AN ISOPERIMETRIC INEQUALITY OF MINIMAL HYPERSURFACES IN SPHERES

FAGUI LI AND NIANG CHEN
AN ISOPERIMETRIC INEQUALITY OF MINIMAL HYPERSURFACES IN SPHERES

FAGUI LI AND NIANG CHEN

Let M^n be a closed immersed minimal hypersurface in the unit sphere \mathbb{S}^{n+1}. We establish a special isoperimetric inequality of M^n. As an application, if the scalar curvature of M^n is constant, then we get a uniform lower bound independent of M^n for the isoperimetric inequality. In addition, we obtain an inequality between Cheeger’s isoperimetric constant and the volume of the nodal set of the height function.

1. Introduction

The isoperimetric inequalities have always been an important subject in differential geometry and they are bridges of analysis and geometry. There are some elegant works on isoperimetric inequalities; see [2; 7; 14; 24].

Let $x : M^n \rightarrow \mathbb{S}^{n+1} \subset \mathbb{R}^{n+2}$ be a closed immersed minimal hypersurface in the unit sphere and denote by $\nu(x)$ a (local) unit normal vector field of M^n, ∇ and ∇_{ν} be the Levi–Civita connections on M^n and \mathbb{S}^{n+1}, respectively. Let A be the shape operator with respect to ν, i.e., $A(X) = -\nabla_X \nu$. The squared length of the second fundamental form is $S = \|A\|^2$. For any unit vector $a \in \mathbb{S}^{n+1}$, the height functions are defined as

$$\varphi_a(x) = \langle x, a \rangle, \quad \psi_a(x) = \langle \nu, a \rangle.$$

These two functions are very basic and important. For instance, the well known Takahashi theorem [18] states that M^n is minimal if and only if there exists a constant λ such that $\Delta \varphi_a = -\lambda \varphi_a$ for all $a \in \mathbb{S}^{n+1}$. Analogously, Ge and Li [10] gave a Takahashi-type theorem, i.e., an immersed hypersurface M^n in \mathbb{S}^{n+1} is minimal and has constant scalar curvature (CSC) if and only if $\Delta \psi_a = \lambda \psi_a$ for some constant λ independent of $a \in \mathbb{S}^{n+1}$. This condition is linked to the famous

Li the corresponding author. F. G. Li is partially supported by NSFC (No. 12171037, 12271040) and China Postdoctoral Science Foundation (No. 2022M720261). N. Chen is partially supported by the start-up funding for research provided by Beijing Normal University (No. 310432120).

MSC2020: 53A10, 53C24, 53C42.

Keywords: isoperimetric inequality, minimal hypersurface, nodal set, Cheeger’s isoperimetric constant.

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
Chern conjecture (see [4; 15; 22; 20; 23]), which states that a closed immersed minimal CSC hypersurface of \(\mathbb{S}^{n+1} \) is isoparametric.

Let \(\{ |\varphi_a| \geq t \} = \{ x \in M^n : |\varphi_a| = t \} \) and \(\{ |\varphi_a| = t \} = \{ x \in M^n : |\varphi_a| = t \} \). In particular, due to \(\Delta \varphi_a = -n \varphi_a \) and \(a \in \mathbb{S}^{n+1} \),

\[
\{ \varphi_a = 0 \} = \{ x \in M^n : \varphi_a = 0 \}
\]
is the nodal set of the eigenfunction \(\varphi_a \). Here, the zero set of the eigenfunction of an elliptic operator, and its complement are called the nodal set, and nodal domain, respectively. Suppose \(S_{\max} = \sup_{p \in M^n} S(p) \),

\[
\theta_1 = \frac{\int_M S}{2nS_{\max} \text{Vol}(M^n)}, \quad \theta_2 = \frac{n}{4n^2 - 3n + 1} \left(\frac{\int_M S}{\text{Vol}(M^n)} \right)^2,
\]
and

\[
C_1 = \max\{\theta_1, \theta_2\}, \quad C_2 = \inf_{s \leq r \leq 1} \frac{2 + nr \ln((1-s^2)/(1-r^2))}{2 + n \ln((1-s^2)/(1-r^2))}.
\]

We use Vol to represent the volume measure in this paper and the following special isoperimetric inequality is the main result.

