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CONSTRUCTING KNOTS
WITH SPECIFIED GEOMETRIC LIMITS

URS FUCHS, JESSICA S. PURCELL AND JOHN STEWART

It is known that any tame hyperbolic 3-manifold with infinite volume and
a single end is the geometric limit of a sequence of finite volume hyperbolic
knot complements. Purcell and Souto showed that if the original manifold
embeds in the 3-sphere, then such knots can be taken to lie in the 3-sphere.
However, their proof was nonconstructive; no examples were produced.
In this paper, we give a constructive proof in the geometrically finite case.
That is, given a geometrically finite, tame hyperbolic 3-manifold with one
end, we build an explicit family of knots whose complements converge to
it geometrically. Our knots lie in the (topological) double of the original
manifold. The construction generalises the class of fully augmented links to
a Kleinian groups setting.

1. Introduction

In this paper, we construct finite volume hyperbolic 3-manifolds that converge
geometrically to infinite volume ones. In 2010, Purcell and Souto proved that every
tame infinite volume hyperbolic 3-manifold with a single end that embeds in S3 is
the geometric limit of complements of knots in S3 [41]. However, that was purely
an existence result; the proof shed very little light on what the knots might look
like. This paper is much more constructive. Starting with a tame, infinite volume
hyperbolic 3-manifold M with a single end, we give an algorithm to construct a
sequence of knots that converge geometrically to M — with a cost. We can no
longer ensure that our knot complements lie in S3.

The methods are to generalise the highly geometric fully augmented links in
S3 to lie on surfaces other than S2

⊂ S3. This will likely be of interest in its
own right. Since their appearance in the appendix by Agol and Thurston in a
paper of Lackenby [27], fully augmented links have contributed a great deal to our
understanding of the geometry of many knot and link complements with diagrams
that project to S2. For example they have been used to bound volumes [16] and
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cusp shapes [38], give information on essential surfaces [8], crosscap number [22],
and short geodesics [34].

Such links on S2 are amenable to study via hyperbolic geometry because their
complements are hyperbolic and contain a pair of totally geodesic surfaces meeting at
right angles: a projection surface, coloured white, and a disconnected shaded surface
consisting of many 3-punctured spheres; see [39]. While essential 3-punctured
spheres are geodesic in any hyperbolic 3-manifold, the white projection surface
does not remain geodesic when generalising to links on surfaces other than S2.
However, using machinery from circle packings and Kleinian groups, we are able
to construct links with a geometry similar to the projection surface. We note other
very recent generalisations of fully augmented links to lie in thickened surfaces,
due to Adams et al. [3], Kwon [25], and Kwon and Tham [26]. We work within a
different manifold, as follows:

Given a compact 3-manifold M with a single boundary component, the double
of M , denoted D(M) is the closed manifold obtained by gluing two copies of M
by the identity along ∂ M. The first main result of this paper is the following:

Theorem 1.1. Let M be a geometrically finite hyperbolic 3-manifold of infinite
volume that is homeomorphic to the interior of a compact manifold M with a
single boundary component. Then there exists a sequence Mn of finite volume
hyperbolic manifolds that are knot complements in D(M), such that Mn converges
geometrically to M.

Moreover, the method is constructive: we construct for p ∈ M and any R > 0
and ϵ > 0 a fully augmented link complement Mϵ,R in D(M) with a basepoint pϵ,R

such that the metric ball B(pϵ,R, R) ⊂ Mϵ,R is (1 + ϵ)-bilipschitz to the metric ball
B(p, R) ⊂ M. Performing sufficiently high Dehn filling along the crossing circles
of the fully augmented link yields a knot complement, where the Dehn filling slopes
can also be determined effectively, so that the resulting knot complement contains a
metric ball that is (1 + ϵ)2-bilipschitz to B(p, R).

We prove Theorem 1.1 by first proving the theorem in the convex cocompact
case. In Section 4, we extend the result to the geometrically finite case.

The density theorem states that any hyperbolic 3-manifold M with finitely
generated fundamental group is the algebraic limit of a sequence of geometrically
finite hyperbolic 3-manifolds; see Ohshika [36] and Namazi and Souto [35]. Namazi
and Souto proved a strong version of this theorem [35, Corollary 12.3]: that in
fact, the sequence can be chosen such that M is also the geometric limit. Thus an
immediate corollary of Theorem 1.1 is the following:

Corollary 1.2. Let M be a hyperbolic 3-manifold of infinite volume which is
homeomorphic to the interior of a compact manifold M with a single boundary
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component. Then there exists a sequence Mn of finite volume hyperbolic manifolds
that are knot complements in D(M), such that Mn converges geometrically to M.

2. Background

In this section we review definitions and results that we will need for the construc-
tion, particularly terminology and results in Kleinian groups and their relation to
hyperbolic 3-manifolds. Further details are contained, for example, in the books
[30] and [23].

2A. Kleinian groups. Recall that the ideal boundary of H3 is homeomorphic to S2,
which can be viewed as the Riemann sphere, and that the group of isometries
Isom(H3) corresponds to the group of Möbius transformations acting on the bound-
ary. We mostly consider orientation preserving Möbius transformations here, which
may be viewed as elements in PSL(2, C).

A discrete subgroup of PSL(2, C) is called a Kleinian group.

Definition 2.1. A point x ∈ S2 is a limit point of a Kleinian group 0 if there exists
a point y ∈ S2 such that limn→∞ An(y) = x for an infinite sequence of distinct
elements An ∈ 0. The limit set of 0 is 3(0) = {x ∈ S2

| x is a limit point of 0}.
The domain of discontinuity is the open set �(0) = S2

\ 3(0). This set is
sometimes called the ordinary set or regular set.

A Kleinian group 0 is often studied by its quotient space:

M(0) = (H3
∪ �(0))/0.

If 0 is torsion-free, then M(0) is an oriented manifold with possibly empty boundary
∂M(0) = �(0)/0. The interior int(M(0)) = H3/0 has a complete hyperbolic
structure, since its universal cover is H3. The fundamental group of int(M(0)) is
isomorphic to 0. By Ahlfors’ finiteness theorem [4], if 0 is a finitely generated
torsion-free Kleinian group, then �(0)/0 is the union of a finite number of compact
Riemann surfaces with at most a finite number of points removed. The boundary
∂M(0) = �(0)/0 endowed with this conformal structure is called the conformal
boundary of M(0). The Teichmüller space T(∂M(0)) is the product the Teichmüller
spaces T(Si ) where the Si form the components of ∂M(0).

In fact, the conformal boundary ∂M(0) has a projective structure, since it is
locally modelled on (Ĉ, PSL(2, C)). A (projective) circle on ∂M(0) is a homotopi-
cally trivial, embedded S1

⊂ ∂M(0) whose lifts to �(0) are circles on S2.

Definition 2.2. Let 0 be a Kleinian group and let D be an open disk in �(0) whose
boundary is a circle C on S2. The circle C determines a hyperbolic plane in H3.
Denote by H(D) ⊂ H3 the closed half-space bounded by this plane that meets D.
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The convex hull of 3 is the relatively closed set

CH(0) = H3
−

⋃
D⊂�(0)

H(D).

The convex core of M(0) is the quotient

CC(0) = CH(0)/0 ⊂ int(M(0)).

Definition 2.3. A finitely generated Kleinian group 0 for which the convex core
CC(0) has finite volume is called geometrically finite.

If the action of 0 on CH(0) is cocompact, then 0 is said to be convex cocompact.
A hyperbolic 3-manifold is called geometrically finite (resp. convex cocompact),

if it is isometric to H3/0 for a geometrically finite (resp. convex cocompact) 0.

If 0 is convex cocompact and torsion-free, then it follows that ∂M(0) is a
(possibly disconnected) compact Riemann surface without punctures.

There are several equivalent definitions of a geometrically finite manifold in
3-dimensions; see Bowditch [9] for a discussion. For example, we will also use the
following, which follows from the proof in [9] that GF5 is equivalent to GF3, in
Section 4 of that paper:

Theorem 2.4 (Bowditch [9]). The torsion-free Kleinian group 0 is geometrically
finite if and only if there a finite sided fundamental domain F(0) ⊂ H3 for the action
of 0 on H3, with the sides of F(0) consisting of geodesic hyperplanes.

If CC(0) is compact, it must also have finite volume, and so convex cocompact
manifolds are geometrically finite. However, geometrically finite manifolds may also
contain cusps. Marden showed that a torsion-free Kleinian group 0 is geometrically
finite if and only if M(0) is compact outside of horoball neighbourhoods of finitely
many rank one and rank two cusps [28]. The rank one cusps correspond to pairs of
punctures on ∂M(0).

