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First we introduce the notion of F-algebroids, which is a generalization of
F-manifold algebras and F-manifolds, and show that F-algebroids are the
corresponding semiclassical limits of pre-Lie formal deformations of com-
mutative associative algebroids. Then we use the deformation cohomology of
pre-Lie algebroids to study pre-Lie infinitesimal deformations and extension
of pre-Lie n-deformations to pre-Lie (n + 1)-deformations of a commutative
associative algebroid. Next we develop the theory of Dubrovin’s dualities
of F-algebroids with eventual identities and use Nijenhuis operators on F-
algebroids to construct new F-algebroids. Finally we introduce the notion of
pre-F-algebroids, which is a generalization of F-manifolds with compatible
flat connections. Dubrovin’s dualities of pre-F-algebroids with eventual
identities, Nijenhuis operators on pre-F-algebroids are discussed.
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1. Introduction

The concept of Frobenius manifolds was introduced by Dubrovin [15] as a geometri-
cal manifestation of the Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) associativity
equations in the 2-dimensional topological field theories. Hertling and Manin [17]
weakened the conditions of a Frobenius manifold and introduced the notion of
an F-manifold. Any Frobenius manifold has an underlying F-manifold structure.
F-manifolds appear in many fields of mathematics such as singularity theory [16],
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integrable systems [1; 3; 4; 12; 13; 25; 27], quantum K-theory [21], information
geometry [10], operad [30] and so on.

The notion of a Lie algebroid was introduced by Pradines in 1967, which is a
generalization of Lie algebras and tangent bundles. Just as Lie algebras are the
infinitesimal objects of Lie groups, Lie algebroids are the infinitesimal objects of
Lie groupoids. See [28] for the general theory about Lie algebroids. Lie alge-
broids are now an active domain of research, with applications in various parts
of mathematics, such as geometric mechanics, foliation theory, Poisson geometry,
differential equations, singularity theory, operad and so on. The notion of a pre-Lie
algebroid (also called a left-symmetric algebroid or a Koszul–Vinberg algebroid)
is a geometric generalization of a pre-Lie algebra. Pre-Lie algebras arose from
the study of convex homogeneous cones, affine manifolds and affine structures on
Lie groups, deformation and cohomology theory of associative algebras and then
appear in many fields in mathematics and mathematical physics. See the survey
article [7] for more details on pre-Lie algebras and [5; 6; 22; 23] for more details on
cohomology and applications of pre-Lie algebroids. Dotsenko [14] showed that the
graded object of the filtration of the operad encoding pre-Lie algebras is the operad
encoding F-manifold algebras, where the notion of an F-manifold algebra is the
underlying algebraic structure of an F-manifold. In [24], the notion of pre-Lie
formal deformations of commutative associative algebras was introduced and it
was shown that F-manifold algebras are the corresponding semiclassical limits.
This result is parallel to the fact that the semiclassical limit of an associative formal
deformation of a commutative associative algebra is a Poisson algebra.

In this paper, we introduce the notion of F-algebroids, which is a generalization of
F-manifold algebras and F-manifolds. There is a slight difference between this F-
algebroid and the one introduced in [11]. We introduce the notion of pre-Lie formal
deformations of commutative associative algebroids and show that F-algebroids
are the corresponding semiclassical limits. Viewing a commutative associative
algebroid as a pre-Lie algebroid, we show that pre-Lie infinitesimal deformations
and extension of pre-Lie n-deformations to pre-Lie (n + 1)-deformations of a
commutative associative algebroid are classified by the second and third cohomology
groups of the pre-Lie algebroid respectively.

F-manifolds with eventual identities were introduced by Manin [29] and then
were studied systematically by David and Strachan [13]. We generalize Dubrovin’s
dualities of F-manifolds with eventual identities to the case of F-algebroids. We
introduce the notion of (pseudo)eventual identities on F-algebroids and develop the
theory of Dubrovin’s dualities of F-algebroids with eventual identities. We introduce
the notion of Nijenhuis operators on F-algebroids and use them to construct new
F-algebroids. In particular, a pseudoeventual identity naturally gives a Nijenhuis
operator on an F-algebroid.
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The notion of an F-manifold with a compatible flat connection was introduced
by Manin [29]. Applications of F-manifolds with compatible flat connections also
appeared in Painlevé equations [2; 3; 18; 25] and integrable systems [1; 4; 19;
26; 27]. We introduce the notion of pre-F-algebroids, which is a generalization of
F-manifolds with compatible flat connections. A pre-F-algebroid gives rise to an
F-algebroid. We also study pre-F-algebroids with eventual identities and give a
characterization of such eventual identities. Furthermore, the theory of Dubrovin’s
dualities of pre-F-algebroids with eventual identities were developed. We introduce
the notion of a Nijenhuis operator on a pre-F-algebroid, and show that a Nijenhuis
operator gives rise to a deformed pre-F-algebroid.

Mirror symmetry, roughly speaking, is a duality between symplectic and complex
geometry. The theory of Frobenius and F-manifolds plays an important role in
this duality. We expect that the notion of F-algebroids might also be relevant
in understanding the mirror phenomenon. In particular, the Dubrovin’s dual of
F-algebroids constructed in this paper should be related to the mirror construction
along the way the Dubrovin’s dual of Frobenius manifolds is related, at least in
some situations, with mirror symmetry. More precisely the question is: Could we
consider the construction of Dubrovin’s dual of F-algebroids as a kind of mirror
construction? In order to answer the question above, we might need to add some
extra structures to F-algebroids and include those structures in the construction of
the Dubrovin’s dual. This would allow us to give a comprehensible interpretation
of our construction as a manifestation of a mirror phenomenon. We want to follow
this line of thought in future works.

The paper is organized as follows. In Section 2, we introduce the notion of
F-algebroids and give some constructions of F-algebroids including the action
F-algebroids and direct product F-algebroids. In particular, we show that Poisson
manifolds give rise to action F-algebroids naturally. In Section 3, we study pre-Lie
formal deformations of a commutative associative algebroid, whose semiclassical
limits are F-algebroids. We show that the equivalence classes of pre-Lie infini-
tesimal deformations of a commutative associative algebroid A are classified by
the second cohomology group in the deformation cohomology of A. Furthermore,
we study extensions of pre-Lie n-deformations to pre-Lie (n + 1)-deformations
of a commutative associative algebroid A and show that a pre-Lie n-deformation
is extendable if and only if its obstruction class in the third cohomology group
of the commutative associative algebroid A is trivial. In Section 4, we first study
Dubrovin’s duality of F-algebroids with eventual identities. Then we use Nijenhuis
operators on F-algebroids to construct deformed F-algebroids. In Section 5, first
we introduce the notion of a pre-F-algebroid, and show that a pre-F-algebroid
gives rise to an F-algebroid. Then we study Dubrovin’s duality of pre-F-algebroids
with eventual identities. Finally, we introduce the notion of a Nijenhuis operator
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on a pre-F-algebroid, and show that a Nijenhuis operator on a pre-F-algebroid
gives rise to a deformed pre-F-algebroid. At the end, some relations between
pre-F-algebroids and F-manifolds with a compatible flat structure are discussed.

