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Motivated by the Lam–Pylyavskyy inequalities for Schur functions, we give a
far reaching multivariate generalization of Fishburn’s correlation inequality
for the number of linear extensions of posets. We then give a multivari-
ate generalization of the Daykin–Daykin–Paterson inequality proving log-
concavity of the order polynomial of a poset. We also prove a multivariate
P-partition version of the cross-product inequality by Brightwell, Felsner
and Trotter. The proofs are based on a multivariate generalization of the
Ahlswede–Daykin inequality.

1. Introduction

Arguably, linear extensions play as much a central role in poset theory as standard
Young tableaux in algebraic combinatorics. While the former combinatorial objects
obviously generalize the latter, this connection is yet to be fully explored. In fact,
the development in the two areas seem to move along parallel tracks as we explain
below.

The story of this paper is an interplay between these two areas of combinatorics,
which makes both the motivation and presentation of the results somewhat less
accessible. To mitigate this, we include two separate (and almost completely
nonoverlapping) versions of the introduction addressing audiences with different
background (see also Section 11A).

The results themselves are postponed to later sections and assume fluency in
both areas. While the reader may choose to read only the results that are closer to
their interests, reading both sides of the story can enhance the experience. To help
navigate between the areas, we include detailed notation and some background in
Section 2.
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Poset theoretic perspective. Our first result (Theorem 3.4) is a self-dual gener-
alization of the remarkable Fishburn’s correlation inequality (Theorem 3.1) for
the numbers of linear extensions of poset order ideals. We further extend it to
a correlation inequality for order polynomials, and then even further to their q-
analogues and multivariate q-analogues (Theorems 4.9 and 4.10). To understand
the proofs it is worth examining the historical background and motivation behind
earlier results.

Following up on the works by Harris (1960) and Kleitman (1966), Fortuin, Kaste-
leyn and Ginibre introduced the celebrated FKG inequality [21]. This correlation
inequality was further generalized in a series of papers, most notably by Ahlswede
and Daykin [2], who proved a very general AD inequality (Theorem 5.1), which is
also called the four functions theorem [3, Section 6.1]. This result is so general that
it has an elementary albeit somewhat involved proof by induction [loc. cit.]. For the
many followup investigations of correlation inequalities; see, e.g., [1, Section 15],
[33, Section 5], and earlier overviews in [20; 22; 43].

In a direct application to posets, Shepp [36] was able to use the FKG inequality
and a clever limit argument to prove the XYZ inequality (see, e.g., [3, Section 6.4]),
the most remarkable correlation inequality for linear extensions of posets, conjec-
tured earlier by Rival and others. This brings us to Fishburn [18], who established
Fishburn’s correlation inequality (Theorem 3.1) as a tool in his proof of the strict
version of the XYZ inequality. We note that Shepp’s limit argument does not imply
the strict version, so Fishburn’s proof uses the AD inequality instead.

Motivated by enumerative applications and Fishburn’s work, Björner [5] proved
the q-FKG inequality generalizing the FKG inequality. Christofides [15] then found
the q-AD inequality, answering Björner’s question. In a joint work with Panova
[13], we employed Björner’s q-FKG inequality to obtain q-analogues of inequalities
for order polynomials of interest in enumerative combinatorics.

In our most recent paper [11], we find several correlation inequalities whose
proof required the combinatorial atlas technique and does not have a natural q-
analogue. Among other results, we proved a series of upper bounds on correlation
inequalities (when they are written in the form of a ratio ≥ 1), in some cases serving
as a counterpart to the Fishburn’s inequality.

The generality of our upper bounds in [11] and the self-dual nature of related re-
sults on Young tableaux naturally leads to our self-dual generalization of Fishburn’s
inequality. Just like the original proofs by Shepp and Fishburn, our proof is via the
order polynomial, which naturally arises in this setting. Curiously, to prove our
main theorem (Theorem 4.9), we use a multivariate generalization (Theorem 6.1)
of Christofides’s q-AD inequality.

At this point one would want to compare our results (notably Theorem 4.10), to
those by Lam and Pylyavskyy [28], which are closely related and partly inspired
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this paper. They also prove a multivariate correlation inequality for order preserving
maps on posets, which in some cases coincides with ours (see Corollary 4.5 and
Remark 8.1). Unfortunately, their meet and join operations on order ideals are
noncommutative and are therefore distinct from the more traditional definitions that
we use. Thus, while the results in [28] might appear similar and even more general
at a first glance (partially because they use the same notation), in full generality the
similarity is misleading.

Now, Lam and Pylyavskyy’s cell transfer theorem [28, Theorem 3.6] has a more
general setting given by certain functions on poset’s Hasse diagram. When it comes
to skew Young diagrams, this allows the authors to recover the same reverse plane
partitions results that we do, as well as semistandard Young tableaux results. We
also recover their correlation inequality for Schur functions by making additional
arguments (Section 8).

To summarize the comparison, neither result implies the other. Our meet and
join notions are more standard, leading to a self-dual generalization of Fishburn’s
inequality. We are also using a more standard tool: the generalized AD inequality.
On the other hand, the Lam and Pylyavskyy’s ad hoc definitions allow them to
recover the same Young tableaux results with an advantage of their proof giving an
explicit combinatorial injection (see Section 11B).

We give two applications of the multivariate AD inequality to poset inequali-
ties. First, we prove a multivariate cross-product inequality for order preserving
maps on posets (Theorem 10.1), giving a variation on the cross-product inequality
by Brightwell, Felsner and Trotter [9]. This result is new even for the usual
(unweighted) setting. Note that the (original) cross-product inequality remains a
conjecture in full generality (Remark 10.2).

Finally, we give a multivariate extension of the Daykin–Daykin–Paterson (DDP)
inequality (Theorem 9.1), which was originally conjectured by Graham in [22],
and proved in [17] by an ingenuous direct injection.1 In fact, Graham originally
suggested that the DDP inequality could be proved by the AD inequality (see
Remark 9.2). We provide such a proof in Section 9A. Then, motivated by the
structure of the multivariate AD inequality, we give a multivariate generalization of
the DDP inequality (Theorem 9.3). We conclude with a multivariate log-concavity
of the order polynomial (Corollary 9.5), generalizing our recent joint result with
Panova [13].

Algebraic combinatorics perspective. Our main result is a generalization of the re-
markable Lam–Pylyavskyy correlation inequality (Theorem 4.1) for Schur functions
and reverse plane partitions to a self-dual (multivariate) correlation inequalities for

1This injection eluded us in the first version [13], when we were not aware of [17] and proved an
asymptotic version of the DDP inequality which we called Graham’s conjecture.
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general posets (Theorems 4.9 and 4.10). Specializations of our main result give
correlation inequalities for q-analogues of the number standard Young tableaux for
both straight and skew shapes, which generalize Björner’s inequality (Corollary 3.2).

To understand the proofs it is worth examining the historical background and
motivation behind earlier results. The study of inequalities for the symmetric
functions goes back to Newton (1707), who proved the log-concavity e2

k ≥ ek+1ek−1

of elementary symmetric polynomials ek(x1, . . . , xn), for all xi ∈ R. We refer to
[32; 41] for a thorough treatment of symmetric functions.

Over the past century, symmetric functions have received a great deal of attention
due to their connections and applications in representation theory, as well as a host
of other fields (enumerative algebraic geometry, integrable probability, etc.) With
many identities came inequalities, which were often proved by tools from other
areas. We refer to [7; 8; 40] for somewhat dated surveys and to [6; 23] for a more
recent overviews of positivity results.

Some recent highlights include inequalities for values of Schur functions con-
jectured by Cuttler, Greene and Skandera [16] and proved by Sra [37], the log-
concavity of normalized Schur polynomials by Huh, Matherne, Mészáros and St.
Dizier [24], and the Schur positivity correlation inequality by Lam, Postnikov
and Pylyavskyy [30] (see Remark 4.2). See also [25] for most recent results on
correlation inequalities in the context of matroids.

Building on the ideas which go back to MacMahon (1915), Stanley introduced
in his thesis [38] the P-partition theory, which is closely related to the study of the
order polynomial of posets, and to the major index statistics on linear extensions
[41, Section 3.15]. Motivated by applications to plane partitions, the study of
P-partitions became an important subject of its own. The order polynomial of a
poset turned out to coincide with the Ehrhart polynomial of the order polytope; see,
e.g., [41, Section 4.6.2].

