
Pacific
Journal of
Mathematics

THE COHOMOLOGICAL BRAUER GROUP
OF WEIGHTED PROJECTIVE SPACES AND STACKS

MINSEON SHIN

Volume 324 No. 2 June 2023



PACIFIC JOURNAL OF MATHEMATICS
Vol. 324, No. 2, 2023

https://doi.org/10.2140/pjm.2023.324.353

THE COHOMOLOGICAL BRAUER GROUP
OF WEIGHTED PROJECTIVE SPACES AND STACKS

MINSEON SHIN

We compute the cohomological Brauer groups of twists of weighted projective
spaces and weighted projective stacks, generalizing Gabber’s computation of
the Brauer group of Brauer–Severi varieties. A key ingredient in our proof
is a description of the Brauer group of toric varieties due to DeMeyer, Ford,
Miranda (1993).

1. Introduction

Weighted projective spaces and stacks are a natural generalization of projective
space that often arise in the construction of certain moduli spaces. For example,
the moduli space of cubic surfaces is isomorphic to P(1, 2, 3, 4, 5), see, e.g., [13,
Section 9.4.5]. Over a field k of characteristic not 2 or 3, the moduli stack of elliptic
curves M1,1,k is isomorphic to an open substack of Pk(4, 6).

To recall the construction of weighted projective spaces and stacks, let n ≥ 1 and
let ρ = (ρ0, . . . , ρn) be an (n+ 1)-tuple of positive integers. For any field k, we
may define an equivalence relation on kn+1

\ {(0, . . . , 0)} by

(x0, . . . , xn)∼ (uρ0 x0, . . . , uρn xn)

for all units u ∈ k×. The weighted projective space PZ(ρ) is the scheme-theoretic
quotient of this action; it is the scheme whose k-rational points correspond to the
equivalence classes of this equivalence relation. Taking the stack-theoretic quotient
of the above action gives the weighted projective stack PZ(ρ) associated to ρ. If
every ρi is equal to 1, then PZ(ρ) and PZ(ρ) are isomorphic to the (unweighted)
projective space Pn .

In this paper, we are interested in the cohomological Brauer groups of étale twists
of weighted projective spaces and weighted projective stacks. For any scheme S,
we denote Br′(S) := H2

ét(S, Gm)tors the cohomological Brauer group of S. In
the unweighted case, an étale twist of projective space is called a Brauer–Severi
scheme; it is well known that to every Brauer–Severi scheme f : X→ S there is
an associated class [X ] ∈ Br′(S) and that the pullback of [X ] to Br′(X) is trivial.
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A theorem of Gabber states that the induced map Br′(S)/⟨[X ]⟩→ Br′(X) is in fact
an isomorphism.

Theorem 1.1 (Gabber [18, Chapter II, Theorem 2]). Let S be a scheme and let
f : X→ S be a Brauer–Severi scheme. Then the sequence

(1.1.1) 0(S, Z)→ Br′(S)
f ∗
−→ Br′(X)→ 0

is exact, where the first map sends 1 7→ [X ].

The purpose of this paper is to extend the above theorem to include weighted
projective spaces and stacks.

Theorem 1.2. Let fX : X→ S be a morphism of schemes such that there exists an
étale surjection S′→ S such that X ×S S′ ≃ PS′(ρ). Then there is a natural Brauer
class [X ] ∈ Br′(S) associated to X , and the sequence

(1.2.1) 0(S, Z)→ Br′(S)
f ∗X
−→ Br′(X)→ 0

is exact, where the first map sends 1 7→ [X ].

Theorem 1.3. Let S be a scheme, let fX :X→ S be a morphism of algebraic stacks
such that there exists an étale surjection S′→ S such that X ×S S′ ≃ PS′(ρ). Then
there is a natural Brauer class [X ] ∈ Br′(S) associated to X , and the sequence

(1.3.1) 0(S, Z)→ Br′(S)
f ∗X
−→ Br′(X )→ 0

is exact, where the first map sends 1 7→ [X ]. If π : X → X denotes the coarse
moduli space of X , then X satisfies the hypothesis of Theorem 1.2, and pullback
by π induces a commutative diagram

(1.3.2)

0(S, Z) Br′(S) Br′(X ) 0

0(S, Z) Br′(S) Br′(X) 0

f ∗X

f ∗X

× lcm(ρ) π∗

where the rows are (1.2.1) and (1.3.1) and the leftmost vertical map denotes
multiplication-by-lcm(ρ).

1.4. Outline of the paper. To prove Theorems 1.2 and 1.3, we show that R1 f∗Gm≃Z

and R2 f∗Gm = 0 and apply the Leray spectral sequence to the morphism f . For
the claim that R2 f∗Gm = 0, a deformation theory argument of Mathur (personal
communication, 2019) which uses a Tannaka duality result of Hall and Rydh [22],
reduces us to the case where S is the spectrum of a field. Here, the proofs of
Theorems 1.2 and 1.3 require different approaches (indeed, a Deligne–Mumford
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stack X and its coarse moduli space X may have nonisomorphic (Picard groups
and) Brauer groups in general).

As we recall in Section 3.2, a weighted projective space P(ρ) is a toric variety.
In Section 3, we use the results of DeMeyer, Ford and Miranda [11] on the Brauer
group of toric varieties to compute the Brauer group of P(ρ) over an algebraically
closed field; taking the prime-to-p limit of dilations of the toric variety reduces us
to computing the p-torsion when each weight ρi is a power of p. In Section 5 we
prove Theorem 1.3, for which the key observation turns out to be that the Gm-action
on An+1 extends to an action of the multiplicative monoid A1 on An+1.