2. F-algebroids

We introduce the notion of F-algebroids, which is a generalization of F-manifolds
and F-manifold algebras. We give some constructions of F-algebroids including
the action F-algebroids and direct product F-algebroids.

Definition 2.1 [14; 17]. An F-manifold algebra is a triple (g, [− ,−], · ), where
(g, · ) is a commutative associative algebra and (g, [− ,−]) is a Lie algebra, such
that for all x, y, z, w ∈ g, the Hertling–Manin relation holds:

(1) Px ·y(z, w)= x · Py(z, w)+ y · Px(z, w),

where Px(y, z) is defined by

(2) Px(y, z)= [x, y · z] − [x, y] · z − y · [x, z].

Remark 2.2. Even though Hertling and Manin [17] use the expression F-algebras
to refer the objects in the definition above, we will use the terminology introduced
in [14] to emphasize that those algebras arise in the study of F-manifolds.

Example 2.3. Any Poisson algebra is an F-manifold algebra.

Definition 2.4 [17]. An F-manifold is a pair (M, • ), where M is a smooth manifold
and • is a C∞(M)-bilinear, commutative, associative multiplication on the tangent
bundle TM such that (X(M), [− ,−]X(M), • ) is an F-manifold algebra, where
[− ,−]X(M) is the Lie bracket of vector fields.

The notion of Lie algebroids was introduced by Pradines in 1967, as a general-
ization of Lie algebras and tangent bundles. See [28] for the general theory about
Lie algebroids.

Definition 2.5. A Lie algebroid structure on a vector bundle A → M is a pair that
consists of a Lie algebra structure [− ,−]A on the section space 0(A) and a vector
bundle morphism aA : A → TM , called the anchor, such that

[X, f Y ]A = f [X, Y ]A + aA(X)( f )Y ∀ X, Y ∈ 0(A), f ∈ C∞(M).

We denote a Lie algebroid by (A, [− ,−]A, aA), or A if there is no confusion.

Definition 2.6. A commutative associative algebroid is a vector bundle A over M
equipped with a C∞(M)-bilinear, commutative, associative multiplication ·A on
the section space 0(A).
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We denote a commutative associative algebroid by (A, ·A).
In the following, we give the notion of F-algebroids, which are generalizations

of F-manifold algebras and F-manifolds.

Definition 2.7. An F-algebroid is a vector bundle A over M equipped with a
bilinear operation ·A : 0(A)×0(A)→ 0(A), a skew-symmetric bilinear bracket
[− ,−]A : 0(A)× 0(A) → 0(A), and a bundle map aA : A → TM , called the
anchor, such that (A, [− ,−]A, aA) is a Lie algebroid, (A, ·A) is a commutative
associative algebroid and (0(A), [− ,−]A, ·A) is an F-manifold algebra.

We denote an F-algebroid by (A, [− ,−]A, ·A, aA).

Remark 2.8. Cruz Morales and Torres-Gomez [11] had already defined an F-
algebroid. There is a slight difference between the above definition of an F-algebroid
and that one. In [11], it is assumed that the base manifold has an F-manifold
structure (M, • ). An F-algebroid defined in [11] is a vector bundle A over M
equipped with a bilinear operation ·A : 0(A)×0(A)→ 0(A), a skew-symmetric
bilinear bracket [− ,−]A :0(A)×0(A)→0(A), and a bundle map aA : A → TM ,
such that (A, [− ,−]A, aA) is a Lie algebroid, (A, ·A) is a commutative associative
algebroid, (0(A), [− ,−]A, ·A) is an F-manifold algebra and

(3) aA(X ·A Y )= aA(X) • aA(Y ) ∀ X, Y ∈ 0(A).

Example 2.9. Any F-manifold algebra is an F-algebroid over a point. Let (M, • )

be an F-manifold. Then (TM, [− ,−]X(M), • , Id) is an F-algebroid.

Definition 2.10. Let (A, [− ,−]A, ·A, aA), (B, [− ,−]B, ·B, aB) be F-algebroids
on M . A bundle map ϕ : A → B is called a homomorphism of F-algebroids, if
for all X, Y ∈ 0(A), the following conditions are satisfied:

ϕ(X ·A Y )= ϕ(X) ·B ϕ(Y ), ϕ([X, Y ]A)= [ϕ(X), ϕ(Y )]B, aB ◦ϕ = aA.

Definition 2.11. Let (A, [− ,−]A, ·A, aA) be an F-algebroid. A section e ∈ 0(A)
is called the identity if e ·A X = X for all X ∈ 0(A). We denote an F-algebroid
(A, [− ,−]A, ·A, aA) with an identity e by (A, [− ,−]A, ·A, e, aA).

Proposition 2.12. Assume that (A, [− ,−]A, aA) is a Lie algebroid equipped with a
C∞(M)-bilinear, commutative, associative multiplication ·A :0(A)×0(A)→0(A).
Define

(4) 8(X,Y,Z ,W )

:=PX ·AY (Z ,W )−X ·A PY (Z ,W )−Y ·A PX (Z ,W ), ∀X,Y,Z ,W∈0(A),

where P is given by (2). Then 8 is a tensor field of type (4, 1) and

(5) 8(X, Y, Z ,W )=8(Y, X, Z ,W )=8(X, Y,W, Z).
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Proof. By the commutativity of the associative multiplication ·A, we have

8(X, Y, Z ,W )=8(Y, X, Z ,W )=8(X, Y,W, Z).

To prove that 8 is a tensor field of type (4, 1), we only need to show

8( f X, Y, Z ,W )=8(X, Y, f Z ,W )= f8(X, Y, Z ,W ).