2B. The quasiconformal deformation space. Consider a finitely generated, dis-
crete subgroup 0 of Isom(H3) such that the normal subgroup (of index at most two)
0 := 0 ∩ PSL2(C) is torsion-free. A representation ρ : 0 → Isom(H3) is a quasi-
conformal deformation of 0, if there is a (orientation-preserving) K -quasiconformal
homeomorphism h : S2

→ S2 for some K ≥ 1, such that we have

ρ(γ ) = h∗(γ ) := h ◦ γ ◦ h−1
: S2

→ S2 for all γ ∈ 0.

(We shorten K -quasiconformal homeomorphism to K-qc homeomorphism below.)

Definition 2.5. The quasiconformal deformation space QC(0) of 0 is defined as

QC(0) := {ρ | ρ is a quasiconformal deformation of 0}/ PSL2(C).
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It can be endowed with a Teichmüller metric given by

dT ([ρ], [ρ ′
]) := inf{log K | ∃φ K-qc homeomorphism with ρ = φ ◦ ρ ′

◦ φ−1
}.

We will always endow QC(0) with the topology induced by this metric.

Now let 0 have index two in 0. Then the extension 0 ⊂ 0 amounts to an
orientation-reversing isometric involution σ on M(0), as follows: The space M(0)

is a possibly nonorientable orbifold with boundary ∂M(0). The orbifold M(0) can
be recovered as M(0)/σ . In particular, ∂M(0) is given by the quotient ∂M(0)/σ .
Conversely, the Riemann surface double of the Klein surface ∂M(0) yields ∂M(0)

identified by σ . Note that by passing to the Riemann surface double, we obtain
a continuous map j : T(∂M(0)) → T(∂M(0)) and that restricting gives a natural
inclusion map QC(0) → QC(0) for any 0 ⊂ 0.

The first part of the following theorem follows from work of Bers [7], Kra [24]
and Maskit [31] when restricting to torsion-free Kleinian groups.

Theorem 2.6. Let 0 be a torsion-free finitely generated Kleinian group. Then there
is a continuous map β : T(∂M(0)) → QC(0) given by associating to a marked
conformal structure on ∂M(0) the corresponding quasiconformal deformation of 0.

Analogously, if 0 ⊂ Isom(H3) is such that 0 =0∩PSL2(C), then the composition
β ◦ j is a continuous map T(∂M(0)) → QC(0) ⊂ QC(0).

Proof. We recall a proof of the first part given by Kapovich [23, p.187] and then show
that the second part follows by the same argument; compare also [23, section 8.15].

Consider elements in T(∂M(0)) as equivalence classes [ f : X → Y ] of quasi-
conformal maps defined on the conformal boundary X := ∂M(0) of the hyperbolic
3-manifold associated to 0. Such a quasiconformal map f induces a Beltrami
differential µ on X , which lifts to a Beltrami differential µ′ on �(0) that is
invariant under the action of 0. Extending µ′ by 0 yields a 0-invariant Beltrami
differential µ defined globally on S2. Solving the Beltrami equation for µ yields a
quasiconformal homeomorphism h : S2

→ S2 with K (h)= K ( f ); it conjugates each
γ ∈ 0 to a Möbius transformation since γ ∗µ = µ. Thus h gives a representation
h∗ : 0 → Isom(H3) via γ 7→ h ◦ γ ◦ h−1. We set β([ f : X → Y ]) = h∗. This
map β is well-defined, since equivalent marked Riemann surfaces yield the same
conjugacy class of representations of 0 by Sullivan’s rigidity theorem. Moreover, it
follows that β is distance nondecreasing, since K (h) = K ( f ) for any fixed marking
surface X ; in particular β is continuous.

If now 0 ⊂ Isom(H3) is such that 0 = 0∩PSL2(C), then elements in T(∂M(0))

can be viewed as equivalence classes of equivariant quasiconformal maps f from
(X, σ ) to (Y, σY ) (defined on (X, σ ) associated to 0) up to equivariant isotopies.
Such a map f induces a σ -invariant Beltrami differential µ on X . As before, µ lifts
and extends to µ on S2, which is now 0-invariant. If h̄ solves the Beltrami-equation
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for µ, then it conjugates 0 to a representation h̄∗ of 0; in other words, it yields a
quasiconformal deformation [h̄∗] ∈ QC(0) of 0 which restricts to [h∗] ∈ QC(0).
Since the map j obtained by forgetting the involutions is continuous, the claimed
result follows. □

2C. Geometric convergence of 3-manifolds. In this section we will discuss what
it means for hyperbolic 3-manifolds to converge geometrically. Background can be
found in [6; 30; 13; 23].

Let BR(O) denote the hyperbolic ball of radius R centred at an origin O ∈ H3. Fix
such an origin together with a frame in its tangent space (still simply denoted by O).
Then hyperbolic manifolds with framed basepoints are in bijective correspondence
with torsion-free Kleinian groups: A hyperbolic manifold with framed basepoint
(M, p) corresponds to the unique torsion-free Kleinian group 0 such that there
is an isometry M → H3/0 taking the framed basepoint p to the image of O in
H3/0. Under this correspondence a change of framed basepoint corresponds to
conjugation of the Kleinian group. We denote the hyperbolic manifold with framed
basepoint corresponding to 0 by (H3/0, O).

Definition 2.7. For i = 1, 2 let (Ni , pi ) = (H3/0i , O) be two hyperbolic manifolds
with framed basepoints. We say that (N2, p2) is (ϵ, R)-close to (N1, p1), if there
is a (1 + ϵ)-bilipschitz embedding f̃ : H3

⊃ BR(O) → H3 such that

• f̃ is ϵ-close in C0 to the inclusion, that is dC0( f̃ , idH3 |BR(O)) ≤ ϵ and

• f̃ descends to an embedding f : N1 ⊃ BR(O)/01 → N2.

Definition 2.8. A sequence of hyperbolic manifolds with framed basepoints (Mk, pk)

is said to converge geometrically to (M, p), if for all ϵ, R > 0, there is k0 ∈ N such
that for k ≥ k0 we have (Mk, pk) is (ϵ, R)-close to (M, p). Further, we say that
a sequence of hyperbolic manifolds Mk converges geometrically to a hyperbolic
manifold M if for some (or equivalently,1 any) framed basepoint p on M there are
framed basepoints pk on Mk such that (Mk, pk) converges geometrically to (M, p).
Also, a sequence of embeddings fk : M → Mk establishes geometric convergence
of Mk to M , if for any framed basepoint p of M and any (ϵ, R) the (lifts of the)
maps fk show that (Mk, fk(p)) is (ϵ, R)-close to (M, p) for k sufficiently large.

Remark 2.9. A sequence of framed hyperbolic manifolds with framed basepoints
(Mk, pk) converges geometrically to (M, p), if and only if the corresponding
torsion-free Kleinian groups 0k converge to 0 in the Chabauty topology.

Indeed, the proof of Theorem E.1.14 in [6] adapts to show that geometric conver-
gence of hyperbolic manifolds with framed basepoints in the sense of Definition 2.8
implies the convergence of the associated Kleinian groups, even though we do not

1Note that if (Mn, pn)= (H3/0n, O) converges to (M, p)= (H3/0, O) and p′ is another framed
basepoint on M corresponding to the image of O ′ in H3, then (H3/0n, O ′) converges to (M, p′).
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assume f̃ (0) = 0 or convergence in C∞. On the other hand, geometric convergence
of hyperbolic manifolds with framed basepoints in the sense of [6, Section E.1] (or,
by Theorem E.1.14 in [6], Chabauty convergence of torsion-free Kleinian groups)
implies geometric convergence in the sense of Definition 2.8.

2D. Controlled equivariant extensions. We say a quasiconformal homeomorphism
φ : S2

→ S2 conjugates a Kleinian group 01 into a Kleinian group 02 if the pre-
scription γ 7→ φ ◦ γ ◦ φ−1 defines a group isomorphism φ : 01 → 02.

The following result is from McMullen [33, Corollary B.23]:

Theorem 2.10 (visual extension of qc conjugation). Suppose φ : ∂H3
→ ∂H3 is a

K -quasiconformal homeomorphism conjugating 01 into 02. Then the map φ has an
extension to an equivariant K 3/2-bilipschitz diffeomorphism 8 of H3. In particular
the manifolds M(01) and M(02) are diffeomorphic.

Strictly speaking, according to the conclusion of [33, Corollary B.23], the map
8 is an equivariant K 3/2-quasi-isometry. By [33, A.2 p.186], this means that the
extension 8 is an equivariant Lipschitz map whose differential is bounded by K 3/2.
But 8 arises from the visual extension of the Beltrami isotopy [33, Theorem B.22],
which is obtained by integrating a smooth vector field [33, Theorem B.10]; thus
8 is smooth. Since [33, Corollary B.23] also applies to the inverse map φ−1 and
associates to it the map 8−1 (by visually extending the reverse Beltrami isotopy),
we can conclude that 8 is actually a K 3/2-bilipschitz diffeomorphism.