2. Weighted projective spaces

In this section, we recall basic facts about weighted projective spaces (in particular,
regarding their Picard group Lemma 2.8 and cohomology of line bundles Lemma 2.9)
which will be used in the proof of Theorem 1.2. For general background on weighted
projective spaces, we refer to [12; 29].

2.1. For a weight vector ρ = (ρ0, . . . , ρn), the weighted projective space associated
to ρ is

PZ(ρ) := Proj Z[t0, . . . , tn],

where Z[t0, . . . , tn] has the Z-grading defined by deg(ti )= ρi . We set

PS(ρ) := PZ(ρ)×Spec Z S

for any scheme S. By [14, Lemme (2.1.6), Proposition (2.4.7)], the weighted
projective space PZ(ρ) is projective. Thus, if S is quasicompact and admits an
ample line bundle, then the same is true for PS(ρ); hence in this case Br = Br′

for PS(ρ) by a theorem of Gabber [9] (i.e., the Azumaya Brauer group coincides
with the cohomological Brauer group).

2.2. Suppose a positive integer d divides all ρi and set ρ/d := (ρ0/d, . . . , ρn/d).
Then there is a natural isomorphism PZ(ρ)≃PZ(ρ/d) by [14, Proposition (2.4.7)(i)],
and under this isomorphism OPZ(ρ/d)(ℓ) corresponds to OPZ(ρ)(dℓ) for all ℓ ∈ Z.

If ρ, σ are two weight vectors such that one is a permutation of the other, then
the corresponding weighted projective spaces PZ(ρ), PZ(σ ) are isomorphic. The
converse is not true in general, but is true if ρ, σ satisfy a certain “normalization”
condition.

Definition 2.3 (normalized weight vectors [2, Section 2]). We say that ρ=(ρ0,...,ρn)

satisfies (N) if, for all 0≤ i ≤ n, we have gcd({ρ j } j ̸=i )= 1.

Lemma 2.4 [2, Section 8]. Let ρ, σ be two weight vectors satisfying (N). We have
PZ(ρ)≃ PZ(σ ) if and only if ρ is a permutation of σ .
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By Lemma 2.5 below, every weight vector ρ has an associated normalized weight
vector ρ ′ such that ρ ′ satisfies (N) and PZ(ρ)≃ PZ(ρ ′). Thus in Theorem 1.2 we
may always assume that our weight vector ρ satisfies (N).

Lemma 2.5 (reduction of weights [10, Proposition 1.3; 12, Section 1.3.1; 2, Sections
1.3, 1.4]). Suppose gcd(ρ)= 1. Define the constants

di := gcd({ρ j } j ̸=i ), si := lcm({d j } j ̸=i ), s := lcm(s0, . . . , sn),

ρ ′i := ρi/si , ρ ′ := (ρ ′0, . . . , ρ
′

n)

and let R′ :=Z[t ′0, . . . , t ′n] be the ring with the Z-grading determined by deg(t ′i )=ρ ′i .
The ring homomorphism R′→ R sending t ′i 7→ tdi

i (which multiplies the degree
by s) induces an isomorphism

ϕ : PZ(ρ)→ PZ(ρ ′)

of schemes. We have

(2.5.1) lcm(ρ)= s · lcm(ρ ′)

since vp(lcm(ρ)) = αi0 and vp(lcm(ρ ′)) = αi0 − αin−1 for any prime p, in the
notation of [2, Section 1.2].

For any integer ℓ, there exists a unique pair (bi (ℓ), ci (ℓ)) ∈ Z2 satisfying
0 ≤ bi (ℓ) < di and ℓ = bi (ℓ)ρi + ci (ℓ) di ; set ℓ′ := ℓ −

∑n
i=0 bi (ℓ)ρi . The

multiplication-by-(tb0(ℓ)
0 · · · tbn(ℓ)

n ) map R(ℓ′) → R(ℓ) induces an isomorphism
OPZ(ρ)(ℓ

′)≃OPZ(ρ)(ℓ) of OPZ(ρ)-modules. Furthermore ℓ′ is divisible by s and we
obtain an isomorphism

OPZ(ρ′)(ℓ
′/s)≃ ϕ∗(OPZ(ρ)(ℓ))

of OPZ(ρ)-modules. In particular, we have

(2.5.2) ϕ∗(OPZ(ρ′)(ℓ))≃OPZ(ρ)(sℓ)

for all ℓ ∈ Z since bi (sℓ)= 0.

Remark 2.6. By Lemma 2.5, all weighted projective lines PZ(q0, q1) are isomor-
phic to P1

Z; thus, for Theorem 1.2, we may assume n ≥ 2.

Lemma 2.7. The sheaf OPZ(ρ)(r) is reflexive for any r ∈ Z. If ρ satisfies (N), the
sheaf OPZ(ρ)(r) is invertible if and only if lcm(ρ) divides r .

Lemma 2.8 (Picard group of P(ρ) [2, Section 6.1]). For any connected locally
Noetherian scheme S, the map

Z⊕Pic(S)→ Pic(PS(ρ))

sending
(ℓ,L) 7→OPS(ρ)(ℓ · lcm(ρ))⊗ f ∗S L

is an isomorphism. (See also [26, Section 6].)
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Proof. By Section 2.2, we may assume gcd(ρ) = 1. In [2] the desired claim is
proved assuming that ρ satisfies (N). If ρ does not satisfy (N), then we conclude
using (2.5.1) and (2.5.2). □

Lemma 2.9 (cohomology of OP(ρ)(ℓ) [10, Section 3]). Let A be a ring and set
X := PA(ρ).

(1) For ℓ≥ 0, the A-module H0(X,OX (ℓ)) is free with basis consisting of mono-
mials te0

0 · · · t
en
n such that e0, . . . , en ∈ Z≥0 and ρ0 e0+ · · ·+ ρn en = ℓ.