By a direct calculation, we have

8( f X, Y, Z ,W )

= [ f (X ·A Y ), Z ·A W ]A − Z ·A [ f (X ·A Y ),W ]A − W ·A [ f (X ·A Y ), Z ]A

− f (X ·A PY (Z ,W ))−Y ·A ([ f X, Z ·A W ]A−Z ·A [ f X,W ]A−W ·A [ f X, Z ]A)

= f PX ·AY (Z ,W )− aA(Z ·A W )( f )(X ·A Y )+ aA(W )( f )(X ·A Y ·A Z)

+ aA(Z)( f )(X ·A Y ·A W )− f (X ·A PY (Z ,W ))− f (Y ·A PX (Z ,W ))

+aA(Z ·A W )( f )(X ·A Y )−aA(W )( f )(X ·A Y ·A Z)−aA(Z)( f )(X ·A Y ·A W )

= f8(X, Y, Z ,W ).

Similarly, we also have 8(X, Y, f Z ,W )= f8(X, Y, Z ,W ). □

Proposition 2.13. Let (A, [− ,−]A, ·A, aA) be an F-algebroid with an identity e.
Then

Pe(X, Y )= 0.

Proof. It follows from (1) directly. □

Definition 2.14. Let (g, [− ,−], · ) be an F-manifold algebra. An action of g on
a manifold M is a linear map ρ : g → X(M) from g to the space of vector fields
on M , such that

ρ([x, y])= [ρ(x), ρ(y)]X(M) ∀ x, y ∈ g.

Given an action of g on M , let A = M × g be the trivial bundle. Define an
anchor map aρ : A → TM , a multiplication ·ρ :0(A)×0(A)→0(A) and a bracket
[− ,−]ρ : 0(A)×0(A)→ 0(A) by

aρ(m, u)= ρ(u)m ∀ m ∈ M, u ∈ g,(6)

X ·ρ Y = X · Y,(7)

[X, Y ]ρ = Lρ(X)Y −Lρ(Y )X + [X, Y ], ∀ X, Y ∈ 0(A),(8)

where X ·Y and [X, Y ] are the pointwise C∞(M)-bilinear multiplication and bracket,
respectively.

Proposition 2.15. With the above notations, (A = M × g, [− ,−]ρ, ·ρ, aρ) is an
F-algebroid, which is called an action F-algebroid, where [− ,−]ρ , ·ρ and aρ are
given by (8), (7) and (6), respectively.
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Proof. Note that the multiplication ·ρ is a C∞(M)-bilinear, commutative and associa-
tive multiplication and (A, [− ,−]ρ, aρ) is a Lie algebroid. By Proposition 2.12 and
the fact that g is an F-manifold algebra, for all u1, u2, u3, u4 ∈g and f1, f2, f3, f4 ∈

C∞(M), we have

8( f1 u1, f2 u2, f3 u3, f4 u4)= f1 f2 f3 f48(u1, u2, u3, u4)= 0,

which implies that (0(A), [− ,−]ρ, ·ρ) is an F-manifold algebra. Thus, we obtain
(A, [− ,−]ρ, ·ρ, aρ) is an F-algebroid. □

Example 2.16. Let g be a 2-dimensional vector space with basis {e1, e2}. Then
(g, [− ,−], · ) with the nonzero multiplication · and the bracket [− ,−]

e1 · e1 = e1, e1 · e2 = e2 · e1 = e2, [e1, e2] = e2

is an F-manifold algebra with the identity e1. Let (t1, t2) be the canonical coordinate
systems on R2. It is straightforward to check that the map ρ : g→X(R2) defined by

ρ(e1)= t2
∂

∂t2
, ρ(e2)= t2

∂

∂t1
+ t2

2
∂

∂t2

is an action of the F-manifold algebra g on R2. Then (A = R2
×g, [− ,−]ρ, ·ρ, aρ)

is an F-algebroid with an identity 1 ⊗ e1, where [− ,−]ρ , ·ρ and aρ are given by

aρ(m, c1 e1 + c2 e2)=

(
c1 t2

∂

∂t2
+ c2 t2

∂

∂t1
+ c2 t2

2
∂

∂t2

)∣∣∣
m

∀ m ∈ R2,

f ⊗ (c1 e1) ·ρ g ⊗ (c2 ei )= ( f g)⊗ (c1 c2 ei ), f ⊗ (c1 e2) ·ρ g ⊗ (c2 e2)= 0,

[ f ⊗ (c1 e1), g ⊗ (c2 e2)]ρ

= f c1 t2
∂g
∂t2

⊗ (c2 e2)− gc2

(
t2
∂ f
∂t1

+ t2
2
∂ f
∂t2

)
⊗ (c1e1)+ f g ⊗ (c1 c2[e1, e2]),

where f, g ∈ C∞(R2), c1, c2 ∈ R, i ∈ {1, 2}.

Let A1 and A2 be vector bundles over M1 and M2 respectively. Denote the
projections from M1 × M2 to M1 and M2 by pr1 and pr2 respectively. The product
vector bundle A1 × A2 → M1 × M2 can be regarded as the Whitney sum over
M1 × M2 of the pullback vector bundles pr!1 A1 and pr!2 A2. Sections of pr!1 A1 are of
the form

∑
ui ⊗ X1

i , where ui ∈ C∞(M1×M2) and X1
i ∈0(A1). Similarly, sections

of pr!2 A2 are of the form
∑

u′

i ⊗ X2
i , where u′

i ∈ C∞(M1 × M2) and X2
i ∈ 0(A2).

The tangent bundle T (M1 × M2) may in the same way be regarded as the Whitney
sum pr!1(TM1)⊕ pr!2(TM2). Let (A1, [− ,−]A1, aA1) and (A2, [− ,−]A2, aA2) be
two Lie algebroids over the base manifolds M1 and M2 respectively. We define the
anchor a : A1 × A2 → T (M1 × M2) by

a
(∑

(ui ⊗ X1
i )⊕

∑
(u′

j ⊗ X2
j )
)

=
∑
(ui ⊗ aA1(X

1
i ))⊕

∑
(u′

j ⊗ aA2(X
2
j )).
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And the Lie bracket on A1 × A2 is determined by the following relations with the
Leibniz rule:

[[1 ⊗ X1, 1 ⊗ Y 1
]] = 1 ⊗ [X1, Y 1

]A1, [[1 ⊗ X1, 1 ⊗ Y 2
]] = 0,

[[1 ⊗ X2, 1 ⊗ Y 2
]] = 1 ⊗ [X2, Y 2

]A2, [[1 ⊗ X2, 1 ⊗ Y 1
]] = 0

for X1, Y 1
∈ 0(A1) and X2, Y 2

∈ 0(A2). See [28] for more details of the direct
product Lie algebroids.