The Lam and Pylyavskyy paper [28] uses Stanley’s P-partition theory to obtain
inequalities for the numbers of P-partitions with multivariate weights. The authors
presented an explicit combinatorial injection called the cell transfer, which proves
inequalities in a very general setting. As the main application they succeeded
in establishing the monomial positivity correlation inequality for Schur functions
(Theorem 4.1), which was soon overshadowed by the stronger Schur positivity LPP
correlation inequality mentioned above. Their approach also extends to monotonicity
of quasisymmetric functions which arise from P-partitions [29].

In this paper, we take the core part of the Lam–Pylyavskyy general inequality
and generalize it in the direction which is more natural from the poset theoretic
point of view (Theorem 4.10). Since multivariate inequalities are uncommon in
poset theory, we give a multivariate extension of the AD inequality, an important
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tool in the area. We then show that our multivariate extension is strong enough to
also imply the above mentioned Lam–Pylyavskyy monomial positivity.

Finally, we show that this multivariate approach can be used to prove new
inequalities for general posets. Notably, we prove a new cross-product inequality
(Theorem 10.1), and extend DDP and CPP log-concave inequalities for general
posets (Theorem 9.3 and Corollary 9.5).

Paper structure. We start with a lengthy Section 2 with the background in both
algebraic combinatorics and poset theory. We encourage the reader not to skip this
section as we make some minor changes in definitions and standard notation to
accommodate partly contradictory traditions in the two areas.

In the next two sections we present both known and new results in the order of
increasing generality, pointing out the implications between results along the way.
These implications tend to be quick and straightforward, and are included for clarity.
In general, we opted for a complete and detailed presentation of all corollaries and
special cases as a way to fully explain connections between the results.

In a short Section 3, we present results only about linear extensions and standard
Young tableaux. While the results are easy consequences of the P-partition results in
Section 4, the idea is to make the linear extension’s story completely self-contained.
Our most general results (Theorems 4.9 and 4.10) are given at the end of Section 4.

We then proceed to the proofs. In Section 5, we give a self-contained simple
proof of the generalized Fishburn’s inequality (Theorem 3.4) deducing it from
its order polynomial generalization (Theorem 4.8), which is proved via the AD
inequality (Theorem 5.1). This proof is based on Fishburn’s approach [19], and is
included here as a gentle introduction to our multivariate version.

In Section 6, we present the multivariate AD inequality (Theorem 6.1). This
is the main tool of the paper, which we use to prove our main results in a short
Section 7. In Section 8, we give a new proof of the Lam–Pylyavskyy inequality for
Schur functions, also via the multivariate AD inequality.

In Section 9, we give a new proof and then a multivariate generalization of the
DPP inequality (Theorem 9.3). We follow this with the cross-product inequality for
P-partitions (Theorem 10.1) in Section 10. We conclude with final remarks and
open problems in Section 11.

2. Background, definitions and notation

2A. Basic notations. We use N={0,1,2, . . . }, N≥1={1,2, . . . }, [n]={1,2, . . . ,n}
and R+={x ≥ 0}. To simplify the notation, for an element a ∈ X , we use X − a to
denote the subset X ∖ {a}. Similarly, for a subset Y ⊆ X , we write X − Y in place
of more general X ∖ Y .
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For variables q = (q1, . . . , qn) and a vector a = (a1, . . . , an) ∈ Nn , we write
qa
:= qa1

1 · · · q
an
n . For a polynomial F ∈ R[z1, . . . , zn], we write that F ≥ 0 if

F(z1, . . . , zn) ≥ 0 for all z ∈ Rn . For two polynomials F,G ∈ R[z1, . . . , zn], we
write F ≥ G if F −G ≥ 0.

For polynomials F,G ∈R[z], we write F ⩾z G if F−G ∈R+[z] is a polynomial
with nonnegative coefficients. For multivariate polynomials F,G ∈ R[z1, . . . , zn],
we define F ⩾z G analogously. We drop the subscript in ⩾ when the variables are
clear. Obviously, F ⩾ G implies F ≥ G, but not vice versa, e.g., x2

+ y2
≥ 2xy

but x2
+ y2
̸⩾ 2xy.

2B. Posets. We refer to [41, Chapter 3] and [42] for standard definitions and
notation. Let P = (X,≺) be a partially ordered set on the ground set X of size
|X | = n, and with the partial order “≺”. A subposet is an induced poset (Y,≺) on
the subset Y ⊆ X . For an element x ⊆ X , we denote by P − x the subposet of P
on X − x .

For a poset P = (X,≺), denote by P∗ = (X,≺∗) the dual poset with x ≺∗ y if
and only if y ≺ x , for all x, y ∈ X . For posets P = (X,≺P) and Q= (Y,≺Q), the
parallel sum P +Q= (Z ,≺) is the poset on the disjoint union Z = X ⊔ Y , where
elements of X retain the partial order of P , elements of Y retain the partial order
of Q, and elements x ∈ X and y ∈ Y are incomparable. Similarly, the linear sum
P ⊕Q= (Z ,≺), where x ≺ y for every two elements x ∈ X and y ∈ Y and other
relations as in the parallel sum.

We use Cn and An to denote the n-element chain and antichain, respectively.
Clearly, Cn = C1⊕ · · ·⊕ C1 (n times) and An = C1+ · · ·+ C1 (n times).

A lattice is a poset L = (L,≺) with meet x ∨ y (least upper bound) and join
x ∧ y (greatest lower bound) well defined, for all x, y ∈ L. We also use (L,∨,∧)
to denote the lattice and the join and meet operations. The lattice L= (L,∨,∧) is
distributive if it satisfied the distributive law x ∧ (y∨ z)= (x ∧ y)∨ (x ∧ z). Finally,
for all X, Y ⊆ L, we denote

X ∨ Y := {x ∨ y : x ∈ X, y ∈ Y } and X ∧ Y := {x ∧ y : x ∈ X, y ∈ Y }.

2C. Linear extensions and P-partitions. A linear extension of P is a bijection
L : X→ [n] that is order-preserving: x ≺ y implies L(x) < L(y), for all x, y ∈ X .
Denote by E(P) the set of linear extensions of P , and let e(P) := |E(P)| be the
number of linear extensions. Observe that e(P)= e(P∗) and e(P⊕Q)= e(P)·e(Q).

A subset A ⊆ X is an upper ideal if x ∈ A and y ≻ x implies y ∈ A. Similarly,
a subset A ⊆ X is a lower ideal if x ∈ A and y ≺ x implies y ∈ A. We denote by
e(A) the number of linear extensions of the subposet (A,≺).

Let P = (X,≺), where X = {x1, . . . , xn}. We will always assume that X has a
natural labeling, i.e., L : xi → i is a linear extension. A P-partition is an order
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preserving map A : X → N, i.e., maps which satisfy A(x) ≤ A(y) for all x ≺ y.
Denote by PP(P) the set of P-partitions and let PP(P, t) be the set of P-partitions
with values at most t .2

Let �(P, t) := |PP(P, t)| be the number of P-partitions. This is the order
polynomial corresponding to the poset P .3 It is well-known and easy to see that

(2-1) �(P, t)∼
e(P)tn

n!
as t→∞, where |X | = n.

Denote |A| :=
∑

x∈X A(x) the sum of the entries in a P-partition. Let

(2-2) �q(P, t) :=
∑

A∈PP(P,t)

q |A|.

Stanley showed, see [41, Theorem 3.15.7], that there is a statistics maj : E(P)→N,
such that

(2-3) �q(P,∞)=
1

(1− q)(1− q2) · · · (1− qn)

∑
A∈E(P)

qmaj(A).

More generally, let

(2-4) �q(P, t) :=
∑

A∈PP(P,t)

q A(x1)
1 · · · q A(xn)

n .

We call this GF the multivariate order polynomial. Note that Stanley gave a gener-
alization of (2-3) for �q(P,∞) which we will not need; see [41, Theorem 3.15.5].
Finally, for N ≥ 0, define

(2-5) Kz(P, N ) :=
∑

A∈PP(P,N )

zm0(A)
0 · · · zm N (A)

N ,

where mi (A) := |A−1(i)| is the number of values i in the P-partition A.

