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The classical construction of the Weil representation, with complex coeffi-
cients, has long been expected to work for more general coefficient rings.
This paper exhibits the minimal ring A for which this is possible, the integral
closure of Z

[ 1
p

]
in a cyclotomic field, and carries out the construction of the

Weil representation over A-algebras. As a leitmotif all along the work, most
of the problems can actually be solved over the base ring A and transferred
to any A-algebra by scalar extension. The most striking fact is that all these
Weil representations arise as the scalar extension of a single one with coeffi-
cients in A. In this sense, the Weil module obtained is universal. Building
upon this construction, we speculate and make predictions about an integral
theta correspondence.
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Introduction

This paper is intended as a stepping-stone in the direction of an “integral theta
correspondence”. Whatever this may be, it will require a theory of the Weil
representation over rings and the purpose of this paper is to carry this out on
rings with minimal hypotheses. When the coefficient ring is the field of complex
numbers, this representation originated in problems related to θ -series and was first
constructed in the seminal paper of André Weil [1964].
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There is another way, as opposed to the original approach of Weil, to build this
representation. Because of its relations with quantum physics, it appears often in
older literature as the so-called oscillator representation and involves the famous
Stone–von Neumann theorem as a cornerstone in this alternative construction
[Howe 1979]. It plays a pivotal role in the theta correspondence, where the interplay
between this representation and the dual pairs introduced by Roger Howe [1979]
led to a conjectural bijective correspondence between some subsets of irreducible
representations for each member of the dual pair.

This correspondence, known in older literature as Howe duality or the Howe
correspondence, took almost 40 years to be completely proven, and is now usually
known as the theta correspondence. The main works which led to its proof include
[Howe 1979; Rallis 1984; Kudla 1986; Mœglin et al. 1987; Waldspurger 1990;
Mínguez 2008; Gan and Takeda 2016; Gan and Sun 2017] and we refer to [Trias
2020] for a more detailed exposition of these contributions to the classical theta
correspondence. This celebrated bijection plays a central role in number theory
as it encodes a lot of arithmetic information and allows one to build automorphic
forms. It is the centre of a highly active research field in the topic.

In the 1980’s, Marie-France Vignéras studied, in relation to Serre’s conjectures,
congruences between automorphic representations by means of the modular repre-
sentation theory of their local factors. She considered smooth representations of
connected reductive p-adic groups with coefficients in fields that are more general
than the complex numbers, allowing in particular fields of positive characteristic.
The theory splits into two different aspects, depending on whether the characteristic
of the coefficient is different from p or not. In the first case, which we study here,
we talk about ℓ-modular representations by implicitly meaning that ℓ ̸= p. (The
second case is referred to as modulo p representation theory and requires completely
different techniques.)

An important result about these ℓ-modular representations is the compatibility
of the classical local Langlands correspondence for general linear groups with a
certain ℓ-modular one as described in [Vignéras 2001]. In recent years, there has
been a growing interest in studying representations in families i.e., over coefficient
rings where p is invertible. For general linear groups, families of representations
with coefficients in a Witt ring W (Fℓ) are quite well understood [Helm 2016] and
provide a local Langlands correspondence in families [Emerton and Helm 2014]
compatible with (a modified version due to Breuil–Schneider of) the classical one
and the one constructed by Vignéras.

In terms of the theta correspondence and the Weil representation, a generalisation
to ℓ-modular representation theory has already been considered in the thesis of
Alberto Mínguez [2006]. Taking an ad-hoc analogue of the Weil representation
for type II dual pairs, he proves that a bijective correspondence holds when the
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characteristic is big enough compared to the size of the dual pair at play. In order to
develop a modular theory of the theta correspondence, this analogue is not sufficient
and one needs a proper construction of the Weil representation for coefficient fields,
or even coefficient rings.

Sug Woo Shin [2012] achieves this for coefficient rings such that the associated
affine scheme is locally noetherian, by the use of geometric methods such as a
Stone–von Neumann theorem involving abelian schemes. Chinello and Turchetti
[2015] built a Weil representation with coefficients in integral domains following
the original approach of Weil. The other representation-theoretic strategy, using a
nongeometric version of the Stone–von Neumann theorem, has been carried out
in [Trias 2020]. The latter allows one to recover most of the classical objects and
study them in detail, such as the metaplectic group, the metaplectic cocycle, and the
lifts of dual pairs. Furthermore, this approach generalises in a nice way in families
without the need of particular assumptions on the coefficient rings, improving the
first two mentioned papers whose hypotheses (locally noetherian affine scheme, or,
integral domains) turn out to be more restrictive.

The present paper brings a broader construction of the Weil representation with
coefficients in any A-algebra, where A is a minimal ring specified below. In
addition, exhibiting a minimal Weil representation, called “universal” below, does
not appear in any previous work; nor the focus on extending scalars. The rest of the
introduction is split into two parts: in the first half we give more detail about the
results we obtain along these lines, as well as considerations about the metaplectic
group and the metaplectic cocycle; in the second half, we explain how we expect
to use this to study an integral theta correspondence, with particular focus on the
special case of (GL1,GL1).

Let F be either a local nonarchimedean field, or a finite field, of residual character-
istic p and residual cardinality q , but of characteristic not 2. The minimal condition
mentioned above amounts to requiring two things: first that a nontrivial smooth
additive character ψ of F exists, allowing Fourier transform techniques; second
that p is invertible, that is a condition in terms of Haar measures. Write K = Q[ζp]

when F has positive characteristic, and K = Q[ζp∞] when F has characteristic 0.
The minimal ring A satisfying the previous two conditions is the integral closure of
Z
[ 1

p

]
in K.

Fix from now on a nontrivial smooth character ψ : F → A×. Notations will be
simplified in the introduction to be lighter than that in the main body of the paper.
For any A-algebra B with structure morphism ϕ, the character ψB

= ϕ ◦ψ is a
nontrivial character of F with values in B. More generally, if χ is a character of
any group with values in A, we write

χB
= ϕ ◦χ.
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0A. Theory of the Weil representation over an A-algebra B. The theory de-
veloped in [Mœglin et al. 1987, Chapter 2] for complex representations and in
[Trias 2020] for ℓ-modular representations finds a natural generalisation for an
A-algebra B. Note that there are no restrictive assumptions on the A-algebra
considered. In particular, it is not necessarily an integral domain.

Stone–von Neumann over A-algebras. Let A be a self-dual subgroup in the sym-
plectic space (W, ⟨ · , · ⟩) and ψA a character of the group AH = A× F extending ψ .
Here AH is considered as a subgroup of the Heisenberg group H which is the set
W × F endowed with the law

(w, t) · (w′, t ′)=
(
w+w′, t + t ′

+
1
2⟨w,w′

⟩
)
.

The theorem below gathers together in a succinct way the main results we obtain in
Sections 2B and 2C. It is the core part of the classical Stone–von Neumann theorem
when B = C [Mœglin et al. 1987, Chapter 2, Theorem I.2] and its generalisation
when B is a field of characteristic different from p [Trias 2020, Theorem 2.1].
Working over a general ring, the notion of “irreducible representation” is too
restrictive. Instead, when G is a group, we say that a B[G]-module V is everywhere
irreducible if the representation V ⊗B k(P) is irreducible for all P ∈ Spec(B), where
k(P) is the field of fractions of B/P . This definition is very convenient to state a
Stone–von Neumann theorem over general rings that includes the situation over
coefficient fields.

Theorem A. Set V B
A = indH

AH
(ψB

A ) ∈ RepB(H):

(a) V B
A is everywhere irreducible, and is admissible.

(b) We have V A
A ⊗A B = V B

A .

(c) For A′ any self-dual subgroup in W and ψA′ an extension of ψ to A′

H , one has

HomB[H ](V B
A , V B

A′)≃ B.

A consequence of (a) and (c) is that the isomorphism class of the representa-
tion V B

A does not depend on the choices of A and ψA. When B is a field, this
representation is also irreducible.

The full Stone–von Neumann Theorem for fields B also asserts that any irre-
ducible V ∈ RepB(H), such that V |F is ψB-isotypic, is in the isomorphism class
defined by V B

A . We do not pursue such a precise result over rings. However, for
most of the applications using Stone–von Neumann, and the Weil representation,
one usually sticks to the explicit models given by the representations V B

A , where A
is a self-dual lattice or a lagrangian, so our result is sufficient.
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Weil representations over A-algebras. Let A be a self-dual subgroup in W . Ac-
cording to Section 3, the action of Sp(W ) on H induces a projective represen-
tation of σB : Sp(W ) → PGLB(V B

A ) i.e., σB is a group morphism. Denote by
RED : GLB(V B

A )→ PGLB(V B
A ) the quotient morphism. To lift a projective repre-

sentation, one uses the fibre product construction to obtain a representation of some
central extension. Looking at the fibre product of σB and RED above PGLB(V B

A ),
Proposition 3.2 defines:

S̃pB
ψ,A(W )

ωB
ψ,A
//

pB

��

GLB(V B
A )

RED

��

Sp(W )
σB

// PGLB(V B
A )

Definition. The Weil representation associated to ψ and A with coefficients in B is
the representation (ωB

ψ,A, V B
A ) of the central extension S̃pB

ψ,A(W ) of Sp(W ) by B×.

Recalling the canonical identification V A
A ⊗A B = V B

A from (b) of Theorem A
above, our Theorem 3.4 ensures the compatibility.

Theorem B. There exists a canonical morphism of central extensions

φ̃B : S̃pA
ψ,A(W )→ S̃pB

ψ,A(W )

whose image is a central extension of Sp(W ) by ϕ(A)×. Moreover, there is a
commuting diagram:

S̃pA
ψ,A(W )

ωA
ψ,A
//

φ̃B
��

GLA(VA)

��

S̃pB
ψ,A(W )

ωB
ψ,A
// GLB(V B

A )

Moreover there exist canonical identifications between these central extensions
as A varies: for any other self-dual subgroup A′, Corollary 3.6 defines a canonical
morphism of central extension such that ωB

ψ,A and ωB
ψ,A′ agree, where the term

“agree” is made precise in the corollary mentioned. So the Weil representation ωB
ψ

associated to ψ is well-defined in the sense that the isomorphism class of ωB
ψ,A

does not depend on A.

The metaplectic group over A-algebras. The isomorphism class of S̃pB
ψ,A(W ), as a

central extension of Sp(W ) by B×, does not depend on the choice of A or ψA. In
addition, the canonical isomorphism of central extensions induced by V B

A ≃ V B
A′

is compatible with the fibre product projections. Therefore one can speak of the
metaplectic group over B associated toψ as any element in the previous isomorphism
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class. Even if these groups may be isomorphic for different ψ , there does not
necessarily exist an isomorphism compatible with the fibre product construction: in
this sense these groups do depend on ψ .

We endow the module V B
A with the discrete topology and the group GLB(V B

A )

with the compact-open one. Then Corollary 4.2 compares the situation over A with
that for the classical metaplectic group. Indeed if we endow C with a structure of
A-algebra, then:

Proposition. The group S̃pA
ψ,A(W ) is an open topological subgroup of S̃pC

ψ,A(W ).

Here the natural topology on S̃pC

ψ,A(W ) is that as a subgroup of Sp(W ) ×

GLC(V C
A ). The classical metaplectic group is known to be locally profinite, and so

is the metaplectic group over A because of the proposition. Define now the derived
group

ŜpB
ψ,A(W )= [S̃pB

ψ,A(W ), S̃pB
ψ,A(W )].

When B = C, this derived group is the reduced metaplectic group when F is local
nonarchimedean, or the symplectic group when F is finite, except in the exceptional
case F = F3 and dimF (W )= 2. According to Proposition 4.3, one has a canonical
isomorphism of central extensions

ŜpA
ψ,A(W )≃ ŜpC

ψ,A(W ).

Proposition 4.4 sheds light on the structure of the metaplectic group.

Theorem C. One has the following properties:

(a) The group S̃pB
ψ,A(W ) is the fibre product in the category of topological groups

of the morphisms σB and RED, having the subspace topology in Sp(W ) ×

GLB(V B
A ).

(b) The representation ωB
ψ,A : S̃pB

ψ,A(W )→ GLB(V B
A ) is smooth.

(c) The map φ̃B of Theorem B is open and continuous, and S̃pB
ψ,A(W ) is locally

profinite.

(d) Considering derived groups, the map φ̃B restricts to:

(i) A surjection ŜpA
ψ,A(W )→ ŜpB

ψ,A(W ) with kernel {±1} and image isomor-
phic to Sp(W ) if F is local nonarchimedean and char(B)= 2.

(ii) An isomorphism ŜpA
ψ,A(W )≃ ŜpB

ψ,A(W ) otherwise.

Again exclude the exceptional case, which is considered in Remark 4.12. In
Section 4B, we prove:
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Theorem D. There exists a section ςB
: Sp(W )→ ŜpB

ψ,A(W ) compatible with that
defined over A and such that the associated 2-cocycle ĉB has image:

• {1} if F is finite or char(B)= 2.