Theorem 1.1. Let \(M^n \) be a closed immersed, nontotally geodesic, minimal hypersurface in \(\mathbb{S}^{n+1} \):

(i) For all \(0 \leq s < 1 \) and \(a \in \mathbb{S}^{n+1} \), the following inequality holds:

\[
\text{Vol}\{ |\varphi_a| = s \} \geq C(n, s, S) \text{Vol}\{ |\varphi_a| \geq s \},
\]

where

\[
C(n, s, S) = \begin{cases} \frac{nC_1}{2C_2}, & s = 0; \\ \frac{C_1}{C_2 \sqrt{1-s^2}}, & 0 < s \leq \min\{ \sqrt{C_1}, \frac{C_1}{C_2} \}; \\ \frac{ns}{\sqrt{1-s^2}}, & \min\{ \sqrt{C_1}, \frac{C_1}{C_2} \} < s < 1. \end{cases}
\]

(ii) \(\frac{(n + 1) \text{Vol}(\mathbb{S}^{n+1})}{n \text{Vol}(\mathbb{S}^n)} \sup_{a \in \mathbb{S}^{n+1}} \text{Vol}\{ \varphi_a = 0 \} \geq \text{Vol}(M^n). \)

Obviously, if \(M^n \) is a closed immersed minimal CSC hypersurface (nontotally geodesic) in \(\mathbb{S}^{n+1} \), then \(C_1 = \theta_1 = 1/2n \) in Theorem 1.1 and one has

Corollary 1.2. Let \(M^n \) be a closed immersed, nontotally geodesic, minimal CSC hypersurface in \(\mathbb{S}^{n+1} \). Then for all \(0 \leq s < 1 \) and \(a \in \mathbb{S}^{n+1} \), the following inequality holds:

\[
\text{Vol}\{ |\varphi_a| = s \} \geq C(n, s) \text{Vol}\{ |\varphi_a| \geq s \},
\]
where
\[
C(n, s) = \begin{cases}
\frac{1}{4C_2^2}, & s = 0; \\
\frac{1}{2C_2\sqrt{1-s^2}}, & 0 < s \leq \min\left\{\sqrt{\frac{1}{2n}}, \frac{1}{2nC_2}\right\}; \\
\frac{ns}{\sqrt{1-s^2}}, & \min\left\{\sqrt{\frac{1}{2n}}, \frac{1}{2nC_2}\right\} < s < 1.
\end{cases}
\]

More precisely, Corollary 1.2 implies that the condition of constant scalar curvature has strong rigidity for minimal hypersurfaces, since the constant \(C(n, s)\) depends only on \(n\) and \(s\). Hence, the volume of \(M^n\) is strongly restricted by the volume of nodal set of the eigenfunctions \(\varphi_a (a \in \mathbb{S}^{n+1})\) for minimal CSC hypersurfaces (nontotally geodesic), i.e.,
\[
C_0(n) \text{ Vol} \{\varphi_a = 0\} \geq \text{Vol}(M^n),
\]
where \(C_0(n) = C(n, 0) = 4 \inf_{0 \leq r \leq 1}(2 - nr \ln(1 - r^2))/(2 - n \ln(1 - r^2))\). Besides, this rigid property provides some evidence for the Chern conjecture.

Remark 1.3. Under the conditions of Corollary 1.2, if \(M^n\) is an integral-Einstein (see Definition 3.1) minimal CSC hypersurface in \(\mathbb{S}^{n+1}\) (or CSC hypersurface with \(S > n\) and constant third mean curvature), then the constant \(C(n, s)\) can be improved (see Corollary 3.2).

In 1984, Cheng, Li and Yau [6] proved that if \(M^n\) is a closed immersed minimal hypersurface in \(\mathbb{S}^{n+1}\) and \(M^n\) is nontotally geodesic, then
\[
\text{Vol}(M^n) > \left(1 + \frac{3}{B_n}\right) \text{Vol}(\mathbb{S}^n),
\]
where \(\tilde{B}_n = 2n + 3 + 2 \exp(2n\tilde{C}_n)\) and \(\tilde{C}_n = \frac{1}{2} n^{n/2} e\Gamma(n/2, 1)\). Thus, we have:

Corollary 1.4. Let \(M^n\) be a closed immersed, nontotally geodesic, minimal CSC hypersurface in \(\mathbb{S}^{n+1}\). Then there is a positive constant \(\epsilon(n) > 0\), depending only on \(n\), such that
\[
\text{Vol}\{\varphi_a = 0\} \geq \epsilon(n) \text{Vol}(\mathbb{S}^n) \quad \text{for all} \ a \in \mathbb{S}^{n+1},
\]
where \(\epsilon(n) > \frac{1}{4}(1 + 3/\tilde{B}_n) \sup_{0 \leq r \leq 1}((2 - n \ln(1 - r^2))/(2 - nr \ln(1 - r^2)))\).

Let \(h(M)\) denote the Cheeger isoperimetric constant (see Definition 4.1), we have:

Theorem 1.5. Let \(M^n\) be a closed immersed, nontotally geodesic, minimal hypersurface in \(\mathbb{S}^{n+1}\). Then for all \(a \in \mathbb{S}^{n+1}\) we have
\[
\text{Vol}\{\varphi_a = 0\} \geq \frac{2\sqrt{n+1}C_1}{C_0(n)} h(M) \text{Vol}(M^n).
\]
In particular, we have the following assertions:
(i) If M^n is embedded, then $h(M) > \frac{1}{10}(-\delta(n-1) + \sqrt{\delta^2(n-1)^2 + 5n})$, where
$\delta = \sqrt{(S_{\text{max}} - n)/n}$.