Corollary 2.11. Let ϵ > 0 and R > 0. There is δ > 0 such that if φ : ∂H3
→ ∂H3

is a (1 + δ)-quasiconformal homeomorphism fixing 0, 1, ∞ and conjugating a
torsion-free Kleinian group 0 to 0φ , then its visual extension 8 establishes that
(H3/0φ, pφ) is (ϵ, R)-close to (H3/0, p). Here both framed basepoints p, pφ are
induced by the framed basepoint O in H3.

Proof. As seen in the proof of [33, Theorem B.21, B.22], the visual extension
8 : H3

∪ ∂H3
→ H3

∪ ∂H3 of a K -quasiconformal homeomorphism extends by
reflection across ∂H3 further to a K 9/2-quasiconformal map 8 : S3

→ S3 fixing
0, 1, ∞ on the equatorial sphere ∂H3

⊂ S3.
Now in any dimension n ≥2 and for any L ≥1, the collection of L-quasiconformal

homeomorphisms Sn
→ Sn fixing three specified points forms a normal family [18,

Theorem 6.6.33]. If L = 1, this consists only of the identity [18, Theorem 6.8.4].
It follows that for K =1+δ close to 1, the visual extension of a K -quasiconformal

homeomorphism φ is a homeomorphism 8 of H3
∪ ∂H3 that is C0-close to the

identity. In particular, given R, ϵ > 0 there is δ > 0, such that the visual extension
8 of any (1 + δ)-quasiconformal homeomorphism φ fixing 0, 1, ∞ is ϵ-close to
the identity on BR(O) ⊂ H3. Furthermore, the quasiconformal homeomorphism
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Figure 1. Left: example of a circle packing with its nerve, the edges
going out all meet at the vertex at ∞. Right: three circles in a circle
packing along with their dual circle, drawn with a dashed line.

φ is (0, 0φ)-equivariant by construction of 0φ and thus so is 8 by Theorem 2.10.
Combining these statements yields the desired result. □

2E. Circle packings. In this section we will define circle packings and present a
few important results relating to them. For more information see Stephenson [42].
We will eventually use circle packings to glue 3-manifolds and obtain our desired
knot and link complements.

Definition 2.12. Let 0 be a torsion-free convex cocompact Kleinian group and
recall that its conformal boundary ∂M(0) has a natural projective structure. Let V
be a triangulation of ∂M(0).

A circle packing on ∂M(0) with nerve V is a collection P = {cv| v vertex of V }

of (projective) circles on ∂M(0) bounding discs with disjoint interiors such that

(1) each circle cv is centred v,

(2) two circles cu, cv are tangent if and only if ⟨u, v⟩ is an edge in V, and

(3) three circles cu, cv, cw bound a positively oriented curvilinear triangle in ∂M(0)

if and only if ⟨u, v, w⟩ form a positively oriented face of V.

More generally, if V is just a connected graph embedded in ∂M(0), we say that a
collection of (projective) circles satisfying the first two conditions form a partial
circle packing with nerve V.

Equivalently, we can consider locally finite, 0-equivariant (partial) circle packings
of �(0) obtained as lifts of (partial) circle packings on ∂M(0).

See Figure 1 for an example of a circle packing.

Definition 2.13. Let P be a circle packing with nerve V and let c1, c2, c3 ∈ P
be circles corresponding to a triangle in V. The curvilinear triangle bounded by
these circle is called an interstice. There is a unique circle c(1,2,3) orthogonal to the
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circles c1, c2, c3, intersecting them at their points of tangency. The collection of
all such circles corresponding to each triangle in V we will denote P∗ and we will
call the dual (partial) circle packing of P, see Figure 1. Note that the nerves of P
and P∗ are duals as graphs on the surface.

Work of Brooks [12] shows that convex cocompact hyperbolic 3-manifolds
admitting a circle packing on the conformal boundary are abundant, in the following
sense:

Theorem 2.14 (circle packings approximate). Let M = H3/0 be a convex cocom-
pact hyperbolic 3-manifold. Then, for every ϵ > 0, there is an eϵ-quasiconformal
homeomorphism φ fixing 0, 1, ∞, conjugating 0 to 0ϵ such that the conformal
boundary of Mϵ = H3/0ϵ admits a circle packing.

Moreover, the process is constructive: the proof constructs the circle packing.
Additionally, for fixed r > 0, we may ensure none of the circles in the circle packing
and none of the triangular interstices have diameter larger than r. Here we identify
∂H3 with the unit sphere in the tangent space TOH3 at the framed basepoint O
in H3.

This is essentially contained in Brooks’ proof of [12, Theorem 2], but the
statement of the theorem is different in Brooks’ paper. In particular, there was
no consideration of diameters there, and no worry about construction. We work
through the proof below, highlighting the diameters and the constructive nature of
the proof.

Proof of Theorem 2.14. We begin by choosing effective constants controlling the
diameters of the circles and interstices, using a compactness argument. We may
uniformise each closed surface component of �(0)/0 by a component of �(0).
Because 0 is convex cocompact, hence geometrically finite, its action has a finite-
sided fundamental domain F by Theorem 2.4, giving a finite-sided fundamental
region for the action of 0 on �(0). The fundamental region will have boundary
consisting of vertices and edges, and will be compact.

We need to choose the circles to have bounded radii when seen from O in H3.
To do so, it is convenient to look at hyperbolic space in the Poincaré ball model B3

with O at the origin. Then circles of radius r in the unit sphere of TOH3 correspond
to circles of radius in r the boundary of the Poincaré ball ∂B3.

For given r > 0, pick a small r0 ≤ r/2 such that any disk D of radius r0 meeting F
intersects, apart from F , at most the immediate neighbouring fundamental domains
to F in �(0). Since F is compact, it can be covered by finitely many open discs
Di of radius r0. All translates of these Di are round disks; therefore the diameter
of each translate γ (Di ) is bounded in terms of their area. This implies that there
are only finitely many translates γ (Di ) whose diameter is larger than r0. Indeed,
otherwise there would be an infinite disjoint collection of such translates of diameter
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larger than r0, but this is impossible since the area of S2 is finite. It follows that
there are only finitely many translates F1, . . . , Fk of F that meet a translate γ (Di )

whose diameter is larger than r0.
Therefore we can pick r1 ≤ r0 such that for any disk D of radius at most r1

meeting F the following holds: D is contained in one of the Di , and any translate
of D meeting F1, . . . , Fk has diameter at most r0. Note also that translates of D
not meeting F1, . . . , Fk automatically have diameter at most r0 by construction.

Now pack F with circles of radius at most r1 by the following constructive
process, similar to that of [20, Lemma 2.3]: First choose disjoint circles centred at
vertices of F , taking their images under 0 to ensure equivariance. Then take circles
centred along edges, again ensuring translates under 0 agree. Finally, take circles
of radius at most r1 with centres in the interior of the region. Extend this partial
circle packing of F to �(0) using the action of 0, ensuring an equivariant packing.

This yields a 0-equivariant partial circle packing of �(0) consisting of circles
of diameter at most r0 and with regions complementary to the circles consisting
of polygonal interstices, with circular arcs as boundaries. At this point, additional
circles of radius at most r1 may be added to F ; we add sufficiently many to obtain
interstitial regions that are either triangles or quads of diameter at most r1; see
Brooks [11] or a more detailed exposition in Stewart [43, Lemma 3.7]. Finally,
extend again 0-equivariantly to obtain an equivariant partial packing of �(0) with
circles of diameter at most r0, all of whose interstitial regions are triangles or quads
of diameter at most r0 ≤ r/2.

Consider the group 0 generated by 0 and all reflections across the circles in the
packing. By Theorem 2.6, the Teichmüller space of the complementary regions,
which here are triangles and quads, maps continuously to the quasiconformal
deformation space of 0 with its Teichmüller metric. The triangular interstitial
regions are conformally rigid. The quads have a Teichmüller space homeomorphic
to R.

Brooks shows in [11] that there is an explicit homeomorphism q from the
Teichmüller space of a quad to R with the property that there is a full packing of a
quad by finitely many circles if and only if q(Q) is rational. Thus, arbitrarily close
to any quad Q in the Teichmüller space of quads, there is another quad Q′ with
q(Q′) rational. Applying this simultaneously to all the quads complementary to
the packing, we obtain arbitrarily close configurations where q(Q′) is rational for
all quads Q′. We may uniquely pack circles into this quad.

By Theorem 2.6, for any ϵ > 0, we can thus quasiconformally deform the
associated representation ρ : 0 → Isom(H3) by an eϵ-quasiconformal homeomor-
phism h, normalised to fix the points 0, 1, ∞, to obtain a new convex cocompact
representation with image 0ϵ , whose complementary quads are all rational. See
Figure 2.
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Figure 2. Once enough circles are added so a quad is sufficiently
small, the space is deformed so that opposite circles become tangent.
Doing this for every quad gives a circle packing.