• {±1} if F is local nonarchimedean and char(B) ̸= 2.

Families of Weil representations. The consequence of these results is that one
may speak of a universal Weil module ωA

ψ over A associated to ψ : that is (see
Proposition 5.4) any Weil representation ωB

ψ with coefficients in B arises from the
scalar extension of this universal Weil module. Thus, according to the compatibility
in Theorem B, the Weil representation ωA

ψ is a family of Weil representations over
the residue fields of Spec(A).

0B. Towards an integral theta correspondence. In the rest of the introduction,
we give some new ideas and speculate in the direction of an integral theta corre-
spondence. As an illustration, we study in detail the case of the type II dual pair
(F×, F×) but it is only this example which is part of the main body of the paper.
Thus the text below is a kind of story about the bigger picture to motivate our study
and can be omitted if the reader is only interested in the Weil representation itself.

Suppose again F is local nonarchimedean. For more general dual pairs (H1, H2),
one usually considers the Weil representation with coefficients in a field, along
with its biggest π1-isotypic quotients for π1 running through the irreducible repre-
sentations of H1. However, there is no natural definition of what a good biggest
isotypic quotient over a ring should be. But there is another approach with a coarser
invariant in terms of the Bernstein centre, giving a bigger representation. In order
to lighten notations further, we omit the reference to ψ from now on.

Replacing biggest isotypic quotients: a heuristic approach. Suppose in this para-
graph that B is an algebraically closed field. Let zB(H1) be the Bernstein centre of H1.
A character of the Bernstein of the centre is a B-algebra morphism η1 : zB(H1)→B.
The set of such characters correspond bijectively to the points in Specmax(zB(H1)).
Denote by ηπ1 : zB(H1)→ B the character associated to π1. The construction of
the biggest π1-isotypic quotient factors through the biggest ηπ1-isotypic quotient,
in the sense that for any V ∈ RepB(H1), the quotient V → Vπ1 factors through
V → V ⊗zB(H1) ηπ1 . Denote by Vηπ1

the latter representation. Regardless of the
characteristic of B, and similarly to Vπ1 ∈RepB(H1×H2)when V ∈RepB(H1×H2),
one has Vηπ1

∈ RepB(H1 × H2).
When the characteristic ℓ of B is banal with respect to H1, that is when ℓ does

not divide the pro-order |H1| of H1, the set of characters of zB(H1) is in bijection
with the set of cuspidal supports in RepB(H1) and we expect the following to hold
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for all η1 in a Zariski open subset of Specmax(zB(H1)):

Vη1 ≃

⊕
π1∈η1

Vπ1

where π1 ∈ η1 means ηπ1 = η1, that is π1 has cuspidal support corresponding to η1.
Outside the banal setting, it seems risky to state any precise results. Already some

key facts fail: the maximal ideals of zB(H1) are no longer in bijection with cuspidal
supports. However the biggest π1-isotypic quotient Vπ1 always is a quotient of the
bigger representation Vηπ1

, so this last construction encapsulates more information.
In addition, we expect this object to behave in a nicer way for coefficient rings as it
keeps track of congruences.

Illustration for the type II dual pair (F×, F×). The category RepB(F
×) can be

decomposed according to the level and we denote by Rep0
B(F

×) the level 0 direct
factor category. This category is Morita-equivalent to the category of z0-modules,
where z0 is the commutative ring B[F×/1+ϖFOF ]. Up to choosing a uniformiser
ϖF and a primitive (q−1)-th root of unity ζ in F×, this ring is isomorphic to
B[X±1, Z ]/(Zq−1

− 1) by sending X to ϖF and Z to ζ . Instead of considering
biggest isotypic quotients associated to irreducible representations in RepB(F

×),
Section 6A1 considers more general isotypic families of representations using the
explicit description of (the centre of) z0.

Definition. Let V ∈ RepB(F
×). When C is a commutative B-algebra and η : z0

→ C
is a B-algebra morphism, the representation Vη = V ⊗z0 η ∈ RepC(F

×) may be
thought as the “biggest η-isotypic quotient of V .”

Remark. Unlike the situation of the biggest isotypic quotient, V does not neces-
sarily surject onto Vη if η is not surjective. So in general Vη is not a quotient of V ,
but the image of V in Vη generates Vη as a C-module.

When B′ is a B-algebra, denote by (1B′

F×,B′) ∈ Rep0
B(F

×) the trivial z0-module
isomorphic to B′. Denote by (χB,B) the character with χB(ϖF ) = q ∈ B× and
χB|O×

F
= 1B. Thus χB is the inverse of the norm |·|F .

Let I1 be the ideal in z0 corresponding to (X −1, Z −1) in B[X±1, Z ]/(Zq−1
−1).

Denote the quotient map η1 : z0
→ z0/I1. Consider the isotypic family Vη1 associated

to η1 with respect to the action of the first copy of F× on V . Take the same
convention for I corresponding to (X − q, Z − 1) with η being the quotient map.

Theorem E. One has in RepB(F
×) the following isomorphisms:

(a) Vη1 ≃ 1B/(q−1)B
F× ⊕ 1B

F× .

(b) Vη ≃ 1B/(q−1)B
F× ⊕χB.
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The subrepresentation 1B/(q−1)B
F× is in a certain sense the “defect” in the theta

correspondence. This is a pure (q−1)-torsion submodule, whereas the other part is
a free B-module of rank 1. When B is a field, this defect vanishes if and only if the
characteristic ℓ of B does not divide q−1, that is ℓ is banal with respect to F×.

Further example. Using this interpretation in terms of the characters of the Bernstein
centre seems to be more suitable when B is a ring. Indeed recall the situation in
[Trias 2020, Section 5.3] where F has odd residual characteristic and (H1, H2)

is a type I dual pair that is split in the metaplectic group. Let ℓ be a prime that
does not divide the pro-order of H1 and endow B = W (Fℓ) with an A-algebra
structure. Let K be the fraction field of B. For any absolutely irreducible cuspidal
51 ∈ RepK (H1), one has the equality V51 = Vη51

for V ∈ RepK (H1).
The reduction modulo ℓ of 51 is obtained by choosing a sable lattice L51

in 51. The reduction modulo ℓ of this lattice is an irreducible representation
π1 whose isomorphism class does not depend on the choice of L51 . We refer
to [Trias 2020, Section 5.3] for more details, but what is important here is that
similarly to 51, we have Vπ1 = Vηπ1

for V ∈ RepFℓ
(H1). Actually this comes

along with some compatibilities to scalar extension. Indeed there exists a character
η1 : zW (Fℓ)

(H1)→ W (Fℓ) of the integral Bernstein centre such that η1⊗W (Fℓ)
Fℓ=ηπ1

and η1 ⊗W (Fℓ)
K = η51 . This yields, for any V ∈ RepW (Fℓ)

(H1 × H2), the following
canonical morphisms in RepW (Fℓ)

(H1 × H2):

Vη1

����

// Vη1 ⊗W (Fℓ)
K = (V ⊗W (Fℓ)

K )η51

Vη1 ⊗W (Fℓ)
Fℓ = (V ⊗W (Fℓ)

Fℓ)ηπ1

When V = ω is the Weil representation with coefficients in W (Fℓ), the Weil
representations with coefficients in the residue fields Fℓ and K of W (Fℓ) are ω =

ω⊗W (Fℓ)
Fℓ and �= ω⊗W (Fℓ)

K, respectively. The biggest isotypic quotients are

�η51
≃51 ⊗K 2(51) and ωηπ1

≃ π1 ⊗Fℓ
2(π1),

where 2(51)∈ RepK (H2) and 2(π1)∈ RepFℓ
(H2). So ωη1 is a good family object

because its generic fibre is 51 ⊗K 2(51) and its special fibre is π1 ⊗Fℓ
2(π1). In

addition 2(51) is irreducible, when it is nonzero and ωη1 is a W (Fℓ)[H1 × H2]-
lattice in 51 ⊗K 2(51). Furthermore, when ℓ is banal with respect to H2 and
2(51) is cuspidal, the representation 2(π1) is the reduction modulo ℓ of 2(51)

and is therefore irreducible [Trias 2020, Theorem 5.17]. To relate2(51) and2(π1)

in general, one needs to explicitly know which lattice in 51 ⊗K 2(51) is ωη1 .
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First expectations. Of course in the most general situation, i.e., when the coefficient
ring B is Z

[ 1
p

]
(or A), exhibiting blocks, as well as their centres, is a daydream.

However, one can play with:

• “Simpler” rings B (fields, local rings, banal characteristic, etc.).

• Special classes of representations (cuspidals, level 0, etc.).

• Easier groups in the dual pair (small dimension, general linear, etc.).

As recalled, this has been achieved in [Trias 2020, Section 5.3] for type I dual pairs
(H1, H2) over the local ring W (Fℓ) when ℓ is banal with respect to H1, looking at
the block defined by a (super)cuspidal representation. In Section 6, we consider
the (very simple) pair (F×, F×), especially for level 0 representations. For bigger
type II dual pairs (GLn(F),GLm(F)) and coefficients rings being made of Witt
vectors, the work [Helm 2016] seems to be the cornerstone to tackle the problem.
Based on calculations in small dimensions, we make the following two conjectures.

Torsion principle. When the pro-order of H1, or that of H2, is not invertible in B,
we expect the failure of the theta correspondence to appear as some |H1| f |H2| f -
torsion submodule in the family object, where |Hi | f denotes the prime-to-p part of
the pro-order of Hi . Thanks to Theorem E, this principle is made a bit more precise
when (H1, H2)= (F×, F×).

Bijection principle for characters of the Bernstein centre. Another problem is the
following. When η1 : zB(H1)→ B is a character, are there any nice properties of
(ωB)η1 , where ωB is the Weil representation over B? For instance, it seems that the
action of zB(H2) can also be described in terms of a character of zB(H2). Indeed one
expects that there exists a character η2 : zB(H2)→ B such that ((ωB)η1)η2 = (ωB)η1 .
Denoting by η1 ⊗B η2 the natural character zB(H1)⊗B zB(H2)→B, we expect even
more: (ωB)η1 = (ωB)η2 = (ωB)η1⊗Bη2 . Writing η2 = θ(η1), one could then speak
of a theta correspondence in terms of characters of the respective Bernstein centres
because θ would induce a bijection

{η1 : zB(H1)→ B | (ωB)η1 ̸= 0}
θ
≃ {η2 : zB(H2)→ B | (ωB)η2 ̸= 0}.

1. Preliminaries

1A. Notations. All along the paper F will be a field of characteristic not 2, which
is either finite or local nonarchimedean. The residual characteristic and cardinality
of F are denoted as usual p and q . To turn F into a topological field one considers
the usual locally profinite topology. One of the many equivalent formulations of
the latter is “locally compact and totally disconnected”.
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K and A. Let K be the field defined in the following two cases:

• K is the cyclotomic extension of Q containing the p-th roots of unity, when
the characteristic of F is positive.

• K is the algebraic extension of Q containing all the p power roots of unity,
when the characteristic of F is zero.

One can write K = Q(ζp) by fixing a generator ζp in the first case; in the second
however, no generator exists, though the notation K = Q(ζp∞) is commonly used.
Based on classical results for cyclotomic extensions, the integral closure OK of Z

in K is, in the first case Z[ζp], and in the second Z[ζp∞]. From now on, let A be
the subring of K obtained from the ring of integers OK by inverting p, that is

A = OK
[ 1

p

]
.

A-algebras. By convention, the term A-algebra will refer to commutative rings B
endowed with an A-algebra structure, that is, a ring morphism ϕ : A → B. In order
to avoid confusion, those B considered always are unitary rings and ϕ maps the
neutral multiplicative element of A to that of B. Denote char(B) the characteristic
of B, that is the natural number such that {k ∈ Z | ϕ(k)= 0} = char(B)Z. The ring
morphism ϕ induces a group morphism A×

→ B× between the group of units of A
and that of B. Denote µp(B)= {ζ ∈B×

| ∃k ∈ Z, ζ pk
= 1} for the group of elements

in B× having order a power of p.

Character ψB. Let B be an A-algebra. Then ϕ restricts injectively to the group of
roots in A× having order a power of p, that is the group morphism ϕ : µp(A)→

µp(B) is injective. Indeed, given two distinct roots of unity ζ and ζ ′ in µp(A), their
difference ζ − ζ ′ is in A× because p ∈ A×, so they define two distinct elements in
ϕ(A)=A/Ker(ϕ). Therefore one can build, out of any nontrivial smooth character
ψ : F → A×, a character ϕ ◦ψ : F → B× which is still nontrivial and smooth. In
order to keep track of the ring considered, one uses a superscript to refer to the
A-algebra at stake. From now on, fix such a nontrivial smooth ψA

: F → A× and
set

ψB
= ϕ ◦ψA.