2D. Young diagrams and Young tableaux. We refer to [32; 35] and [41, Chapter 7]
for standard definitions and notation. Let λ= (λ1, . . . , λℓ) be an integer partition
of n, write λ⊢ n, where λ1≥ λ2≥ · · · ≥ λℓ> 0 and λ1+· · ·+λℓ= n. Let ℓ(λ) := ℓ
denotes the number of parts. A conjugate partition λ′ = (λ′1, λ

′

2, . . . ) is defined by
λ′j = |{i : λi ≥ j}|.

A Young diagram is the set of squares {(i, j) ∈ N2
: 1≤ j ≤ λi , 1≤ i ≤ ℓ}. In a

mild abuse of notation, we use λ to also denote the corresponding Young diagram,

2Stanley [38; 41], uses P-partitions to denote order-reversing rather than order-preserving maps.
We adopt this version for clarity and to unify the notation. Displeased readers can always think of
dual posets.

3A standard definition for order polynomial is �(P, t − 1) as the values in the P-partition are
traditionally ≥ 1. We adopt this version to simplify the notation and hope this does not lead to
confusion.
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and refer to it as the straight shape. Let µ= (µ1, µ2, . . . ) be a partition such that
µi ≤ λi for all 0≤ i ≤ ℓ. The difference of Young diagrams is denoted by λ/µ and
called the skew Young diagram of shape λ/µ, or simply the skew shape λ/µ. We
use |λ/µ| for the size, i.e., the number of squares in λ/µ.

A standard Young tableau of shape λ/µ is a bijection A : λ/µ→ [n] which
increases in rows and columns: A(i, j) < A(i + 1, j) and A(i, j) < A(i, j + 1)
whenever these are defined. Denote by SYT(λ/µ) the set of standard Young
tableaux of shape λ/µ. We note that |SYT(λ)| can be computed by the hook-length
formula, see, e.g., [41, Section 7.21]. Similarly, the number |SYT(λ/µ)| can be
computed by the Aitken–Feit determinant formula, see, e.g., [41, Section 7.16].

Let poset Pλ/µ = (λ/µ,≺) be defined by (i, j) ≼ (i ′, j ′) if i ≤ i ′ and j ≤ j ′.
For example, P31/11 ≃ C2 and P321/21 ≃ A3. The set of linear extensions E(Pλ/µ)
is in bijection with SYT(λ/µ), so e(Pλ/µ)= |SYT(λ/µ)|.

2E. Schur functions and reverse plane partitions. Let A : λ/µ→N be a function
which increases in rows and columns. In this context, function A is called a
reverse plane partition.4 Let RPP(λ/µ) denote the set of reverse plane partition of
shape λ/µ. We think of A as a Young tableau with integers written in squares of λ/µ.
If A ∈ RPP(λ/µ) is also increasing in columns and has all entries ≥ 1, it is called
a semistandard Young tableau. The set of such tableaux is denoted SSYT(λ/µ).
We use RPP(λ/µ, t) and SSYT(λ/µ, t) to denote reverse plane partitions and
semistandard Young tableaux with entries ≤ t .

Schur polynomial is a symmetric polynomial associated with the skew shape
λ/µ and can be defined as

(2-6) sλ/µ(z1, . . . , zN )=
∑

A∈SSYT(λ/µ,N )

zm1(A)
1 · · · zm N (A)

N ,

where mi (A)= |A−1(i)| is the number of i’s in A. Schur functions are the stable
limits of Schur polynomials as n→∞. They form a linear basis in the space of all
symmetric functions.

For reverse plane partitions, observe the connection to the order polynomial

(2-7) �(λ/µ, t) :=�(Pλ/µ, t)=
∑

A∈RPP(λ/µ,t)

t |A|.

In similar manner, consider the following multivariate GF for the reverse plane
partitions:

Fλ/µ(z0, z1, . . . , zN )=
∑

A∈RPP(λ/µ,N )

zm0(A)
0 zm1(A)

1 · · · zm N (A)
N ,

Note the notation above, we have Fλ/µ(z0, z1, . . . , zN )= Kz(Pλ/µ, N ).

4Note that reverse plane partitions for λ/µ are actually Pλ/µ – partitions. This is another notational
compromise we make between the areas.
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3. Linear extensions

3A. Fishburn’s inequality. We start with the following fundamental inequality:

Theorem 3.1 (Fishburn’s inequality [18]). Let P = (X,≺) be a finite poset, and let
A, B ⊂ X be lower ideals of P. Then

(3-1)
e(A∪ B) · e(A∩ B)

e(A) · e(B)
≥
|A∪ B|! · |A∩ B|!
|A|! · |B|!

.

Using the notation

f (P) :=
e(P)
|X |!

,

Fishburn’s inequality can be rewritten in a more concise form as a correlation
inequality for probabilities:

(3-2) f (A∪ B) · f (A∩ B)≥ f (A) · f (B).

The original proof of Fishburn’s inequality uses the AD inequality. Note that it is
tight for the antichain P =An .

3B. Björner’s inequality. For a skew Young diagram |λ/µ| = n, we similarly
denote

f (λ/µ) := f (Pλ/µ)=
|SYT(λ/µ)|

n!
.

Now (3-2) gives:

Corollary 3.2 (Björner’s inequality [5, Section 6]). Let µ and ν be Young diagrams.
Then

(3-3) f (µ∨ ν) · f (µ∧ ν)≥ f (µ) · f (ν),

where ∨ and ∧ refer to the union and intersection of the Young diagrams.

Björner’s proof used another Fishburn’s result combined with the some calcula-
tions using the hook-length formula. The following result has an ambiguous status
of being nominally new, yet it easily follows from the LP inequality (see Section 4A
below).

Corollary 3.3 (generalized Björner’s inequality). Let µ/α and ν/β be skew Young
diagrams. Then

(3-4) f (µ/α∨ ν/β) · f (µ/α∧ ν/β)≥ f (µ/α) · f (ν/β).

where µ/α∨ ν/β := (µ∨ ν)/(α∨β) and µ/α∧ ν/β := (µ∧ ν)/(α∧β).

In contrast with Björner’s inequality, the generalized Björner inequality does not
follow from Fishburn’s inequality, at least not directly.
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3C. Generalized Fishburn’s inequality. Our first new result is a common general-
ization of both the Fishburn’s and the generalized Björner’s inequalities.

Theorem 3.4. Let P = (X,≺) be a finite poset. Let A, B ⊆ X be lower ideals, and
let C, D ⊆ X be upper ideals of P , such that A∩C = B ∩ D =∅. Then

(3-5) f (X − V ) · f (X −W )≥ f (X − A−C) · f (X − B− D),

where V := (A∩ B)∪ (C ∪ D) and W := (A∪ B)∪ (C ∩ D).

Note that Fishburn’s inequality (Theorem 3.1) is a special case C = D =∅, and
that Theorem 3.4 is self-dual. We prove the theorem using the AD inequality in
Section 5.

Proof of Theorem 3.4⇒ Corollary 3.3. Let P := Pλ, where λ := µ∨ ν. In the
notation of Theorem 3.4, we have X = λ. Consider the following four subsets of
the Young diagram λ:

(3-6) A := α, B := β, C := λ/µ, D := λ/ν.

Now observe that

X − A−C = µ/α, X − B− D = ν/β,

X − V = (µ∧ ν)/(α∧β), X −W = (µ∨ ν)/(α∨β).

Thus, (3-5) implies (3-4), as desired. □

4. P-partitions

4A. Schur functions. The following LP inequality is the key result which inspired
this paper.

Theorem 4.1 (Lam–Pylyavskyy inequality for Schur polynomials [28, Theorem 4.5]).
Let µ/α and ν/β be skew Young diagrams, and let z = (z1, . . . , zN ), where
N ≥ ℓ(µ), ℓ(ν). Then

(4-1) sµ∨ν(z) · sµ∧ν(z)⩾z sµ(z) · sν(z).

More generally, we have

(4-2) sµ/α∨ν/β(z) · sµ/α∧ν/β(z)⩾z sµ/α(z) · sν/β(z),

where µ/α∨ ν/β := (µ∨ ν)/(α∨β) and µ/α∧ ν/β := (µ∧ ν)/(α∧β).