(2) For ℓ < 0, the A-module Hn(X,OX (ℓ)) is free with basis consisting of mono-
mials te0

0 · · · t
en
n such that e0, . . . , en ∈ Z<0 and ρ0 e0+ · · ·+ ρn en = ℓ.

(3) If (i, ℓ) ̸∈ ({0}×Z≥0)∪ ({n}×Z<0), then Hi (X,OX (ℓ))= 0.

(4) For any A-module M and any (i, ℓ), the canonical map

Hi (X,OX (ℓ))⊗A M→ Hi (X,OX (ℓ)⊗A M)

is an isomorphism.

Remark 2.10. The projection PZ(ρ) → Spec Z is a flat morphism of relative
dimension n, and its geometric fibers are normal. By [12, Section 1.3.3(iii)], we
have that PS(ρ)→ S is smooth if and only if PS(ρ)≃ Pn

S . If ρ satisfies (N), then
Lemma 2.4 implies that PS(ρ)≃ Pn

S if and only if ρ = (1, . . . , 1).

3. Over an algebraically closed field

In this section, we prove Lemma 3.1 (i.e., Theorem 1.2 when S = Spec k for an
algebraically closed field k). We will consider arbitrary fields in Lemma 4.1, and
generalize from fields to (strictly henselian) local rings in Lemma 4.3.

Lemma 3.1. If k is an algebraically closed field, then H2
ét(Pk(ρ), Gm)= 0.

Proof (outline of argument). In Section 3.2, we recall how to construct a fan 1 such
that Pk(ρ) is isomorphic to the toric variety X = X (1). In Section 3.3, we recall a
result of DeMeyer, Ford and Miranda giving an isomorphism

H2
ét(X, Gm)≃ Ȟ2(U, Gm),

where U denotes the standard affine open cover of the toric variety X (corresponding
to the maximal cones of the fan 1). We show (in Section 3.4 and Lemma 3.5) that it
suffices to show that the p-torsion vanishes, when each weight in ρ = (ρ0, . . . , ρn)

is a power of p. In Sections 3.7–3.9, we define a double complex A•,• such that the
spectral sequence {E•,•

•
} corresponding to the horizontal filtration on A•,• satisfies

Ȟp(U, Gm)≃ Ep,0
2 for all p. We compute E2,0

2 in Sections 3.10 and 3.11. □
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3.2. Presentation as a toric variety. We recall from [17, Section 2.2; 8, Exam-
ple 3.1.17] how to view a weighted projective space as a toric variety (i.e., what the
fan is).

Let U ∈ GLn+1(Z) be an invertible matrix which has ρ as its first row (using the
Euclidean algorithm, do column operations on ρ to reduce to (1, 0, . . . , 0), then
apply the inverse column operations in the reverse order on the identity matrix idn+1);
let Y ∈ Mat(n+1)×n(Z) be the matrix obtained by removing the leftmost column
of U−1; let v0, . . . , vn ∈ Zn be the rows of Y; then P(ρ) is isomorphic to the toric
variety associated to the fan 1 whose maximal cones are generated by the n-element
subsets of {v0, . . . , vn}.

3.3. Reduce to computing the subgroup of Zariski-locally trivial Brauer classes.
Let 1′ be a nonsingular subdivision of 1, and let X ′ be the toric variety associated
to 1′. The morphism of fans 1′→1 gives rise to a morphism of toric varieties
X ′→ X which is a resolution of singularities for X . As in [11], we set

H2(K/Xét, Gm) := ker(H2
ét(X, Gm)→ H2

ét(K , Gm)),

since X ′ is regular, the restriction H2
ét(X ′, Gm)→ H2

ét(K , Gm) is injective; hence
there is an exact sequence

0→ H2(K/Xét, Gm)→ H2
ét(X, Gm)→ H2

ét(X ′, Gm)

of abelian groups. Here X ′ is a smooth, proper, geometrically connected, rational
k-scheme; hence H2

ét(X ′, Gm) = 0 by birational invariance of the Brauer group
(see [21, corollaire 7.3] in characteristic 0 and [6, Corollary 5.2.6] in general);
thus it remains to compute H2(K/Xét, Gm). By [11, 4.3, 5.1], there are natural
isomorphisms

(3.3.1) Ȟ2(U, Gm)≃ H2
zar(X, Gm)≃ H2(K/Xét, Gm),

where U = {Uσ0, . . . , Uσn } is the Zariski cover of X corresponding to the set of
maximal cones of 1.

3.4. Limit of dilations. Let A be a ring and let X be the toric variety (over A)
associated to a fan 1 of cones in NQ. For any positive integer d , the multiplication-
by-d map ×d : N→ N induces a finite A-morphism

θd : X→ X,

which is equivariant for the d-th power map on tori. This is called a dilation [7,
Section 6] (or toric Frobenius [23, Remark 4.14]). For a cone σ of 1, this is the
A-algebra endomorphism of 0(Uσ ,OUσ

) = A[σ∨ ∩M] sending χm
7→ χdm for

m ∈ σ∨ ∩M. If σ is a smooth cone, then θd :Uσ →Uσ is flat for any d .
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We view N as a category whose objects correspond to positive integers m ∈N

and there is a morphism m1→m2 if m1 divides m2. Let S⊂N be a multiplicatively
closed subset; there is a functor Sop

→ (Sch) sending m 7→ X and {m1→ m2} 7→

θm2/m1 ; the limit
X1/S
:= lim
←−−

(θm2/m1 : X→ X)

of the resulting projective system is representable by a scheme since all the transition
maps are affine. The scheme X1/S is isomorphic to the monoid scheme obtained
by the usual construction with the finite free Z-module N and its dual M replaced
by the S−1Z-module S−1N and its dual S−1M = HomS−1Z(S−1N, S−1Z). More
precisely, set

U 1/S
σ := Spec A[σ∨ ∩ S−1M];

for any face τ of σ , the canonical map U 1/S
τ →U 1/S

σ is an open immersion; then
U 1/S

σ1 and U 1/S
σ2 are glued along the common open subscheme U 1/S

σ1∩σ2
.

