Download this article
 Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Estimate for the first fourth Steklov eigenvalue of a minimal hypersurface with free boundary

Rondinelle Batista, Barnabé Lima, Paulo Sousa and Bruno Vieira

Vol. 325 (2023), No. 1, 1–10
DOI: 10.2140/pjm.2023.325.1
Abstract

We explore the fourth-order Steklov problem of a compact embedded hypersurface Σn with free boundary in a (n+1)-dimensional compact manifold Mn+1 which has nonnegative Ricci curvature and strictly convex boundary. If Σ is minimal we establish a lower bound for the first eigenvalue of this problem. When M = Bn+1 is the unit ball in n+1, if Σ has constant mean curvature HΣ we prove that the first eigenvalue satisfies σ1 n + |HΣ|. In the minimal case (HΣ = 0), we prove that σ1 = n.

Keywords
fourth Steklov eigenvalue, hypersurface with free boundary
Mathematical Subject Classification
Primary: 53C20, 53C42
Secondary: 35J40, 35P15
Milestones
Received: 25 October 2022
Revised: 15 March 2023
Accepted: 2 July 2023
Published: 3 September 2023
Authors
Rondinelle Batista
Departamento de Matemática
Universidade Federal do Piauí
Teresina
Brazil
Barnabé Lima
Departamento de Matemática
Universidade Federal do Piauí
Teresina
Brazil
Paulo Sousa
Departamento de Matemática
Universidade Federal do Piauí
Teresina
Brazil
Bruno Vieira
Coordenação de Matemática
Universidade Federal do Piauí
Picos
Brazil
Departamento de Matemática
Universidade Federal do Piauí
Teresina
Brazil

Open Access made possible by participating institutions via Subscribe to Open.