Smooth representations. Let G be a locally profinite group. Let R be a commu-
tative unitary ring. An R[G]-module V is said to be smooth if for all v ∈ V , the
stabiliser Gv of v is open in G. One denotes RepR(G) the category of smooth R[G]-
modules. For any closed subgroup H in G, the induction functor IndG

H associates to
any (σ,W )∈ RepR(H), the representation IndG

H (W )∈ RepR(G) of locally constant
functions on G taking values in W and satisfying f (hg)= σ(h) · f (g) for all g ∈ G
and h ∈ H . The compact induction indG

H is the subfunctor of IndG
H made of functions

compactly supported modulo H , that is the subspace of functions f ∈ IndG
H (W ) such
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that the image of supp( f ) in H\G is a compact set. A representation V ∈ RepR(G)
is said to be admissible if for all compact open subgroups K in G, the set of
K -invariants V K

= {v ∈ V | g · v = v} is finitely generated as an R-module.

Haar measures. Let G be a locally profinite group. In the following, we use the
notations of [Vignéras 1996, I.1 and I.2]. The pro-order |G| of G is the least
common multiple, in the sense of supernatural integers, of the orders of its open
compact subgroups. To be more explicit, |G| is a function P → N ∪∞ on the set
of prime numbers P . This decomposes in an obvious way into two parts having
disjoint supports, namely the finite part |G| f and the infinite one |G|∞. The only
situation occurring in the present work is |G| = |G| f ×|G|∞ with |G|∞ ∈ {1, p∞

},
according to G being either a finite group or an infinite p-adic group; in the latter
case, |G| f is prime-to-p. Let R be a commutative unitary ring. As long as all
the primes in |G|∞ are invertible in R, there exists a Haar measure on G with
values in R, that is a nonzero left G-equivariant morphism C∞

c (G, R)→ 1R
G where

C∞
c (G, R) is the space of locally constant and compactly supported functions in

G with values in R, and (1R
G, R) is the trivial representation. A normalised Haar

measure on G is a Haar measure taking the value 1 on a compact open subgroup
of G. In particular such a compact open subgroup must be of invertible pro-order
in R. Reciprocally, any normalised Haar measure arises as a Haar measure having
value 1 on a compact open subgroup of invertible pro-order in R.

The space W. Let (W, ⟨ · , · ⟩) be a symplectic vector space of finite dimension
over F . Its isometry group is composed of the F-linear invertible endomorphisms
preserving the form ⟨ · , · ⟩ and is classically denoted Sp(W ). A lagrangian in W is
a maximal totally isotropic subspace. Denote the dimension of W by n = 2m, then
X is a lagrangian if and only if it is a vector subspace which is totally isotropic (i.e.,
∀x, x ′

∈ X, ⟨x, x ′
⟩ = 0) of dimension m. A lattice L in W is a free OF -module of

rank n. The locally profinite topology on the field F induces a locally profinite
topology on the finite dimensional vector space W . As a result, a lattice in W
is a compact open set. Furthermore the subspace topology induced from that of
EndF (W ) on the symplectic group Sp(W ) is the locally profinite one as well.

2. Metaplectic representations over A-algebras

The Heisenberg group H is the set W × F endowed with the product topology and
the composition law

(w, t) · (w′, t ′)=
(
w+w′, t + t ′

+
1
2⟨w,w′

⟩
)

for (w, t) and (w′, t ′) in H = W × F .
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Let B be an A-algebra with structure morphism ϕ. Let ψA
: F → A× be a

nontrivial smooth character. As already mentioned in Section 1A, this defines, by
composing ψ and ϕ, a character ψB

: F → B× which is smooth and nontrivial.

2A. A lemma for representations over rings. Let G be a group and R a commuta-
tive ring. For every prime ideal P in Spec(R), one denotes k(P) the fraction field
of R(P)= R/P . Both k(P) and R(P) are endowed with an obvious structure of
R-algebras. For any R[G]-module V , the tensor product V ⊗R k(P) is a k(P)[G]-
module in the obvious way. Of course, the latter is smooth if the former is.

Definition 2.1. An R[G]-module V is said to be irreducible at P ∈ Spec(R) if
the representation V ⊗R k(P) ∈ Repk(P)(G) is irreducible. By extension, V is
everywhere irreducible if it is irreducible at any point of Spec(R).

There exists a simple sufficient condition to be everywhere irreducible.

Lemma 2.2. Let V be an R[G]-module and consider the map I 7→ I V that maps
an ideal I of R to the sub-R[G]-module I V of V . If the previous map defines a
bijection between ideals of R and sub-R[G]-modules of V , then V is everywhere
irreducible.

Proof. Using the bijection, one has PV ⊊ V for any prime (proper) ideal P , so
the module V ⊗RR(P)= V/PV is nonzero. It is even R(P)-torsion free because,
if av ∈ PV for a ∈ R and v ∈ V , then aIv ⊂ P where IvV = R[G] · v. In
particular V ⊗R R(P) embeds in V ⊗R k(P) by a localisation argument, so the
latter representation is nonzero.

In order to prove that V ⊗Rk(P) is irreducible, let W be a nonzero subrepresenta-
tion of V ⊗Rk(P) and define W ′

={v∈ V |v⊗R1∈ W }. As a first elementary claim,
this W ′ is a nonzero sub-R[G]-module of V . In addition the bijection hypothesis
yields the existence of an ideal I of R such that W ′

= I V . Observe furthermore
thanks to the bijection that I ⊂ P if and only if I V ⊂ PV . As a consequence,
the image of I V in V ⊗R k(P) generates V ⊗R k(P) as a k(P)-vector space if
and only if I is not contained in P . Of course the image of W ′ in V ⊗R k(P) is
nonzero because W is not, so I is not contained in P i.e., the image of W ′ generates
V ⊗R k(P). Therefore W = V ⊗R k(P). □

2B. Models VB
A associated to self-dual subgroups. When A is a closed subgroup

of W, define
A⊥

= {w ∈ W | ψA(⟨w, A⟩)= 1}.

In this definition, whether one usesψA orψB matters not. Now, the closed subgroup
A of W is said to be self-dual if A⊥

= A. Lagrangians and self-dual lattices provide
examples of such subgroups, so there always exist self-dual subgroups in W .
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Lemma 2.3. Let A be a self-dual subgroup of W . Then there exists a character
ψA

A which extends ψA to the subgroup AH = A × F of the Heisenberg group H.
Furthermore, ψB

A = ϕ ◦ψA
A provides the same kind of extension, that is, ψB

A extends
ψB to AH .

This lemma can be proved in the exact same elementary way as [Trias 2020,
Lemma 2.2(a)]. For the sake of shortness, we simply refer to the latter. The
heart of the current section is the following proposition, generalising [loc. cit.,
Lemma 2.2(b)] where the A-algebra B is a field.

Proposition 2.4. Let ψA
A be as above and set V B

A = indH
AH
(ψB

A ) ∈ RepB(H):

(a) The map I 7→ I V B
A defines a bijection from the set of ideals of B to the set of

sub-B[H ]-modules of V B
A . In particular, V B

A is everywhere irreducible.

(b) The B[H ]-module V B
A is admissible and V B

A = IndH
AH
(ψB

A ).

(c) V B
A satisfies Schur’s lemma, that is EndB[H ](V B

A )= B.

Proof. The core idea of the proof comes from [Trias 2020, Lemma 2.2(b) and Propo-
sition 2.4(c)], which was originally generalising [Mœglin et al. 1987, Chapter 2, I.3
and I.6]. As some differences occur when dealing with A-algebras instead of fields,
we carefully examine and detail them below:

(a) First remark that, assuming the bijection property holds, the second part of the
statement is a mere application of Lemma 2.2. Therefore we focus our attention to
proving that such a bijection holds.

The B[H ]-module V B
A is generated as a B-module by a family (χw,L) we now

describe. As ψB
A is smooth, there exists for allw∈ W an open compact subgroup Lw

of W such that ψB
A (a)= 1 for all a ∈ AH ∩(w, 0)(Lw, 0)(w, 0)−1. Fix such choices

of small enough lattices (Lw)w∈W . Then if L is a sublattice of Lw, there exists a
unique function in V B

A which is supported on AH (w, 0)(L , 0), right invariant under
(L , 0) and taking the value 1 at (w, 0). One denotes it χw,L . The B[H ]-module V B

A
being smooth, any f in this compactly induced module can be written as a finite
sum of such χw,L , that is the family (χw,L)w∈W,L⊂Lw is generating V B

A . Actually
we can give a more precise decomposition in terms of these functions. We claim
that f can be written as a finite sum

∑
f ((w, 0)) ·χw,L where L only depends on

f and the functions χw,L have disjoint supports. Indeed, assume that f is right
invariant by (L , 0) and f ((w, 0)) ̸= 0. In order for χw,L to be well-defined, the
condition ψB

A (a) = 1 for all a ∈ AH ∩ (w, 0)(L , 0)(w, 0)−1 needs to be satisfied.
Note that (w, 0)(L , 0)(w, 0)−1

= {(l, ⟨w, l⟩) | l ∈ L} so the intersection with AH

is simply {(l, ⟨w, l⟩) | l ∈ A ∩ L}. By right invariance, we obtain for all l ∈ A ∩ L
the equality f ((w, 0))= f ((w, 0)(l, 0))= ψB

A ((l, ⟨w, l⟩)) f ((w, 0)). This implies
that ψB

A (⟨l, ⟨w, l⟩) = 1 for all l ∈ A ∩ L because 1 − ζ is a regular element in
B when ζ ∈ µp(B) and ζ ̸= 1. Therefore f =

∑
f (w, 0) · χw,L where the sum
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runs over a finite number of double cosets AH (w, 0)(L , 0) in H . Because the
subspace of functions in V B

A taking values in I and the space I V B
A both contain

(i ·χw,L)i∈I,w∈W,L⊂Lw as a generating family, they must agree. Consequently the
injectivity of the map I 7→ I V B

A follows.
The surjectivity of I 7→ I V B

A amounts to proving that any sub-B[H ]-module of
V B

A is of the form I V B
A . For any subset X of V B

A , define IX = ⟨ f (h) | h ∈ H, f ∈ X⟩

the ideal in B generated by the set of values of functions in X . There is an obvious
inclusion of B[H ]-modules B[H ] · X ⊂ IX V B

A . We claim even more: this inclusion
actually is an equality. It is enough to prove it when X is a singleton to deduce the
result general case because B[H ] · X =

∑
B[H ] · f and IX V B

A =
∑

I f V B
A where

the sums run over all f ∈ X . So from now on, suppose that X is made of a single
function f in V B

A . We would like to prove that the reverse inclusion holds, that is

I f V B
A ⊂ B[H ] · f.

As p is invertible in B, there exists a Haar measure of H which takes values
in B and is normalised over a compact open subgroup of H . Let µ be such a
measure. The claim will then follow from the — technical-to-state but rather clear —
observation below.

Lemma 2.5. Let f be a nonzero function of V B
A . For any w ∈ W , fix a sufficiently

small lattice Lw in W such that (Lw, 0) leaves f right invariant and ψB
A (a)= 1 for

all a ∈ AH ∩ (w, 0)(Lw, 0)(w, 0)−1. Then for any sublattice L of Lw, there exists
an element φw,L ∈ B[H ] such that φw,L · f = f ((w, 0))χw,L .

Proof. First of all, the fact that such a choice of lattices (Lw)w∈W exists comes for
the smoothness of V B

A and ψB
A . Let L be sublattice of Lw and define

φ : a ∈ A 7→
ψB

A ((−a, 0))
vol(L⊥ ∩ A)

ψB(⟨−w, a⟩)1L⊥∩A(a) ∈ B

where 1X is the characteristic function of X , µA is a Haar measure of A normalised
over a compact open subgroup and vol(L⊥

∩ A) is a power of p. Then an explicit
computation will show that the function

φ · f : h ∈ H 7→

∫
A
φ(a) f (h(a, 0)) dµA(a) ∈ B

belongs to B[H ] · f and is a scalar multiple of χw,L .
We give short but prompt explanation of this last computational claim. Given

that the function φ is compactly supported and locally constant, one can write — up
to some volume factor which is a mere power of p — the function φ · f as a finite
sum ∑

φ(ai ) f (h(ai , 0))=

(∑
φ(ai )(ai , 0)

)
· f (h).
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So φ · f belongs to B[H ] · f . For all w′
∈ W , the computation mentioned above

reads

φ · f ((w′, 0))= f ((w′, 0))×
1

vol(L⊥ ∩ A)

∫
L⊥∩A

ψB(⟨w′
−w, a⟩) dµA(a).