(ii) If the image of M^n is invariant under the antipodal map (i.e., M^n is radially symmetrical), then $\text{Vol}\{\varphi_a = 0\} \geq \frac{1}{2} h(M) \text{Vol}(M^n)$.

2. Preliminary lemmas

In this section, we will prove Lemma 2.3 by Proposition 2.1 and Lemma 2.2. A direct calculation shows:

Proposition 2.1 [10; 13]. For all $a \in S^{n+1}$, we have

$$\nabla \varphi_a = a^T, \quad \nabla \psi_a = -A(a^T),$$

$$\Delta \varphi_a = -n \varphi_a + nH \psi_a, \quad \Delta \psi_a = -n(\nabla H, a) + nH \varphi_a - S \psi_a.$$

where $a^T \in \Gamma(TM)$ denotes the tangent component of a along M^n; A is the shape operator with respect to ν, i.e., $A(X) = -\nabla_X \nu$; $S = \|A\|^2 = \text{tr}(AA^t)$ and $H = \frac{1}{n} \text{tr} A$ is the mean curvature.

Lemma 2.2 [10]. Let M^n be a closed immersed minimal hypersurface in S^{n+1} with the squared length of the second fundamental form S:

(i) If $S \not\equiv 0$, then

$$\frac{\int_M S}{2nS_{\text{max}}} \leq \inf_{a \in S^{n+1}} \int_M \varphi_a^2.$$

The equality holds if and only if $S \equiv n$ and M^n is the minimal Clifford torus $S^1(\sqrt{1/n}) \times S^{n-1}(\sqrt{(n-1)/n})$.

(ii) If S has no restrictions, then

$$\frac{n}{4n^2 - 3n + 1} \left(\int_M S \right)^2 \leq \int_M S^2 \inf_{a \in S^{n+1}} \int_M \varphi_a^2.$$

The equality holds if and only if M^n is an equator.

Lemma 2.3. Let M^n be a closed immersed, nontotally geodesic, minimal hypersurface in S^{n+1}. Then for all $0 \leq s \leq r \leq 1$ and $a \in S^{n+1}$, the following inequality holds:

$$\int_{\{|\varphi_a| \geq s\}} \varphi_a^2 \leq \frac{2 + nr \ln((1-s^2)/(1-r^2))}{2 + n \ln((1-s^2)/(1-r^2))} \int_{\{|\varphi_a| \geq s\}} |\varphi_a|.$$

Proof. By Proposition 2.1, we have

$$\nabla \varphi_a = a^T, \quad \Delta \varphi_a = -n \varphi_a,$$

for all $a \in S^{n+1}$. Hence, by the divergence theorem and

$$|a^T|^2 + \psi_a^2 + \varphi_a^2 = 1,$$
for all $0 < t \leq 1$ one has

$$
(2-2) \int_{\{|\varphi_a| \geq t\}} |\varphi_a| = \int_{\{|\varphi_a| = t\}} \frac{|a^T|}{n} = \int_{\{|\varphi_a| = t\}} \frac{\sqrt{1 - \varphi_a^2 - \psi_a^2}}{n} \leq \int_{\{|\varphi_a| = t\}} \frac{\sqrt{1 - t^2}}{n},
$$

where $\{|\varphi_a| \geq t\} = \{x \in M^n : |\varphi_a| \geq t\}$ and $\{|\varphi_a| = t\} = \{x \in M^n : |\varphi_a| = t\}$. Due to the coarea formula, (2-1) and (2-2), for all $0 \leq s < r \leq 1$ we obtain

$$
(2-3) \int_{\{s \leq |\varphi_a| \leq r\}} |\varphi_a| = \int_s^r \int_{\{|\varphi_a| = t\}} \frac{|\varphi_a|}{|a^T|} = \int_s^r \int_{\{|\varphi_a| = t\}} \frac{|\varphi_a|}{\sqrt{1 - \varphi_a^2 - \psi_a^2}} \geq \int_s^r \int_{\{|\varphi_a| \geq t\}} \frac{t}{\sqrt{1 - t^2}} \frac{n}{\sqrt{1 - t^2}} |\varphi_a|
$$

$$
= \int_s^r \int_{\{|\varphi_a| \geq t\}} \frac{nt}{1 - t^2} |\varphi_a| \geq \int_s^r |\varphi_a| \int _s^r \frac{nt}{1 - t^2} = \frac{n}{2} \ln \left(\frac{1 - s^2}{1 - r^2}\right) \int_{\{|\varphi_a| \geq r\}} |\varphi_a|.
$$