If A is reduced, then we have

(3.4.1) 0(Uσ , Gm)= (A[σ∨ ∩M])× = A× · (σ⊥ ∩M)

for any cone σ ∈1; hence, by (3.3.1), the pullback

θ∗d : H
p
zar(X, Gm)→ Hp

zar(X, Gm)

is multiplication-by-d. In the limit, we obtain a natural isomorphism

(3.4.2) S−1(Hp
zar(X, Gm))≃ Hp

zar(X1/S, Gm)

of S−1Z-modules.

Lemma 3.5. Let d be a positive integer dividing ρi , and set ρ ′ := (ρ ′0, . . . , ρ
′
n)

where ρ ′i := ρi/d and ρ ′j := ρ j for j ̸= i . If d ∈ S, then PZ(ρ)1/S
≃ PZ(ρ ′)1/S .

Proof. As in Section 3.2, let U, U′ ∈ GLn+1(Z) be invertible matrices whose first
rows are ρ and ρ ′, respectively. Let U◦ ∈ GLn+1(S−1Z) be the matrix obtained by
dividing the i-th column of U by d; then (U◦)−1 is obtained by multiplying the
i-th row of U−1 by d; this does not change the cones since we are just replacing v′i
by 1

d v′i . Set V := U′ · (U◦)−1
∈GLn+1(S−1Z); since the first rows of U◦, U′ are the

same, the matrix V has the form

V=
[

1 0
V′ V′′

]
for some V′∈Matn×1(S−1Z) and V′′∈GLn(S−1Z). Let Y◦, Y′∈Mat(n+1)×n(S−1Z)

be the matrices obtained by removing the leftmost column of (U◦)−1, (U′)−1 re-
spectively; then (U′)−1

·V= (U◦)−1 implies Y′ ·V′′ =Y◦; then V′′ : S−1N→ S−1N

induces the desired isomorphism PZ(ρ)1/S
→ PZ(ρ ′)1/S . □
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3.6. We show that H2
zar(X, Gm)= 0 by showing that the localization

H2
zar(X, Gm)⊗Z Z(p)

is 0 for every prime p. By (3.4.2) and Lemma 3.5, we may thus assume that

ρ = (1, pe1, . . . , pen )

for some nonnegative integers e1 ≤ · · · ≤ en . In this case, in Section 3.2 we may
take the first row of U to be ρ and the other rows to coincide with the identity idn+1,
so that

(3.6.1) Y=


−pe1 · · · −pen

1
. . .

1


and thus v0 = (−pe1, . . . ,−pen ) and vi is the i-th standard basis vector of Zn .

3.7. Definition of A•,•. For convenience, we set [n] := {0, 1, . . . , n}; we will use I
to denote a subset of [n]. We construct a double complex(

{Ap,q
}, {dp,q

v : A
p,q
→ Ap,q+1

}, {d
p,q
h : A

p,q
→ Ap+1,q

}
)

as follows: for −1≤ p ≤ n, we set

(3.7.1) Ap,1
=

⊕
|I |=n−p

Zn−p, Ap,0
=

⊕
|I |=n−p

Zn

and Ap,q
= 0 if (p, q) ̸∈ {−1, . . . , n}× {0, 1}.

For the vertical differential dp,0
v : A

p,0
→ Ap,1, the I -th component (with |I | =

n− p) of this map is the group homomorphism Zn
→ Zn−p whose corresponding

matrix has rows vi for i ∈ I .
The horizontal differentials dp,q

h are defined with the sign conventions as follows:
if I = {i0, . . . , in−p−1} ⊂ [n] is a subset of size |I | = n− p and I ′ is obtained by
removing the i-th element of I (where 0≤ i ≤ n− p− 1), then the restriction from
the I -th to I ′-th components has sign (−1)i .

The subcomplex of A•,• obtained by restricting to p ≥ 1 is isomorphic to the
morphism of Čech complexes

Č•(1,M)→ Č•(1,SF),

in the notation of [11, (5.0.1)].
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3.8. Diagram of A•,•. Here is a diagram of the double complex A•,•:

A−1,1 A0,1 A1,1 A2,1
· · · An−1,1 An,1

A−1,0 A0,0 A1,0 A2,0
· · · An−1,0 An,0

d
−1,1
h d

0,1
h d

1,1
h d

n−1,1
h

d
−1,1
h d

0,1
h d

1,1
h d

n−1,0
h

d
−1,0
v d

0,0
v d

1,0
v d

2,0
v d

n−1,0
v d

n,0
v

For a weighted projective surface (i.e., n = 2), this looks like

Z3 Z2
⊕Z2
⊕Z2 Z1

⊕Z1
⊕Z1 0

Z2 Z2
⊕Z2
⊕Z2 Z2

⊕Z2
⊕Z2 Z2

v0
v1
v2

 [
v0
v1

] [
v0
v2

] [
v1
v2

] [
v0

] [
v1

] [
v2

]

3.9. Let C•n be the complex with Ck
n=Z(n

k) and such that the differentials Ck
n→Ck+1

n
have sign conventions as above. Then C•n is isomorphic to a direct sum of shifts
of id : Z→ Z, and hence is exact. The complex A•,0 is isomorphic to the direct
sum (C•n+1)

n , and hence is exact. The complex A•,1 is isomorphic to the direct
sum (C•n−1)

n+1, and hence is exact. Let

(3.9.1)
(
{Ep,q

r }, {d
p,q
r : E

p,q
r → Ep+r,q−r+1

r }
)

denote the spectral sequence corresponding to the horizontal filtration on A•,•,
so that Ep,q

0 = Ap,q and dp,q
0 = d

p,q
v . Then there is a natural isomorphism

Ep,0
2 ≃ Ȟp(U, Gm),

where U is the Zariski open cover of X corresponding to the maximal cones of 1.
Since there are only two nonzero rows, the differentials

dp,1
2 : E

p,1
2 → Ep+2,0

2

are isomorphisms for all p. We are interested in Ȟ2(U, Gm)≃ E2,0
2 ≃ E0,1

2 .

