX by adding the boundary faces to (3-6) so that the maps ϕα are smoothly
extended to the compactification. See [3; 4; 6; 13].

Example 3.2. Let X be the graph that has only one edge α joining two i-vertices
(Figure 5, the left).

Then EX ≈ K× Conf2(R
1) and I (X) ∈�0

DR(K) is a function on K, but is not a
locally constant function (i.e., not an isotopy invariant), as we see below.

In this paper we use an antisymmetric unit volume form vol whose support is
contained in (small) neighborhoods U± of the poles (0, 0,±1)∈ S2. Suppose f ∈K
is “almost planer,” meaning that

• the image of f coincides with a knot diagram D on R2
× {0} except for

neighborhoods of crossings of D,

• near the crossings the image of f is contained in R2
× (−ϵ, ϵ), and

• the unit tangent vectors f ′(x)/| f ′(x)| are not contained in U±.
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Then ϕα : { f } × Conf2(R
1) → S2 has its image in U± only on the subspace of

(x1, x2) such that f (x1) and f (x2) are on the over- and under-arcs of a crossing of
D, one on each arc (Figure 5, the center). Each crossing contributes to the value
I (X)( f ) by half of its sign; because this contribution is the half of the linking
number of the Hopf link (Figure 5, the right), which is equal to the sign of the
crossing.

By the generalized Stokes’ theorem for fiber integrations, we have

(3-8) d I (X)= πX∗(dωX )±π
∂
X∗
(ω)= ±π∂X∗

(ω),

where π∂X is the restriction of πX to the fiberwise boundary. There exists “almost”
1-1 correspondence between

• the codimension 1 faces of the boundary that nontrivially contribute to d I (X),
and

• the graphs obtained from X by contracting one of its edges and arcs (segments
in R1 interposed between two i-vertices).

Here we in fact need the antisymmetry of vol. We thus have

(3-9) d I (X)= I (∂X)+ (correction terms),

where ∂X is a formal sum of graphs obtained from X by contracting one of its edges
and arcs. The above correspondence is not rigorously 1-1 and we need “correction
terms,” that are conjectured to vanish. We can therefore get a closed form of K if
we have a graph cocycle, a formal sum X of graphs with ∂X = 0 (and if we have
appropriate correction terms). It is known that any R-valued Vassiliev invariant can
be produced from a trivalent graph cocycle.

In [16; 17] Sakai has given an example of nontrivalent graph cocycle

(3-10) X =

∑
1≤k≤9

ak Xk, (a1, . . . , a9)= (−2, 1, 2,−2, 2,−1, 1,−1, 1)

(see Figure 6), and has proved that I (X) ∈ H 1
DR(K) is not zero.1 This follows from:

Theorem 3.3 [17]. The differential form I (X) ∈�1
DR(K) is closed, and its integra-

tion over the Gramain cycle G f (see Remark 3.4 below) is equal to the Casson
invariant v2( f ).

1The coefficients a7, a8, a9 in [16; 17] are wrong and those in (3-10) are correct. The main results
in [16; 17] still hold since the graphs X7, X8, X9 are not essential in the integration of I (X) over the
Gramain cycles. See [16, Lemma 4.2].
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X1 D X2 D X3 D

X4 D X5 D X6 D

X7 D X8 D X9 D

1 2 3 4 5 1 2 23 4 5 1 3 4 5

5

1 2 3 4 1 2 3 4

5

1 2 3 4

5

1 2 3

4 5

1 2

3

4

5

1 2

3 4

5

Figure 6. The graphs X1, . . . , X9 that give a graph cocycle∑
i ai X i ; the edges are oriented from the vertex with the smaller

labels.

Remark 3.4. The Gramain 1-cycle G f : S1
→ K for f ∈ K is a cycle that rotates

f around the “long axis” R1
× {(0, 0)}. Explicitly G f is given by

(3-11) G f (θ)(x) :=

1
cos θ

sin θ

 f (x) for θ ∈ S1, x ∈ R1.

Mortier [14, Theorem 4.1] has given a 1-cocycle α1
3 of K in a combinatorial way

and has proved that

(3-12) ⟨α1
3,G f ⟩ = v2( f ) and ⟨α1

3, p∗FH( f,w)⟩ = 6v3( f )−w · v2( f )

for ( f, w) ∈ K × Z ≃ K̃. This result motivates us to compute the integration of
I (X) over the FH-cycles. We will give another proof of ⟨I (X),G f ⟩ = v2( f );
see Corollary 4.9 (actually this corrects the proof of [17, Theorem 3.1], see
Remark 4.11).

4. Integration of I (X) over the Fox–Hatcher cycle

Recall that p : K̃ → K is the map forgetting the framing of f̃ . For any f̃ ∈ K̃ we
define

(4-1) v( f̃ ) :=

∫
p∗FH f̃

I (X)=

∑
1≤k≤9

ak

∫
p∗FH f̃

I (Xk).

This gives an isotopy invariant v for framed long knots. Our goal is to describe v
as a linear combination of the Vassiliev invariants of order less or equal to three.
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x y xzy z y zy zx0 x0 z zy 0
x0 y 0

x0

z zx0 yx0 yx0 x0y yz0 z0z0 z0x xy y

Figure 7. Type I cycle of the Gauss diagrams respecting three
crossings under consideration; {x, y, z} = {c1, c2, c3}.

x y x z y z y yz zx0 x0 z zx0 y 0 y 0
x0

z zy 0 y 0x xy 0 y 0x xz0 z0z0 z0x xy y

Figure 8. Type II cycle of the Gauss diagrams respecting three
crossings under consideration; {x, y, z} = {c1, c2, c3}.

4A. The invariant v is of order three. For any f̃ ∈ K̃ and crossings c1, . . . , cn of
its diagram, define

(4-2) Dnv( f̃ ) :=

∑
ϵ1,...,ϵn∈{+1,−1}

ϵ1 · · · ϵnv( f̃ϵ1,...,ϵn ),

where f̃ϵ1,...,ϵn is a framed long knot obtained by changing, if necessary, the crossings
ci so that its sign is equal to ϵi . It should be noticed that Dnv depends on the choice
of crossings c1, . . . , cn , although it is not explicit in the notation. What we want to
show is D4v( f̃ )= 0 for any choice of f̃ and c1, . . . , c4.

Let c1, c2, c3 be (part of the) crossings of a diagram D of f̃ ∈ K̃ respecting the
Gauss diagram G (Definition 2.3). Let us perform the FH-moves (described in
Section 2) on all the crossings c of D and the corresponding newborn crossings c′.
The Gauss diagram that the three crossings under consideration respect changes
as in Figure 3 when the FH-move is performed on one of ci and c′

i (i = 1, 2, 3),
and in the sequence of the FH-moves realizing the FH-cycle, six Gauss diagrams
(some of which may be equal to each other) respected by the three crossings under
consideration form a cycle. Figures 7, 8 and 9 show three such cycles.

There are 15 Gauss diagrams with three edges, and only 10 of them are included
in these three cycles. The remaining five Gauss diagrams form the other two cycles,
that we omit since in fact they do not contribute to our computation in Section 4B.
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x y xz y z y yz zx0 x0 z zx0 y 0 y 0
x0

z0z0y 0 y 0
x0x0y 0 y 0x xz0 z0z0 z0x xy y

Figure 9. Type III cycle of the Gauss diagrams respecting three
crossings under consideration; {x, y, z} = {c1, c2, c3}.

Theorem 4.1. For any crossings c1, c2, c3, D3v( f̃ ) is given by

(4-3) D3v( f̃ )=
−2 if c1,c2 and c3 respect one of the Gauss diagrams in type I cycle,
2 if c1,c2 and c3 respect one of the Gauss diagrams in type II cycle,
6 if c1,c2 and c3 respect the unique Gauss diagram in type III cycle,
0 otherwise.

Corollary 4.2. The invariant v is a Vassiliev invariant for framed long knots of
order exactly three.

Proof. Let c1, . . . , c4 be crossings of a diagram of f̃ ∈ K̃. Let f̃± be knots obtained
by changing c4 so that its sign is respectively ±1. Then by definition

(4-4) D4v( f )= D3v( f+)− D3v( f−).

Moreover c1, c2 and c3 of f+ and f− respect the same Gauss diagram. Thus we
have D3v( f̃+)= D3v( f̃−) by Theorem 4.1, concluding D4v( f̃ )= 0.

Theorem 4.1 also says that D3v( f̃ ) can be nonzero, and v is not of order two or
less. □

The next subsection is devoted to the proof of Theorem 4.1.

4B. Computation of D3v. We again remind that D3v depends on the choice of
crossings c1, c2, c3. As in Example 3.2, we assume that

• vol ∈�2
DR(S

2) is an antisymmetric unit volume form of S2 whose support is
contained in small neighborhoods of poles (0, 0,±1) ∈ S2, and

• we compute D3v( f̃ ) after transforming f̃ to be “almost planar.”

We moreover assume, just for simplicity, that

• f̃ runs parallel to the x- and y-axes at each crossings (see Figure 15).
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For k = 1, . . . , 9, consider the pullback square:

(4-5)
(p ◦ FH f̃ )

∗EXk

p◦FH f̃
//

π ′

Xk
��

EXk

πXk

��

S1
FH f̃

// K̃
p
// K

Then

(4-6)
∫

p∗FH f̃

I (Xk)=

∫
S1
(p ◦ FH f̃ )

∗πXk∗ωXk

=

∫
S1
π ′

Xk∗
p ◦ FH f̃

∗ωXk

=

∫
(p◦FH f̃ )

∗ EXk

p ◦ FH f̃
∗ωXk .

Note that (p ◦ FH f̃ )
∗EXk is explicitly given by

(4-7) (p◦FH f̃ )
∗EXk

=

{
(p(FH f̃ (θ)), y)∈K×Confvi+vf(R

3)

∣∣∣ θ ∈ S1, yi = p(FH f̃ (θ))(xi )

for some xi ∈ R1, 1 ≤ i ≤ vi

}
⊂ EXk .

Suppose a diagram D of f̃ has n crossings. Then FH f̃ can be realized on knot
diagram by the sequence of 2n FH-moves on c or c′, where c is one of the crossings
of D and c′ is a newly created crossing after the FH-move on c. We can decompose
S1 into 2n intervals

(4-8) S1
=

⋃
c

(Ic ∪ Ic′)

such that FH f̃ restricted on Ic (resp. Ic′) realizes the FH-move on c (resp. c′).

Definition 4.3. Under the above setting, define

(4-9) Ek;c,c′ := {(p∗(FH f̃ (θ)), y) ∈ (p ◦ H f̃ )
∗EXk | θ ∈ Ic ∪ Ic′}.

By definition we have

(4-10) (p ◦ FH f̃ )
∗EXk =

⋃
c

Ek;c,c′

and hence

(4-11)
∫
(p◦FH f̃ )

∗ EX

ωXk =

∑
c

∫
Ek;c,c′

p ◦ FH f̃
∗ωXk .
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hi

ci

Figure 10. hi (i = 1, 2, 3).

c1 c2 c3

A1

B1

A2 A3

B2 B3
�
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� � �y1

y2

y5

y4

y3

Figure 11. An element of E1;c1,c′

1,A1 .

Combining (4-1), (4-2), (4-6) and (4-11), we have

(4-12) D3v( f̃ )=

∑
1≤k≤9

ak

∑
c

∑
ϵ1,ϵ2,ϵ3∈{+1,−1}

ϵ1ϵ2ϵ3

∫
Ek;c,c′

p ◦ FH f̃ ϵ1,ϵ2,ϵ3
∗ωXk .

4B1. Eliminating X3, . . . , X9. Let hi (i = 1, 2, 3) be the distance between two
arcs at ci , i = 1, 2, 3 (Figure 10).

We may compute D3v( f̃ ) in the limit hi → 0 (i = 1, 2, 3) since v is an invariant.
In this limit, only the graphs X1 and X2 essentially contribute to D3v( f̃ );

Proposition 4.4. (1) For k = 1, . . . , 9 and any crossing c other than c1, c2, c3, we
have

(4-13) lim
h1,h2,h3→0

∑
ϵ1,ϵ2,ϵ3∈{+1,−1}

ϵ1ϵ2ϵ3

∫
Ek;c,c′

p ◦ FH f̃ ϵ1,ϵ2,ϵ3
∗ωXk = 0.

(2) If k = 3, . . . , 9, then (4-13) also holds for c ∈ {c1, c2, c3}.
Consequently

(4-14) D3v( f̃ )= lim
h1,h2,h3→0

∑
k=1,2

ak

×

∑
c∈{c1,c2,c3}

∑
ϵ1,ϵ2,ϵ3∈{+1,−1}

ϵ1ϵ2ϵ3

∫
Ek;c,c′

p◦FH f̃ ϵ1,ϵ2,ϵ3
∗ωXk .

Proof of Proposition 4.4 (1). Let −1< pi < qi < 1 (i = 1, 2, 3) with p1 < p2 < p3

be the real numbers such that f (pi ) and f (qi ) correspond to ci , and let Ai , Bi

be small open intervals that include respectively pi and qi (see Figure 11). Let
Ek;c,c′,A1 ⊂ Ek;c,c′ be the subspace consisting of (θ, y) with no y j (1 ≤ j ≤ vi)
being in A1.
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Then even if we set h1 = 0, any two points y j and y j ′ corresponding to endpoints
of a single edge of Xk do not collide in Ek;c,c′,A1 , and the maps ϕα and hence the
integrand ωXk can be defined on Ek;c,c′,A1 . This implies

(4-15) lim
h1→0

(∫
Ek;c,c′,A1

p ◦ FH f̃+1,ϵ2,ϵ3

∗ωXk −

∫
Ek;c,c′,A1

p ◦ FH f̃−1,ϵ2,ϵ3

∗ωXk

)
= 0.

If we analogously define Ek;c,c′,Am and Ek;c,c′,Bm , then similar cancellation to (4-15)
occurs for them. Moreover we have

(4-16)
⋃

m=1,2,3

(Ek;c,c′,Am ∪ Ek;c,c′,Bm )= Ek;c,c′

because no Xk has six or more i-vertices. Although A1, . . . , B3 are not disjoint, we
can arrange them to be disjoint by considering their difference sets and intersections
(on which the same argument is valid). Thus we have (4-13). □

Proof of Proposition 4.4 (2) for k = 7, 8, 9. It is enough to consider the case c = c1;
the cases c = c2, c3 can be proved similarly.

The similar argument in the proof of (1) also implies (4-15) with A1 and h1

replaced respectively by Am (or Bm) and hm , m = 2, 3. We thus complete the proof,
because Xk (k = 7, 8, 9) has three or less i-vertices and we have

(4-17) Ek;c1,c′

1
=

⋃
m=2,3

(Ek;c1,c′

1,Am ∪ Ek;c1,c′

1,Bm ). □

Proof of Proposition 4.4 (2) for k = 5, 6. It is enough to consider the case c = c1.
Let E ⊂ Ek;c1,c′

1
be the subspace of Ek;c1,c′

1
consisting of (θ, y) with each of

A2, B2, A3 and B3 containing at least one y j corresponding to an i-vertex j of Xk .
Then the integrations in (4-13) with Ek;c1,c′

1
replaced by Ek;c1,c′

1
\ E are defined

even if we set hm = 0 for at least one m ∈ {2, 3}, and the cancellation similar to
(4-15) occurs, similarly as the above proof of (2) for k = 7, 8, 9. Thus it suffices to
show (4-13) with Ek;c1,c′

1
replaced by E . Since Xk (k = 5, 6) has four i-vertices,

each of A2, B2, A3 and B3 contains exactly one point on E . We divide E into two
subspaces:

Type I: The subspace E I of E consisting of (θ, y) with y5 ∈ R3 outside neigh-
borhoods of c2 and c3. Then two i-vertices (4 and 5 in the case of Figure 12)
corresponding to the points in Am ∪ Bm are not joined by any edge, for at least one
m = 2, 3.

Even if we set hm = 0 and these two points may collide, all the maps ϕα and
hence ωXk are still defined on E I , and the cancellation similar to (4-15) occurs.

Type II: the subspace E I I of E consisting of (θ, y) with y5 ∈ R3 in a neighborhood
of cm , m ∈ {2, 3} (see Figure 13; setting h2 = 0 or h3 = 0 are problematic on this
subspace).
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Figure 12. Proposition 4.4(2) for k = 5, 6, Type I subspace (m = 3,
{a, b} = {2, 3}); one of the arcs A1 and B1 moves in the FH-move
on c1.
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y1

y5
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y4

Figure 13. Proposition 4.4(2) for k =5, 6, Type II subspace (m =3,
{a, b} = {2, 3}).

On E I I at least one edge α of Xk joins the vertex 5 and j with the corresponding
point y j not on Am ∪ Bm ( j = 1 in the case of Figure 13). Then the image of ϕα is
not included in supp(vol) and hence ϕ∗

α vol = 0, because supp(vol) is assumed to
be in neighborhoods of (0, 0,±1) ∈ S2 and our f̃ is almost planar. The integrand
ωXk is therefore zero on E I I . □

Proof of Proposition 4.4 (2) for k = 4. Consider the case c = c1 (the same arguments
are valid for c = c2, c3). Let E ⊂ E4;c1,c′

1
be the subspace consisting of (θ, y) where

each of A2, B2, A3 and B3 contains at least one point. It is then enough to show
(4-13) with E4;c1,c′

1
replaced by E , as in the above proofs.

As X4 has four i-vertices, each of A2, B2, A3 and B3 contains exactly one point
on E . In particular y1 ∈ A2, and the map ϕα for the loop α at the vertex 1 has the
image outside supp(vol) by our assumption on f̃ and vol, and hence ωX4 vanishes
on E . □

Proof of Proposition 4.4 (2) for k = 3. Again consider the case c = c1. Let
E ⊂ E3;c1,c′

1
be the subspace consisting of (θ, y) satisfying both (i) and (ii):

(i) y1 is on the arc C that moves in the FH-moves on c1.

(ii) Each of A2, B2, A3 and B3 contains exactly one of y2, . . . , y5.

Then it suffices to show (4-13) with E3;c1,c′

1
replaced by E . This is because:

• If E ′ denotes the subspace of E3;c1,c′

1
consisting of (θ, y) that does not satisfy

(ii), then the integrations in (4-13) with E3;c1,c′

1
replaced by E ′ are defined
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Figure 14. The configuration that can nontrivially contribute to I (X3).

even if we set hm = 0 for at least one m ∈ {2, 3} and the cancellation similar
to (4-15) occurs, by the same reason as in the above proofs.

• If E ′′ denotes the subspace of E3;c1,c′

1
consisting of (θ, y) that satisfies (ii)

but does not satisfy (i). then the map ϕα (α is the loop of X3 at the i-vertex
labeled by 1) has its image outside on supp(vol) since f̃ is supposed to be
almost planar, and hence ωX3 vanishes on E ′′.

Figure 14 shows the configurations in E that may nontrivially contribute to the
integration of I (X3).

Let Js (s = 1, 2) be the unit intervals identified with those on C drawn with thick
curves in Figure 14. We write p∗FH f̃ (θ) as fθ for short. Define φ1 : Ic1 × Js → S2

(s = 1, 2), φ24 : A2 × B2 → S2 and φ35 : A3 × B3 → S2 by

(4-18) φ1(θ, t) :=
f ′

θ (t)
| f ′

θ (t)|
, φi j (t, u) :=

f (u)− f (t)
| f (u)− f (t)|

, (i, j)= (2, 4), (3, 5).

Then

(4-19)
∫

E
p ◦ FH f̃

∗ωX3 =

∫
Ic1×(J1⊔J2)

φ∗

1 vol
∫

A2×B2

φ∗

24 vol
∫

A3×B3

φ∗

35 vol .

Define the diffeomorphisms ξ : J1 → J2 and η : R3
→ R3 by

(4-20) ξ(t)= 1 − t, η(x, y, z) := (−x, y,−z).

Then, with respect to the coordinates of R3 shown in Figure 14, the following
diagram commutes:

(4-21)

Ic1 × J1
φ1
//

id×ξ

��

S2

η

��

Ic1 × J2
φ1
// S2

⟳

and since ξ reverses the orientation and η preserves the orientation, we have

(4-22)
∫

Ic1×J2

φ∗

1 vol = −

∫
Jc1×J1

φ∗

1 vol
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G.1�a/ G.1�b/

Figure 15. Configurations essentially contributing to I (X1); they
can exist only if the three crossings under consideration respect
the Gauss diagrams G(1-a) or G(1-b).

and hence

(4-23)
∫

Ic1×(J1⊔J2)

φ∗

1 vol =

∑
s=1,2

∫
Ic1×Js

φ∗

1 vol = 0.

Thus (4-19) is zero. □

Thus we only need to compute the alternating sums of the integrations of I (X1)

and I (X2) in the limit h1, h2, h3 → 0.

4B2. Computation of I (X1). The following two subspaces of E1;c j ,c′

j
( j = 1, 2, 3)

do not essentially contribute to the alternating sum of I (X1).

• The subspace where the arc near the left-most crossing moving in the FH-move
contains no point; because the integrals on the subspace are the same for
ϵ j = +1 and ϵ j = −1 and they cancel in the alternating sum.

• The subspace where no edge joins points on Am and Bm (m = 2, 3); because
all the maps ϕα and hence the integrand ωX1 can be defined even if hm = 0
and thus the cancellation similar to (4-15) occurs.

Thus only the subspaces of types (1-a) and (1-b) consisting of (θ, y) as shown in
Figure 15 can essentially contribute to the integrations of I (X1).

In both cases, the arc near the left-most crossing containing y2 (case (1-a)) or
y4 (case (1-b)) moves to right in the FH-move, and when the arc comes over or
under the middle crossing, the map ϕ12 or ϕ14 has its image in supp(vol) and the
integrand is not zero at that moment.

If three crossings c1, c2, c3 under consideration respect one of the Gauss diagrams
in the Type I cycle (Figure 7), then in the FH-cycle we meet the situation (1-a) in
Figure 15 once, because the Gauss diagram G(1-a) appears once in the Type I cycle.
If c1, c2, c3 respect one of the Gauss diagrams in the Type II cycle (Figure 8), then
in the FH-cycle we meet the situation (1-b) in Figure 15 twice, because the Gauss
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(The FH-move)
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Figure 16. Proof of Proposition 4.5; the case (1-a).

diagram G(1-b) appears twice in the Type II cycle. Otherwise we do not meet the
situations (1-a) nor (1-b) and the integration vanishes.

Proposition 4.5. We have

(4-24) ϵ1ϵ2ϵ3
∑

c∈{c1,c2,c3}

∫
E1;c,c′

p◦FH f̃ ϵ1,ϵ2,ϵ3
∗ωX1

=


1
8 if c1,c2,c3 respect one of the Gauss diagrams in Type I cycle,
−

1
4 if c1,c2,c3 respect one of the Gauss diagrams in Type II cycle,

0 otherwise;

see Figures 7 and 8 for Type I and II cycles, respectively.

Proof. Consider the first case; we may assume that c1, c2, c3 respect the Gauss
diagram G(1-a). Then only E1;c1,c′

1
can contain the configurations of type (1-a) and

nontrivially contribute to the alternating sum of the integrations of I (X1).
Let b : R1

→ R1 be a smooth even function whose graph looks as in Figure 16.
For (θ, x1, . . . , x5) ∈ R6, consider y1, . . . , y5 ∈ R3 given by

(4-25)

y1 = (x1, 0, 0),

y2 = (0,−ϵ2x2, b(ϵ2x2)),

y3 = (x3, 0, 0),

y4 = (θ,−ϵ1x4, 2b(ϵ1x4/2)),

y5 = (0,−ϵ3x5, b(ϵ3x5))

and define ϕ : R6
→ (S2)×3 by

(4-26) ϕ(θ, x1, . . . , x5) :=

(
y2 − y1

|y2 − y1|
,

y5 − y3

|y5 − y3|
,

y4 − y1

|y4 − y1|

)
.

Then changing the variables suitably, the left hand side of (4-24) is equal to

(4-27) ϵ1ϵ2ϵ3

∫
R6
ϕ∗(vol×3),

where vol×3
= pr∗1 vol ∧ pr∗2 vol ∧ pr∗3 vol ∈�6

DR((S
2)×3).
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Define 8 : R6
→ (R2)×3 and ψs : R2

→ S2 (s = 1, 2) by respectively

8(θ, x1, . . . , x5) := ((x1, ϵ2x2), (x1 − θ, ϵ1x4), (x3, ϵ3x5)),(4-28)

ψ1(x, x ′) :=
y′

− y
|y′ − y|

, ψ2(x, x ′) :=
y′′

− y
|y′′ − y|

,(4-29)

where y := (x, 0, 0), y′
:= (0,−x ′, b(x ′)), y′′

= (0,−x ′, 2b(x ′/2)). Then 8 is a
linear diffeomorphism whose determinant is ϵ1ϵ2ϵ3, and the following diagram is
commutative:

(4-30)

R6 ϕ
//

8
""

⟳

(S2)×3

(R2)×3
ψ×2

1 ×ψ2

::

Thus (4-27) is equal to

(4-31) (ϵ1ϵ2ϵ3)
2
(∫

R2
ψ∗

1 vol
)2 ∫

R2
ψ∗

2 vol =
( 1

2

)3
=

1
8 ,

here 1
2 appears by exactly the same reason as in Example 3.2.

The second case that c1, c2, c3 respect the Gauss diagram G(1-b) can be similarly
computed, replacing

• (4-25) and (4-26) respectively with

y1 = (x1, 0, 0),

y2 = (θ,−ϵ2x2, b(ϵ2x2/2)),

y3 = (x3, 0, 0),

y4 = (0,−ϵ1x4, b(ϵ1x4)),

y5 = (0,−ϵ3x5, b(ϵ3x5)),

(4-32)

ϕ(θ, x1, . . . , x5) :=

(
y4 − y1

|y4 − y1|
,

y5 − y3

|y5 − y3|
,

y2 − y1

|y2 − y1|

)
(4-33)

(namely y2 and y4 are swapped), and

• (4-28) with

(4-34) 8(θ, x1, . . . , x5) := ((x1, ϵ2x2), (x1 − θ, ϵ1x4), (x3, ϵ3x5)).
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Figure 17. Configurations essentially contributing to I (X2); they
can exist only if the three crossings under consideration respect
the Gauss diagrams G(2-a) or G(2-b).

Then the determinant of 8 is −ϵ1ϵ2ϵ3, and because we meet the situation (1-b)
twice in the FH-cycle, the left-hand side of (4-24) in this case is equal to

(4-35) −2(ϵ1ϵ2ϵ3)
2
(∫

R2
ψ∗

1 vol
)2 ∫

R2
ψ∗

2 vol = −
1
4 . □

4B3. Computation of I (X2). The computation of I (X2) goes similarly to that of
I (X1). Only the subspaces of types (2-a) and (2-b) consisting of (θ, y) as shown
in Figure 17 can essentially contribute to the alternating sum of the integrations of
I (X2).

If three crossings c1, c2, c3 under consideration respect one of the Gauss diagrams
in Type II cycle (Figure 8), then in the FH-cycle we meet the situation (2-a) in
Figure 15 twice, because the Gauss diagram G(2-a) appears twice in Type II cycle.
If c1, c2, c3 respect one of the Gauss diagrams in Type III cycle (Figure 9), then in
the FH-cycle we meet the situation (2-b) in Figure 15 six times, because the Gauss
diagram G(2-b) appears six times in Type III cycle.

Proposition 4.6. We have

(4-36) ϵ1ϵ2ϵ3
∑

c∈{c1,c2,c3}

∫
E2;c,c′

p◦FH f̃ ϵ1,ϵ2,ϵ3
∗ωX2

=


−

1
4 if c1,c2,c3 respect one of the Gauss diagrams in Type II cycle,

3
4 if c1,c2,c3 respect one of the Gauss diagrams in Type III cycle,
0 otherwise;

see Figures 8 and 9 for Type II and III cycles, respectively.

Proof. Consider the first case that c1, c2, c3 respect the Gauss diagram G(2-a). Then
only E2;c1,c′

1
can contain the configurations of type (2-a) and nontrivially contribute

to the integral.
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(The FH-move)

� �

��

�

y1

y4
y3

y2

y5

�
x

y

z

Figure 18. Proof of Proposition 4.6.

The proof of this case goes very similarly to the above ones; we just need to
replace

• (4-25) and (4-26) respectively with

y1 = (x1, 0, 0),

y2 = (x2, 0, 0),

y3 = (0,−ϵ2x3, b(ϵ2x3)),

y4 = (θ,−ϵ1x4, 2b(ϵ1x4/2)),

y5 = (0, ϵ3x5, b(ϵ3x5)),

(4-37)

ϕ(θ, x1, . . . , x5) :=

(
y3 − y1

|y3 − y1|
,

y5 − y2

|y5 − y2|
,

y4 − y1

|y4 − y1|

)
,(4-38)

• (4-28) with

(4-39) 8(θ, x1, . . . , x5) := ((x1, ϵ2x3), (x1 − θ, ϵ1x4), (x2, ϵ3x5)).

Then 8 is a linear diffeomorphism with the determinant −ϵ1ϵ2ϵ3, and because we
meet the situation (2-a) twice in the FH-cycle, the left hand side of (4-36) in this
case is equal to

(4-40) −2(ϵ1ϵ2ϵ3)
2
(∫

R2
ψ∗

1 vol
)2 ∫

R2
ψ∗

2 vol = −
1
4 .

Consider the second case that c1, c2, c3 respect the Gauss diagram G(2-b). The
proof of this case goes very similarly to that of the case (1-b) in Proposition 4.5;
we just need to replace
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• (4-25) and (4-26) respectively with

y1 = (x1, 0, 0),

y2 = (x2, 0, 0),

y3 = (θ,−ϵ1x3, 2b(ϵ1x3/2)),

y4 = (0,−ϵ2x4, b(ϵ2x4)),

y5 = (0, ϵ3x5, b(ϵ3x5)),

(4-41)

ϕ(θ, x1, . . . , x5) :=

(
y4 − y1

|y4 − y1|
,

y5 − y2

|y5 − y2|
,

y3 − y1

|y3 − y1|

)
,(4-42)

• (4-28) with

(4-43) 8(θ, x1, . . . , x5) := ((x1 − θ, ϵ2x3), (x1, ϵ1x4), (x2, ϵ3x5)).

Then 8 is a linear diffeomorphism with the determinant ϵ1ϵ2ϵ3, and because we
meet the situation (2-b) six times in the FH-cycle, the left hand side of (4-36) in
this case is equal to

(4-44) 6(ϵ1ϵ2ϵ3)
2
(∫

R2
ψ∗

1 vol
)2 ∫

R2
ψ∗

2 vol =
3
4 . □

Proof of Theorem 4.1. Let c1, c2 and c3 respect one of the Gauss diagrams in Type
I cycle (Figure 7). Then by (4-14) and Propositions 4.5, 4.6 we have

(4-45) D3v( f̃ )=
∑

k=1,2

ak

∑
c∈{c1,c2,c3}

∑
ϵ1,ϵ2,ϵ3∈{+1,−1}

ϵ1ϵ2ϵ3

∫
Ek;c,c′

p◦FH f̃ ϵ1,ϵ2,ϵ3
∗ωXk

= (−2)·
∑

ϵ1,ϵ2,ϵ3∈{+1,−1}

1
8+1·0

= −2·
1
8 ·8 = −2.

Next suppose that c1, c2 and c3 respect one of the Gauss diagrams in Type II cycle
(Figure 7). Then by (4-14) and Propositions 4.5 and 4.6,

(4-46) D3v( f̃ )=
∑

k=1,2

ak

∑
c∈{c1,c2,c3}

∑
ϵ1,ϵ2,ϵ3∈{+1,−1}

ϵ1ϵ2ϵ3

∫
Ek;c,c′

p◦FH f̃ ϵ1,ϵ2,ϵ3
∗ωXk

= (−2)·
∑

ϵ1,ϵ2,ϵ3∈{+1,−1}

(
−

1
4

)
+1·

∑
ϵ1,ϵ2,ϵ3∈{+1,−1}

(
−

1
4

)
= 2.
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Lastly suppose that c1, c2 and c3 respect one of the Gauss diagrams in Type III
cycle (Figure 7). Then

(4-47) D3v( f̃ )=
∑

k=1,2

ak

∑
c∈{c1,c2,c3}

∑
ϵ1,ϵ2,ϵ3∈{+1,−1}

ϵ1ϵ2ϵ3

∫
Ek;c,c′

p◦FH f̃ ϵ1,ϵ2,ϵ3
∗ωXk

= (−2)·0+1·

∑
ϵ1,ϵ2,ϵ3∈{+1,−1}

3
4

= 6.

If c1, c2 and c3 respect no Gauss diagram in three cycles, then D3v( f̃ )= 0. □

4C. An explicit description of v. It is known (see [12, page 215] for example)
that the space of the Vassiliev invariants for framed knots of order less than or
equal to three are multiplicatively generated by the framing number lk, the Casson
invariant v2 and the order three invariant v3 (characterized by the conditions in
Theorem 1.2). Thus all the Vassiliev invariants of order less than or equal to three
are linear combinations of

(4-48) lk, v2, lk2, v3, lk ·v2, lk3 .

Lemma 4.7. Our invariant v is of the form v = av3 + b lk ·v2 + cv2 for some
constants a, b, c ∈ R.

Proof. The value of v on the trivial long knot f0(x) = (x, 0, 0) together with a
framing number w ∈ Z is a linear combination of w, w2 and w3 because v2( f0)=

v3( f0)= 0. But by the definition p∗H( f0,w) is a constant loop of K for any w ∈ Z.
Thus v( f0, w) = 0 for any w ∈ Z, and the coefficients of lk, lk2 and lk3 must be
zero. □

Below we compute the constants a, b, c in Lemma 4.7. We denote by 3+

1 and
3−

1 respectively the right-handed and the left-handed trefoil knots, by 41 the figure
eight knot. By the formulas for v2 and v3 in [15, Theorems 1 and 2] we have

(4-49) v2(3+

1 )= v2(3−

1 )= 1, v2(41)= −1, v3(41)= 0.

Proposition 4.8. We have a = 6, b = −1.

Proof. Consider the “standard” diagram of 3+

1 in Figure 2 and write it as f = f+,+,+.
This can be seen as a framed long knot with framing number +3. The diagram
f−,−,− is 3−

1 with framing number −3 and all the other fϵ1,ϵ2,ϵ3 are trivial. The
Gauss diagram in Figure 2 appears in the Type III cycle in Figure 9 and D3v( f )= 6
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c1 c3

c2

G

Figure 19. A diagram of g = 41 and the Gauss diagram that
c1, c2, c3 respect.

by Theorem 4.1. Thus we have

(4-50) 6 = D3v( f )

= (av3(3+

1 )+ b · 3 + cv2(3+

1 ))− (av3(3−

1 )+ b · (−3)+ cv2(3−

1 ))

= 2a + 6b,

here the last equality holds by (4-49).
Next consider the diagram of 41 in Figure 19.
We write it as g = g+,−,+, focusing on c1, c2, c3. This can be seen as a framed

long knot with framing number 0. Then g−,−,− is the 3−

1 with framing number −4
and all the other gϵ1,ϵ2,ϵ3 are trivial. The Gauss diagram G in Figure 19 appears in
the Type II cycle in Figure 8 and D3v(g)= 2 by Theorem 4.1. Thus we have

(4-51) 2 = D3v(g)

= −(av3(41)+ b · 0 + cv2(41))− (av3(3−

1 )+ b · (−4)+ cv2(3−

1 ))

= a + 4b,

here the last equality holds again by (4-49). Therefore a = 6, b = −1 by (4-50) and
(4-51). □

Corollary 4.9 [17, Theorem 3.1].
∫

G f
I (X)= v2( f ) for any f ∈ K.

Proof. It is not hard to see that p∗FH( f,w+1) = p∗FH( f,w)− G f for any f ∈ K and
w ∈ Z. Thus we have

(4-52) v( f, w+ 1)=

∫
p∗FH( f,w+1)

I (X)

=

∫
p∗FH( f,w)

I (X)−
∫

G f

I (X)

= v( f, w)−
∫

G f

I (X).

Since v = 6v3 − lk ·v2 + cv2,

(4-53) 6v3( f )− (w+ 1)v2( f )+ cv2( f )= 6v3( f )−wv2( f )+ cv2 −

∫
G f

I (X),

implying
∫

G f
I (X)= v2( f ). □
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Proposition 4.10. We have c = 0.

Proof. Let f̃ be the knot 3+

1 with the blackboard framing from the planar projection
in Figure 2. Its framing number is +3, and as explained in [11], the FH-cycle
p∗FH f̃ is homologous to 3 times the Gramain cycle G f (see Remark 3.4), where
f = p( f̃ ) ∈ K. This is because, as we can see in the figure in [11, page 4], the
FH-move on each crossing of f̃ is the rotation around the long axis by degree π ,
and in the FH-cycle we perform the FH-moves six times. Thus

(4-54) 6v3(3+

1 )− 3v2(3+

1 )+ cv2(3+

1 )= v( f̃ )=

∫
p∗FH f̃

I (X)= 3
∫

G f

I (X).

Corollary 4.9 allows us to rewrite (4-54) as

(4-55) 6 · 1 − 3 · 1 + c · 1 = 3 · 1,

and we have c = 0. □

This completes the proof of the formula I (X)= 6v3 − lk ·v2 in Theorem 1.2.

Remark 4.11. In fact the proof of [17, Theorem 3.1] seems to contain an error. In
[17, page 414] the second named author of the present paper claimed that “the zero-
cycle e is given by (ι, 1)”, but e is indeed given by (ι, 2). Thus [17, Lemma 3.4]
has to be corrected as “D2V ( f ) =

1
2 ” and consequently the evaluation of I (X)

over G f should be v2( f )/2, inconsistent with Corollary 4.9. Probably the proof of
Corollary 4.9 is correct and this inconsistency comes from a missing factor of 2 in
[16, Lemma 4.5], a special case of which (n = 3) is [17, Lemma 3.4].

Remark 4.12. An anonymous referee kindly suggested that the formula (1-1) in
Theorem 1.2 can recover a result of Alvarez and Labastida [2]

(4-56) v3(Tm,n)=
mn
6
v2(Tm,n)

for the (m, n)-torus (long) knot Tm,n .
The proof goes as follows. Let f̃ be a framed long knot whose underlying long

knot is f = p( f̃ )= Tm,n and framing number lk( f̃ )= w. Then the formulas (1-1)
and [17, Theorem 3.1] together with the fact that G f generates π1(K f ) ∼= Z if
f = Tm,n imply that p∗FH f̃ = k(w)G f for some k(w) ∈ Z and

(4-57) 6v3( f )−w · v2( f )=

∫
p∗FH f̃

I (X)=

∫
k(w)G f

I (X)= k(w)v2( f ).

We can see that k(mn)= 0, proving the formula (4-56). To see this, we regard the
space of framed long knots as that of framed embeddings S1 ↪→ S3 that preserve
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the basepoints and have a prescribed framing at the basepoint, as explained in
Section 2A. Then we have a homeomorphism

(4-58) Ẽmb(S1, S3)≈ K̃× SO(4), f̃ 7→ (A−1
· f̃ , A(0))

where Ẽmb(S1, S3) is the space of framed embeddings S1 ↪→ S3 (without any
basepoint conditions), A : S1

→ SO(4) is the map given in Section 2A and 0 ∈

S1
= [0, 1]/(0 ≃ 1) is the basepoint of S1. This homeomorphism induces

(4-59) K̃ ≈ Ẽmb(S1, S3)/SO(4)

and the Fox–Hatcher S1-action on K̃ is interpreted as the reparametrization on the
right hand side.

If f = Tm,n is placed on the torus {(z, w) ∈ S3
| |z| = |w| = 1/

√
2} in the

standard way, and if f is given the framing mn, then the reparametrization of
f̃ = ( f,mn) ∈ Ẽmb(S1, S3) by t ∈ S1 can be described as the multiplication of

(4-60) rm,n(t)=

(
e2π

√
−1 mt 0

0 e2π
√

−1 nt

)
∈ SO(4).

In other words FH(Tm,n,mn) is trivial on Ẽmb(S1, S3)/SO(4) and thus on K̃. There-
fore we have k(mn)= 0.
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We further develop the theory of generalized Ulrich modules introduced in
2014 by Goto et al. Our main goal is to address the problem as to when
the operations of taking the Hom functor and horizontal linkage preserve
the Ulrich property. One of the applications is a new characterization of
quadratic hypersurface rings. Moreover, in the Gorenstein case, we deduce
that applying linkage to sufficiently high syzygy modules of Ulrich ideals
yields Ulrich modules. Finally, we explore connections to the theory of
modules with minimal multiplicity, and as a byproduct we determine the
Chern number of an Ulrich module as well as the Castelnuovo–Mumford
regularity of its Rees module.

1. Introduction

This work is concerned with the theory of generalized Ulrich modules (over Cohen–
Macaulay local rings) by Goto et al. [2014], which widely extended the classical
study of maximally generated maximal Cohen–Macaulay modules — or Ulrich
modules, as coined in [Herzog and Kühl 1987] — initiated in the 1980s by B. Ulrich
[1984]. The term generalized refers to the fact that Ulrich modules are taken
relatively to a zero-dimensional ideal which is not necessarily the maximal ideal,
the latter situation corresponding to the classical theory; despite the apparent naivety
of the idea, this passage adds considerable depth to the theory and enlarges its
horizon of applications.