We need to ensure that the quasiconformal homeomorphism does not enlarge
the diameters of circles and interstitial regions too much. Indeed, for any K ≥ 1,
the K -quasiconformal homeomorphisms of S2 fixing 0, 1, ∞ form a normal family.
Because we fix 0, 1, ∞, this normal family consists of only the identity map when
K = 1. Thus any sequence of Ki -quasiconformal homeomorphisms of S2 fixing
0, 1, ∞ with Ki → 1 converges to the identity map on S2; compare the proof of
Corollary 2.11.

Thus, while the eϵ-quasiconformal deformation may enlarge some of the radii of
the circles, provided ϵ is small enough, the resulting circles and interstitial regions
will have diameter at most r . □

Definition 2.15. Let V be a graph. A dimer on V is a colouring of edges such that
each face is adjacent to exactly one coloured edge.

Lemma 2.16. Let 0 be a torsion-free convex cocompact Kleinian group and let P
be a 0-equivariant circle packing of �(0) with nerve V.

Then there exists a circle packing P with nerve V such that V ⊂ V and V admits
a dimer. Further, the maximal diameter of circles and interstitial regions of P in
�(0) does not exceed that of P.

Proof. We define the circle packing P by adding the unique circle to each triangular
interstice in P which is tangent to all three circles. The effect on the nerve is to
add a vertex to the interior of each triangle of V, and connect by three edges to
the existing vertices of V, subdividing each triangle into three triangles to form V.
Then each triangle in V has exactly one edge coming from V. Colour this edge.
This gives a dimer on V. Observe that because the action of 0 takes triangular
interstices to triangular interstices, the result is still equivariant with respect to 0.
Observe that the diameter of circles and interstitial regions at most decrease with
this procedure. □

In general there are multiple ways to add circles to a circle packing so that the
result admits a dimer. The strength of the above its that it works for any starting
circle packing and is simple to execute.
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3. Construction

In this section, we construct the links of the main theorem.

3A. Scooped manifolds.

Definition 3.1. Let M = H3/0 be a convex cocompact hyperbolic 3-manifold.
Further assume that ∂M(0) = �(0)/0 admits a circle packing P with dual pack-
ing P∗; then on �(0) there is a corresponding equivariant circle packing P̃ with
dual packing P̃∗. For the circles ci in P̃ on �(0), there are pairwise disjoint
associated open half spaces H(ci ) ⊂ H3 which meet the conformal boundary ∂H3

at the interior of ci . We then define the scooped manifold MP to be the manifold
formed by removing the half spaces associated with circles in P̃ and its dual P̃∗,
and taking the quotient under 0:

MP = H3
−

⋃
c∈P̃,P̃∗

H(c)/0.

The boundary of MP consists of hyperbolic ideal polygons whose faces come
from ∂ H(c), c ∈ P and ∂ H(c∗), c∗

∈ P∗, and edges come from the intersection
of ∂ H(c) and ∂ H(c∗). Note MP is a manifold with corners whose interior is
homeomorphic to M.

Lemma 3.2. Let M = H3/0 be a convex cocompact hyperbolic 3-manifold and
O ∈ H3. Then for any ϵ > 0, there exists a eϵ-quasiconformal homeomorphism φ

fixing 0, 1, ∞ conjugating 0 to 0ϵ satisfying the following:

• The associated convex cocompact manifold Mϵ = H3/0ϵ admits a circle
packing P on its conformal boundary.

• The metric ball B(O, R)/0ϵ ⊂ Mϵ is completely contained in the correspond-
ing scooped manifold (Mϵ)P.

• Further, we can extend P to a circle packing P that admits a dimer as in
Lemma 2.16, so that B(O, R)/0ϵ is still completely contained in the scooped
manifold (Mϵ)P .

Proof. The construction of Theorem 2.14 yields an eϵ-quasiconformal homeo-
morphism fixing 0, 1, ∞, and giving Mϵ with circle packing P on its conformal
boundary, where circles and triangular interstices have diameter at most r . For
r > 0 sufficiently small, we may ensure that the half-spaces H(c) defined by the
circles of P and its dual P∗ have distance at least 2R from O in H3. Thus we have
B(O, R)/0ϵ ⊂ Mϵ − ∪c∈P H(c) = (Mϵ)P.

Finally, using Lemma 2.16, we can extend P to a circle packing P̃ which admits
a dimer. □
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Proposition 3.3. Let M be a convex cocompact hyperbolic 3-manifold. Further
suppose that ∂M(0) admits a circle packing P with nerve K that has a fixed dimer.
Then the scooped manifold MP has the following properties:

(1) The faces on the boundary of MP can be checkerboard coloured, white and
black.

(2) The white faces consist of totally geodesic ideal polygons.

(3) The black faces consist of totally geodesic ideal triangles. The dimer induces a
pairing of the black faces, such that paired black faces share an ideal vertex.

(4) The ideal vertices are all four valent.

(5) The dihedral angle between faces on the boundary is π/2.

Proof. By the definition of scooped manifolds the boundary of MP consists of ideal
geodesic polygons coming from the boundaries of the half spaces associated with
circles in P and P∗. The geodesic polygons coming from half spaces associated
with circles in P we colour white, while those coming from P∗ we colour black.
Observe that the points of tangency of circles in P and P∗ are the same, so these
points of tangency form the ideal vertices of both the black and white faces. If
c ∈ P and c∗

∈ P∗ are circles such that c ∩ c∗
̸= ∅ then c and c∗ intersect in

exactly two points u and v; these points of intersection correspond to ideal points
on the boundary of MP. There is an edge between u and v on ∂ MP formed by
H(c)∩ H(c∗). This edge lies between the face corresponding to H(c) which we
have coloured white and H(c∗) which we have coloured black. Since every edge
on ∂ MP occurs in this manner, we know that every edge lies between a black and
white face. Thus we know that the colouring of the faces we have assigned gives a
checkerboard colouring of the faces. The fact that ideal vertices are 4-valent follows
from the fact that at each ideal vertex there are four circles which meet at this point:
two from P and two from P∗. Finally, since circles in P and P∗ meet orthogonally,
the dihedral angle at each edge must be π/2.

To see that the black faces are triangles, observe that for every circle c∗
∈ P∗ we

have by definition that c∗ meets exactly three points in P. These points are the ideal
vertices on the black faces corresponding to the half space associated with H(c∗).

Now we show how the black faces are paired. Let K be the nerve of P, which
has a dimer. Then in the dual graph K ∗ of K , we can transfer the colouring of
edges in K to a colouring of edges in K ∗, since edges are sent to edges. Note that
K ∗ is 3-valent since K only consists of triangles. Since each face in K is adjacent
to exactly one coloured edge in the dimer, each vertex in K ∗ is adjacent to exactly
one coloured edge. This gives a pairing on the vertices in K ∗ along this edge, which
gives a paring of the circles in P∗. Thus each black face in ∂ MP is paired to another
black face. See Figure 3. □
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Figure 3. Left: Shows four circles in P, with two dashed circles
in P∗. Part of the nerve of P is shown on the left with the coloured
edge from the dimer drawn with two lines. Right: we have the
same two circles in P∗ along with the colouring of the associated
part of the nerve of P∗.

Lemma 3.4. Let M = H3/0 be a convex cocompact hyperbolic 3-manifold and sup-
pose that ∂M(0) admits a circle packing P. For each ideal vertex vi ∈ {v1, . . . , vn}

of the scooped manifold ∂ MP , there is a horoball neighbourhood Hi such that the
Hi are pairwise disjoint, and ∂ Hi ∩ MP is a Euclidean rectangle.

Proof. Let {v1, . . . , vn} be the collection of ideal vertices on ∂ MP . Note that there
are two circles in P and two circles in P∗ which meet tangentially at each vi . Let
M̃P denote a lift of MP into H3 under a covering map, and ṽi a single point in the
corresponding lift of vi to ∂H3. Two circles of P and two of P∗ lift to be tangent
to ṽi . Let ϕ denote a Möbius transformation taking ṽi to ∞. It takes the circles
projecting to P to a pair of parallel lines, and those projecting to P∗ to another
pair of parallel lines meeting the first two orthogonally, hence forming a Euclidean
rectangle. Then any horoball Hh of height h centred at ∞ in H3 meets ϕ(M̃P)

in Ri × (h, ∞), where Ri is a Euclidean rectangle. This projects to a rectangular
horoball neighbourhood of vi . Finally, because there are only finitely many ideal
vertices of MP , we may choose the horoball about each vertex so that all horoballs
are pairwise disjoint, as desired. □

Lemma 3.5. Let M = H3/0 be a convex cocompact hyperbolic 3-manifold and
suppose that ∂M(0) admits a circle packing P. Then the scooped manifold MP has
finite volume.

Proof. Let {H1, . . . , Hn} be pairwise disjoint horoballs, one for each ideal vertex
of MP , as in Lemma 3.4. Then removing these horoballs and horoball neighbour-
hoods from MP yields a compact manifold with boundary consisting of finitely
many boundaries of horoball neighbourhoods and Euclidean planes Hi ∩ MP , and
finitely many hyperplanes ∂ H(c) ∩ MP , where c ∈ P or P∗ is from the circle
packing or its dual. This has finite volume.
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Figure 4. Shows how to cut and reglue at a crossing circle to add
a half-twist.