3.10. For the differential d0,0
v : A

0,0
→ A0,1, the I -th component (with |I | = n) of

this map is the group homomorphism Zn
→ Zn whose corresponding matrix is

obtained by removing the i-th rows from Y (3.6.1) for i ̸∈ I ; hence

(3.10.1) E0,1
1 ≃

⊕
i∈[n]

Z/(pei ),
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where a generator of the i-th component Z/(pei ) is given by the image of the first
standard basis vector of Zn (see (3.7.1)).

For the differential d1,0
v : A

1,0
→ A1,1, the I -th component (with |I | = n− 1) of

this map is the group homomorphism Zn
→ Zn−1 whose corresponding matrix is

obtained by removing the i-th rows from Y (3.6.1) for i ̸∈ I ; hence

(3.10.2) E1,1
1 ≃

⊕
i1<i2

Z/(pmin{ei1 ,ei2 })

where a generator of the i-th component Z/(pmin{ei1 ,ei2 }) is given by the image of
the first standard basis vector of Zn−1 (see (3.7.1)).

3.11. We compute E0,1
2 = ker d0,1

1 / im d−1,1
1 in (3.9.1). With identifications as

in (3.10.1) and (3.10.2), the image of (x0, x1, . . . , xn) ∈ E0,1
1 under the differential

d0,1
1 : E0,1

1 → E1,1
1 has (i1, i2)-th coordinate (−1)i1 xi1 + (−1)i2−1xi2 . Suppose

(x0, x1, . . . , xn) ∈ ker d0,1
1 ; using the differential d−1,1

1 : E−1,1
1 → E0,1

1 , we may
assume that xn = 0 in Z/(pen ). Since en−1 ≤ en , the condition

(−1)n−1xn−1+ (−1)n−1xn = 0

in Z/(pen−1) forces xn−1 = 0 in Z/(pen−1). Using downward induction on i , we
conclude that xi = 0 in Z/(pei ) for all i . Thus we have E0,1

2 = 0.

Remark 3.12 (assumptions on the base field). In [11], there are two implicit
assumptions regarding the base field k:

(1) It is assumed that k is algebraically closed, as we do throughout Section 3 (this
assumption will be removed in Lemma 4.2). This is used to conclude that all closed
points are k-points and to identify the henselization and the strict henselization
at a closed point of a variety. In the proof of Lemma 4.1, the reference to [31,
Chapter VI, Section 14, Theorem 32, p. 92] (in showing that an affine toric variety
is analytically normal) requires k to be perfect (here we may also use [24, (33.I)
Theorem 79]).

(2) It is assumed that k has characteristic 0. This is used to conclude that (5.1.1) is
a split surjection; we only use their Lemmas 4.3 and 5.1, which do not depend
on the characteristic of k. (There are potential subtleties when considering the
Brauer group of (affine) toric varieties in positive characteristic; for example, if
k is an algebraically closed field of characteristic p, the Brauer group of A2

k has
nontrivial p-torsion by [4, Theorem 7.5]. These classes are not cup products since
H1

fppf(A
2
k , µp)= 0.)
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4. Over a general base scheme

In this section, we prove Theorem 1.2 for an arbitrary scheme S (see Section 4.4).
This is a Leray spectral sequence argument for the structure morphism f : X→ S.
For this, we show that R1 f∗Gm = Z and R2 f∗Gm = 0 (see Lemma 4.3).

We first generalize Lemma 3.1 to arbitrary fields:

Lemma 4.1. For any field k, the pullback map

H2
ét(Spec k, Gm)→ H2

ét(Pk(ρ), Gm)

is an isomorphism.

Proof. Let P ∈ (Pk(ρ))(k) be a k-point, and let α ∈ H2
ét(Pk(ρ), Gm) be a Brauer

class such that αP = 0 in H2
ét(Spec k, Gm). It suffices to show that α = 0; this

follows from Lemma 4.2, whose hypotheses are satisfied by Lemma 3.1. □

Lemma 4.2. Let A be a local ring, set X :=PA(ρ), let P ∈ X (A) be an A-rational
point and let α ∈ H2

ét(X, Gm) be a class such that αP = 0. If there exists a finite
faithfully flat A-algebra A′ such that αA′ = 0, then α = 0.

Proof. Let G→ X be the Gm-gerbe corresponding to α. Since GA′ is trivial, there is
a 1-twisted line bundle L′ on GA′ ; set A′′ := A′⊗A A′ and A′′′ := A′⊗A A′⊗A A′;
then there exists a line bundle L ′′ on X A′′ such that L ′′|GA′′

≃ (p∗1L
′)−1
⊗ p∗2L

′;
this line bundle L ′′ satisfies p∗13L ′′ ≃ p∗23L ′′ ⊗ p∗12L ′′; hence L ′′ is trivial since
p∗12, p∗13, p∗23 : Pic(X A′′)→ Pic(X A′′′) are the same maps Z→ Z (see Lemma 2.8).
Choose an isomorphism ϕ : p∗1L

′
→ p∗2L

′ of OGA′′
-modules; the isomorphisms p∗13ϕ

and p∗23ϕ ◦ p∗12ϕ differ by an element uα ∈ 0(X A′′′, Gm)≃ 0(A′′′, Gm). Since G|P
is trivial, we may refine the finite flat cover A→ A′ if necessary so that uα is the
coboundary of some uβ ∈ 0(X A′′, Gm). After modifying ϕ by this uβ , we have that
the descent datum (L′, ϕ) gives a 1-twisted line bundle on G. □

We use deformation theory of twisted sheaves to deduce Theorem 1.2 over strictly
henselian local rings:

Lemma 4.3. Let A be a strictly henselian local ring. Then H2
ét(PA(ρ), Gm)= 0.