Motivated by the remarkable advances in [Goto et al. 2014], our purpose here is
to present further progress which includes generalizations of several known results
on Ulrich modules, from the above paper as well as [Kobayashi and Takahashi
2019; Ooishi 1991; Wiebe 2003], and connections to some other important classes
such as that of modules with minimal multiplicity; for the latter task, we employ
suitable numerical invariants such as the Castelnuovo–Mumford regularity of blowup
modules.
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It is worth recalling that the original notion of an Ulrich module (together with
the classical existence problem; see, however, Yhee’s [2021] construction of local
domains which do not admit Ulrich modules or (weakly) lim Ulrich sequences)
has been extensively explored since its inception, in both commutative algebra
and algebraic geometry. Echoing and complementing the second paragraph of the
Introduction of [Yhee 2021], the applications include criteria for the Gorenstein
property [Hanes and Huneke 2005; Ulrich 1984], the investigation of maximal
Cohen–Macaulay modules over Gorenstein local rings and factoriality of certain
rings [Herzog and Kühl 1987], the development of the theory of almost Gorenstein
rings [Goto et al. 2015], strategies to tackle certain resistant conjectures in mul-
tiplicity theory — e.g., Ma’s [2023] resolution of Lech’s conjecture in the graded
case by introducing and using the notion of (weakly) lim Ulrich sequences, which
gives yet another way to generalize the classical Ulrich property — and methods
for constructing resultants and Chow forms of projective algebraic varieties (see
[Eisenbud and Schreyer 2003], where the concepts of Ulrich sheaf and Ulrich
bundle were introduced).

In essence, the general approach suggested in [Goto et al. 2014] extended the def-
inition of an Ulrich module M over a (commutative, Noetherian) Cohen–Macaulay
local ring (R, M ) to a relative setting that takes into account an M -primary ideal
I containing a parameter ideal as a reduction, so that the case I = M retrieves the
standard theory. For instance, the condition of the freeness of M/I M over R/I,
which was hidden in the classical setting as M/M M is simply a vector space, is
now required. Following this line of investigation, other works have appeared in
the literature, including [Goto et al. 2016a; 2016b; 2019; Numata 2017].

We will briefly comment on our main results, section by section. Preliminary
definitions and some known auxiliary results, which are used throughout the paper,
are given in Section 2. The main goal of Section 3 is to investigate the Ulrich
property under the Hom functor. In this regard, our main result is Theorem 3.2,
which can be viewed as a generalization of [Goto et al. 2014, Theorem 5.1] and
of [Kobayashi and Takahashi 2019, Proposition 4.1]. Moreover, Corollary 3.5
generalizes [Goto et al. 2014, Corollary 5.2], and Corollary 3.6 is a far-reaching
extension of [Brennan et al. 1987, Lemma 2.2]. We also study a connection to
the theory of semidualizing modules (see Corollary 3.8) and use it to derive a new
characterization of when R is regular (see Corollary 3.9). In addition, in the last
subsection, we provide some freeness criteria for M/I M over the Artinian local
ring R/I, which is one of the requirements for Ulrichness with respect to I.

In Section 4 we are essentially interested in the behavior of the Ulrich property
under the operation of horizontal linkage over Gorenstein local rings. The main
result here is Theorem 4.1 (see also Corollary 4.4), from which we derive a curi-
ous characterization of quadratic hypersurface local rings (see Corollary 4.3). In
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Corollary 4.7, we record the special case of sufficiently high syzygy modules of a
nonparameter Ulrich ideal, in case R is Gorenstein.

In Section 5 we consider the class of modules with minimal multiplicity (in
the sense of [Puthenpurakal 2003]) and then connect this concept to the Ulrich
property, both taken with respect to I. The basic relation is that Ulrich R-modules
have minimal multiplicity (see Proposition 5.6), and as a consequence we use
the Chern number — the first Hilbert coefficient — as an ingredient to obtain a
characterization of Ulrichness (see Corollary 5.9) which generalizes [Ooishi 1991,
Corollary 1.3(1)]. Under this perspective, modules with trivial Chern number are
provided in Corollary 5.10, and considerations about the structure of the Hilbert–
Samuel polynomial of an Ulrich module are given in Remarks 5.11. Our main
technical result in this section is Theorem 5.14, which curiously does not contain
Ulrich-like properties in its statement and, more precisely, characterizes modules
with minimal multiplicity as follows:

Theorem 5.14. Let (R, M ) be a Noetherian local ring with infinite residue field,
M a Cohen–Macaulay R-module of dimension t > 0 and I an M -primary ideal of
R. Let J = (z1, . . . , zt) be a minimal M-reduction of I . The following assertions
are equivalent:

(i) M has minimal multiplicity with respect to I .

(ii) regR(I, M) = regG(I, M) = rJ (I, M) ≤ 1.

(iii) rJ (I, M) ≤ 1.

Here, reg(−) denotes (Castelnuovo–Mumford) regularity, and R(I, M) and
G(I, M) stand respectively for the Rees module and the associated graded module
of I relative to M . Also, rJ (I, M) is the reduction number of I with respect to J
relative to M . We emphasize that Theorem 5.14 answers affirmatively the module-
theoretic analogue of Sally’s [1983] question about independence of reduction
numbers for the class of modules with minimal multiplicity. Additionally, from this
theorem we derive Corollary 5.15, which determines the regularity of the Rees and
associated graded modules of I relative to an Ulrich module (this result partially
generalizes [Ooishi 1991, Proposition 1.1]), and also Corollary 5.16, where we deal
once again with high syzygy modules of Ulrich ideals.

Finally, Section 6 provides a detailed example to illustrate some of our main
corollaries.

2. Conventions, preliminaries, and some auxiliary results

Throughout this paper, all rings are assumed to be commutative and Noetherian
with 1, and by finite module we mean a finitely generated module.
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In this section, we recall some of the basic notions and tools that will play an
important role throughout the paper. Other auxiliary notions will be introduced as
they become necessary.

2A. Ulrich ideals and modules. Let (R, M ) be a local ring, M a finite R-module,
and I ̸= R an ideal of definition of M , i.e., M n M ⊂ I M for some n > 0. Let us
establish some notations. We denote by ν(M) and e0

I (M), respectively, the minimal
number of generators of M and the multiplicity of M with respect to I . When
I = M , we simply write e(M) in place of e0

M (M).

Definition 2.1. Let (R, M ) be a local ring. A finite R-module M is Cohen–
Macaulay if depthR M = dim M , and maximal Cohen–Macaulay if depthR M =

dim R. Note the zero module is not maximal Cohen–Macaulay as its depth is set
to be +∞. Moreover, M is called Ulrich if M is a maximal Cohen–Macaulay
R-module satisfying ν(M) = e(M).

For instance, if (R, M ) is a 1-dimensional Cohen–Macaulay local ring, then
the power M e(R)−1 is an Ulrich module. Several other classes of examples can be
found in [Brennan et al. 1987].

Ulrich modules are also dubbed maximally generated maximal Cohen–Macaulay
modules. This is due to the fact that there is an inequality ν(M) ≤ e(M) whenever
the local ring R is Cohen–Macaulay and M is maximal Cohen–Macaulay; see
[Brennan et al. 1987, Proposition 1.1].

Convention 2.2. Henceforth, in the entire paper, we adopt the following convention
and notations. Whenever (R, M ) is a d-dimensional Cohen–Macaulay local ring,
we will let I (to be distinguished from the notation I ) stand for an M -primary
ideal that contains a parameter ideal

Q = (x) = (x1, . . . , xd)

as a reduction, i.e., QI r
= I r+1 for some integer r ≥ 0. As is well known, any

M -primary ideal of R has this property provided that the residue class field R/M

is infinite, or that R is analytically irreducible with d = 1.

Definition 2.3. Let R be a Cohen–Macaulay local ring. We say that the ideal I is
Gorenstein if the quotient ring R/I is Gorenstein.

Next, we recall the general notions of Ulrich ideal and Ulrich module as intro-
duced in [Goto et al. 2014], where in addition several explicit examples are given.
As will be made clear, the latter Definition 2.7 below generalizes Definition 2.1.

Definition 2.4 [Goto et al. 2014]. Let R be a Cohen–Macaulay local ring. We say
that the ideal I is Ulrich if I 2

= QI (the reduction number of I with respect to
Q is at most 1) and I /I 2 is a free R/I -module.



ON THE THEORY OF GENERALIZED ULRICH MODULES 311

Examples 2.5. (i) [Kumashiro 2023, Proposition 3.10] Let S = K [[x, y, z]] be a
formal power series ring over an infinite field K , and fix any regular sequence
{ f, g, h} ⊂ (x, y, z). Then, R = S/( f 2

− gh, g2
− h f, h2

− f g) is a 1-dimensional
Cohen–Macaulay local ring and I = ( f, g, h)R is an Ulrich ideal.

(ii) [Goto et al. 2014, Example 2.7(2)] One way to produce examples in arbitrary
positive dimension is as follows. Given a field K and integers d, s ≥ 1, consider the
d-dimensional local hypersurface ring R = K [[z1, . . . , zd+1]]/(z2

1 +· · ·+z2
d +z2s

d+1),
where z1, . . . , zd+1 are formal indeterminates over k. Then, the ideal

I = (z1, . . . , zd , zs
d+1)R

is Ulrich and contains the parameter ideal Q = (z1, . . . , zd)R as a reduction.

Remark 2.6. In a Gorenstein local ring, every Ulrich ideal is Gorenstein; see [Goto
et al. 2014, Corollary 2.6].

Definition 2.7 [Goto et al. 2014]. Let R be a Cohen–Macaulay local ring and let
M be a finite R-module. We say that M is Ulrich with respect to I if the following
conditions hold:

(i) M is a maximal Cohen–Macaulay R-module.

(ii) I M = QM .

(iii) M/I M is a free R/I -module.

Remarks 2.8. (i) Let us recall the discussion in the paragraph after Definition 1.2
in [Goto et al. 2014]. Denote the length of R-modules by ℓR(−). If R is a Cohen–
Macaulay local ring and M is a maximal Cohen–Macaulay R-module, then

e0
I (M) = e0

Q(M) = ℓR(M/QM) ≥ ℓR(M/I M),

so that condition (ii) of Definition 2.7 is equivalent to saying that the equality
e0
I (M) = ℓR(M/I M) takes place. In particular, if I = M , condition (ii) is the

same as e(M) = ν(M). Therefore, M is an Ulrich module with respect to M if and
only if M is an Ulrich module in the sense of Definition 2.1.

(ii) Clearly, if d = 1 and I is an Ulrich ideal of R, then I is an Ulrich R-module
with respect to I.

(iii) Let us recall the following more general recipe to obtain Ulrich modules from
Ulrich ideals (in the setting of Convention 2.2). If I is an Ulrich ideal of R which
is not a parameter ideal, then for any i ≥ d the i-th syzygy module (see Section 2B
below) of R/I is an Ulrich R-module with respect to I, and conversely (we refer
to [Goto et al. 2014, Theorem 4.1]). This is a very helpful property and will be
explored in some of our results and examples.
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2B. Linkage. The concepts recalled in this subsection can be described in the
general context of semiperfect rings, but in this paper we focus on the special case
of (finite modules over) a local ring R, since this is the setup where our results will
be proved.

Given a finite R-module M , we write M∗
= HomR(M, R). The (Auslander)

transpose Tr M of M is defined as the cokernel of the dual ∂∗

1 = HomR(∂1, R) of
the first differential map ∂1 in a minimal free resolution of M over R. Hence there
is an exact sequence

0 −→ M∗
−→ F∗

0
∂∗

1
−→ F∗

1 −→ Tr M −→ 0

for suitable finite free R-modules F0, F1. The (first) syzygy module �1 M = �M
of M is the image of ∂1, hence a submodule of F0. We recursively put �k M =

�(�k−1 M), the k-th syzygy module of M , for any k ≥ 2.
Note that the modules Tr M and �M are uniquely determined up to isomorphism,

since the same is true of a minimal free resolution of M . By [Auslander 1966,
Proposition 6.3], we have an exact sequence

(1) 0 −→ Ext1R(Tr M, R) −→ M eM
−→ M∗∗

−→ Ext2R(Tr M, R) −→ 0,

where eM is the evaluation map.
Martsinkovsky and Strooker [2004] generalized the classical theory of linkage

for ideals to the context of modules by means of the operator λ = � Tr, i.e., a
finite R-module M is sent to the composite � Tr M defined from a minimal free
presentation of M .

Definition 2.9 [Martsinkovsky and Strooker 2004]. Two finite R-modules M and
N are said to be horizontally linked if M ∼= λN and N ∼= λM . In the case where M
and λM are horizontally linked, M ∼= λ2 M , we simply say that the module M is
horizontally linked.

We also recall that a stable module is a finite module with no nonzero free direct
summand. A finite R-module M is called a syzygy module if it is embedded in a
finite free R-module, that is if M ∼= �N for some finite R-module N . Here is a
well-known characterization of horizontally linked modules.

Lemma 2.10 [Martsinkovsky and Strooker 2004, Theorem 2 and Corollary 6]. A fi-
nite R-module M is horizontally linked if and only if it is stable and Ext1R(Tr M, R)=

0, if and only if M is a stable syzygy module.

Lemma 2.11 [Martsinkovsky and Strooker 2004, Proposition 4]. Suppose M is
horizontally linked. Then, λM is also horizontally linked and, in particular, λM is
stable.
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2C. Canonical modules. In the sequel we collect basic facts about canonical
modules.

Lemma 2.12 [Bruns and Herzog 1993]. Let R be a Cohen–Macaulay local ring
with canonical module ωR . Let M be a maximal Cohen–Macaulay R-module. Then
the following statements hold:

(i) HomR(M, ωR) is a maximal Cohen–Macaulay R-module.

(ii) ExtiR(M, ωR) = 0 for all i > 0.

(iii) M ∼= HomR(HomR(M, ωR), ωR).

(iv) If y is an R-sequence, then R/( y) has a canonical module ωR/( y) ∼= ωR/ yωR .

(v) Let ϕ : R → S be a local homomorphism of Cohen–Macaulay local rings such
that S is a finite R-module. Then S has a canonical module ωS ∼= ExttR(S, ωR),
where t = dim R − dim S.

3. Hom functor and the Ulrich property

In this section we investigate, in essence, the behavior of the Ulrich property under
the Hom functor.

3A. Key lemma, main result, and corollaries. We start with the following basic
lemma, which will be a key ingredient in the proof of the main result of this section.

Lemma 3.1. Let R be a Cohen–Macaulay local ring, M, N be maximal Cohen–
Macaulay R-modules, and y = y1, . . . , yn be an R-sequence for some n ≥ 1.

(i) If either n = 1 or ExtiR(M, N ) = 0 for all i = 1, . . . , n −1, there is an injection

HomR(M, N )/ y HomR(M, N ) ↪→ HomR/( y)(M/ yM, N/ yN ).

(ii) If ExtiR(M, N ) = 0 for all i = 1, . . . , n, there is an isomorphism

HomR(M, N )/ y HomR(M, N ) ∼= HomR/( y)(M/ yM, N/ yN ).

Proof. We shall prove the assertion (i), which from the arguments below (essentially
from (2)) will be easily seen to imply (ii). Set R′

= R/(y1), M ′
= M/y1 M , and

N ′
= N/y1 N . We will proceed by induction on n. Consider first the case n = 1,

which is standard, but we supply the proof for convenience. Since M and N are
maximal Cohen–Macaulay R-modules and y1 ∈ M is R-regular, where M is the
maximal ideal of R, it follows that y1 is both M-regular and N -regular. In particular,
we have the short exact sequence

0 −→ M y1
−→ M −→ M ′

−→ 0,
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which induces the exact sequence

(2) 0 → HomR(M ′, N ) → HomR(M, N )
y1

−→ HomR(M, N ) → Ext1R(M ′, N )

→ · · · → ExtiR(M, N ) → Exti+1
R (M ′, N ) → Exti+1

R (M, N ) → · · · .

It follows an injection

(3) HomR(M, N )/y1 HomR(M, N ) ↪→ Ext1R(M ′, N ).

Because y1 is N -regular and y1 M ′
= 0, there are isomorphisms

(4) ExtiR′(M ′, N ′) ∼= Exti+1
R (M ′, N ) for all i ≥ 0,

see [Bruns and Herzog 1993, Lemma 3.1.16]. In particular,

(5) HomR′(M ′, N ′) ∼= Ext1R(M ′, N ),

and the result follows by (3) and (5).
Now let n ≥ 2. Clearly, R′ is a Cohen–Macaulay ring and M ′, N ′ are max-

imal Cohen–Macaulay R′-modules. By assumption, ExtiR(M, N ) = 0 for all
i = 1, . . . , n − 1. Thus, using (2) and (4), we obtain isomorphisms

(6) ExtiR′(M ′, N ′) ∼=

{
HomR(M, N )/y1 HomR(M, N ) if i = 0,

0 if i = 1, . . . , n − 2.

Since y′
= y2, . . . , yn is an R′-sequence, the induction hypothesis yields an injection

HomR′(M ′, N ′)/ y′ HomR′(M ′, N ′) ↪→ HomR′/ y′ R′(M ′/ y′M ′, N ′/ y′N ′),

where the latter module is clearly isomorphic to HomR/( y)(M/ yM, N/ yN ). Now
the conclusion follows by (6) with i = 0. □

The theorem below is our main result in this section.

Theorem 3.2. Let R be a Cohen–Macaulay local ring of dimension d. Let M
and N be maximal Cohen–Macaulay R-modules such that HomR(M, N ) ̸= 0 and
ExtiR(M, N ) = 0 for all i = 1, . . . , n, where either n = d − 1 or n = d. Let I and
Q be as in Convention 2.2. Assume that M , resp. N , is an Ulrich R-module with
respect to I, and consider the following conditions:

(i) HomR(M, N ) is an Ulrich R-module with respect to I.

(ii) HomR(M, N )/I HomR(M, N ) is a free R/I -module.

(iii) HomR/Q(R/I,N/QN ), resp. HomR/Q(M/QM,R/I ), is a free R/I -module.

Then the following statements hold:

(a) If n = d − 1 then (i) ⇐⇒ (ii).

(b) If n = d then (i) ⇐⇒ (ii) ⇐⇒ (iii).
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Proof. (a) Applying the functor HomR(−, N ) to a free resolution

· · · −→ Fd+1 −→ Fd −→ Fd−1 −→ · · · −→ F1 −→ F0 −→ M −→ 0

of the R-module M , and using the hypothesis that ExtiR(M, N ) = 0 for i =

1, . . . , d − 1, we obtain an exact sequence

0 → HomR(M, N )→ HomR(F0, N )→· · ·→ HomR(Fd−1, N )→ HomR(Fd , N ).

Now set X0 := HomR(M, N ) and X i := Im(HomR(Fi−1, N ) → HomR(Fi , N )) for
i = 1, . . . , d . Since N is maximal Cohen–Macaulay, then depthR HomR(Fi , N )= d
for all i = 0, . . . , d . Thus, by the short exact sequence

0 −→ X i −→ HomR(Fi , N ) −→ X i+1 −→ 0,

we get depthR X i ≥ min{d, depthR X i+1 + 1}; see, e.g., [Bruns and Herzog 1993,
Proposition 1.2.9]. Therefore,

depthR HomR(M, N ) ≥ min{d, depthR Xd + d} = d,

i.e., HomR(M, N ) is a maximal Cohen–Macaulay R-module.
Now, as in Convention 2.2, let x = x1, . . . , xd be a generating set of the parameter

ideal Q. Then x is an R-sequence (see [Bruns and Herzog 1993, Theorem 2.1.2(d)]),
and so by Lemma 3.1(i) there is an injection

(7) HomR(M, N )/Q HomR(M, N ) ↪→ HomR/Q(M/QM, N/QN ).

Because M (resp. N ) is assumed to be Ulrich with respect to I, the module M/QM
(resp. N/QN ) is annihilated by I, and hence so is HomR/Q(M/QM, N/QN ). In
either case, it follows from (7) that the quotient HomR(M, N )/Q HomR(M, N ) is
annihilated by I. Thus,

I HomR(M, N ) = Q HomR(M, N ).

Therefore, HomR(M, N ) is Ulrich with respect to I if and only if the quotient
module HomR(M, N )/I HomR(M, N ) is R/I -free, so (i) ⇐⇒ (ii).

(b) As seen above, there is an equality I HomR(M, N )= Q HomR(M, N ). Notice
that, furthermore, Lemma 3.1(ii) yields an isomorphism

(8) HomR(M, N )/Q HomR(M, N ) ∼= HomR/Q(M/QM, N/QN ).

Now suppose that M is Ulrich with respect to I. From M/QM = M/I M ∼=

(R/I )m for some integer m > 0, we deduce that

(9) HomR/Q(M/QM, N/QN ) ∼= (HomR/Q(R/I, N/QN ))m .
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By (8) and (9), we get

HomR(M, N )/I HomR(M, N ) ∼= (HomR/Q(R/I, N/QN ))m .

Therefore, the quotient HomR(M, N )/I HomR(M, N ) is R/I -free if and only
if the module HomR/Q(R/I, N/QN ) is R/I -free. The case where N is Ulrich
with respect to I is completely similar. This shows (ii) ⇐⇒ (iii) and concludes the
proof of the theorem. □

Remark 3.3. It is worth observing that the condition HomR(M, N ) = 0 can
hold even if M and N are both Ulrich. For instance, over the local ring R =

K [[x, y]]/(xy), where x, y are formal variables over a field K , we have

HomR(R/x R, R/y R) = 0.

We point out that Theorem 3.2 generalizes [Kobayashi and Takahashi 2019,
Proposition 4.1] (see Corollary 3.7, to be given shortly) and, in addition, recovers
the following result from [Goto et al. 2014]:

Corollary 3.4 [Goto et al. 2014, Theorem 5.1]. Let R be a Cohen–Macaulay local
ring with canonical module ωR , and let M be an Ulrich R-module with respect
to I. Then the following assertions are equivalent:

(i) HomR(M, ωR) is an Ulrich R-module with respect to I.

(ii) I is a Gorenstein ideal.

Proof. By Lemma 2.12(ii), we have ExtiR(M, ωR) = 0 for all i > 0. Since R/Q
and R/I are zero-dimensional local rings and the ideal Q is generated by an
R-sequence, there are isomorphisms

ωR/I
∼= HomR/Q(R/I, ωR/Q) ∼= HomR/Q(R/I, ωR/QωR)

according to standard facts; see parts (iv) and (v) of Lemma 2.12. Now, applying
Theorem 3.2(b) with N = ωR , we derive that HomR(M, ωR) is Ulrich with respect
to I if and only if ωR/I is R/I -free, or equivalently, R/I is a Gorenstein ring. □

Taking Remark 2.6 into account, the corollary below is readily seen to generalize
[Goto et al. 2014, Corollary 5.2].

Corollary 3.5. Let R be a Cohen–Macaulay local ring with canonical module ωR ,
and let M be a maximal Cohen–Macaulay R-module. Assume that the ideal I is
Gorenstein. Then the following assertions are equivalent:

(i) M is an Ulrich R-module with respect to I.

(ii) HomR(M, ωR) is an Ulrich R-module with respect to I.

Proof. There is an isomorphism M ∼=HomR(HomR(M,ωR),ωR) by Lemma 2.12(iii).
The conclusion follows by Corollary 3.4. □
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Our next result is a far-reaching extension of [Brennan et al. 1987, Lemma 2.2];
see also Corollary 3.9.

Corollary 3.6. Let R be a Cohen–Macaulay local ring with canonical module ωR .
Assume that the ideal I is Gorenstein. Then the following assertions are equivalent:

(i) I is a parameter ideal.

(ii) R is an Ulrich R-module with respect to I.

(iii) ωR is an Ulrich R-module with respect to I.

Proof. The equivalence (i) ⇐⇒ (ii) is immediate from Definition 2.7 and holds
regardless of I being Gorenstein. Now, by virtue of the isomorphisms ωR ∼=

HomR(R, ωR) and HomR(ωR, ωR) ∼= R, our Corollary 3.5 yields (ii) ⇐⇒ (iii). □

As yet another byproduct of Theorem 3.2, we retrieve [Kobayashi and Takahashi
2019, Proposition 4.1], which in turn generalizes the local version of [Wiebe 2003,
Proposition 3.5].

Corollary 3.7 [Kobayashi and Takahashi 2019, Proposition 4.1]. Let R be a Cohen–
Macaulay local ring of dimension d. Let M, N be maximal Cohen–Macaulay R-
modules such that HomR(M, N ) ̸= 0 and ExtiR(M, N ) = 0 for all i = 1, . . . , d − 1.
If either M or N is an Ulrich R-module, then so is HomR(M, N ).

Proof. As observed in Remarks 2.8(i), M is an Ulrich R-module if and only
if M is an Ulrich R-module with respect to the maximal ideal M of R. Now,
being a (finite-dimensional) vector space over the residue field k = R/M , the
module HomR(M, N )/M HomR(M, N ) is k-free. Thus, HomR(M, N ) is Ulrich
by Theorem 3.2(a). □

3B. Hom with values in a semidualizing module. Let us recall that a finite module
C over a ring R is called semidualizing if the morphism R → HomR(C , C ) given
by homothety is an isomorphism and ExtiR(C , C ) = 0 for all i > 0. In this case,
a finite R-module M is said to be totally C -reflexive if the biduality map M →

HomR(HomR(M, C ), C ) is an isomorphism and, in addition, ExtiR(M, C ) = 0 =

ExtiR(HomR(M, C ), C ) for all i > 0. Note every totally C -reflexive module is
maximal Cohen–Macaulay by virtue of the relative Auslander–Bridger formula;
see [Sather-Wagstaff 2010, Proposition 6.4.2]. A detailed account about the theory
of semidualizing modules is given in [Sather-Wagstaff 2010].

As a matter of illustration, R is semidualizing as a module over itself, and,
for any semidualizing R-module C , both R and C are totally C -reflexive. More
interestingly, if R is a Cohen–Macaulay local ring possessing a canonical module
ωR , then ωR is semidualizing and, in addition, every maximal Cohen–Macaulay
R-module is totally ωR-reflexive (to see this, use Lemma 2.12). It should also be
pointed out, based on the existence of several examples in the literature, that not
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every semidualizing R-module must be isomorphic to R or ωR; see for example
[Araya and Iima 2018, Section 5; Sather-Wagstaff 2010, Section 2.3].

Corollary 3.8. Let R be a Cohen–Macaulay local ring with a semidualizing mod-
ule C , and let M be a totally C -reflexive R-module. Then, M is an Ulrich R-module
if and only if HomR(M, C ) is an Ulrich R-module.

Proof. We have M ∼= HomR(HomR(M, C ), C ), which in particular forces the
module HomR(M, C ) to be nontrivial, and in addition

ExtiR(M, C ) = 0 = ExtiR(HomR(M, C ), C ) for all i > 0.

Since C is semidualizing, depthR C = depth R (see [Sather-Wagstaff 2010, Theo-
rem 2.2.6(c)]) and hence C is maximal Cohen–Macaulay. The result is clear by
Corollary 3.7. □

Note that Corollary 3.8 gives a different proof of the case I =M of Corollary 3.5
by taking C = ωR . Another byproduct of Corollary 3.8 is the following curious
characterization of regular local rings.

Corollary 3.9. Let R be a Cohen–Macaulay local ring with a semidualizing mod-
ule C . Then, R is regular if and only if C is an Ulrich R-module.

Proof. According to [Sather-Wagstaff 2010, Proposition 2.1.12], saying that C

is semidualizing is tantamount to R being a totally C -reflexive R-module. Now,
Corollary 3.8 yields that R is Ulrich over itself if and only if C is an Ulrich R-
module. The former situation, as observed in [Brennan et al. 1987, Lemma 2.2], is
equivalent to the regularity of R. □

We raise the following question and a related remark.

Question 3.10. Does Corollary 3.4 hold with C (a given semidualizing R-module)
in place of ωR?

Remark 3.11. An affirmative answer to Question 3.10 would imply the validity of
Corollary 3.5 with C in place of ωR as well, provided that R is a normal domain.
Indeed, it suffices to note that in this case the maximal Cohen–Macaulay R-module
M is necessarily reflexive in the usual sense, and thus by [Sather-Wagstaff 2010,
Corollary 5.4.7], which also requires R to be normal, we have

M ∼= HomR(HomR(M, C ), C )

via the natural biduality map.
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3C. Freeness criteria for M/I M via (co)homology vanishing. We close the
section providing some criteria for the freeness of the R/I -module M/I M , which
is of interest since this is one of the requirements for M to be Ulrich with respect
to I ; see Definition 2.7.

As we have been investigating how Ulrichness behaves under the Hom (= Ext0)
functor, it seems natural to wonder about the relevance of higher Ext modules in the
theory, and in fact we shall see that the vanishing of finitely many “diagonal” Ext
modules ExtiR/I (M/I M, M/I M), under suitable hypotheses, can detect freeness
over the Artinian local ring R/I, which we will assume to be Gorenstein. Vanishing
of homology modules, namely “diagonal” Tor modules TorR/I

j (M/I M, M/I M),
will also play a role. Essentially, our criteria will consist of adaptations of some
results from [Huneke et al. 2004] and one from [Şega 2011].

In the proposition below, and as before, (R, M ) and I (also Q, which appears
in the proof) are as in Convention 2.2, and ℓR(−) stands for length of R-modules.

Proposition 3.12. Suppose R/I is Gorenstein (e.g., R is Gorenstein and I is
Ulrich; see Remark 2.6) and let M be a finite R-module. Assume any one of the
following situations:

(i) M 2 M ⊂ I M and ExtiR/I (M/I M, M/I M) = 0 for all i satisfying 1 ≤ i ≤

max{3, ν(M), ℓR(M/I M) − ν(M)}.

(ii) M 3
⊂ I and ExtiR/I (M/I M, M/I M) = 0 for some i > 0.

(iii) (R/I need not be Gorenstein.) R/M is infinite, I is not a parameter ideal,
M 3

⊂ I, e0
I (R) ≤ 2ℓR(M /(M 2

+I )), and TorR/I
j (M/I M, M/I M) = 0

for three consecutive values of j ≥ 2.

(iv) M 4
⊂ I, there exists x ∈ M \ I such that the ideal (I : x)/I is principal,

and TorR/I
j (M/I M, M/I M) = 0 for all j ≫ 0.

Then, M/I M is R/I -free.

Proof. For simplicity, set R = R/I, M = M /I, and M = M/I M . Let us
assume (i). By assumption M

2 M = 0, hence

ν(M M) = ℓR(M M) = ℓR(M M/I M).

On the other hand, by the short exact sequence

0 −→ M M/I M −→ M/I M −→ M/M M −→ 0,

we have ℓR(M M/I M) = ℓR(M/I M) − ℓR(M/M M). Therefore we obtain
ν(M M) = ℓR(M/I M) − ν(M). In addition it is clear that ν(M) = ν(M). Now
we can apply [Huneke et al. 2004, Proposition 4.4(1)], which ensures that the R/I -
module M/I M is either free or injective. Since R/I is Gorenstein, M/I M is
necessarily free, as needed.
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Assume that (ii) holds. Notice that M
3

= 0 by hypothesis. Now, since R/I

is Gorenstein, the freeness of M/I M follows readily by [Huneke et al. 2004,
Theorem 4.1(2)].

Now suppose (iii). Let ℓℓ(R) denote the Loewy length of R, which is the smallest
integer n such that M n

= 0, i.e., M n
⊂ I. Thus, by assumption, ℓℓ(R) ≤ 3. If

ℓℓ(R) = 1 (I = M ), there is nothing to prove. If ℓℓ(R) = 2, then M/I M is
free by [Huneke et al. 2004, Remark 2.1]. So we can assume ℓℓ(R) = 3. Using
Remarks 2.8(i) and the hypothesis that I is not a parameter ideal (so that the
inclusion Q ⊂ I is strict), we get e0

I (R) = ℓR(R/Q) ≥ ℓR(R/I ) + 1. Therefore,

2ν(M ) = 2ℓR(M /(M 2
+ I )) ≥ e0

I (R) ≥ ℓR(R) + 1 = ℓR(R) − ℓℓ(R) + 4.

We are now in a position to apply [Huneke et al. 2004, Theorem 3.1(2)] to conclude
that M/I M is free.

Finally, suppose (iv). So R/I is Gorenstein and M 4
= 0, and in addition note

that (I : x)/I is the annihilator of x R. Then M/I M is free by [Şega 2011,
Theorem 3.3]. □

Remark 3.13. From the proof in the situation (iii) it is clear that, for general I

(possibly a parameter ideal), the hypothesis on the multiplicity must be replaced
with e0

I (R) ≤ 2ℓR(M /(M 2
+ I )) − 1.

4. Horizontal linkage and the Ulrich property

We begin this section by pointing out the warming-up fact that, if the local ring R is
Gorenstein, then it follows from [Martsinkovsky and Strooker 2004, Theorem 1] that
every stable Ulrich R-module with respect to I, where I is as in Convention 2.2, is
horizontally linked (note that maximal Cohen–Macaulay modules are precisely the
totally reflexive modules, since R is Gorenstein). See Section 2B for terminology.

In essence, our goal herein is to develop a further study of linkage of Ulrich
modules with respect to I, also assumed to be Ulrich but not a parameter ideal, the
main result being the theorem below, which in particular shows that the operation
of horizontal linkage over a Gorenstein local ring preserves the Ulrich property
with respect to I for horizontally linked modules.

Theorem 4.1. Let (R, M ) be a Cohen–Macaulay local ring of dimension d , and
suppose the ideal I is Ulrich but not a parameter ideal. Consider the following
assertions:

(i) R is Gorenstein.

(ii) M is Ulrich with respect to I if and only if λM is Ulrich with respect to I,
whenever M is a horizontally linked R-module.
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(iii) λM is maximal Cohen–Macaulay, whenever M is a horizontally linked R-
module which is Ulrich with respect to I.

(iv) Extd+2
R (R/I, R) = 0.

Then the following statements hold:

(a) (i) =⇒ (ii) =⇒ (iii).

(b) If d ≥ 2, then (iii) =⇒ (iv).

(c) If d ≥ 2 and I = M , then all the four conditions above are equivalent.

Proof. (a) (i) =⇒ (ii). Let M be a horizontally linked R-module. By Lemma 2.10,
M is a stable R-module. Assume that M is an Ulrich R-module with respect to I.
By [Goto et al. 2014, Corollary 5.3], the Auslander transpose Tr M is Ulrich with
respect to I. Moreover, since M is stable, we obtain by [Anderson and Fuller
1992, Theorem 32.13] that Tr M is stable as well. Applying [Goto et al. 2014,
Corollary 5.3] we conclude that the syzygy module � Tr M = λM is Ulrich with
respect to I. Now, to see the converse, it suffices to apply Lemma 2.11 to the
module λM and to use that M ∼= λ2 M . Notice that (ii) =⇒ (iii) is obvious. This
concludes the proof of (a).

(b) (iii) =⇒ (iv). Let R = R/I, and assume on the contrary that Extd+2
R (R, R) ̸= 0.

First notice that �d+1 R is stable, otherwise R would be a direct summand of �d+1 R
and then, by [Avramov 1998, Corollary 1.2.5],

d + 1 ≤ max{0, depth R − depthR R} = d − depthR R,

which is absurd. Now, by Lemma 2.10, �d+1 R is a horizontally linked R-module.
By [Goto et al. 2014, Theorem 3.2], �d+1 R is an Ulrich R-module with respect to I.
It follows from the assumption of (iii) that λ�d+1 R is a maximal Cohen–Macaulay
R-module, which in turn fits into a short exact sequence

0 −→ λ�d+1 R −→ F −→ Tr �d+1 R −→ 0

for some free R-module F . By [Bruns and Herzog 1993, Proposition 1.2.9],

(10) depthR Tr �d+1 R ≥ min{depthR F, depthR λ�d+1 R − 1} = d − 1 > 0.

Using (1), there is an exact sequence

0 → Ext1R(Tr Tr �d+1 R, R) → Tr �d+1 R → (Tr �d+1 R)∗∗

→ Ext2R(Tr Tr �d+1 R, R) → 0,

and since �d+1 R is stable, we have Tr Tr �d+1 R ∼=�d+1 R by [Anderson and Fuller
1992, Corollary 32.14(4)]. Thus, we obtain the exact sequence

(11) 0 → Extd+2
R (R, R) → Tr �d+1 R → (Tr �d+1 R)∗∗

→ Extd+3
R (R, R) → 0.
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As I is M -primary, the nonzero module Extd+2
R (R, R) must have finite length,

which in particular implies depthR Extd+2
R (R, R) = 0. On the other hand, by virtue

of (10) and (11), we get depthR Extd+2
R (R, R) > 0, a contradiction.

(c) (iv) =⇒ (i). If Extd+2
R (R/M , R) = 0 then, by [Matsumura 1986, Theorem 18.1],

the local ring R is Gorenstein. □

In order to provide the first application of our theorem, we invoke the following
classical concept:

Definition 4.2. A d-dimensional Cohen–Macaulay local ring R is said to have
minimal multiplicity if its multiplicity and embedding dimension are related by
e(R) = edim R − d + 1. As is well known, there is in general an inequality
e(R) ≥ edim R − d + 1, which originates the terminology.

Now recall that a local ring R is a hypersurface ring if R ∼= S/( f ), where (S, N )

is a regular local ring and f ∈ N . Such a ring is said to be a quadratic hypersurface
ring if f ∈ N 2

\ N 3. Clearly, a hypersurface ring R ∼= S/( f ) with f ∈ N 2 is
quadratic if and only if R has minimal multiplicity (equal to 2).

Our Theorem 4.1 yields a characterization of quadratic hypersurface rings in
terms of linkage of Ulrich modules in the classical sense, in the case I = M . It
is worth recalling an interesting connection, which we shall use in the proof of
Corollary 4.5, between quadratic hypersurface rings and the Ulrich property. To wit,
every nonfree maximal Cohen–Macaulay module over such a ring is a direct sum of
an Ulrich module and a free module (see [Herzog and Kühl 1987, Corollary 1.4]);
in particular, any such ring admits an Ulrich module.

Corollary 4.3. Let R be a nonregular Cohen–Macaulay local ring of minimal mul-
tiplicity with dimension d ≥ 2 and infinite residue field k. The following assertions
are equivalent:

(i) R is a (quadratic) hypersurface ring.

(ii) M is Ulrich if and only if λM is Ulrich, whenever M is a horizontally linked
R-module.

(iii) λM is maximal Cohen–Macaulay, whenever M is a horizontally linked Ulrich
R-module.

(iv) Extd+2
R (k, R) = 0.

Proof. As before let M be the maximal ideal of R. Since R/M is infinite, it is well
known that R has minimal multiplicity if and only if

M 2
= (x)M

with x an R-sequence (see [Bruns and Herzog 1993, Exercise 4.6.14]), which in turn
means that M is an Ulrich ideal in the sense of Definition 2.4. Since R is nonregular,
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M is not a parameter ideal. Therefore, as every hypersurface ring is Gorenstein,
the implications (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) follow readily by Theorem 4.1 with
I = M . Now, as recalled in the proof of the theorem, condition (iv) forces R to
be Gorenstein. But it is well known that a Gorenstein local ring having minimal
multiplicity is just a quadratic hypersurface ring, as needed. □

Connections between a more general notion of minimal multiplicity and the
Ulrich property with respect to I will be given in Section 5.

Before establishing another consequence of Theorem 4.1 over Gorenstein local
rings, we invoke an auxiliary invariant which will be used in the proof, namely,
the Gorenstein dimension of a finite R-module M , which is denoted by G-dimR M
(for the definition, see, e.g., [Christensen 2000, Definition 1.2.3]). Recall that if
R is Gorenstein then G-dimR M < ∞ for every finite R-module M . If R is local
and M is a finite R-module with G-dimR M < ∞ then the so-called Auslander–
Bridger formula states that G-dimR M = depth R − depthR M . In particular, if R
is Gorenstein, then G-dimR M = 0 if and only if M is maximal Cohen–Macaulay.
For details, see [Auslander and Bridger 1969; Christensen 2000].

Corollary 4.4. Let R be a Gorenstein local ring, and suppose the ideal I is Ulrich
but not a parameter ideal. Let M be a stable maximal Cohen–Macaulay R-module.
Then, M is an Ulrich R-module with respect to I if and only if λM is an Ulrich
R-module with respect to I.

Proof. Since R is Gorenstein and M is maximal Cohen–Macaulay, then as observed
above we have G-dimR M = 0. By [Martsinkovsky and Strooker 2004, Theorem 1],
M is horizontally linked. Now the result follows from Theorem 4.1(a). □

Corollary 4.5. Let R be a quadratic hypersurface local ring with infinite residue
field, and let M be a stable maximal Cohen–Macaulay R-module. Then, λM is an
Ulrich R-module.

Proof. Over such a ring, any maximal Cohen–Macaulay module M is either free or
satisfies

M ∼= U ⊕ F,

for some Ulrich module U and free module F , according to [Herzog and Kühl
1987, Corollary 1.4]. Thus, if in addition M is stable (in particular, nonfree), then it
must be Ulrich. Also note the maximal ideal M of R is Ulrich but not a parameter
ideal. Now we can apply Corollary 4.4 with I = M to get the result. □

Before giving more consequences of Corollary 4.4, we recall a useful lemma.

Lemma 4.6 [Herzog and Kühl 1987, Lemma 1.2]. Let R be a Gorenstein local ring.
If M is a maximal Cohen–Macaulay R-module, then �M is a stable R-module.
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Corollary 4.7. Let R be a Gorenstein local ring of dimension d , and suppose the
ideal I is Ulrich but not a parameter ideal. Then, λ(�kI ) is an Ulrich R-module
with respect to I for all k ≥ d.

Proof. First, as recalled in Remarks 2.8(iii), the R-module �k(R/I ) is Ulrich with
respect to I (in particular, maximal Cohen–Macaulay) for all k ≥ d . It follows by
Lemma 4.6 that the R-module �k+1(R/I ) = �kI is stable for all k ≥ d , and thus
Corollary 4.4 concludes the proof. □

Corollary 4.8. Let R be a 1-dimensional Gorenstein local ring. If I is an Ulrich
ideal of R which is not a parameter ideal, then λI is an Ulrich R-module with
respect to I.