The original proof is completely combinatorial and uses an explicit injection.
For completeness, we include a short argument showing how the LP inequality
implies the Björner’s and the generalized Björner’s inequality.
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Proof of (4-2) ⇒ (3-4). Recall the following analogue of (2-3) for skew Schur
functions

(4-3) sλ/τ (1, q, q2, . . . )=
1

(1− q)(1− q2) · · · (1− q |λ/τ |)

∑
T∈SYT(λ/τ)

qmaj(T ),

where maj : SYT(λ/τ)→ N is the major index of a tableau, see, e.g., [41, Theo-
rem 7.19.11].

Let n := |µ/α| + |ν/β|. Substituting (4-3) into each of the four Schur functions
in the LP inequality (4-2), multiplying both sides by (1− q)n and letting q→ 1,
gives the generalized Björner’s inequality (3-3). □

Remark 4.2. The following truly remarkable Lam–Postnikov–Pylyavskyy inequality
further extended (4-2) and resolved several open problems in the area

(4-4) sµ/α∨ν/β · sµ/α∧ν/β ⩾s sµ/α · sν/β .

Here “⩾s” stands for Schur positivity, which is saying that the difference is a
nonnegative sum of Schur functions. Although we will not need this extension, it
does give a more conceptual proof of Björner’s inequality.

In a different direction, Richards [34] gave an analytic generalization of (4-1)
for real λ,µ ∈Rℓ and the determinant definition of Schur polynomials. It would be
natural to conjecture that (4-4) also generalizes to this setting.

Proof of (4-4)⇒ (3-3). Recall that for all µ ⊢ k, ν ⊢ n− k, we have

sµ · sν =
∑
λ⊢n

cλµνsλ and χµ⊗χν ↑
Sn
Sk×Sn−k

=

∑
λ⊢n

cλµνχ
λ,

where cλµν are the Littlewood–Richardson coefficients; see, e.g., [35, Section 4.9].
Equating dimensions in the second equality gives

f (µ) · f (ν)=
∑
λ⊢n

cλµν f (λ).

Thus ϕ : sλ→ f (λ) is a ring homomorphism from the ring of symmetric function
to Q which maps Schur positive symmetric function to Q+. Applying ϕ to the
inequality (4-4) for α = β =∅ gives the desired inequality (3-3). □

4B. RPP variation. The following RPP variation is an easy corollary of the LP
inequality (4-2):

Corollary 4.3. Let µ and ν be Young diagrams and let t ≥ 0. Then

(4-5) �(µ∨ ν, t) ·�(µ∧ ν, t)≥�(µ, t) ·�(ν, t).

Similarly, for the q-statistics we have

(4-6) �q(µ∨ ν,∞) ·�q(µ∧ ν,∞)⩾q �q(µ,∞) ·�q(ν,∞).
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More generally, we have

(4-7) �q(µ∨ ν, t) ·�q(µ∧ ν, t)⩾q �q(µ, t) ·�q(ν, t).

Proof of (4-1)⇒ (4-6). Setting N ←∞ and z = (z1, z2, . . . )← (q, q, . . . ), we
get

(4-8) sλ(q, q, . . . )=�q(λ,∞) · qn(λ), where n(λ)=
∑
(i, j)∈λ

i.

Note that n(µ∨ ν)+ n(µ∧ ν) = n(µ)+ n(ν). Substituting (4-8) into (4-1) and
dividing both sides by qn(µ)+n(ν) gives (4-6). □

Corollary 4.4. Let P = (X,≺) be a finite poset, let t ≥ 0, and let A, B ⊂ X be
lower ideals of P. Then

(4-9) �(A∪ B, t) ·�(A∩ B, t)≥�(A, t) ·�(B, t).

More generally, we have

(4-10) �q(A∪ B, t) ·�q(A∩ B, t)⩾q �q(A, t) ·�q(B, t).

Proof of (4-9)⇒ (3-2). Let t→∞ and apply (2-1) to each term in (4-9). □

Corollary 4.4 is a direct generalization of Corollary 4.3, which follows by taking
A←µ and B← ν. Our next result is a multivariate generalization of Corollary 4.3.

Corollary 4.5. Let µ and ν be Young diagrams and let N ≥ 0. Then

(4-11) Fµ∨ν(z) ·Fµ∧ν(z)⩾z Fµ(z) ·Fν(z),

where z = (z0, z1, . . . , zN ).

Proof of (4-11)⇒ (4-7). Let N ← t , and set zi ← q i for all 0≤ i ≤ N . □

This result is implicit in [28] and follows from the following general theorem:

Theorem 4.6 (Lam–Pylyavskyy inequality for multivariate order polynomials [28,
Proposition 3.7]). Let P = (X,≺) be a finite poset, let A, B ⊂ X be lower ideals of
P , and let N ≥ 0. Then

(4-12) Kz(A∪ B, N ) ·Kz(A∩ B, N )⩾z Kz(A, N ) ·Kz(B, N ).

This is the most general version of the LP inequality that we discuss in this paper.
Note that (4-12)⇒ (4-11) by taking A← µ and B← ν.

Remark 4.7. As we mention in the introduction, the ultimate Lam–Pylyavskyy
generalization uses the meet and join operations which are incompatible with those
we employ in this paper. They are in fact, noncommutative and designed to allow
the “cell transfer” direct injection.
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Notably, (4-2) does not follow from (4-12), but from the proof of this ultimate
Lam–Pylyavskyy generalization which happens to apply to skew shapes. We give a
more streamlined derivation of (4-2) from our generalization below.

4C. Main results. We begin with the order polynomial extension of the generalized
Fishburn’s inequality (Theorem 3.4) and the Lam–Pylyavskyy order polynomial
inequality (Corollary 4.4).

Theorem 4.8. Let P = (X,≺) be a finite poset. Let A, B ⊆ X be lower ideals, and
let C, D ⊆ X be upper ideals of P , such that A∩C = B ∩ D =∅. Then

(4-13) �(X − V, t) ·�(X −W, t)≥�(X − A−C, t) ·�(X − B− D, t),

where V := (A∩ B)∪ (C ∪ D) and W := (A∪ B)∪ (C ∩ D). More generally, we
have

(4-14) �q(X − V, t) ·�q(X −W, t)⩾q �q(X − A−C, t) ·�q(X − B− D, t).

Corollary 4.4 is a special case of the theorem when C = D =∅.

Proof of (4-13)⇒ (3-5). Let t→∞ and apply (2-1) to each term in (4-13). □

Here is our most general result in this direction, and the ultimate multivariate
generalization of Fishburn’s inequality (Theorem 3.1).

Theorem 4.9. Let P = (X,≺) be a finite poset. Let A, B ⊆ X be lower ideals, and
let C, D ⊆ X be upper ideals of P , such that A∩C = B ∩ D =∅. Then

(4-15) �q(X − V, t) ·�q(X −W, t)⩾q �q(X − A−C, t) ·�q(X − B− D, t),

where V := (A∩ B)∪ (C ∪ D) and W := (A∪ B)∪ (C ∩ D).

Proof of (4-15)⇒ (4-14). Take q← (q, . . . , q). □

Finally, we present another generalization of Theorem 4.8 for different choices
of rank functions, and furthermore generalizes Lam–Pylyavskyy Theorem 4.6. We
prove both theorems in Section 7.

Theorem 4.10. Let P = (X,≺) be a finite poset. Let A, B ⊆ X be lower ideals,
and let C, D ⊆ X be upper ideals of P , such that A∩C = B ∩ D =∅. Then

(4-16) Kz(X−V, N ) ·Kz(X−W, N )⩾z Kz(X− A−C, N ) ·Kz(X−B−D, N ),

where V := (A∩ B)∪ (C ∪ D) and W := (A∪ B)∪ (C ∩ D).

Proof of (4-16)⇒ (4-14). Take z← (1, q, q2, . . . , q N ). □

In particular, these two theorems imply the following corollary for skew Young
diagrams.
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Corollary 4.11. Let µ/α and ν/β be skew Young diagrams. Then

(4-17) �q(µ/α∨ ν/β, t) ·�q(µ/α∧ ν/β, t)⩾q �q(µ/α, t) ·�q(ν/β, t),

and

(4-18) Fµ/α∨ν/β(z) ·Fµ/α∧ν/β(z)⩾z Fµ/α(z) ·Fν/β(z),

where z = (z0, z1, . . . , zN ).