Proof. This proof is an argument of Siddharth Mathur (personal communication,
2019). By standard limit techniques, we may assume that A is the strict henseliza-
tion of a localization of a finite type Z-algebra; in particular, A is excellent [20,
Corollary 5.6(iii)]. Let m be the maximal ideal of A and let k := A/m be the residue
field.

We first consider the case when A is complete. Set X :=PA(ρ) and let π :G→ X
be a Gm-gerbe corresponding to a class [G] ∈H2

ét(X, Gm). The class [G] is trivial if
and only if π admits a section. We have that G0 is a Gm-gerbe over X0 = Pk(ρ),
which is a trivial gerbe by Lemma 4.1 since k is separably closed. For ℓ ∈ N,
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set Xℓ := X ×Spec A Spec A/mℓ+1 and Gℓ := G ×X Xℓ. We have equivalences of
categories

Mor(X,G)
1
≃ Homr⊗,≃(Coh(G),Coh(X))

2
≃ Homr⊗,≃(Coh(G), lim

←−−
Coh(Xℓ))

3
≃ lim
←−−

Homr⊗,≃(Coh(G),Coh(Xℓ))

1
≃ lim
←−−

Mor(Xℓ,G),

where the equivalences marked 1 are by [22, Theorem 1.1] (here we use that A is
excellent), the equivalence marked 2 is Grothendieck existence [15, Scholie 5.1.4],
the equivalence marked 3 is [22, Lemma 3.8].

It remains now to construct a compatible system of morphisms Xℓ→ G. A mor-
phism Xℓ → G over PA(ρ) corresponds to a 1-twisted line bundle on Gℓ; the
obstruction to lifting a line bundle via Gℓ→ Gℓ+1 lies in H2

ét(Gℓ,m
ℓOGℓ

). Since
G→ X is a cohomologically affine morphism and the diagonal of G is affine, the pull-
back H2

ét(Xℓ,m
ℓOXℓ

)→H2
ét(Gℓ,m

ℓOGℓ
) is an isomorphism by [3, Remark 3.5] and

a Leray spectral sequence argument; by Lemma 2.9, we have H2
ét(Xℓ,m

ℓOXℓ
)= 0.

In general, if A is not complete, we use Artin approximation to descend a 1-
twisted line bundle from G∧ to G. □

4.4. Proof of Theorem 1.2. Set f := fX . The Leray spectral sequence associated
to the map f and sheaf Gm is of the form

(4.4.1) Ep,q
2 = Hp

ét(S, Rq f∗Gm)⇒ Hp+q
ét (X, Gm)

with differentials dp,q
2 :E

p,q
2 →Ep+2,q−1

2 . For any strictly henselian local ring A, we
have H2

ét(PA(ρ), Gm)= 0 by Lemma 4.3, and hence R2 f∗Gm = 0 since its stalks
vanish. The sheaf R1 f∗Gm is the sheaf associated to T 7→ Pic(XT ); by Lemma 2.8,
every line bundle on PT (ρ) is, locally on T , isomorphic to one pulled back from
PZ(ρ); hence R1 f∗Gm is isomorphic to the constant sheaf Z. Hence we have an
exact sequence

(4.4.2) H0
ét(S, Z)

†
−→ H2

ét(S, Gm)
f ∗
−→ H2

ét(X, Gm)→ H1
ét(S, Z)

and we may argue as in [30, Section 4.3] to show that f ∗ restricts to a surjection
on the torsion subgroups, inducing an exact sequence (1.2.1) as desired. □

Remark 4.5 (the Brauer class of a twist of weighted projective space). By the
argument in Section 4.4, the map 0(S, Z)→ Br′(S) in (1.2.1) corresponds to the
differential d0,1

2 in the Leray spectral sequence for f : X → S. The Brauer class
[X ] ∈ Br′(S) is defined to be the image of 1 ∈ 0(S, Z) under † in (4.4.2). We
have the following alternative description of [X ]. Let R := Z[t0, . . . , tn] be the
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Z-graded ring with deg(ti )=ρi , and let Autgr.alg.(R) denote the group sheaf sending
a scheme T to the set of Z-graded OT -algebra automorphisms of R⊗Z OT . By [2,
Section 8], we have an exact sequence

1→ Gm→ Autgr.alg.(R)→ Autsch(PZ(ρ))→ 1

of sheaves of groups for the étale topology on the category of schemes, where
the image of Gm is contained in the center of Autgr.alg.(R). By definition, X is an
Autsch(PZ(ρ))-torsor over S, and the class of [X ] under the coboundary map

H1
ét
(
S, Autsch(PZ(ρ))

)
→ H2

ét(S, Gm)

is the desired Brauer class.
Alternatively, fix an étale surjection S′→ S and set S′′ := S′×S S′ and S′′′ :=