Proof. By Remarks 2.8(ii), I is an Ulrich R-module with respect to I. Note
I is stable as it is a nonprincipal ideal, hence a nonfree R-module. Now, apply
Corollary 4.4. □

5. Minimal multiplicity and Ulrich properties

We start the section presenting a few preparatory definitions (Rees and associated
graded modules, and relative reduction numbers) as well as some auxiliary facts.

Let I be a proper ideal of a ring R. Recall that the Rees algebra of I is the
graded ring R(I ) =

⊕
n≥0 I n (as usual, we put I 0

= R), which can be realized as
the standard graded subalgebra R[I u] ⊂ R[u], where u is an indeterminate over R.
The associated graded ring of I is given by G(I ) =

⊕
n≥0 I n/I n+1

=R(I )⊗R R/I ,
which is standard graded over R/I .

Definition 5.1. If M is a finite R-module, the Rees module and the associated
graded module of I relative to M are, respectively, given by

R(I, M) =

⊕
n≥0

I n M, G(I, M) =

⊕
n≥0

I n M
I n+1 M

= R(I, M) ⊗R R/I,

which are finite graded modules over R(I ) and G(I ), respectively.

Now consider a local ring (R, M ) with residue field k. For a proper ideal I of
R, recall that the fiber cone of I is the special fiber ring of R(I ), i.e., the standard
graded k-algebra F(I ) =

⊕
n≥0 I n/M I n

= R(I )⊗R k. We can also consider the
finite graded F(I )-module F(I, M)=

⊕
n≥0 I n M/M I n M =R(I, M)⊗R k, whose

Krull dimension (called analytic spread of I relative to M) is denoted by

sM(I ) = dimF(I, M).

Definition 5.2. Let I be a proper ideal of a ring R and let M be a nonzero finite
R-module. An ideal J ⊂ I is called an M-reduction of I if J I n M = I n+1 M for
some integer n ≥ 0. Such an M-reduction J is said to be minimal if it is minimal
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with respect to inclusion. If J is an M-reduction of I , we define the reduction
number of I with respect to J relative to M as

rJ (I, M) = min{m ∈ N | J I m M = I m+1 M}.

The lemma below detects a useful connection between minimal M-reductions
and the so-called (maximal) M-superficial sequences of a given M -primary ideal
in a local ring (R, M ). For the definition and details about the latter concept, we
refer to [Rossi and Valla 2010, Sections 1.2 and 1.3]; also see [Conti 2006].

Lemma 5.3 [Conti 2006, corollario 3.14]. Let (R, M ) be a local ring with infinite
residue field and let I be an M -primary ideal. Let M be a finite R-module of
positive dimension. Then, every minimal M-reduction of I can be generated by a
maximal M-superficial sequence of I . Conversely, an ideal generated by a maximal
M-superficial sequence of I is necessarily a minimal M-reduction of I .

Next we invoke a central notion in this section, and a helpful lemma. As in
Section 2A, if I is an ideal of definition of a finite R-module M then e0

I (M) denotes
the multiplicity of M with respect to I . Moreover, we let e1

I (M) stand for the first
Hilbert coefficient — the so-called Chern number — of M with respect to I .

Definition 5.4 [Puthenpurakal 2003, Definition 15]. Let (R, M ) be a local ring, M
a Cohen–Macaulay R-module of dimension t and I a proper ideal of R such that
M n M ⊂ I M for some n > 0. Then M has minimal multiplicity with respect to I if

e0
I (M) = (1 − t)ℓR(M/I M) + ℓR(I M/I 2 M).

Notice that by taking M = R and I = M we recover Definition 4.2.

Lemma 5.5 [Puthenpurakal 2003, Theorem 16]. Let (R, M ) be a local ring, M
a Cohen–Macaulay R-module of dimension t and I a proper ideal of R such that
M n M ⊂ I M for some n > 0. The following conditions are equivalent:

(i) M has minimal multiplicity with respect to I .

(ii) (z1, . . . , zt)I M = I 2 M , for every maximal M-superficial sequence z1, . . . , zt .

(iii) (z1, . . . , zt)I M = I 2 M , for some maximal M-superficial sequence z1, . . . , zt .

(iv) e1
I (M) = e0

I (M) − ℓR(M/I M).

Here we observe that item (iii) above is not present in [Puthenpurakal 2003], but
a simple inspection of the proof easily shows that this assertion is also equivalent
to the ones given in Theorem 16 of that paper.

Our first result in this part is the following. As in the previous sections, we let
Q = (x1, . . . , xd) ⊂ I be as in Convention 2.2.
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Proposition 5.6. Suppose R is a Cohen–Macaulay local ring with infinite residue
field. Then, every Ulrich R-module with respect to I has minimal multiplicity with
respect to I.

Proof. Let M be an Ulrich module with respect to I. In particular, M is maximal
Cohen–Macaulay. Let grade(I, M) denote the maximal length of an M-sequence
contained in I. By [Kadu 2011, Lemma 1.3 and Lemma 1.6], we have

grade(I, M) ≤ sM(I ) ≤ dim M.

As I is M -primary, grade(I, M) = depth M = d, where as before d = dim R.
Hence sM(I ) = d = ν(Q), where ν(−) stands for minimal number of generators.
As is well known (see, e.g., [Conti 2006, corollario 3.22]), this implies that Q is
a minimal M-reduction of I, and therefore Lemma 5.3 gives that x1, . . . , xd is
in fact a maximal M-superficial sequence of I. On the other hand, because M is
Ulrich, we have QM = I M and so

QI M = I 2 M.

We conclude, by Lemma 5.5, that M has minimal multiplicity with respect to I. □

Remark 5.7. The converse of Proposition 5.6 fails even in the classical case I =M ;
see [Puthenpurakal 2005, Example 4.12].

Combining Proposition 5.6 and [Puthenpurakal 2003, Theorem 16], we immedi-
ately obtain the following property.

Corollary 5.8. Suppose R is a Cohen–Macaulay local ring with infinite residue
field. If M is an Ulrich R-module with respect to I, then the associated graded
G(I )-module G(I, M) is Cohen–Macaulay.

The next consequence deals with the Chern number and gives a generalization
of [Ooishi 1991, Corollary 1.3(1)].

Corollary 5.9. Let (R, M ) be a Cohen–Macaulay local ring with infinite residue
field and positive dimension, and let M be a maximal Cohen–Macaulay R-module.
Then e1

I (M) ≥ 0, and the following assertions are equivalent:

(i) M is an Ulrich R-module with respect to I.

(ii) M/I M is a free R/I -module and e1
I (M) = 0.

Proof. Applying [Puthenpurakal 2003, Proposition 12] and Remarks 2.8(i), we get

e1
I (M) ≥ e0

I (M) − ℓR(M/I M) ≥ 0.

If M is Ulrich with respect to I then, by definition, the R/I -module M/I M
is free and in addition e0

I (M) = ℓR(M/I M) (use again Remarks 2.8(i)). On the
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other hand, Proposition 5.6 ensures that M has minimal multiplicity with respect to
I , and therefore Lemma 5.5 gives e1

I (M) = e0
I (M) − ℓR(M/I M) = 0.

Conversely, suppose (ii). Since M is already assumed to be maximal Cohen–
Macaulay, it remains to show that I M = QM , which as we know is equivalent to the
equality e0

I (M)= ℓR(M/I M). But this follows from 0 ≤ e0
I (M)−ℓR(M/I M)≤

e1
I (M) = 0. This concludes the proof. □

Corollary 5.10. Let (R, M ) be a Cohen–Macaulay local ring with infinite residue
field and dimension d ≥ 1. If I is an Ulrich ideal of R which is not a parameter
ideal, then e1

I (�kI ) = 0 for all k ≥ d − 1. If in addition R is Gorenstein, then

e1
I (λ(�kI )) = 0 for all k ≥ d.

Proof. Recall that the R-module �k+1(R/I ) = �kI is Ulrich with respect to I

(in particular, maximal Cohen–Macaulay) for all k ≥ d − 1; see Remarks 2.8(iii).
Then the vanishing of e1

I (�kI ) follows by Corollary 5.9. Now if R is Gorenstein
then, by Corollary 4.7, the module λ(�kI ) is Ulrich with respect to I for all
k ≥ d , and we again apply Corollary 5.9. □

Remarks 5.11. (i) Let M be a d-dimensional Cohen–Macaulay R-module (assume
the setting of Convention 2.2, with d > 0 and R/M infinite). Recall that, for k ≫ 0,
the Hilbert–Samuel function H M

I (k) = ℓR(M/I k M) coincides with a degree d
polynomial P M

I (k), the Hilbert–Samuel polynomial of M with respect to I, which
can be expressed as

P M
I (k) =

d∑
i=0

(−1)i ei
I (M)

(k+d−i −1
d−i

)
.

Now if M is Ulrich with respect to I, then in particular M/I M ∼= (R/I )ν(M) and
therefore, by Corollary 5.9, we get e0

I (M) = ℓR(M/I M) = ν(M)ℓR(R/I ) and
e1
I (M) = 0. Thus, if for instance d = 1 then P M

I (k) = ν(M)ℓR(R/I )k. If d = 2,
we have

P M
I (k) = ν(M)ℓR(R/I )

(k+1
2

)
+ e2

I (M),

which raises the problem of finding e2
I (M). Of course, in case we know an integer

k0 satisfying P M
I (k) = H M

I (k) for all k ≥ k0, then e2
I (M) can be computed from

the expression above by evaluating k = k0.

(ii) If d ≥ 1 and I is an Ulrich ideal of R then, as we know, the j -th syzygy module
of I is Ulrich with respect to I for all j ≥ d − 1. Now assume d = 1. Applying
the preceding part to the module � jI for any j ≥ 0, and noticing that ν(� jI ) is
precisely the j-th Betti number β j (I ) of I, we obtain the simple formula

P� j I
I (k) = β j (I )ℓR(R/I )k.
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In addition, considering linkage and assuming that R is Gorenstein, our Corollary 4.7
yields that λ(� jI ) is also Ulrich with respect to I for any j ≥ 1, and observe that
ν(λ(� jI )) = β j (I ) as well. It follows that P� j I

I (k) = Pλ(� j I )
I (k).

Our next result, Theorem 5.14 below, provides a characterization of modules
of minimal multiplicity in terms of reduction number and Castelnuovo–Mumford
regularity (of blowup modules). For completeness, we recall the definition of the
latter, which is of great importance in commutative algebra and algebraic geometry,
for instance in the study of degrees of syzygies over polynomial rings; we refer to
[Brodmann and Sharp 1998, Chapter 15].

Let S =
⊕

n≥0 Sn be a finitely generated standard graded algebra over a ring S0.
As usual, we write S+ =

⊕
n≥1 Sn . For a graded S-module A =

⊕
n∈Z An satisfying

An = 0 for all n ≫ 0, we set

end A =

{
max{n | An ̸= 0} if A ̸= 0,

−∞ if A = 0.

Now fix a finite graded S-module N ̸= 0. Given j ≥ 0, let

H j
S+

(N ) = lim
−−→

k
Ext j

S(S/Sk
+
, N )

be the j-th local cohomology module of N . Recall H j
S+

(N ) is a graded module
such that H j

S+
(N )n = 0 for all n ≫ 0; see [Brodmann and Sharp 1998, Proposi-

tion 15.1.5(ii)]. Thus, end H j
S+

(N ) < ∞.

Definition 5.12. The Castelnuovo–Mumford regularity of the graded S-module N
is given by

reg N = max{end H j
S+

(N ) + j | j ≥ 0}.

The following lemma will be very useful to the proof of Theorem 5.14, since it
interprets the regularity of Rees modules as a relative reduction number in a suitable
setting. It was originally stated in more generality (involving d-sequences) but here
the special case of regular sequences suffices for our purposes.

Lemma 5.13 [Giral and Planas-Vilanova 2008, Theorem 5.3]. Let R be a ring, I
an ideal of R and M a finite R-module. Let z1, . . . , zs be an M-sequence such that
the ideal J = (z1, . . . , zs) is an M-reduction of I . Let rJ (I, M) = r . Suppose either
s = 1, or else s ≥ 2 and

(z1, . . . , zi )M ∩ I r+1 M = (z1, . . . , zi )I r M for all i = 1, . . . , s − 1.

Then, regR(I, M) = rJ (I, M).

We are now ready for the main technical result of this section, which in particular
will lead us to a byproduct on Ulrich modules. Note this theorem also gives a
generalization of [Ooishi 1991, Proposition 1.2], where the situation I = M was
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treated; more precisely, the condition g1(M) = 0 in that paper is equivalent to
Puthenpurakal’s notion of minimal multiplicity when I = M .

Theorem 5.14. Let (R, M ) be a local ring with infinite residue field, M a Cohen–
Macaulay R-module of dimension t > 0 and I an M -primary ideal of R. Let
J = (z1, . . . , zt) be a minimal M-reduction of I . The following assertions are
equivalent:

(i) M has minimal multiplicity with respect to I .

(ii) regR(I, M) = regG(I, M) = rJ (I, M) ≤ 1.

(iii) rJ (I, M) ≤ 1.

Proof. First, notice that z1, . . . , zt is a (maximal) M-superficial sequence of I by
Lemma 5.3. As a consequence, since M is Cohen–Macaulay and I is M -primary,
z1, . . . , zt must be in fact an M-sequence according to [Rossi and Valla 2010,
Lemma 1.2]. Now, the core of the proof is the implication (i) =⇒ (ii), so assume
first that (i) holds. In general, we have regR(I, M) = regG(I, M), see [Zamani
2014, Corollary 3], and so it remains to prove that regR(I, M) = rJ (I, M), which
we shall accomplish by means of Lemma 5.13.

Moreover, since z1, . . . , zt is maximal M-superficial, Lemma 5.5 yields J I M =

I 2 M , i.e., rJ (I, M) ≤ 1. Now, to simplify notation, set zi = z1, . . . , zi for i =

1, . . . , t − 1 (note we can assume t > 1 by Lemma 5.13). Since clearly (zi )M ∩

I M = (zi )M for all i = 1, . . . , t − 1, the case rJ (I, M) = 0 is trivial by virtue of
Lemma 5.13. Now suppose rJ (I, M) = 1. Again in view of Lemma 5.13, all we
need to prove is that

(zi )M ∩ I 2 M = (zi )I M for all i = 1, . . . , t − 1.

First, it is clear that (zi )I M ⊂ (zi )M ∩ I 2 M . To show the other inclusion, take
an arbitrary f ∈ (zi )M ∩ I 2 M . Because J I M = I 2 M , we have

f = z1m1 + · · · + zi mi = z1a1m′

1 + · · · + zt at m′

t

with m j , m′

k ∈ M and ak ∈ I . Hence

zt at m′
t = 0 ∈ M/(zt−1)M,

and since the sequence is regular on M , we have at m′
t = 0 ∈ M/(zt−1)M , that is,

at m′
t = z1wt,1 +· · ·+ zt−1wt,t−1 with wt, j ∈ M . Therefore, f can be expressed as

(12) z1m1 + · · · + zi mi = z1(a1m′

1 + ztwt,1) + · · · + zt−1(at−1m′

t−1 + ztwt,t−1),

whose right-hand side shows f ∈ (zt−1)I M , thus settling the case i = t − 1. Next,
for i < t − 1, we reduce (12) modulo (zt−2)M and apply an analogous argument to
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the term zt−1(at−1m′

t−1 + ztwt,t−1) in order to obtain

(13) at−1m′

t−1 + ztwt,t−1 = z1wt−1,1 + · · · + zt−2wt−1,t−2

with wt−1, j ∈ M . Thus, by (12) and (13),

f = z1(a1m′

1+ztwt,1+zt−1wt−1,1)+· · ·+zt−2(at−2m′

t−2+ztwt,t−2+zt−1wt−1,t−2).

Continuing with the argument, we get an equality

f = z1(a1m′

1+ztwt,1+· · ·+zi+1wi+1,1)+· · ·+zi (ai m′

i +ztwt,i +· · ·+zi+1wi+1,i ).

Since a1, . . . , ai , zi+1, . . . , zt ∈ I , it follows that f ∈ (zi )I M , as needed.
The implication (ii) =⇒ (iii) is obvious. Finally, suppose (iii) holds. Then

J I M = I 2 M , and we have seen that z1, . . . , zt is a maximal M-superficial sequence.
By Lemma 5.5, we conclude that M has minimal multiplicity with respect to I . □

As a consequence of Theorem 5.14, we determine the regularity of blowup
modules of I relative to an Ulrich module. Also, taking I = M the result retrieves
part of [Ooishi 1991, Proposition 1.1].

Corollary 5.15. Let (R, M ) be a Cohen–Macaulay local ring with infinite residue
field and positive dimension, and let Q be as in Convention 2.2. If M is an Ulrich
R-module with respect to I, then

regR(I, M) = regG(I, M) = rQ(I, M) = 0.

The converse holds in case M is maximal Cohen–Macaulay and M/I M is R/I -
free.

Proof. First, notice that Q is an M-reduction of I, so the number rQ(I, M) makes
sense. Now, because M is Ulrich with respect to I, we have QM = I M , which
means rQ(I, M) = 0. On the other hand, Proposition 5.6 and its proof ensure
that M has minimal multiplicity with respect to I and that Q is in fact a minimal
M-reduction of I, and so we can apply Theorem 5.14 to obtain regR(I, M) =

regG(I, M) = rQ(I, M). The converse is clear. □

Corollary 5.16. Let (R, M ) be a Cohen–Macaulay local ring with infinite residue
field and positive dimension. Suppose I is an Ulrich ideal of R but not a parameter
ideal. Then, regR(I, �kI ) = 0 for all k ≥ d − 1. If in addition R is Gorenstein,
then

regR(I, λ(�kI )) = 0 for all k ≥ d.

Proof. As we know, the R-module �k+1(R/I ) = �kI is Ulrich with respect to I

for all k ≥ d −1. Thus the first part follows from Corollary 5.15. If R is Gorenstein
then by Corollary 4.7 the R-module λ(�kI ) is Ulrich with respect to I for all
k ≥ d . Now we again apply Corollary 5.15. □
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Corollary 5.17. Let (R, M ) be a 1-dimensional Cohen–Macaulay local ring with
infinite residue field. If I is an Ulrich ideal, then

regR(I )+ = 0.

Proof. Using Remarks 2.8(ii) and Corollary 5.15, we obtain regR(I, I ) = 0. On
the other hand, we clearly have R(I, I ) =

⊕
i≥0 I i+1

= R(I )+. □

Example 5.18. Consider the local ring R = K [[x, y]]/(x2
+ y4), where K is an

infinite field. The ideal I = (x, y2)R is Ulrich (this is the case d = 1 and s = 2 of
Examples 2.5(ii)). Then, Corollary 5.17 gives regR(I )+ = 0. To write this graded
ideal explicitly, we can use (degree 1) variables T, U over R in order to determine
a presentation of the Rees algebra

R(I ) = R[T, U ]/K , K = (xT + y2U, y2T − xU, T 2
+ U 2), R(I )0 = R,

so that R(I )+ = (T, U )R[T, U ]/K .
Now let us use the same example to illustrate the determination of the Hilbert–

Samuel polynomial PI
I (k). Notice that ℓR(R/I ) = dimK (K [[y]]/(y2)) = 2 and

ν(I ) = 2. By Remarks 5.11(i), we have PI
I (k) = ν(I )ℓR(R/I )k = 4k, i.e.,

ℓR(I /I k+1) = 4k for all k ≫ 0.

6. A detailed example

In this last section, we fix formal indeterminates x, y, z over an infinite field K as
well as the 2-dimensional local hypersurface ring R = K [[x, y, z]]/(x2

+ y2
+ z4).

The ideal

I = (x, y, z2)R

is Ulrich — this is the case d = s = 2 of Examples 2.5(ii) — and not a parameter
ideal. Our goal here is to find (explicit) Ulrich R-modules with respect to I

and study their multiplicities, Chern numbers, and the regularity of the associated
blowup modules.

First, I has an infinite (in fact, periodic) minimal R-free resolution

(14) · · · −→ R4 8
−→ R4 8

−→ R4 8
−→ R4 9

−→ R3
−→ I −→ 0,

where

8 =


−z2 0 −y x

0 −z2 x y
−y x z2 0
x y 0 z2

 , 9 =

−z2 0 −y x
0 −z2 x y
x y 0 z2

 .
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In what follows, as a matter of standard notation, whenever ϕ is a p × q matrix
with entries in R, we let Im ϕ denote the R-submodule of R p generated by the
column vectors of ϕ. Below we observe a few facts.

• We claim that the R-submodules Im 8 ⊂ R4 and Im 9 ⊂ R3 are Ulrich with
respect to I. To see this, using Remarks 2.8(iii) we get that �kI is Ulrich
with respect to I whenever k ≥ 1. But in the present case, by (14), these
modules are

�I = Im 9, �kI = Im 8, for all k ≥ 2,

thus showing the claim. Also notice (by the symmetry of 8) that λ(�kI ) =

λ(Im 8) = Im 8∗
= Im 8 for all k ≥ 2. In particular, Im 8 is horizontally

linked.

• Let us compute multiplicities and Chern numbers. First, since Im 9 is Ul-
rich with respect to I, we must have Im 9/I Im 9 ∼= (R/I )ν(Im 9). Note
ℓR(R/I ) = dimK (K [[z]]/(z2)) = 2. Thus, by Remarks 2.8(i),

e0
I (Im 9) = ℓR(Im 9/I Im 9) = ν(Im 9)ℓR(R/I ) = 4 · 2 = 8.

Since ν(Im 8) = 4 as well, we have e0
I (Im 8) = 8. As to the Chern numbers,

Corollary 5.10 gives e1
I (�kI ) = 0 for all k ≥ 1. Hence,

e1
I (Im 9) = e1

I (Im 8) = 0.

• For the Castelnuovo–Mumford regularity of blowup modules, Corollary 5.16
yields regR(I, �kI ) = 0 for all k ≥ 1, and therefore

regR(I, Im 9) = regR(I, Im 8) = 0.

Finally, the associated graded G(I )-modules G(I, Im 9) and G(I, Im 8)

have regularity zero as well (see Corollary 5.15), and notice they are Cohen–
Macaulay by Corollary 5.8.
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GROUPS WITH 2-GENERATED SYLOW SUBGROUPS AND
THEIR CHARACTER TABLES

ALEXANDER MORETÓ AND BENJAMIN SAMBALE

Let G be a finite group with a Sylow p-subgroup P. We show that the
character table of G determines whether P has maximal nilpotency class
and whether P is a minimal nonabelian group. The latter result is obtained
from a precise classification of the corresponding groups G in terms of their
composition factors. For p-constrained groups G we prove further that the
character table determines whether P can be generated by two elements.

1. Introduction

Recently, Navarro and Sambale [2023] have investigated finite groups G with a
Sylow p-subgroup P such that |P : P ′

| = p2 or |P : Z(P)| = p2 where P ′
= [P, P]

denotes the commutator subgroup and Z(P) is the center of P. It was proved that
both properties can be read off from the character table X (G) of G. This was another
contribution to Richard Brauer’s Problem 12 [1963], which asks what properties
of a Sylow p-subgroup P are determined by X (G). We refer the reader to the
introduction of [Navarro and Sambale 2023] and [Sambale 2020] for a collection
of the known results on this problem. We just mention that one important property
is that X (G) knows whether P is abelian. While there is an elementary proof of
the case p = 2 by Camina and Herzog [1980], the full solution has required the
classification of finite simple groups (see [Kimmerle and Sandling 1995; Navarro
et al. 2015; Malle and Navarro 2021]).

After dealing with P ′ and Z(P), it is natural to turn our attention to the Frattini
subgroup 8(P) of P. Recall that |P : 8(P)| ≤ p holds if and only if P is cyclic.
It is easy to show that this property can be read off from X (G) (see [Navarro 2018,
Corollary 3.12]). In the first part of the present paper we consider groups G with
|P : 8(P)| = p2, i.e., P is generated by two elements, but not by one. For p = 2
this property is detectable by X (G) as was shown in [Navarro et al. 2021]. We
obtain the corresponding result for odd primes p provided that G is p-constrained
in Corollary 5. In the general case we offer a partial solution depending on the
socle of G (see Proposition 6 and the subsequent remark).

MSC2020: 20C15, 20D20.
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Our next objective are groups with Sylow p-subgroups P of maximal nilpotency
class. For p = 2, this property is equivalent to |P : P ′

| = 4. This case was previously
handled in an elementary fashion by Navarro, Sambale, and Tiep [Navarro et al.
2018]. The general result is our first main theorem.

Theorem A. The character table of a finite group G determines whether G has
Sylow p-subgroups of maximal nilpotency class.

It is known that X (G) determines the isomorphism types of abelian Sylow
subgroups. Of course we cannot expect this for maximal class Sylow subgroups
as X (D8) = X (Q8). Perhaps surprisingly, X (G) does not even determine X (P).
Counterexamples for p = 3 arise as semidirect products of nonequivalent faithful
actions of SL(2, 3) on C9 × C9 (the groups are SmallGroup(2335, a) with a ∈

{2289, 2290} in GAP [2020]). Here P indeed has maximal class. This is related to
[Navarro et al. 2022, Question E].

We obtain Theorem A as a consequence of the following structure description,
which might be of independent interest:

Theorem B. Let G be a finite group with a Sylow p-subgroup P of maximal class.
Suppose that Op′(G) = 1 and Op′

(G) = G. Then one of the following holds:

(i) There exists x ∈ P such that |CG(x)|p = p2.

(ii) G is quasisimple and |Z(G)| ≤ p.

The proof uses recent work by Grazian and Parker [2022] on fusion systems and
is given in Section 3.

In the final part of the paper we study groups with minimal nonabelian Sylow
p-subgroups P, i.e., P is nonabelian, but every proper subgroup of P is abelian. It
is easy to see that this happens if and only if |P : Z(P)| = |P : 8(P)| = p2 (see
Lemma 9 below). Refining [Navarro and Sambale 2023, Theorem 7.5], we obtain
in Section 4 the following description:

Theorem C. Let G be a finite group with a minimal nonabelian Sylow p-subgroup
P and Op′(G) = 1. Then one of the following holds:

(i) p = 2, P ∈ {D8, Q8} and O2′

(G) ∈ {SL(2, q), PSL(2, q ′), A7} where q ≡

±3 (mod 8) and q ′
≡ ±7 (mod 16).

(ii) |P| = p3 and exp(P) = p > 2.

(iii) G = P ⋊ Q where Q ≤ GL(2, p).

(iv) p > 2, Op′

(G) = S ⋊C pa where S is a simple group of Lie type with cyclic
Sylow p-subgroups. The image of C pa in Out(S) has order p.

(v) p = 2 and G = PSL(2, q f ) ⋊ C2ad where q is a prime, q f
≡ ±3 (mod 8)

and d | f . Moreover, C2a acts as a diagonal automorphism of order 2 on
PSL(2, q f ) and Cd induces a field automorphism of order d.
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(vi) p =3 and O3′

(G)=PSLϵ(3, q f )⋊C3a where ϵ =±1, q is prime, (q f
−ϵ)3 =3

and G/O3′

(G) ≤ C f × C2.

Here, PSLϵ stands for PSL if ϵ = 1 and PSU otherwise. Again the proof is based
on the classification of the corresponding fusion systems. To show that Case (iv) in
Theorem C occurs for all odd primes p, we will exhibit appropriate examples after
the proof.

Corollary D. The character table of a finite group G determines whether G has
minimal nonabelian Sylow p-subgroups.

2. 2-generated Sylow subgroups

In the following G will always denote a finite group. The exponent of G is
denoted by exp(G). The core of a subgroup H ≤ G is defined by coreG(H) :=⋂

g∈G gHg−1 ⊴G. For x, y ∈ G let [x, y] := xyx−1 y−1. The Fitting subgroup and
the generalized Fitting subgroup of G are denoted by F(G) and F∗(G) = F(G)E(G)

respectively. We write Irr(G) to denote the set of ordinary complex irreducible
characters of G. For g ∈ G and χ ∈ Irr(G) let

Q(g) := Q(χ(g) : χ ∈ Irr(G)),

Q(χ) := Q(χ(g) : g ∈ G).

It is well-known that Q(χ) lies in the cyclotomic field Qn where n = |G|. Let fχ
be the smallest positive integer such that Q(χ) ⊆ Q fχ ( fχ is called the Feit number
in [Navarro 2018]). Let Irrp′(G) := {χ ∈ Irr(G) : p ∤ χ(1)} as usual. The p-part
and the p′-part of an integer n are denoted by n p and n p′ respectively.

Our first lemma is applied multiple times throughout the paper.

Lemma 1. Let A be an abelian normal subgroup of G such that G = ⟨x⟩A for some
x ∈ G. Then the map A → G ′, a 7→ [x, a] is an epimorphism with kernel CA(x). In
particular, |G ′

| = |A/CA(x)|.

Proof. See [Isaacs 2008, Lemma 4.6]. □

To get from P ′ to 8(P) we need the following variant:

Lemma 2. Let P be a p-group with a proper normal subgroup Q and x ∈ P
such that P = ⟨x⟩Q and ⟨x⟩ ∩ Q ≤ P ′. Then |P : 8(P)| = p2 if and only if
|CQ/8(Q)(x)| = p.

Proof. Since ⟨x⟩ ∩ Q ≤ P ′
≤ 8(P) and Q < P, we have

P/8(P) = Q8(P)/8(P) × ⟨x⟩8(P)/8(P) ∼= Q/(Q ∩ 8(P)) × C p.

Moreover,

8(P) ∩ Q = P ′8(Q)⟨x p
⟩ ∩ Q = P ′8(Q)(⟨x p

⟩ ∩ Q) = P ′8(Q).



340 ALEXANDER MORETÓ AND BENJAMIN SAMBALE

Now |P : 8(P)| = p2 if and only if

|Q/8(Q) : (P/8(Q))′| = |Q : P ′8(Q)| = p.

By Lemma 1 applied to Q/8(Q)⊴ P/8(Q), this is equivalent to

|CQ/8(Q)(x)| = p. □

The next result is a variation of [Navarro and Sambale 2023, Theorem 6.1].

Lemma 3. Let G be a finite group with a Sylow p-subgroup P and Op′(G) = 1.
Then

K :=

⋂
χ∈Irrp′ (G)

p2 ∤ fχ

Ker(χ) = coreG(8(P)).

Proof. Let n := |G|. If n p = 1, then the claim holds since
⋂

χ∈Irr(G) Ker(χ) = 1 = P.
Thus, let n p ̸= 1. Then G := Gal(Qn|Qpn p′ ) is a p-group. Let N := coreG(8(P))

and χ ∈ Irrp′(G) with p2 ∤ fχ . Since Q(χP) ⊆ Q(χ) ⊆ Qpn p′ , G permutes the
irreducible constituents of χP. Since the sizes of the G-orbits are p-powers and
p ∤χ(1), there must be a linear constituent λ ∈ Irr(P|χ) fixed by G, i.e., Q(λ) ⊆ Qp.
It follows that N ⊆ 8(P) ⊆ Ker(λ). By Clifford theory, χN is a sum of conjugates
of λN . Hence, N ⊆ Ker(χ). This shows that N ≤ K .

Now let λ ∈ Irr(P/8(P)). This time, G acts on the irreducible constituents of λG.
Since p ∤ |G : P| = λG(1), there must be a constituent χ ∈ Irrp′(G|λ) fixed by G, i.e.,
p2 ∤ fχ . This implies χP∩K = χ(1)1P∩K . On the other hand, λP∩K is a constituent
of χP∩K . Therefore, P ∩ K ⊆ Ker(λ). Since λ ∈ Irr(P/8(P)) was arbitrary, we
obtain P ∩ K ≤ 8(P). Now Tate’s theorem (see [Huppert 1967, Satz IV.4.7]) yields
that K is p-nilpotent. By hypothesis, Op′(K ) ≤ Op′(G) = 1 and K is a p-group.
Finally, K ≤ Op(G) ∩ K ≤ P ∩ K ≤ 8(P) and K ≤ N . □

We mention that the characters χ with p2 ∤ fχ are precisely the almost p-rational
characters introduced in [Hung et al. 2022]. Lemma 3 allows to read off K :=

coreG(8(P)) from the character table. Since |P/K : 8(P/K )| = |P : 8(P)|, it is
therefore no loss to assume that K = 1. The next theorem comes close to [Navarro
and Sambale 2023, Theorem 3.1].

Theorem 4. Let G be a finite group with a nonabelian Sylow p-subgroup P
such that |P : 8(P)| = p2 and Op′(G) = 1 = coreG(8(P)). Then F∗(G) is
the unique minimal normal subgroup of G and PF∗(G)/F∗(G) is cyclic. If F∗(G)

is nonabelian, then P permutes the simple components of F∗(G) transitively. In
particular, their number is a p-power in this case.
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Proof. Let N be a minimal normal subgroup of G. Then

|P N/N : 8(P N/N )| = |P/P ∩ N : 8(P/P ∩ N )|

= |P/P ∩ N : 8(P)(P ∩ N )/P ∩ N |

= |P : 8(P)(P ∩ N )|

≤ |P : 8(P)|

= p2,

where the second equality follows from [Isaacs 2008, Lemma 4.5], for instance.
Suppose first that P ∩ N ≤ 8(P). Then by Tate’s theorem (see [Huppert 1967,
Satz IV.4.7]), N is a p-group and N ≤ 8(P). This contradicts coreG(8(P)) = 1.
Consequently, |P N/N : 8(P N/N )| ≤ p and P N/N is cyclic. Let M ̸= N be
another minimal normal subgroup of G. Then G/N and similarly G/M have cyclic
Sylow p-subgroups. Since G is isomorphic to a subgroup of G/M × G/N , G has
abelian Sylow p-subgroups, which we have excluded explicitly. This shows that N
is the unique minimal normal subgroup.

Assume now that N is nonabelian. Then F(G)∩ N = 1 implies F(G) = 1 = Z(G)

and F∗(G) = E(G) = N . Write N = T1 × · · ·× Tn with nonabelian simple groups
T1 ∼= · · · ∼= Tn . If P ≤ N , using that P is 2-generated and nonabelian, we conclude
that n = 1 and P certainly acts transitively on {T1, . . . , Tn}. Hence, we may assume
that P ⊈ N and n ≥ 2. Let Qi := P ∩ Ti for i = 1, . . . , n. Let x ∈ P such that
P N/N =⟨x N ⟩. Since P ∩N ⊈8(P), there exists some 1 ≤ i ≤ n with Qi ⊈8(P).
Without loss of generality, let i =1. Choose y ∈ Q1\8(P). For all j ∈Z we note that
xy j /∈ N ⊇8(P). Since |P :8(P)| = p2, it follows that P =⟨x, y⟩. Without loss of
generality, let T1, . . . , Tk be the orbit of T1 under P. Suppose by way of contradiction
that k <n. Then Q1 · · · Qk⊴P and Qk+1×· · ·×Qn ≤ P/Q1 · · · Qk =⟨x Q1 · · · Qk⟩

is cyclic. This is only possible if n = k+1 and Qn is cyclic. Moreover, Qn =⟨x pa
z⟩

for some a ≥ 1 and z ∈ Q1 · · · Qk . Since a nonabelian simple group cannot have
a cyclic Sylow 2-subgroup, p > 2. It follows from [Gross 1982, theorem A] that
x induces an inner automorphism on Tn . This is impossible since x pa

induces an
inner automorphism of order |Tn|p. This contradiction shows that P permutes the
Ti transitively.

Finally, assume that N is elementary abelian. Since Op′(G) = 1, we have
F := F(G) = Op(G). Suppose that N < F . Then 8(F) ≤ 8(P) yields 8(F) ≤

coreG(8(P)) = 1, i.e., F is elementary abelian. Now the existence of an element
of order p in P \ N implies the existence of a (cyclic) complement of N in P. By a
theorem of Gaschütz (see [Huppert 1967, Hauptsatz I.17.4]), N has a complement K
in G. Since F centralizes N , we obtain 1 ̸= K ∩ F ⊴N K = G. This contradicts the
fact that N is the unique minimal normal subgroup of G. Hence, F = N . Suppose
that E(G) ̸=1 and choose a central product M⊴G of quasisimple components. Then
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N ≤ Z(M), because 1 ̸= N ∩ M ⊴G. Since M/N has cyclic Sylow p-subgroups,
the order of the Schur multiplier of M/N is not divisible by p. This contradicts
N ≤ Z(M). We have therefore shown that N = F∗(G). □

In order to decide whether |P : 8(P)| = p2, we may assume that the hypotheses
of Theorem 4 are fulfilled. The situation now splits into two cases. When F∗(G)

is abelian, the group G is p-constrained (recall that in general a group G is called
p-constrained if CG(Op(G)) ≤ Op(G) where G := G/Op′(G)). In this case we
solve the problem completely. To do so, we will use a result of Higman (see
[Navarro 2018, Corollary 7.18]) that allows to locate the p-elements in X (G).

Corollary 5. The character table of a p-constrained group G determines whether
a Sylow p-subgroup P is generated by two elements.

Proof. Let P be a Sylow p-subgroup of G. Since the character table X (G) deter-
mines X (G/Op′(G)), we may assume that Op′(G) = 1. Since G is p-constrained,
Op(G) > 1. By Lemma 3, we may assume that coreG(8(P)) = 1. Moreover,
the orders and embeddings of the normal subgroups of G can be read off from
X (G). Hence by Theorem 4, we may assume that N = Op(G) = F(G) is the only
minimal normal subgroup of G. If P = N , then |P : 8(P)| = |P| and we are
done. Hence, let N < P. By [Navarro 2018, Corollary 3.12], X (G/N ) detects
whether P/N is cyclic. By Theorem 4, we can assume that this is the case. Choose
x ∈ P with P/N = ⟨x N ⟩ (note that x can be spotted in X (G) using [Navarro 2018,
Corollary 3.12]). Since P = N ⟨x⟩ = Op(G)⟨x⟩ is the only Sylow p-subgroup of
G containing x , CP(x) = CN (x)⟨x⟩ is a Sylow p-subgroup of CG(x). In particular,
|CN (x)| = |CG(x)|p/|P/N | is determined by X (G). By Lemma 1, we have

(2-1) P ′
= [x, N ] = {[x, y] : y ∈ N }

and |P ′
| = |N/CN (x)| can be computed from X (G). Let |P/N | = pa and

|N/P ′
| = pn. If x pa

∈ P ′, then P/P ′ ∼=C pa ×Cn
p and otherwise P/P ′ ∼=C pa+1×Cn−1

p .
Since Q(x) can be read off from X (G), it suffices to show that

p|Q(x) : Q|p = exp(P/P ′).

Taking only X (G/N ) into account, we obtain Q(x N ) = Qpa or equivalently
|Q(x N ) : Q|p = pa−1 by [Navarro 2018, Theorem 3.11]. Thus |Q(x) : Q|p ≥ pa−1.
If x pa

= 1, then p|Q(x) : Q|p = pa
= exp(P/P ′) as desired. Now let |⟨x⟩| = pa+1.

If x pa
∈ P ′, then there exists y ∈ N with x pa

= [x, y] = xyx−1 y−1 by (2-1). It
follows that yxy−1

= x1−pa
and |NG(⟨x⟩) : CG(x)|p = p. Again by [Navarro 2018,

Theorem 3.11], we have p|Q(x) : Q|p = pa
= exp(P/P ′). Assume conversely

that |Q(x) : Q|p = pa−1. Then there exists y ∈ G with yxy−1
= x1+kpa

for some
0 < k < p. We observe that y ∈ NG(⟨x⟩N ) = NG(P). Replacing y by its p-part,
we get y ∈ P. Now x−kpa

= [x, y] ∈ P ′ and exp(P/P ′) = pa as desired. □
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If G is p-solvable in the situation of Corollary 5 (recall that every p-solvable
group is p-constrained), then Op(G) has a complement K in Opp′(G) by the Schur–
Zassenhaus theorem. Using the Frattini argument, it is easy to show that NG(K ) is
a complement of N in G. In this situation, G is a primitive permutation group on
N of affine type.

On the other hand, every nonabelian simple group S gives rise to a nonsplit
extension G = N .S where N = 8(G) is elementary abelian without complement
(see [Doerk and Hawkes 1992, Theorem B.11.8]). Garrison [1976] has exhibited
examples to show that X (G) does not determine whether G splits over N . For
instance,

PerfectGroup(7500, 1) ∼= C3
5 ⋊ A5 and PerfectGroup(7500, 2) ∼= C3

5 .A5

in GAP [2020] have the same character table and the Sylow 5-subgroup is 2-
generated in both cases.

Now assume that N = F∗(G) in the situation of Theorem 4 is nonabelian. If
N ∩ P is abelian, then N has a complement in P N by [Huppert 1967, Satz IV.3.8].
In this case P N is a twisted wreath product. The nonsplit extension M10 = A6.C2

with P = SD16, a semidihedral group, shows that this is not always the case. Even
when N is not simple, P ∩ N is not always abelian (as in [Navarro and Sambale
2023, Theorem 3.1]). One example is

G = PSL(2, 7)2 ⋊ ⟨x⟩ ∼= PSL(2, 7)2 ⋊C4 ≤ PGL(2, 7) ≀ C2,

where x2 acts as a diagonal automorphism on both factors PSL(2, 7) simultaneously.
Here P = D2

8 ⋊C4 is 2-generated. Nevertheless, we provide the following reduction
theorem:

Proposition 6. Let G be a finite group with Sylow p-subgroup P such that Op′(G)=1
and N = F∗(G) is the unique minimal normal subgroup of G. Suppose that N is
nonabelian and P N/N is cyclic. Let S be a simple component of N . Assume that
|G : NG(S)| is a p-power. Then the following hold:

(i) G = NG(S)P.

(ii) P̃ := NP(S)CG(S)/CG(S) is a Sylow p-subgroup of the almost simple group
NG(S)/CG(S) with socle S̃ := SCG(S)/CG(S) ∼= S. Moreover, P̃ S̃/S̃ is cyclic.