Proof. Let P, A, B,C, D be as in (3-6). By applying the same argument as in the
proof of the [Theorem 3.4⇒ Corollary 3.3] implication, the inequality (4-17) now
follows from (4-15), while the inequality (4-18) follows from (4-16). □

Remark 4.12. Although the inequalities (4-18) and (4-17) do not appear in [28],
they follow from the approach in that paper.

5. The Ahlswede–Daykin inequality

In this section, we prove the first part of Theorem 4.8 by using the Ahlswede–Daykin
(AD) inequality. Our approach is based on the proof in [18]. For every ρ : Z→R+

and every X ⊆ Z , denote

(5-1) ρ(X) :=
∑
x∈X

ρ(x).

Theorem 5.1 (Ahlswede–Daykin inequality [2]). Let L = (L,∨,∧) be a finite
distributive lattice, and let α, β, γ, δ : L→ R+ be nonnegative functions on L.
Suppose we have

(5-2) α(x) ·β(y)≤ γ (x ∨ y) · δ(x ∧ y) for every x, y ∈ L.

Then

(5-3) α(X) ·β(Y )≤ γ (X ∨ Y ) · δ(X ∧ Y ) for every X, Y ⊆ L.

Proof of the first part of Theorem 4.8. Let P = (X,≺) be a poset, and let t ≥ 0.
We denote by L(P, t)= (L,∨,∧) the distributive lattice on the set L⊆ {0, . . . , t}X

given by

(5-4) L :=PP(P, t)={T : X→{0, . . . , t} :T (x)≤T (y) for all x, y∈ Xs.t.x≺ y},

with the join and meet operation given by

[S ∨ T ](x)=max{S(x), T (x)}

and
[S ∧ T ](x)=min{S(x), T (x)}
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for every x ∈ X . Recall that �(P, t)= |L|. Let α, β, γ, δ : L→ R+ be given by

(5-5)

α(T ) := 1{T (x)= 0 for all x ∈ A, T (y)= t for all y ∈ C},

β(T ) := 1{T (x)= 0 for all x ∈ B, T (y)= t for all y ∈ D},

γ (T ) := 1{T (x)= 0 for all x ∈ A∩ B, T (y)= t for all y ∈ C ∪ D},

δ(T ) := 1{T (x)= 0 for all x ∈ A∪ B, T (y)= t for all y ∈ C ∩ D}.

Note that

α(L)=�(X − A−C, t), β(L)=�(X − B− D, t),

γ (L)=�(X − V, t), δ(L)=�(X −W, t).

By the AD inequality (5-3), it thus suffices to verify (5-2), which in this case states

(5-6) α(S) ·β(T )≤ γ (S ∨ T ) · δ(S ∧ T ) for every S, T ∈ L.

Let S, T ∈ L be such that α(S)= β(T )= 1. Then

S(x)= 0 for x ∈ A, S(y)= t for y ∈ C,

T (x)= 0 for x ∈ B, T (y)= t for y ∈ D.

This gives

max{S(x), T (x)} = 0 for x ∈ A∩ B, max{S(y), T (y)} = t for x ∈ C ∪ D,

min{S(x), T (x)} = 0 for x ∈ A∪ B, min{S(y), T (y)} = t for x ∈ C ∩ D.

The first equation implies γ (S∨T )=1, while the second equation implies δ(S∧T )=
1. This implies (5-6) and completes the proof of (4-13). □

Remark 5.2. For the second (more general) part of Theorem 4.8, one can use
the same approach with the AD inequality in Theorem 5.1 replaced with q-AD
inequality by Christofides [15]. Our proof of Theorem 4.9 given below, extends
Theorem 4.8 using the multivariate q-AD inequality.

6. Multivariate AD inequality

6A. The statement. Let L := (L,∧,∨) be a finite distributive lattice. Throughout
this section, fix variables q1, . . . , qℓ, and modular functions r1, . . . , rℓ : L→ N

defined to satisfy

ri (x)+ ri (y)= ri (x ∨ y)+ ri (x ∧ y) for all x, y ∈ L and 1≤ i ≤ ℓ.

Write q := (q1, . . . , qℓ) and r := (r1, . . . , rℓ). For x ∈ L, write

r(x) := (r1(x), . . . , rℓ(x)) and q r(x)
:= qr1(x)

1 · · · qrℓ(x)
ℓ .
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For a function ρ : L→ R+ and subset X ⊆ L, define

(6-1) ρ⟨q,r⟩(X) :=
∑
x∈X

ρ(x)q r(x)
∈ R+[q1, . . . , qℓ].

Note that (6-1) is a multivariate q-analogue of (5-1). We can now state the multi-
variate q-analogue of the Ahlswede–Daykin inequality (Theorem 5.1).

Theorem 6.1 (multivariate AD inequality). Let L= (L,∧,∨) be a finite distributive
lattice, and let α, β, γ, δ : L→ R+ be nonnegative functions on L. Suppose we
have

(6-2) α(x) ·β(y)≤ γ (x ∨ y) · δ(x ∧ y) for every x, y ∈ L.

Then

(6-3) α⟨q,r⟩(X) ·β⟨q,r⟩(Y )⩽q γ⟨q,r⟩(X ∨ Y ) · δ⟨q,r⟩(X ∧ Y ) for every X, Y ⊆ L.

Our proof is strongly inspired by those of Björner [5] and Christofides [15]. We
closely follow the presentation from the former while incorporating some ideas
from the latter paper.

6B. The proof. We start by proving the following special case of Theorem 6.1,
which we use to obtain the theorem in the full generality.

Proposition 6.2. Let L= (L,∧,∨), α, β, γ , δ be as in Theorem 6.1. Then

(6-4) α⟨q,r⟩(L)β⟨q,r⟩(L)⩽q γ⟨q,r⟩(L)δ⟨q,r⟩(L).

Proof of Proposition 6.2⇒ Theorem 6.1. Let α′, β ′, γ ′, δ′ : L→ R+ be functions
given by

α′ := α ◦ 1X , β ′ := β ◦ 1Y , γ ′ := γ ◦ 1X∨Y , δ := δ′ ◦ 1X∧Y .

Note that

(6-5) α′(x) ·β ′(y)≤ γ ′(x ∨ y) · δ′(x ∧ y) for every x, y ∈ L.

Indeed, the LHS of (6-5) is equal to 0 if x /∈ A or y /∈ B, so suppose that x ∈ A, y ∈ B.
Then the inequality reduces to (6-2), which is part of the assumption. The inequality
(6-3) then follows from (6-4) by noting that

α′
⟨q,r⟩(L)= α⟨q,r⟩(X), β ′

⟨q,r⟩(L)= β⟨q,r⟩(Y ),

γ ′
⟨q,r⟩(L)= γ⟨q,r⟩(X ∨ Y ), δ′

⟨q,r⟩(L)= δ⟨q,r⟩(X ∧ Y ),

as desired. □
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Proof of Proposition 6.2. Let

8(q, r) := α⟨q,r⟩(L) ·β⟨q,r⟩(L)− γ⟨q,r⟩(L) · δ⟨q,r⟩(L).

For x, y ∈ L, we also define

φ(x, y) := α(x) ·β(y)− γ (x) · δ(y).

A simple computation shows that

8(q, r)=
∑

(x,y)∈L2

φ(x, y)q r(x)+r(y).

Let d := (d1, . . . , dℓ) ∈ Nℓ be an arbitrary integer vector. Denote by

8d := [q
d1
1 · · · q

dℓ
ℓ ]8(q)

the coefficient of the monomial qd in 8(q). We then have

8d =
∑

(x,y)∈L2,
r(x)+r(y)=d

φ(x, y).

We now consider another, slightly coarser, grouping of terms. For u, v ∈ L
satisfying u ≺⋄ v, so in particular u ̸= v, let C(u, v) denote the set of (ordered)
pairs (x, y) in the interval [u, v] such that x ∧ y = v and x ∨ y = u. Let

ψ(u, v) :=
∑

(x,y)∈C(u,v)

φ(x, y).