Finally, the horoball neighbourhoods must have finite volume, since they are of
the form Ri ×[1, ∞) for Ri a Euclidean rectangle, as in Lemma 3.4. Thus MP has
finite volume. □

3B. Building link complements. In this section we describe how to build a hyper-
bolic link complement using a scooped manifold. The idea behind this construction
is inspired by fully augmented links, and their relation to circle packings on the
sphere. The construction here generalises this by starting with circle packings on a
surface of higher genus.

First, we define a generalisation of a fully augmented link.

Definition 3.6. Let M be a 3-manifold and let 6 be an embedded surface of
genus g ≥ 2 in M. Then a link L in a tubular neighbourhood of 6 consisting of
components K1, . . . , Kk and C1, . . . , Cn is called a fully augmented link on 6 if it
has the following properties:

(1)
∐

1≤i≤k Ki is embedded in 6.

(2) C j bounds a disk Dj in M such that Dj intersects 6 transversely in a single
arc, and Dj meets the union

∐
i Ki in exactly two points, for 1 ≤ j ≤ n.

(3) A projection of L to 6 yields a 4-valent diagram graph on 6. We require this
diagram to be connected.

The components Ki are said to lie in the projection surface, while the components
C j are called crossing circles.

We may also add a half twist at crossing circles, corresponding to cutting along
Dj and regluing so that the two points of intersection of

∐
i Ki with Dj are swapped.

This is shown in Figure 4.

Definition 3.7. The link resulting from adding a single half-twist at some or no
crossing circles is also called a fully augmented link on a surface, even though
condition (1) in Definition 3.6 is typically not satisfied anymore after such a half-
twist. If the distinction is important, we will say that the link of Definition 3.6 is a
fully augmented link on a surface without half-twists.

Fully augmented links on surfaces can be quite complicated. A 3-dimensional
example on a genus-2 surface is shown in Figure 5.
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Figure 5. An example of a fully augmented link on a genus-2 sur-
face, with crossing circles shown in red. This image was generated
in Blender [14].

Definition 3.8. Let M be a manifold with boundary. The double of M is the
manifold

M × {0, 1}/ ∼ where (x, 0) ∼ (x, 1) for all x ∈ ∂ M.

We denote the double of M by D(M).

Proposition 3.9. Let M be an orientable compact manifold with connected bound-
ary. Then the double of M is not S3, unless ∂ M is homeomorphic to S2.

Proof. Let M1 and M2 denote the two copies of M in the double of M, where
int(M1) ∩ int(M2) = ∅ and ∂ M1 = ∂ M2. Now for a point x ∈ M2 let x̃ denote the
same point in M1, or if x ∈ M1 then x̃ denotes the point in M2. Then the map
r : D(M) → M1 defined by

r(x) =

{
x if x ∈ M1,

x̃ if x ∈ M2,

satisfies r |M1 is the identity. Moreover, r is continuous since it is continuous on M1

and M2 and agrees on M1 ∩ M2 = ∂ M1. Thus r is a retract of D(M) onto M1. It fol-
lows that the inclusion M ↪→ D(M) induces an injection i∗ : π1(M1) → π1(D(M)).
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On the other hand, π1(M1) is nontrivial, since its abelianisation H1(M) has rank
equal to half the rank of H1(∂ M1), which is 2g ≥ 2 unless ∂ M1 = S2; see [19,
Lemmas 3.5, 3.6]. Thus D(M) is not S3 unless ∂ M = S2. □

We are now ready to start our construction.

Construction 3.10. Let M = H3/0 be a convex cocompact hyperbolic 3-manifold
whose conformal boundary on ∂M(0) admits a circle packing P with dimer.

By Proposition 3.3, the boundary of the scooped manifold MP is checkerboard
coloured black and white, with all black faces consisting of paired totally geodesic
ideal triangles.

Form the scooped manifold MP . Take a second copy M ′

P of MP with the opposite
orientation and identify each white face of MP with its copy in M ′

P via the identity
map identifying these faces.

Black faces in MP are each paired in MP by the dimer, with the coloured edge
of the dimer running over a pair of ideal vertices in the two triangles. Glue these
paired ideal triangles by a hyperbolic isometry, folding over the ideal vertex meeting
the dimer. Do the same for the paired black triangles in M ′

P .

Theorem 3.11. Let M = H3/0 be a convex cocompact hyperbolic 3-manifold.
Suppose the conformal boundary ∂M(0) admits a circle packing with a dimer. Then
Construction 3.10 above yields a finite volume hyperbolic 3-manifold N that is the
complement of a fully augmented link L on ∂M(0) in D(M(0)), without half-twists.
That is, N = D(M(0)) − L.

Proof. Let N denote the manifold obtained by the construction. There are three
things we need to show: the construction gives a submanifold of D(M(0)), the
result is homeomorphic to a fully augmented link complement in D(M(0)), and
that it is a complete hyperbolic manifold of finite volume.

For ease of notation, we will denote M(0) simply by M. We start by showing
that N is a submanifold of D(M). The definition of a scooped manifold gives a
natural embedding of MP and M ′

P in D(M) such that MP ∩ M ′

P = ∅. Under this
embedding the ideal vertices of MP and M ′

P are identified and lie on 6 = ∂M = ∂M′

in D(M).
By Lemma 3.4, there is a collection of horoball neighbourhoods Hi with bound-

aries meeting the ideal vertices in Euclidean rectangles Ri . By shrinking the Hi if
needed, we may assume that for each rectangle, the length of any side meeting a
black triangle is 1/h, for some fixed large h. Let MP denote the result of removing
the horoballs Hi from MP . Thus MP is a compact manifold with corners. Similarly
form M ′

P by removing identically sized horoball neighbourhoods from M ′

P .
Since the (black) truncated side lengths of MP are identical, we can glue truncated

black triangles in MP to their pair in MP by hyperbolic isometry, and similarly
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h1/2(A)

A

T ′

1 T ′

2

T1 T2

h1(A)

Figure 6. The result of gluing the white faces in MP and M ′

P
is shown on the left, with cylinders formed from truncated ideal
vertices shown in grey (note that faces shown in white are black
faces in MP and M ′

P ). From the second to third image we identify
the black faces (shown as white). We see that if the cylinder came
from a ideal vertex between two paired black triangles then the
gluing corresponds to a crossing circle.

for M ′

P . We may similarly glue truncated white faces in MP to those in M ′

P by
isometry, because we will be truncating an identical amount in MP and its reflection.

Let F ⊂ ∂ MP be a truncated white face. Then there exists a projection p : F →6.
Similarly, the corresponding truncated white face F ′

⊂ ∂ M ′

P has an analogous
projection p′

: F ′
→ 6 such that p(F) = p′(F ′). Both of these projections can be

extended to isotopies of MP and M ′

P in D(M). Since all such maps, for all white
faces, correspond to isotopies, the manifold resulting from gluing the white faces is
a submanifold of D(M).

Next we look at gluing pairs of truncated black triangles. Let T1 and T2 be
two truncated black triangles in ∂ MP that are paired by the dimer on P across a
vertex v, and let Rv be the rectangle which truncates v. Similarly let T ′

1 and T ′
2

be the corresponding truncated triangles in ∂ M ′

P with R′
v the rectangle meeting

them. After identifying the white faces, the nontruncated edges of T1 and T ′

1 will
be identified, and similarly for T2 and T ′

2. Then after gluing white faces, T1 ∪ T ′

1
and T2 ∪ T ′

2 will correspond to a pair of spheres with three open disks removed.
They are joined together via Rv and R′

v: after we identify the white faces, the white
edges of Rv and R′

v have been identified, forming a cylinder A. The black edges
on the ends of this cylinder form one of the boundary components of both spheres
T1 ∪ T ′

1, T2 ∪ T ′

2. See Figure 6.
We can then perform an isotopy expanding A so that T1 ∪ T ′

1 and T2 ∪ T ′

2 and A
lie on a sphere S with A forming a closed neighbourhood of a north-south great
circle for S. We continue the isotopy, identifying T1 ∪ T ′

1 to T2 ∪ T ′

2 across a ball
bounded by this sphere, as shown in Figure 6. This corresponds to identifying T1

with T2, and T ′

1 with T ′

2. Observe that the result after identification is a disk D with
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T−1

T ′

−1T ′

−2

T−2

T ′

2T ′

1

T2T1Av0

Av1

Av−1

Figure 7. First image shows the result after gluing truncated white
faces (the truncated black triangles Ti are shown as white). The
light grey cylinders correspond to the cylinders associated with the
paired vertices v−1 and v1. The dark grey cylinders do not pair
black triangles together. The second image shows the result after
gluing black triangles together.

two open disks removed. The annulus A has two boundary components identified
to form a torus. This torus meets the black geodesic surface of D on its outside
boundary, corresponding to a longitude. The other two boundary components of D
correspond to two cylinders obtained by gluing vertices which do not pair black
faces in the dimer. See Figure 6. Thus the ideal vertices that pair black triangles
correspond to crossing circles.