(iii) |P : 8(P)| ≤ p2 if and only if |P̃ : 8(P̃)| ≤ p2.

(iv) S and |P̃| are determined by X (G).

Proof. (i) Since |G : NG(S)| is a p-power, |NG(S)P| = |NG(S) : NP(S)||P| = |G|

and G = NG(S)P.

(ii) By (i), NP(S) is a Sylow p-subgroup of NG(S). Hence, P̃ is a Sylow p-
subgroup of NG(S)/CG(S). Let Q := N ∩ P ⊴ P. Then P/Q ∼= P N/N is cyclic by
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hypothesis. Let x ∈ P such that P =⟨x⟩Q. Then P̃ S̃/S̃ ∼=NP(S)SCG(S)/SCG(S)≤

⟨x⟩SCG(S)/SCG(S) is cyclic.

(iii) If P ≤ N ≤ NG(S), then S⊴G and N = S. Here, P ∼= P̃ , so we are done. Now
assume P N/N ̸= 1. As in (ii), let Q := N ∩ P ⊴ P. Since Op(P N ) = N , there
exists x ∈ P such that P = ⟨x⟩Q and ⟨x⟩ ∩ Q ≤ P ′ (see [Brandis 1978, Satz 3.3]).
Lemma 2 yields |P : 8(P)| = p2 if and only if |CQ/8(Q)(x)| = p.

By (i), we may write N =T1×· · ·×Tpa such that Ti = x i−1Sx1−i for i =1, . . . , pa.
Let Qi := Ti ∩ P ≤ Q. Then Q̃ := Q1CG(S)/CG(S) ∼= Q1 is a normal subgroup
of P̃ . Since NP(S) = ⟨x pa

⟩Q, we have P̃ = ⟨x̃⟩Q̃ where x̃ := x pa
CG(S). It is easy

to see that the map

CQ1/8(Q1)(x pa
) → CQ/8(Q)(x), y8(Q1) 7→

pa
−1∏

i=0

x i yx−i8(Q)

is an isomorphism. In particular, |CQ/8(Q)(x)| = |CQ1/8(Q1)(x pa
)|. Assume for

the moment that x pa
∈ Q. Then

P̃ = Q̃ ≤ S̃ and |CQ1/8(Q1)(x pa
)| = |Q1/8(Q1)| = |P̃/8(P̃)|.

In this case, |P : 8(P)| = p2 if and only if P̃ is cyclic, i.e., |P̃ : 8(P̃)| = p. Now
let x pa

/∈ Q. By way of contradiction, suppose that x pa
∈ Q1CG(S). Then there

exists y ∈ Q1 such that x pa
y ∈ CG(S). Now also

z := x pa
pa

−1∏
i=0

x i yx−i
∈ CG(S).

Since z is centralized by x , it follows that z ∈ x i CG(S)x−i
=CG(Ti ) for i =1, . . . , pa.

Hence, z ∈ CG(N ) = 1 and x pa
∈ Q, a contradiction. Thus, Q̃ < P̃ and

Q̃ ∩ ⟨x̃⟩ = (Q ∩ ⟨x pa
⟩)CG(S)/CG(S) ≤ P ′CG(S)/CG(S) = P̃ ′.

Lemma 2 shows that |P̃ : 8(P̃)| = p2 if and only if

|CQ1/8(Q1)(x pa
)| = |CQ̃/8(Q̃)(x̃)| = p.

Now the claim follows.

(iv) The isomorphism types of N and S are determined by X (G) according to
[Navarro and Sambale 2023, Theorem 4.1]. We obtain |NP(S)| from |N | =

|S|
|P:NP (S)|. Arguing as in (iii), shows that CP(S) = CQ(S) = Q2 · · · Q pa. Hence,

|CP(S)| = |S|
pa

−1
p is computable from X (G). The claim follows from P̃ ∼=

NP(S)/CP(S). □

To decide whether |P : 8(P)| = p2 holds, it suffices to obtain the structure
of P̃ with the notation from Proposition 6. If p ≥ 5 and S is neither a linear nor
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a unitary group, then Out(S) has a cyclic Sylow p-subgroup by [Conway et al.
1985, Table 5]. In this case the isomorphism type of P̃ is uniquely determined by
X (G) and the problem is solved. On the other hand, the proof of [Navarro and
Sambale 2023, Lemma 5.1] shows that for linear and unitary groups S the condition
|P : 8(P)| = p2 is not determined by |P̃| alone. It remains a challenge to settle
these cases (and p = 3 with S = D4(q), E6(q) and 2 E6(q)).

3. p-groups of maximal class

We start by introducing some terminology of (saturated, nonexotic) fusion systems.
Let P be a Sylow p-subgroup of G as before. The fusion system F = FP(G) of
G on P is a category whose objects are the subgroups of P and the morphisms
of F have the form f : S → T, x 7→ gxg−1 where S, T ≤ P and g ∈ G. Then
AutF (S) ∼= NG(S)/CG(S) and OutF (S) ∼= NG(S)/SCG(S). Elements x, y ∈ P (or
subsets S, T ⊆ P) are called F-conjugate if there exists a morphism f such that
f (x) = y (or f (S) = T ). A subgroup S ≤ P is called

• fully normalized, if |NP(T )| ≤ |NP(S)| for all F-conjugates T of S,

• centric, if CP(T ) = Z(T ) for all F-conjugates T of S,

• radical, if Op(AutF (S)) = Inn(S) (equivalently, Op(OutF (S)) = 1),

• essential, if S is fully normalized, centric and OutF (S) contains a strongly
p-embedded subgroup (see [Aschbacher et al. 2011, Definition A.6]). For our
purpose, it is enough to know that S is radical in this case.

By Alperin’s fusion theorem, every morphism in F is a composition of restrictions
of morphisms f ∈ AutF (S) where S = P or S is essential (see [Aschbacher et al.
2011, Theorem I.3.5]). Note that AutF (P) permutes the essential subgroups by
conjugation. Hence, if Q ≤ P does not lie in any essential subgroup, then Q is fully
normalized. In this case, NP(Q) is a Sylow p-subgroup of NG(Q) (see [Aschbacher
et al. 2011, Lemma I.1.2]). Consequently, CP(Q) = NP(Q) ∩ CG(P) is a Sylow
p-subgroup of CG(P).

We call F controlled if NG(P) controls the fusion in P with respect to G, i.e.,
every morphism S → T has the form x 7→ gxg−1 for some g ∈ NG(P). Abstractly,
this means that there are no essential subgroups and F = FP(P ⋊ A) for some
Schur–Zassenhaus complement A of Inn(P) in AutF (P). More generally, F is
called constrained if there exists Q ⊴ P such that CP(Q) = Z(Q) and NG(Q)

controls the fusion in P. By the model theorem (see [Aschbacher et al. 2011,
Theorem I.4.9]), a constrained fusion system is realized by a unique group G such
that CG(Op(G)) ≤ Op(G) (note that G is p-constrained). The largest subgroup
Q ⊴ P such that NG(Q) controls the fusion in P is denoted by Op(F). Note that
Op(G) ≤ Op(F).
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It is well-known that a p′-automorphism of Q ≤ P acts nontrivially on Q/8(Q).
If Q is radical, it follows that OutF (Q) acts faithfully on Q/8(Q). Now assume
that there exists a series of characteristic subgroups 8(Q) = Q0 < · · · < Qn = Q
of Q. Then OutF (Q) acts faithfully on Qn/Qn−1 × · · · × Q1/Q0 by [Gorenstein
1980, 5.3.2]. This argument will often be applied in the following to exclude same
candidates of essential subgroups.

We say that a p-group P of order pn has maximal class if the nilpotency class
is n − 1. This may include the case |P| = p2. The 2-groups of maximal class
are the dihedral groups (including C2

2 ), the semidihedral groups, the (generalized)
quaternion groups and C4 (see [Huppert 1967, Satz III.11.9]). Now assume that
n ≥ 4 and p > 2 to avoid some degenerate cases. Let K2(P) = P ′ and Ki+1(P) =

[P, Ki (P)] for i ≥ 2. Let Z0(P) := 1 and Zi+1(P/Zi (P)) := Z(P/Zi (P)) for
i ≥ 0. Then Ki (P) = Zn−i (P) is the only normal subgroup of P of index pi by
[Huppert 1967, Hilfssatz III.14.2]. It is easy to see that the characteristic subgroups
P1 := CP(K2(P)/K4(P)) and P2 := CP(Z2(P)) are maximal in P.

Lemma 7. Let P be a p-group with a nonabelian subgroup Q ≤ P of order p3 and
exponent p. If CP(Q) = Z(Q), then Z2(P) ≤ Q.

Proof. Since Z(P) ≤ CP(Q), we have Z := Z(P) = Z(Q) ∼= C p. Let x Z ∈

CP/Z (Q/Z). Then x ∈ NP(Q). By [Winter 1972], NP(Q)/Q ≤ Out(Q) ∼=

GL(2, p). As mentioned above, the kernel of the action of Aut(Q) on Q/Z is
a p-group. Since Op(GL(2, p)) = 1, we obtain x ∈ Q. Hence, Z2(P)/Z =

Z(P/Z) ≤ CP/Z (Q/Z) = Q/Z and Z2(P) ≤ Q. □

Lemma 8. Let G be a finite group with Sylow p-subgroup P of maximal class. Let
N ⊴G such that p2

≤ |N |p < |P|. Then there exists x ∈ P such that |CG(x)|p = p2.

Proof. By hypothesis, |P| ≥ p|N |p ≥ p3. In particular, Z(P) is the unique normal
subgroup of order p of P. Since M := P ∩ N ⊴ P, we have Z(P) ≤ N . If |P| = p3,
every element x ∈ P \ N cannot be conjugate to an element of Z(P) ≤ N . Hence,
|CG(x)|p = p2. Now assume that |P| ≥ p4. If p = 2, P is a dihedral, semidihedral
or quaternion group and we choose x ∈ P outside the cyclic maximal subgroup
of P. For p > 2, let x ∈ P \ (P1 ∪ P2). By [Huppert 1967, Hilfssatz III.14.13], we
have |CP(x)| = p2. Since |P| ≥ p4, Z2(P) is the unique normal subgroup of order
p2 in P. In particular, Z2(P) ≤ M since |M | ≥ p2. If p = 2, we may assume that
x /∈ M. For p > 2, we have P1 ∪ P2 ∪ M ⊊ P. Again we may choose x /∈ M.

Let F be the fusion system of G on P. If x is not contained in any essential
subgroup, then ⟨x⟩ is fully normalized as explained above. It follows that |CG(x)|p =

|CP(x)| = p2 and we are done. Now let Q < P be essential containing x . By
[Grazian and Parker 2022, Theorem D], Q is a so-called pearl, i.e., Q is elementary
abelian of order p2 or nonabelian of order p3 and exponent p (or Q = Q8 if p = 2,
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see [Grazian and Parker 2022, Lemma 6.1]). As an essential subgroup, Q is centric
and CP(Q) = Z(Q). Assume first that |Q| = p2. Then

Z := Z(P) = M ∩ Q = N ∩ Q ⊴NG(Q).

Since Q is radical, OutF (Q) ∼= NG(Q)/Q acts faithfully on Z × Q/Z ∼= C2
p. But

then OutF (Q) would be a p′-group in contradiction to Q < NP(Q). Next let
|Q| = p3. Here, Lemma 7 shows that Z2(P) = M ∩ Q = N ∩ Q ⊴NG(Q). Then
OutF (Q) acts faithfully on Z2(P)/Z × Q/Z2(P) ∼= C2

p and we derive another
contradiction. □

Theorem B. Let G be a finite group with a Sylow p-subgroup P of maximal class.
Suppose that Op′(G) = 1 and Op′

(G) = G. Then one of the following holds:

(i) There exists x ∈ P such that |CG(x)|p = p2.

(ii) G is quasisimple and |Z(G)| ≤ p.

Proof. We may assume that G is not simple and |P| ≥ p3. Let N < G be a maximal
normal subgroup. Then 1 < |N |p < |P| as Op′(G) = 1 and Op′

(G) = G. If
|N |p ≥ p2, then the claim follows from Lemma 8. Hence, let |N |p = p. Then
P ∩ N ⊴ P has index ps

≥ p2 and therefore P ∩ N = Ks(P) ≤ P ′. By Tate’s
theorem (see [Huppert 1967, Satz IV.4.7]), N has a normal p-complement. Since
Op′(G) = 1, this forces |N | = p. Since |G : CG(N )| divides p −1, we further have
N ≤ Z(G). Since G/N is simple, G is quasisimple with |Z(G)| ≤ p. □

If Case (ii) in Theorem B applies with |Z(G)| = p and (i) fails, then Robinson’s
ordinary weight conjecture predicts the existence of an irreducible character χ in
the principal p-block such that p2χ(1)p = |G|p (see [Robinson 2008, Lemma 4.7]).
Conversely, such a character can only appear when P has maximal class. Examples
are SL(2, 9) for p = 2, SL(3, 19) for p = 3 and SL(p, q) for p ≥ 5 where q −1 is
divisible by p just once. Our proof of Theorem A does however not rely on any
conjecture.

Theorem A. The character table of a finite group G determines whether G has
Sylow p-subgroups of maximal class.

Proof. Let P be a Sylow p-subgroup of G. We may assume that Op′(G) = 1 and
|P| ≥ p3. Let K := Op′

(G). The character table detects elements x ∈ P such that
|CG(x)|p = |CK (x)|p = p2. In this case |CP(x)| = p2 and P has maximal class by
[Huppert 1967, Satz III.14.23]. Hence, by Theorem B we may assume that K is
quasisimple with |Z(K )| ≤ p. Note that the character table of G determines the
isomorphism type of the simple chief factor K/Z(K ) (see [Navarro and Sambale
2023, Theorem 4.1]). In this way we confirm that the Sylow p-subgroup P/Z(K )

of K/Z(K ) has maximal class. If Z(K ) = 1, then we are done. Otherwise, P
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has maximal class if and only if Z(K ) = Z(P). This happens if and only if
|CG(x)|p < |P| for all x ∈ P \ Z(K ). □

4. Minimal nonabelian Sylow subgroups

The following elementary lemma underlines the importance of minimal nonabelian
groups. For elements x , y, z of a group we use the commutator convention
[x, y, z] := [x, [y, z]].

Lemma 9. For a p-group P the following assertions are equivalent:

(1) P is minimal nonabelian.

(2) |P : 8(P)| = |P : Z(P)| = p2.

(3) |P : 8(P)| = p2 and |P ′
| = p.

Proof. (1) ⇒ (2) : Since P is nonabelian, there exist noncommuting elements
x, y ∈ P. Since ⟨x, y⟩ is nonabelian, we have P = ⟨x, y⟩. By Burnside’s basis
theorem, |P : 8(P)| = p2. Choose distinct maximal subgroups S, T < P. Since S
and T are abelian and P = ST, it follows that 8(P)= S∩T ⊆Z(P). It is well-known
that P/Z(P) cannot be a nontrivial cyclic group. In particular, |P : Z(P)| ≥ p2 and
8(P) = Z(P).

(2) ⇒ (3) : Let Z(P) < S < P. Since S/Z(P) is cyclic and Z(P) ≤ Z(S), we obtain
that S is abelian. Pick x ∈ P \ S. Then Lemma 1 yields that |P ′

| = |S : Z(P)| = p.

(3) ⇒ (1) : Obviously, P is nonabelian since P ′
̸= 1. For g, x ∈ P we have

gxg−1
= [g, x]x ∈ P ′x . Thus, every conjugacy class lies in a coset of P ′. The

hypothesis |P ′
| = p implies |P : CP(x)| ≤ p for every x ∈ P. Since 8(P) is the

intersection of the maximal subgroups of P, we deduce 8(P) ≤
⋂

x∈P CP(x) =

Z(P). Now for every maximal subgroup S < P, we see that S/Z(S) is cyclic and S
must be abelian. We conclude that P is minimal nonabelian. □

The nonnilpotent, minimal nonabelian groups were classified by Miller and
Moreno [1903]. The nilpotent ones are p-groups and have been determined by
Rédei [1947]. For the convenience of the reader we give a proof.

Lemma 10 (Rédei). Every minimal nonabelian p-group belongs to one of the
following classes:

(i) 0(a, b) := ⟨x, y | x pa
= y pb

= 1, yxy−1
= x1+pa−1

⟩ a metacyclic group where
a ≥ 2 and b ≥ 1,

(ii) 1(a, b) := ⟨x, y | x pa
= y pb

= [x, y]
p

= [x, x, y] = [y, x, y] = 1⟩ where
a ≥ b ≥ 1,

(iii) Q8.
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Proof. Let P be minimal nonabelian. By Lemma 9, there exist x, y ∈ P such that
P/P ′

= ⟨x P ′
⟩ × ⟨y P ′

⟩ ∼= C pa × C pb . Since |P ′
| = p, we have P ′

= ⟨z⟩ where
z := [x, y]. Note that P ′

≤ 8(P) = Z(P) and [x, z] = [y, z] = 1. We distinguish
three cases:

Case 1: x pa
= y pb

= 1. Here P fulfills the same relations as 1(a, b), so it
must be a quotient of the latter group. Moreover, every element of P can be
written uniquely in the form x i y j zk with 1 ≤ i ≤ pa, 1 ≤ j ≤ pb and 1 ≤ k ≤ p.
Consequently, |P| = pa+b+1. For the same reason we have |1(a, b)| ≤ pa+b+1.
Therefore, P ∼= 1(a, b).

Case 2: Either x pa
= 1 or y pb

= 1. Without loss of generality, let x pa
̸= 1 and

y pb
= 1. Then P ′

≤ ⟨x⟩⊴ P and yxy−1
= xk for some k ∈ Z. Since ⟨x p, y⟩ < P

is abelian, x p
= yx p y−1

= xkp and p ≡ kp (mod pa+1) as |⟨x⟩| = pa+1. Hence,
we may assume that k = 1 + pal for some 0 < l < p. Let 0 < l ′ < p such that
ll ′ ≡ 1 (mod p). Then yl ′ xy−l ′

= x (1+pal)l′

= x1+pa
. Thus, after replacing y by yl ′,

we obtain yxy−1
= x1+pa

. Now P satisfies the relations of 0(a + 1, b). It is clear
that these groups have the same order, so P ∼= 0(a + 1, b).

Case 3: x pa
̸= 1 ̸= y pb

. Without loss of generality, let a ≥ b. Let x pa
= zi and

y pb
= z j where 0 < i, j < p. Then (x j )pa

= zi j, (yi )pb
= zi j and [x j , yi

] = zi j by
[Huppert 1967, Hilfssatz III.1.3] (using z ∈ Z(P)). Hence, replacing x by x j and y
by yi, we may assume that x pa

= z = y pb
. Again by [Huppert 1967, Hilfssatz III.1.3],

(x pa−b
y−1)pb

= x pa
y−pb

[y−1, x pa−b
](

pb
2 ) = z pa−b(pb

2 ) = 1

unless pb
= pa

= 2. In this exceptional case, P ∼= Q8. Otherwise, we replace y by
x pa−b

y−1. Afterwards we still have P/P ′
= ⟨x P ′

⟩× ⟨y P ′
⟩, but now y pb

= 1. Thus,
we are in Case (2). □

The metacyclic groups 0(a, b) can of course be constructed as semidirect prod-
ucts, while the groups 1(a, b) can be constructed as subgroups of 0(a, b)× C pa .
For p = 2, note that 0(2, 1) ∼= D8 ∼= 1(1, 1). Apart from that, the groups in
Lemma 10 are pairwise nonisomorphic (for different parameters a, b).

We digress slightly to present a counterexample to a related question. Since for p-
groups P in general we have 8(P)= P ′℧(P) where ℧(P)=⟨x p

: x ∈ P⟩, one might
wonder if X (G) determines the property |P :℧(P)|= p2. For p =2, it is well-known
that ℧(P) = 8(P), so the answer is yes in this case. For p > 2, |P : ℧(P)| = p2

holds if and only if P is metacyclic (see [Huppert 1967, Satz III.11.4]). The
following example shows that this is not even determined by X (P).

Proposition 11. For a ≥ 2 and all primes p the groups 0(2, a) and 1(a, 1) have
the same character table.
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Proof. We denote the generators of P := 0(2, a) by x, y and those of P̃ := 1(a, 1)

by x̃, ỹ as in Lemma 10. Additionally, let z̃ := [x̃, ỹ]. We consider the maximal
subgroups Q := ⟨x p, y⟩ ≤ P and Q̃ := ⟨x̃, z̃⟩ ≤ P̃ . Since xyx−1

= x−p y and
ỹ x̃ ỹ−1

= z̃−1 ỹ, the map

Q → Q̃, x p
7→ z, y 7→ x̃

is an isomorphism compatible with the action of P and P̃ . The irreducible characters
of P of degree p are induced from linear characters of Q, which are not P-invariant.
Since these characters vanish outside Q, they correspond naturally to irreducible
characters of P̃ . On the other hand, the linear characters of P are extensions
of characters of Q with x p in their kernel. For λ ∈ Irr(Q/P ′) the extensions
λ̂ are determined by λ̂(x) = ζ where ζ is a p-th root of unity. Similarly, for
λ ∈ Irr(Q̃/P̃ ′) the extensions are determined by λ̂(ỹ) = ζ . Therefore, the bijection
P → P̃ , x i+ j p yk

7→ x̃k ỹi z̃ j where 0 ≤ i, j < p and 0 ≤ k < pa induces the equality
of the matrices X (P) and X (P̃). □

The second author has investigated fusion systems on minimal nonabelian 2-
groups in order to classify blocks with such defect groups (see e.g., [Sambale 2016]).
We now determine the fusion systems for odd primes too (partial results were
obtained in [Yang and Gao 2011]). It turns out that they all come from finite groups
unless |P| = 73. We make use of the Frobenius group M9 ∼= PSU(3, 2) ∼= C2

3 ⋊ Q8

with Out(M9) ∼= S3.

Theorem 12. Let F be a saturated fusion system on a minimal nonabelian p-group P.
Then one of the following holds:

(i) P ∈ {D8, Q8} and F = FP(G) where G ∈ {P, S4, GL(3, 2), SL(2, 3)}.

(ii) |P| = p3, exp(P) = p > 2 and the possibilities for F are given in [Ruiz and
Viruel 2004].

(iii) P ∼= 0(a, b), a ≥ 2, b ≥ 1 and F = FP(C pa ⋊C pbd) for some d | p − 1.

(iv) P ∼= 1(a, b), a > b and F = FP(P ⋊ Q) where Q ≤ C2
p−1.

(v) P ∼= 1(a, a), a ≥ 2 and F = FP(P ⋊ Q) for some p′-group Q ≤ GL(2, p).

(vi) p = 2, P ∼= 1(a, 1), a ≥ 2 and F = FP(A4 ⋊ C2a ) where C2a acts as a
transposition in Aut(A4) = S4.

(vii) p = 3, P ∼=1(a, 1), a ≥ 2 and F =FP(G) where G ∈{M9⋊C3a , M9⋊D2·3a }.
Here the image of C3a and D2·3a in Out(M9) is C3 and S3 respectively.

Proof. The case P ∈ {D8, Q8} is well-known and can be found in [Craven and
Glesser 2012, Theorem 5.3], for instance. If p = 2 and P = 0(a, b) with |P| ≥ 16,
then F is trivial, i.e., F = FP(P) by [Craven and Glesser 2012, Theorem 3.7].
Then (iii) holds. Now suppose that p > 2 and P = 0(a, b). Then F is controlled,
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i.e., F = FP(P ⋊ Q) for some p′-group Q ≤ Aut(P) by [Stancu 2006] (see
also [Craven and Glesser 2012, Theorem 3.10]). By [Sasaki 1997, Lemma 2.4],
Aut(P) = A⋊ ⟨σ ⟩ where A is a p-group, |⟨σ ⟩| = p − 1, σ(x) ∈ ⟨x⟩ and σ(y) = y.
Hence, Q is conjugate to a subgroup of ⟨σ ⟩. After renaming the generators of P,
we may assume that Q ≤ ⟨σ ⟩. Now (iii) holds.

Next assume that P ∼= 1(a, b) for some a ≥ b ≥ 1. If a = 1 and p > 2, then
|P| = p3 and exp(P) = p, so (ii) holds. Hence, let a ≥ 2. Set z := [x, y] ∈ P.
Since the p′-group OutF (P) acts faithfully on P/8(P) ∼= C2

p, we have OutF (P) ≤

GL(2, p). If a > b, then OutF (P) acts on P/�a−1(P) × �a−1(P)/8(P) where
�a−1(P) = ⟨g ∈ P : g pa−1

= 1⟩ = ⟨x p, y, z⟩. In this case OutF (P) ≤ C2
p−1. If F

is controlled, then we are in Case (iv) or (v). Hence, we may assume that F is not
controlled. Then there exists an essential subgroup Q ≤ P. Since Q is centric and
8(P) = Z(P) ≤ CP(Q) ≤ Q, Q is a maximal subgroup. Those are given by

⟨xyi , y p, z⟩ ∼= C pa × C pb−1 × C p, i = 0, . . . , p − 1,

⟨x p, y, z⟩ ∼= C pa−1 × C pb × C p.

By [Gorenstein 1980, Theorem 5.2.4], A := AutF (Q) acts faithfully on �(Q) =

{g ∈ Q : g p
= 1}. Since P/Q ≤ A, this implies �(Q) ⊈ Z(P) and Q = ⟨x p, y, z⟩

with b = 1. Now Q is the only maximal subgroup of P isomorphic to C pa−1 × C2
p.

In particular, Q is characteristic in P. By Alperin’s fusion theorem, F is constrained
with Op(F) = Q. By the model theorem, there exists a unique p-constrained group
H with P ∈ Sylp(H), Op′(H) = 1 and F = FP(H). We will construct H in the
following.

By [Oliver 2014, Lemma 1.11], there exists an A-invariant decomposition Q =

Q1×Q2 with Q1 ∼=C2
p and Q2 ∼=C pa−1. Moreover, Op′

(A)∼=SL(2, p) acts faithfully
on Q1 and trivially on Q2. Since P/Q ≤Op′

(A), it follows that Q2 ≤Z(P)=⟨x p, z⟩.
Moreover, xyx−1

= yz implies z ∈ Q1. Let α ∈ A be a p′-automorphism acting
trivially on Q1. Then α commutes with the action of P/Q. Since Q is receptive
(see [Aschbacher et al. 2011, Definition I.2.2]), α extends to an automorphism
of P. Suppose that α ̸= 1. Since Q2 ≤ Z(P) = 8(P), α must act nontrivially
on P/Q2. Note that P/Q2 is nonabelian of order p3 as z ∈ Q1. An analysis of
Aut(P/Q2) reveals that α cannot act trivially on Q/Q2 ∼= Q1. Hence, α = 1 and
A acts faithfully on Q1. In particular, A ≤ GL(2, p). If p = 2, then

A ∼= SL(2, 2) = GL(2, 2) ∼= S3.

It is easy to see that (vi) holds here. If p = 3, then SL(2, 3) ∼= Q8⋊C3, GL(2, 3) ∼=

Q8⋊S3 and (vii) is satisfied. Thus, let p ≥5. Then the Sylow normalizer in SL(2, p)

acts nontrivially on a Sylow p-subgroup of SL(2, p). Hence, there exists α ∈Op′

(A)
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acting nontrivially P/Q. But then α acts nontrivially on ⟨x p
⟩Q1/Q1 = Q/Q1 ∼= Q2.

This contradicts [Oliver 2014, Lemma 1.11]. □

The groups A4⋊C4, M9⋊C9 and M9⋊D18 can be constructed in GAP [2020] as
SmallGroup(n, k) where (n, k) ∈ {(48, 39), (648, 534), (64, 2892)} respectively.

Corollary 13. Let F be a fusion system on a minimal nonabelian p-group P with
|P| ≥ p4. Then F is constrained. If p ≥ 5, then F is controlled.

We now gather some information on simple groups in order to prove Theorem C.
As customary, if q is a prime power, let

PSLϵ(n, q) :=

{
PSL(n, q) if ϵ = 1,

PSU(n, q) if ϵ = −1.

The following is certainly known, but included for convenience.

Lemma 14. Let q be a prime power. Let S = PSLϵ(n, q) with a cyclic Sylow
p-subgroup and n ≥ 3. Then there exists a unique integer 2 ≤ d ≤ n such that p
divides qd

− ϵd.

Proof. Since a nonabelian simple group cannot have cyclic Sylow 2-subgroups,
we have p > 2. If p | q, then a Sylow p-subgroup of S is given by the set of
unitriangular matrices. This subgroup is nonabelian since n ≥ 3. Now let p ∤ q . If
q ≡ ϵ (mod p), then S contains a subgroup of diagonal matrices isomorphic to C2

p.
Hence, let q ̸≡ ϵ (mod p). In the following we write q∗

:= q if ϵ = 1 and q∗
:= q2

if ϵ = −1. Let x ∈ S be a generator of a Sylow p-subgroup of S. We identify x
with a preimage in GL(n, q∗). We may assume that x has order pk. Let e be the
order of q∗ modulo pk. Then x has an eigenvalue ζ ∈ F×

(q∗)e of order pk. Since
tr(x) ∈ Fq∗ , the elements ζ (q∗)i

for i = 0, . . . , e − 1 are distinct eigenvalues of x .
In particular, e ≤ n. If ϵ = 1, then e ≥ 2 we can choose d := e in the statement. If
2e ≤ n, we obtain qd

≡ 1 ≡ ϵd (mod p) for d := 2e.
Now suppose that ϵ = −1 and 2e > n. Since x is a unitary matrix, we have

x̄ x t
= 1 where x̄ = (xq

i j )i, j and x t is the transpose of x . It follows that ζ−q is an

eigenvalue of x . Since n < 2e, there must be some i with ζ q2i
= ζ−q. This shows

that q2i−1
≡ −1 ≡ ϵ2i−1 (mod pk). Since q2(2i−1)

≡ 1 (mod pk), we have

e | 2i − 1 ≤ 2(e − 1) − 1 < 2e and e = 2i − 1.

Hence, we can set d := e.
For the uniqueness of d, we note that

|S| =
qn(n−1)/2

gcd(n, q − ϵ)

n∏
i=2

(q i
− ϵi ),

is not divisible by pk+1, since pk
= |⟨x⟩| = |S|p. □
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Lemma 15. Let S be a finite simple group with Sylow 3-subgroup C2
3 and outer

automorphism of order 3. Then S ∼= PSLϵ(3, p f ) where ϵ = ±1, p is a prime and
(p f

− ϵ)3 = 3. Moreover, Out(S) ∼= C3 ⋊ (C f × C2).

Proof. The simple groups with Sylow 3-subgroup C2
3 were classified in [Koshitani

and Miyachi 2001, Proposition 1.2]. The alternating groups and sporadic groups
do not have outer automorphisms of order 3. Now let S be a classical group
of dimension d over Fp f . Then p f

̸≡ ±1 (mod 9). This implies 3 ∤ f and S
does not have field automorphisms of order 3. According to [Conway et al. 1985,
Table 5], there must be a diagonal automorphism of order 3. This forces d = 3 and
S = PSLϵ(3, p f ) such that (p f

− ϵ)3 = 3. If ϵ = 1, then Out(S) = C3 ⋊ (C f ×C2)

as desired. If ϵ = −1, then there is no graph automorphism and instead we have a
field automorphism of order 2 f . However, since p f

≡ 2, 5 (mod 9), f must be
odd and C2 f ∼= C f × C2. □

Theorem C. Let G be a finite group with a minimal nonabelian Sylow p-subgroup
P and Op′(G) = 1. Then one of the following holds:

(i) p = 2, P ∈ {D8, Q8} and O2′

(G) ∈ {SL(2, q), PSL(2, q ′), A7} where q ≡

±3 (mod 8) and q ′
≡ ±7 (mod 16).

(ii) |P| = p3 and exp(P) = p > 2.

(iii) G = P ⋊ Q where Q ≤ GL(2, p).

(iv) p > 2, Op′

(G) = S ⋊C pa where S is a simple group of Lie type with cyclic
Sylow p-subgroups. The image of C pa in Out(S) has order p.

(v) p = 2 and G = PSL(2, q f ) ⋊ C2ad where q is a prime, q f
≡ ±3 (mod 8)

and d | f . Moreover, C2a acts as a diagonal automorphism of order 2 on
PSL(2, q f ) and Cd induces a field automorphism of order d.

(vi) p =3 and O3′

(G)=PSLϵ(3, q f )⋊C3a where ϵ =±1, q is prime, (q f
−ϵ)3 =3

and G/O3′

(G) ≤ C f × C2.

Proof. By Lemma 9, |P : Z(P)| = p2 and G is described in [Navarro and Sambale
2023, Theorem 7.5]. We go through the various cases in the notation used there:

In Case (A), using that P is 2-generated and Op(G) is not cyclic, we deduce
that S = 1. Here P = F∗(G)⊴ G and CG(P) ≤ P. Since G/P acts faithfully on
P/8(P) ∼= C2

p, we have G/P ≤ GL(2, p) and (iii) holds. Assume now that P < G.
In Case (B), the quasisimple group C has a nonabelian Sylow p-subgroup of order
p3 which must coincide with P. If P = D8, then (i) or (v) holds by the Gorenstein–
Walter theorem (there are no field automorphisms of order 2) [Gorenstein 1980,
p. 462]. If P = Q8, the claim follows from the Brauer–Suzuki theorem [Gorenstein
1980, Theorem 12.1.1] and Walter’s theorem [Gorenstein 1980, p. 485]. If p > 2,
then we must have exp(P) = p, since otherwise the focal subgroup theorem [Isaacs
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2008, Theorem 5.21] and Theorem 12 lead to the contradiction |P|=|P : P∩G ′
|≥ p.

Thus, (ii) holds. Case (D) is impossible, since then P has a nonabelian maximal
subgroup.

Now consider Case (C), i.e., F∗(G)= Op(G)×S has abelian Sylow p-subgroups,
S is a direct product of simple groups and |G : F∗(G)|p = p. Let x ∈ P \ F∗(G).

Case 1: S = 1. Since S = 1, F∗(G) = Op(G) and so

CG(F∗(G)) = CG(Op(G)) ≤ Op(G).

Therefore, CP(Op(G)) = Op(G) and we have CG(Op(G)) = Op(G) × K where
K ≤ Op′(G) = 1. Hence, G is p-constrained and FP(G) is given by (vi) or (vii)
of Theorem 12. By the model theorem, the isomorphism type of G is uniquely
determined by FP(G). Since PSL(2, 3) ∼= A4 and PSU(3, 2) ∼= M9, we obtain (v)
or (vi).

Case 2: S ̸= 1 is not simple. By Lemma 10, the maximal subgroups of P are
generated by at most three elements. Hence, S is a direct product of two or three
simple groups, say S = T1 × T2 or T1 × T2 × T3. Since a Sylow 2-subgroup of a
simple group cannot be generated by less than 2 elements, we deduce that p > 2 and
the Ti have cyclic Sylow p-subgroups. If x does not normalize some Ti , then p = 3
and x permutes T1 ∼= T2 ∼= T3. However, C3n ≀C3 is not minimal nonabelian. Hence,
x acts on each Ti . If x acts nontrivially on Op(G), then Op(G)⟨x⟩ is nonabelian
and P = Op(G)⟨x⟩. But then S would be simple. Similarly, if x acts nontrivially
on Q1 := P ∩ T1, then P = Q1⟨x⟩. Write Q2 := P ∩ T2 = ⟨y⟩ such that x p

∈ yQ1.
Then x centralizes y. By [Gross 1982, Theorem B], this implies that x induces
an inner automorphism on T2. However, x p induces the inner automorphism by y.
Hence, x cannot have order greater than |T2|p. Another contradiction.

Case 3: S is simple. Let Q := P ∩ S ⊴ P be a Sylow p-subgroup of S. Arguing
as in Case 2, we see that x acts nontrivially on Q and therefore P = Q⟨x⟩. First
let Q be cyclic. Then p > 2 and P is metacyclic. Since Out(S) needs to have an
element of order p, S must be of Lie type. To obtain (iv), it remains to show that
P S is normal in G. Assume the contrary. By the structure of Out(S) (see [Conway
et al. 1985, Table 5]), P induces a field or graph automorphism of order p on S
which acts nontrivially on the subgroup of outer diagonal automorphisms of S. In
particular, the diagonal automorphism group must have order at least p + 1, in
fact 2p + 1 ≥ 7 since p > 2. This excludes all families of simple groups except
S = PSLϵ(d, q f ) where p | f and d ≥ 2p + 1. Since Q is cyclic and f > 1, we
have q ̸= p. By Fermat’s little theorem,

q(p−1) f
≡ q2(p−1) f

≡ 1 (mod p).

This contradicts Lemma 14 (note that p −1 is even). Hence, P S⊴G and (iv) holds.
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Let Q be noncyclic. Recall that in general Q is homocyclic and NS(Q) acts
irreducibly on �(Q) (see [Flores and Foote 2009, Proposition 2.5]). This implies
that P cannot be metacyclic, as otherwise the fusion in P is controlled by NG(P)

and NG(Q) = NG(P)CG(Q) acts reducibly on Q according to Theorem 12. Hence,
let P ∼= 1(a, b). Then P ′ is a direct factor of Q and we obtain Q = �(Q). If Q has
rank 3, then P ∼= 1(2, 1). However, by Theorem 12, NG(Q)/CG(Q) ≤ GL(2, p)

does not act irreducibly on Q. Hence, we may assume that Q has rank 2. Now
P ∼=1(a, 1) with a ≥2. If NG(P) controls the fusion in P, then NG(Q) would fix P ′.
Hence, we are in Case (vi) or (vii) of Theorem 12. Consider p = 2 first. By Walter’s
theorem (see [Gorenstein 1980, p. 485]), S ∼= PSL(2, q f ) with q f

≡ ±3 (mod 8).
It follows that f is odd and G/P S ≤ Out(S) ≤ C2 f by [Conway et al. 1985,
Table 5]. Here C2 induces a diagonal automorphism and C f is caused by a field
automorphism. So (v) holds. Finally, let p = 3. Here the claim follows easily from
Lemma 15. □

Examples for Theorem C (iv) can be constructed as follows: Let p > 2 and
a ≥ 2. By Dirichlet’s theorem, there exists a prime q ≡ 1+ pa−1 (mod pa+1). Then
q p

≡ 1 + pa (mod pa+1) and S := PSL(2, q p) has a cyclic Sylow p-subgroup Q
of order pa. Let R ∼= C pb and construct G := S ⋊ R where R acts as the field
automorphism Fq p → Fq p , λ 7→ λq on S. By [Gross 1982], R acts nontrivially on
Q and P := Q ⋊ R ∼= 0(a, b). A different example is G = Sz(25)⋊C5 for p = 5.

Corollary 16. Let G be a finite group with a minimal nonabelian Sylow p-subgroup
and Op′(G) = 1. Then G has at most one nonabelian composition factor.

Proof. We may assume that G is nonsolvable. If |G|p = p3, then F∗(G) is quasisim-
ple and G/F∗(G) ≤ Aut(F∗(G)) ≤ Aut(F∗(G)/Z(F∗(G)) is solvable by Schreier’s
conjecture. Otherwise we have F∗(G) = S ×C pb for a simple group S and b ≥ 0 by
the proof of Theorem C. Since Aut(C pb) is abelian, the claim follows again from
Schreier’s conjecture. □

Corollary D. The character table of a finite group G determines whether G has
minimal nonabelian Sylow p-subgroups.

Proof. Let P be a Sylow p-subgroup of G. We may assume that Op′(G) = 1. By
[Navarro and Sambale 2023, Theorem B], the character table determines whether
|P : Z(P)| = p2. Suppose that this is the case. By Lemma 9, it remains to detect
whether |P : 8(P)| = p2. This is true for |P| = p3, so let |P| ≥ p4. By Theorem 4
and Corollary 5, we may assume that Op(G) = 1. Now by Theorem C we expect
that Op′

(G) = S ⋊C p for a simple group S with a cyclic Sylow p-subgroup Q. As
usual, X (G) determines the isomorphism type of S. If Q is indeed cyclic, then
clearly P is 2-generated and we are done. □
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UNIVERSAL WEIL MODULE

JUSTIN TRIAS

The classical construction of the Weil representation, with complex coeffi-
cients, has long been expected to work for more general coefficient rings.
This paper exhibits the minimal ring A for which this is possible, the integral
closure of Z

[ 1
p

]
in a cyclotomic field, and carries out the construction of the

Weil representation over A-algebras. As a leitmotif all along the work, most
of the problems can actually be solved over the base ring A and transferred
to any A-algebra by scalar extension. The most striking fact is that all these
Weil representations arise as the scalar extension of a single one with coeffi-
cients in A. In this sense, the Weil module obtained is universal. Building
upon this construction, we speculate and make predictions about an integral
theta correspondence.
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Introduction

This paper is intended as a stepping-stone in the direction of an “integral theta
correspondence”. Whatever this may be, it will require a theory of the Weil
representation over rings and the purpose of this paper is to carry this out on
rings with minimal hypotheses. When the coefficient ring is the field of complex
numbers, this representation originated in problems related to θ -series and was first
constructed in the seminal paper of André Weil [1964].
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There is another way, as opposed to the original approach of Weil, to build this
representation. Because of its relations with quantum physics, it appears often in
older literature as the so-called oscillator representation and involves the famous
Stone–von Neumann theorem as a cornerstone in this alternative construction
[Howe 1979]. It plays a pivotal role in the theta correspondence, where the interplay
between this representation and the dual pairs introduced by Roger Howe [1979]
led to a conjectural bijective correspondence between some subsets of irreducible
representations for each member of the dual pair.