It follows from the modularity of r1, . . . , rℓ that

8d =
∑

u≺⋄v,
r(u)+r(v)=d

ψ(u, v)+
∑
u∈L,

2r(u)=d

φ(u, u).

Since φ(u, u)= α(u)β(u)− γ (u)δ(u)≤ 0 by (6-2), the proposition follows from
Claim 6.3 below. □

Claim 6.3. In notation above, for every u, v ∈ L such that u ≺⋄ v, we have
ψ(u, v)≤ 0.

Proof of Claim 6.3. Note that ψ(u, v) depends only on elements in the poset interval
[u, v], so by restricting to [u, v] if necessary, we can without loss of generality
assume that u = 0̂ is the unique minimal element of L, and v = 1̂ is the unique
maximal element of L.

For x ∈ L, a complement of x is an element y ∈ L such that x ∧ y = 0̂ and
x ∨ y = 1̂. Note that in a finite distributive lattice every element has at most one
complement (see e.g., [4, Theorem 10, page 12]), and we denote this element by xc
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if it exists. Note that ψ(0̂, 1̂) depends only on elements that have a complement in
L, and that the set of complemented elements in a finite distributive lattice form a
sublattice of L (see e.g., [4, page 18]). By restricting to this sublattice if necessary,
without loss of generality we can assume that every element x ∈ L has a unique
complement xc (i.e., when L is a Boolean lattice).

Define four new functions α′, β ′, γ ′, δ′ : L→ R+ as follows:

α′(x) := α(x)β(xc). β ′(x) := α(xc)β(x).

γ ′(x) := γ (x)δ(xc). δ′(x) := γ (xc)δ(x).

Note that

ψ(0̂, 1̂)=
∑
x∈L

φ(x, xc)=
∑
x∈L

α(x)β(xc)− γ (x)δ(xc)= α′(L)− γ ′(L).

It thus suffices to show that α′(L)≤ γ ′(L). Now observe that, for any x, y ∈ L, we
have

α′(x)β ′(y)= (α(x)β(y))(α(yc)β(xc))

≤(6-2) (γ (x ∨ y)δ(x ∧ y))(γ (yc
∨ xc)δ(yc

∧ xc))

≤ γ (x ∨ y)δ((y ∨ x)c)γ ((y ∧ x)c)δ(x ∧ y)

= γ ′(x ∨ y)δ′(x ∧ y).

It then follows from the (usual) AD inequality (5-3), that

(6-6) α′(L)β ′(L)≤ γ ′(L)δ′(L).

On the other hand, note that β ′(L)= α′(L) and γ ′(L)= δ′(L) by definition of the
functions. Since the functions are nonnegative, (6-6) gives α′(L) ≤ γ ′(L). This
completes the proof. □

7. Proof of main results

7A. Proof of Theorem 4.9. Let α, β, γ, δ : L→R+ be as in (5-5). Note that these
functions satisfy the assumption (5-6) of the multivariate AD inequality.

Let q := (q1, . . . , qn) be variables, with n= |X |. For any i ∈ [n], let ri :L→R+

be the modular function given by ri (T ) := T (xi ). For a subset Y ⊆ X , denote

qn(Y )
:=

∏
xi∈Y

(qi )
t .
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Then
α⟨q,r⟩(L)=�q(X − A−C, t) · qn(C),

β⟨q,r⟩(L)=�q(X − B− D, t) · qn(D),

γ⟨q,r⟩(L)=�q(X − V, t) · qn(C∪D),

δ⟨q,r⟩(L)=�q(X −W, t) · qn(C∩D).

The theorem now follows from the multivariate AD inequality (6-3). □

7B. Proof of Theorem 4.10. Let α, β, γ, δ : L→ R+ be as in (5-5), with t← N .
Note that these functions satisfy the assumption of the multivariate AD inequality
(see (5-6)). Let q := (q0, . . . , qN ) be variables. For any i ∈ {0, . . . , N }, let ri :L→
R+ be the modular function where ri (T ) := |{x ∈ X : T (x)= i}| is the number of
i’s in T . Then

α⟨q,r⟩(L)= Kz(X − A−C, N ) · q |A|0 q |C |N ,

β⟨q,r⟩(L)= Kz(X − B− D,M) · q |B|0 q |D|N ,

γ⟨q,r⟩(L)= Kz(X − V, N ) · q |A∩B|
0 q |C∪D|

N ,

δ⟨q,r⟩(L)= Kz(X −W,M) · q |A∪B|
0 q |C∩D|

N .

The theorem now follows from the multivariate AD inequality (6-3). □

8. Back to Schur polynomials

In this section we give a new proof of the Lam–Pylyavskyy inequality (4-2) for
Schur polynomials via the multivariate AD inequality.

Proof of Theorem 4.1. Let P := Pλ be the poset of the Young diagram of shape
λ, where λ := µ ∨ ν. Let L := (L′,∧′,∨′) be the distributive lattice given by
L′ := RPP(λ, N ), with the ∨′ and ∧′ operation given by

(S ∨′ T )(i, j) :=max{S(i, j), T (i, j)}, (S ∧′ T )(i, j) :=min{S(i, j), T (i, j)}.

For a skew Young diagram π/τ such that π ⊂ λ, let φπ/τ : L′ → R+ be the
characteristic function of the reverse plane partition T ∈ RPP(λ, N ) satisfying all
these properties:

T (i. j)≥ 1 for (i, j) ∈ λ,

T (i, j)= 1 for (i, j) ∈ τ and T (i, j)= N for (i, j) ∈ λ/π,

T (i, j) < T (i + 1, j) if (i, j), (i + 1, j) ∈ π/τ .

Note that these reverse plane partitions are in bijection with semistandard Young
tableau of π/τ in SSYT(π/τ, N ).
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We define functions ζ, η, ξ, ρ : L→ R+ as follows:

ζ := φµ/α. η := φν/β . ξ := φµ/α∧ν/β . ρ := φµ/α∨ν/β .

We now show that these functions satisfy the assumption of the multivariate AD
inequality, i.e., for any S, T ∈ L:

ζ(S) · η(T )≤ ξ(S ∨ T ) · ρ(S ∧ T ).

The equation is vacuously true if ζ(S)= 0 or η(T )= 0, so assume ζ(S)= η(T )= 1.
We show only the proof that ξ(S ∨ T )= 1, as the proof of ρ(S ∧ T )= 1 is similar.
First, for (i, j) ∈ λ, we have

[S ∨ T ](i, j)=max{S(i, j), T (i, j)} ≥ 1.

Second, for (i, j) ∈ α∧β,

[S ∨ T ](i, j)=max{S(i, j), T (i, j)} = 1.

Third, for (i, j) ∈ λ/(µ∧ ν),

[S ∨ T ](i, j)=max{S(i, j), T (i, j)} = N .

Fourth, let (i, j), (i + 1, j) ∈ (µ∧ ν)/(α∧β). We will need to show that

(8-1) [S ∨ T ](i, j) < [S ∨ T ](i + 1, j).

Note that we must have either (i, j)∈ (µ∧ν)/α or (i, j)∈ (µ∧ν)/β. Without loss
of generality, we assume the former holds. Then it follows that (i+1, j)∈ (µ∧ν)/α.
Since ζ(S)= 1, this implies that

S(i, j) < S(i + 1, j)≤max{S(i + 1, j), T (i + 1, j)} = [S ∨ T ](i + 1, j).

Thus (8-1) follows if T (i, j) ≤ S(i, j), so suppose instead that T (i, j) > S(i, j).
This then implies T (i, j) > 1. Since η(T )= 1, this implies that (i, j) ∈ (µ∧ ν)/β,
which in turn implies that (i + 1, j) ∈ (µ∧ ν)/β. Thus we have

[S ∨ T ](i, j)= T (i, j) < T (i + 1, j)≤ [S ∨ T ](i + 1, j),

which completes the proof of (8-1).
Let z := (z1, . . . , zN ) be variables, and let ri : L→ N, i ∈ [N ], be the modular

function defined as follows: ri (T ) := mi (T ) is the number of i’s in T . It then
follows that

A⟨z,r⟩ = sµ/α · q
|α|

1 q |λ|−|µ|N , B⟨z,r⟩ = sν/β · q
|β|

1 q |λ|−|ν|N ,

C⟨z,r⟩ = sµ/α∧ν/β · q
|α∧β|

1 q |λ|−|µ∧ν|N , D⟨z,r⟩ = sµ/α∧ν/β · q
|α∨β|

1 q |λ|−|µ∨ν|N .