A classical argument rewrites the last term as 1A+w+L(w
′). Therefore φ · f has

support AH (w, 0)(L , 0), is right invariant under (L , 0) and takes the value f ((w, 0))
at (w, 0). By unicity, one must have φ · f = f ((w, 0)) · χw,L . Now φw,L exists
because φ · f ∈ B[H ] · f . □

Applying the previous lemma, we conclude that the reverse inclusion I f V B
A ⊂

B[H ] · f holds. So the map I 7→ I V B
A is injective and surjective, that is being

bijective.

(b) Let L be an open compact subgroup of W . Let w ∈ W . Consider the set of
functions left ψB

A -equivariant, supported on the double coset AH (w, 0)(L , 0) and
right invariant under (L , 0). Actually this space of functions is isomorphic to either
B or 0 as a consequence of the formula for invariants vectors in compactly induced
representations [Vignéras 1996, I.5.6]. Denote by χw,L the appropriate generator,
meaning the function that takes value either 1 or 0 at (w, 0). Fix representatives in
W for the double coset AH\H/(L , 0)≃ A\W/L = W/(A + L). Remark that the
admissibility of V B

A follows from the fact that, given some L , there are only finitely
many representatives w giving rise to nonzero functions χw,L . We are now proving
this claim about functions χw,L .

Suppose χw,L is nonzero. For all l ∈ L ∩ A, one has

1 = χw,L((w, 0))= χw,L((w, 0)(l, 0))

= χw,L((l, ⟨w, l⟩)(w, 0))

= ψB(⟨w, l⟩)ψB
A ((l, 0)).

Thus for all l ∈ L ∩ A, the relation ψB(⟨w, l⟩)= ψB
A ((−l, 0)) must hold. It means

that any two representatives w and w′, giving rise to nonzero χw,L and χw′,L , must
satisfy the relation ψB(⟨w−w′, l⟩)= 1 for all l ∈ L ∩ A i.e., w−w′

∈ (L ∩ A)⊥.
However

(L ∩ A)⊥ = L⊥
+ A⊥

= L⊥
+ A.

As L is compact open, its orthogonal L⊥ is compact open too because this holds
for lattices in W . So the image of L⊥ in the quotient W/(A + L) is a finite set,
which means the set of representatives w giving rise to nonzero χw,L , when L is
fixed, is finite.
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To conclude, for any sufficiently small open compact subgroup L of W , the
condition for smallness being L × Ker(ψB) is a subgroup of H , one has

(V B
A )

L×Ker(ψB)
=

⊕
χw,L ̸=0

B ·χw,L

where the right-hand side sum is finite. So the smooth B[H ]-module V B
A is ad-

missible, and according to [Vignéras 1996, I.5.6 1)], it is equivalent to saying that
indH

AH
(ψB

A )= IndH
AH
(ψB

A ).

(c) As proved in the previous point, there exists a sufficiently small open compact
subgroup L of W such that K = L × Ker(ψB) is a subgroup of H and

(V B
A )

K
=

⊕
χw,L ̸=0

B ·χw,L

where the right-hand side sum is finite. In addition, there exists a nonzero χw,L
for w ∈ W if the condition “ψB

A (a)= 1 for all a ∈ AH ∩ (w, 0)(L , 0)(w, 0)−1” is
satisfied. Therefore, up to strengthening the sufficiently small condition, one may
suppose that (V B

A )
K

̸= 0. Because every B ·χw,L is isomorphic to B, and the sum
runs over functions with mutually disjoint supports, the B-module (V B

A )
K is a free

module of finite rank.
Thanks to point (a), the B[H ]-module V B

A is generated by a single element
χw,L . Indeed, the ideal Iχw,L = ⟨χw,L(h) | h ∈ H⟩ satisfies B[H ] ·χw,L = Iχw,L V B

A
and contains 1 since χw,L((w, 0))= 1. Thus the restriction to (V B

A )
K induces an

injective morphism of B-algebras

ξ : EndB[H ](V B
A ) ↪→ EndHB(H,K )((V

B
A )

K ),

where (V B
A )

K is a module on the relative Hecke algebra HB(H, K ) [Vignéras 1996,
I.4.5].

The module (V B
A )

K being free over B, write its basis B= (χw,L)w. In this basis,
the function φw,L defined above in the proof of Lemma 2.5 becomes the elementary
projector Ew onto χw,L i.e., for all w′

∈ B one has

φw,L ·χw′,L = χw′,L((w, 0))×χw,L =

{
0 if w′

̸= w;

χw,L otherwise.

Let now 8 ∈ EndB[H ](V B
A ). Then the image ξ(8) of 8 in EndHB(H,K )((V

B
A )

K )

commutes with Ew for all w ∈ B as it commutes with the action of φw,L . Because
of this commutation relation between ξ(8) and Ew, there exists a scalar λw ∈ B
such that ξ(8)(χw,L)=λw×χw,L . As any χw,L generates V B

A as a B[H ]-module, it
does generate (V B

A )
K as a HB(H, K )-module. This last fact implies that all the λw

are equal. Therefore there exists λ ∈ B such that ξ(8)= λ Id(V B
A )

K . So 8= λ idV B
A

because ξ is injective. □
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The following can be easily deduced from Proposition 2.4 that has just been
proved and the finiteness property of the compact induction:

Corollary 2.6. Let B′ be a B-algebra given by the ring morphism ϕ′
:B →B′. Then

the morphism ϕ′ induces a canonical isomorphism of smooth B′
[H ]-modules

V B
A ⊗B B′

≃ V B′

A .

It is given on simple tensor elements by the map f ⊗B b′
7→ b′

× (ϕ′
◦ f ).

This result will allow to reduce any problem over an A-algebra to a problem
over A, because applying the corollary leads to the canonical identification

V B
A ≃ V A

A ⊗A B.

Furthermore, one can consider A-algebras that are not integral domains. For
instance, if B =

∏
i Bi is a finite product of A-algebras (Bi ), then

V B
A ≃

⊕
i

V Bi
A .

2C. Changing models from VB
A1

to VB
A2

. Let A1 and A2 be two self-dual subgroups
of W . Let ψA

A1
be a character that extends ψB to A1,H as in Lemma 2.3. Similarly,

fix an extension ψA
A2

of ψB with respect to A2,H . Once again, set ψB
A1

= ϕ ◦ψA
A1

and ψB
A2

= ϕ ◦ ψA
A2

, which are both smooth and nontrivial characters. Suppose
ω ∈ W satisfies the condition

ψB
A1
((a, 0))ψB

A2
((a, 0))−1

= ψB(⟨a, ω⟩) for all a ∈ A1 ∩ A2.

Note that such an ω always exist as the left-hand side defines a character of A1 ∩ A2.
Let µ be a Haar measure with values in B of the quotient A1 ∩ A2\A2. Define

Iµ = ⟨µ(K ) | K open compact subgroup⟩

the ideal of B generated by the various values taken by µ on the open compact
subgroups of A1 ∩ A2\A2. By unicity of the Haar measure, the ideal Iµ is principal
and generated by any µ(K ) as long as the pro-order of K is invertible in B. The
measure is said to be invertible if Iµ=B. Of course, every normalised Haar measure,
that is a measure taking the value 1 on a compact open subgroup, is invertible. For
µ to be invertible, it is necessary and sufficient that there exists a compact open
subgroup whose measure is a unit in B i.e., µ is a unit multiple of a normalised
Haar measure.

Proposition 2.7. The map IA1,A2,µ,ω associating to f ∈ V B
A1

the function

IA1,A2,µ,ω f : h 7→

∫
A1,H ∩A2,H \A2,H

ψB
A2
(a)−1 f ((ω, 0)ah) dµ(a)
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is a morphism of smooth B[H ]-modules from V B
A1

to V B
A2

. Its image is IµV B
A2

and,
as a result, IA1,A2,µ,ω is an isomorphism if and only if µ is an invertible measure.
In addition, any invertible measure µ induces an isomorphism of B-modules

HomB[H ](V B
A1
, V B

A2
)= {λIA1,A2,µ,ω | λ ∈ B} ≃ B.

Proof. On the one hand, the function IA1,A2,µ,ω f is well defined. Indeed for any
h ∈ H , the function a ∈ A2,H 7→ψB

A2
(a)−1 f ((ω, 0)ah)∈ B is (A1H ∩ A2,H )-left in-

variant and locally constant, so one can consider it is a function on A1,H ∩A2,H\A2,H

= A1 ∩ A2\A2. The function a ∈ A2,H 7→ f ((ω, 0)ah) ∈ B is compactly supported
modulo A1,H ∩ A2,H because, as in [Trias 2020, Section 2.3], the sum A1 + A2 is
a closed subgroup of H . Finally, a change of variables implies that IA1,A2,µ,ω f is
left ψB

A2
-equivariant. The map IA1,A2,µ,ω is clearly B-linear and H -equivariant so

that IA1,A2,µ,ω ∈ HomB[H ](V B
A1
, V B

A2
).

As a result of point (a) from Proposition 2.4, the image of IA1,A2,µ,ω must be of
the form I V B

A2
for some ideal I in B. Actually, we proved a sharper results in the

proof of point (a) showing that

I = {IA1,A2,µ,ω f (h) | f ∈ V B
A1
, h ∈ H}.

If µ is chosen to be invertible, then for any other measure µ′, there exists λ ∈ B
generating Iµ′ and such that the image of IA1,A2,µ′,ω is Iµ′ I V B

A2
= λI V B

A2
. It reduces

to consider the morphism IA1,A2,µ,ω when µ is invertible. In this case, we show
below that the morphism is surjective and as injective.

Suppose µ is invertible. As in the proof of Proposition 2.4, choose a sufficiently
small open compact subgroup L of W such that there exists a nonzero function
χω,L supported on A1,H (ω, 0)(L , 0), right invariant under (L , 0) and taking the
value 1 at (ω, 0). One may as well suppose that ψA2((l, 0)) = 1 for all l ∈ L , by
choosing an even smaller L if needed. Then the formula for χω,L at h = (0, 0)
reads

IA1,A2,µ,ωχω,L((0, 0))=

∫
L∩A1∩A2\L∩A2

ψA2((l, 0))−1χω,L((ω, 0)(l, 0)) dµ(l)

=

∫
L∩A1∩A2\L∩A2

χω,L((ω, 0)) dµ(l)

= vol(L ∩ A1 ∩ A2\L ∩ A2).

The group L ∩ A1 ∩ A2\L ∩ A2 has pro-order a power of p, so its volume for the
invertible measure µ is a unit i.e., IA1,A2,µ,ωχω,L((0, 0)) ∈ B×.

Therefore the previous unit IA1,A2,µ,ωχω,L((0, 0)) belongs to I i.e., I = B = Iµ.
It follows that the morphism IA1,A2,µ,ω is surjective. It is injective as well. Indeed,
its kernel is of the form I ′V B

A1
for some ideal I ′ of B, and for all i ′

∈ I ′, the
function i ′χω,L belongs to the kernel. However the function IA1,A2,µ,ω(i

′χω,L)=
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i ′ IA1,A2,µ,ωχω,L takes the value i ′ at (0, 0) and is the zero function. So i ′
= 0 and

I ′ is the zero ideal of B. □

Consider the scalar extension functor

V ∈ RepA(H) 7→ V ⊗A B ∈ RepB(H)

and denote φB : HomA[H ](V A
A1
, V A

A2
)→ HomB[H ](V B

A1
, V B

A2
) the map that is induced

by functoriality.
In particular for all f ∈ HomA[H ](V A

A1
, V A

A2
), the following diagram, where the

vertical arrows are given by the canonical V A
A → V A

A ⊗A B of Corollary 2.6, is
commutative:

V A
A1

f
//

��

V A
A2

��

V B
A1

φB( f )
// V B

A2

For ω ∈ W , observe now that the two following conditions are equivalent:

• ψA
A1
((a, 0))ψA

A2
((a, 0))−1

= ψA(⟨a, ω⟩) for all a ∈ A1 ∩ A2.

• ψB
A1
((a, 0))ψB

A2
((a, 0))−1

= ψB(⟨a, ω⟩) for all a ∈ A1 ∩ A2.

Fix ω ∈ W satisfying one of the previous two. The corollary below is quite
immediate.

Corollary 2.8. Let µA be an invertible Haar measure of A1 ∩ A2\A2 with values
in A. Set µB

= ϕ ◦µA. This latter measure is an invertible B-valued measure. Then
for all M ∈ HomB[H ](V B

A1
, V B

A2
), there exists λ ∈ B such that

M = λ× IA1,A2,µB,ω = λ×φB(IA1,A2,µA,ω).

3. Weil representations over A-algebras

Let B be an A-algebra. Let A a self-dual subgroup of W and V B
A = indH

AH
(ψB

A ) the
smooth B[H ]-module built in Section 2B, where ψB

A is an extension of ψB in the
way of Lemma 2.3. The symplectic group Sp(W ) is naturally acting on H through
the first coordinate, that is

g · (w, t)= (gw, t)

for g ∈ Sp(W ) and (w, t) ∈ H . Of course, self-dual subgroups are preserved under
this action, that is g A is self-dual for all g ∈ Sp(W ).