Proposition 2.17. Let (A1, [− ,−]A1, ·A1, aA1) and (A2, [− ,−]A2, ·A2, aA2) be
two F-algebroids over M1 and M2 respectively. Then (A1 × A2, [[− ,−]],⋄, a) is
an F-algebroid over M1 × M2, where for

X =
∑
(ui ⊗ X1

i )⊕
∑
(u′

j ⊗ X2
j ), Y =

∑
(vk ⊗ Y 1

k )⊕
∑
(v′

l ⊗ Y 2
l ),

the associative multiplication ⋄ is defined by

X ⋄ Y =
∑
(uivk ⊗ (X1

i ·A1 Y 1
k ))⊕

∑
(u′

jv
′

l ⊗ (X2
j ·A2 Y 2

l )).

Proof. It follows from straightforward verifications. □

The F-algebroid (A1×A2, [[− ,−]],⋄, a) is called the direct product F-algebroid.

3. Pre-Lie deformation quantization of commutative associative algebroids

In this section, we study pre-Lie formal deformations of a commutative associative
algebroid, whose semiclassical limits are F-algebroids. Viewing the commutative
associative algebroid A as a pre-Lie algebroid, we show that the equivalence classes
of pre-Lie infinitesimal deformations of a commutative associative algebroid A are
classified by the second cohomology group in the deformation cohomology of A
and a pre-Lie n-deformation can be extended to a pre-Lie (n + 1)-deformation if
and only if its obstruction class in the third cohomology group is trivial.

Definition 3.1 [9]. A pre-Lie algebra is a pair (g, ∗), where g is a vector space and
∗ : g⊗g→ g is a bilinear multiplication such that for all x, y, z ∈ g, the associator

(9) (x, y, z)≜ x ∗ (y ∗ z)− (x ∗ y) ∗ z

is symmetric in x, y, i.e.,

(x, y, z)= (y, x, z), or equivalently, x ∗(y∗z)−(x ∗ y)∗z = y∗(x ∗z)−(y∗x)∗z.

Definition 3.2 [22; 5]. A pre-Lie algebroid structure on a vector bundle A → M
is a pair that consists of a pre-Lie algebra structure ∗A on the section space 0(A)
and a vector bundle morphism aA : A → TM , called the anchor, such that for all
f ∈ C∞(M) and X, Y ∈ 0(A), the following conditions are satisfied:
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(i) X ∗A ( f Y )= f (X ∗A Y )+ aA(X)( f )Y ,

(ii) ( f X) ∗A Y = f (X ∗A Y ).

We usually denote a pre-Lie algebroid by (A, ∗A, aA). Any pre-Lie algebra is a
pre-Lie algebroid over a point.

A connection ∇ on a manifold M is said to be flat if the torsion and the curva-
ture of the connection ∇ vanish identically. A manifold M endowed with a flat
connection ∇ is called a flat manifold.

Proposition 3.3 [22]. Let (A, ∗A, aA) be a pre-Lie algebroid. Define a skew-
symmetric bilinear bracket operation [− ,−]A on 0(A) by

(10) [X, Y ]A = X ∗A Y − Y ∗A X ∀ X, Y ∈ 0(A).

Then (A, [− ,−]A, aA) is a Lie algebroid, and denoted by Ac, called the subadja-
cent Lie algebroid of (A, ∗A, aA).

Example 3.4. Let M be a manifold with a flat connection ∇. Then (TM,∇, Id)
is a pre-Lie algebroid whose subadjacent Lie algebroid is exactly the tangent Lie
algebroid. We denote this pre-Lie algebroid by T∇ M .

Definition 3.5. Let E be a vector bundle over M . A multiderivation of degree n
on E is a pair (D, σD), where

D ∈ Hom(3n−10(E)⊗0(E), 0(E)) and σD ∈ 0(Hom(3n−1 E, TM)),

such that for all f ∈ C∞(M) and sections X i ∈ 0(E), the following conditions are
satisfied:

D(X1,..., f X i ,...,Xn−1,Xn)= f D(X1,...,X i ,...,Xn−1,Xn), i = 1,...,n−1,

D(X1,...,Xn−1, f Xn)= f D(X1,...,Xn−1,Xn)+ σD(X1,...,Xn−1)( f )Xn.

We will denote by Dern(E) the space of multiderivations of degree n, n ≥ 1.

Let (A, ∗A, aA) be a pre-Lie algebroid. From [22] the deformation complex of A
is a cochain complex (C∗

def(A, A)=
⊕

n≥0 Dern(A), ddef), where for all X i ∈ 0(A),
i = 1, 2 . . . , n+1, the coboundary operator ddef : Dern(A)→ Dern+1(A) is given by

ddefω(X1, . . . , Xn+1)

=

n∑
i=1
(−1)i+1 X i ∗A ω(X1, . . . , X̂ i , . . . , Xn+1)

+

n∑
i=1
(−1)i+1ω(X1, . . . , X̂ i , . . . , Xn, X i ) ∗A Xn+1

−

n∑
i=1
(−1)i+1ω(X1, . . . , X̂ i , . . . , Xn, X i ∗A Xn+1)

+
∑

1≤i< j≤n
(−1)i+ jω([X i , X j ]A, X1, . . . , X̂ i , . . . , X̂ j , . . . , Xn+1),
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in which σddefω is given by

(11) σddefω(X1, . . . , Xn)

=

n∑
i=1
(−1)i+1

[aA(X i ), σω(X1, . . . , X̂ i , . . . , Xn)]X(M)

+
∑

1≤i< j≤n
(−1)i+ jσω([X i , X j ]A, X1, . . . , X̂ i , . . . , X̂ j , . . . , Xn)

+

n∑
i=1
(−1)i+1aA(ω(X1, . . . , X̂ i , . . . , Xn, X i )).

The corresponding cohomology, which we denote by H•

def(A, A), is called the
deformation cohomology of the pre-Lie algebroid.

Since any commutative pre-Lie algebra is a commutative associative algebra, we
have the following conclusion obviously.

Lemma 3.6. Any commutative pre-Lie algebroid is a commutative associative
algebroid.

Note that in a commutative pre-Lie algebroid, the anchor must be zero.

Definition 3.7. Assume that (A, ·A) is a commutative associative algebroid. A
pre-Lie formal deformation of A is a sequence of pairs (µk, σµk ) ∈ Der2(A) with
µ0 being the commutative associative algebroid multiplication ·A on 0(A) and
σµ0 = 0 such that the R[[h̄]]-bilinear product ·h̄ on 0(A)[[h̄]] and R[[h̄]]-linear map
ah̄ : A ⊗ R[[h̄]] → TM ⊗ R[[h̄]] determined by

X ·h̄ Y =

∞∑
k=0

h̄kµk(X, Y ),(12)

ah̄(X)=

∞∑
k=0

h̄kσµk (X) ∀ X, Y ∈ 0(A)(13)

is a pre-Lie algebroid.