For all $0 \leq s < r \leq 1$, by $0 \leq \varphi_a^2 \leq |\varphi_a| \leq 1$ we have

$$
(2-4) \int_{\{|\varphi_a| \geq s\}} \varphi_a^2 = \int_{\{|\varphi_a| \geq r\}} \varphi_a^2 + \int_{\{s \leq |\varphi_a| < r\}} \varphi_a^2
$$

$$
\leq \int_{\{|\varphi_a| \geq r\}} \varphi_a^2 + \int_{\{s \leq |\varphi_a| < r\}} |\varphi_a|
$$

$$
= \int_{\{|\varphi_a| \geq r\}} \varphi_a^2 + r \int_{\{|\varphi_a| \geq s\}} |\varphi_a| - r \int_{\{|\varphi_a| \geq r\}} |\varphi_a|
$$

$$
\leq (1 - r) \int_{\{|\varphi_a| \geq r\}} \varphi_a^2 + r \int_{\{|\varphi_a| \geq s\}} |\varphi_a|
$$

$$
\leq (1 - r) \int_{\{|\varphi_a| \geq r\}} |\varphi_a| + r \int_{\{|\varphi_a| \geq s\}} |\varphi_a|.
$$

Thus, for all $0 \leq s, r, u \leq 1$ and $s < r$, by (2-3) and (2-4) we have

$$
\int_{\{|\varphi_a| \geq s\}} \varphi_a^2 \leq r \int_{\{|\varphi_a| \geq s\}} |\varphi_a| + (1 - r) \int_{\{|\varphi_a| \geq r\}} |\varphi_a|
$$

$$
= r \int_{\{|\varphi_a| \geq s\}} |\varphi_a| + (1 - r) \left[u \int_{\{|\varphi_a| \geq r\}} |\varphi_a| + (1 - u) \int_{\{|\varphi_a| \geq s\}} |\varphi_a| \right]
$$

$$
\leq r \int_{\{|\varphi_a| \geq s\}} |\varphi_a| + (1 - r) \left[\frac{2u \int_{\{s \leq |\varphi_a| \leq r\}} |\varphi_a|}{n \ln((1 - s^2)/(1 - r^2))} + (1 - u) \int_{\{|\varphi_a| \geq r\}} |\varphi_a| \right].
$$

Choosing

$$
\frac{2u_0}{n \ln((1 - s^2)/(1 - r^2))} = 1 - u_0,
$$
we have

\[(2-5) \quad u_0 = \frac{n \ln((1 - s^2)/(1 - r^2))}{2 + n \ln((1 - s^2)/(1 - r^2))}.\]

Hence, by Section 2 and (2-5) we have

\[
\int_{\{|\varphi_a| \geq s\}} \varphi_a^2 \leq r \int_{\{|\varphi_a| \geq s\}} |\varphi_a| + (1 - r)(1 - u_0) \left(\int_{\{s \leq |\varphi_a| \leq r\}} |\varphi_a| + \int_{\{|\varphi_a| \geq r\}} |\varphi_a| \right)
\]

\[
= [r + (1 - r)(1 - u_0)] \int_{\{|\varphi_a| \geq s\}} |\varphi_a|
\]

\[
= \frac{2 + nr \ln((1 - s^2)/(1 - r^2))}{2 + n \ln((1 - s^2)/(1 - r^2))} \int_{\{|\varphi_a| \geq s\}} |\varphi_a|. \square
\]

In particular, setting \(s = 0 \) in Lemma 2.3, we obtain

Corollary 2.4. Let \(M^n \) be a closed immersed, nontotally geodesic, minimal hypersurface in \(\mathbb{S}^{n+1} \). Then for all \(a \in \mathbb{S}^{n+1} \), the following inequality holds:

\[
\int_M \varphi_a^2 \leq \frac{C_0(n)}{4} \int_M |\varphi_a|,
\]

where \(C_0(n) = 4 \inf_{0 \leq r \leq 1} (2 - nr \ln(1 - r^2))/(2 - n \ln(1 - r^2)) \).

3. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1 by Lemmas 2.2 and 2.3.

Proof of Theorem 1.1. Case (i). Since \(M^n \) is a closed minimal hypersurface (nontotally geodesic) in \(\mathbb{S}^{n+1} \), by Lemma 2.2 we have

\[(3-1) \quad \inf_{a \in \mathbb{S}^{n+1}} \int_M \varphi_a^2 \geq C_1 \text{Vol}(M^n),\]

where \(C_1 = \max\{\theta_1, \theta_2\} \) and

\[
\theta_1 = \frac{\int_M S}{2n S_{\max} \text{Vol}(M^n)}, \quad \theta_2 = \frac{n}{4n^2 - 3n + 1} \frac{(\int_M S)^2}{\text{Vol}(M^n) \int_M S^2}.
\]
On one hand, if \(C_1 \geq s^2 \), then (3-1) shows

\[
(3-2) \quad \int_{\{ |\varphi_a| \geq s \}} \varphi_a^2 = \int_M \varphi_a^2 - \int_{\{ |\varphi_a| < s \}} \varphi_a^2 \\
\geq \int_M C_1 - \int_{\{ |\varphi_a| < s \}} s^2 \\
= \int_{\{ |\varphi_a| \geq s \}} C_1 + \int_{\{ |\varphi_a| < s \}} (C_1 - s^2) \\
\geq \int_{\{ |\varphi_a| \geq s \}} C_1.
\]