In this section g always denotes an element of Sp(W ). For f ∈ V B
A , the function

Ig f : h ∈ H 7→ f (g−1
· h) ∈ B
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belongs to V B
g A = indH

(g A)H
(ψB

g A) where ψB
g A(g · a) = ψB

A (a) for all a ∈ AH . It
is important to stress that V B

g A depends on g, because even if g A = A, one may
have that ψB

g A ̸= ψB
A as characters of AH . Another caution is related to the map

Ig : f ∈ V B
A 7→ Ig f ∈ V B

g A

that is not a morphism of B[H ]-modules. Indeed, for h0 ∈ H , one has

Ig(h0 · f )= (g · h0) · Ig f

whereas h0 · (Ig f )= Ig((g−1
· h0) · f ).

Recall from Section 2C that there exists ωg ∈ W such that the condition

ψB
g A((a, 0))ψB

A ((a, 0))−1
= ψB(⟨a, ωg⟩)

holds for all a ∈ g A ∩ A. Then for any Haar measure µ of g A ∩ A\A, one can
compose the following morphisms of B-modules

V B
A

Ig
−→ V B

g A
Ig A,A,µ,ωg

−−−−−→ V B
A .

Therefore Ig A,A,µ,ωg ◦ Ig ∈ EndB(V B
A ) is uniquely defined up to a scalar of B,

because the morphism Ig A,A,µ,ωg is, thanks to Proposition 2.7.
Consider now the smooth B[H ]-module (ρd , IndH

F (ψ
B)) where F is identified

with the centre of H . All the B[H ]-modules V B
A naturally embed in the latter

because the restriction of ψB
A to F is ψB. Under this canonical identification for

V B
A , one has

Ig A,A,µ,ωg ◦ Ig ◦ ρd(h)= ρd(g · h) ◦ Ig A,A,µ,ωg ◦ Ig.

In other words Ig A,A,µ,ωg ◦ Ig ∈ HomB[H ]((ρd , V B
A ), (ρ

g
d , V B

A )) where ρg
d : h 7→

ρd(g · h).
Again in Section 2C, invertible Haar measures are defined as unit multiples of

normalised Haar measures. These exactly are the measures that can take unit values
on compact open subgroups. As the linear map Ig is invertible, one easily deduces
from Proposition 2.7 that the previous endomorphism is invertible:

Lemma 3.1. If µ is invertible, then Ig A,A,µ,ωg ◦ Ig ∈ GLB(V B
A ).

As a result of the lemma, the image of the set {Ig A,A,µ,ωg ◦ Ig | µ invertible}
through the quotient map

RED : GLB(V B
A )→ GLB(V B

A )/B
×

= PGLB(V B
A )

is well defined. As already mentioned the map Ig A,A,µ,ωg ◦ Ig is unique up to
a scalar, hence this image consists in a singleton; denote by Mg the single ele-
ment it contains. Remark that Mg does not depend on the choice of ωg because
HomB[H ](V B

g A, V B
A ) ≃ B once again by Proposition 2.7, and the set of invertible
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elements are those in B×, which does correspond to the choice of an invertible Haar
measure.

The proposition below allows to build Weil representations with coefficients
in B.

Proposition 3.2. The map σB : g ∈ Sp(W ) 7→ Mg ∈ PGLB(V B
A ) is a group morphism

and defines a projective representation V B
A of Sp(W ). Using the fibre product

construction, it lifts to a representation ωψB,V B
A

of a central extension of Sp(W ) by
B× in the following way:

S̃pB
ψB,V B

A
(W )

ω
ψB ,VB

A
//

pB

��

GLB(V B
A )

RED

��

Sp(W )
σB
// PGLB(V B

A )

where S̃pB
ψB,V B

A
(W )= Sp(W )×PGLB(V B

A )
GLB(V B

A ) is the fibre product defined by
the group morphisms σB and RED, together with the projection maps denoted pB
and ωψB,V B

A
.

Proof. The only point that needs explanation is the claim about σB being a group
morphism. Let g and g′ be two elements in Sp(W ). By definition, there exists an
invertible measure µg on g A ∩ A\A and an element ωg ∈ W such that

RED(Ig A,A,µg,ωg ◦ Ig)= Mg.

Respectively, one can write the same type of relation for Mg′ with some µg′ and ωg′ .
An explicit computation of the composed map Ig◦Ig′ A,A,µg′ ,ωg′ gives the existence

of an invertible measure µ on gg′ A ∩ g A\g A and an element ω ∈ W such that the
commutation relation

Ig ◦ Ig′ A,A,µg′ ,ωg′ = Igg′ A,g A,µ,ω ◦ Ig

holds. In addition, the morphism

Ig A,A,µg,ω ◦ Igg′ A,g A,µ,ω ∈ HomB[H ](V B
gg′ A,V

B
A)

is invertible because each one of the two is. Therefore Proposition 2.7 asserts the
existence of an invertible measure µgg′ on A∩gg′ A\gg′ A and an element ωgg′ ∈ W
such that

Ig A,A,µg,ω ◦ Igg′ A,g A,µ,ω = Ig A,A,µgg′ ,ωgg′ .

The claim hence follows by using the previous two relations and applying RED to

(Ig A,A,µg,ωg ◦ Ig) ◦ (Ig′ A,A,µg′ ,ωg′ ◦ Ig′). □
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Remark 3.3. Actually this fibre product makes sense in the category of topological
groups in the following setting. Let B and V B

A be endowed with the discrete topology.
Then the compact-open topology on GLB(V B

A ) is generated by the prebasis of open
sets Ss,s′ = {g ∈ GLB(V B

A ) | gs = s ′
} for s and s ′ in V B

A . Similarly to [Trias 2020,
Proposition 3.5], one can prove RED and σB are morphisms of topological groups.
As a result of the continuity, the fibre product is a locally profinite group for the
product topology and the representation ωψB,V B

A
is smooth. However, there is an

interesting alternative way to prove it and that is developed in the next section. It
illustrates the philosophy: any problem related to an A-algebra B may be brought
back to one directly involving A.

Denote by φB : GLA(V A
A ) → GLB(V B

A ) the group morphism induced by the
extension of scalars and the canonical identification V A

A ⊗A B ≃ V B
A coming from

Corollary 2.6.

Theorem 3.4. The group morphism φB induces a morphism of central extensions

φ̃B : (g,M) ∈ S̃pA
ψA,V A

A
(W ) 7→ (g, φB(M)) ∈ S̃pB

ψB,V B
A
(W ).

The image of φ̃B is a central extension of Sp(W ) by ϕ(A)× where ϕ is the structure
morphism ϕ : A → B. Furthermore, the following diagram commutes:

S̃pA
ψA,V A

A
(W )

ω
ψA,VA

A
//

φ̃B
��

GLA(V A
A )

φB

��

S̃pB
ψB,V B

A
(W )

ω
ψB ,VB

A
// GLB(V B

A )

Proof. By definition (g,M) ∈ Sp(W ) × GLA(V A
A ) belongs to S̃pA

ψA,V A
A
(W ) if

there exists an invertible Haar measure µ on g A ∩ A\A with values in A and an
element ω such that M = Ig A,A,µ,ω ◦ Ig. Set µB

= ϕ ◦µ. Using the compatibility
of Corollary 2.8, the equality φB(Ig A,A,µ,ω) = Ig A,A,µB,ω holds and defines an
isomorphism in HomB[H ](V B

g A, V B
A ). Hence

φB(M)= Ig A,A,µB,ω ◦ Ig

with µB invertible, that is (g, φB(M)) ∈ S̃pB
ψB,V B

A
(W ).

The map φ̃B thus defined clearly is a morphism of central extensions. In addition,
an element (g,M) belongs to its kernel if and only if g = IdW and φB(M)= IdV B

A
.

However

{M ∈ GLA(V A
A ) | (IdW ,M) ∈ S̃pA

ψA,V A
A
(W )} = {λ IdV A

A
| λ ∈ A×

}.
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Indeed M must be of the form Ig A,A,µ,ω◦Ig = IA,A,µ,0 =µ({0})×IdV A
A

whereµ is an
invertible measure of the singleton {0}, so there exists λ∈B× such that M = λ IdV A

A
.

Since φB(λ IdV A
A
) = ϕ(λ) IdV B

A
, the group {(IdW , λ IdV A

A
) | λ ∈ Ker(ϕ)} ≃ Ker(ϕ)

is the kernel sought. The assertion on the image follows from the form of this
kernel. □

Because of the previous compatibility, many problems over B reduce to those
over the minimal ring A. The corollary to the proposition below illustrates this
philosophy.

Proposition 3.5. Let A and A′ be two self-dual subgroups of W . Let 8A,A′ be an
isomorphism in HomA[H ](V A

A , V A
A′ ). Then8A,A′ induces an isomorphism of central

extensions

(g,M) ∈ S̃pA
ψA,V A

A
(W ) 7→ (g,8A,A′ M8−1

A,A′) ∈ S̃pA
ψA,V A

A′
(W )

compatible with the projections defining the fibre products. In particular, the
equivalence class of the representation ωψA,V A

A
does not on depend A in the sense

that

8A,A′ ◦ωψA,V A
A
((g,M)) ◦8−1

A,A′ = ωψA,V A
A′
((g,8A,A′ M8−1

A,A′))

for all (g,M) ∈ S̃pA
ψA,V A

A
(W ).

Proof. The existence of an isomorphism in HomA[H ](V A
A , V A

A′ ) is a consequence
of Proposition 2.7. One can consider for example any IA,A′,µ,ω as long as µ is
invertible. The fact that 8A,A′ induces an isomorphism of central extensions is
quite clear when writing down the relations because 8A,A′ is an isomorphism of
A[H ]-modules. □

From Theorem 3.4 and the proposition above, one can deduce the exact same
result for coefficients in any A-algebra B. Indeed, applying φB to the last relation
yields:

Corollary 3.6. The equivalence class of ωψB,V B
A

does not depend on A, in the sense
that for any other self-dual subgroup A′ of W , there exists an isomorphism 8′

A,A′ in
HomB[H ](V B

A , V B
A′)— one can take φB(8A,A′) for example — such that

8′

A,A′ ◦ωψB,V B
A
((g,M)) ◦ (8′

A,A′)
−1

= ωψB,V B
A
((g,8′

A,A′ M(8′

A,A′)
−1))

for all (g,M) ∈ S̃pB
ψB,V B

A′
(W ).

4. The metaplectic group over A

The notations are those of Section 3. To quickly recall the context: let B be an
A-algebra, let A be a self-dual subgroup of W and V B

A = indH
AH
(ψB

A ) be the smooth
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B[H ]-module built in Section 2B, where ψB
A is an extension of ψB in the way of

Lemma 2.3.
In Section 3, we constructed a projective representation σB :Sp(W )→PGLB(V B

A )

of the symplectic group and, in Proposition 3.2, we lifted it to a representation
(ωψB,V B

A
, V B

A ) of a central extension of Sp(W ) by B×, namely

ωψB,V B
A

: S̃pB
ψB,V B

A
(W )→ GLB(V B

A ).

Recall that the group on the left-hand side is the fibre product in the category of
groups of the group morphisms σB : Sp(W )→ PGLB(V B

A ) and RED : GLB(V B
A )→

PGLB(V B
A ), together with the projection maps pB and ωψB,V B

A
. As a result of

this construction, it is a subgroup of Sp(W ) × GLB(V B
A ). In particular, these

constructions make sense over A itself, and Theorem 3.4 completes the picture
relating the constructions over A and over any A-algebra B, yielding a morphism
of central extensions

φ̃B : S̃pA
ψA,V A

A
(W )→ S̃pB

ψB,V B
A
(W )

compatible with the respective projection maps.

4A. A bit of topology. This section will shed some light on Remark 3.3 by bringing
topology into the construction of Proposition 3.2. Endow B and V B

A with the discrete
topology. Then the open-compact topology on GLB(V B

A ) is generated by the prebasis
Ss,s′ = {M ∈ GLB(V B

A ) | Ms = s ′
} for s and s ′ running through V B

A .
The group PGLB(V B

A ) inherits the quotient topology, which is the finest mak-
ing the quotient map RED : GLB(V B

A ) → PGLB(V B
A ) continuous. Recall from

Theorem 3.4 that the projective representation σB : Sp(W ) → PGLB(V B
A ) was

defined in terms of the action of Sp(W ) on H .

The complex case. The best-known feature comes when B is the field of complex
numbers. Endowing C with a structure of A-algebra amounts to fixing an embedding
ϕ : A → C. Observe that all such embeddings have the same image in C, because
K/Q is a Galois extension. In particular, the image of the map A×

→ C× induced
by ϕ does not depend on the choice of ϕ.