One checks directly that (0(A)[[h̄]], ·h̄) is a pre-Lie algebra if and only if

(14)
∑

i+ j=k

(
µi (µ j (X, Y ), Z)−µi (X, µ j (Y, Z))

)
=

∑
i+ j=k

(
µi (µ j (Y, X), Z)−µi (Y, µ j (X, Z))

)
for k ≥ 0.

Theorem 3.8. Assume that (A, ·A) is a commutative associative algebroid and
(A ⊗ R[[h̄]], ·h̄, ah̄) a pre-Lie formal deformation of A. Define a bracket

[− ,−]A : 0(A)×0(A)→ 0(A)

by
[X, Y ]A = µ1(X, Y )−µ1(Y, X) ∀ X, Y ∈ 0(A).
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Then (A, [− ,−]A, ·A, σµ1) is an F-algebroid which is called the semiclassical
limit of (A ⊗ R[[h̄]], ·h̄, ah̄). The pre-Lie algebroid (A ⊗ R[[h̄]], ·h̄, ah̄) is called a
pre-Lie deformation quantization of (A, ·A).

Proof. Define the bracket [− ,−]h̄ on 0(A)[[h̄]] by

[X, Y ]h̄ = X ·h̄ Y − Y ·h̄ X
= h̄[X, Y ]A + h̄2(µ2(X, Y )−µ2(Y, X))+ · · · ∀ X, Y ∈ 0(A).

By the fact that (A ⊗ R[[h̄]], ·h̄, ah̄) is a pre-Lie algebroid, (A[[h̄]], [− ,−]h̄, ah̄) is
a Lie algebroid. The h̄2-terms of the Jacobi identity for [− ,−]h̄ gives the Jacobi
identity for [− ,−]A and h̄-terms of [X, f Y ]h̄ = f [X, Y ]h̄ + ah̄(X)( f )Y gives

[X, f Y ]A = f [X, Y ]A + σµ1(X)( f )Y.

Thus (A, [− ,−]A, σµ1) is a Lie algebroid.
For k = 1 in (14), by the commutativity of µ0, we have

µ0(µ1(X, Y ), Z)−µ0(X, µ1(Y, Z))−µ1(X, µ0(Y, Z))

= µ0(µ1(Y, X), Z)−µ0(Y, µ1(X, Z))−µ1(Y, µ0(X, Z)).

By a similar proof given by Hertling [16], we can show that the Hertling–Manin
relation holds with X ·A Y = µ0(X, Y ) and [X, Y ]A = µ1(X, Y )− µ1(Y, X) for
X, Y ∈ 0(A). Thus (A, [− ,−]A, ·A, σµ1) is an F-algebroid. □

In what follows, we study pre-Lie n-deformations and pre-Lie infinitesimal
deformations of commutative associative algebroids.

Definition 3.9. Let (A, ·A) be a commutative associative algebroid. A pre-Lie
n-deformation of A is a sequence of pairs (µk, σµk ) ∈ Der2(A) for 0 ≤ k ≤ n
with µ0 being the commutative associative algebroid multiplication ·A on 0(A)
and σµ0 = 0, such that the R[[h̄]]/(h̄n+1)-bilinear product ·h̄ on 0(A)[[h̄]]/(h̄n+1)

and R[[h̄]]/(h̄n+1)-linear map ah̄ : A ⊗ R[[h̄]] → TM ⊗ R[[h̄]] determined by

X ·h̄ Y =

n∑
k=0

h̄kµk(X, Y ),(15)

ah̄(X)=

n∑
k=0

h̄kσµk (X) ∀ X, Y ∈ 0(A)(16)

is a pre-Lie algebroid.

We call a pre-Lie 1-deformation of a commutative associative algebroid (A, ·A)

a pre-Lie infinitesimal deformation and denote it by (A, µ1, aA = σµ1).
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By direct calculations, (A, µ1, σµ1) is a pre-Lie infinitesimal deformation of a
commutative associative algebroid (A, ·A) if and only if for all X, Y, Z ∈ 0(A)

(17) µ1(X, Y ) ·A Z − X ·A µ1(Y, Z)−µ1(X, Y ·A Z)
= µ1(Y, X) ·A Z − Y ·A µ1(X, Z)−µ1(Y, X ·A Z).

Equation (17) means that µ1 is a 2-cocycle, i.e., ddef µ1 = 0.
Two pre-Lie infinitesimal deformations Ah̄ = (A, µ1, σµ1) and A′

h̄ = (A, µ′

1, σµ′

1
)

of a commutative associative algebroid (A, ·A) are said to be equivalent if there
exist a family of pre-Lie algebroid homomorphisms Id + h̄ϕ : Ah̄ → A′

h̄ modulo h̄2

for ϕ ∈ Der1(A). A pre-Lie infinitesimal deformation is said to be trivial if there
exist a family of pre-Lie algebroid homomorphisms Id+ h̄ϕ : Ah̄ → (A, ·A, aA = 0)
modulo h̄2.

By direct calculations, Ah̄ and A′

h̄ are equivalent pre-Lie infinitesimal deforma-
tions if and only if

σµ1 = σµ′

1
,(18)

µ1(X, Y )−µ′

1(X, Y )= X ·A ϕ(Y )+ϕ(X) ·A Y −ϕ(X ·A Y ).(19)

Equation (19) means that µ1 −µ′

1 = ddef ϕ and (18) can be obtained by (19). Thus
we have:

Theorem 3.10. Let (A, ·A) be a commutative associative algebroid. There is a
one-to-one correspondence between the space of equivalence classes of pre-Lie
infinitesimal deformations of A and the second cohomology group H2

def(A, A).

It is routine to check that:

Proposition 3.11. Let (A, ·A) be a commutative associative algebroid such that

H2
def(A, A)= 0.

Then all pre-Lie infinitesimal deformations of A are trivial.