This correspondence, known in older literature as Howe duality or the Howe
correspondence, took almost 40 years to be completely proven, and is now usually
known as the theta correspondence. The main works which led to its proof include
[Howe 1979; Rallis 1984; Kudla 1986; Mœglin et al. 1987; Waldspurger 1990;
Mínguez 2008; Gan and Takeda 2016; Gan and Sun 2017] and we refer to [Trias
2020] for a more detailed exposition of these contributions to the classical theta
correspondence. This celebrated bijection plays a central role in number theory
as it encodes a lot of arithmetic information and allows one to build automorphic
forms. It is the centre of a highly active research field in the topic.

In the 1980’s, Marie-France Vignéras studied, in relation to Serre’s conjectures,
congruences between automorphic representations by means of the modular repre-
sentation theory of their local factors. She considered smooth representations of
connected reductive p-adic groups with coefficients in fields that are more general
than the complex numbers, allowing in particular fields of positive characteristic.
The theory splits into two different aspects, depending on whether the characteristic
of the coefficient is different from p or not. In the first case, which we study here,
we talk about ℓ-modular representations by implicitly meaning that ℓ ̸= p. (The
second case is referred to as modulo p representation theory and requires completely
different techniques.)

An important result about these ℓ-modular representations is the compatibility
of the classical local Langlands correspondence for general linear groups with a
certain ℓ-modular one as described in [Vignéras 2001]. In recent years, there has
been a growing interest in studying representations in families i.e., over coefficient
rings where p is invertible. For general linear groups, families of representations
with coefficients in a Witt ring W (Fℓ) are quite well understood [Helm 2016] and
provide a local Langlands correspondence in families [Emerton and Helm 2014]
compatible with (a modified version due to Breuil–Schneider of) the classical one
and the one constructed by Vignéras.

In terms of the theta correspondence and the Weil representation, a generalisation
to ℓ-modular representation theory has already been considered in the thesis of
Alberto Mínguez [2006]. Taking an ad-hoc analogue of the Weil representation
for type II dual pairs, he proves that a bijective correspondence holds when the
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characteristic is big enough compared to the size of the dual pair at play. In order to
develop a modular theory of the theta correspondence, this analogue is not sufficient
and one needs a proper construction of the Weil representation for coefficient fields,
or even coefficient rings.

Sug Woo Shin [2012] achieves this for coefficient rings such that the associated
affine scheme is locally noetherian, by the use of geometric methods such as a
Stone–von Neumann theorem involving abelian schemes. Chinello and Turchetti
[2015] built a Weil representation with coefficients in integral domains following
the original approach of Weil. The other representation-theoretic strategy, using a
nongeometric version of the Stone–von Neumann theorem, has been carried out
in [Trias 2020]. The latter allows one to recover most of the classical objects and
study them in detail, such as the metaplectic group, the metaplectic cocycle, and the
lifts of dual pairs. Furthermore, this approach generalises in a nice way in families
without the need of particular assumptions on the coefficient rings, improving the
first two mentioned papers whose hypotheses (locally noetherian affine scheme, or,
integral domains) turn out to be more restrictive.

The present paper brings a broader construction of the Weil representation with
coefficients in any A-algebra, where A is a minimal ring specified below. In
addition, exhibiting a minimal Weil representation, called “universal” below, does
not appear in any previous work; nor the focus on extending scalars. The rest of the
introduction is split into two parts: in the first half we give more detail about the
results we obtain along these lines, as well as considerations about the metaplectic
group and the metaplectic cocycle; in the second half, we explain how we expect
to use this to study an integral theta correspondence, with particular focus on the
special case of (GL1,GL1).

Let F be either a local nonarchimedean field, or a finite field, of residual character-
istic p and residual cardinality q , but of characteristic not 2. The minimal condition
mentioned above amounts to requiring two things: first that a nontrivial smooth
additive character ψ of F exists, allowing Fourier transform techniques; second
that p is invertible, that is a condition in terms of Haar measures. Write K = Q[ζp]

when F has positive characteristic, and K = Q[ζp∞] when F has characteristic 0.
The minimal ring A satisfying the previous two conditions is the integral closure of
Z
[ 1

p

]
in K.

Fix from now on a nontrivial smooth character ψ : F → A×. Notations will be
simplified in the introduction to be lighter than that in the main body of the paper.
For any A-algebra B with structure morphism ϕ, the character ψB

= ϕ ◦ψ is a
nontrivial character of F with values in B. More generally, if χ is a character of
any group with values in A, we write

χB
= ϕ ◦χ.
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0A. Theory of the Weil representation over an A-algebra B. The theory de-
veloped in [Mœglin et al. 1987, Chapter 2] for complex representations and in
[Trias 2020] for ℓ-modular representations finds a natural generalisation for an
A-algebra B. Note that there are no restrictive assumptions on the A-algebra
considered. In particular, it is not necessarily an integral domain.

Stone–von Neumann over A-algebras. Let A be a self-dual subgroup in the sym-
plectic space (W, ⟨ · , · ⟩) and ψA a character of the group AH = A× F extending ψ .
Here AH is considered as a subgroup of the Heisenberg group H which is the set
W × F endowed with the law

(w, t) · (w′, t ′)=
(
w+w′, t + t ′

+
1
2⟨w,w′

⟩
)
.

The theorem below gathers together in a succinct way the main results we obtain in
Sections 2B and 2C. It is the core part of the classical Stone–von Neumann theorem
when B = C [Mœglin et al. 1987, Chapter 2, Theorem I.2] and its generalisation
when B is a field of characteristic different from p [Trias 2020, Theorem 2.1].
Working over a general ring, the notion of “irreducible representation” is too
restrictive. Instead, when G is a group, we say that a B[G]-module V is everywhere
irreducible if the representation V ⊗B k(P) is irreducible for all P ∈ Spec(B), where
k(P) is the field of fractions of B/P . This definition is very convenient to state a
Stone–von Neumann theorem over general rings that includes the situation over
coefficient fields.

Theorem A. Set V B
A = indH

AH
(ψB

A ) ∈ RepB(H):

(a) V B
A is everywhere irreducible, and is admissible.

(b) We have V A
A ⊗A B = V B

A .

(c) For A′ any self-dual subgroup in W and ψA′ an extension of ψ to A′

H , one has

HomB[H ](V B
A , V B

A′)≃ B.

A consequence of (a) and (c) is that the isomorphism class of the representa-
tion V B

A does not depend on the choices of A and ψA. When B is a field, this
representation is also irreducible.

The full Stone–von Neumann Theorem for fields B also asserts that any irre-
ducible V ∈ RepB(H), such that V |F is ψB-isotypic, is in the isomorphism class
defined by V B

A . We do not pursue such a precise result over rings. However, for
most of the applications using Stone–von Neumann, and the Weil representation,
one usually sticks to the explicit models given by the representations V B

A , where A
is a self-dual lattice or a lagrangian, so our result is sufficient.
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Weil representations over A-algebras. Let A be a self-dual subgroup in W . Ac-
cording to Section 3, the action of Sp(W ) on H induces a projective represen-
tation of σB : Sp(W ) → PGLB(V B

A ) i.e., σB is a group morphism. Denote by
RED : GLB(V B

A )→ PGLB(V B
A ) the quotient morphism. To lift a projective repre-

sentation, one uses the fibre product construction to obtain a representation of some
central extension. Looking at the fibre product of σB and RED above PGLB(V B

A ),
Proposition 3.2 defines:

S̃pB
ψ,A(W )

ωB
ψ,A
//

pB

��

GLB(V B
A )

RED

��

Sp(W )
σB

// PGLB(V B
A )

Definition. The Weil representation associated to ψ and A with coefficients in B is
the representation (ωB

ψ,A, V B
A ) of the central extension S̃pB

ψ,A(W ) of Sp(W ) by B×.

Recalling the canonical identification V A
A ⊗A B = V B

A from (b) of Theorem A
above, our Theorem 3.4 ensures the compatibility.

Theorem B. There exists a canonical morphism of central extensions

φ̃B : S̃pA
ψ,A(W )→ S̃pB

ψ,A(W )

whose image is a central extension of Sp(W ) by ϕ(A)×. Moreover, there is a
commuting diagram:

S̃pA
ψ,A(W )

ωA
ψ,A
//

φ̃B
��

GLA(VA)

��

S̃pB
ψ,A(W )

ωB
ψ,A
// GLB(V B

A )

Moreover there exist canonical identifications between these central extensions
as A varies: for any other self-dual subgroup A′, Corollary 3.6 defines a canonical
morphism of central extension such that ωB

ψ,A and ωB
ψ,A′ agree, where the term

“agree” is made precise in the corollary mentioned. So the Weil representation ωB
ψ

associated to ψ is well-defined in the sense that the isomorphism class of ωB
ψ,A

does not depend on A.

The metaplectic group over A-algebras. The isomorphism class of S̃pB
ψ,A(W ), as a

central extension of Sp(W ) by B×, does not depend on the choice of A or ψA. In
addition, the canonical isomorphism of central extensions induced by V B

A ≃ V B
A′

is compatible with the fibre product projections. Therefore one can speak of the
metaplectic group over B associated toψ as any element in the previous isomorphism
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class. Even if these groups may be isomorphic for different ψ , there does not
necessarily exist an isomorphism compatible with the fibre product construction: in
this sense these groups do depend on ψ .

We endow the module V B
A with the discrete topology and the group GLB(V B

A )

with the compact-open one. Then Corollary 4.2 compares the situation over A with
that for the classical metaplectic group. Indeed if we endow C with a structure of
A-algebra, then:

Proposition. The group S̃pA
ψ,A(W ) is an open topological subgroup of S̃pC

ψ,A(W ).

Here the natural topology on S̃pC

ψ,A(W ) is that as a subgroup of Sp(W ) ×

GLC(V C
A ). The classical metaplectic group is known to be locally profinite, and so

is the metaplectic group over A because of the proposition. Define now the derived
group

ŜpB
ψ,A(W )= [S̃pB

ψ,A(W ), S̃pB
ψ,A(W )].

When B = C, this derived group is the reduced metaplectic group when F is local
nonarchimedean, or the symplectic group when F is finite, except in the exceptional
case F = F3 and dimF (W )= 2. According to Proposition 4.3, one has a canonical
isomorphism of central extensions

ŜpA
ψ,A(W )≃ ŜpC

ψ,A(W ).

Proposition 4.4 sheds light on the structure of the metaplectic group.

Theorem C. One has the following properties:

(a) The group S̃pB
ψ,A(W ) is the fibre product in the category of topological groups

of the morphisms σB and RED, having the subspace topology in Sp(W ) ×

GLB(V B
A ).

(b) The representation ωB
ψ,A : S̃pB

ψ,A(W )→ GLB(V B
A ) is smooth.

(c) The map φ̃B of Theorem B is open and continuous, and S̃pB
ψ,A(W ) is locally

profinite.

(d) Considering derived groups, the map φ̃B restricts to:

(i) A surjection ŜpA
ψ,A(W )→ ŜpB

ψ,A(W ) with kernel {±1} and image isomor-
phic to Sp(W ) if F is local nonarchimedean and char(B)= 2.

(ii) An isomorphism ŜpA
ψ,A(W )≃ ŜpB

ψ,A(W ) otherwise.

Again exclude the exceptional case, which is considered in Remark 4.12. In
Section 4B, we prove:
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Theorem D. There exists a section ςB
: Sp(W )→ ŜpB

ψ,A(W ) compatible with that
defined over A and such that the associated 2-cocycle ĉB has image:

• {1} if F is finite or char(B)= 2.

• {±1} if F is local nonarchimedean and char(B) ̸= 2.

Families of Weil representations. The consequence of these results is that one
may speak of a universal Weil module ωA

ψ over A associated to ψ : that is (see
Proposition 5.4) any Weil representation ωB

ψ with coefficients in B arises from the
scalar extension of this universal Weil module. Thus, according to the compatibility
in Theorem B, the Weil representation ωA

ψ is a family of Weil representations over
the residue fields of Spec(A).

0B. Towards an integral theta correspondence. In the rest of the introduction,
we give some new ideas and speculate in the direction of an integral theta corre-
spondence. As an illustration, we study in detail the case of the type II dual pair
(F×, F×) but it is only this example which is part of the main body of the paper.
Thus the text below is a kind of story about the bigger picture to motivate our study
and can be omitted if the reader is only interested in the Weil representation itself.

Suppose again F is local nonarchimedean. For more general dual pairs (H1, H2),
one usually considers the Weil representation with coefficients in a field, along
with its biggest π1-isotypic quotients for π1 running through the irreducible repre-
sentations of H1. However, there is no natural definition of what a good biggest
isotypic quotient over a ring should be. But there is another approach with a coarser
invariant in terms of the Bernstein centre, giving a bigger representation. In order
to lighten notations further, we omit the reference to ψ from now on.

Replacing biggest isotypic quotients: a heuristic approach. Suppose in this para-
graph that B is an algebraically closed field. Let zB(H1) be the Bernstein centre of H1.
A character of the Bernstein of the centre is a B-algebra morphism η1 : zB(H1)→B.
The set of such characters correspond bijectively to the points in Specmax(zB(H1)).
Denote by ηπ1 : zB(H1)→ B the character associated to π1. The construction of
the biggest π1-isotypic quotient factors through the biggest ηπ1-isotypic quotient,
in the sense that for any V ∈ RepB(H1), the quotient V → Vπ1 factors through
V → V ⊗zB(H1) ηπ1 . Denote by Vηπ1

the latter representation. Regardless of the
characteristic of B, and similarly to Vπ1 ∈RepB(H1×H2)when V ∈RepB(H1×H2),
one has Vηπ1

∈ RepB(H1 × H2).
When the characteristic ℓ of B is banal with respect to H1, that is when ℓ does

not divide the pro-order |H1| of H1, the set of characters of zB(H1) is in bijection
with the set of cuspidal supports in RepB(H1) and we expect the following to hold
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for all η1 in a Zariski open subset of Specmax(zB(H1)):

Vη1 ≃

⊕
π1∈η1

Vπ1

where π1 ∈ η1 means ηπ1 = η1, that is π1 has cuspidal support corresponding to η1.
Outside the banal setting, it seems risky to state any precise results. Already some

key facts fail: the maximal ideals of zB(H1) are no longer in bijection with cuspidal
supports. However the biggest π1-isotypic quotient Vπ1 always is a quotient of the
bigger representation Vηπ1

, so this last construction encapsulates more information.
In addition, we expect this object to behave in a nicer way for coefficient rings as it
keeps track of congruences.

Illustration for the type II dual pair (F×, F×). The category RepB(F
×) can be

decomposed according to the level and we denote by Rep0
B(F

×) the level 0 direct
factor category. This category is Morita-equivalent to the category of z0-modules,
where z0 is the commutative ring B[F×/1+ϖFOF ]. Up to choosing a uniformiser
ϖF and a primitive (q−1)-th root of unity ζ in F×, this ring is isomorphic to
B[X±1, Z ]/(Zq−1

− 1) by sending X to ϖF and Z to ζ . Instead of considering
biggest isotypic quotients associated to irreducible representations in RepB(F

×),
Section 6A1 considers more general isotypic families of representations using the
explicit description of (the centre of) z0.

Definition. Let V ∈ RepB(F
×). When C is a commutative B-algebra and η : z0

→ C
is a B-algebra morphism, the representation Vη = V ⊗z0 η ∈ RepC(F

×) may be
thought as the “biggest η-isotypic quotient of V .”

Remark. Unlike the situation of the biggest isotypic quotient, V does not neces-
sarily surject onto Vη if η is not surjective. So in general Vη is not a quotient of V ,
but the image of V in Vη generates Vη as a C-module.

When B′ is a B-algebra, denote by (1B′

F×,B′) ∈ Rep0
B(F

×) the trivial z0-module
isomorphic to B′. Denote by (χB,B) the character with χB(ϖF ) = q ∈ B× and
χB|O×

F
= 1B. Thus χB is the inverse of the norm |·|F .

Let I1 be the ideal in z0 corresponding to (X −1, Z −1) in B[X±1, Z ]/(Zq−1
−1).

Denote the quotient map η1 : z0
→ z0/I1. Consider the isotypic family Vη1 associated

to η1 with respect to the action of the first copy of F× on V . Take the same
convention for I corresponding to (X − q, Z − 1) with η being the quotient map.

Theorem E. One has in RepB(F
×) the following isomorphisms:

(a) Vη1 ≃ 1B/(q−1)B
F× ⊕ 1B

F× .

(b) Vη ≃ 1B/(q−1)B
F× ⊕χB.
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The subrepresentation 1B/(q−1)B
F× is in a certain sense the “defect” in the theta

correspondence. This is a pure (q−1)-torsion submodule, whereas the other part is
a free B-module of rank 1. When B is a field, this defect vanishes if and only if the
characteristic ℓ of B does not divide q−1, that is ℓ is banal with respect to F×.

Further example. Using this interpretation in terms of the characters of the Bernstein
centre seems to be more suitable when B is a ring. Indeed recall the situation in
[Trias 2020, Section 5.3] where F has odd residual characteristic and (H1, H2)

is a type I dual pair that is split in the metaplectic group. Let ℓ be a prime that
does not divide the pro-order of H1 and endow B = W (Fℓ) with an A-algebra
structure. Let K be the fraction field of B. For any absolutely irreducible cuspidal
51 ∈ RepK (H1), one has the equality V51 = Vη51

for V ∈ RepK (H1).
The reduction modulo ℓ of 51 is obtained by choosing a sable lattice L51

in 51. The reduction modulo ℓ of this lattice is an irreducible representation
π1 whose isomorphism class does not depend on the choice of L51 . We refer
to [Trias 2020, Section 5.3] for more details, but what is important here is that
similarly to 51, we have Vπ1 = Vηπ1

for V ∈ RepFℓ
(H1). Actually this comes

along with some compatibilities to scalar extension. Indeed there exists a character
η1 : zW (Fℓ)

(H1)→ W (Fℓ) of the integral Bernstein centre such that η1⊗W (Fℓ)
Fℓ=ηπ1

and η1 ⊗W (Fℓ)
K = η51 . This yields, for any V ∈ RepW (Fℓ)

(H1 × H2), the following
canonical morphisms in RepW (Fℓ)

(H1 × H2):

Vη1

����

// Vη1 ⊗W (Fℓ)
K = (V ⊗W (Fℓ)

K )η51

Vη1 ⊗W (Fℓ)
Fℓ = (V ⊗W (Fℓ)

Fℓ)ηπ1

When V = ω is the Weil representation with coefficients in W (Fℓ), the Weil
representations with coefficients in the residue fields Fℓ and K of W (Fℓ) are ω =

ω⊗W (Fℓ)
Fℓ and �= ω⊗W (Fℓ)

K, respectively. The biggest isotypic quotients are

�η51
≃51 ⊗K 2(51) and ωηπ1

≃ π1 ⊗Fℓ
2(π1),

where 2(51)∈ RepK (H2) and 2(π1)∈ RepFℓ
(H2). So ωη1 is a good family object

because its generic fibre is 51 ⊗K 2(51) and its special fibre is π1 ⊗Fℓ
2(π1). In

addition 2(51) is irreducible, when it is nonzero and ωη1 is a W (Fℓ)[H1 × H2]-
lattice in 51 ⊗K 2(51). Furthermore, when ℓ is banal with respect to H2 and
2(51) is cuspidal, the representation 2(π1) is the reduction modulo ℓ of 2(51)

and is therefore irreducible [Trias 2020, Theorem 5.17]. To relate2(51) and2(π1)

in general, one needs to explicitly know which lattice in 51 ⊗K 2(51) is ωη1 .
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First expectations. Of course in the most general situation, i.e., when the coefficient
ring B is Z

[ 1
p

]
(or A), exhibiting blocks, as well as their centres, is a daydream.

However, one can play with:

• “Simpler” rings B (fields, local rings, banal characteristic, etc.).

• Special classes of representations (cuspidals, level 0, etc.).

• Easier groups in the dual pair (small dimension, general linear, etc.).

As recalled, this has been achieved in [Trias 2020, Section 5.3] for type I dual pairs
(H1, H2) over the local ring W (Fℓ) when ℓ is banal with respect to H1, looking at
the block defined by a (super)cuspidal representation. In Section 6, we consider
the (very simple) pair (F×, F×), especially for level 0 representations. For bigger
type II dual pairs (GLn(F),GLm(F)) and coefficients rings being made of Witt
vectors, the work [Helm 2016] seems to be the cornerstone to tackle the problem.
Based on calculations in small dimensions, we make the following two conjectures.

Torsion principle. When the pro-order of H1, or that of H2, is not invertible in B,
we expect the failure of the theta correspondence to appear as some |H1| f |H2| f -
torsion submodule in the family object, where |Hi | f denotes the prime-to-p part of
the pro-order of Hi . Thanks to Theorem E, this principle is made a bit more precise
when (H1, H2)= (F×, F×).

Bijection principle for characters of the Bernstein centre. Another problem is the
following. When η1 : zB(H1)→ B is a character, are there any nice properties of
(ωB)η1 , where ωB is the Weil representation over B? For instance, it seems that the
action of zB(H2) can also be described in terms of a character of zB(H2). Indeed one
expects that there exists a character η2 : zB(H2)→ B such that ((ωB)η1)η2 = (ωB)η1 .
Denoting by η1 ⊗B η2 the natural character zB(H1)⊗B zB(H2)→B, we expect even
more: (ωB)η1 = (ωB)η2 = (ωB)η1⊗Bη2 . Writing η2 = θ(η1), one could then speak
of a theta correspondence in terms of characters of the respective Bernstein centres
because θ would induce a bijection

{η1 : zB(H1)→ B | (ωB)η1 ̸= 0}
θ
≃ {η2 : zB(H2)→ B | (ωB)η2 ̸= 0}.

1. Preliminaries

1A. Notations. All along the paper F will be a field of characteristic not 2, which
is either finite or local nonarchimedean. The residual characteristic and cardinality
of F are denoted as usual p and q . To turn F into a topological field one considers
the usual locally profinite topology. One of the many equivalent formulations of
the latter is “locally compact and totally disconnected”.
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K and A. Let K be the field defined in the following two cases:

• K is the cyclotomic extension of Q containing the p-th roots of unity, when
the characteristic of F is positive.

• K is the algebraic extension of Q containing all the p power roots of unity,
when the characteristic of F is zero.

One can write K = Q(ζp) by fixing a generator ζp in the first case; in the second
however, no generator exists, though the notation K = Q(ζp∞) is commonly used.
Based on classical results for cyclotomic extensions, the integral closure OK of Z

in K is, in the first case Z[ζp], and in the second Z[ζp∞]. From now on, let A be
the subring of K obtained from the ring of integers OK by inverting p, that is

A = OK
[ 1

p

]
.

A-algebras. By convention, the term A-algebra will refer to commutative rings B
endowed with an A-algebra structure, that is, a ring morphism ϕ : A → B. In order
to avoid confusion, those B considered always are unitary rings and ϕ maps the
neutral multiplicative element of A to that of B. Denote char(B) the characteristic
of B, that is the natural number such that {k ∈ Z | ϕ(k)= 0} = char(B)Z. The ring
morphism ϕ induces a group morphism A×

→ B× between the group of units of A
and that of B. Denote µp(B)= {ζ ∈B×

| ∃k ∈ Z, ζ pk
= 1} for the group of elements

in B× having order a power of p.

Character ψB. Let B be an A-algebra. Then ϕ restricts injectively to the group of
roots in A× having order a power of p, that is the group morphism ϕ : µp(A)→

µp(B) is injective. Indeed, given two distinct roots of unity ζ and ζ ′ in µp(A), their
difference ζ − ζ ′ is in A× because p ∈ A×, so they define two distinct elements in
ϕ(A)=A/Ker(ϕ). Therefore one can build, out of any nontrivial smooth character
ψ : F → A×, a character ϕ ◦ψ : F → B× which is still nontrivial and smooth. In
order to keep track of the ring considered, one uses a superscript to refer to the
A-algebra at stake. From now on, fix such a nontrivial smooth ψA

: F → A× and
set

ψB
= ϕ ◦ψA.

Smooth representations. Let G be a locally profinite group. Let R be a commu-
tative unitary ring. An R[G]-module V is said to be smooth if for all v ∈ V , the
stabiliser Gv of v is open in G. One denotes RepR(G) the category of smooth R[G]-
modules. For any closed subgroup H in G, the induction functor IndG

H associates to
any (σ,W )∈ RepR(H), the representation IndG

H (W )∈ RepR(G) of locally constant
functions on G taking values in W and satisfying f (hg)= σ(h) · f (g) for all g ∈ G
and h ∈ H . The compact induction indG

H is the subfunctor of IndG
H made of functions

compactly supported modulo H , that is the subspace of functions f ∈ IndG
H (W ) such
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that the image of supp( f ) in H\G is a compact set. A representation V ∈ RepR(G)
is said to be admissible if for all compact open subgroups K in G, the set of
K -invariants V K

= {v ∈ V | g · v = v} is finitely generated as an R-module.

Haar measures. Let G be a locally profinite group. In the following, we use the
notations of [Vignéras 1996, I.1 and I.2]. The pro-order |G| of G is the least
common multiple, in the sense of supernatural integers, of the orders of its open
compact subgroups. To be more explicit, |G| is a function P → N ∪∞ on the set
of prime numbers P . This decomposes in an obvious way into two parts having
disjoint supports, namely the finite part |G| f and the infinite one |G|∞. The only
situation occurring in the present work is |G| = |G| f ×|G|∞ with |G|∞ ∈ {1, p∞

},
according to G being either a finite group or an infinite p-adic group; in the latter
case, |G| f is prime-to-p. Let R be a commutative unitary ring. As long as all
the primes in |G|∞ are invertible in R, there exists a Haar measure on G with
values in R, that is a nonzero left G-equivariant morphism C∞

c (G, R)→ 1R
G where

C∞
c (G, R) is the space of locally constant and compactly supported functions in

G with values in R, and (1R
G, R) is the trivial representation. A normalised Haar

measure on G is a Haar measure taking the value 1 on a compact open subgroup
of G. In particular such a compact open subgroup must be of invertible pro-order
in R. Reciprocally, any normalised Haar measure arises as a Haar measure having
value 1 on a compact open subgroup of invertible pro-order in R.

The space W. Let (W, ⟨ · , · ⟩) be a symplectic vector space of finite dimension
over F . Its isometry group is composed of the F-linear invertible endomorphisms
preserving the form ⟨ · , · ⟩ and is classically denoted Sp(W ). A lagrangian in W is
a maximal totally isotropic subspace. Denote the dimension of W by n = 2m, then
X is a lagrangian if and only if it is a vector subspace which is totally isotropic (i.e.,
∀x, x ′

∈ X, ⟨x, x ′
⟩ = 0) of dimension m. A lattice L in W is a free OF -module of

rank n. The locally profinite topology on the field F induces a locally profinite
topology on the finite dimensional vector space W . As a result, a lattice in W
is a compact open set. Furthermore the subspace topology induced from that of
EndF (W ) on the symplectic group Sp(W ) is the locally profinite one as well.

2. Metaplectic representations over A-algebras

The Heisenberg group H is the set W × F endowed with the product topology and
the composition law

(w, t) · (w′, t ′)=
(
w+w′, t + t ′

+
1
2⟨w,w′

⟩
)

for (w, t) and (w′, t ′) in H = W × F .
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Let B be an A-algebra with structure morphism ϕ. Let ψA
: F → A× be a

nontrivial smooth character. As already mentioned in Section 1A, this defines, by
composing ψ and ϕ, a character ψB

: F → B× which is smooth and nontrivial.

2A. A lemma for representations over rings. Let G be a group and R a commuta-
tive ring. For every prime ideal P in Spec(R), one denotes k(P) the fraction field
of R(P)= R/P . Both k(P) and R(P) are endowed with an obvious structure of
R-algebras. For any R[G]-module V , the tensor product V ⊗R k(P) is a k(P)[G]-
module in the obvious way. Of course, the latter is smooth if the former is.

Definition 2.1. An R[G]-module V is said to be irreducible at P ∈ Spec(R) if
the representation V ⊗R k(P) ∈ Repk(P)(G) is irreducible. By extension, V is
everywhere irreducible if it is irreducible at any point of Spec(R).

There exists a simple sufficient condition to be everywhere irreducible.

Lemma 2.2. Let V be an R[G]-module and consider the map I 7→ I V that maps
an ideal I of R to the sub-R[G]-module I V of V . If the previous map defines a
bijection between ideals of R and sub-R[G]-modules of V , then V is everywhere
irreducible.

Proof. Using the bijection, one has PV ⊊ V for any prime (proper) ideal P , so
the module V ⊗RR(P)= V/PV is nonzero. It is even R(P)-torsion free because,
if av ∈ PV for a ∈ R and v ∈ V , then aIv ⊂ P where IvV = R[G] · v. In
particular V ⊗R R(P) embeds in V ⊗R k(P) by a localisation argument, so the
latter representation is nonzero.

In order to prove that V ⊗Rk(P) is irreducible, let W be a nonzero subrepresenta-
tion of V ⊗Rk(P) and define W ′

={v∈ V |v⊗R1∈ W }. As a first elementary claim,
this W ′ is a nonzero sub-R[G]-module of V . In addition the bijection hypothesis
yields the existence of an ideal I of R such that W ′

= I V . Observe furthermore
thanks to the bijection that I ⊂ P if and only if I V ⊂ PV . As a consequence,
the image of I V in V ⊗R k(P) generates V ⊗R k(P) as a k(P)-vector space if
and only if I is not contained in P . Of course the image of W ′ in V ⊗R k(P) is
nonzero because W is not, so I is not contained in P i.e., the image of W ′ generates
V ⊗R k(P). Therefore W = V ⊗R k(P). □

2B. Models VB
A associated to self-dual subgroups. When A is a closed subgroup

of W, define
A⊥

= {w ∈ W | ψA(⟨w, A⟩)= 1}.

In this definition, whether one usesψA orψB matters not. Now, the closed subgroup
A of W is said to be self-dual if A⊥

= A. Lagrangians and self-dual lattices provide
examples of such subgroups, so there always exist self-dual subgroups in W .
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Lemma 2.3. Let A be a self-dual subgroup of W . Then there exists a character
ψA

A which extends ψA to the subgroup AH = A × F of the Heisenberg group H.
Furthermore, ψB

A = ϕ ◦ψA
A provides the same kind of extension, that is, ψB

A extends
ψB to AH .

This lemma can be proved in the exact same elementary way as [Trias 2020,
Lemma 2.2(a)]. For the sake of shortness, we simply refer to the latter. The
heart of the current section is the following proposition, generalising [loc. cit.,
Lemma 2.2(b)] where the A-algebra B is a field.

Proposition 2.4. Let ψA
A be as above and set V B

A = indH
AH
(ψB

A ) ∈ RepB(H):

(a) The map I 7→ I V B
A defines a bijection from the set of ideals of B to the set of

sub-B[H ]-modules of V B
A . In particular, V B

A is everywhere irreducible.

(b) The B[H ]-module V B
A is admissible and V B

A = IndH
AH
(ψB

A ).

(c) V B
A satisfies Schur’s lemma, that is EndB[H ](V B

A )= B.

Proof. The core idea of the proof comes from [Trias 2020, Lemma 2.2(b) and Propo-
sition 2.4(c)], which was originally generalising [Mœglin et al. 1987, Chapter 2, I.3
and I.6]. As some differences occur when dealing with A-algebras instead of fields,
we carefully examine and detail them below:

(a) First remark that, assuming the bijection property holds, the second part of the
statement is a mere application of Lemma 2.2. Therefore we focus our attention to
proving that such a bijection holds.

The B[H ]-module V B
A is generated as a B-module by a family (χw,L) we now

describe. As ψB
A is smooth, there exists for allw∈ W an open compact subgroup Lw

of W such that ψB
A (a)= 1 for all a ∈ AH ∩(w, 0)(Lw, 0)(w, 0)−1. Fix such choices

of small enough lattices (Lw)w∈W . Then if L is a sublattice of Lw, there exists a
unique function in V B

A which is supported on AH (w, 0)(L , 0), right invariant under
(L , 0) and taking the value 1 at (w, 0). One denotes it χw,L . The B[H ]-module V B

A
being smooth, any f in this compactly induced module can be written as a finite
sum of such χw,L , that is the family (χw,L)w∈W,L⊂Lw is generating V B

A . Actually
we can give a more precise decomposition in terms of these functions. We claim
that f can be written as a finite sum

∑
f ((w, 0)) ·χw,L where L only depends on

f and the functions χw,L have disjoint supports. Indeed, assume that f is right
invariant by (L , 0) and f ((w, 0)) ̸= 0. In order for χw,L to be well-defined, the
condition ψB

A (a) = 1 for all a ∈ AH ∩ (w, 0)(L , 0)(w, 0)−1 needs to be satisfied.
Note that (w, 0)(L , 0)(w, 0)−1

= {(l, ⟨w, l⟩) | l ∈ L} so the intersection with AH

is simply {(l, ⟨w, l⟩) | l ∈ A ∩ L}. By right invariance, we obtain for all l ∈ A ∩ L
the equality f ((w, 0))= f ((w, 0)(l, 0))= ψB

A ((l, ⟨w, l⟩)) f ((w, 0)). This implies
that ψB

A (⟨l, ⟨w, l⟩) = 1 for all l ∈ A ∩ L because 1 − ζ is a regular element in
B when ζ ∈ µp(B) and ζ ̸= 1. Therefore f =

∑
f (w, 0) · χw,L where the sum
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runs over a finite number of double cosets AH (w, 0)(L , 0) in H . Because the
subspace of functions in V B

A taking values in I and the space I V B
A both contain

(i ·χw,L)i∈I,w∈W,L⊂Lw as a generating family, they must agree. Consequently the
injectivity of the map I 7→ I V B

A follows.
The surjectivity of I 7→ I V B

A amounts to proving that any sub-B[H ]-module of
V B

A is of the form I V B
A . For any subset X of V B

A , define IX = ⟨ f (h) | h ∈ H, f ∈ X⟩

the ideal in B generated by the set of values of functions in X . There is an obvious
inclusion of B[H ]-modules B[H ] · X ⊂ IX V B

A . We claim even more: this inclusion
actually is an equality. It is enough to prove it when X is a singleton to deduce the
result general case because B[H ] · X =

∑
B[H ] · f and IX V B

A =
∑

I f V B
A where

the sums run over all f ∈ X . So from now on, suppose that X is made of a single
function f in V B

A . We would like to prove that the reverse inclusion holds, that is

I f V B
A ⊂ B[H ] · f.

As p is invertible in B, there exists a Haar measure of H which takes values
in B and is normalised over a compact open subgroup of H . Let µ be such a
measure. The claim will then follow from the — technical-to-state but rather clear —
observation below.

Lemma 2.5. Let f be a nonzero function of V B
A . For any w ∈ W , fix a sufficiently

small lattice Lw in W such that (Lw, 0) leaves f right invariant and ψB
A (a)= 1 for

all a ∈ AH ∩ (w, 0)(Lw, 0)(w, 0)−1. Then for any sublattice L of Lw, there exists
an element φw,L ∈ B[H ] such that φw,L · f = f ((w, 0))χw,L .

Proof. First of all, the fact that such a choice of lattices (Lw)w∈W exists comes for
the smoothness of V B

A and ψB
A . Let L be sublattice of Lw and define

φ : a ∈ A 7→
ψB

A ((−a, 0))
vol(L⊥ ∩ A)

ψB(⟨−w, a⟩)1L⊥∩A(a) ∈ B

where 1X is the characteristic function of X , µA is a Haar measure of A normalised
over a compact open subgroup and vol(L⊥

∩ A) is a power of p. Then an explicit
computation will show that the function

φ · f : h ∈ H 7→

∫
A
φ(a) f (h(a, 0)) dµA(a) ∈ B

belongs to B[H ] · f and is a scalar multiple of χw,L .
We give short but prompt explanation of this last computational claim. Given

that the function φ is compactly supported and locally constant, one can write — up
to some volume factor which is a mere power of p — the function φ · f as a finite
sum ∑

φ(ai ) f (h(ai , 0))=

(∑
φ(ai )(ai , 0)

)
· f (h).
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So φ · f belongs to B[H ] · f . For all w′
∈ W , the computation mentioned above

reads

φ · f ((w′, 0))= f ((w′, 0))×
1

vol(L⊥ ∩ A)

∫
L⊥∩A

ψB(⟨w′
−w, a⟩) dµA(a).

A classical argument rewrites the last term as 1A+w+L(w
′). Therefore φ · f has

support AH (w, 0)(L , 0), is right invariant under (L , 0) and takes the value f ((w, 0))
at (w, 0). By unicity, one must have φ · f = f ((w, 0)) · χw,L . Now φw,L exists
because φ · f ∈ B[H ] · f . □

Applying the previous lemma, we conclude that the reverse inclusion I f V B
A ⊂

B[H ] · f holds. So the map I 7→ I V B
A is injective and surjective, that is being

bijective.

(b) Let L be an open compact subgroup of W . Let w ∈ W . Consider the set of
functions left ψB

A -equivariant, supported on the double coset AH (w, 0)(L , 0) and
right invariant under (L , 0). Actually this space of functions is isomorphic to either
B or 0 as a consequence of the formula for invariants vectors in compactly induced
representations [Vignéras 1996, I.5.6]. Denote by χw,L the appropriate generator,
meaning the function that takes value either 1 or 0 at (w, 0). Fix representatives in
W for the double coset AH\H/(L , 0)≃ A\W/L = W/(A + L). Remark that the
admissibility of V B

A follows from the fact that, given some L , there are only finitely
many representatives w giving rise to nonzero functions χw,L . We are now proving
this claim about functions χw,L .

Suppose χw,L is nonzero. For all l ∈ L ∩ A, one has

1 = χw,L((w, 0))= χw,L((w, 0)(l, 0))

= χw,L((l, ⟨w, l⟩)(w, 0))

= ψB(⟨w, l⟩)ψB
A ((l, 0)).

Thus for all l ∈ L ∩ A, the relation ψB(⟨w, l⟩)= ψB
A ((−l, 0)) must hold. It means

that any two representatives w and w′, giving rise to nonzero χw,L and χw′,L , must
satisfy the relation ψB(⟨w−w′, l⟩)= 1 for all l ∈ L ∩ A i.e., w−w′

∈ (L ∩ A)⊥.
However

(L ∩ A)⊥ = L⊥
+ A⊥

= L⊥
+ A.

As L is compact open, its orthogonal L⊥ is compact open too because this holds
for lattices in W . So the image of L⊥ in the quotient W/(A + L) is a finite set,
which means the set of representatives w giving rise to nonzero χw,L , when L is
fixed, is finite.
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To conclude, for any sufficiently small open compact subgroup L of W , the
condition for smallness being L × Ker(ψB) is a subgroup of H , one has

(V B
A )

L×Ker(ψB)
=

⊕
χw,L ̸=0

B ·χw,L

where the right-hand side sum is finite. So the smooth B[H ]-module V B
A is ad-

missible, and according to [Vignéras 1996, I.5.6 1)], it is equivalent to saying that
indH

AH
(ψB

A )= IndH
AH
(ψB

A ).

(c) As proved in the previous point, there exists a sufficiently small open compact
subgroup L of W such that K = L × Ker(ψB) is a subgroup of H and

(V B
A )

K
=

⊕
χw,L ̸=0

B ·χw,L

where the right-hand side sum is finite. In addition, there exists a nonzero χw,L
for w ∈ W if the condition “ψB

A (a)= 1 for all a ∈ AH ∩ (w, 0)(L , 0)(w, 0)−1” is
satisfied. Therefore, up to strengthening the sufficiently small condition, one may
suppose that (V B

A )
K

̸= 0. Because every B ·χw,L is isomorphic to B, and the sum
runs over functions with mutually disjoint supports, the B-module (V B

A )
K is a free

module of finite rank.
Thanks to point (a), the B[H ]-module V B

A is generated by a single element
χw,L . Indeed, the ideal Iχw,L = ⟨χw,L(h) | h ∈ H⟩ satisfies B[H ] ·χw,L = Iχw,L V B

A
and contains 1 since χw,L((w, 0))= 1. Thus the restriction to (V B

A )
K induces an

injective morphism of B-algebras

ξ : EndB[H ](V B
A ) ↪→ EndHB(H,K )((V

B
A )

K ),

where (V B
A )

K is a module on the relative Hecke algebra HB(H, K ) [Vignéras 1996,
I.4.5].

The module (V B
A )

K being free over B, write its basis B= (χw,L)w. In this basis,
the function φw,L defined above in the proof of Lemma 2.5 becomes the elementary
projector Ew onto χw,L i.e., for all w′

∈ B one has

φw,L ·χw′,L = χw′,L((w, 0))×χw,L =

{
0 if w′

̸= w;

χw,L otherwise.

Let now 8 ∈ EndB[H ](V B
A ). Then the image ξ(8) of 8 in EndHB(H,K )((V

B
A )

K )

commutes with Ew for all w ∈ B as it commutes with the action of φw,L . Because
of this commutation relation between ξ(8) and Ew, there exists a scalar λw ∈ B
such that ξ(8)(χw,L)=λw×χw,L . As any χw,L generates V B

A as a B[H ]-module, it
does generate (V B

A )
K as a HB(H, K )-module. This last fact implies that all the λw

are equal. Therefore there exists λ ∈ B such that ξ(8)= λ Id(V B
A )

K . So 8= λ idV B
A

because ξ is injective. □
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The following can be easily deduced from Proposition 2.4 that has just been
proved and the finiteness property of the compact induction:

Corollary 2.6. Let B′ be a B-algebra given by the ring morphism ϕ′
:B →B′. Then

the morphism ϕ′ induces a canonical isomorphism of smooth B′
[H ]-modules

V B
A ⊗B B′

≃ V B′

A .

It is given on simple tensor elements by the map f ⊗B b′
7→ b′

× (ϕ′
◦ f ).

This result will allow to reduce any problem over an A-algebra to a problem
over A, because applying the corollary leads to the canonical identification

V B
A ≃ V A

A ⊗A B.