So when B = C and ϕ is fixed, the representation V C
A ∈ RepC(H) is irreducible

as an application of Stone–von Neumann’s theorem [Mœglin et al. 1987, Chapter 2,
Theorem I.2] and

ωψC,V C
A

is the Weil representation of the metaplectic group S̃pC

ψC,V C
A
(W ).

The complex theory asserts that the Weil representation is smooth and the meta-
plectic group is a natural topological subgroup of Sp(W )× GLC(V C

A ). To be more
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precise, the metaplectic group is a locally profinite group. Regarding the smoothness
condition, this is equivalent to saying that the map ωψC,V C

A
is continuous.

These topological properties are consequences of the continuity of the map σC,
which really is the cornerstone of the theory; and the metaplectic group inherits a
natural topology as the fibre product in the category of topological groups of the
continuous group morphisms RED and σC.

Over A. By analogy, one calls S̃pA
ψA,V A

A
(W ) the metaplectic group over A. Refer-

ring to Theorem 3.4, it is a subgroup of the metaplectic group because the group
morphism

φ̃C : (g,M) ∈ S̃pA
ψA,V A

A
(W )→ (g, φC(M)) ∈ S̃pC

ψC,V C
A
(W )

is injective.

Lemma 4.1. The map φC : M ∈ GLA(V A
A )→ φC(M) ∈ GLC(V C

A ), coming from
the scalar extension to C, is continuous and defines an homeomorphism onto its
image.

Proof. The image of φC is endowed with the subspace topology from GLC(V C
A ).

The map φC is continuous and injective, so it defines a bijection to its image, say GA.
Denote φ′

C
: GA → GLA(V A

A ) the inverse map. Then for all s and s ′ in V A
A , one has

(φ′

C)
−1(Ss,s′)= {φC(M) | M ∈ GLA(V A

A ) and φC(M)(s ⊗C 1)= s ′
⊗C 1}

= GA ∩ Ss⊗C1,s′⊗C1

that is the trace of an open set. So (φ′

C
)−1(Ss,s′) is open in GA and φ′

C
is continuous.

□

Of course, the embedding Sp(W )× GLA(V A
A )→ Sp(W )× GLC(V C

A ) induced
by φC is an homeomorphism onto its image as well. As a result of the lemma,
the subspace topology on Sp(W )× GLA(V A

A ), inherited from that of Sp(W )×

GLC(V C
A ) using the previous embedding, coincides with the usual product topology.

Restricting this morphism to the metaplectic group over A, which is a subgroup of
Sp(W )× GLA(V A

A ), exactly yields φ̃C. Because of the homeomorphism property,
one can identify the metaplectic group over A and its image under φ̃C, resulting in:

Corollary 4.2. The group S̃pA
ψA,V A

A
(W ) is a topological subgroup of S̃pC

ψC,V C
A
(W ),

the inclusion being canonically given by φ̃C. In addition φ̃C is an open embedding.

Proof. The fact that it is a topological subgroup follows from Lemma 4.1 and
the subsequent discussion. The map φ̃C is open because its image is open in the
metaplectic group. Indeed the first projection of the fibre product yields an exact
sequence

1 → C×
→ S̃pC

ψC,V C
A
(W )→ Sp(W )→ 1.
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Because K/Q is a Galois extension, the image ϕ(A×) of A× does not depend on ϕ
and always contains {±1}. As a result, the following diagram is commutative:

1 C× S̃pC

ψC,V C
A
(W ) Sp(W ) 1

1 A× S̃pA
ψA,V A

A
(W ) Sp(W ) 1

ϕ φ̃C IdSp(W )

and the group S̃pA
ψA,V A

A
(W ) contains the reduced metaplectic group ŜpC

ψC,V C
A
(W ),

that is the derived group of the metaplectic group.
When F is local nonarchimedean, this is the unique subgroup of the metaplectic

group fitting into the exact sequence

1 → {±1} → ŜpC

ψC,V C
A
(W )→ Sp(W )→ 1.

Furthermore this reduced metaplectic group is open in the metaplectic group, so
the claim follows because the metaplectic group over A contains it. When F is
finite, the topology can just be ignored as these groups are finite and have discrete
topology. □

As above, denote by ŜpC

ψC,V C
A
(W ) the derived group of S̃pC

ψC,V C
A
(W ). When

F is finite, this group is the derived group of Sp(W ). Except in the exceptional
case F = F3 and dim(W ) = 2, the symplectic group is perfect i.e., equal to its
own derived subgroup. When F is local archimedean it is the so-called reduced
metaplectic group, which is a nontrivial extension of Sp(W ) by {±1}. Actually
there exists a unique such (open) subgroup in the metaplectic group. Regardless of
what F may be, we use brackets to define the derived group

ŜpA
ψA,V A

A
(W )= [S̃pA

ψA,V A
A
(W ), S̃pA

ψA,V A
A
(W )].

Recall that φ̃C canonically identifies S̃pA
ψA,V A

A
(W ) with its image in S̃pC

ψC,V C
A
(W ).

It also induces, by restriction, a map between the respective derived groups.

Proposition 4.3. One has the following properties:

(a) The map σA is continuous and S̃pA
ψA,V A

A
(W ) is the fibre product in the category

of topological groups of the continuous morphisms RED and σA.

(b) The representation ωψA,V A
A

: S̃pA
ψA,V A

A
(W ) → GLA(V A

A ) is smooth as this
group morphism is the second projection of the fibre product.

(c) The group S̃pA
ψA,V A

A
(W ) is open in S̃pC

ψC,V C
A
(W ) and therefore the metaplectic

group over A is locally profinite.
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(d) The map φ̃C restricts to an isomorphism ŜpA
ψA,V A

A
(W ) ≃ ŜpC

ψC,V C
A
(W ) and

when:

(i) F is finite, it is the symplectic group except when F = F3 and dim(W )= 2.
(ii) F is local nonarchimedean, it is the reduced metaplectic group.

Proof. (a) The map σA is continuous, because σC itself is, and one has

σA = φC ◦ σC

where φC : PGLA(V A
A )→ PGLC(V C

A ) is the continuous group morphism defined
from φC by passing to the quotient. The fibre product of σA and RED in the category
of topological groups defines a topological subgroup of Sp(W )× GLA(V A

A ). In
particular, this fibre product is, as a group, the metaplectic group over A.

(b) The projection maps are continuous by definition of the fibre product.

(c) As a direct consequence of φ̃C being an open embedding, the group S̃pA
ψA,V A

A
(W )

is an open subgroup of the metaplectic group, which is locally profinite. Hence it is
a closed subgroup, so the subspace topology is the locally profinite one.

(d) The isomorphism follows considering the first projection pA : ŜpA
ψA,V A

A
(W )→

Sp(W ). This map is surjective, and so is pC. In addition one has the equality

pC ◦ φ̃C = pA.

Passing to derived groups yields

D(pC) : ŜpC

ψC,V C
A
(W )→ [Sp(W ),Sp(W )].

It is an isomorphism in case (i) and a surjective morphism of kernel {±1} for (ii).
But through the identification given by φ̃C, one has the inclusion

ŜpA
ψA,V A

A
(W )⊂ ŜpC

ψC,V C
A
(W )

and D(pC) ◦ φ̃C is surjective. In case (i), the previous inclusion is an equality and
except in the exceptional case mentioned the symplectic group is perfect. In case
(ii), this implies the following inequality for the index of the quotient

[ŜpC

ψC,V C
A
(W ) : ŜpA

ψA,V A
A
(W )] ≤ 2.

It must be 2 as the reduced metaplectic group cannot be split over Sp(W ). □

Over B. Call S̃pB
ψB,V B

A
(W ) the metaplectic group over B and define its derived

group

ŜpB
ψB,V B

A
(W )= [S̃pB

ψB,V B
A
(W ), S̃pB

ψB,V B
A
(W )].
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As above, the morphism of central extensions of Theorem 3.4

φ̃B : (g,M) ∈ S̃pA
ψA,V A

A
(W )→ (g, φB(M)) ∈ S̃pB

ψB,V B
A
(W )

restricts to a morphism at the level of derived groups. As φB is continuous, it defines
a continuous map φB : PGLA(V A

A )→ PGLB(V B
A ) at the level of quotients. Then

one has the equality σB = φB ◦ σA and one deduces from Proposition 4.3 that σB is
continuous.

Proposition 4.4. One has the following properties:

(a) The group S̃pB
ψB,V B

A
(W ) is the fibre product in the category of topological group

of the continuous morphisms σB and RED, its topology being the subspace
topology in Sp(W )× GLB(V B

A ).

(b) The representation ωψB,V B
A

: S̃pB
ψB,V B

A
(W )→ GLB(V B

A ) is smooth as this group
morphism is the second projection of the fibre product;

(c) The map φ̃B : (g,M)∈ S̃pA
ψA,V A

A
(W )→ (g, φB(M))∈ S̃pB

ψB,V B
A
(W ) is an open

continuous map and therefore the metaplectic group over B is locally profinite.

(d) Considering derived groups, the map φ̃B restricts to:
(i) A surjection ŜpA

ψA,V A
A
(W )→ ŜpB

ψB,V B
A
(W ) of kernel {±1} and image iso-

morphic to Sp(W ) if F is local nonarchimedean and char(B)= 2.
(ii) An isomorphism ŜpA

ψA,V A
A
(W )≃ ŜpB

ψB,V B
A
(W ) otherwise.

Proof. (a) and (b) Obvious from the definition of fibre products and projections.

(c) This needs some explanation however. Once again when F is finite, the topol-
ogy is discrete and the statement trivially holds. Suppose now that F is local
nonarchimedean. As a first observation, remark that the equality φB ◦ωψA,V A

A
=

ωψB,V B
A

◦ φ̃B holds.
Let v ∈ V A

A such that v⊗A 1 ∈ V B
A is nonzero. Because of the previous equality,

the stabiliser of v ⊗A 1 will be contained in the image of φ̃B as a result of the
following two facts. First, one has

ωψB,V B
A
(g, λM)(v⊗A 1)= λM(v⊗A 1)

for all (g,M) ∈ S̃pB
ψB,V B

A
(W ) and λ ∈ B×. Not much has been said so far. Second,

the surjectivity of pA and pB onto Sp(W ) implies that for all (g,M)∈ S̃pB
ψB,V B

A
(W ),

there exists λ ∈ B× such that (g, λM) is in the image of φ̃B.
Combining the previous two facts, the stabiliser of v⊗A 1 must be included in

the image of φ̃B. So the image of φ̃B is open because the stabiliser of any element
is open as a consequence of ωψB,V B

A
being smooth.

The image of φ̃B is an open subgroup in the metaplectic group over B. If this
subgroup is a locally profinite group, then the metaplectic group will be too. Using
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Theorem 3.4, one has an exact sequence

1 → Ker(φ̃B)→ S̃pA
ψA,V A

A
(W )

φ̃B
−→ Im(φ̃B)→ 1.

where Ker(φ̃B)= {(IdW , λ IdV A
A
) | λ∈A× and ϕ(λ)= 1} ≃ Ker(A×

→ ϕ(A)×) is a
discrete subgroup, so a closed subgroup. Thanks to Proposition 4.3 the metaplectic
group over A is locally profinite, so its quotient by the previous discrete subgroup
is locally profinite and φ̃B factors through it, inducing an homeomorphism of
topological groups.

(d) First of all, there is an induced map between derived subgroups

D(φ̃B) : ŜpA
ψA,V A

A
(W )→ ŜpB

ψB,V B
A
(W ).

But pB ◦ D(φ̃B) = D(pA) is a surjective map ŜpA
ψA,V A

A
(W ) → [Sp(W ),Sp(W )],

which is an isomorphism in case (i) and has kernel {±1} in case (ii) according to
Proposition 4.3. Therefore

S̃pB
ψB,V B

A
(W )/ Im(D(φ̃B))

is abelian. By minimality of the derived group, we must have Im(D(φ̃B)) =

ŜpB
ψB,V B

A
(W ). Furthermore

Ker(D(φ̃B))= {(IdW , λ IdV A
A
) | λ ∈ A× and ϕ(λ)= 1} ∩ ŜpA

ψA,V A
A
(W ).

When F is finite, the group Ker(D(φ̃B))= {(IdW , IdV A
A
)} is trivial. When F is

local nonarchimedean, it is included in {(IdW , ϵ IdV A
A
) | ϵ ∈ {±1}} ≃ {±1}. But this

kernel is nontrivial if and only if ϕ(−1) = ϕ(1) = 1 in B, that is ϕ(2) = 0, and
char(B)= 2. □

Definition 4.5. Let φ̂B :ŜpA
ψA,V A

A
(W )→S̃pB

ψB,V B
A
(W ) be the restriction φ̃B|ŜpA

ψA,VA
A
(W )

.

This map will be used later on. Proposition 4.4 has already given some key
properties of this map: just to mention a few, it is an open map and its kernel is
explicit.