S′×S S′×S S′; the choice of an isomorphism X ×S S′ ≃ PS′(ρ) yields an automor-
phism ϕ : PS′′(ρ)→ PS′′(ρ) satisfying the cocycle condition p∗13ϕ = p∗23ϕ ◦ p∗12ϕ

over S′′′. Choose ℓ ≫ 0 so that OP(ρ)(ℓ) is very ample; fixing a Z-basis of
0(PZ(ρ),OPZ(ρ)(ℓ)) gives an invertible matrix ϕ♯

∈ GLr (0(S′′,OS′′)), where
r = rankZ 0(PZ(ρ),OPZ(ρ)(ℓ)); here the invertible matrices

p∗13ϕ
♯, p∗12ϕ

♯
· p∗23ϕ

♯
∈ GLr (0(S′′′,OS′′′))

differ by a unit u ∈ 0(S′′′, Gm), which is the desired class in H2
ét(S, Gm). In other

words, given a Z-graded algebra automorphism of R, it restricts to a Z-graded
algebra automorphism of its ℓ-th Veronese subring R(ℓ)

:=
⊕

i≥0 Riℓ, which restricts
to an abelian group automorphism of Rℓ and thus a Z-graded algebra automorphism
of the standard graded algebra Sym•Z Rℓ ≃ Z[t ′1, . . . , t ′r ]; the induced group homo-
morphism Autgr.alg.(R)→ Autgr.alg.(Sym•Z Rℓ) induces a commutative diagram of
exact sequences which we may use to compare the two constructions above.

Remark 4.6 (comparison to the argument of Gabber). Gabber [18] computes the
Brauer group of Brauer–Severi schemes over an arbitrary base scheme by combining
the following two facts to reduce to the P1 case:

(1) Suppose Y → X is a closed immersion locally defined by a regular sequence,
and let B→ X be the blowup of X at Y ; then H2

ét(X, Gm)→H2
ét(B, Gm) is injective.

(2) The blowup of Pn at a point is a P1-bundle over Pn−1.

In our case, we may ask whether the analogous statement to (2) holds — namely,
whether a (weighted) blowup of P(ρ) at a (torus-invariant) local complete intersec-
tion subscheme is isomorphic to a P(ρ ′)-bundle over P(ρ ′′) for some ρ ′, ρ ′′ such
that |ρ| − 1 = |ρ ′| − 1+ |ρ ′′| − 1. Indeed, the blowup of the weighted projective
surface P(1, 1, q2) at its unique singular point gives the q2-th Hirzebruch surface Fq2

(see [12, Section 1.2.3; 19]). Such a result for arbitrary ρ would give an alternative
proof of Theorem 1.2. This seems unlikely, however, as it (with Remark 2.6) would
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imply that every weighted projective surface P(ρ0, ρ1, ρ2) is a P1-bundle over P1,
which has Picard group Z2, but P(2, 3, 5) has three isolated singular points and
blowing up these points increases the Picard rank by 3.

5. Weighted projective stacks

In this section we prove Theorem 1.3 (see Section 5.9).

5.1. Let ρ = (ρ0, . . . , ρn) be a weight vector, and consider the Gm-action on An+1

sending u · (t0, . . . , tn) 7→ (uρ0 t0, . . . , uρn tn). The weighted projective stack associ-
ated to ρ is the quotient stack

PZ(ρ) := [(An+1
Z \ {0})/Gm]

for this action. For any scheme S, we denote the base change of PZ(ρ) to S by
PS(ρ) := PZ(ρ)×Spec Z S.

The weighted projective stack PZ(ρ) admits a natural morphism

πρ : PZ(ρ)→ PZ(ρ)

to the weighted projective space PZ(ρ), which is a coarse moduli space morphism
[1, Section 2.1]. Since PZ(ρ) is smooth for any ρ, the morphism πρ is not an
isomorphism if ρ ̸= (1, . . . , 1).

Lemma 5.2. For any field k, the pullback map

H2
ét(Spec k, Gm)→ H2

ét(Pk(ρ), Gm)

is an isomorphism.

Proof. We have a descent spectral sequence

(5.2.1) Ep,q
1 = Hq

ét(G
×p
m,k ×k (An+1

k \ {0}), Gm)=⇒ Hp+q
ét (Pk(ρ), Gm)

with differentials dp,q
1 : E

p,q
1 → Ep+1,q

1 . Each G
×p
m,k ×k (An+1

k \ {0}) is an open sub-
scheme of A

n+p+1
k , hence has trivial Picard group; hence Ep,1

1 =0 for all p. The pull-
back BGm,k→Pk(ρ) induces an isomorphism of complexes H0

ét(G
×•

m,k, Gm)→E•,01 ;
hence, by the proof of [30, Lemma 4.2], we have E2,0

2 = 0.
It remains to compute E0,2

2 , which is isomorphic to the equalizer of the two
pullback maps

a∗, p∗2 : H
2
ét(A

n+1
k \ {0}, Gm) ⇒ H2

ét(Gm ×k (An+1
k \ {0}), Gm)

corresponding to the action map and second projection, respectively; by purity for
the Brauer group (see Gabber [16] and Česnavičius [5]), this is isomorphic to the
equalizer of

a∗, p∗2 : H
2
ét(A

n+1
k , Gm) ⇒ H2

ét(Gm ×k An+1
k , Gm),
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and also to the equalizer of

a∗, p∗2 : H
2
ét(A

n+1
k , Gm) ⇒ H2

ét(A
1
k ×k An+1

k , Gm)

since the restriction

H2
ét(A

1
k ×k An+1

k , Gm)→ H2
ét(Gm ×k An+1

k , Gm)

is injective. With coordinates A1
k = Spec k[u], let f : An+1

k → A1
k ×k An+1

k be the
morphism of k-schemes obtained by setting u= 0; note that p2 f = id and a f factors
through Spec k. Let α ∈ H2

ét(A
n+1
k , Gm) be a Brauer class such that a∗α = p∗2α

in H2
ét(A

1
k ×k An+1

k , Gm); then f ∗a∗α = f ∗ p∗2α = α; hence α is in the image of
H2

ét(Spec k, Gm). □

Lemma 5.3 [26, Corollary 4.3]. For any connected scheme S, the map

Z⊕Pic(S)→ Pic(PS(ρ))

sending
(ℓ,L) 7→OPS(ρ)(ℓ)⊗π∗SL

is an isomorphism.