The theorem now follows from the multivariate AD inequality (6-3). □
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Remark 8.1. By the arguments analogous to the proofs in this and previous section,
specifically the proof of (8-1) to account for strict comparisons, the multivariate AD
inequality can be used to prove results analogous to Theorem 4.8 and Theorem 4.10
for both strict and nonstrict (P, ω)-partitions; see definitions in [41, Section 3.15.1].
Similarly, we can extend out results to the more general T-labeled (P, O) tableaux
defined in [28]. We omit the details for brevity.

9. Multivariate Daykin–Daykin–Paterson inequality

9A. The DDP inequality. Let P = (X,≺) be a partially ordered set on |X | =
n elements. Fix t ≥ 0 and an element z ∈ X . For integer 0 ≤ k ≤ t , denote
by PP(P, t; z, k) the set of P-partitions A ∈ PP(P, t) such that A(z) = k. Let
�(P, t; z, k) := |PP(P, t; z, k)| be the number of such P-partitions. The following
inequality was conjectured by Graham [22] and proved by Daykin, Daykin and
Paterson [17].

Theorem 9.1 (Daykin–Daykin–Paterson inequality). Let P = (X,≺) be a finite
poset, let t ∈ N, and let z ∈ X. Then, for every 0≤ k ≤ t , we have

(9-1) �(P, t; z, k)2 ≥�(P, t; z, k− 1) ·�(P, t; z, k+ 1).

More generally, for every positive integers a, b ≥ 1,

(9-2) �(P, t; z, k+ a) ·�(P, t; z, k+ b)≥�(P, t; z, k) ·�(P, t; z, k+ a+ b).

We give a new proof of Theorem 9.1 as an application of the AD inequality (5-3).
The proof below sets the stage for the multivariate generalization of the theorem.

Proof of Theorem 9.1. We denote by L= (L,∨,∧) the distributive lattice on the set
L given by

L := {T : X→ {−b,−b+ 1, . . . , t} : T (x)≤ T (y)∀x, y ∈ X s.t. x ≺ y},

the set of order-preserving functions such that −b≤ T (x)≤ t for every x ∈ X . The
join and meet operation are given by

[S ∨ T ](x) :=max{S(x), T (x)} and [S ∧ T ](x) :=min{S(x), T (x)},

for every x ∈ X . It is straightforward to verify that L is a distributive lattice.
Let α, β, γ, δ : L→ R+ be characteristic function of subsets of L defined as

follows:

α := 1{T (z)= k and T (x)≥ 0, for all x ∈ X}.

β := 1{T (z)= k+ a and T (x)≤ t − b, for all x ∈ X}.

γ := 1{T (z)= k+ a and T (x)≥ 0, for all x ∈ X}.

δ := 1{T (z)= k and T (x)≤ t − b, for all x ∈ X}.
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We will now verify the assumption of AD inequality, i.e., for every S, T ∈ L, we
have

(9-3) α(S) ·β(T )≤ γ (S ∨ T ) · δ(S ∧ T ).

Without loss of generality we can assume that α(S)= β(T )= 1. Note that

[S ∨ T ](z)=max{S(z), T (z)} =max{k, k+ a} = k+ a.

Also note that, for every x ∈ X ,

[S ∨ T ](x)=max{S(x), T (x)} ≥ S(x)≥ 0.

This shows that γ (S ∨ T )= 1. Similarly, note that

[S ∧ T ](z)=min{S(z), T (z)} =min{k, k+ a} = k.

Also note that, for every x ∈ X ,

[S ∧ T ](x)=min{S(x), T (x)} ≤ T (x)≤ t − b.

This shows that δ(S ∧ T )= 1, and completes the proof of (9-3).
Now note that

α(L)= |{T ∈ L : T (z)= k and 0≤ T (x)≤ t ∀x ∈ X}| =�(P, t; z, k), and

γ (L)= |{T ∈ L : T (z)= k+ a and 0≤ T (x)≤ t∀x ∈ X}| =�(P, t; z, k+ a).

Also note that

(9-4) β(L)= |{T ∈ L : T (z)= k+ a and − b ≤ T (x)≤ t − b ∀x ∈ X}|

= |{T ′ ∈ L : T ′(z)= k+ a+ b and 0≤ T ′(x)≤ t∀x ∈ X}|

=�(P, t; z, k+ a+ b),

where the second equality is obtained through the substitution T ′(x)← T (x)+ b.
Similarly, by the same substitution we have

(9-5) δ(L)= |{T ∈ L : T (z)= k and − b ≤ T (x)≤ t − b ∀x ∈ X}|

= |{T ′ ∈ L : T ′(z)= k+ b and 0≤ T ′(x)≤ t∀x ∈ X}|

=�(P, t; z, k+ b).

Now (9-2) follows from the AD inequality (5-3). □

Remark 9.2. The original proof of the DDP inequality was through an explicit
injection [17]. Curiously, Graham believed that there should exist a proof based on
the FKG or AD inequalities. He lamented “such a proof has up to now successfully
eluded all attempts to find it” [22, page 15]. The proof above validates Graham’s
supposition.
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We should also mention that if the order-preserving functions are replaced with
linear extensions, the DPP inequality (9-1) becomes Stanley’s inequality [39], a
major result in the area for which finding a direct combinatorial proof remains a
challenging open problem. We refer to [33, Section 6.3] for an extensive discussion
and further references.

9B. Multivariate DDP inequality. Let q := (q1, . . . , qn) be variables, and fix a
natural labeling X = {x1, . . . , xn}. Define

�q(P, t; z, k) :=
∑

A∈PP(P,t;z,k)

q A(x1)
1 · · · q A(xn)

n .

We now present the multivariate version of DDP inequality (9-1), proved by the
multivariate AD inequality (6-3).

Theorem 9.3 (multivariate DDP inequality). Let P = (X,≺) be a finite poset, let
t ∈ N, and let z ∈ X. Then, for every 0≤ k ≤ t , we have

(9-6) �q(P, t; z, k)2 ⩾q �q(P, t; z, k− 1) ·�q(P, t; z, k+ 1).

More generally, for every integer a, b ≥ 1, we have

(9-7) �q(P, t; z, k+a)·�q(P, t; z, k+b)⩾q�q(P, t; z, k)·�q(P, t; z, k+a+b).

Note that in contrast with the DPP inequality (9-1), the generalized log-concavity
(9-7) does not follow from the (usual) log-concavity (9-6) via telescoping.

Proof. Let L, α, β, γ, δ be as in the proof of Theorem 9.1. Note that these functions
satisfy the assumption (6-2) of the multivariate AD inequality (6-3). For all 1≤ i ≤n,
let ri : L→ R+ be the modular function given by ri (A) := A(xi ), where A ∈ L.
Then

α⟨q,r⟩(L)=�q(P, t; z,k), β⟨q,r⟩(L)=�q(P, t; z,k+a+b)·(q1 · · ·qn)
−b,

γ⟨q,r⟩(L)=�q(P, t; z,k+a), δ⟨q,r⟩(L)=�q(P, t; z,k+b)·(q1 · · ·qn)
−b.

The second part of the theorem now follows from the multivariate AD inequality
(6-3), and thus also the first part (which is a special case). □

Remark 9.4. In the context of Remark 8.1, Theorem 9.3 holds by the same argu-
ment if the order-preserving functions are replaced with the strict order-preserving
functions. This approach can be extended to general T-labeled (P, O) tableaux.
However, the analogue of (9-6) does not hold if �q is replaced with Kz. This is
because the weight functions for Kz is not invariant under the translation transfor-
mation used in (9-4) and (9-5) in the proof of Theorem 9.1.
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9C. Log-concavity of the multivariate order polynomial. The following corollary
follows immediately from Theorem 9.3, and can be viewed as a multivariate gener-
alization of [13, Theorem 4.7], and a poset generalization of the first formula in the
proof of Lemma 6.13 in [31, page 550].

Corollary 9.5. Let P = (X,≺) be a finite poset, and let t ∈ N≥1 be a positive
integer. Then

�q(P, t)2 ⩾q �q(P, t − 1) ·�q(P, t + 1).