Each of these steps is by isotopy in D(M). We do this for each pair of truncated
black triangles on ∂ MP . Hence the gluing of MP and M ′

P gives a submanifold of
D(M). Finally, note that the gluing of MP now embeds as a submanifold of D(M)

because it is homeomorphic to the gluing of the truncated MP without its boundary.
We still need to show that N is homeomorphic to a link complement in D(M). We

have seen that ideal vertices meeting paired black faces will correspond to crossing
circles in D(M). Now let v0 ∈ V be a vertex which does not pair two black faces.
Let Rv0 be the rectangle on ∂ MP associated with v0. Then Rv0 meets two truncated
black triangles T−1, T1 ⊂ ∂ MP . The triangle T1 is paired to another truncated black
triangle T2 as specified by the dimer on P, across a vertex v1. Similarly T−1 is
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paired to another truncated black triangle T−2, across a vertex p−1. See Figure 7.
After gluing T1 and T2, one of the black edges of Rv0 will be glued to a black edge
of another rectangle Rv1 that intersects T2, while the other black edge of Rv0 , will
be glued to a black edge of a rectangle Rv−1 that intersects T−2.

After gluing white faces, the pairs Rvk and R′
vk

, for k ∈ {−1, 0, 1}, are glued
along their white edges and form cylinders, which we denote Ak for k ∈ {−1, 0, 1}.
After gluing the black faces, A−1 will be glued to one end of A0 while A1 will be
glued to the other end. Let A be the result of gluing these three cylinders together.
The cylinder A then passes through the two crossing circles associated with v−1

and v1. This is shown in the second image in Figure 7.
Every cylinder associated with a vertex v ∈ V that does not pair black faces

has its ends glued to other cylinders. It follows that the collection of all such
cylinders forms a collection of tori. If T is such a torus then T has a Euclidean
structure given by gluing a chain of rectangles Rv0, Rv1, . . . , Rvk together; these are
glued along their black sides. This chain is then glued to the corresponding chain
R′

v0
, R′

v1
, . . . , R′

vk
via their white sides. Note that the white sides of Rvi and R′

vi
,

for i ∈ {0, 1, . . . , k} lie on a geodesic surface formed from gluing the white faces.
In this sense each of these tori lies on the white surface formed from the gluing
of white faces, which is homeomorphic to ∂M. Thus the glued manifold N is
homeomorphic to the complement of a fully augmented link on a surface without
half twists. The ideal boundary components that correspond to vertices in V pairing
black faces are crossing circles, while the other vertices make up portions of the
link components in the surface.

Finally we show that the resulting gluing has a complete hyperbolic structure.
The fact that it has a hyperbolic structure follows from the fact that the gluing of
faces is by isometry, and the faces meet at dihedral angle π/2, with four such angles
identified under the gluing. Thus the sum of dihedral angles around any edge is 2π ;
see for example [40, Theorem 4.7].

To show that the structure is complete, we need to show that each of the ideal torus
boundary components has an induced Euclidean structure; see for example [40,
Theorem 4.10]. We have seen that each torus boundary component is tiled by
rectangles Rv coming from ideal vertices of the scooped manifold. The cusp
structure is induced by the gluing of the Euclidean rectangles. Since they are
rectangles, with angles π/2, and matching side lengths, they do indeed give the
cusp a Euclidean structure.

Finally N is finite volume since MP and MP ′ have finite volume, by Lemma 3.5.
Alternately since we have a complete hyperbolic 3-manifold with ideal boundary
consisting of tori it must be finite volume; see for example [40, Theorem 5.24]). □

One nice property of the links formed from this identification is that we can use
the dimer on the nerve to draw the link directly from the circle packing.
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Figure 8. Left: shows part of the nerve of P in which the edge
coloured by the dimer is shown dashed. Middle: shows correspond-
ing part of the nerve of P∗. Right: replace the dashed line with a
crossing circle to draw the link.

Corollary 3.12. The link formed from the gluing of MP and M ′

P can be drawn
directly from the nerve of P∗ on 6.

Proof. The nerve of P∗ is 3-valent with a coloured edge given by the dimer on P.
Each coloured edge in P∗ corresponds to an ideal vertex shared by two paired black
faces on ∂ MP . Such a vertex corresponds to a crossing circle. The two edges that
are not coloured correspond to arcs in 6. So for each coloured edge in P∗, draw
a crossing circle, with arcs between crossing circles the noncoloured edges of P∗.
Figure 8 shows the local picture. □

3C. Adding half-twists.

Lemma 3.13. Let C be a crossing circle of a fully augmented link L embedded in a
closed 3-manifold M such that M − L is hyperbolic. Then for the link L ′ obtained
by adding a half twist at C , the complement M − L ′ is also hyperbolic.

Proof. This follows from Adams [2]. The crossing circle C bounds a 3-punctured
sphere, which is isotopic to a totally geodesic surface. Cut along this surface and
reglue via the homeomorphism of the 3-punctured sphere that keeps the puncture
associated with C fixed and swaps the other two punctures. Since there is only one
complete hyperbolic structure on a 3-punctured sphere, this is an isometry, hence
gives a hyperbolic manifold with the desired properties. □

If we look back at the original gluing in Theorem 3.11, adding a half twist at a
crossing circle corresponds to changing the gluing of the black faces in ∂ MP and
∂ M ′

P . Instead of gluing a black triangle to its pair on the same half, it will be glued
to the pair in the opposite half.

Lemma 3.14. Let N be a manifold formed in the manner of Construction 3.10,
which are complements of fully augmented links without half-twists by Theorem 3.11.
Adding a half twist at a crossing circle corresponds to gluing a black triangle T1 of
MP with the triangle T ′

2 on M ′

P , paired to the reflection T ′

1 of T1 by the dimer.
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T1

T ′

1 T ′

2

T2

Figure 9. Shows how gluing black triangles in ∂ MP to the paired
triangle in ∂ M ′

P corresponds to adding a half twist.

Proof. A half-twist is added by rotating the half T1 ∪ T ′

1 of Figure 6, middle, by
180◦ before gluing. See Figure 9. This glues T1 with T ′

2, and T ′

1 with T2, via an
orientation reversing isometry. □

Lemma 3.15. Let M = H3/0 be a convex cocompact hyperbolic 3-manifold,
and let N be the complement of a fully augmented link in D(M) constructed in
Construction 3.10. Then we may form a new hyperbolic 3-manifold N ′ such that
N ′ is the complement of a fully augmented link L ′ on ∂M ⊂ D(M), where L ′ has
only one component that is not a crossing circle on each component of ∂M, and L ′

is formed from L by adding half twists at some of the crossing circles of L.

Proof. Let K1, . . . , Kn be the link components of L that are not crossing circles.
If n ≥ 2, then since the diagram graph of L is connected, there must be some
crossing circle C such that there are two distinct components K j and Kk passing
through C . Let LC denote the link formed by adding a half twist at C to L . Adding
the half twist at C concatenates K j and Kk , reducing the number of components by
one. Repeat until there is only one component that is not a crossing circle on each
component of ∂M. □

3D. Showing geometric convergence. Now we show how we can use the con-
struction of the previous section to construct sequences of link complements which
converge geometrically to M.

Lemma 3.16. Let M = H3/0 be a convex-cocompact hyperbolic 3-manifold home-
omorphic to the interior of a compact 3-manifold M and let ϵ > 0 and R > 0.

Then there exists a finite volume hyperbolic 3-manifold with framed basepoint
(Mϵ,R, pϵ,R) that is a link complement in D(M) such that (Mϵ,R, pϵ,R) is (ϵ, R)-
close to (M, p), where p is the framed basepoint on M = H3/0 induced by O
in H3.

Proof. By Lemma 3.2, we can find an eδ-quasiconformal homeomorphism φ

fixing 0, 1, ∞ conjugating 0 to 0δ such that the associated convex-cocompact
manifold Nδ = H3/0δ admits a circle packing Pδ on its conformal boundary, and
the metric ball B(0, R)/0δ is completely contained in the corresponding scooped
manifold (Nδ)Pδ

. Further, we may take Nδ, Pδ as above so that the nerve of Pδ

admits a dimer. By Corollary 2.11, Nδ is (ϵ, R)-close to M for δ sufficiently small,
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if both M = H3/0 and Nδ = H3/0δ are endowed with the framed basepoint p, pδ

induced from O in H3.
Let Mϵ,R be a link complement in D(M) formed from gluing two copies of

(Nδ)Pδ
in the manner specified in Theorem 3.11 for δ = δ(ϵ, R) small as above.