4B. Reduced cocycle for A-algebras. One deduces from Proposition 4.4 that the
metaplectic group over B either:

• Contains the symplectic group as a subgroup, then char(B)= 2 or F is finite.

• Does not contain the symplectic group as a subgroup, in which case F is
local nonarchimedean and char(B) ̸= 2, and its derived group is canonically
isomorphic to the so-called reduced metaplectic group.
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In practice, it is important to describe the explicit group law of the metaplectic
group for applications. In the first case for instance, it is useful to have a precise
formula for the embedding of the symplectic group inside the (split) metaplectic
group. In the second case, there are important subgroups that are known to be
split, such as inverse images of compact open subgroups, parabolic subgroups, Levi
subgroups and unipotent radicals. However, there is a priori no guarantee that these
groups are split in the reduced metaplectic even though they may be split in the
metaplectic group. In order to do computations, one needs to express the cocycle
which controls the group law of the reduced metaplectic group. This cocycle usually
involves the so-called Weil factor, which is ill-defined when the A-algebra B does
not contain a square root of q . This is the reason why we develop a nonnormalised
version of it.

4B1. Nonnormalised Weil factor over B. The definition of the nonnormalised Weil
factor, achieved over fields in [Trias 2020, Section 1.1], generalises to A-algebras
as explained below. Let X be a vector space over F of finite dimension m. Let µA

be an invertible Haar measure of X with values in A.

Proposition 4.6. Let Q be a nondegenerate quadratic form on X. Then there exists
a unique nonzero element �µA(ψA

◦ Q) in A such that for all f ∈ C∞
c (X,A), one

has∫
X

∫
X

f (y − x)ψA(Q(x)) dµA(x)dµA(y)=�µA(ψA
◦ Q)

∫
X

f (x) dµA(x).

For any sufficiently small open compact subgroup K in X , the condition for small-
ness being “ψA(Q(u))= 1 for all u ∈ K ”, this factor explicitly reads

�µA(ψA
◦ Q)=

∑
x̄∈K ′/K

ψA(Q(x̄))

where K ′
= {y ∈ X | ∀u ∈ K , ψA(Q(y − u) − Q(y)) = 1} is a compact open

subgroup too.

Proof. The existence of such an element �µA(ψA
◦ Q) comes from the definition

of the nonnormalised Weil factor over fields and from computation, as examined
below.

Indeed, the ring A is naturally contained in its field of fractions K, and the
measure µA can be thought of as having values in K. So there exists [Trias 2020,
Proposition 1.2] a nonzero element �µA(ψA

◦ Q) in K, which achieves the first
equality of the statement. A direct computation when f = 1K and ψA(Q(K ))= 1
gives ∫

X
1K (y − x)ψA(Q(x)) dµA(x)= ψA(Q(y))µA(K )× 1K ′(y)
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where one easily checks from the definition that K ′ is a compact open subgroup
of X . In addition it contains K . Applying µA to the previous equality leads to

�µA(ψA
◦ Q)×µA(1K )= vol(K )

∑
x̄∈K ′/K

ψA(Q(x̄))

where µA(1K )= vol(K )∈A× because µ is invertible, resulting in the last equality.
□

Let now µ be a Haar measure of X with values in B. Denote λµ the unique
element in B such that µ = λµ × µB, where µB

= ϕ ◦ µA is an invertible Haar
measure. Applying ϕ to the equalities in the previous proposition yields:

Corollary 4.7. Let Q be a nondegenerate quadratic form on X. Then there exists a
unique element �µ(ψB

◦ Q) in B such that for all f ∈ C∞
c (X,B), one has∫

X

∫
X

f (y − x)ψB(Q(x)) dµ(x) dµ(y)=�µ(ψ
B

◦ Q)
∫

X
f (x) dµ(x).

Furthermore,
�µ(ψ

B
◦ Q)= λµ ×ϕ(�µA(ψA

◦ Q)).

When Q is a quadratic form on X , one denotes rad(Q) its radical. Observe
that Q is nondegenerate if and only if rad(Q)= 0. The nondegenerate quadratic
form Qnd associated to Q is the nondegenerate quadratic form induced by Q on
X/ rad(Q).

Definition 4.8. Let Q be a quadratic form on X . Let µ be Haar measure of
X/ rad(Q) with values in B. The nonnormalised Weil factor is defined by:

• �µ(ψ
B

◦ Q) := µ({0}) if Q is the zero quadratic form.

• �µ(ψ
B

◦ Q) :=�µ(ψ
B

◦ Qnd) otherwise.

Lemma 4.9. One has
�µA(ψA

◦ Q) ∈ A×.

In particular for any invertible Haar measure µ with values in B

�µ(ψ
B

◦ Q) ∈ B×.

Proof. Let K→C be an embedding of K into C and ϕC its restriction to A. The factor
�µA(ψA

◦ Q) can be thought of as the factor �µC(ψC
◦ Q)= ϕC(�µA(ψA

◦ Q))
where µC

= ϕC ◦µA is an invertible Haar measure. Then point (f) of [Trias 2020,
Proposition 1.5] gives

�µC(ψC
◦ Q)= ωψC(ψC

◦ Q)× |ρ|
1/2
µC
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where ωψC(ψC
◦ Q) is an eigth root of unity and |ρ|µC = µC(K )(q1/2)k , with K a

compact open subgroup of X , a square root q1/2 of q in C and an integer k ∈ Z. So

�µC(ψC
◦ Q)8 = (µC(K ))8q4k .

Therefore �µA(ψA
◦ Q)8 = (µA(K ))8q4k

∈ A× because ϕC is injective and Q-
linear, implying the result about the factor being invertible. Hence the second
equality results from applying ϕ and Corollary 4.7, given the fact that λµ ∈ B×. □

Define for a in F× the quadratic form Qa : x ∈ F 7→ ax2
∈ F . Then the factor

�A
a,b =

�µA(ψA
◦ Qa)

�µA(ψA ◦ Qb)
∈ A×

does not depend on the choice of the invertible Haar measure µA, as the notation
suggests. One can define �B

a,b in the obvious way, either as a quotient of two
nonnormalised Weil factors or as the image of the previous using the map ϕ.

4B2. Section ςB giving the cocycle. Let X be a lagrangian of W . In particular this
provides an instance of a self-dual subgroup in W . A nice section ςA

: Sp(W )→

S̃pA
ψA,V A

X
(W ) of pA is defined below. It is nice in the sense that it will give the

explicit group law in the metaplectic group over A.
First of all, observe that, using the notation of Section 3, any section ς of pA is

given by a family (µg)g∈Sp(W ) of measures where µg is an invertible measure of
gX ∩ X\X . Namely it reads ς : g 7→ (g, IgX,X,µg,0 ◦ Ig). One defines the section
ςA mentioned above in the following way. The stabiliser P(X) of X in Sp(W ) is a
maximal parabolic subgroup. For g ∈ Sp(W ), let µg be the invertible measure on
gX ∩ X\X defined by

µg =�A
1,detX (p1 p2)

×φ1 ·µA
w j

where:

• (w j ) j=0,...,m is a system of representatives in Sp(W ) for P(X)\ Sp(W )/P(X).

• The element g = p1w j p2 ∈ P(X)w j P(X) with p1 and p2 in P(X).

• detX (p)= detF (p|X ) where p|X ∈ GL(X)≃ GLm(F).

• gX ∩ X\X
φ1
≃ w j X ∩ X\X is induced by x ∈ X 7→ p−1

1 x ∈ w j X ∩ X\X .

• Q j (x)=
1
2⟨w j x, x⟩ is the nondegenerate quadratic form on w j X ∩ X\X .

• For any invertible µ, set µA
w j

= �µ(ψ
A

◦ Q j )
−1µ which does not depend

on µ.

See [Trias 2020, Section 3.5] to get a more detailed explanation about the previous
definitions. Exclude the exceptional case F = F3 and dim(W )= 2 from now on.
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Proposition 4.10. With the previous choice of µg, the section

ςA
: g ∈ Sp(W ) 7→ (g, IgX,X,µg,0 ◦ Ig) ∈ S̃pA

ψA,V A
X
(W )

has values in ŜpA
ψA,V A

X
(W ), except in the exceptional case F = F3 and dim(W )= 2.

The 2-cocycle defined by this section

ĉA : (g1, g2) ∈ Sp(W )× Sp(W ) 7→ ςA(g1)ς
A(g2)ς

A(g1g2)
−1

∈ A×

is trivial when F is finite, and has image {±1} when F is local nonarchimedean.

Proof. Consider an embedding K → C and denote ϕC its restriction to A. The map

φ̃C : (g,M) ∈ S̃pA
ψA,V A

A
(W )→ (g, φC(M)) ∈ S̃pC

ψC,V C
A
(W )

and the compatibility φC(IgX,X,µA,0)= IgX,X,µC,0 from Corollary 2.8 where µC
=

ϕC ◦µA, leads to

φ̃C ◦ ςA(g)= (g, IgX,X,ϕC◦µg,0 ◦ Ig).

But the measure ϕC ◦µg above is the one defined in [Trias 2020, Lemma 3.23],
and according to [loc. cit., Theorem 3.27], the map φ̃C ◦ ςA is a section of pC

whose associated cocycle is trivial when F is finite, and has values in the reduced
metaplectic group when F is local nonarchimedean. The associated cocycle ĉC

is trivial when F is finite and has image {±1} when F is local nonarchimedean.
Using point (d) of Proposition 4.3, the image of ςA lies in ŜpA

ψA,V A
X
(W ), except in

the exceptional case F = F3 and dim(W )= 2. In any case, the map ςA is injective
so this defines a section of pA. In particular, it is a group morphism when F is
finite as a result of the cocycle ĉC being trivial. □

One easily deduces from the previous proposition and Proposition 4.4, the
corollary:

Corollary 4.11. The section ςB
= φ̃B ◦ ςA has values in ŜpB

ψB,V B
X
(W ), except in

the exceptional case F = F3 and dim(W )= 2. The 2-cocycle defined by this section

ĉB : (g1, g2) ∈ Sp(W )× Sp(W ) 7→ ςB(g1)ς
B(g2)ς

B(g1g2)
−1

∈ B×

5 is trivial when F is finite or char(B)= 2, and has image {±1} otherwise.

Remark 4.12. In the exceptional case, the section ςA, resp. ςB, can still be
defined. However the derived group [Sp(W ),Sp(W )] is a strict subgroup of the
symplectic group Sp(W ). So the image of the previous sections, which are again
group morphisms, is just a subgroup of the metaplectic group over A, resp. over B,
that is isomorphic to Sp(W ).
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5. Families of Weil representations

Consider the map φ̂B : ŜpA
ψA,V A

A
(W )→ S̃pB

ψB,V B
A
(W ) of Definition 4.5. The excep-

tional case F = F3 and dim(W )= 2 needs separate treatment, which will be done
as a quick remark, so we exclude it from now on.

Let H be a closed subgroup of Sp(W ) and set

H̃A
= p−1

A (H) and H̃B
= p−1

B (H).

Denote by ĤA the intersection of H̃A and ŜpA
ψA,V A

A
(W ). Recall that ϕ : A → B is

the structure morphism of the A-algebra B and consider the categories

Rep′

B(Ĥ
A)= {(π, V ) ∈ RepB(Ĥ

A) | π((IdW , ϵ IdV A
A
))= ϕ(ϵ) IdV for ϵ ∈ {±1}}

and

Rep′

B(H̃
B)= {(π, V ) ∈ RepB(H̃

B) | π((IdW , λ IdV B
A
))= λ IdV for λ ∈ B×

}.

Proposition 5.1. The functor

(π, V ) ∈ Rep′

B(H̃
B) 7→ (π ◦ φ̂B, V ) ∈ Rep′

B(Ĥ
A)

defines an equivalence of categories.

Proof. This map is a functor and its inverse is given by the extension of scalars
to B×, that is for any (π ′, V ′) ∈ Rep′

B(Ĥ
A), the representation

π ′′
: (ĥ, λ) ∈ ĤA

×B×
7→ λπ ′(ĥ) ∈ GLB(V ′)

factorises as a representation of H̃B. Indeed, the surjective group morphism

(ĥ, λ) ∈ ĤA
×B×

→ φ̂B(ĥ)× (IdW , λ IdV B
A
) ∈ H̃B

is an isomorphism when F is finite and has kernel {((IdW , ϵ IdV A
A
), ϕ(ϵ)) | ϵ ∈{±1}}

when F is local nonarchimedean. But Ker(π ′′) contains the kernel of the surjective
map above, that is it factorises as claimed. □

Remark 5.2. The reason for proving such a result is to consider the “same” group
for any A -algebra B, which is particularly convenient when looking at scalar
extension for representations. For instance, the representation ωψA,V A

A
⊗A B ∈

Rep′
B(Ĥ

A), which is the scalar extension of ωψA,V A
A

∈ Rep′
A(Ĥ

A), should be the
“same” — the proposition below making this “same” precise — representation as
ωψB,V B

A
∈ Rep′

B(H̃
B).