More generally, for every integers a, b ≥ 1, we have

�q(P, t + a) ·�q(P, t + b)⩾q �q(P, t) ·�q(P, t + a+ b).

Proof. Let n := |X |. Let P ′ := P⊕ z be the linear sum of P and an extra element z,
which is the unique maximal element in P ′. Since we use natural labeling, element
z corresponds to the variable qn+1.

Note that for every ℓ, t ∈ N, we have

(9-8) �q(P ′, t; z, ℓ)=�q(P, ℓ) · qℓn+1.

On the other hand, it follows from applying Theorem 9.3 to P ′ that

�q(P ′, t; z, k+a) ·�q(P ′, t; z, k+ b)⩾q �q(P ′, t; z, k) ·�q(P ′, t; z, k+a+ b).

The corollary now follows by applying (9-8) to the equation above. □

Remark 9.6. Our proof of the q = 1 version in [13, Theorem 4.7] goes along
similar lines, but uses the FKG rather than the AD inequality. Note that our [13,
Theorem 4.8] gives a strict log-concavity for order polynomials, with a substantially
more involved proof.

10. Cross–product inequality for P-partitions

10A. The statement. Let P = (X,≺) be a poset on |X | = n elements. Fix t ≥ 0
and distinct elements x, y, z ∈ X . For integers k, ℓ≥ 0, denote by

SPP(P, t; x, y, z; k, ℓ) := {A ∈ PP(P, t) : A(y)− A(x)= k and A(z)− A(y)= ℓ}.

Denote
3q(k, ℓ) :=

∑
A∈SPP(P,t;x,y,z;k,ℓ)

q |A|,

3q(k, ℓ) :=
∑

A∈SPP(P,t;x,y,z;k,ℓ)

q A(x1)
1 · · · q A(xn)

n ,

and let F(k, ℓ) :=31(k, ℓ)= |SPP(P, t; x, y, z; k, ℓ)|.
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Theorem 10.1 (cross-product inequality for P-partitions). Let P = (X,≺) be a
finite poset, let x, y, z ∈ P , and let t ∈ N≥1 be a positive integer. Then, for every
k, ℓ≥ 0, we have

(10-1) F(k, ℓ+ 1) · F(k+ 1, ℓ)≥ F(k, ℓ) · F(k+ 1, ℓ+ 1).

More generally

(10-2) 3q(k, ℓ+ 1) ·3q(k+ 1, ℓ)⩾q 3q(k, ℓ) ·3q(k+ 1, ℓ+ 1).

Even more generally

(10-3) 3q(k, ℓ+ 1) ·3q(k+ 1, ℓ)⩾q 3q(k, ℓ) ·3q(k+ 1, ℓ+ 1).

Remark 10.2. Note that already the unweighted inequality (10-1) appears to be new.
Note also that if the order-preserving functions are replaced with linear extensions,
then a version of (10-1) is known as the cross–product conjecture [9, Conjecture 3.1],
a major open problem in the area. We refer to [12] for an extensive discussion and
further references.

10B. Proof of Theorem 10.1. We denote by L= (L,∨,∧) the distributive lattice
on the set of order-preserving functions from X to {0, 1, . . . , t}:

L := {T : X→ {0, 1, . . . , t} : T (v)≤ T (w)∀v,w ∈ X s.t. v ≺ w}.

The join and meet operation are given by

[S ∨ T ](w) :=max{S(w)− S(y), T (w)− T (y)}+min{S(y), T (y)},

[S ∧ T ](w) :=min{S(w)− S(y), T (w)− T (y)}+max{S(y), T (y)},

for every w ∈ X . This lattice was proved distributive by Shepp [36, Equations 2.4,
2.5], in his proof of the XY Z inequality; see also [3, Section 6.4].

Let α, β, γ, δ : L→ R+ be characteristic function of subsets of L defined as
follows:

α := 1{T (y)− T (x)= k and T (z)− T (y)= ℓ}.

β := 1{T (y)− T (x)= k+ 1 and T (z)− T (y)= ℓ+ 1}.

γ := 1{T (y)− T (x)= k and T (z)− T (y)= ℓ+ 1}.

δ := 1{T (y)− T (x)= k+ 1 and T (z)− T (y)= ℓ}.

We will now verify the assumption (6-2) of the multivariate AD inequality

(10-4) α(S) ·β(T )≤ γ (S ∨ T ) · δ(S ∧ T ),
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for every S, T ∈L. Without loss of generality we can assume that α(S)= β(T )= 1.
We have

[S ∨ T ](x)− [S ∨ T ](y)=max{S(x)− S(y), T (x)− T (y)}

=max{−k,−k− 1} = −k,

[S ∨ T ](z)− [S ∨ T ](y)=max{S(z)− S(y), T (z)− T (y)}

=max{ℓ, ℓ+ 1} = ℓ+ 1,

[S ∧ T ](x)− [S ∧ T ](y)=min{S(x)− S(y), T (x)− T (y)}

=min{−k,−k− 1} = −k− 1,

[S ∧ T ](z)− [S ∧ T ](y)=min{S(z)− S(y), T (z)− T (y)}

=min{ℓ, ℓ+ 1} = ℓ.

This shows that γ (S ∨ T )= δ(S ∧ T )= 1 and proves (10-4).
Finally, consider modular functions ri : L→ R+, for all 1 ≤ i ≤ n, given by

ri (T ) := T (xi ). Then we have

α⟨q,r⟩(L)=3q(k, ℓ), β⟨q,r⟩(L)=3q(k+ 1, ℓ+ 1),

γ⟨q,r⟩(L)=3q(k, ℓ+ 1), δ⟨q,r⟩(L)=3q(k+ 1, ℓ).

The theorem now follows from the multivariate AD inequality (6-3). □

Remark 10.3. Let us also mention that the proof in [12, Section 3.1] shows that
Theorem 10.1 implies a (multivariate) P-partition version of the Kahn–Saks inequal-
ity [27, Theorem 2.5]. On the other hand, while the KS inequality easily implies
Stanley’s inequality discussed earlier in Remark 9.2 (see e.g., [14, Section 1.2]), the
multivariate DPP inequality (Theorem 9.3) does not similarly follow from cross–
product inequality for P-partitions (Theorem 10.1). This is also demonstrated by
the fact that different lattices are used in the proofs of the two theorems.

11. Final remarks and open problems

11A. This paper grew out of [11, Section 4.1] where we obtained superficially
similar correlation inequalities which appear to have a very different nature and
whose only known proof uses the combinatorial atlas technology. Our investigation
was also partly motivated by the desire to bridge the gap between the two areas
of combinatorics. Notably, we would like to emphasize the importance of the
AD inequality to algebraic combinatorics, and the multivariate weighting to poset
theory.

Note that there is a weighted version of e(P) introduced in [10, Section 1.16].
While the results in [11] translate verbatim to the weighted setting, these weights
seem incompatible with q-weights in this paper. Similarly, the q-weight on e(P) in
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[12] is also of different nature. On the other hand, the q-weighted order polynomial
in [13] is exactly �q(P, t).

11B. One distinguishing feature of poset inequalities is the difficulty of getting the
equality conditions, see, e.g., [13, Section 9.9] for an overview. We are not aware
of any equality conditions for the inequalities in this paper, proved or conjectured.

Another difficulty is finding a combinatorial interpretation for the difference of
two sides. This was a major motivation for our investigation in [10]. We show
in [26, Section 7.4] that the AD inequality (5-3) does not have a combinatorial
interpretation in full generality, in a sense of being in #P. Of course, the Lam–
Postnikov–Pylyavskyy deep algebraic approach in [30] (see Remark 4.2) is even
less likely to give a combinatorial interpretation. We refer to [33, Section 6] for an
extensive survey.

Now, the Lam–Pylyavskyy’s injective approach in [28] shows that the difference
of coefficients on both sides in (4-12) has a combinatorial interpretation. By contrast,
the limit arguments we use throughout this paper do not give a combinatorial
interpretation for Fishburn’s inequality (3-1). It would be interesting to see if (3-1)
and the generalized Fishburn inequality (3-5) can be proved by a direct combinatorial
argument giving a combinatorial interpretation.
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