Since (Nδ)Pδ
isometrically embeds in Mϵ,R , we have (denoting the image of pδ

by pϵ,R) that (Mϵ,R, pϵ,R) is (ϵ, R)-close to (M, p). □

As an immediate consequence we have:

Corollary 3.17. The links of Lemma 3.16 converge geometrically to M. □

We now turn the link complements of Corollary 3.17 into knot complements.

Theorem 3.18. Let M be a convex cocompact hyperbolic 3-manifold that is the
interior of a compact 3-manifold M. Then there exists a sequence of finite volume
hyperbolic 3-manifolds Mn that are link complements in D(M), with one link
component per boundary component of M, such that Mn converges geometrically
to M.

In particular, if M has a single boundary component, then M is the geometric
limit of a sequence of knot complements.

Proof. By taking (ϵ, R) = (1/n, n) in Lemma 3.16, we find a sequence of fully
augmented links on a surface in D(M) which contain (n + 1)/n-bilipschitz images
B(p, n) ⊂ M. By Lemma 3.15, by adding half twists at some of the crossing circles
we obtain a fully augmented link on the surface ∂ M ⊂ D(M) that has a single com-
ponent that is not a crossing circle on each component of ∂ M. Lemma 3.14 shows
that adding a half twist corresponds to changing the gluing of black faces, which
does not affect the embedding B(p, n) of Lemma 3.16. Thus we obtain a sequence
Ln of complements of fully augmented links in D(M) converging geometrically
to (M, p), for suitable framed basepoints, such that for each component of ∂ M
embedded in D(M), only one link component is not a crossing circle.

Let s ∈ Z be a positive integer. Observe that 1/s Dehn filling on a crossing
circle C of Ln inserts 2s crossings into the twist region encircled by C and removes
the link component C . We do this for all crossing circles. Let in be the number
of crossing circles in Ln , and let s1

k , . . . , sin
k denote sequences of positive integers

approaching infinity as k → ∞. Thurston’s hyperbolic Dehn surgery theorem
tells us that for fixed n the sequence of manifolds Mn(1/s1

k , . . . , 1/sin
k ) converges

geometrically to Mn [44]. Taking a diagonal sequence, we obtain a sequence of
knot complements in D(M) converging geometrically to M. □

3E. Effective Dehn filling. We promised in the introduction a constructive method
to build knot complements converging to M. Theorem 3.18 uses Thurston’s hy-
perbolic Dehn surgery theorem to imply that such knots must exist, however that
theorem is not constructive. In this section, we explain how the proof can be
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modified to use cone deformation techniques to explicitly construct knots with the
desired properties.

To do so, we need to know more about the cusp shapes and normalised lengths
of Dehn filling slopes on the link complements Mϵ,R of Lemma 3.16.

Lemma 3.19. In the hyperbolic structure on the fully augmented link complement
Mϵ,R of Lemma 3.16, each cusp corresponding to a crossing circle is tiled by two
identical Euclidean rectangles. Each rectangle has a pair of opposite sides coming
from the intersection of a horospherical cusp torus with black sides, and a pair
coming from an intersection with white sides. The slope 1/n on this cusp is isotopic
to a curve as follows:

• If the crossing circle does not meet a half-twist, the slope is given by one step
along a white side, plus or minus 2n steps along black sides.

• If the crossing circle meets a half-twist, then the meridian is sheared. Thus
the slope is given by one step along a white side, plus or minus (2n + 1) steps
along black sides.

In either case, if c is the number of crossings added to this twist region of the
diagram after Dehn filling, then the slope is given by one step along a white side
plus or minus c steps along black sides.

Proof. The proof is completely analogous to a similar result for crossing circle
cusps in the classical setting of fully augmented links in the 3-sphere; see [39,
Proposition 3.2] or [15, Lemma 2.6, Theorem 2.7]. We walk through it in this
setting.

By Lemma 3.4, each crossing circle is tiled by rectangles, each with two opposite
black sides, coming from intersections of black triangles with a horospherical torus
about the cusp, and two opposite white sides, coming from intersections of white
faces with a horospherical torus. Tracing through the gluing construction of 3.10,
with reference to Figure 6, the crossing circle cusps are built by first gluing one
rectangle from the original scooped manifold MP to an identical copy from M ′

P ,
via a reflection in a white side. When there is no half-twist, the black sides of each
of these rectangles are then glued together. A longitude runs over the two black
sides, meeting two white sides along the way. A meridian runs over exactly one
white side, meeting exactly one black side transversely along the way.

When a half-twist is added, the longitude still runs over two black sides, but a
meridian is obtained by taking a step along a white side plus or minus a step along a
black side, depending on the direction of twist. We may assume that the direction of
twist matches the sign of n, otherwise apply a homeomorphism giving a half-twist
in the opposite direction, and reduce |n| by two. This introduces shearing to the
meridian.
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The slope 1/n runs over one meridian and n longitudes. In the case of no half-
twists, this is one step along a white side, plus 2n steps along black sides. This
adds |2n| = c crossings to the twist region.

When there is a half-twist, the slope 1/n still runs over one meridian plus n
longitudes, but now this is given by one step along a white side plus or minus one
step along a black side (with sign matching sign of n), plus 2n additional steps
along black sides. Again there are c = |2n + 1| steps along black sides. □

The normalised length of a slope s on a cusp torus T is the length of a geodesic
representative of the slope in the Euclidean metric on T , divided by the area of the
torus:

L(s) = len(s)/
√

area(T ).

Observe that the normalised length is independent of scale, thus it is an invariant of
the cusp rather than the choice of horospherical neighbourhood of the cusp.

The following result, for fully augmented links in D(M), is analogous to a
calculation for fully augmented links in S3 found in [37]:

Lemma 3.20. Let c be the number of crossings added by Dehn filling at a crossing
circle. Then the corresponding slope of the Dehn filling has normalised length at
least

√
c.

Proof. From Lemma 3.19, we know that the two rectangles in the cusp tiling of the
crossing circle are identical, hence each white side has length w and each black
side length b. The area of the cusp, with or without half-twists, is given by 2bw.
Thus by Lemma 3.19, the normalised length of the slope 1/n is given by

L =

√
w2 + c2b2
√

2bw
=

√
w

2b
+

c2b
2w

.

This is minimised when w/2b equals c/2, and the minimum value is
√

c. □

Lemma 3.21. Given M, ϵ > 0, R > 0, and Mϵ,R as in Lemma 3.16, let δ > 0 be
such that B(p, R) lies in the δ/(1 + ϵ)-thick part of M. Let n denote the number
of crossing circles of the fully augmented link in Mϵ,R . If after Dehn filling the
crossing circles, the number of crossings added to each twist region is at least

n · max
{

107.6
δ2 + 14.41,

45.20
δ5/2 log(1 + ϵ)

+ 14.41
}
,

then the inclusion map taking B(pϵ,R, R) in Mϵ,R into the complement of the
resulting knot in D(M) is (1 + ϵ)-bilipschitz. It follows that the knot complement
contains a set that is (1 + ϵ)2-bilipschitz to B(p, R) in the original M.

Proof. By Lemma 3.16, if B(p, R) lies in the δ/(1 + ϵ) thick part of M, then
B(pϵ,R, R) lies in the δ thick part of Mϵ,R and is (1 + ϵ) bilipschitz to B(p, R).
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Let L2 be given by
1
L2 =

n∑
i=1

1
L2

i
,

where L i is the normalised length of the Dehn filling slope on the i-th crossing
circle cusp. In [17, Corollary 8.16], it is shown that if L2 is at least the maximum
given above, then the inclusion map on any submanifold of the δ-thick part is
(1 + ϵ)-bilipschitz.

Let C be the minimal number of crossings added to any twist region. By
Lemma 3.20, 1/L2

i ≤ 1/C , so 1/L2
≤ n/C , or L2

≥ C/n. Thus if C/n is at
least the maximum in the formula above, we may apply the corollary from [17] to
B(pϵ,R, R). □

4. Reducing geometrically finite to convex cocompact

The previous sections constructed link complements that converge to convex co-
compact hyperbolic structures. In the case of a single topological end, the limiting
manifolds are all knot complements. The construction can be extended almost im-
mediately to geometrically finite manifolds of infinite volume. However, now in the
case that the manifold has a single topological end, if that end contains a rank-1 cusp,
the immediate extension produces link complements rather than knot complements.
Indeed, in the presence of rank one and rank two cusps our construction above
leads to several cusp boundary components and thus to a complementary link with
multiple components. Instead we will show that a geometrically finite manifold M
can be approximated geometrically by convex cocompact manifolds. Combining this
with the previous results, it follows that M can also be approximated geometrically
by knot complements if it is of infinite volume with a single topological end.

For rank two cusps, a version of Thurston’s hyperbolic Dehn surgery theorem
for geometrically finite hyperbolic manifolds shows that a geometrically finite
manifold is the geometric limit of geometrically finite manifolds without rank two
cusps; see, for example, work of Brock and Bromberg [10]. However in our setting,
i.e., a 3-manifold with one end, rank one cusps are more problematic. Here we
show that for any geometrically finite hyperbolic manifold M, there is sequence of
geometrically finite hyperbolic manifolds M j without rank one cusps converging
to M. Moreover the sequence can be chosen such that the maps establishing this
convergence are global diffeomorphisms. In particular Mj is diffeomorphic to M
for each j .