Remark 5.3. In the exceptional case however, because the symplectic group Sp(W )

is isomorphic to SL2(F3), the derived group ŜpA
ψA,V A

A
(W ) is a strict subgroup of the

symplectic group. One needs to replace φ̂B by any morphism that embeds Sp(W )
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in the metaplectic group over A, composed with φ̃B. One can take for example the
embeddings ςA and ςB according to Remark 4.12.

From the previous proposition and Theorem 3.4, the following compatibility
holds:

Proposition 5.4. The representations ωψA,V A
A

⊗A B and ωψB,V B
A

are isomorphic, in
the sense that the canonical identification V A

A ⊗A B ≃ V B
A of Corollary 2.6 induces

an isomorphism in Rep′
B(Ĥ

A), namely

(ωψA,V A
A

⊗A B, V A
A ⊗A B)≃ (ωψB,V B

A
◦ φ̂B, V B

A ).

Of course when R is a field endowed with an A-algebra structure, the representa-
tion (ωψ R,V R

A
, V R

A ) is the modular Weil representation on W associated to ψ R and
V R

A , in the way they are defined in [Mœglin et al. 1987, Chapter 2, II] for R = C

and in [Trias 2020, Section 3] for more general fields. Recall that in this situation
V R

A is the metaplectic representation associated to ψ R .

Dual pairs. When (H1, H2) is a dual pair in Sp(W ), one may fix a model for the
Weil representation and “embed” the lift of the dual pairs in the derived subgroup
of the metaplectic group over A through the natural multiplication map. One can
also use the lifts in the metaplectic group over A instead of the derived subgroup.
This means looking at the representation

ωψB,V B
A

◦ φ̂B|Ĥ1
A

×Ĥ2
A ∈ RepB(Ĥ1

A
× Ĥ2

A
)

where the restriction Ĥ1
A

× Ĥ2
A

→ ŜpA
ψA,V A

A
(W ) is achieved using the natural

multiplication map. Of course, when these lifts of dual pairs are split, one can
always compose with their splittings to get representations of H1 or H2 themselves.
It may happen that splittings do not exist in the derived subgroup even if they do
exist in the metaplectic group itself [Mœglin et al. 1987, Chapter 2, Remark II.9]
and [Trias 2020, Section 4]. So one may switch hats for tildes depending on the
dual pair one wants to consider.

6. Features of the pair (GL1(F),GL1(F))

Suppose F is a local nonarchimedean field. Let W be a symplectic space over F of
dimension 2 and W = X + Y be a complete polarisation. For a ∈ F×, define ma to
be the unique endomorphism in Sp(W ) such that in the previous basis:

ma =

[
a 0
0 a−1

]
The pair (H1, H2) = (F×, F×) is defined by (a1, a2) 7→ ma1ma−1

2
. Up to some

smooth characters of H1 and H2, the Weil representation ωH1,H2 is the “geometric”
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representation (ρ,C∞
c (F,B)) where H1 and H2 act respectively on the left and on

the right on the locally profinite space F . For f ∈ C∞
c (F,B) and a1, a2 ∈ F×, it

reads
ρ(a1, a2) · f : x ∈ F 7→ f (a−1

1 xa2) ∈ B.

6A. Level 0 part. The category RepB(F
×) is decomposed as a product of cat-

egories
∏

k∈N Repk
B(F

×) where the index k is also known as the level. In this
picture, the level 0 subcategory has the most direct description as it corresponds to
representations with trivial action of the biggest pro-p-subgroup K of F× which
is, after choosing a uniformiser ϖF of F , the group K = 1 +ϖFOF . In addi-
tion the isomorphism (k, u) ∈ Z × O×

F 7→ ϖ k
F u ∈ F× induces an isomorphism

F×/K ≃ Z × (Z/(q − 1)Z). Suppose from now on a choice of uniformiser
ϖF is made as well as a choice of a primitive (q−1)-root of unity ζq−1 in F .
Hence in the free part Z is generated by ϖF and the torsion part Z/(q − 1)Z is
generated by ζq−1. So the group algebra B[F×/K ] is isomorphic to the B-algebra
B[X±1, Z ]/(Zq−1

− 1), where ϖF corresponds to X and ζq−1 to Z .

The level 0 category. As we are only interested in the level 0 part, we shall only
consider, for any V ∈ RepB(F

×), the direct factor representation V K made of
K -invariant vectors. As for the representation (ρl,C∞

c (F,B)) given by the left
F×-action, this level 0 part is the subspace of bi-K -invariant functions

C∞

c (F,B)
K

= { f ∈ C∞

c (F,B) | ∀x ∈ F and k ∈ K , f (xk)= f (kx)= f (x)}.

In addition, the centre z0 of the level 0 category Rep0
B(F

×) is, because the group F×

is abelian, equal to the endomorphism ring of a minimal progenerator of Rep0
B(F

×).
Let (1K ,B) be the free module B of rank 1 with trivial K -action. Then indF×

K (1K )

is known to be a progenerator of Rep0
B(F

×). As a space of functions this also is
C∞

c (F
×/K ,B), which is a free module of rank 1 over B[F×/K ] generated by the

characteristic function 1K . Therefore

EndF×(indF×

K (1K ))= EndB[F×/K ](indF×

K (1K ))≃ B[F×/K ]

thanks to indF×

K (1K ) being free of rank 1. So one can consider that the centre z0 is
B[F×/K ] ≃ B[X±1, Z ]/(Zq−1

− 1). Eventually, the level 0 category is equivalent
to the category of modules over the latter commutative ring.

6A1. Specialisation using the centre.

Morphism of the centre. Let C be a commutative B-algebra. Let η∈HomB - alg(z
0,C)

be a morphism of B-algebras. Of course η naturally endows C with a z0-algebra
structure. In addition, any representation in Rep0

B(F
×) is canonically endowed with

a z0-module structure. By definition, this z0-module structure commutes with the
F×-action.
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Definition 6.1. For any V ∈ Rep0
B(F

×), one defines the representation

Vη = V ⊗z0 η ∈ RepC(F
×).

Examples. Recall z0
= B[X±1, Z ]/(Zq−1

− 1). The following are easy claims:

• When B is a field and χ : F×/K → B× is a character, the B-algebra morphism

ηχ : P ∈ B[X±1, Z ]/(Zq−1
− 1) 7→ P(χ(ϖF ), χ(ζ )) ∈ B

provides the biggest χ -isotypic quotient Vηχ = Vχ . Furthermore

Ker(ηχ )= (X −χ(ϖF ), Z −χ(ζ )).

• When ϕ : B → B′ is a morphism of B-algebras, the B-algebra morphism

ηϕ : P ∈ B[X±1, Z ]/(Zq−1
− 1)→ ϕ(P) ∈ B′

[X±1, Z ]/(Zq−1
− 1)

provides the extension of scalars Vηϕ = V ⊗B B′. Furthermore

Ker(ηϕ)= Ker(ϕ) · z0.

• Let χ be a character with values in B×, let m a maximal ideal in B, and denote
by ϕm the quotient morphism B → B/m and χm = ϕm ◦χ , then

(Vηχ )ηϕm = (Vηϕm )ηχm i.e., Vηχ ⊗B (B/m)= (V ⊗B (B/m))χm .

Therefore the representation Vηχ may be viewed as a family of representations
specialising at maximal ideals to biggest isotypic quotients, whereas it is less
clear how direct methods would give a good definition of an isotypic quotient
over a ring.

Remark 6.2. Unlike the construction of the biggest isotypic quotient for irreducible
representations with coefficients in a field, the natural map V 7→ Vη is not surjective
in general. Of course if η is surjective, the previous map is a quotient map.

6A2. Isotypic families of the Weil representation.

Level 0 Weil representation. Instead of considering representations with coeffi-
cients over different rings, this approach benefits from a greater flexibility when
dealing with the level 0 Weil representation C∞

c (F,B)K . For example in the second
situation with ϕ ∈ HomB−alg(B,B′), and thanks to the description as spaces of
functions, one has

(C∞

c (F,B)
K )ηϕ = C∞

c (F,B
′)K .



UNIVERSAL WEIL MODULE 397

Family for the trivial representation. Set V = C∞
c (F,B)K and V0 = C∞

c (F
×,B)K .

Recall there is an exact sequence of representations, that is given by the function
restriction to the closed set {0} in F , namely

0 → V0 → V → 1B
F× → 0

where 1BF× is a free B-module of rank 1 endowed with the trivial F×-action. Consider
now the ideal I1 = (X − 1, Z − 1) in z0 and the morphism η1 : z0

→ z0/I1. As
(1B

F×)η1 = 1B
F× , and V0 is free of rank 1 over z0, it induces an exact sequence

1B
F× → Vη1 → 1B

F× → 0.

The kernel of the map B → Vη1 is (q − 1)B because

((X − 1)V + (Z − 1)V )∩ V0 = (X − 1)V0 + (Z − 1)V0 + (q − 1)V0.

So the following sequence is exact:

0 → 1B/(q−1)B
F× → Vη1 → 1B

F× → 0.

Denoting by β the image of 1OF in Vη1 , the above sequence splits as b ∈ B 7→

b ·α ∈ Vη1 is a section of Vη1 → 1B
F× . So one has Vη1 ≃ 1B/(q−1)B

F× ⊕ 1B
F× .

The family for (X − q, Z − 1). It does not coincide with the family for the trivial
representation, except at the nonbanal prime ideals. These are the prime ideals P
in B such that P ∩ Z is generated by a prime ℓ dividing q − 1. Denoting η the
character z0

→ z0/(X − q, Z − 1) and (χB,B) the character such that χB(ζ ) = 1
and χB(ϖF )= q, one similarly has

0 → χB → Vη → 1B/(q−1)B
F× → 0.

Indeed on the one hand (X−1)1BF×+(Z−1)1BF× = (1−q)1BF× so (1BF×)η=1B/(q−1)B
F× .

On the other hand V0 is z0-free so (V0)η = χB. Denote by α and β the images of
11+ϖFOF and 1OF in Vη. The following computation helps identifying the (q−1)-
torsion

(X − 1)β = (q − 1)α = (X − q)β + (1 − q)β = (q − 1)β.

Then λ ∈ B 7→ λ(β − α) ∈ Vη factorises as a section of Vη → 1B/(q−1)B
F× . As a

consequence, one has Vη ≃ 1B/(q−1)B
F× ⊕χB.

Remark 6.3. We interpret 1B/(q−1)B
F× as the greatest common quotient of 1BF× and χB.

More general families. One can look at any ideal in z0 to get more new families
of representations. For example, instead of only looking at characters with values
1 at ζ , one can look at irreducible factors Q of Zq−1

− 1 that are different from
Z − 1, and consider the ideal (P, Q) for an irreducible polynomial P in B[X±1

].
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Remark 6.4. Even when B is an integral domain, the previous classes of ideals
(P, Q) are not necessarily prime ideals in z0. The irreducibility has therefore
to be considered over the field extension Frac(B)[Z ]/(Q) of Frac(B) i.e., P is
irreducible as a polynomial over this bigger field. Furthermore, letting P be a
nonunitary polynomial allows to consider characters with coefficients in Frac(B)
e.g., Zℓ[X±1

]/(ℓX − 1)= Qℓ when B = Zℓ.

6B. Positive level part. Let k ∈ N∗. As a first observation, the level k parts of
the representations C∞

c (F,B) and C∞
c (F

×,B) are equal. Therefore the problem
reduces to understand the level k part of the regular representation. The same
techniques as in the previous paragraph apply once the centre zk of the category
has been made explicit. The study will not be developed in the present work for
the sake of shortness. But in order to flag some differences, here are some remarks
below:

• If B does not have enough p-power roots of unity, the situation is more
complicated as no characters of level k may exist, that is there does not exist
a group morphism χ : 1 +ϖFOF → B× such that 1 +ϖ k+1

F OF ⊂ Ker(χ)⊊
1 +ϖ k

FOF .

• Provided B has enough p-power roots of unity, the set of characters

Chark
B = {χ : 1 +ϖFOF → B×

| χ ∈ Repk
B(1 +ϖFOF )}

is not empty and decomposes the category Repk
B(F

×) as product of categories∏
χ∈Chark

B
RepχB(F

×), where each category factor is equivalent to Rep0
B(F

×).

In the first situation, the situation may be quite complicated to write down, though
this first situation only occurs when F has positive characteristic. Indeed, A is
isomorphic to Z

[ 1
p , ζp

]
in this case, whereas it is Z

[ 1
p , ζp∞

]
for characteristic

zero F . In the event of B having enough p-power roots of unity, one can reduce
the situation to the level 0 part of C∞

c (F
×,B) as it is isomorphic to the χ-part of

C∞
c (F

×,B) for χ ∈ Chark
B. This latter has been studied in the previous section.
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