Definition 3.12. Let {(µ1, σµ1), . . . , (µn, σµn )} be a pre-Lie n-deformation of a
commutative associative algebroid (A, ·A). If there exists (µn+1, σµn+1) ∈ Der2(A)
such that

{(µ1, σµ1), . . . , (µn, σµn ), (µn+1, σµn+1)}

is a pre-Lie (n + 1)-deformation of (A, ·A), then

{(µ1, σµ1), . . . , (µn, σµn ), (µn+1, σµn+1)}

is called an extension of the pre-Lie n-deformation {(µ1, σµ1), . . . , (µn, σµn )}.
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Theorem 3.13. For any pre-Lie n-deformation of a commutative associative alge-
broid (A, ·A), the pair (2n, σ2n ) ∈ Der3(A) defined by

2n(X, Y, Z)=
∑

i+ j=n+1
i, j≥1

(
µi (µ j (X, Y ), Z)−µi (X, µ j (Y, Z))(20)

−µi (µ j (Y, X), Z)+µi (Y, µ j (X, Z))
)
,

σ2n (X, Y )=
∑

i+ j=n+1
i, j≥1

(
σµi (µ j (X, Y )−µ j (Y, X))−[σµi (X), σµ j (Y )]X(M)

)
(21)

is a cocycle, i.e., ddef2n = 0.
Moreover, the pre-Lie n-deformation {(µ1, σµ1), . . . , (µn, σµn )} extends to some

pre-Lie (n + 1)-deformation if and only if [2n] = 0 in H3
def(A, A).

Proof. It is obvious that 2n(X, Y, Z) = −2n(Y, Z , X) for all X, Y, Z ∈ 0(A). It
is straightforward to check that

2n(X, f Y, Z)= f2n(X, Y, Z),

2n(X, Y, f Z)= f2n(X, Y, Z)+ σ2n (X, Y )( f )Z .

Thus2n is an element of Der3(A). By a direct calculation, we have that the cochain
2n ∈ Der3(A) is closed.

Assume that the pre-Lie (n + 1)-deformation {(µ1, σµ1), . . . , (µn+1, σµn+1)}

of a commutative associative algebroid (A, ·A) is an extension of the pre-Lie n-
deformation {(µ1, σµ1), . . . , (µn, σµn )}. Then we have∑
i+ j=n+1

i, j≥1

(
µi (µ j (X, Y ), Z)−µi (X, µ j (Y, Z))−µi (µ j (Y, X), Z)+µi (Y, µ j (X, Z))

)
= X ·A µn+1(Y, Z)− Y ·A µn+1(X, Z)+µn+1(Y, X) ·A Z −µn+1(X, Y ) ·A Z

+µn+1(Y, X) ·A Z −µn+1(X, Y ) ·A Z .

Note that the left-hand side of the above equality is just 2n(X, Y, Z). We can
rewrite the above equality as

2n(X, Y, Z)= ddef µn+1(X, Y, Z).

We conclude that, if a pre-Lie n-deformation of a commutative associative algebroid
(A, ·A) extends to a pre-Lie (n + 1)-deformation, then 2n is a coboundary.

Conversely, if2n is a coboundary, then there exists an element (ψ, σψ)∈Der2(A)
such that

2n(X, Y, Z)= ddef ψ(X, Y, Z).

It is not hard to check that {(µ1, σµ1), . . . , (µn+1, σµn+1)} with µn+1 = ψ is a pre-
Lie (n + 1)-deformation of (A, ·A) and thus this pre-Lie (n + 1)-deformation is an
extension of the pre-Lie n-deformation {(µ1, σµ1), . . . , (µn, σµn )}. □
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4. Some constructions of F-algebroids

In this section, we use eventual identities and Nijenhuis operators to construct
F-algebroids. In particular, a pseudoeventual identity naturally gives a Nijenhuis
operator on an F-algebroid.

(Pseudo)eventual identities and Dubrovin’s dual of F-algebroids.

Definition 4.1. Let (A, [− ,−]A, ·A, aA) be an F-algebroid with an identity e.
A section E ∈ 0(A) is called a pseudoeventual identity on the F-algebroid if the
following equality holds:

(22) PE(X, Y )= [e, E]A ·A X ·A Y ∀ X, Y ∈ 0(A).

A pseudoeventual identity E on the F-algebroid A is called an eventual identity
if it is invertible, i.e., there is a section E−1

∈0(A) such that E−1
·AE = E ·AE−1

= e.

Denote the set of all pseudoeventual identities on an F-algebroid A by E(A),
i.e.,

E(A)= {E ∈ 0(A) | PE(X, Y )= [e, E]A ·A X ·A Y ∀ X, Y ∈ 0(A)}.

Proposition 4.2. Let (A, [− ,−]A, ·A, aA) be an F-algebroid with an identity e.
Then E(A) is an F-manifold subalgebra of 0(A). Moreover, if E ∈ 0(A) is an
eventual identity on the F-algebroid A, then E−1 is also an eventual identity on A.

Proof. By a straightforward calculation, E(A) is a subspace of the vector space0(A).
For any two pseudoeventual identities E1 and E2, by (1), we have

PE1·AE2(X,Y )= E1 ·A PE2(X,Y )+E2 ·A PE1(X,Y )

= (E1 ·A [e,E2]A +E2 ·A [e,E1]A) ·A X ·A Y = [e,E1 ·A E2]A ·A X ·A Y,

where in the last equality we used Pe(E1, E2)= 0. Thus E1 ·A E2 is a pseudoeventual
identity.

By (1) and (22), we have

P[E2,E2]A(Z ,W )= [E1, [e, E2]A ·A Z ·A W ]A − [e, E2]A ·A [E1, Z ]A ·A W

− [e, E2]A ·A Z ·A [E1,W ]A − [E2, [e, E1]A ·A Z ·A W ]A

+ [e, E1]A ·A [E2, Z ]A ·A W + [e, E1]A ·A Z ·A [E2,W ]A.

On the other hand, by (22), we have

[E1, [e, E2]A ·A Z ·A W ]A = 2[e, E1]A · [e, E2]A ·A Z ·A W +[E1, [e, E2]A]A ·A Z ·A W
+[e, E2]A ·A [E1, Z ]A ·A W +[e, E2]A ·A Z ·A [E1,W ]A,

[E2, [e, E1]A ·A Z ·A W ]A = 2[e, E2]A · [e, E1]A ·A Z ·A W +[E2, [e, E1]A]A ·A Z ·A W
+[e, E1]A ·A [E2, Z ]A ·A W +[e, E1]A ·A Z ·A [E2,W ]A.
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Thus

P[E2,E2]A(Z ,W )= [E1, [e, E2]A]A ·A Z ·A W − [E2, [e, E1]A]A ·A Z ·A W

= [e, [E1, E2]A]A ·A Z ·A W,

which implies that [E1, E2]A is a pseudoeventual identity. Therefore, E(A) is an
F-manifold subalgebra of 0(A).

Assume that E is an eventual identity on the F-algebroid A. By Proposition 2.13,
we have Pe(X, Y ) = 0. Applying the Hertling–Manin relation with X = E and
Y = E−1, by (22), we obtain

PE−1(X, Y )= −E−2
·A [e, E]A ·A X ·A Y.