By Lemma 2.3, (2-2) and (3-2), we obtain

\[
\int_{\{ |\varphi_a| \geq s \}} C_1 \leq \int_{\{ |\varphi_a| \geq s \}} \varphi_a^2 \leq C_2 \int_{\{ |\varphi_a| \geq s \}} |\varphi_a| \leq C_2 \int_{\{ |\varphi_a| = s \}} \sqrt{1 - s^2} \frac{n}{1},
\]

where \(C_2 = \inf_{r \leq 1} (2 + nr \ln((1 - s^2)/(1 - r^2)))/(2 + n \ln((1 - s^2)/(1 - r^2))) \).

Thus

\[
(3-3) \quad \text{Vol} \{ |\varphi_a| = s \} \geq \frac{nC_1}{C_2 \sqrt{1 - s^2}} \text{Vol} \{ |\varphi_a| \geq s \} \quad (\sqrt{C_1} \geq s > 0).
\]

In particular, if \(s = 0 \), then

\[
\lim_{s \to 0^+} \text{Vol} \{ |\varphi_a| = s \} = \lim_{s \to 0^+} \text{Vol} \{ \varphi_a = s \} + \lim_{s \to 0^+} \text{Vol} \{ \varphi_a = -s \} = 2 \text{Vol} \{ \varphi_a = 0 \},
\]

and

\[
\lim_{s \to 0^+} \text{Vol} \{ |\varphi_a| \geq s \} = \text{Vol} \{ |\varphi_a| \geq 0 \} = \text{Vol}(M^n).
\]

By (3-3), one has

\[
(3-4) \quad \text{Vol} \{ \varphi_a = 0 \} \geq \frac{nC_1}{2C_2} \text{Vol} \{ |\varphi_a| \geq 0 \} = \frac{nC_1}{2C_2} \text{Vol}(M^n).
\]

On the other hand, by (2-2), we have

\[
\int_{\{ |\varphi_a| \geq s \}} s \leq \int_{\{ |\varphi_a| \geq s \}} |\varphi_a| \leq \int_{\{ |\varphi_a| = s \}} \sqrt{1 - s^2} \frac{n}{n} \quad (1 > s > 0).
\]

Hence

\[
(3-5) \quad \text{Vol} \{ |\varphi_a| = s \} \geq \frac{ns}{\sqrt{1 - s^2}} \text{Vol} \{ |\varphi_a| \geq s \} \quad (1 > s > 0).
\]

Choose

\[
\frac{ns}{\sqrt{1 - s^2}} = \frac{nC_1}{C_2 \sqrt{1 - s^2}},
\]

which implies that \(s = C_1/C_2 \). Then we have the following discussions:
(1) If $s = 0$, (3-4) implies

$$\text{Vol} \{ \phi_a = 0 \} \geq \frac{nC_1}{2C_2} \text{Vol} \{ |\phi_a| \geq 0 \} = \frac{nC_1}{2C_2} \text{Vol}(M^n).$$

(2) If $0 < s \leq \min\{\sqrt{C_1}, C_1/C_2\}$, (3-3) implies

$$\text{Vol} \{ |\phi_a| = s \} \geq \frac{nC_1}{C_2 \sqrt{1 - s^2}} \text{Vol} \{ |\phi_a| \geq s \}.$$

(3) If $\min\{\sqrt{C_1}, C_1/C_2\} < s < 1$, (3-5) implies

$$\text{Vol} \{ |\phi_a| = s \} \geq \frac{ns}{\sqrt{1 - s^2}} \text{Vol} \{ |\phi_a| \geq s \}.$$

Case (ii). By Proposition 2.1, we have

$$\nabla \phi_a = a^T, \quad \Delta \phi_a = -n \phi_a,$$

for all $a \in S^{n+1}$. Hence, by the divergence theorem and $S \neq 0$, one has

$$\int_M |\phi_a| = \int_{\{\phi_a > 0\}} \phi_a - \int_{\{\phi_a \leq 0\}} \phi_a = \int_{\{|\phi_a| = 0\}} 2|a^T| n^{-1}.$$}

Since

$$\int_{a \in S^{n+1}} |\phi_a| = 2 \text{Vol}(B^{n+1}) = \frac{2}{n+1} \text{Vol}(S^n),$$

we have

$$\frac{2}{n+1} \text{Vol}(S^n) \text{Vol}(M^n) = \int_{a \in S^{n+1}} \int_{x \in M} |\phi_a| = \int_{a \in S^{n+1}} \int_{|\phi_a| = 0} 2|a^T| n^{-1}.$$}

By (2-1), one has

$$\text{Vol}(M^n) \leq \frac{(n + 1) \text{Vol}(S^{n+1})}{n \text{Vol}(S^n)} \sup_{a \in S^{n+1}} \text{Vol}\{\phi_a = 0\}. \quad \square$$

Combining the intrinsic and extrinsic geometry, Ge and Li generalized Einstein manifolds to integral-Einstein (IE) submanifolds in [10].