Lemma 5.4 (cohomology of OP(ρ)(ℓ) [25, Proposition 2.5]). Let A be a ring and
set X := PA(ρ).

(1) For ℓ≥ 0, the A-module H0(X,OX (ℓ)) is free with basis consisting of mono-
mials te0

0 · · · t
en
n such that e0, . . . , en ∈ Z≥0 and ρ0 e0+ · · ·+ ρn en = ℓ.

(2) For ℓ < 0, the A-module Hn(X,OX (ℓ)) is free with basis consisting of mono-
mials te0

0 · · · t
en
n such that e0, . . . , en ∈ Z<0 and ρ0 e0+ · · ·+ ρn en = ℓ.

(3) If (i, ℓ) ̸∈ ({0}×Z≥0)∪ ({n}×Z<0), then Hi (X,OX (ℓ))= 0.

(4) For any A-module M and any (i, ℓ), the canonical map

Hi (X,OX (ℓ))⊗A M→ Hi (X,OX (ℓ)⊗A M)

is an isomorphism.

Lemma 5.5. Let A be a strictly henselian local ring. Then H2
ét(PA(ρ), Gm)= 0.

Proof. The proof is the same as that of Lemma 4.3 with the following modifications:
for the triviality of the gerbe G0 over the special fiber, we use Lemma 5.2; to
obtain the equivalence marked 2, we use Grothendieck existence for stacks [28,
Theorem 1.4] (using that P(ρ) is proper [25, Proposition 2.1]); to conclude that
H2

ét(Xℓ,m
ℓOXℓ

)= 0, we use Lemma 5.4. □

Lemma 5.6. Let
πρ : PZ(ρ)→ PZ(ρ)
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denote the coarse moduli space morphism. For any ℓ ∈ Z, there is a canonical
OPZ(ρ)-linear map

(5.6.1) π∗ρ (OPZ(ρ)(ℓ))→OPZ(ρ)(ℓ),

which is an isomorphism if ℓ is divisible by lcm(ρ).

Proof. Set R := Z[t0, . . . , tn] with the Z-grading determined by deg(ti )= ρi . The
restriction of (5.6.1) to the open substack [(Spec R[t−1

i ])/Gm] corresponds to the
graded homomorphism

(5.6.2) R(ℓ)[t−1
i ]0⊗R[t−1

i ]0
R[t−1

i ] → R(ℓ)[t−1
i ]

of Z-graded R[t−1
i ]-modules; the m-th component of (5.6.2) is isomorphic to the

R[t−1
i ]0-linear map

(5.6.3) R[t−1
i ]ℓ⊗R[t−1

i ]0
R[t−1

i ]m→ R[t−1
i ]ℓ+m

induced by multiplication.
If ℓ is divisible by ρi , then the multiplication-by-tℓ/ρi

i map R[t−1
i ] → R[t−1

i ](ℓ)

is an isomorphism of Z-graded R[t−1
i ]-modules, thus (5.6.3) is an isomorphism

for all m ∈ Z, in other words the restriction of (5.6.1) to [(Spec R[t−1
i ])/Gm] is an

isomorphism. □

Lemma 5.7. The pullback

π∗ρ : Pic(PZ(ρ))→ Pic(PZ(ρ))

is multiplication by lcm(ρ).

Proof. We have that Pic(PZ(ρ))≃ Z is generated by the class of OPZ(ρ)(lcm(ρ))

and that Pic(PZ(ρ))≃Z is generated by the class of OPZ(ρ)(lcm(1)) by Lemma 2.8
and Lemma 5.3, respectively. We have the desired claim by Lemma 5.6. □

Remark 5.8. There exist ρ, ℓ for which the natural map (5.6.1) is not an isomor-
phism. For example, in case ρ = (1, 2) and ℓ= 1, the element t0 ∈ R[t−1

0 ]2 is not in
the image of the map (5.6.3) for m = 1 and i = 0. We have OP(ρ)(1)≃OP(ρ), and
the pullback (5.6.1) is multiplication by t1 ∈ 0(P(ρ),OP(ρ)(1)); see Lemma 2.5
for details. Furthermore, the natural map OP(ρ)(1)⊗OP(ρ)(1)→OP(ρ)(2) is not an
isomorphism; here [14, Proposition 2.5.13] does not apply since R is not generated
in degree 1. (See also [10, Exemple 4.8; 12, Section 1.5.3].)

5.9. Proof of Theorem 1.3. The proof of the exactness of (1.3.1) is the same as
in Section 4.4 with the following modifications: to show R2 f∗Gm = 0, we use
Lemma 5.5; to show R1 f∗Gm ≃ Z, we use Lemma 5.3.

For any faithfully flat morphism S′→ S, the pullback πS′ :X×S S′→ X×S S′ is a
coarse moduli space morphism. Since X×S S′≃PS′(ρ), we have X×S S′≃PS′(ρ).
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We have a morphism between Leray spectral sequences for X and X induced by
pullback via π , from which we obtain the vertical maps in (1.3.2). The description
of the left vertical arrow in (1.3.2) follows from Lemma 5.7. □

Remark 5.10. It should be possible to describe the Brauer class [X ] ∈ Br′(S) in a
similar way to Remark 4.6, using Noohi’s description of the automorphism 2-group
of weighted projective stacks in [27].
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