On the other hand, by Pe(X, Y )= 0, we have

[e, E]A ·A E−2
= ([e, E]A ·A E−1) ·A E−1

= (−E ·A [e, E−1
]A) ·A E−1

= −[e, E−1
]A.

Thus we have
PE−1(X, Y )= [e, E−1

]A ·A X ·A Y,

which implies that E−1 is also an eventual identity on A. □

A pseudoeventual identity on an F-algebroid gives a new F-algebroid.

Theorem 4.3. Let (A, [− ,−]A, ·A, aA) be an F-algebroid with an identity e.
Then E is a pseudoeventual identity on A if and only if (A, [− ,−]A, ·E , aA) is
an F-algebroid, where ·E : 0(A)×0(A)→ 0(A) is defined by

(23) X ·E Y = X ·A Y ·A E ∀ X, Y ∈ 0(A).

Proof. The proof of this theorem is similar to the proof of Theorem 3 in [13]. We
give a sketchy proof here for completeness. Assume that E is a pseudoeventual
identity on A. It is straightforward to check that the multiplication ·E defined by (23)
is C∞(M)-bilinear, commutative and associative.

For X, Y, Z ∈ 0(A), we set

PE
X (Y, Z) := [X, Y ·E Z ]A − [X, Y ]A ·E Z − Y ·E [X, Z ]A.

By a direct calculation, we have

(24) PE
X (Y, Z)= PX (E ·A Y, Z)+ PX (E, Y ) ·A Z + [X, E]A ·A Y ·A Z .
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Since E is a pseudoeventual identity on A, by (24), we have

PE
X ·EY (Z ,W )− X ·E PE

Y (Z ,W )− Y ·E PE
X (Z ,W )

= X ·A Y ·A (PE(E ·A Z ,W )+ W ·A PE(E, Z))
− Z ·A W ·A ([X ·A Y ·A E,E]A +E ·A X ·A [Y,E]A +E ·A Y ·A [X,E]A)

= X ·AY ·A(PE(E ·A Z ,W )+W ·A PE(E, Z))−Z ·AW ·A(PE(E, X)·AY+PE(E ·A X,Y ))

= X ·A Y ·A ([e,E]A ·A E ·A Z ·A W + [e,E]A ·A E ·A Z ·A W )

− Z ·A W ·A ([e,E]A ·A E ·A X ·A Y + [e,E]A ·A E ·A X ·A Y )

= 2[e,E]A ·A E ·A X ·A Y ·A Z ·A W − 2[e,E]A ·A E ·A X ·A Y ·A Z ·A W

= 0,

which implies that (A, [− ,−]A, ·E , aA) is an F-algebroid.
The converse can be proved similarly. We omit the details. □

Theorem 4.4. Let (A, [− ,−]A, ·A, aA) be an F-algebroid with an identity e.
Then E is an eventual identity on A if and only if (A, [− ,−]A, ·E , aA) is also
an F-algebroid with the identity E−1, which is called the Dubrovin’s dual of
(A, [− ,−]A, ·A, aA), where ·E is given by (23). Moreover, e is an eventual identity
on the F-algebroid (A, [− ,−]A, ·E , E−1, aA) and the map

(25) (A, [− ,−]A, ·A, e, aA, E)→ (A, [− ,−]A, ·E , E−1, aA, e†)

is an involution of the set of F-algebroids with eventual identities, where e†
:= E−2

is the inverse of e with respect to the multiplication ·E .

Proof. By Theorem 4.3, (A, [− ,−]A, ·E , aA) is an F-algebroid. It is obvious that
E−1 is the identity with respect to the multiplication ·E defined by (23).

Next, we show that e is an eventual identity on (A, [− ,−]A, ·E , E−1, aA). Since
the identity with respective to the multiplication ·E is E−1, we need to show that

[e, X ·E Y ]A − [e, X ]A ·E Y − X ·E [e, Y ]A = [E−1, e]A ·E X ·E Y ∀ X, Y ∈ 0(A).

By a straightforward computation, for any Z ∈ 0(A), we have

(26) [Z , X ·E Y ]A − [Z , X ]A ·E Y − X ·E [Z , Y ]A

= PZ (E ·A X, Y )+ PZ (E, X) ·A Y + [Z , E]A ·A X ·A Y.

Letting Z = e in (26) and using Pe(X, Y )= 0, we have

[e, X ·EY ]A−[e, X ]A ·EY −X ·E [e, Y ]A =[e, E]A ·A X ·AY = ([e, E]A ·AE−2)·E X ·EY.

Recall now from the proof of Proposition 4.2 that [e, E]A ·A E−2
= [E−1, e]A. Thus

e is an eventual identity on the F-algebroid (A, [− ,−]A, ·E , E−1, aA).
Now we show that the map (25) is an involution. Note that e†

:= E−2 is the
inverse of e with respect to the multiplication ·E . By Proposition 4.2, e† is also an
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eventual identity on the F-algebroid (A, [− ,−]A, ·E , E−1, aA). Furthermore, for
X, Y ∈ 0(A), we have

X ·A Y = X ·E Y ·E E−2
= X ·E Y ·E e†,

which implies that the map defined by (25) is an involution of the set of F-algebroids
with eventual identities. □

Definition 4.5. An F-manifold (M, • , e) is called semisimple if there exists canon-
ical local coordinates (u1, . . . , un) on M such that e =

∂
∂u1 + · · · +

∂
∂un and

∂

∂ui
•
∂

∂u j = δi j
∂

∂u j , i, j ∈ {1, 2, . . . , n}

Example 4.6. Let (M, • , e) be a semisimple F-manifold. Then e is an identity on
the F-algebroid (TM, [− ,−]X(M), • , Id). It is straightforward to check that any
pseudoeventual identity on (TM, [− ,−]X(M), • , Id) is of the form

E = f1(u1)
∂

∂u1 + · · · + fn(un)
∂

∂xn
,

where fi (ui )∈ C∞(M) depends only on ui for i = 1, 2, . . . , n. Furthermore, it was
shown in [13] that if all fi (ui ) are nonvanishing everywhere, then E ∈ X(M) is an
eventual identity.

Nijenhuis operators and deformed F-algebroids. Recall from [8] that a Nijenhuis
operator on a commutative associative algebra (A, ·A) is a linear map N : A → A
such that

(27) N (x) ·A N (y)= N
(
N (x) ·A y + x ·A N (y)− N (x ·A y)

)
∀ x, y ∈ A.

and a Nijenhuis operator on a Lie algebroid (A, [− ,−]A, aA) is a bundle map
N : A → A such that

(28) [N (X), N (Y )]A

= N
(
[N (X), Y ]A + [X, N (Y )]A − N ([X, Y ]A)

)
∀ X, Y ∈ 0(A).