Definition 3.1 [10]. Let M^n ($n \geq 3$) be a compact submanifold in the Euclidean space \mathbb{R}^N. Then M^n is an IE submanifold if and only if for any unit vector $a \in S^{N-1}$

$$\int_M \left(\text{Ric} - \frac{R}{n} g \right) (a^T, a^T) = 0,$$

where $a^T \in \Gamma(TM)$ denotes the tangent component of the constant vector a along M^n; Ric is the Ricci curvature tensor and R is the scalar curvature.
Corollary 3.2. Let M^n be a closed immersed, nontotally geodesic, minimal hypersurface in S^{n+1}. If it is IE and CSC (or CSC with $S > n$ and constant third mean curvature), then for all $0 \leq s < 1$ and $a \in S^{n+1}$, the following inequality holds:

$$\text{Vol}\{|\varphi_a| = s\} \geq C(n, s) \text{Vol}\{|\varphi_a| \geq s\},$$

where

$$C(n, s) = \begin{cases} \frac{n}{2(n+2)c_2}, & s = 0; \\ \frac{n}{(n+2)c_2\sqrt{1-s^2}}, & 0 < s \leq \min\left\{\sqrt{\frac{1}{n+2}}, \frac{1}{(n+2)c_2}\right\}; \\ \frac{ns}{\sqrt{1-s^2}}, & \min\left\{\sqrt{\frac{1}{n+2}}, \frac{1}{(n+2)c_2}\right\} < s < 1. \end{cases}$$

Proof. If M^n is minimal, IE and CSC, then [10] showed that

$$\int_M \varphi_a^2 = \frac{1}{n+2} \text{Vol}(M^n), \quad a \in S^{n+1}.$$

Thus, $C_1 = 1/(n+2)$ in Theorem 1.1. For a closed minimal CSC hypersurface in S^{n+1} with $S > n$ and constant third mean curvature, Ge and Li proved that it is an IE hypersurface in [10]. Thus, Corollary 3.2 is also true in this case. □

4. Proof of Theorem 1.5

In this section, we will discuss the Cheeger isoperimetric constant of minimal hypersurfaces in S^{n+1}.

Definition 4.1 [5]. The Cheeger isoperimetric constant of a closed Riemannian manifold M^n is defined as

$$h(M) = \inf_H \frac{\text{Vol}(H)}{\min\{\text{Vol}(M_1), \text{Vol}(M_2)\}},$$

where the infimum is taken over all the submanifolds H of codimension 1 of M^n; M_1 and M_2 are submanifolds of M^n with their boundaries in H and satisfy $M = M_1 \cup M_2 \cup H$ (a disjoint union).

Remark 4.2. Let M^n be a closed, immersed, minimal hypersurface in S^{n+1}, which is nontotally geodesic. Since there is a vector $a \in S^{n+1}$ such that $\text{Vol}\{\varphi_a > 0\} = \text{Vol}\{\varphi_a < 0\}$, we have

$$h(M) \leq \sup_{a \in S^{n+1}} \frac{2\text{Vol}\{\varphi_a = 0\}}{\text{Vol}(M^n)}.$$

Moreover, if the image of M^n is invariant under the antipodal map, then $\text{Vol}\{\varphi_a > 0\} = \text{Vol}\{\varphi_a < 0\}$ for all $a \in S^{n+1}$ and

$$h(M) \leq \inf_{a \in S^{n+1}} \frac{2\text{Vol}\{\varphi_a = 0\}}{\text{Vol}(M^n)}.$$
In 1970, Cheeger [5] gave the famous inequality between the first positive eigenvalue $\lambda_1(M)$ of the Laplacian and the Cheeger isoperimetric constant $h(M)$ (see Definition 4.1):

$$h^2(M) \leq 4\lambda_1(M).$$

Obviously, $\lambda_1(M) \leq n$ for minimal hypersurfaces in \mathbb{S}^{n+1} because of Proposition 2.1 and we have

$$h(M) \leq 2\sqrt{\lambda_1(M)} \leq 2\sqrt{n}.$$

The Yau conjecture [16] asserts that if M^n is a closed embedded minimal hypersurface of \mathbb{S}^{n+1}, then $\lambda_1(M) = n$. In particular, Choi and Wang [9] showed that $\lambda_1(M) \geq n/2$ and a careful argument (see [1, Theorem 5.1]) implied that the strict inequality holds, i.e., $\lambda_1(M) > n/2$. In addition, Tang and Yan [21; 19] proved the Yau conjecture in the isoparametric case. Choe and Soret [8] were able to verify the Yau conjecture for the Lawson surfaces and the Karcher-Pinkall-Sterling examples. For more details and references, please see the elegant survey by Brendle [1]. Besides, Buser [3] proved that:

Lemma 4.3 [3]. *If the Ricci curvature of a closed Riemannian manifold M^n is bounded below by $-(n-1)\delta^2$ ($\delta \geq 0$), then*

$$\lambda_1(M) \leq 2\delta(n-1)h(M) + 10h^2(M).$$

Next, we will prove Theorem 1.5 by Lemmas 2.2, 4.3 and Corollary 2.4.

Proof of Theorem 1.5. Without loss of generality, assuming that $\text{Vol} \{\varphi_a > 0\} \geq \text{Vol} \{\varphi_a < 0\}$, one has

$$h(M) \leq \frac{\text{Vol} \{\varphi_a = 0\}}{\text{Vol} \{\varphi_a < 0\}}. \tag{4-2}$$

For $\text{Vol} \{\varphi_a > 0\} \leq \text{Vol} \{\varphi_a < 0\}$, the proof is similar and the following estimates of inequalities can be found in Ge and Li [11]. By Proposition 2.1, for any $a \in \mathbb{S}^{n+1}$, $\int_M \varphi_a = 0$. Thus

$$\int_{\{\varphi_a > 0\}} \varphi_a = \int_{\{\varphi_a < 0\}} -\varphi_a = \frac{1}{2} \int_M |\varphi_a|. \tag{4-3}$$

The divergence theorem shows that

$$\int_{\{\varphi_a < 0\}} \Delta \varphi_a^2 = 0,$$
and by $\Delta \varphi_a^2 = -2n\varphi_a^2 + 2|a^T|^2$, one has

$$n \int_{\{\varphi_a < 0\}} \varphi_a^2 = \int_{\{\varphi_a < 0\}} |a^T|^2. \tag{4-4}$$

Then, due to (2-1) and (4-4), we have

$$(n + 1) \int_{\{\varphi_a < 0\}} \varphi_a^2 \leq \int_{\{\varphi_a < 0\}} 1. \tag{4-5}$$

By the Cauchy-Schwarz inequality and (4-5), one has

$$\sqrt{\frac{1}{n + 1} \int_{\{\varphi_a < 0\}} 1} \geq \sqrt{\int_{\{\varphi_a < 0\}} 1 \int_{\{\varphi_a < 0\}} \varphi_a^2} \geq \int_{\{\varphi_a < 0\}} -\varphi_a. \tag{4-6}$$

By Corollary 2.4, (4-2), (4-3) and (4-6), we have

$$\frac{\text{Vol} \{\varphi_a = 0\}}{h(M)} \geq \frac{\text{Vol} \{\varphi_a < 0\}}{2} \geq \frac{2\sqrt{n + 1}}{C_0(n)} \int_M |\varphi_a|^2 \geq \frac{2\sqrt{n + 1}C_1}{C_0(n)} h(M) \text{Vol} (M^n).$$

Hence, by Lemma 2.2 we have

$$\text{Vol} \{\varphi_a = 0\} \geq \frac{2\sqrt{n + 1}C_1}{C_0(n)} h(M) \int_M \varphi_a^2 \geq \frac{2\sqrt{n + 1}C_1}{C_0(n)} h(M) \text{Vol} (M^n).$$

Case (i). Since M^n is a minimal hypersurface in \mathbb{S}^{n+1}, the Ricci curvature is given by

$$\text{Ric}(X, Y) = (n - 1)g(X, Y) - g(AX, AY), \quad X, Y \in \mathfrak{X}(M).$$

Let $\lambda_1(A), \lambda_2(A), \ldots, \lambda_n(A)$ denote the eigenvalues of the shape operator A. We obtain

$$\sum_{i=1}^{n} \lambda_i = 0, \quad \sum_{i=1}^{n} \lambda_i^2 = \|A\|^2 = S,$$

and

$$0 = \sum_{i,j=1}^{n} \lambda_i \lambda_j$$

$$= \lambda_1^2 + 2 \sum_{j=2}^{n} \lambda_1 \lambda_j + \sum_{i,j=2}^{n} \lambda_i \lambda_j$$

$$\leq -\lambda_1^2 + \sum_{i,j=2}^{n} \frac{\lambda_i^2 + \lambda_j^2}{2}$$

$$= (n - 1)S - n\lambda_1^2.$$
Thus
\[\text{Ric}(X, X) \geq (n - 1 - \lambda_1^2)g(X, X) \geq -(n - 1)\frac{S-n}{n}g(X, X). \]