Results such as this go back to work of Jørgensen, and is presumably implicit in
the construction of Earle–Marden geometric coordinates (cf. [29] and the appendix
of [21]); compare also Marden [30, exercises 4-24 and 5-3]. We include the result
and a proof for completeness.
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Theorem 4.1. Let M be a geometrically finite hyperbolic manifold. Then there
exists a sequence of geometrically finite hyperbolic manifolds Mj without any
rank one cusps and diffeomorphisms M → Mj establishing that the Mj converge
geometrically to M. The Mj are explicitly constructed starting from M and there
are effective bounds for the convergence.

To prove Theorem 4.1, we first need to set up some notation. Fix a framed
basepoint on p on M. Then (M, p) corresponds to a Kleinian group 0 such
that (M, p) = (H3/0, O). We will first construct Kleinian groups 0r( j)n( j) corre-
sponding to suitable hyperbolic 3-manifolds with framed basepoints (Mj , pj ) that
converge to 0 in the Chabauty topology (and thus (Mj , pj ) converges geometrically
to (M, p)). When viewed as perturbations of 0, the Kleinian groups 0r( j)n( j) also
converge algebraically to 0 and the desired convergence properties will follow.

Consider a fixed rank one cusp of M, generated by η1. Up to conjugation,
we may assume η1 corresponds to z 7→ z + 1. For r1 > 0, let γr1 correspond to
z 7→ z + r1

√
−1. Add γ1 := γr1 to 0 as a generator to obtain 0r1 , with presentation

⟨G, γ1 | R, [γ1, η1] = 1⟩, where ⟨G | R⟩ is a presentation of 0.

Lemma 4.2. For r1 sufficiently large, 0r1 is a discrete group and an HNN extension
of 0.

Proof. This will be a consequence of the second Klein–Maskit combination theorem;
we use the version as stated in Abikoff and Maskit [1], for a proof see Maskit [32,
VII E.5].

Let H be a subgroup of 0. Recall that a subset B ⊂ C∪{∞} is precisely invariant
under H in 0 if (1) for all h ∈ H , h(B)= B and (2) for all γ ∈0\ H , γ (B)∩ B =∅.
In our setting, consider the round discs D± := D±(r1) = {z ∈ C | ± Im(z) > r1/2}

in C ∪ {∞}. We claim that for r1 sufficiently large, the 0-orbits of D+ and D− are
disjoint and that D± are both precisely invariant under the subgroup H = ⟨η1⟩ of 0.

This follows, for example, from work of Bowditch [9], specifically his result
that geometrically finite is equivalent to his definition GF1, which we now recall.
By Bowditch’s definition GF1, the fundamental domain of a geometrically finite
hyperbolic manifold is realised as the union of a compact set and a finite number of
disjoint standard cusp regions (see [9, Proposition 4.4] for a proof that geometrically
finite hyperbolic manifolds admit standard cusp regions). A standard cusp for η1

is modelled as follows: Consider the universal cover H3 of M, in the upper half-
space model, with boundary C ∪ {∞}. The parabolic η1, taking z to z + 1, acts as
translation on horospheres about infinity, taking vertical planes in H3 with boundary
of the form {x ∈ C | Re(x) = R}, for fixed R ∈ R, to vertical planes in H3 with
boundary {x ∈ C | Re(x) = R + 1}. There is an η1-invariant subspace P ⊂ C with
P/⟨η1⟩ compact; in the 3-dimensional rank-1 case at hand, P = P(r) can be chosen
to be an infinite strip bounded by two lines L(±r/2) = {x ∈ C | Im(x) = ±r/2}.
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See [9, Figure 3a]. Bowditch’s definition of a standard cusp implies that for some
height h > 0, the region

C = C(P(r), h) = {x ∈ H3
| deuc(x, P(r)) ≥ h}

must satisfy γ (C)∩ C = ∅ for all γ ∈ 0 \ H . For r1 large, D± ⊂ C , and therefore
γ (D+ ∪ D−) ∩ (D+ ∪ D−) = ∅ for γ ∈ 0 \ H . Combining this with the fact that
H preserves both D± separately, it follows that the 0-orbits of D± are disjoint and
that both D± are precisely invariant under H in 0.

Now consider f = γr1 defined as above. Note that since γr1 and η1 commute,
f H f −1

= H < 0. The observations above on Bowditch’s definition GF1 imply
the following three conditions required for the second Klein–Maskit combination
theorem:

(1) D+ is precisely invariant for H in 0,

(2) C − γr1(D+) = D− is precisely invariant for f H f −1
= H in 0,

(3) γ (D+) ∩ D− = ∅ for all γ ∈ 0.

Then by the second Klein–Maskit combination theorem, 0r1 is a discrete group and
an HNN extension of 0. □

Proof of Theorem 4.1. Apply Lemma 4.2 iteratively to all rank one cusps of 0; we
obtain a Kleinian group 0r , r = (r1, . . . , rk), for ri+1 ≫ ri , i = 1, . . . , k − 1. It
has k rank two cusps corresponding to the k rank one cusps of M, and additionally
any rank two cusps inherited from 0, but no rank one cusps. It has a presentation of
the form

0r = ⟨G, γ1, . . . , γk | R, [γi , ηi ] = 1, ∀i = 1, . . . , k⟩.

As r1 = mini ri tends to infinity, these groups converge geometrically to 0.
Now perform (1, n)-Dehn surgery on the k new rank two cusps of 0r , where the

meridian of the i-th cusp (filled for n = 0) corresponds to the new generator γri .
For n sufficiently large, this yields Kleinian groups 0rn with presentations

0rn = ⟨G, γ1, . . . , γk | R, [γi , ηi ] = 1, γiη
n
i = 1, ∀i = 1, . . . , k⟩.

The groups 0rn are canonically isomorphic to 0: There is a natural isomorphism
mrn : 0 → 0rn whose inverse sends γi to η−n

i for all i = 1, . . . , k.
Thus the 0rn are images of faithful, geometrically finite representations of 0.

Moreover, since the construction of 0rn is via Dehn surgery, for n large, mrn(θ)

for θ ∈ 0 is parabolic if and only if θ is part of a rank two cusp of 0. In particular,
the elements mrn(ηi ) are hyperbolic and 0rn has no rank one cusps.

These representations converge algebraically to 0 as n → ∞, since Dehn surgery
is a perturbation of the identity in terms of representations of the group 0r , thus in
particular in terms of the subgroups 0 ⊂0r . A suitable formulation of Dehn surgery,
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due to Comar, can be found in [5, Theorem 10.1]. Moreover the Kleinian groups
0rn converge geometrically (i.e., in the Chabauty topology) to 0r as n → ∞ [44].
Thus for each value of ri , we may choose a sequence ri ( j) j∈N tending to infinity,
and consider r( j) = (r1( j), . . . , rk( j)) as above. Choosing n( j) sufficiently large,
we find that the diagonal sequence of Kleinian groups 0r( j)n( j), uniformizing the
geometrically finite hyperbolic manifolds Mj without rank one cusps, converges
both geometrically and algebraically to 0, uniformizing M.

This implies that the limit M is diffeomorphic to Mj for j sufficiently large,
as follows (compare [5, Lemma 3.6]): Indeed, the compact core of M embeds
via its interpretation as geometric limit back into Mj for j large. This induces a
map on fundamental groups 0 → 0r( j)n( j), which necessarily coincides with the
isomorphism 0 → 0r( j)n( j) establishing that 0 is the algebraic limit of 0r( j)n( j).
Thus the compact core of M embeds as a compact core into Mj for j large. By the
uniqueness of compact cores and since a diffeomorphism of compact cores can be
extended to a diffeomorphism of the ambient hyperbolic manifolds, the claimed
result follows.

Finally we remark on the constructive nature of the proof. Observe that the
process above is obtained by first, choosing a sufficiently large ri at each rank one
cusp to build manifolds with rank two cusps. Then perform high Dehn filling. The
choice of r1 will depend heavily on M, but given a fundamental domain for M,
these can be determined effectively. By our choice of the γri , the new rank two
cusps of the manifold H3/0r are rectangular. Thus the normalised length of the
slopes 1/n have length at least

√
n. Again applying cone deformation techniques,

we may choose effective n sufficiently large to obtain constants required in the
definition of geometric convergence, as in the proof of Lemma 3.21. □

Corollary 4.3. Let M be a geometrically finite hyperbolic 3-manifold of infinite
volume that is homeomorphic to the interior of a compact manifold M with a single
boundary component. Then one can construct an explicit sequence of finite volume
hyperbolic manifolds that are knot complements in D(M) such that Mn converges
geometrically to M. □
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