Furthermore, one can consider A-algebras that are not integral domains. For
instance, if B =

∏
i Bi is a finite product of A-algebras (Bi ), then

V B
A ≃

⊕
i

V Bi
A .

2C. Changing models from VB
A1

to VB
A2

. Let A1 and A2 be two self-dual subgroups
of W . Let ψA

A1
be a character that extends ψB to A1,H as in Lemma 2.3. Similarly,

fix an extension ψA
A2

of ψB with respect to A2,H . Once again, set ψB
A1

= ϕ ◦ψA
A1

and ψB
A2

= ϕ ◦ ψA
A2

, which are both smooth and nontrivial characters. Suppose
ω ∈ W satisfies the condition

ψB
A1
((a, 0))ψB

A2
((a, 0))−1

= ψB(⟨a, ω⟩) for all a ∈ A1 ∩ A2.

Note that such an ω always exist as the left-hand side defines a character of A1 ∩ A2.
Let µ be a Haar measure with values in B of the quotient A1 ∩ A2\A2. Define

Iµ = ⟨µ(K ) | K open compact subgroup⟩

the ideal of B generated by the various values taken by µ on the open compact
subgroups of A1 ∩ A2\A2. By unicity of the Haar measure, the ideal Iµ is principal
and generated by any µ(K ) as long as the pro-order of K is invertible in B. The
measure is said to be invertible if Iµ=B. Of course, every normalised Haar measure,
that is a measure taking the value 1 on a compact open subgroup, is invertible. For
µ to be invertible, it is necessary and sufficient that there exists a compact open
subgroup whose measure is a unit in B i.e., µ is a unit multiple of a normalised
Haar measure.

Proposition 2.7. The map IA1,A2,µ,ω associating to f ∈ V B
A1

the function

IA1,A2,µ,ω f : h 7→

∫
A1,H ∩A2,H \A2,H

ψB
A2
(a)−1 f ((ω, 0)ah) dµ(a)
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is a morphism of smooth B[H ]-modules from V B
A1

to V B
A2

. Its image is IµV B
A2

and,
as a result, IA1,A2,µ,ω is an isomorphism if and only if µ is an invertible measure.
In addition, any invertible measure µ induces an isomorphism of B-modules

HomB[H ](V B
A1
, V B

A2
)= {λIA1,A2,µ,ω | λ ∈ B} ≃ B.

Proof. On the one hand, the function IA1,A2,µ,ω f is well defined. Indeed for any
h ∈ H , the function a ∈ A2,H 7→ψB

A2
(a)−1 f ((ω, 0)ah)∈ B is (A1H ∩ A2,H )-left in-

variant and locally constant, so one can consider it is a function on A1,H ∩A2,H\A2,H

= A1 ∩ A2\A2. The function a ∈ A2,H 7→ f ((ω, 0)ah) ∈ B is compactly supported
modulo A1,H ∩ A2,H because, as in [Trias 2020, Section 2.3], the sum A1 + A2 is
a closed subgroup of H . Finally, a change of variables implies that IA1,A2,µ,ω f is
left ψB

A2
-equivariant. The map IA1,A2,µ,ω is clearly B-linear and H -equivariant so

that IA1,A2,µ,ω ∈ HomB[H ](V B
A1
, V B

A2
).

As a result of point (a) from Proposition 2.4, the image of IA1,A2,µ,ω must be of
the form I V B

A2
for some ideal I in B. Actually, we proved a sharper results in the

proof of point (a) showing that

I = {IA1,A2,µ,ω f (h) | f ∈ V B
A1
, h ∈ H}.

If µ is chosen to be invertible, then for any other measure µ′, there exists λ ∈ B
generating Iµ′ and such that the image of IA1,A2,µ′,ω is Iµ′ I V B

A2
= λI V B

A2
. It reduces

to consider the morphism IA1,A2,µ,ω when µ is invertible. In this case, we show
below that the morphism is surjective and as injective.

Suppose µ is invertible. As in the proof of Proposition 2.4, choose a sufficiently
small open compact subgroup L of W such that there exists a nonzero function
χω,L supported on A1,H (ω, 0)(L , 0), right invariant under (L , 0) and taking the
value 1 at (ω, 0). One may as well suppose that ψA2((l, 0)) = 1 for all l ∈ L , by
choosing an even smaller L if needed. Then the formula for χω,L at h = (0, 0)
reads

IA1,A2,µ,ωχω,L((0, 0))=

∫
L∩A1∩A2\L∩A2

ψA2((l, 0))−1χω,L((ω, 0)(l, 0)) dµ(l)

=

∫
L∩A1∩A2\L∩A2

χω,L((ω, 0)) dµ(l)

= vol(L ∩ A1 ∩ A2\L ∩ A2).

The group L ∩ A1 ∩ A2\L ∩ A2 has pro-order a power of p, so its volume for the
invertible measure µ is a unit i.e., IA1,A2,µ,ωχω,L((0, 0)) ∈ B×.

Therefore the previous unit IA1,A2,µ,ωχω,L((0, 0)) belongs to I i.e., I = B = Iµ.
It follows that the morphism IA1,A2,µ,ω is surjective. It is injective as well. Indeed,
its kernel is of the form I ′V B

A1
for some ideal I ′ of B, and for all i ′

∈ I ′, the
function i ′χω,L belongs to the kernel. However the function IA1,A2,µ,ω(i

′χω,L)=
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i ′ IA1,A2,µ,ωχω,L takes the value i ′ at (0, 0) and is the zero function. So i ′
= 0 and

I ′ is the zero ideal of B. □

Consider the scalar extension functor

V ∈ RepA(H) 7→ V ⊗A B ∈ RepB(H)

and denote φB : HomA[H ](V A
A1
, V A

A2
)→ HomB[H ](V B

A1
, V B

A2
) the map that is induced

by functoriality.
In particular for all f ∈ HomA[H ](V A

A1
, V A

A2
), the following diagram, where the

vertical arrows are given by the canonical V A
A → V A

A ⊗A B of Corollary 2.6, is
commutative:

V A
A1

f
//

��

V A
A2

��

V B
A1

φB( f )
// V B

A2

For ω ∈ W , observe now that the two following conditions are equivalent:

• ψA
A1
((a, 0))ψA

A2
((a, 0))−1

= ψA(⟨a, ω⟩) for all a ∈ A1 ∩ A2.

• ψB
A1
((a, 0))ψB

A2
((a, 0))−1

= ψB(⟨a, ω⟩) for all a ∈ A1 ∩ A2.

Fix ω ∈ W satisfying one of the previous two. The corollary below is quite
immediate.

Corollary 2.8. Let µA be an invertible Haar measure of A1 ∩ A2\A2 with values
in A. Set µB

= ϕ ◦µA. This latter measure is an invertible B-valued measure. Then
for all M ∈ HomB[H ](V B

A1
, V B

A2
), there exists λ ∈ B such that

M = λ× IA1,A2,µB,ω = λ×φB(IA1,A2,µA,ω).

3. Weil representations over A-algebras

Let B be an A-algebra. Let A a self-dual subgroup of W and V B
A = indH

AH
(ψB

A ) the
smooth B[H ]-module built in Section 2B, where ψB

A is an extension of ψB in the
way of Lemma 2.3. The symplectic group Sp(W ) is naturally acting on H through
the first coordinate, that is

g · (w, t)= (gw, t)

for g ∈ Sp(W ) and (w, t) ∈ H . Of course, self-dual subgroups are preserved under
this action, that is g A is self-dual for all g ∈ Sp(W ).

In this section g always denotes an element of Sp(W ). For f ∈ V B
A , the function

Ig f : h ∈ H 7→ f (g−1
· h) ∈ B
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belongs to V B
g A = indH

(g A)H
(ψB

g A) where ψB
g A(g · a) = ψB

A (a) for all a ∈ AH . It
is important to stress that V B

g A depends on g, because even if g A = A, one may
have that ψB

g A ̸= ψB
A as characters of AH . Another caution is related to the map

Ig : f ∈ V B
A 7→ Ig f ∈ V B

g A

that is not a morphism of B[H ]-modules. Indeed, for h0 ∈ H , one has

Ig(h0 · f )= (g · h0) · Ig f

whereas h0 · (Ig f )= Ig((g−1
· h0) · f ).

Recall from Section 2C that there exists ωg ∈ W such that the condition

ψB
g A((a, 0))ψB

A ((a, 0))−1
= ψB(⟨a, ωg⟩)

holds for all a ∈ g A ∩ A. Then for any Haar measure µ of g A ∩ A\A, one can
compose the following morphisms of B-modules

V B
A

Ig
−→ V B

g A
Ig A,A,µ,ωg

−−−−−→ V B
A .

Therefore Ig A,A,µ,ωg ◦ Ig ∈ EndB(V B
A ) is uniquely defined up to a scalar of B,

because the morphism Ig A,A,µ,ωg is, thanks to Proposition 2.7.
Consider now the smooth B[H ]-module (ρd , IndH

F (ψ
B)) where F is identified

with the centre of H . All the B[H ]-modules V B
A naturally embed in the latter

because the restriction of ψB
A to F is ψB. Under this canonical identification for

V B
A , one has

Ig A,A,µ,ωg ◦ Ig ◦ ρd(h)= ρd(g · h) ◦ Ig A,A,µ,ωg ◦ Ig.

In other words Ig A,A,µ,ωg ◦ Ig ∈ HomB[H ]((ρd , V B
A ), (ρ

g
d , V B

A )) where ρg
d : h 7→

ρd(g · h).
Again in Section 2C, invertible Haar measures are defined as unit multiples of

normalised Haar measures. These exactly are the measures that can take unit values
on compact open subgroups. As the linear map Ig is invertible, one easily deduces
from Proposition 2.7 that the previous endomorphism is invertible:

Lemma 3.1. If µ is invertible, then Ig A,A,µ,ωg ◦ Ig ∈ GLB(V B
A ).

As a result of the lemma, the image of the set {Ig A,A,µ,ωg ◦ Ig | µ invertible}
through the quotient map

RED : GLB(V B
A )→ GLB(V B

A )/B
×

= PGLB(V B
A )

is well defined. As already mentioned the map Ig A,A,µ,ωg ◦ Ig is unique up to
a scalar, hence this image consists in a singleton; denote by Mg the single ele-
ment it contains. Remark that Mg does not depend on the choice of ωg because
HomB[H ](V B

g A, V B
A ) ≃ B once again by Proposition 2.7, and the set of invertible
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elements are those in B×, which does correspond to the choice of an invertible Haar
measure.

The proposition below allows to build Weil representations with coefficients
in B.

Proposition 3.2. The map σB : g ∈ Sp(W ) 7→ Mg ∈ PGLB(V B
A ) is a group morphism

and defines a projective representation V B
A of Sp(W ). Using the fibre product

construction, it lifts to a representation ωψB,V B
A

of a central extension of Sp(W ) by
B× in the following way:

S̃pB
ψB,V B

A
(W )

ω
ψB ,VB

A
//

pB

��

GLB(V B
A )

RED

��

Sp(W )
σB
// PGLB(V B

A )

where S̃pB
ψB,V B

A
(W )= Sp(W )×PGLB(V B

A )
GLB(V B

A ) is the fibre product defined by
the group morphisms σB and RED, together with the projection maps denoted pB
and ωψB,V B

A
.

Proof. The only point that needs explanation is the claim about σB being a group
morphism. Let g and g′ be two elements in Sp(W ). By definition, there exists an
invertible measure µg on g A ∩ A\A and an element ωg ∈ W such that

RED(Ig A,A,µg,ωg ◦ Ig)= Mg.

Respectively, one can write the same type of relation for Mg′ with some µg′ and ωg′ .
An explicit computation of the composed map Ig◦Ig′ A,A,µg′ ,ωg′ gives the existence

of an invertible measure µ on gg′ A ∩ g A\g A and an element ω ∈ W such that the
commutation relation

Ig ◦ Ig′ A,A,µg′ ,ωg′ = Igg′ A,g A,µ,ω ◦ Ig

holds. In addition, the morphism

Ig A,A,µg,ω ◦ Igg′ A,g A,µ,ω ∈ HomB[H ](V B
gg′ A,V

B
A)

is invertible because each one of the two is. Therefore Proposition 2.7 asserts the
existence of an invertible measure µgg′ on A∩gg′ A\gg′ A and an element ωgg′ ∈ W
such that

Ig A,A,µg,ω ◦ Igg′ A,g A,µ,ω = Ig A,A,µgg′ ,ωgg′ .

The claim hence follows by using the previous two relations and applying RED to

(Ig A,A,µg,ωg ◦ Ig) ◦ (Ig′ A,A,µg′ ,ωg′ ◦ Ig′). □
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Remark 3.3. Actually this fibre product makes sense in the category of topological
groups in the following setting. Let B and V B

A be endowed with the discrete topology.
Then the compact-open topology on GLB(V B

A ) is generated by the prebasis of open
sets Ss,s′ = {g ∈ GLB(V B

A ) | gs = s ′
} for s and s ′ in V B

A . Similarly to [Trias 2020,
Proposition 3.5], one can prove RED and σB are morphisms of topological groups.
As a result of the continuity, the fibre product is a locally profinite group for the
product topology and the representation ωψB,V B

A
is smooth. However, there is an

interesting alternative way to prove it and that is developed in the next section. It
illustrates the philosophy: any problem related to an A-algebra B may be brought
back to one directly involving A.

Denote by φB : GLA(V A
A ) → GLB(V B

A ) the group morphism induced by the
extension of scalars and the canonical identification V A

A ⊗A B ≃ V B
A coming from

Corollary 2.6.

Theorem 3.4. The group morphism φB induces a morphism of central extensions

φ̃B : (g,M) ∈ S̃pA
ψA,V A

A
(W ) 7→ (g, φB(M)) ∈ S̃pB

ψB,V B
A
(W ).

The image of φ̃B is a central extension of Sp(W ) by ϕ(A)× where ϕ is the structure
morphism ϕ : A → B. Furthermore, the following diagram commutes:

S̃pA
ψA,V A

A
(W )

ω
ψA,VA

A
//

φ̃B
��

GLA(V A
A )

φB

��

S̃pB
ψB,V B

A
(W )

ω
ψB ,VB

A
// GLB(V B

A )

Proof. By definition (g,M) ∈ Sp(W ) × GLA(V A
A ) belongs to S̃pA

ψA,V A
A
(W ) if

there exists an invertible Haar measure µ on g A ∩ A\A with values in A and an
element ω such that M = Ig A,A,µ,ω ◦ Ig. Set µB

= ϕ ◦µ. Using the compatibility
of Corollary 2.8, the equality φB(Ig A,A,µ,ω) = Ig A,A,µB,ω holds and defines an
isomorphism in HomB[H ](V B

g A, V B
A ). Hence

φB(M)= Ig A,A,µB,ω ◦ Ig

with µB invertible, that is (g, φB(M)) ∈ S̃pB
ψB,V B

A
(W ).

The map φ̃B thus defined clearly is a morphism of central extensions. In addition,
an element (g,M) belongs to its kernel if and only if g = IdW and φB(M)= IdV B

A
.

However

{M ∈ GLA(V A
A ) | (IdW ,M) ∈ S̃pA

ψA,V A
A
(W )} = {λ IdV A

A
| λ ∈ A×

}.
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Indeed M must be of the form Ig A,A,µ,ω◦Ig = IA,A,µ,0 =µ({0})×IdV A
A

whereµ is an
invertible measure of the singleton {0}, so there exists λ∈B× such that M = λ IdV A

A
.

Since φB(λ IdV A
A
) = ϕ(λ) IdV B

A
, the group {(IdW , λ IdV A

A
) | λ ∈ Ker(ϕ)} ≃ Ker(ϕ)

is the kernel sought. The assertion on the image follows from the form of this
kernel. □

Because of the previous compatibility, many problems over B reduce to those
over the minimal ring A. The corollary to the proposition below illustrates this
philosophy.

Proposition 3.5. Let A and A′ be two self-dual subgroups of W . Let 8A,A′ be an
isomorphism in HomA[H ](V A

A , V A
A′ ). Then8A,A′ induces an isomorphism of central

extensions

(g,M) ∈ S̃pA
ψA,V A

A
(W ) 7→ (g,8A,A′ M8−1

A,A′) ∈ S̃pA
ψA,V A

A′
(W )

compatible with the projections defining the fibre products. In particular, the
equivalence class of the representation ωψA,V A

A
does not on depend A in the sense

that

8A,A′ ◦ωψA,V A
A
((g,M)) ◦8−1

A,A′ = ωψA,V A
A′
((g,8A,A′ M8−1

A,A′))

for all (g,M) ∈ S̃pA
ψA,V A

A
(W ).

Proof. The existence of an isomorphism in HomA[H ](V A
A , V A

A′ ) is a consequence
of Proposition 2.7. One can consider for example any IA,A′,µ,ω as long as µ is
invertible. The fact that 8A,A′ induces an isomorphism of central extensions is
quite clear when writing down the relations because 8A,A′ is an isomorphism of
A[H ]-modules. □

From Theorem 3.4 and the proposition above, one can deduce the exact same
result for coefficients in any A-algebra B. Indeed, applying φB to the last relation
yields:

Corollary 3.6. The equivalence class of ωψB,V B
A

does not depend on A, in the sense
that for any other self-dual subgroup A′ of W , there exists an isomorphism 8′

A,A′ in
HomB[H ](V B

A , V B
A′)— one can take φB(8A,A′) for example — such that

8′

A,A′ ◦ωψB,V B
A
((g,M)) ◦ (8′

A,A′)
−1

= ωψB,V B
A
((g,8′

A,A′ M(8′

A,A′)
−1))

for all (g,M) ∈ S̃pB
ψB,V B

A′
(W ).

4. The metaplectic group over A

The notations are those of Section 3. To quickly recall the context: let B be an
A-algebra, let A be a self-dual subgroup of W and V B

A = indH
AH
(ψB

A ) be the smooth
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B[H ]-module built in Section 2B, where ψB
A is an extension of ψB in the way of

Lemma 2.3.
In Section 3, we constructed a projective representation σB :Sp(W )→PGLB(V B

A )

of the symplectic group and, in Proposition 3.2, we lifted it to a representation
(ωψB,V B

A
, V B

A ) of a central extension of Sp(W ) by B×, namely

ωψB,V B
A

: S̃pB
ψB,V B

A
(W )→ GLB(V B

A ).

Recall that the group on the left-hand side is the fibre product in the category of
groups of the group morphisms σB : Sp(W )→ PGLB(V B

A ) and RED : GLB(V B
A )→

PGLB(V B
A ), together with the projection maps pB and ωψB,V B

A
. As a result of

this construction, it is a subgroup of Sp(W ) × GLB(V B
A ). In particular, these

constructions make sense over A itself, and Theorem 3.4 completes the picture
relating the constructions over A and over any A-algebra B, yielding a morphism
of central extensions

φ̃B : S̃pA
ψA,V A

A
(W )→ S̃pB

ψB,V B
A
(W )

compatible with the respective projection maps.

4A. A bit of topology. This section will shed some light on Remark 3.3 by bringing
topology into the construction of Proposition 3.2. Endow B and V B

A with the discrete
topology. Then the open-compact topology on GLB(V B

A ) is generated by the prebasis
Ss,s′ = {M ∈ GLB(V B

A ) | Ms = s ′
} for s and s ′ running through V B

A .
The group PGLB(V B

A ) inherits the quotient topology, which is the finest mak-
ing the quotient map RED : GLB(V B

A ) → PGLB(V B
A ) continuous. Recall from

Theorem 3.4 that the projective representation σB : Sp(W ) → PGLB(V B
A ) was

defined in terms of the action of Sp(W ) on H .

The complex case. The best-known feature comes when B is the field of complex
numbers. Endowing C with a structure of A-algebra amounts to fixing an embedding
ϕ : A → C. Observe that all such embeddings have the same image in C, because
K/Q is a Galois extension. In particular, the image of the map A×

→ C× induced
by ϕ does not depend on the choice of ϕ.

So when B = C and ϕ is fixed, the representation V C
A ∈ RepC(H) is irreducible

as an application of Stone–von Neumann’s theorem [Mœglin et al. 1987, Chapter 2,
Theorem I.2] and

ωψC,V C
A

is the Weil representation of the metaplectic group S̃pC

ψC,V C
A
(W ).

The complex theory asserts that the Weil representation is smooth and the meta-
plectic group is a natural topological subgroup of Sp(W )× GLC(V C

A ). To be more
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precise, the metaplectic group is a locally profinite group. Regarding the smoothness
condition, this is equivalent to saying that the map ωψC,V C

A
is continuous.

These topological properties are consequences of the continuity of the map σC,
which really is the cornerstone of the theory; and the metaplectic group inherits a
natural topology as the fibre product in the category of topological groups of the
continuous group morphisms RED and σC.

Over A. By analogy, one calls S̃pA
ψA,V A

A
(W ) the metaplectic group over A. Refer-

ring to Theorem 3.4, it is a subgroup of the metaplectic group because the group
morphism

φ̃C : (g,M) ∈ S̃pA
ψA,V A

A
(W )→ (g, φC(M)) ∈ S̃pC

ψC,V C
A
(W )

is injective.

Lemma 4.1. The map φC : M ∈ GLA(V A
A )→ φC(M) ∈ GLC(V C

A ), coming from
the scalar extension to C, is continuous and defines an homeomorphism onto its
image.

Proof. The image of φC is endowed with the subspace topology from GLC(V C
A ).

The map φC is continuous and injective, so it defines a bijection to its image, say GA.
Denote φ′

C
: GA → GLA(V A

A ) the inverse map. Then for all s and s ′ in V A
A , one has

(φ′

C)
−1(Ss,s′)= {φC(M) | M ∈ GLA(V A

A ) and φC(M)(s ⊗C 1)= s ′
⊗C 1}

= GA ∩ Ss⊗C1,s′⊗C1

that is the trace of an open set. So (φ′

C
)−1(Ss,s′) is open in GA and φ′

C
is continuous.

□

Of course, the embedding Sp(W )× GLA(V A
A )→ Sp(W )× GLC(V C

A ) induced
by φC is an homeomorphism onto its image as well. As a result of the lemma,
the subspace topology on Sp(W )× GLA(V A

A ), inherited from that of Sp(W )×

GLC(V C
A ) using the previous embedding, coincides with the usual product topology.

Restricting this morphism to the metaplectic group over A, which is a subgroup of
Sp(W )× GLA(V A

A ), exactly yields φ̃C. Because of the homeomorphism property,
one can identify the metaplectic group over A and its image under φ̃C, resulting in:

Corollary 4.2. The group S̃pA
ψA,V A

A
(W ) is a topological subgroup of S̃pC

ψC,V C
A
(W ),

the inclusion being canonically given by φ̃C. In addition φ̃C is an open embedding.

Proof. The fact that it is a topological subgroup follows from Lemma 4.1 and
the subsequent discussion. The map φ̃C is open because its image is open in the
metaplectic group. Indeed the first projection of the fibre product yields an exact
sequence

1 → C×
→ S̃pC

ψC,V C
A
(W )→ Sp(W )→ 1.
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Because K/Q is a Galois extension, the image ϕ(A×) of A× does not depend on ϕ
and always contains {±1}. As a result, the following diagram is commutative:

1 C× S̃pC

ψC,V C
A
(W ) Sp(W ) 1

1 A× S̃pA
ψA,V A

A
(W ) Sp(W ) 1

ϕ φ̃C IdSp(W )

and the group S̃pA
ψA,V A

A
(W ) contains the reduced metaplectic group ŜpC

ψC,V C
A
(W ),

that is the derived group of the metaplectic group.
When F is local nonarchimedean, this is the unique subgroup of the metaplectic

group fitting into the exact sequence

1 → {±1} → ŜpC

ψC,V C
A
(W )→ Sp(W )→ 1.

Furthermore this reduced metaplectic group is open in the metaplectic group, so
the claim follows because the metaplectic group over A contains it. When F is
finite, the topology can just be ignored as these groups are finite and have discrete
topology. □

As above, denote by ŜpC

ψC,V C
A
(W ) the derived group of S̃pC

ψC,V C
A
(W ). When

F is finite, this group is the derived group of Sp(W ). Except in the exceptional
case F = F3 and dim(W ) = 2, the symplectic group is perfect i.e., equal to its
own derived subgroup. When F is local archimedean it is the so-called reduced
metaplectic group, which is a nontrivial extension of Sp(W ) by {±1}. Actually
there exists a unique such (open) subgroup in the metaplectic group. Regardless of
what F may be, we use brackets to define the derived group

ŜpA
ψA,V A

A
(W )= [S̃pA

ψA,V A
A
(W ), S̃pA

ψA,V A
A
(W )].

Recall that φ̃C canonically identifies S̃pA
ψA,V A

A
(W ) with its image in S̃pC

ψC,V C
A
(W ).

It also induces, by restriction, a map between the respective derived groups.

Proposition 4.3. One has the following properties:

(a) The map σA is continuous and S̃pA
ψA,V A

A
(W ) is the fibre product in the category

of topological groups of the continuous morphisms RED and σA.

(b) The representation ωψA,V A
A

: S̃pA
ψA,V A

A
(W ) → GLA(V A

A ) is smooth as this
group morphism is the second projection of the fibre product.

(c) The group S̃pA
ψA,V A

A
(W ) is open in S̃pC

ψC,V C
A
(W ) and therefore the metaplectic

group over A is locally profinite.
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(d) The map φ̃C restricts to an isomorphism ŜpA
ψA,V A

A
(W ) ≃ ŜpC

ψC,V C
A
(W ) and

when:

(i) F is finite, it is the symplectic group except when F = F3 and dim(W )= 2.
(ii) F is local nonarchimedean, it is the reduced metaplectic group.

Proof. (a) The map σA is continuous, because σC itself is, and one has

σA = φC ◦ σC

where φC : PGLA(V A
A )→ PGLC(V C

A ) is the continuous group morphism defined
from φC by passing to the quotient. The fibre product of σA and RED in the category
of topological groups defines a topological subgroup of Sp(W )× GLA(V A

A ). In
particular, this fibre product is, as a group, the metaplectic group over A.

(b) The projection maps are continuous by definition of the fibre product.

(c) As a direct consequence of φ̃C being an open embedding, the group S̃pA
ψA,V A

A
(W )

is an open subgroup of the metaplectic group, which is locally profinite. Hence it is
a closed subgroup, so the subspace topology is the locally profinite one.

(d) The isomorphism follows considering the first projection pA : ŜpA
ψA,V A

A
(W )→

Sp(W ). This map is surjective, and so is pC. In addition one has the equality

pC ◦ φ̃C = pA.

Passing to derived groups yields

D(pC) : ŜpC

ψC,V C
A
(W )→ [Sp(W ),Sp(W )].

It is an isomorphism in case (i) and a surjective morphism of kernel {±1} for (ii).
But through the identification given by φ̃C, one has the inclusion

ŜpA
ψA,V A

A
(W )⊂ ŜpC

ψC,V C
A
(W )

and D(pC) ◦ φ̃C is surjective. In case (i), the previous inclusion is an equality and
except in the exceptional case mentioned the symplectic group is perfect. In case
(ii), this implies the following inequality for the index of the quotient

[ŜpC

ψC,V C
A
(W ) : ŜpA

ψA,V A
A
(W )] ≤ 2.

It must be 2 as the reduced metaplectic group cannot be split over Sp(W ). □

Over B. Call S̃pB
ψB,V B

A
(W ) the metaplectic group over B and define its derived

group

ŜpB
ψB,V B

A
(W )= [S̃pB

ψB,V B
A
(W ), S̃pB

ψB,V B
A
(W )].
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As above, the morphism of central extensions of Theorem 3.4

φ̃B : (g,M) ∈ S̃pA
ψA,V A

A
(W )→ (g, φB(M)) ∈ S̃pB

ψB,V B
A
(W )

restricts to a morphism at the level of derived groups. As φB is continuous, it defines
a continuous map φB : PGLA(V A

A )→ PGLB(V B
A ) at the level of quotients. Then

one has the equality σB = φB ◦ σA and one deduces from Proposition 4.3 that σB is
continuous.

Proposition 4.4. One has the following properties:

(a) The group S̃pB
ψB,V B

A
(W ) is the fibre product in the category of topological group

of the continuous morphisms σB and RED, its topology being the subspace
topology in Sp(W )× GLB(V B

A ).

(b) The representation ωψB,V B
A

: S̃pB
ψB,V B

A
(W )→ GLB(V B

A ) is smooth as this group
morphism is the second projection of the fibre product;

(c) The map φ̃B : (g,M)∈ S̃pA
ψA,V A

A
(W )→ (g, φB(M))∈ S̃pB

ψB,V B
A
(W ) is an open

continuous map and therefore the metaplectic group over B is locally profinite.

(d) Considering derived groups, the map φ̃B restricts to:
(i) A surjection ŜpA

ψA,V A
A
(W )→ ŜpB

ψB,V B
A
(W ) of kernel {±1} and image iso-

morphic to Sp(W ) if F is local nonarchimedean and char(B)= 2.
(ii) An isomorphism ŜpA

ψA,V A
A
(W )≃ ŜpB

ψB,V B
A
(W ) otherwise.

Proof. (a) and (b) Obvious from the definition of fibre products and projections.

(c) This needs some explanation however. Once again when F is finite, the topol-
ogy is discrete and the statement trivially holds. Suppose now that F is local
nonarchimedean. As a first observation, remark that the equality φB ◦ωψA,V A

A
=

ωψB,V B
A

◦ φ̃B holds.
Let v ∈ V A

A such that v⊗A 1 ∈ V B
A is nonzero. Because of the previous equality,

the stabiliser of v ⊗A 1 will be contained in the image of φ̃B as a result of the
following two facts. First, one has

ωψB,V B
A
(g, λM)(v⊗A 1)= λM(v⊗A 1)

for all (g,M) ∈ S̃pB
ψB,V B

A
(W ) and λ ∈ B×. Not much has been said so far. Second,

the surjectivity of pA and pB onto Sp(W ) implies that for all (g,M)∈ S̃pB
ψB,V B

A
(W ),

there exists λ ∈ B× such that (g, λM) is in the image of φ̃B.
Combining the previous two facts, the stabiliser of v⊗A 1 must be included in

the image of φ̃B. So the image of φ̃B is open because the stabiliser of any element
is open as a consequence of ωψB,V B

A
being smooth.

The image of φ̃B is an open subgroup in the metaplectic group over B. If this
subgroup is a locally profinite group, then the metaplectic group will be too. Using
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Theorem 3.4, one has an exact sequence

1 → Ker(φ̃B)→ S̃pA
ψA,V A

A
(W )

φ̃B
−→ Im(φ̃B)→ 1.

where Ker(φ̃B)= {(IdW , λ IdV A
A
) | λ∈A× and ϕ(λ)= 1} ≃ Ker(A×

→ ϕ(A)×) is a
discrete subgroup, so a closed subgroup. Thanks to Proposition 4.3 the metaplectic
group over A is locally profinite, so its quotient by the previous discrete subgroup
is locally profinite and φ̃B factors through it, inducing an homeomorphism of
topological groups.

(d) First of all, there is an induced map between derived subgroups

D(φ̃B) : ŜpA
ψA,V A

A
(W )→ ŜpB

ψB,V B
A
(W ).

But pB ◦ D(φ̃B) = D(pA) is a surjective map ŜpA
ψA,V A

A
(W ) → [Sp(W ),Sp(W )],

which is an isomorphism in case (i) and has kernel {±1} in case (ii) according to
Proposition 4.3. Therefore

S̃pB
ψB,V B

A
(W )/ Im(D(φ̃B))

is abelian. By minimality of the derived group, we must have Im(D(φ̃B)) =

ŜpB
ψB,V B

A
(W ). Furthermore

Ker(D(φ̃B))= {(IdW , λ IdV A
A
) | λ ∈ A× and ϕ(λ)= 1} ∩ ŜpA

ψA,V A
A
(W ).

When F is finite, the group Ker(D(φ̃B))= {(IdW , IdV A
A
)} is trivial. When F is

local nonarchimedean, it is included in {(IdW , ϵ IdV A
A
) | ϵ ∈ {±1}} ≃ {±1}. But this

kernel is nontrivial if and only if ϕ(−1) = ϕ(1) = 1 in B, that is ϕ(2) = 0, and
char(B)= 2. □

Definition 4.5. Let φ̂B :ŜpA
ψA,V A

A
(W )→S̃pB

ψB,V B
A
(W ) be the restriction φ̃B|ŜpA

ψA,VA
A
(W )

.

This map will be used later on. Proposition 4.4 has already given some key
properties of this map: just to mention a few, it is an open map and its kernel is
explicit.

4B. Reduced cocycle for A-algebras. One deduces from Proposition 4.4 that the
metaplectic group over B either:

• Contains the symplectic group as a subgroup, then char(B)= 2 or F is finite.

• Does not contain the symplectic group as a subgroup, in which case F is
local nonarchimedean and char(B) ̸= 2, and its derived group is canonically
isomorphic to the so-called reduced metaplectic group.
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In practice, it is important to describe the explicit group law of the metaplectic
group for applications. In the first case for instance, it is useful to have a precise
formula for the embedding of the symplectic group inside the (split) metaplectic
group. In the second case, there are important subgroups that are known to be
split, such as inverse images of compact open subgroups, parabolic subgroups, Levi
subgroups and unipotent radicals. However, there is a priori no guarantee that these
groups are split in the reduced metaplectic even though they may be split in the
metaplectic group. In order to do computations, one needs to express the cocycle
which controls the group law of the reduced metaplectic group. This cocycle usually
involves the so-called Weil factor, which is ill-defined when the A-algebra B does
not contain a square root of q . This is the reason why we develop a nonnormalised
version of it.

4B1. Nonnormalised Weil factor over B. The definition of the nonnormalised Weil
factor, achieved over fields in [Trias 2020, Section 1.1], generalises to A-algebras
as explained below. Let X be a vector space over F of finite dimension m. Let µA

be an invertible Haar measure of X with values in A.

Proposition 4.6. Let Q be a nondegenerate quadratic form on X. Then there exists
a unique nonzero element �µA(ψA

◦ Q) in A such that for all f ∈ C∞
c (X,A), one

has∫
X

∫
X

f (y − x)ψA(Q(x)) dµA(x)dµA(y)=�µA(ψA
◦ Q)

∫
X

f (x) dµA(x).

For any sufficiently small open compact subgroup K in X , the condition for small-
ness being “ψA(Q(u))= 1 for all u ∈ K ”, this factor explicitly reads

�µA(ψA
◦ Q)=

∑
x̄∈K ′/K

ψA(Q(x̄))

where K ′
= {y ∈ X | ∀u ∈ K , ψA(Q(y − u) − Q(y)) = 1} is a compact open

subgroup too.

Proof. The existence of such an element �µA(ψA
◦ Q) comes from the definition

of the nonnormalised Weil factor over fields and from computation, as examined
below.

Indeed, the ring A is naturally contained in its field of fractions K, and the
measure µA can be thought of as having values in K. So there exists [Trias 2020,
Proposition 1.2] a nonzero element �µA(ψA

◦ Q) in K, which achieves the first
equality of the statement. A direct computation when f = 1K and ψA(Q(K ))= 1
gives ∫

X
1K (y − x)ψA(Q(x)) dµA(x)= ψA(Q(y))µA(K )× 1K ′(y)
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where one easily checks from the definition that K ′ is a compact open subgroup
of X . In addition it contains K . Applying µA to the previous equality leads to

�µA(ψA
◦ Q)×µA(1K )= vol(K )

∑
x̄∈K ′/K

ψA(Q(x̄))

where µA(1K )= vol(K )∈A× because µ is invertible, resulting in the last equality.
□

Let now µ be a Haar measure of X with values in B. Denote λµ the unique
element in B such that µ = λµ × µB, where µB

= ϕ ◦ µA is an invertible Haar
measure. Applying ϕ to the equalities in the previous proposition yields:

Corollary 4.7. Let Q be a nondegenerate quadratic form on X. Then there exists a
unique element �µ(ψB

◦ Q) in B such that for all f ∈ C∞
c (X,B), one has∫

X

∫
X

f (y − x)ψB(Q(x)) dµ(x) dµ(y)=�µ(ψ
B

◦ Q)
∫

X
f (x) dµ(x).

Furthermore,
�µ(ψ

B
◦ Q)= λµ ×ϕ(�µA(ψA

◦ Q)).

When Q is a quadratic form on X , one denotes rad(Q) its radical. Observe
that Q is nondegenerate if and only if rad(Q)= 0. The nondegenerate quadratic
form Qnd associated to Q is the nondegenerate quadratic form induced by Q on
X/ rad(Q).

Definition 4.8. Let Q be a quadratic form on X . Let µ be Haar measure of
X/ rad(Q) with values in B. The nonnormalised Weil factor is defined by:

• �µ(ψ
B

◦ Q) := µ({0}) if Q is the zero quadratic form.

• �µ(ψ
B

◦ Q) :=�µ(ψ
B

◦ Qnd) otherwise.

Lemma 4.9. One has
�µA(ψA

◦ Q) ∈ A×.

In particular for any invertible Haar measure µ with values in B

�µ(ψ
B

◦ Q) ∈ B×.

Proof. Let K→C be an embedding of K into C and ϕC its restriction to A. The factor
�µA(ψA

◦ Q) can be thought of as the factor �µC(ψC
◦ Q)= ϕC(�µA(ψA

◦ Q))
where µC

= ϕC ◦µA is an invertible Haar measure. Then point (f) of [Trias 2020,
Proposition 1.5] gives

�µC(ψC
◦ Q)= ωψC(ψC

◦ Q)× |ρ|
1/2
µC
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where ωψC(ψC
◦ Q) is an eigth root of unity and |ρ|µC = µC(K )(q1/2)k , with K a

compact open subgroup of X , a square root q1/2 of q in C and an integer k ∈ Z. So

�µC(ψC
◦ Q)8 = (µC(K ))8q4k .

Therefore �µA(ψA
◦ Q)8 = (µA(K ))8q4k

∈ A× because ϕC is injective and Q-
linear, implying the result about the factor being invertible. Hence the second
equality results from applying ϕ and Corollary 4.7, given the fact that λµ ∈ B×. □

Define for a in F× the quadratic form Qa : x ∈ F 7→ ax2
∈ F . Then the factor

�A
a,b =

�µA(ψA
◦ Qa)

�µA(ψA ◦ Qb)
∈ A×

does not depend on the choice of the invertible Haar measure µA, as the notation
suggests. One can define �B

a,b in the obvious way, either as a quotient of two
nonnormalised Weil factors or as the image of the previous using the map ϕ.

4B2. Section ςB giving the cocycle. Let X be a lagrangian of W . In particular this
provides an instance of a self-dual subgroup in W . A nice section ςA

: Sp(W )→

S̃pA
ψA,V A

X
(W ) of pA is defined below. It is nice in the sense that it will give the

explicit group law in the metaplectic group over A.
First of all, observe that, using the notation of Section 3, any section ς of pA is

given by a family (µg)g∈Sp(W ) of measures where µg is an invertible measure of
gX ∩ X\X . Namely it reads ς : g 7→ (g, IgX,X,µg,0 ◦ Ig). One defines the section
ςA mentioned above in the following way. The stabiliser P(X) of X in Sp(W ) is a
maximal parabolic subgroup. For g ∈ Sp(W ), let µg be the invertible measure on
gX ∩ X\X defined by

µg =�A
1,detX (p1 p2)

×φ1 ·µA
w j

where:

• (w j ) j=0,...,m is a system of representatives in Sp(W ) for P(X)\ Sp(W )/P(X).

• The element g = p1w j p2 ∈ P(X)w j P(X) with p1 and p2 in P(X).

• detX (p)= detF (p|X ) where p|X ∈ GL(X)≃ GLm(F).

• gX ∩ X\X
φ1
≃ w j X ∩ X\X is induced by x ∈ X 7→ p−1

1 x ∈ w j X ∩ X\X .

• Q j (x)=
1
2⟨w j x, x⟩ is the nondegenerate quadratic form on w j X ∩ X\X .

• For any invertible µ, set µA
w j

= �µ(ψ
A

◦ Q j )
−1µ which does not depend

on µ.

See [Trias 2020, Section 3.5] to get a more detailed explanation about the previous
definitions. Exclude the exceptional case F = F3 and dim(W )= 2 from now on.
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Proposition 4.10. With the previous choice of µg, the section

ςA
: g ∈ Sp(W ) 7→ (g, IgX,X,µg,0 ◦ Ig) ∈ S̃pA

ψA,V A
X
(W )

has values in ŜpA
ψA,V A

X
(W ), except in the exceptional case F = F3 and dim(W )= 2.

The 2-cocycle defined by this section

ĉA : (g1, g2) ∈ Sp(W )× Sp(W ) 7→ ςA(g1)ς
A(g2)ς

A(g1g2)
−1

∈ A×

is trivial when F is finite, and has image {±1} when F is local nonarchimedean.

Proof. Consider an embedding K → C and denote ϕC its restriction to A. The map

φ̃C : (g,M) ∈ S̃pA
ψA,V A

A
(W )→ (g, φC(M)) ∈ S̃pC

ψC,V C
A
(W )

and the compatibility φC(IgX,X,µA,0)= IgX,X,µC,0 from Corollary 2.8 where µC
=

ϕC ◦µA, leads to

φ̃C ◦ ςA(g)= (g, IgX,X,ϕC◦µg,0 ◦ Ig).