By Lemma 4.3 and \(\lambda_1(M) > n/2 \) (see Choi–Wang [9] and Brendle [1]), one has
\[\frac{n}{2} < \lambda_1(M) \leq 2\delta(n-1)h(M) + 10h^2(M). \]

Note that \(S_{\text{max}} \geq n \) for all nontotally geodesic minimal hypersurfaces in \(\mathbb{S}^{n+1} \) by Simons’ inequality [17]
\[\int_M S(S-n) \geq 0. \]

Setting \(\delta = \sqrt{(S_{\text{max}}-n)/n} \), we have
\[h(M) > -\delta(n-1) + \sqrt{\delta^2(n-1)^2 + 5n}. \]

Case (ii). If the image of \(M^n \) is invariant under the antipodal map, the proof is complete by Remark 4.2.

\textbf{Remark 4.4.} If \(M^n \) is a minimal isoparametric hypersurface with \(g \geq 2 \) distinct principal curvatures in \(\mathbb{S}^{n+1} \), then \(\lambda_1(M) = n \) (see Tang–Yan [19]), \(S \equiv (g-1)n \) and \(\delta = \sqrt{g-2} \) (2 \(\leq g \leq 6 \)). Thus, (4-1) implies that
\[h(M) \geq -\sqrt{g-2}(n-1) + \sqrt{(g-2)(n-1)^2 + 10n}. \]

In fact, Muto [12] carefully estimated the Cheeger isoperimetric constant of minimal isoparametric hypersurfaces and got better results.

\textbf{Remark 4.5.} Let \(M^n \) be a closed embedded minimal hypersurface in \(\mathbb{S}^{n+1} \). If \(S < c(n) \) and \(c(n) \) depends only on \(n \), then there is a positive constant \(\eta(n) > 0 \), depending only on \(n \), such that \(h(M) > \eta(n) \).

\textbf{Acknowledgments}

The authors sincerely thank the referee for their many valuable and constructive suggestions, which made this paper more readable. They also thank Professors Zizhou Tang and Jianquan Ge for their very detailed and valuable comments.

\textbf{References}

Received March 13, 2022. Revised November 24, 2022.

FAGUI LI
BEIJING INTERNATIONAL CENTER FOR MATHEMATICAL RESEARCH
PEKING UNIVERSITY
BEIJING
CHINA
faguili@bicmr.pku.edu.cn

and

SCHOOL OF MATHEMATICAL SCIENCES
LABORATORY OF MATHEMATICS AND COMPLEX SYSTEMS
BEIJING NORMAL UNIVERSITY
BEIJING
CHINA

NIANG CHEN
DEPARTMENT OF MATHEMATICS
FACULTY OF ARTS AND SCIENCES
BEIJING NORMAL UNIVERSITY AT ZHUHAI
ZHUHAI
CHINA
chenniang@bnu.edu.cn
PACIFIC JOURNAL OF MATHEMATICS
msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
blasius@math.ucla.edu

Matthias Aschenbrenner
Fakultät für Mathematik
Universität Wien
Vienna, Austria
mathias.aschenbrenner@univie.ac.at

Paul Balmer
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
balmer@math.ucla.edu

Robert Lipshitz
Department of Mathematics
University of Oregon
Eugene, OR 97403
lipshitz@uoregon.edu

Kefeng Liu
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
liu@math.ucla.edu

Paul Yang
Department of Mathematics
Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Vyjayanthi Chari
Department of Mathematics
University of California
Riverside, CA 92521-0135
chari@math.ucr.edu

Sorin Popa
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
popa@math.ucla.edu

PRODUCTION

Silvio Levy, Scientific Editor. production@msp.org

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2023 is US $605/year for the electronic version, and $820/year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 1945-5844 electronic, 0030-8730 printed) at the University of California, c/o Department of Mathematics, 798 Evans Hall #3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFlow® from Mathematical Sciences Publishers.

PUBLISHED BY

nonprofit scientific publishing
http://msp.org/

© 2023 Mathematical Sciences Publishers
Spike solutions for a fractional elliptic equation in a compact Riemannian manifold
IMENE BENDAHOU, ZIED KHEMIRI and FETHI MAHMOUDI

On slice alternating 3-braid closures
VITALIJS BREJEVS

Vanishing theorems and adjoint linear systems on normal surfaces in positive characteristic
MAKOTO ENOKIZONO

Constructing knots with specified geometric limits
URS FUCHS, JESSICA S. PURCELL and JOHN STEWART

An isoperimetric inequality of minimal hypersurfaces in spheres
FAGUI LI and NIANG CHEN

Boundary regularity of Bergman kernel in Hölder space
ZIMING SHI