Download this article
 Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Existence of principal values of some singular integrals on Cantor sets, and Hausdorff dimension

Julià Cufí, Juan Jesús Donaire, Pertti Mattila and Joan Verdera

Vol. 326 (2023), No. 2, 285–300
Abstract

Consider a standard Cantor set in the plane of Hausdorff dimension 1. If the linear density of the associated measure μ vanishes, then the set of points where the principal value of the Cauchy singular integral of μ exists has Hausdorff dimension 1. The result is extended to Cantor sets in d of Hausdorff dimension α and Riesz singular integrals of homogeneity α, 0 < α < d: the set of points where the principal value of the Riesz singular integral of μ exists has Hausdorff dimension α. A martingale associated with the singular integral is introduced to support the proof.

Keywords
Cauchy singular integral, Riesz singular integral, Cantor set, Hausdorff dimension, martingale
Mathematical Subject Classification
Primary: 42B20
Secondary: 30E20
Milestones
Received: 8 June 2023
Revised: 26 September 2023
Accepted: 16 October 2023
Published: 9 January 2024
Authors
Julià Cufí
Departament de Matemàtiques
Universitat Autònoma de Barcelona
Barcelona
Catalonia
Spain
Juan Jesús Donaire
Departament de Matemàtiques
Universitat Autònoma de Barcelona
Barcelona
Catalonia
Spain
Pertti Mattila
Department of Mathematics and Statistics
University of Helsinki
Helsinki
Finland
Joan Verdera
Department de Matemàtiques
Universitat Autònoma de Barcelona
Barcelona
Catalonia
Spain
Centre de Recerca matemàtica
Barcelona
Catalonia
Spain

Open Access made possible by participating institutions via Subscribe to Open.