But the measure ϕC ◦µg above is the one defined in [Trias 2020, Lemma 3.23],
and according to [loc. cit., Theorem 3.27], the map φ̃C ◦ ςA is a section of pC

whose associated cocycle is trivial when F is finite, and has values in the reduced
metaplectic group when F is local nonarchimedean. The associated cocycle ĉC

is trivial when F is finite and has image {±1} when F is local nonarchimedean.
Using point (d) of Proposition 4.3, the image of ςA lies in ŜpA

ψA,V A
X
(W ), except in

the exceptional case F = F3 and dim(W )= 2. In any case, the map ςA is injective
so this defines a section of pA. In particular, it is a group morphism when F is
finite as a result of the cocycle ĉC being trivial. □

One easily deduces from the previous proposition and Proposition 4.4, the
corollary:

Corollary 4.11. The section ςB
= φ̃B ◦ ςA has values in ŜpB

ψB,V B
X
(W ), except in

the exceptional case F = F3 and dim(W )= 2. The 2-cocycle defined by this section

ĉB : (g1, g2) ∈ Sp(W )× Sp(W ) 7→ ςB(g1)ς
B(g2)ς

B(g1g2)
−1

∈ B×

5 is trivial when F is finite or char(B)= 2, and has image {±1} otherwise.

Remark 4.12. In the exceptional case, the section ςA, resp. ςB, can still be
defined. However the derived group [Sp(W ),Sp(W )] is a strict subgroup of the
symplectic group Sp(W ). So the image of the previous sections, which are again
group morphisms, is just a subgroup of the metaplectic group over A, resp. over B,
that is isomorphic to Sp(W ).
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5. Families of Weil representations

Consider the map φ̂B : ŜpA
ψA,V A

A
(W )→ S̃pB

ψB,V B
A
(W ) of Definition 4.5. The excep-

tional case F = F3 and dim(W )= 2 needs separate treatment, which will be done
as a quick remark, so we exclude it from now on.

Let H be a closed subgroup of Sp(W ) and set

H̃A
= p−1

A (H) and H̃B
= p−1

B (H).

Denote by ĤA the intersection of H̃A and ŜpA
ψA,V A

A
(W ). Recall that ϕ : A → B is

the structure morphism of the A-algebra B and consider the categories

Rep′

B(Ĥ
A)= {(π, V ) ∈ RepB(Ĥ

A) | π((IdW , ϵ IdV A
A
))= ϕ(ϵ) IdV for ϵ ∈ {±1}}

and

Rep′

B(H̃
B)= {(π, V ) ∈ RepB(H̃

B) | π((IdW , λ IdV B
A
))= λ IdV for λ ∈ B×

}.

Proposition 5.1. The functor

(π, V ) ∈ Rep′

B(H̃
B) 7→ (π ◦ φ̂B, V ) ∈ Rep′

B(Ĥ
A)

defines an equivalence of categories.

Proof. This map is a functor and its inverse is given by the extension of scalars
to B×, that is for any (π ′, V ′) ∈ Rep′

B(Ĥ
A), the representation

π ′′
: (ĥ, λ) ∈ ĤA

×B×
7→ λπ ′(ĥ) ∈ GLB(V ′)

factorises as a representation of H̃B. Indeed, the surjective group morphism

(ĥ, λ) ∈ ĤA
×B×

→ φ̂B(ĥ)× (IdW , λ IdV B
A
) ∈ H̃B

is an isomorphism when F is finite and has kernel {((IdW , ϵ IdV A
A
), ϕ(ϵ)) | ϵ ∈{±1}}

when F is local nonarchimedean. But Ker(π ′′) contains the kernel of the surjective
map above, that is it factorises as claimed. □

Remark 5.2. The reason for proving such a result is to consider the “same” group
for any A -algebra B, which is particularly convenient when looking at scalar
extension for representations. For instance, the representation ωψA,V A

A
⊗A B ∈

Rep′
B(Ĥ

A), which is the scalar extension of ωψA,V A
A

∈ Rep′
A(Ĥ

A), should be the
“same” — the proposition below making this “same” precise — representation as
ωψB,V B

A
∈ Rep′

B(H̃
B).

Remark 5.3. In the exceptional case however, because the symplectic group Sp(W )

is isomorphic to SL2(F3), the derived group ŜpA
ψA,V A

A
(W ) is a strict subgroup of the

symplectic group. One needs to replace φ̂B by any morphism that embeds Sp(W )
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in the metaplectic group over A, composed with φ̃B. One can take for example the
embeddings ςA and ςB according to Remark 4.12.

From the previous proposition and Theorem 3.4, the following compatibility
holds:

Proposition 5.4. The representations ωψA,V A
A

⊗A B and ωψB,V B
A

are isomorphic, in
the sense that the canonical identification V A

A ⊗A B ≃ V B
A of Corollary 2.6 induces

an isomorphism in Rep′
B(Ĥ

A), namely

(ωψA,V A
A

⊗A B, V A
A ⊗A B)≃ (ωψB,V B

A
◦ φ̂B, V B

A ).

Of course when R is a field endowed with an A-algebra structure, the representa-
tion (ωψ R,V R

A
, V R

A ) is the modular Weil representation on W associated to ψ R and
V R

A , in the way they are defined in [Mœglin et al. 1987, Chapter 2, II] for R = C

and in [Trias 2020, Section 3] for more general fields. Recall that in this situation
V R

A is the metaplectic representation associated to ψ R .

Dual pairs. When (H1, H2) is a dual pair in Sp(W ), one may fix a model for the
Weil representation and “embed” the lift of the dual pairs in the derived subgroup
of the metaplectic group over A through the natural multiplication map. One can
also use the lifts in the metaplectic group over A instead of the derived subgroup.
This means looking at the representation

ωψB,V B
A

◦ φ̂B|Ĥ1
A

×Ĥ2
A ∈ RepB(Ĥ1

A
× Ĥ2

A
)

where the restriction Ĥ1
A

× Ĥ2
A

→ ŜpA
ψA,V A

A
(W ) is achieved using the natural

multiplication map. Of course, when these lifts of dual pairs are split, one can
always compose with their splittings to get representations of H1 or H2 themselves.
It may happen that splittings do not exist in the derived subgroup even if they do
exist in the metaplectic group itself [Mœglin et al. 1987, Chapter 2, Remark II.9]
and [Trias 2020, Section 4]. So one may switch hats for tildes depending on the
dual pair one wants to consider.

6. Features of the pair (GL1(F),GL1(F))

Suppose F is a local nonarchimedean field. Let W be a symplectic space over F of
dimension 2 and W = X + Y be a complete polarisation. For a ∈ F×, define ma to
be the unique endomorphism in Sp(W ) such that in the previous basis:

ma =

[
a 0
0 a−1

]
The pair (H1, H2) = (F×, F×) is defined by (a1, a2) 7→ ma1ma−1

2
. Up to some

smooth characters of H1 and H2, the Weil representation ωH1,H2 is the “geometric”
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representation (ρ,C∞
c (F,B)) where H1 and H2 act respectively on the left and on

the right on the locally profinite space F . For f ∈ C∞
c (F,B) and a1, a2 ∈ F×, it

reads
ρ(a1, a2) · f : x ∈ F 7→ f (a−1

1 xa2) ∈ B.

6A. Level 0 part. The category RepB(F
×) is decomposed as a product of cat-

egories
∏

k∈N Repk
B(F

×) where the index k is also known as the level. In this
picture, the level 0 subcategory has the most direct description as it corresponds to
representations with trivial action of the biggest pro-p-subgroup K of F× which
is, after choosing a uniformiser ϖF of F , the group K = 1 +ϖFOF . In addi-
tion the isomorphism (k, u) ∈ Z × O×

F 7→ ϖ k
F u ∈ F× induces an isomorphism

F×/K ≃ Z × (Z/(q − 1)Z). Suppose from now on a choice of uniformiser
ϖF is made as well as a choice of a primitive (q−1)-root of unity ζq−1 in F .
Hence in the free part Z is generated by ϖF and the torsion part Z/(q − 1)Z is
generated by ζq−1. So the group algebra B[F×/K ] is isomorphic to the B-algebra
B[X±1, Z ]/(Zq−1

− 1), where ϖF corresponds to X and ζq−1 to Z .

The level 0 category. As we are only interested in the level 0 part, we shall only
consider, for any V ∈ RepB(F

×), the direct factor representation V K made of
K -invariant vectors. As for the representation (ρl,C∞

c (F,B)) given by the left
F×-action, this level 0 part is the subspace of bi-K -invariant functions

C∞

c (F,B)
K

= { f ∈ C∞

c (F,B) | ∀x ∈ F and k ∈ K , f (xk)= f (kx)= f (x)}.

In addition, the centre z0 of the level 0 category Rep0
B(F

×) is, because the group F×

is abelian, equal to the endomorphism ring of a minimal progenerator of Rep0
B(F

×).
Let (1K ,B) be the free module B of rank 1 with trivial K -action. Then indF×

K (1K )

is known to be a progenerator of Rep0
B(F

×). As a space of functions this also is
C∞

c (F
×/K ,B), which is a free module of rank 1 over B[F×/K ] generated by the

characteristic function 1K . Therefore

EndF×(indF×

K (1K ))= EndB[F×/K ](indF×

K (1K ))≃ B[F×/K ]

thanks to indF×

K (1K ) being free of rank 1. So one can consider that the centre z0 is
B[F×/K ] ≃ B[X±1, Z ]/(Zq−1

− 1). Eventually, the level 0 category is equivalent
to the category of modules over the latter commutative ring.

6A1. Specialisation using the centre.

Morphism of the centre. Let C be a commutative B-algebra. Let η∈HomB - alg(z
0,C)

be a morphism of B-algebras. Of course η naturally endows C with a z0-algebra
structure. In addition, any representation in Rep0

B(F
×) is canonically endowed with

a z0-module structure. By definition, this z0-module structure commutes with the
F×-action.
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Definition 6.1. For any V ∈ Rep0
B(F

×), one defines the representation

Vη = V ⊗z0 η ∈ RepC(F
×).

Examples. Recall z0
= B[X±1, Z ]/(Zq−1

− 1). The following are easy claims:

• When B is a field and χ : F×/K → B× is a character, the B-algebra morphism

ηχ : P ∈ B[X±1, Z ]/(Zq−1
− 1) 7→ P(χ(ϖF ), χ(ζ )) ∈ B

provides the biggest χ -isotypic quotient Vηχ = Vχ . Furthermore

Ker(ηχ )= (X −χ(ϖF ), Z −χ(ζ )).

• When ϕ : B → B′ is a morphism of B-algebras, the B-algebra morphism

ηϕ : P ∈ B[X±1, Z ]/(Zq−1
− 1)→ ϕ(P) ∈ B′

[X±1, Z ]/(Zq−1
− 1)

provides the extension of scalars Vηϕ = V ⊗B B′. Furthermore

Ker(ηϕ)= Ker(ϕ) · z0.

• Let χ be a character with values in B×, let m a maximal ideal in B, and denote
by ϕm the quotient morphism B → B/m and χm = ϕm ◦χ , then

(Vηχ )ηϕm = (Vηϕm )ηχm i.e., Vηχ ⊗B (B/m)= (V ⊗B (B/m))χm .

Therefore the representation Vηχ may be viewed as a family of representations
specialising at maximal ideals to biggest isotypic quotients, whereas it is less
clear how direct methods would give a good definition of an isotypic quotient
over a ring.

Remark 6.2. Unlike the construction of the biggest isotypic quotient for irreducible
representations with coefficients in a field, the natural map V 7→ Vη is not surjective
in general. Of course if η is surjective, the previous map is a quotient map.

6A2. Isotypic families of the Weil representation.

Level 0 Weil representation. Instead of considering representations with coeffi-
cients over different rings, this approach benefits from a greater flexibility when
dealing with the level 0 Weil representation C∞

c (F,B)K . For example in the second
situation with ϕ ∈ HomB−alg(B,B′), and thanks to the description as spaces of
functions, one has

(C∞

c (F,B)
K )ηϕ = C∞

c (F,B
′)K .
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Family for the trivial representation. Set V = C∞
c (F,B)K and V0 = C∞

c (F
×,B)K .

Recall there is an exact sequence of representations, that is given by the function
restriction to the closed set {0} in F , namely

0 → V0 → V → 1B
F× → 0

where 1BF× is a free B-module of rank 1 endowed with the trivial F×-action. Consider
now the ideal I1 = (X − 1, Z − 1) in z0 and the morphism η1 : z0

→ z0/I1. As
(1B

F×)η1 = 1B
F× , and V0 is free of rank 1 over z0, it induces an exact sequence

1B
F× → Vη1 → 1B

F× → 0.

The kernel of the map B → Vη1 is (q − 1)B because

((X − 1)V + (Z − 1)V )∩ V0 = (X − 1)V0 + (Z − 1)V0 + (q − 1)V0.

So the following sequence is exact:

0 → 1B/(q−1)B
F× → Vη1 → 1B

F× → 0.

Denoting by β the image of 1OF in Vη1 , the above sequence splits as b ∈ B 7→

b ·α ∈ Vη1 is a section of Vη1 → 1B
F× . So one has Vη1 ≃ 1B/(q−1)B

F× ⊕ 1B
F× .

The family for (X − q, Z − 1). It does not coincide with the family for the trivial
representation, except at the nonbanal prime ideals. These are the prime ideals P
in B such that P ∩ Z is generated by a prime ℓ dividing q − 1. Denoting η the
character z0

→ z0/(X − q, Z − 1) and (χB,B) the character such that χB(ζ ) = 1
and χB(ϖF )= q , one similarly has

0 → χB → Vη → 1B/(q−1)B
F× → 0.

Indeed on the one hand (X−1)1BF×+(Z−1)1BF× = (1−q)1BF× so (1BF×)η=1B/(q−1)B
F× .

On the other hand V0 is z0-free so (V0)η = χB. Denote by α and β the images of
11+ϖFOF and 1OF in Vη. The following computation helps identifying the (q−1)-
torsion

(X − 1)β = (q − 1)α = (X − q)β + (1 − q)β = (q − 1)β.

Then λ ∈ B 7→ λ(β − α) ∈ Vη factorises as a section of Vη → 1B/(q−1)B
F× . As a

consequence, one has Vη ≃ 1B/(q−1)B
F× ⊕χB.

Remark 6.3. We interpret 1B/(q−1)B
F× as the greatest common quotient of 1BF× and χB.

More general families. One can look at any ideal in z0 to get more new families
of representations. For example, instead of only looking at characters with values
1 at ζ , one can look at irreducible factors Q of Zq−1

− 1 that are different from
Z − 1, and consider the ideal (P, Q) for an irreducible polynomial P in B[X±1

].
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Remark 6.4. Even when B is an integral domain, the previous classes of ideals
(P, Q) are not necessarily prime ideals in z0. The irreducibility has therefore
to be considered over the field extension Frac(B)[Z ]/(Q) of Frac(B) i.e., P is
irreducible as a polynomial over this bigger field. Furthermore, letting P be a
nonunitary polynomial allows to consider characters with coefficients in Frac(B)
e.g., Zℓ[X±1

]/(ℓX − 1)= Qℓ when B = Zℓ.

6B. Positive level part. Let k ∈ N∗. As a first observation, the level k parts of
the representations C∞

c (F,B) and C∞
c (F

×,B) are equal. Therefore the problem
reduces to understand the level k part of the regular representation. The same
techniques as in the previous paragraph apply once the centre zk of the category
has been made explicit. The study will not be developed in the present work for
the sake of shortness. But in order to flag some differences, here are some remarks
below:

• If B does not have enough p-power roots of unity, the situation is more
complicated as no characters of level k may exist, that is there does not exist
a group morphism χ : 1 +ϖFOF → B× such that 1 +ϖ k+1

F OF ⊂ Ker(χ)⊊
1 +ϖ k

FOF .

• Provided B has enough p-power roots of unity, the set of characters

Chark
B = {χ : 1 +ϖFOF → B×

| χ ∈ Repk
B(1 +ϖFOF )}

is not empty and decomposes the category Repk
B(F

×) as product of categories∏
χ∈Chark

B
RepχB(F

×), where each category factor is equivalent to Rep0
B(F

×).

In the first situation, the situation may be quite complicated to write down, though
this first situation only occurs when F has positive characteristic. Indeed, A is
isomorphic to Z

[ 1
p , ζp

]
in this case, whereas it is Z

[ 1
p , ζp∞

]
for characteristic

zero F . In the event of B having enough p-power roots of unity, one can reduce
the situation to the level 0 part of C∞

c (F
×,B) as it is isomorphic to the χ-part of

C∞
c (F

×,B) for χ ∈ Chark
B. This latter has been studied in the previous section.
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This paper is devoted to studying geometric and analytic properties of g-
starlike mappings of complex order λ. By using Loewner chains, we obtain
the growth theorems for g-starlike mappings of complex order λ on the
unit ball in reflexive complex Banach spaces, which generalize some results
of Graham, Hamada and Kohr. As applications, several different kinds of
distortion theorems for g-starlike mappings of complex order λ are obtained.
Finally, we prove that the Roper–Suffridge extension operators preserve
the property of g-starlike mappings of complex order λ in complex Banach
spaces, which generalizes many classical results.

1. Introduction 401
2. Preliminaries 404
3. Growth theorems for g-starlike mappings of complex order λ 409
4. Distortion theorems for g-starlike mappings of complex order λ413
5. Roper–Suffridge extension operators and the families S∗

g,λ(B) 421
Acknowledgement 428
References 428

1. Introduction

Let f = z +
∑

∞

n=2 anzn be a normalized univalent function on the unit disk D in C.
The growth theorem shows that the modulus of a normalized univalent function | f |

has a finite upper and positive lower bound depending only on the modulus of the
variable |z|, and the image of f contains a disk centered at origin with radius 1

4 .
The distortion theorem gives explicit upper and lower bounds on | f ′(z)| in terms
of |z|. The term distortion arises from the geometric interpretation of | f ′(z)| as the
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infinitesimal magnification factor of arc length and the interpretation of the square
of | f ′(z)| as the infinitesimal magnification factor of area.

However, in the case of several complex variables, H. Cartan pointed out that the
growth theorem and distortion theorem do not hold for normalized biholomorphic
mappings. In addition, he suggested that one should investigate the important
geometrically defined subfamilies of convex and starlike mappings. As a matter of
fact, there was little work in the geometric directions suggested by Cartan, until the
1970s, when a number of results dealing with the convex and starlike biholomorphic
mappings appeared. As a direct generalization of the growth theorem for univalent
function on the unit disk D, the growth theorem for normalized biholomorphic
starlike mappings on the unit ball Bn was obtained by Barnard, Fitzgerald and Gong
[Barnard et al. 1991] using the analytical characterization of starlikeness, and by
Kubicka and Poreda [1988] using the method of Loewner chains.

Theorem A [Barnard et al. 1991; Kubicka and Poreda 1988]. Let f be a starlike
mapping on the unit ball Bn . Then, for any point z ∈ Bn , we have

∥z∥
(1 + ∥z∥)2

≤ ∥ f (z)∥ ≤
∥z∥

(1 − ∥z∥)2
.

Furthermore, the above estimates are sharp.

If the convexity restriction is attached to the family of normalized locally biholo-
morphic mapping f , the following growth theorem for convex mappings is due to
Suffridge [1977], Thomas [1991], Liu [1989] or Liu and Ren [1998].

Theorem B. Let f be a convex mapping on the unit ball Bn . Then, for any point
z ∈ Bn , we have

∥z∥
1 + ∥z∥

≤ ∥ f (z)∥ ≤
∥z∥

1 − ∥z∥
.

Moreover, the above estimates are sharp.

In several complex variables, Barnard, Fitzgerald and Gong [Barnard et al. 1994]
were the first to show that the version of the distortion theorem for the determinant
of the Jacobian of normalized biholomorphic convex mappings holds on the unit
ball B2 in C2, but there does not exist a direct generalization of the distortion
theorem in the case of the family of starlike mappings. The monograph of Graham
and Kohr [2003, Chapter 7] and Gong [1998, Chapter 3, Chapter 4] contain a nice
development of the growth theorem and distortion theorem for starlike mappings
and convex mappings. And for a more classical results concerning starlike mappings
and convex mappings in n-dimensional Euclidean space or complex Banach space;
see [Gurganus 1975; Kikuchi 1973; Pfaltzgraff 1974; Poreda 1989; Roper and
Suffridge 1995; Suffridge 1970; 1973; 1977].
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Hamada and Honda [2008] introduced a subfamily of starlike mappings on the
unit ball in complex Banach spaces, which is called g-starlike mappings. They
also obtained a sharp growth theorem for this mappings by using the method of
parametric representation. Recently, the distortion theorem for g-starlike mappings
on the unit ball Bn was obtained by Graham, Hamada and Kohr [Graham et al.
2020a] using the Schwarz lemma at the boundary. As a generalization of spirallike
mappings, Bălăeţi and Nechita [2010] defined almost starlike mappings of complex
order λ on the unit ball Bn and gave an equivalent characterization in terms of
Loewner chains. It is interesting to note that the family of g-starlike mappings gives
a unified representation of some well-known subfamilies of starlike mappings, and
the family of almost starlike mappings of complex order λ gives a unified expression
of some well-known subfamilies of spirallike mappings of type β. There is a lot of
results concerning g-starlike mappings and almost starlike mappings of complex
order λ; see [Chirilă 2014; 2015; Graham et al. 2002a; 2020b; Hamada and Kohr
2004; Hamada et al. 2006; 2021; Li and Zhang 2019; Zhang et al. 2018].

In view of the above results, the motivation for this paper can be summarized in
terms of the following question:

Question. Can we unify g-starlike mappings and complex order λ on the unit ball
of complex Banach spaces and characterize their geometric and analytic properties?

We manage to answer the above questions affirmatively in the case of the unit
ball of some complex Banach space. In Section 2, the definition of g-starlike
mappings of complex order λ is given by combining the definition of g-starlike
mappings with the definition of almost starlike mappings of complex order λ on
the unit ball in complex Banach spaces. As mentioned in Remark 2.4, it gives
a unified expression of a variety of biholomorphic mappings, which includes g-
starlike mappings, almost starlike mappings of complex order λ as the special case.
In Section 3, by using Loewner chains idea, we establish a growth theorem of
g-starlike mappings of complex order λ in reflexive complex Banach spaces, which
is a generalization of [Hamada and Honda 2008, Theorem 3.1]. Because the family
of g-starlike mappings of complex order λ contains most of the biholomorphic
mappings that have geometry meaning in higher dimensions, this result essentially
corresponds to giving a unified form of the growth theorems for some subfamilies
of starlike mappings and spirallike mappings. As applications, in Section 4, we
obtain distortion theorems for g-starlike mappings of complex order λ on the unit
polydisk Dn and the unit ball Bn respectively, which is a generalization of [Graham
et al. 2020a, Theorem 5.6, Theorem 5.11; Liu et al. 2015, Theorem 4.2; 2011,
Theorem 3.1, Theorem 3.2]. In Section 5, we will prove that the Roper–Suffridge
type extension operator and the Muir type extension operator preserve g-starlike
mappings of complex order λ on domain �r respectively, where g is a univalent
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convex function on D. In particular, if λ= 0, then the results obtained in this paper
are generalizations of results in [Graham et al. 2020b; Muir 2005].

2. Preliminaries

2A. Notations and definitions. Let Dr = {ζ ∈ C : |ζ | < r} be the disk of radius
r in the complex plane C, and let D1 = D. Let Cn denote the space of n complex
variables u = (u1, . . . , un)

′ equipped with inner product ⟨u, v⟩ =
∑n

k=1 ukvk , and
the Euclidean norm ∥u∥ =

√∑n
k=1|uk |

2, the symbol ′ means the transpose of
vectors and matrices. The open ball centered at zero and radius r in Cn is denoted
by Bn(0, r)={u ∈ Cn

: ∥u∥< r}, the closed ball is denoted by Bn(0, r), the unit ball
is denoted by Bn . Let Dn(0, r)= {u = (u1, . . . , un)

′
∈ Cn

: |uk |< r, k = 1, . . . , n}

be the polydisk of radius r . The unit polydisk is denoted by Dn . The boundary of
Bn is denoted by ∂Bn =

{
u ∈ Cn

:
∑n

k=1|uk |
2
= 1

}
, the distinguished boundary of

the polydisk Dn is denoted by (∂D)n = {u ∈ Cn
: |uk | = 1, k = 1, . . . , n}. Let X be a

complex Banach space with respect to the norm ∥·∥X . Let Br = {x ∈ X : ∥x∥X < r}

be the open ball centered at zero and of radius r , and let B be the open unit ball
in X . Let Br be the closed ball centered at zero and of radius r . Let � ⊆ X be
a domain which contains the origin, we denote by H(�) the set of holomorphic
mappings from � to X . If f ∈ H(�), and f (0)= 0, D f (0)= I , then we say that
f is normalized, where D f (0) is the Fréchet derivative of f at 0, I is the identity
operator on X . A holomorphic mapping f ∈ H(�) is said to be biholomorphic
if the inverse f −1 exists and it is holomorphic on the open set f (�). A mapping
f ∈ H(�) is said to be locally biholomorphic if each x ∈� has a neighborhood V
such that f |V is biholomorphic. If X = Cn , then D f (z)= J f (z) is the Jacobian
matrix of f .

Let T : X → C be a continuous linear functional. Then

∥T ∥ = sup{|T x | : x ∈ ∂B}.

For each x ∈ X\{0}, we define T (x) = {Tx ∈ X∗
: ∥Tx∥ = 1, ∥Tx(x)∥ = ∥x∥}.

According to the Hahn–Banach theorem, T (x) is nonempty. For any fixed x ∈ X ,
ζ ∈ C\{0}, we have Tζ x = (|ζ |/ζ )Tx . In particular, Tr x = Tx when r > 0.

The following elementary definitions are used:

• If for any x ∈�, t ∈ [0, 1], (1− t)x ∈� holds, then � is said to be starlike (with
respect to the origin).

• A domain �⊆ X is said to be convex if given x1, x2 ∈�, t x1 + (1 − t)x2 ∈�,
for all t ∈ [0, 1].

• A domain�⊆ X is said to be ε-starlike if there exists a positive number ε ∈ [0, 1],
such that for any z, w ∈�, one has (1 − t)z + εtw ∈� for all t ∈ [0, 1].
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In particular, if ε = 0 or ε = 1, then the ε-starlike domain reduces to starlike
domain with respect to the origin or convex domain, respectively.

• Let f ∈ H(�) be biholomorphic mapping with 0 ∈ f (�). If f (�) is starlike
(with respect to the origin), then f is said to be starlike. If f (�) is convex, then
f is said to be convex. If f (�) is ε-starlike, then f is said to be ε-starlike, where
ε ∈ [0, 1].

• Let g : D → C be a holomorphic univalent function, g(0) = 1 and ℜg(ζ ) > 0.
Furthermore, let g be symmetric along the real axis, i.e., g(ζ )= g(ζ ), and satisfy
the condition {

min|ζ |=r ℜg(ζ )= min{g(r), g(−r)};
max|ζ |=r ℜg(ζ )= max{g(r), g(−r)}.

Let G(D) denote the family of holomorphic functions g defined as above.

2B. Loewner chains. We next recall the notions of subordination and Loewner
chains on the unit ball B in X . Some results may be found in [Graham et al. 2013;
2020b].

A mapping v ∈ H(B) is called a Schwarz mapping if v(0)= 0 and ∥v(x)∥X < 1,
x ∈ B.

If f, g ∈ H(B), and there exists a Schwarz mapping v such that f = g ◦ v, then
we say that f is subordinate to g, denoted by f ≺ g.

If g is biholomorphic on B, then f ≺ g is equivalent to requiring that f (0)= g(0)
and f (B)⊆ g(B).

Definition 2.1. Let B be the unit ball of a complex Banach space X . A mapping
f : B×[0,∞)→ X is called a univalent subordination chain if f ( · , t) is univalent
on B, f (0, t)= 0 for t ≥ 0, and f ( · , s)≺ f ( · , t) when 0 ≤ s ≤ t <∞. A univalent
subordination chain f : B × [0,∞)→ X is called a Loewner chain if f ( · , t) is
biholomorphic on B and D f (0, t)= et I , for all t ≥ 0.

The subordination condition of Loewner chain is equivalent to the existence
of a unique biholomorphic Schwarz mapping v = v( · , s, t), called the transition
mapping associated with f (x, t), such that f (x, s)= f (v(x, s, t), t) for x ∈ B and
0 ≤ s ≤ t .

Let g ∈ G(D) be defined as above. The family Mg(B) of holomorphic mappings
h :B → X that is analogous to the analytic functions on the unit disk in the complex
plane, with positive real part, is defined as follows.

Mg(B)

=

{
h ∈ H(B) : h(0)=0,Dh(0)= I,

1
∥x∥X

Tx{h(x)}∈ g(D),Tx ∈ T (x), x ∈B\{0}

}
.

If g(ζ )= (1 + ζ )/(1 − ζ ), ζ ∈ D, then Mg(B) reduces to the Carathéodory family
M(B) on the unit ball B in a complex Banach space.
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We know that both M(B) and Mg(B) consist of so-called holomorphically
accretive mappings, which were intensively studied in Euclidean space Cn or
complex Banach spaces during the last decades. Some related results may be found
in [Duren et al. 2010; Elin et al. 2019; Graham et al. 2002a; 2013; Hamada and
Kohr 2004; Pfaltzgraff 1974; Reich and Shoikhet 1996; 2005; Suffridge 1973].

Definition 2.2 [Bracci et al. 2009; Duren et al. 2010; Graham et al. 2002a].
A Herglotz vector field associated with the family M(B) on B is a mapping
h = h(x, t) : B× [0,∞)→ X satisfying the following conditions:

(i) h( · , t) ∈ M(B), for a.e. t ≥ 0.

(ii) h(x, · ) is strongly measurable on [0,∞), for all x ∈ B.

Hamada and Kohr [2004] proved that if X is a reflexive complex Banach space,
and h(x, t) : B × [0,∞)→ X is a Herglotz vector field, then for each s ≥ 0 and
x ∈ B, the initial value problem{

∂v
∂t = −h(v, t), a.e. s ≤ t,
v(x, s, s)= x, t = s

has a unique solution v = v(x, s, t) such that v( · , s, t) is a univalent Schwarz
mapping, v(x, s, · ) is Lipschitz continuous on [s,∞) uniformly with respect to
x ∈ Br , r ∈ (0, 1), Dv(0, s, t) = es−t I for 0 ≤ s ≤ t . Furthermore, the following
limit

lim
t→∞

etv(x, s, t)= f (x, s)

exists uniformly on each closed ball Br for r ∈ (0, 1), s ∈ [0,∞). And f (x, t) is a
univalent subordination chain.

2C. g-starlike mappings of complex order λ.

Definition 2.3. Let g ∈ G(D), λ ∈ C with ℜλ ≤ 0. And let f : B → X be a
normalized locally biholomorphic mapping. If

{(1 − λ)(D f (x))−1 f (x)+ λx} ∈ Mg(B),

then f is called a g-starlike mapping of complex order λ.

We denote by S∗

g,λ(B) the family of g-starlike mapping of complex order λ on B.
Obviously, for the case of X = C,B = D, the above definition shows that

f ∈ S∗

g,λ(D) if and only if (1 − λ) f (z)/(z f ′(z))+ λ≺ g.

Remark 2.4. (i) Let λ= 0. Then f ∈ S∗

g,λ(B) is a g-starlike mapping on the unit
ball B, some results of g-starlike mappings may be found in [Chirilă 2014; 2015;
Graham et al. 2002a; Hamada et al. 2021].
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(ii) Let α∈[0, 1), β ∈
(
−
π
2 ,

π
2

)
, λ= (α−i tanβ)/(α−1). Then S∗

g,λ(B)= Ŝ α,β
g (B),

the definition on the unit ball Bn in Euclidean space can be found in [Tu and Xiong
2019].

(iii) Let g(ζ )= (1 + ζ )/(1 − ζ ), ζ ∈ D. Then f ∈ S∗

g,λ(B) means that

1
∥x∥

Tx{(1 − λ)(D f (x))−1 f (x)+ λx}

maps the unit ball B\{0} into the right half plane, i.e.,

ℜTx{(1 − λ)(D f (x))−1 f (x)} ≥ −∥x∥ℜλ, x ∈ B\{0}.

This is the definition of almost starlike mappings of complex order λ; see [Bălăeţi
and Nechita 2010; Zhang et al. 2018].

(iv) Let g(ζ ) = (1 + Aζ )/(1 + Bζ ), −1 ≤ B < A ≤ 1, ζ ∈ D. Then S∗

g,λ(B) =

S∗
B[A, B, λ] is the Janowski-starlike mappings of complex order λ on the unit ball

B; see [Li and Zhang 2019].
Let α ∈ (0, 1), β ∈

(
−
π
2 ,

π
2

)
. If A = 1, B = 2α−1, λ= i tanβ, then f ∈ S∗

g,λ(B)
means that 1

∥x∥
Tx{(1 − λ)(D f (x))−1 f (x)+ λx} maps the unit ball B\{0} into the

domain 61 =
{
ζ ∈ C :

∣∣ζ −
1

2α

∣∣< 1
2α

}
, i.e.,∣∣∣∣e−iβ 1

∥x∥
Tx{(D f (x))−1 f (x)} −

(
cosβ

2α
− i sinβ

)∣∣∣∣< cosβ
2α

, x ∈ B\{0}.

This is the definition of spirallike mappings of type β and order α; see [Feng et al.
2007].

(v) Let ρ ∈ [0, 1), β ∈
(
−
π
2 ,

π
2

)
and λ= i tanβ. If

g(ζ )= 1 + 4(1 − ρ)/π2(log(1 +
√
ζ )/(1 −

√
ζ ))2, ζ ∈ D,

then f ∈ S∗

g,λ(B) means that 1
∥x∥

Tx{(1 − λ)(D f (x))−1 f (x)+ λx} maps the unit
ball B\{0} into the domain 62 = {ζ ∈ C : |ζ − 1|< (1 − 2ρ)+ ℜ{ζ }}, i.e.,∣∣∣∣ 1
∥x∥

Tx{(D f (x))−1 f (x)− 1}

∣∣∣∣
< (1 − 2ρ) cosβ + ℜ

{
e−iβ 1

∥x∥
Tx{(D f (x))−1 f (x)}

}
, x ∈ B\{0},

where the branch of the logarithm function is chosen such that log 1 = 0, which
reduces to the definition of parabolic spirallike mappings of type β and order ρ;
see [Zhang and Yan 2016].

Next, we give two examples in higher dimensions.



408 XIAOFEI ZHANG, SHUXIA FENG, TAISHUN LIU AND JIANFEI WANG

Example 2.5. Assume λ ∈ C, ℜλ≤ 0 and g ∈ G(D) is a convex function. Suppose
that f : Bn → Cn is holomorphic with f (z)= ( f1(z1), f2(z2), . . . , fn(zn))

′, where
f j (z j ), j = 1, 2, . . . , n, are normalized biholomorphic functions on D. If

(1 − λ)
f j (z j )

z j f ′

j (z j )
+ λ≺ g(z j ), z j ∈ D, j = 1, 2, . . . , n,

then f ∈ S∗

g,λ(Bn).

Proof. Since

1∑n
j=1|z j |

2 ⟨(1 − λ)(D f (z))−1 f (z)+ λz, z⟩

=
1∑n

j=1|z j |
n

n∑
j=1

|z j |
2
(
(1 − λ)

f j (z j )

z j f ′

j (z j )
+ λ

)
∈ g(D),

we have f ∈ S∗

g,λ(Bn). □

Example 2.6. Let a, λ ∈ C, ℜλ ≤ 0, g ∈ G(D). Assume that f : Bn → Cn is a
holomorphic mapping with f (z)= (z1 + az2

2, z2, . . . , zn)
′. If

|a| ≤
3
√

3
2

1
|1 − λ|

dist(1, ∂g(D)),

then f ∈ S∗

g,λ(Bn).

Proof. By some elementary calculations, we get

(D f (z))−1
=


1 −2az2 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 .

Then

1
∥z∥2 ⟨(1 − λ)(D f (z))−1 f (z)+ λz, z⟩ = 1 −

a(1 − λ)z̄1z2
2

|z1|2 + |z2|2 + · · · + |zn|
2 .

Since |a| ≤
3
√

3
2

1
|1−λ|

dist(1, ∂g(D)), it yields that∣∣∣∣ a(1 − λ)z̄1z2
2

|z1|2 + |z2|2 + · · · + |zn|
2

∣∣∣∣ ≤

∣∣∣∣a(1 − λ)z̄1z2
2

|z1|2 + |z2|2

∣∣∣∣< 2

3
√

3
|a||1 − λ| ≤ dist(1, ∂g(D)).

This implies

1 −
a(1 − λ)z̄1z2

2

|z1|2 + |z2|2 + · · · + |zn|
2 ∈ g(D).

Thus f ∈ S∗

g,λ(Bn). □
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3. Growth theorems for g-starlike mappings of complex order λ

In the next subsection, we utilize the method of Loewner chains to deal with the
growth theorem of g-starlike mappings of complex order λ on the unit ball in a
reflexive complex Banach space X . The family of g-starlike mappings of complex
order λ unifies the family of almost starlike mappings of complex order λ and the
family of g-starlike mappings, and the result in the forthcoming subsection will
lead to a number of well known statements.

3A. Several lemmas. We begin this subsection with the following equivalent char-
acterization for almost starlike mappings of complex order λ in terms of Loewner
chains on the unit ball B.

Lemma 3.1 [Zhang et al. 2018]. Let f be a normalized locally biholomorphic
mapping on B, and let λ ∈ C with ℜλ≤ 0. Then f is an almost starlike mapping of
complex order λ on B if and only if

F(x, t)= e(1−λ)t f (eλt x), ∀x ∈ B, t ∈ [0,+∞)

is a Loewner chain.

The following lemma is due to Kato.

Lemma 3.2 [Kato 1967]. Let x : [0,+∞) → X be differentiable at the point
s ∈ (0,+∞), and let ∥x(t)∥ be also differentiable at the point s with respect to t.
Then

ℜ

{
Tx(s)

[
dx
dt
(s)

]}
=

d∥x(s)∥
dt

, s ∈ [0,+∞).

In fact, the following lemma shows that Loewner chain is generated by its
transition mapping. It is due to Graham et al. [2013].

Lemma 3.3. Suppose that X is a reflexive complex Banach space. Let f (x, t) :

B×[0,∞)→ X be a Loewner chain. And let v(x, s, t) be the transition mapping
associated with f (x, t). If for each r ∈ (0, 1), there exists M = M(r) > 0 such that

∥e−t f (x, t)∥X ≤ M(r), x ∈ Br , t ∈ [0,∞),

then

f (x, s)= lim
t→∞

etv(x, s, t)

uniformly on Br for r ∈ (0, 1).

In fact, the following lemma plays an important role in the proof of growth
theorem.
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Lemma 3.4. Let λ ∈ C with ℜλ≤ 0, g ∈ G(D), and let f : B → X be a g-starlike
mapping of complex order λ on B. Then

(3.1) −∥x∥ℜλ+ ∥x∥ min{g(∥x∥), g(−∥x∥)}

≤ ℜ{(1 − λ)Tx [(D f (x))−1 f (x)]}

≤ −∥x∥ℜλ+ ∥x∥ max{g(∥x∥), g(−∥x∥)}.

Moreover, if g ∈ G(D) also satisfies max|ζ |=r |g(ζ )| = max{g(r), g(−r)}, r ∈ (0, 1),
then

−∥x∥ℜλ+ ∥x∥ min{g(∥x∥), g(−∥x∥)} ≤ |(1 − λ)Tx [(D f (x))−1 f (x)]|

≤ ∥x∥|λ| + ∥x∥ max{g(∥x∥), g(−∥x∥)}.

Proof. Fixing x ∈ B\{0}, let x0 =
x

∥x∥
. Then the holomorphic function

q(ζ )=

{
(1 − λ) 1

ζ
Tx0[(D f (ζ x0))

−1 f (ζ x0)] + λ, ζ ∈ D\{0},

1, ζ = 0,

is well defined on the unit disk D. Since

q(ζ )= (1 − λ)
1
|ζ |

Tζ x0[(D f (ζ x0))
−1 f (ζ x0)] + λ, ζ ̸= 0,

from Definition 2.3, it yields that q(0)= g(0)= 1, q(D)⊆ g(D), i.e., q ≺ g.
By the subordination principle, it follows that q(rD)⊆ g(rD), r ∈ (0, 1). Hence

min{g(r), g(−r)} ≤ ℜq(ζ )≤ max{g(r), g(−r)}.

Let ζ = ∥x∥. Then

−∥x∥ℜλ+∥x∥min{g(∥x∥),g(−∥x∥)} ≤ℜ{(1−λ)Tx [(D f (x))−1 f (x)]}

≤ −∥x∥ℜλ+∥x∥max{g(∥x∥),g(−∥x∥)}.

If we impose the condition max|ζ |=r |g(ζ )| = max{g(r), g(−r)}, r ∈ (0, 1), then

−∥x∥ℜλ+∥x∥min{g(∥x∥),g(−∥x∥)} ≤ |(1−λ)Tx [(D f (x))−1 f (x)]|

≤ ∥x∥|λ|+∥x∥max{g(∥x∥),g(−∥x∥)}. □

Remark 3.5. If B= Bn ⊆ Cn , then the inequality (3.1) is equivalent to the following
form:

−∥z∥2
ℜλ+∥z∥2 min{g(∥z∥),g(−∥z∥)} ≤ℜ{(1−λ)z̄′

[(D f (z))−1 f (z)]}

≤ −∥z∥2
ℜλ+∥z∥2max{g(∥z∥),g(−∥z∥)}.
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3B. Growth theorems of the classes S∗
g,λ(B). The method to approach the fol-

lowing theorem is analogous to that of [Zhang et al. 2018], although we are now
considering normalized biholomorphic mappings on the unit ball B in an infinite
dimensional complex Banach space.

Theorem 3.6. Let λ ∈ C with ℜλ≤ 0, g ∈ G(D), and let f : B → X be a g-starlike
mapping of complex order λ on B in reflexive complex Banach space. Then

∥x∥ exp
(∫

∥x∥

0

[
1 − ℜλ

max{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
≤ ∥ f (x)∥

≤ ∥x∥ exp
(∫

∥x∥

0

[
1 − ℜλ

min{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
.

Proof. Since ℜg(ζ ) > 0, ζ ∈ D, we have f ∈ S∗

g,λ(B) is also an almost starlike
mapping of complex order λ. By Lemma 3.1 we know that

F(x, t)= e(1−λ)t f (eλt x)

is a Loewner chain, hence we have

F(x, s)≺ F(x, t), ∀0 ≤ s ≤ t,

i.e., there is a Schwarz mapping v(x, s, t) such that F(x, s)= F(v(x, s, t), t). By
some calculation, we obtain

∂F
∂t
(x, t)= (1 − λ)et e−λt f (eλt x)+ λet D f (eλt x)x,

DF(x, t)= et D f (eλt x).

Let ∂F
∂t (x, t)= DF(x, t)h(x, t). Then

h(x, t)= (1 − λ)e−λt(D f (eλt x))−1 f (eλt x)+ λx .

For fixed x ∈ B\{0}, s ≥ 0, let v(t)= v(x, s, t). Then

∂v

∂t
(t)= −(DF(v(t), t))−1 ∂F

∂t
(v(t), t)= −h(v(t), t).

Since for all x ∈ B, we have

∥e−t F(x, t)∥X ≤

{ ∥x∥X
(1−∥x∥X )2/(1+ℜλ) , ℜλ ̸= −1,

∥x∥X exp(∥x∥X ), ℜλ= −1,

here we use the fact that f is also an almost starlike mapping of complex order
λ and the upper bound of ∥ f (x)∥X ; see [Zhang et al. 2018, Theorem 3.1]. By
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Lemma 3.3, we obtain

lim
t→∞

etv(x, s, t)= F(x, s).

Furthermore, by Lemmas 3.2 and 3.4 we see that

(3.2)
d∥v(t)∥

dt

= ℜTv(t)

[
dv(t)

dt

]
= −ℜTv(t)[(1 − λ)e−λt(D f (eλtv(t)))−1 f (eλtv(t))+ λv(t)]

= −ℜ
eλt

|eλt |
Teλtv(t)[(1 − λ)e−λt(D f (eλtv(t)))−1 f (eλtv(t))] − ∥v(t)∥ℜλ

= −
1

|eλt |
ℜ{(1 − λ)Teλtv(t)[(D f (eλtv(t)))−1 f (eλtv(t))]} − ∥v(t)∥ℜλ

≤ −∥v(t)∥ min{g(∥eλtv(t)∥), g(−∥eλtv(t)∥)}.

By Lemma 3.4 and equality (3.2), we have

−∥eλtv(t)∥ max{g(∥eλtv(t)∥), g(−∥eλtv(t)∥)}

≤ −ℜ{(1 − λ)Teλtv(t)[(D f (eλtv(t)))−1 f (eλtv(t))]} − ∥eλtv(t)∥ℜλ

= |eλt
|
d∥v(t)∥

dt
≤ −∥eλtv(t)∥ min{g(∥eλtv(t)∥), g(−∥eλtv(t)∥)}.

Since

d∥eλtv(t)∥
dt

= |eλt
|
d∥v(t)∥

dt
+ ∥eλtv(t)∥ℜλ,

we have

∥eλtv(t)∥ℜλ− ∥eλtv(t)∥ max{g(∥eλtv(t)∥), g(−∥eλtv(t)∥)}(3.3)

≤
d∥eλtv(t)∥

dt
≤ ∥eλtv(t)∥ℜλ− ∥eλtv(t)∥ min{g(∥eλtv(t)∥), g(−∥eλtv(t)∥)}(3.4)

< 0,

which implies that ∥eλtv(t)∥ is decreasing on [s,∞).
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Integrating on both sides of the inequality (3.4) with respect to τ ∈ [s, t], we
infer that

(1 − ℜλ)(t − s)

≤

∫ t

s

1 − ℜλ

∥eλτv(τ)∥ℜλ− ∥eλτv(τ)∥ min{g(∥eλτv(τ)∥), g(−∥eλτv(τ)∥)}

×
d∥eλτv(τ)∥

dτ
dτ

=

∫
∥eλtv(t)∥

∥eλs x∥

1 − ℜλ

yℜλ− y min{g(y), g(−y)}
dy

=

∫
∥eλtv(t)∥

∥eλs x∥

[
1 − ℜλ

ℜλ− min{g(y), g(−y)}
+ 1

]
dy
y

−

∫
∥eλtv(t)∥

∥eλs x∥

1
y

dy,

hence

(1 − ℜλ)(t − s)≤

∫
∥eλtv(t)∥

∥eλs x∥

[
1 − ℜλ

ℜλ− min{g(y), g(−y)}
+ 1

]
dy
y

+ log
∥eλs x∥

∥eλtv(t)∥
,

i.e.,

(3.5) e(t−s)
≤

∥x∥

∥v(t)∥
exp

(∫
∥eλtv(t)∥

∥eλs x∥

[
1 − ℜλ

ℜλ− min{g(y), g(−y)}
+ 1

]
dy
y

)
.

By using Lemma 3.3 we have ∥etv(t)∥ → ∥e(1−λ)s f (eλs x)∥ as t → +∞. Because
limt→+∞∥eλtv(t)∥ = 0, then taking t → +∞ on the both sides of the inequality
(3.5), and taking s = 0, we see that

∥ f (x)∥ ≤ ∥x∥ exp
(∫

∥x∥

0

[
1 − ℜλ

min{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
.

By using the same method for obtaining inequality (3.3), we get

∥ f (x)∥ ≥ ∥x∥ exp
(∫

∥x∥

0

[
1 − ℜλ

max{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
. □

Remark 3.7. In particular, if g ∈ G(D) and λ ∈ C with ℜλ≤ 0 are some special
functions and special complex number, such as in Remark 2.4, we can get the
growth theorems of starlike mappings, spirallike mappings of type β, etc. This is
one of the reasons for the interest in this normalized biholomorphic mappings.

4. Distortion theorems for g-starlike mappings of complex order λ

4A. Distortion theorems along a unit direction. In this subsection, we obtain
the distortion theorems for g-starlike mappings of complex order λ along a unit
direction on the unit polydisk Dn and the unit ball B, respectively.
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Theorem 4.1. Let λ ∈ C with ℜλ≤ 0, g ∈ G(D) with

max
|ζ |=r

|g(ζ )| = max{g(r), g(−r)},

r ∈ (0, 1), and let f : Dn
→ Cn be a g-starlike mapping of complex order λ. Then,

for all z ∈ Dn
\{0}, there exists a unit vector ζ(z) such that

|1−λ|

|λ|+max{g(∥z∥),g(−∥z∥)}
exp

(∫
∥z∥

0

[
1−ℜλ

max{g(y),g(−y)}−ℜλ
−1

]
dy
y

)
≤ ∥D f (z)ζ(z)∥

≤
|1−λ|

min{g(∥z∥),g(−∥z∥)}−ℜλ
exp

(∫
∥z∥

0

[
1−ℜλ

min{g(y),g(−y)}−ℜλ
−1

]
dy
y

)
.

Proof. The proof is divided into the following two steps:

Step 1. Let ξ = (ξ1, ξ2, . . . , ξn) ∈ Dn with |ξ1| = |ξ2| = · · · = |ξn| = ∥ξ∥. Then
Tξ =

(
0, . . . , 0, ∥ξ∥

ξ j
, 0, . . . , 0

)
∈ T (ξ).

Takingw(z)= (w1(z), . . . , wn(z))′ = (D f (z))−1 f (z), then there exists 1≤ j ≤n
such that

∥w(z)∥ = |w j (z)|

≤ max
ξ∈(∂D(0,∥z∥))n

|w j (ξ)|

= max
ξ∈(∂D(0,∥z∥))n

∣∣∣∣∥ξ∥ξ j
w j (ξ)

∣∣∣∣
= max
ξ∈(∂D(0,∥z∥))n

|Tξ [w(ξ)]|

= max
ξ∈(∂D(0,∥z∥))n

|Tξ [(D f (ξ))−1 f (ξ)]|.

By using Lemma 3.4, we have

|1 − λ||Tξ [(D f (ξ))−1 f (ξ)]| ≤ ∥ξ∥|λ| + ∥ξ∥ max{g(∥ξ∥), g(−∥ξ∥)}

≤ ∥z∥|λ| + ∥z∥ max{g(∥z∥), g(−∥z∥)}.

Hence

(4.1) ∥(D f (z))−1 f (z)∥ ≤
∥z∥

|1 − λ|
(|λ| + max{g(∥z∥), g(−∥z∥)}).

Since ∥Tz∥ ≤ 1, by Lemma 3.4 we get

(4.2) ∥(D f (z))−1 f (z)∥ ≥ |Tz[(D f (z))−1 f (z)]|

≥
∥z∥

|1 − λ|
(−ℜλ+ min{g(∥z∥), g(−∥z∥)}).



LOEWNER CHAINS APPLIED TO g-STARLIKE MAPPINGS OF COMPLEX ORDER 415

Step 2. Let ζ(z)= (D f (z))−1 f (z)/∥(D f (z))−1 f (z)∥, z ∈ Dn
\{0}. Then

f (z)= D f (z)(D f (z))−1 f (z)= ∥(D f (z))−1 f (z)∥D f (z)ζ(z).

Hence, by Theorem 3.6, (4.1) and (4.2), we have

|1 − λ|

|λ| + max{g(∥z∥), g(−∥z∥)}
exp

(∫
∥z∥

0

[
1 − ℜλ

max{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
≤ ∥D f (z)ζ(z)∥ =

∥ f (z)∥
∥(D f (z))−1 f (z)∥

≤
|1 − λ|

min{g(∥z∥), g(−∥z∥)} −ℜλ
exp

(∫
∥z∥

0

[
1 − ℜλ

min{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
,

which completes the proof. □

Theorem 4.2. Let λ ∈ C with ℜλ≤ 0, g ∈ G(D) with

max
|ζ |=r

|g(ζ )| = max{g(r), g(−r)},

r ∈ (0, 1), and let f :B → X be a g-starlike mapping of complex order λ in reflexive
complex Banach spaces. Then, for all x ∈ B\{0}, there exists a unit vector ζ(x)
such that

∥D f (x)ζ(x)∥

≤
|1 − λ|

min{g(∥x∥), g(−∥x∥)} −ℜλ
exp

(∫
∥x∥

0

[
1 − ℜλ

min{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
.

Proof. Let ζ(x)=
(D f (x))−1 f (x)

∥(D f (x))−1 f (x)∥ ∈ ∂B. Then

f (x)= D f (x)(D f (x))−1 f (x)= ∥(D f (x))−1 f (x)∥D f (x)ζ(x).

By using Lemma 3.4, we get

−∥x∥ℜλ+ ∥x∥ min{g(∥x∥), g(−∥x∥)} ≤
∣∣(1 − λ)Tx [(D f (x))−1 f (x)]

∣∣
≤ |1 − λ|∥(D f (x))−1 f (x)∥.

Hence, by Theorem 3.6, we have

∥D f (x)ζ(x)∥ =
∥ f (x)∥

∥(D f (x))−1 f (x)∥

≤
|1 − λ|

min{g(∥x∥), g(−∥x∥)} −ℜλ

× exp
(∫

∥x∥

0

[
1 − ℜλ

min{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
. □
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Remark 4.3. If λ= 0 and g is some biholomorphic function in Definition 2.3, we
can get the results in [Liu et al. 2011; 2012] from Theorems 4.1 and 4.2.

4B. Distortion theorems on the unit ball Bn. In this subsection, the distortion
theorems for g-starlike mappings of complex order λ at extreme points are estab-
lished on the unit ball Bn in Cn . Denote by T (1,0)

z0 (∂Bn)= {w ∈ Cn
: z0

′w = 0} the
complex tangent space at z0 ∈ ∂Bn . The following boundary Schwarz lemma is due
to Liu et al. [2015] and Graham et al. [2020a], which plays an important role in
the proof of the following theorem.

Lemma 4.4 [Graham et al. 2020a; Liu et al. 2015]. Let f : Bn → Bn be a holomor-
phic mapping. If f is holomorphic at z0 ∈ ∂Bn , f (z0) = w0 ∈ ∂Bn , then D f (z0)

has the following properties:

(i) There is a µ ∈ R such that D f (z0)
′w0 = µz0 and

µ= w0
′D f (z0)z0 ≥

|1 − c̄′w0|
2

1 − ∥c∥2 > 0,

where c = f (0).

(ii) ∥D f (z0)β∥ ≤
√
µ, for all β ∈ T (1,0)

z0 (∂Bn) with ∥β∥ = 1.

(iii) |det D f (z0)| ≤ µ(n+1)/2.

Theorem 4.5. Let λ∈ C with ℜλ≤ 0, g ∈ G(D), and let f : Bn → Cn be a g-starlike
mapping of complex order λ:

(1) If z ∈ Bn satisfies max∥ζ∥=∥z∥∥ f (ζ )∥ = ∥ f (z)∥, then

|det D f (z)|

≤

(
ℜ(1 − λ)

−ℜλ+ min{g(∥z∥), g(−∥z∥)}

)(n+1)/2

× exp
(

n
∫

∥z∥

0

[
1 − ℜλ

min{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
.

(2) If z ∈ Bn satisfies min∥ζ∥=∥z∥∥ f (ζ )∥ = ∥ f (z)∥, then

|det D f (z)| ≥(
ℜ(1 − λ)

−ℜλ+ max{g(∥z∥), g(−∥z∥)}

)(n+1)/2

× exp
(

n
∫

∥z∥

0

[
1 − ℜλ

max{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
.

Proof. Without loss of generality, let ∥z∥ = r ∈ ( 0, 1),M = max∥ζ∥=r∥ f (ζ )∥ and
m = min∥ζ∥=r∥ f (ζ )∥:
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(1) Let η(w) = f (rw)/M , w ∈ Bn , then η : Bn → Bn, η(0) = 0 and η is biholo-
morphic in a neighborhood of Bn . Take z0 = z/r and w0 = η(z0)= f (z)/M , then
z0 ∈ ∂Bn, w0 ∈ ∂Bn . By Lemma 4.4, there is a µ ∈ R such that Dη(z0)

′w0 = µz0

and 1 ≤ µ = w0
′Dη(z0)z0 = f (z)′D f (z)z/M2. Because w0

′
= µz0

′(Dη(z0))
−1,

we know that f (z)′ and z̄′(D f (z))−1 have the same direction.
Furthermore, since

µ=
f (z)′D f (z)z

M2

=
∥ f (z)∥z̄′(D f (z))−1 D f (z)z

∥ f (z)∥2∥z̄′(D f (z))−1∥

=
∥z∥2

∥ f (z)∥∥z̄′(D f (z))−1∥

=
∥z∥2

z̄′(D f (z))−1 f (z)

=
ℜ{(1 − λ)∥z∥2

}

ℜ{(1 − λ)z̄′(D f (z))−1 f (z)}

≤
ℜ(1 − λ)

−ℜλ+ min{g(∥z∥), g(−∥z∥)}
,

by Lemma 4.4 we have

|det Dη(z0)| ≤ µ(n+1)/2
≤

(
ℜ(1 − λ)

−ℜλ+ min{g(∥z∥), g(−∥z∥)}

)(n+1)/2

.

Because Dη(z0)=
r
M D f (r z0)=

r
M D f (z), by Theorem 3.6, we obtain

|det D f (z)| =

(
M
r

)n

|det Dη(z0)|

≤

(
∥ f (z)∥

∥z∥

)n(
ℜ(1 − λ)

−ℜλ+ min{g(∥z∥), g(−∥z∥)}

)(n+1)/2

≤

(
ℜ(1 − λ)

−ℜλ+ min{g(∥z∥), g(−∥z∥)}

)(n+1)/2

× exp
(

n
∫

∥z∥

0

[
1 − ℜλ

min{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
.

(2) Let h(w) = f (rw)/m, w ∈ Bn , then h(0) = 0 and h is biholomorphic in a
neighborhood of Bn with h(Bn)⊃ Bn . Take z0 = z/r and w0 = h(z0)= f (z)/m,
then z0 ∈ ∂Bn and w0 ∈ ∂Bn . Furthermore, h−1

: Bn → Bn , h−1(0)= 0 and h−1 is
holomorphic in a neighborhood of Bn with h−1(w0)= z0. For the same reason as
in the proof of (1) we conclude that f (z)′ and z̄′(D f (z))−1 have the same direction.
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By Lemmas 4.4 and 3.4, there exists a µ ∈ R such that

1 ≤ µ= z0
′Dh−1(w0)w0

= z0
′(Dh(z0))

−1w0

=
z̄′

( r
m D f (z)

)−1

r
f (z)
m

=
z̄′(D f (z))−1 f (z)

∥z∥2

=
ℜ{(1 − λ)z̄′(D f (z))−1 f (z)}

ℜ{(1 − λ)∥z∥2}

≤
1

ℜ(1 − λ)
(−ℜλ+ max{g(∥z∥), g(−∥z∥)}).

By Lemma 4.4 we have

|det Dh−1(w0)| =
1

|det Dh(z0)|

≤ µ(n+1)/2

≤

(
−ℜλ+ max{g(∥z∥), g(−∥z∥)}

ℜ(1 − λ)

)(n+1)/2

.

Since Dh(z0)=
r
m D f (z), we obtain

1
|det D f (z)|

=

(
r
m

)n 1
|det Dh(z0)|

≤

(
∥z∥

∥ f (z)∥

)n(
−ℜλ+ max{g(∥z∥), g(−∥z∥)}

ℜ(1 − λ)

)(n+1)/2

≤

(
−ℜλ+ max{g(∥z∥), g(−∥z∥)}

ℜ(1 − λ)

)(n+1)/2

× exp
(

−n
∫

∥z∥

0

[
1 − ℜλ

max{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
,

where we have used Theorem 3.6, i.e.,

|det D f (z)| ≥

(
ℜ(1 − λ)

−ℜλ+ max{g(∥z∥), g(−∥z∥)}

)(n+1)/2

× exp
(

n
∫

∥z∥

0

[
1 − ℜλ

max{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
. □

Remark 4.6. Note that if λ = 0, Theorem 4.5 reduces to [Graham et al. 2020a,
Theorem 5.6].
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Theorem 4.7. Let λ∈ C with ℜλ≤ 0, g ∈ G(D), and let f : Bn → Cn be a g-starlike
mapping of complex order λ:

(1) If z ∈ Bn satisfies
max

∥ζ∥=∥z∥
∥ f (ζ )∥ = ∥ f (z)∥,

then for all β ∈ T (1,0)
z (∂Bn(0, ∥z∥)) there holds

∥D f (z)β∥ ≤

(
ℜ(1 − λ)

−ℜλ+ min{g(∥z∥), g(−∥z∥)}

)1/2

× exp
(∫

∥z∥

0

[
1 − ℜλ

min{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
∥β∥.

(2) If z ∈ Bn satisfies
min

∥ζ∥=∥z∥
∥ f (ζ )∥ = ∥ f (z)∥,

then for all β ∈ T (1,0)
z (∂Bn(0, ∥z∥)) there holds

∥D f (z)β∥ ≥

(
ℜ(1 − λ)

−ℜλ+ max{g(∥z∥), g(−∥z∥)}

)1/2

× exp
(∫

∥z∥

0

[
1 − ℜλ

max{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
∥β∥.

Proof. (1) From the proof of Theorem 4.5, we know that if z ∈ Bn is the maximum
module point of f in the ball Bn(0, ∥z∥), there exists a real number µ> 0 such that

µ≤
ℜ(1 − λ)

−ℜλ+ min{g(∥z∥), g(−∥z∥)}
.

Using Lemma 4.4, we obtain

∥Dη(z0)β∥ ≤
√
µ≤

(
ℜ(1 − λ)

−ℜλ+ min{g(∥z∥), g(−∥z∥)}

)1/2

for all β ∈ T (1,0)
z0 (∂Bn) with ∥β∥ = 1, i.e.,

∥Dη(z0)β∥ ≤

(
ℜ(1 − λ)

−ℜλ+ min{g(∥z∥), g(−∥z∥)}

)1/2

∥β∥, ∀β ∈ T (1,0)
z0

(∂Bn).

Since
T (1,0)

z0
(∂Bn)= T (1,0)

z (∂Bn(0, ∥z∥))

and

Dη(z0)=
r
M

D f (r z0)=
∥z∥

∥ f (z)∥
D f (z),
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we get

∥D f (z)β∥ =
∥ f (z)∥

∥z∥
∥Dη(z0)β∥

≤
∥ f (z)∥

∥z∥

(
ℜ(1 − λ)

−ℜλ+ min{g(∥z∥), g(−∥z∥)}

)1/2

∥β∥,

for all β ∈ T (1,0)
z (∂Bn(0, ∥z∥)). By Theorem 3.6 we can obtain

∥D f (z)β∥ ≤

(
ℜ(1 − λ)

−ℜλ+ min{g(∥z∥), g(−∥z∥)}

)1/2

× exp
(∫

∥z∥

0

[
1 − ℜλ

min{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
∥β∥

for all β ∈ T (1,0)
z (∂Bn(0, ∥z∥)).

(2) From the proof of Theorem 4.5, we know that if z ∈ Bn is the minimum module
point of f in the ball Bn(0, ∥z∥), there is a real number µ > 0 such that

µ≤
1

ℜ(1 − λ)
(−ℜλ+ max{g(∥z∥), g(−∥z∥)}).

By Lemma 4.4 we have

∥Dh−1(w0)γ ∥ ≤
√
µ≤

(
−ℜλ+ max{g(∥z∥), g(−∥z∥)}

ℜ(1 − λ)

)1/2

,

for all γ ∈ T (1,0)
w0 (∂Bn) with ∥γ ∥ = 1, i.e.,

(4.3) ∥Dh−1(w0)γ ∥ ≤

(
−ℜλ+ max{g(∥z∥), g(−∥z∥)}

ℜ(1 − λ)

)1/2

∥γ ∥,

for all γ ∈ T (1,0)
w0 (∂Bn).

Noting that

Dh−1(w0)= (Dh(z0))
−1

=

(
r
m

D f (z)
)−1

=
∥ f (z)∥

∥z∥
(D f (z))−1

and

Dh−1(w0)T (1,0)
w0

(∂Bn)= T (1,0)
z0

(∂Bn)= T (1,0)
z (∂Bn(0, ∥z∥)),

we know that

D f (z)T (1,0)
z (∂Bn(0, ∥z∥))= T (1,0)

w0
(∂Bn).
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Replacing D f (z)β with γ in the inequality (4.3), where β ∈ T (1,0)
z (∂Bn(0, ∥z∥)),

we obtain

∥ f (z)∥
∥z∥

∥β∥ ≤

(
−ℜλ+ max{g(∥z∥), g(−∥z∥)}

ℜ(1 − λ)

)1/2

∥D f (z)β∥,

i.e.,

∥D f (z)β∥ ≥
∥ f (z)∥

∥z∥

(
ℜ(1 − λ)

−ℜλ+ max{g(∥z∥), g(−∥z∥)}

)1/2

∥β∥,

for all β ∈ T (1,0)
z (∂Bn(0, ∥z∥)). By Theorem 3.6 we see that

∥D f (z)β∥ ≥

(
ℜ(1 − λ)

−ℜλ+ max{g(∥z∥), g(−∥z∥)}

)1/2

× exp
(∫

∥z∥

0

[
1 − ℜλ

max{g(y), g(−y)} −ℜλ
− 1

]
dy
y

)
∥β∥

for all β ∈ T (1,0)
z (∂Bn(0, ∥z∥)). □

Remark 4.8. Note that if λ = 0, Theorem 4.7 reduces to [Graham et al. 2020a,
Theorem 5.11].

5. Roper–Suffridge extension operators and the families S∗
g,λ(B)

5A. Roper–Suffridge extension operators. The challenge of constructing exam-
ples of starlike mappings and of convex mappings in higher dimensions was well-
known, until the introduction of the Roper–Suffridge operator [Roper and Suffridge
1995]. This operator is used to construct starlike mappings and convex mappings
in higher dimensions via starlike functions and convex functions in the unit disk,
respectively. In the same paper, Roper and Suffridge proved that if f is a normalized
locally biholomorphic convex function on the unit disk D, then

8n( f )(u)= ( f (u1),
√

f ′(u1)ũ), u = (u1, ũ) ∈ Bn,

is a normalized locally biholomorphic convex mapping on the Euclidean unit ball Bn ,
where ũ ∈ Cn−1,

√
f ′(0)= 1. Graham and Kohr [2000] used the analytic definition

of starlike mappings to prove that if f is a starlike function on D, then 8n( f ) is
a starlike mapping on the unit ball Bn . Furthermore, Graham and Hamada et al.
[2002b] proved that if f is a normalized locally biholomorphic starlike function
on D, then 8n,α,β( f ) is a normalized locally biholomorphic starlike mapping on
Bn for α ∈ [0, 1], β ∈

[
0, 1

2

]
, α+β ≤ 1; if f is a normalized locally biholomorphic

convex function on D, then8n,α,β( f ) is a normalized locally biholomorphic convex
mapping on Bn if and only if (α, β)=

(
0, 1

2

)
, where

8n,α,β( f )(u)=

(
f (u1),

(
f (u1)

u1

)α
( f ′(u1))

β ũ
)
, u = (u1, ũ) ∈ Bn,
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α ∈ [0, 1], β ∈
[
0, 1

2

]
, α+β ≤ 1, and the branches of the power functions are chosen

such that ( f (u1)/u1)
α

|u1=0= 1, ( f ′(u1))
β

|u1=0= 1.
In the above, the Roper–Suffridge operator is only defined on the unit ball Bn .

Graham and Kohr [2000], raised the following question:

Question. Consider the egg domain �2,p = {(u1, u2) ∈ C2
: |u1|

2
+ |u2|

p < 1},
where p > 1. Does the operator

8n,1/p( f )(u)= ( f (u1), ( f ′(u1))
1/pu2), u = (u1, u2) ∈�2,p,

extend convex functions on D to convex mappings on the egg domain �2,p?

Gong and Liu [2002] gave an affirmative answer to the above question. They
used the contractive property of Carathéodory metric under holomorphic mappings
to show that if f is a normalized locally biholomorphic ε starlike function on D,
then

8n,1/p( f )(u)= ( f (u1), ( f ′(u1))
1/pũ), u = (u1, ũ) ∈�p,

is a normalized locally biholomorphic ε starlike mapping on �p, where �p ={
(u1, . . . , un) ∈ Cn

: |u1|
2
+

∑n
j=2|u j |

p < 1
}
.

Muir [2005] introduced an extension operator from a new perspective as follows:

8n,P( f )(u)= ( f (u1)+ P(ũ) f ′(u1),
√

f ′(u1)ũ), u = (u1, ũ) ∈ Bn,

where f is a normalized locally biholomorphic function on D and P : Cn−1
→ C is

a homogeneous polynomial mapping of degree 2, and
√

f ′(0)= 1. Furthermore,
he showed that if f is a normalized locally biholomorphic starlike function on D,
then 8n,P( f ) is a normalized locally biholomorphic starlike mapping on Bn if and
only if ∥P∥ ≤

1
4 ; if f is a normalized locally biholomorphic convex function on D,

then 8n,P( f ) is a normalized locally biholomorphic convex mapping on Bn if and
only if ∥P∥ ≤

1
2 .

Recently, Graham and Hamada et al. [Graham et al. 2020b] consider the extension
operator 8α,β and 8Pr on some unit ball in the complex Banach space Z = C × Y ,
where

8α,β( f )(z)=

(
f (z1),

(
f (z1)

z1

)α
( f ′(z1))

βw

)
, z= (z1, w) ∈�r ,

8Pr ( f )(z)= ( f (z1)+ Pr (w) f ′(z1), ( f ′(u1))
1/rw), z= (z1, w) ∈�r ,

α ∈ [0, 1], β ∈ [, , 1/r ], α+β ≤ 1, f is a normalized locally biholomorphic function
on D, the branches of the power functions are chosen such that ( f (z1)/z1)

α
|z1=0=1,

( f ′(z1))
β

|z1=0= 1, Pr : Y → C is a homogeneous polynomial mapping of degree r ,
2 ≤ r and

�r = {z = (z1, w) ∈ Z = C × Y : |z1|
2
+ ∥w∥

r
Y < 1},
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where Y is a complex Banach space. The Minkowski function of �r is a complete
norm ∥·∥Z on Z , �r is the unit ball of Z with respect to this norm. They proved that
these two extension operators had the following properties: Let g ∈G(D) be a convex
function, and the normalized locally biholomorphic function f can be embedded
as the first element of a g-Loewner chain on D. Then 8α,β( f ) can be embedded
as the first element of a g-Loewner chain on �r . If ∥Pr∥ ≤

1
4 dist(1, ∂g(D)), then

8Pr ( f ) can be embedded as the first element of a g-Loewner chain on �r . The
extension operators for normalized locally biholomorphic functions on the unit disk
D to higher dimensional spaces have been extensively studied in the literature, see,
e.g., [Elin 2011; Elin and Levenshtein 2014; Feng and Liu 2008; Gong and Liu
2003; Graham et al. 2012; Liu et al. 2019; Liu and Xu 2006; Wang 2013; Wang
and Liu 2010; 2018].

In the next subsection, we study the extension operators8α,β and8Pr associated
with the g-starlike mappings of complex order λ on �r by using two different
methods.

5B. Some lemmas. In order to prove the main theorems in this subsection, we
need the following lemmas.

Lemma 5.1 [Graham et al. 2020b]. Let Y be a complex Banach space and let
�r = {z = (z1, w)∈ C×Y : |z1|

2
+∥w∥

r
Y < 1} be the unit ball of Z = C×Y , where

r ≥ 1. Let z = (z1, w) ̸= 0. Then

Tz((z1, 0))=
2|z1|

2
∥z∥Z

2|z1|2 + r(∥z∥2
Z − |z1|2)

and

Tz((0, w))=
r(∥z∥2

Z − |z1|
2)∥z∥Z

2|z1|2 + r(∥z∥2
Z − |z1|2)

for any Tz ∈ T (z).

Lemma 5.2 [Muir 2008]. Let f : D → C be a normalized biholomorphic function,
k ≥ 2. Then ∣∣∣∣(1 − |ζ |2)

f ′′(ζ )

f ′(ζ )
− kζ

∣∣∣∣ ≤ k + 2, ∀ζ ∈ D.

Lemma 5.3 [Pommerenke 1975]. Let g : D → C be a convex function. Then for
any a ∈ D, g(D) contains the disk of radius 1

2 |g′(a)|(1 − |a|
2) centered at g(a).

Lemma 5.4 [Graham et al. 2020b]. Let g ∈ G(D). We say that a mapping f =

f (x, t) : B× [0,∞)→ X is a g-Loewner chain if the following conditions hold:

(i) f (x, t) is a Loewner chain such that {e−t f ( · , t)}t≥0 is uniformly bounded on
each ball Br (0< r < 1);
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(ii) ∂ f
∂t (x, t) exists for a.e. t ≥ 0 and for all x ∈ B, and there exists a Herglotz
vector field h = h(x, t) : B×[0,∞)→ X with h( · , t) ∈ Mg(B) for a.e. t ≥ 0
such that

∂ f
∂t
(x, t)= D f (x, t)h(x, t), a.e. t ≥ 0, x ∈ B.

Remark 5.5. Let g ∈ G(D). It is not difficult to deduce that f : B → X is a
g-starlike mapping of complex order λ if and only if F(x, t) = e(1−λ)t f (eλt x),
∀x ∈ B, t ∈ [0,∞), is a g-Loewner chain.

5C. Examples of S∗
g,λ(�r). By using Roper–Suffridge extension operators, we

can construct many examples of S∗

g,λ(�r ) via holomorphic functions of S∗

g,λ(D).

Theorem 5.6. Let g ∈ G(D) be a convex function , and let Y be a complex Banach
space. Denote �r = {z = (z1, w) ∈ Z : |z1|

2
+ ∥w∥

r
Y < 1} by the unit ball of

Z = C×Y , where r ≥ 1. Suppose that α ∈ [0, 1], β ∈ [0, 1/r ], α+β ≤ 1. If f is a
g-starlike function of complex order λ on D, then

F(z)=8α,β( f )(z)=

(
f (z1),

(
f (z1)

z1

)α
( f ′(z1))

βw

)
∈ S∗

g,λ(�r ),

where z = (z1, w) ∈�r and the branches of the power functions are chosen such
that ( f (z1)/z1)

α
|z1=0= 1 and ( f ′(z1))

β
|z1=0= 1.

Proof. Note that

f (z1, t)= e(1−λ)t f (eλt z1),∀z1 ∈ D, t ∈ [0,∞)

is a g-Loewner chain, since f is a g-starlike function of complex order λ on the
unit disk D. According to a result of Graham et al. [2020b, Theorem 3.1], we know
that

F(z, t)= et8α,β(e−t f ( · , t))(z, t)

=

(
f (z1, t), e(1−α−β)t

(
f (z1, t)

z1

)α
( f ′(z1, t))βw

)
is a g-Loewner chain. Furthermore,

F(z, t)=

(
e(1−λ)t f (eλt z1), e(1−λ)t

(
f (eλt z1)

eλt z1

)α
( f ′(eλt z1))

β(eλtw)

)
= e(1−λ)t8α,β( f )(eλt z).

It yields that F =8α,β( f ) ∈ S∗

g,λ(�r ). □
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Theorem 5.7. Let Y be a complex Banach space and let k ≥ 2 be an integer. Denote

�r = {z = (z1, w) ∈ C × Y : |z1|
2
+ ∥w∥

r
Y < 1},

r ≥ 1, and let Pk : Y → C be a homogeneous polynomial mapping of degree k, r ≤ k.
Assume that f is a g-starlike function of complex order λ on D, where g ∈ G(D) is
a convex function. If

∥Pk∥ ≤ r/(2(k + r)|1 − λ|) dist(1, ∂g(D)),

then

F(z)=8Pk ( f )(z1, w)= ( f (z1)+ Pk(w) f ′(z1), ( f ′(z1))
1/kw) ∈ S∗

g,λ(�r ),

where (z1, w) ∈ �r and the branch of the power function is chosen such that
( f ′(z1))

1/k
|z1=0= 1.

Proof. For any holomorphic mapping η(z)= (η1(z), η0(z)) :�r → C×Y , we have

DF(z)η(z)=
(
η1(z)( f ′(z1)+ Pk(w) f ′′(z1))+ ∇ Pk(w) f ′(z1)η0(z),

1
k ( f ′(z1))

(1/k)−1 f ′′(z1)η1(z)w+ ( f ′(z1))
1/kη0(z)

)
.

Let DF(z)η(z)= F(z). Then

η(z)= (DF(z))−1 F(z)

=

(
f (z1)

f ′(z1)
−(k−1)Pk(w),

(
1−

1
k

f (z1) f ′′(z1)

( f ′(z1))2
+

(
1−

1
k

)
Pk(w)

f ′′(z1)

f ′(z1)

)
w

)
.

Hence,

(5.1) (1−λ)(DF(z))−1 F(z)+λz

=

(
(1−λ)

(
f (z1)

f ′(z1)
−(k−1)Pk(w)

)
+λz1,

(1−λ)

(
1−

1
k

f (z1) f ′′(z1)

( f ′(z1))2
+

(
1−

1
k

)
Pk(w)

f ′′(z1)

f ′(z1)

)
w+λw

)
.

Next, we will show that

1
∥z∥Z

Tz{(1 − λ)(DF(z))−1 F(z)+ λz} ∈ g(D), z ∈�r\{0}.

It is equivalent to prove

1
ρ

Tz{(1 − λ)(DF(ρz))−1 F(ρz)+ λρz} ∈ g(D), z ∈ ∂�r , ρ ∈ (0, 1).

Indeed, if z = (z1, 0) ∈ ∂�r , then

1
ρ

Tz{(1 − λ)(DF(ρz))−1 F(ρz)+ λρz} = (1 − λ)
f (ρz1)

ρz1 f ′(ρz1)
+ λ ∈ g(D).
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If z = (z1, w) ∈ ∂�r with w ̸= 0, then by using Lemma 5.1 and (5.1), we have

(2|z1|
2
+r(1−|z1|

2))

ρ
Tz{(1−λ)(DF(ρz))−1 F(ρz)+λρz}

= 2|z1|
2
(
(1−λ)

f (ρz1)

ρz1 f ′(ρz1)
+λ

)
−2(1−λ)(k−1)ρk−1 Pk(w)z1

+r(1−|z1|
2)(1−λ)

(
1−

1
k

f (ρz1) f ′′(ρz1)

( f ′(ρz1))2
+

(
1−

1
k

)
ρk Pk(w)

f ′′(ρz1)

f ′(ρz1)

)
+rλ(1−|z1|

2)

= 2|z1|
2
(
(1−λ)

f (ρz1)

ρz1 f ′(ρz1)
+λ

)
+

r
k
(1−|z1|

2)

(
1−(1−λ)

f (ρz1) f ′′(ρz1)

( f ′(ρz1))2

)
+

r(k−1)
k

(1−|z1|
2)

×

[
1+(1−λ)ρk−2 Pk(w)

1−|z1|2

(
ρ2(1−|z1|

2)
f ′′(ρz1)

f ′(ρz1)
−

2k
r
ρz1

)]
.

Let
ψ(ζ )= (1 − λ)

f (ζ )
ζ f ′(ζ )

+ λ, ∀ζ ∈ D.

Since f is a g-starlike function of complex order λ on D, we have

(5.2) ψ(ζ ) ∈ g(D),
andψ(0)= g(0)=1, i.e., ψ ≺ g. Hence, there is a Schwarz mapping v :D→D such
that v(0)= 0 and ψ(ζ )= g(v(ζ )). Furthermore, it is easy to see that, for all ζ ∈ D,

|v′(ζ )| ≤
1 − |v(ζ )|2

1 − |ζ |2
and ψ(ζ )+ ζψ ′(ζ )= 1 − (1 − λ)

f (ζ ) f ′′(ζ )

( f ′(ζ ))2
,

Therefore, we have

(2|z1|
2
+r(1−|z1|

2))

ρ
Tz{(1−λ)(DF(ρz))−1 F(ρz)+λρz}

= 2|z1|
2ψ(ρz1)+

r
k
(1−|z1|

2)(ψ(ρz1)+ρz1ψ
′(ρz1))+

r(k−1)
k

(1−|z1|
2)

×

[
1+(1−λ)ρk−2 Pk(w)

1−|z1|2

(
ρ2(1−|z1|

2)
f ′′(ρz1)

f ′(ρz1)
−

2k
r
ρz1

)]
=

2(k−r)
k

|z1|
2ψ(ρz1)+

r
k
(1+|z1|

2)

×

(
ψ(ρz1)+

ρz1ψ
′(ρz1)(1−|z1|

2)

1+|z1|2

)
+

r(k−1)
k

(1−|z1|
2)

×

[
1+(1−λ)ρk−2 Pk(w)

1−|z1|2

(
ρ2(1−|z1|

2)
f ′′(ρz1)

f ′(ρz1)
−

2k
r
ρz1

)]
.
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Since g(D) contains a disk with g(a) as center and 1
2 |g′(a)|(1 − |a|

2) as radius,
where a = v(ρz1), and∣∣∣∣ρz1ψ

′(ρz1)(1 − |z1|
2)

1 + |z1|2

∣∣∣∣= ρ|z1|

1 + |z1|2
|g′(a)||v′(ρz1)|(1−|z1|

2)< 1
2 |g′(a)|(1−|a|

2),

we have

(5.3) ψ(ρz1)+
ρz1ψ

′(ρz1)(1 − |z1|
2)

1 + |z1|2
∈ g(D).

On the other hand, since

|Pk(w)| ≤ ∥Pk∥∥w∥
k
Y and ∥Pk∥ ≤

r
2(k + r)|1 − λ|

dist(1, ∂g(D)),

by using Lemma 5.2, we have

ρk−2
∣∣∣∣(1 − λ)

Pk(w)

1 − |z1|2

(
ρ2(1 − |z1|

2)
f ′′(ρz1)

f ′(ρz1)
−

2k
r
ρz1

)∣∣∣∣
≤ ρk−1

|1 − λ|∥Pk∥

(
2k
r

+ 2
)

≤ dist(1, ∂g(D)).

It yields that

(5.4) 1 + (1 − λ)ρk−2 Pk(w)

1 − |z1|2

(
ρ2(1 − |z1|

2)
f ′′(ρz1)

f ′(ρz1)
−

2k
r
ρz1

)
∈ g(D).

Putting the equation (5.2), (5.3) and (5.4) together, we get

1
ρ

Tz{(1 − λ)(DF(ρz))−1 F(ρz)+ λρz} ∈ g(D), z ∈ ∂�r , ∀ρ ∈ (0, 1). □

Remark 5.8. If r = k and λ= 0, then Theorem 5.7 reduces to [Graham et al. 2020b,
Theorem 4.1].

In particular, when Y = Cn−1, we do have the following corollary, which is a
generalization of [Muir 2005, Theorem 4.1].

Corollary 5.9. Let k ≥ 2 be an integer. And let Pk : Cn−1
→ C be a homogeneous

polynomial mapping of degree k. Assume that f is a g-starlike function of complex
order λ on D, where g ∈ G(D) is a convex function. If ∥Pk∥ ≤ 1/((k + 2)|1 − λ|)

dist(1, ∂g(D)), then

F(z1, w)=8Pk ( f )(z1, w)= ( f (z1)+ Pk(w) f ′(z1), ( f ′(z1))
1/kw) ∈ S∗

g,λ(Bn),

where z = (z1, w) ∈ Bn and the branch of the power function is chosen such that
( f ′(z1))

1/k
|z1=0= 1.
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Remark 5.10. Since the functions g in Remark 2.4 are all convex functions, the
extension operators 8α,β and 8Pk preserve the geometric properties of the normal-
ized locally biholomorphic mappings, which we have displayed in Remark 2.4,
respectively.
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