Definition 4.7. Assume that (A, [− ,−]A, ·A, aA) is an F-algebroid. A bundle
map N : A → A is called a Nijenhuis operator on the F-algebroid A if N is
both a Nijenhuis operator on the commutative associative algebra (0(A), ·A) and a
Nijenhuis operator on the Lie algebroid (A, [− ,−]A, aA).

Define the deformed operation ·N : 0(A)× 0(A) → 0(A) and the deformed
bracket [− ,−]N : 0(A)×0(A)→ 0(A) by

X ·N Y = N (X) ·A Y + X ·A N (Y )− N (X ·A Y ),(29)

[X, Y ]N = [N (X), Y ]A + [X, N (Y )]A − N ([X, Y ]A) ∀ X, Y ∈ 0(A).(30)
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Theorem 4.8. Assume that N : A → A is a Nijenhuis operator on an F-algebroid
(A, [− ,−]A, ·A, aA). Then, (A, [− ,−]N , ·N , aN = aA ◦ N ) is an F-algebroid
and N is an F-algebroid homomorphism from the F-algebroid

(A, [− ,−]N , ·N , aN = aA ◦ N )
to (A, [− ,−]A, ·A, aA).

Proof. Since N is a Nijenhuis operator on the commutative associative algebra
(0(A), ·A), it follows that (0(A), ·N ) is a commutative associative algebra [8].
Since N is a Nijenhuis operator on the Lie algebroid (A, [− ,−]A, aA), we get that
(A, [− ,−]N , aN ) is a Lie algebroid [20].

Define

(31) 8N (X, Y, Z ,W ) := P N
X ·N Y (Z ,W )− X ·N P N

Y (Z ,W )− Y ·N P N
X (Z ,W ),

where X, Y, Z ,W ∈ 0(A) and

P N
X (Y, Z) := [X, Y ·N Z ]N − [X, Y ]N ·N Z − Y ·N [X, Z ]N .

Since A is an F-algebroid and N is a Nijenhuis operator on A, by a direct calculation,
we have

8N (X, Y, Z ,W )= 0,
which implies that

P N
X ·N Y (W, Z)− X ·N P N

Y (W, Z)− Y ·N P N
X (W, Z)= 0.

Thus (A, [− ,−]N , ·N , aN = aA ◦ N ) is an F-algebroid. It is obvious that N is an
F-algebroid homomorphism from the F-algebroid (A, [− ,−]N , ·N , aN = aA ◦ N )
to (A, [− ,−]A, ·A, aA). □

Lemma 4.9. Let (A, [− ,−]A, ·A, aA) be an F-algebroid and N a Nijenhuis oper-
ator on A. For all k, l ∈ N:

(i) (A, [− ,−]N k , ·N k , aN k ) is an F-algebroid.

(ii) N l is also a Nijenhuis operator on the F-algebroid (A, [− ,−]N k , ·N k , aN k ).

(iii) The F-algebroids

(A, ([− ,−]N k )N l , (·N k )N l , aN k+l ) and (A, [− ,−]N k+l , ·N k+l , aN k+l )

are the same.

(iv) N l is an F-algebroid homomorphism between the F-algebroid

(A, [− ,−]N k+l , ·N k+l , aN k+l ) and (A, [− ,−]N k , ·N k , aN k ).

Proof. Since the above conclusions with respect to Nijenhuis operators on com-
mutative associative algebras [8] and Lie algebroids [20] simultaneously hold, by
Theorem 4.8, the conclusions follow immediately. □
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We now show that pseudoeventual identities naturally give Nijenhuis operators.

Proposition 4.10. Let (A, [− ,−]A, ·A, aA) be an F-algebroid with an identity e
and E a pseudoeventual identity on A. Then the endomorphism N = E ·A is a
Nijenhuis operator on the F-algebroid A. Consequently, (A, [− ,−]E , ·E , aE) is an
F-algebroid, where

(32) [X, Y ]E = [E ·A X, Y ]A + [X, E ·A Y ]A − E ·A [X, Y ]A ∀ X, Y ∈ 0(A),

with ·E given by (23) and aE(X)= aA(E ·A X).

Proof. For any X, Y ∈ 0(A), we have

N (X) ·A N (Y )− N
(
N (X) ·A Y + X ·A N (Y )− N (X ·A Y )

)
= X ·A Y ·A E2

− E ·A (X ·A Y ·A E + X ·A Y ·A E − X ·A Y ·A E)

= X ·A Y ·A E2
− X ·A Y ·A E2

= 0.

Thus N = E ·A is a Nijenhuis operator on the associative algebra (0(A), ·A).
Then we show that N = E ·A is a Nijenhuis operator on the Lie algebroid

(A, [− ,−]A, aA). It is obvious that N is a bundle map. Since E is a pseudoeventual
identity on the F-algebroid A, taking Y = E in (22), we have

(33) [X ·A E, E]A − [X, E]A ·A E = [E, e]A ·A X ·A E .

For any X, Y ∈0(A), expanding [E ·A X, E ·A Y ]A using the Hertling–Manin relation
and by (33), we have

[N (X), N (Y )]A − N
(
[N (X), Y ]A + [X, N (Y )]A − N ([X, Y ]A)

)
= 0.

Thus N = E ·A is a Nijenhuis operator on the Lie algebroid (A, [− ,−]A, aA).
Therefore, N = E ·A is a Nijenhuis operator on the F-algebroid A.

The second claim follows from Theorem 4.8. □

Corollary 4.11. Let (M, • ) be an F-manifold with an identity e and E a pseudo-
eventual identity on M. Then there is a new F-algebroid structure on TM given by

X •E Y = X • Y • E, [X, Y ]E = [E • X, Y ]X(M)+[X, E • Y ]X(M)− E • [X, Y ]X(M),

aE(X)= E • X ∀ X, Y ∈ X(M).

5. Pre-F-algebroids and eventual identities

In this section, we introduce the notion of a pre-F-algebroid, and show that a
pre-F-algebroid gives rise to an F-algebroid. Then we study eventual identities
on a pre-F-algebroid, which give new pre-F-algebroids. Finally, we introduce the
notion of a Nijenhuis operator on a pre-F-algebroid, and show that a Nijenhuis
operator gives rise to a deformed pre-F-algebroid.
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Some properties of pre-F-algebroids.

Definition 5.1. Let (g, · ) be a commutative associative algebra and (g, ∗) a pre-Lie
algebra. Define 9 : ⊗

3g → g by

(34) 9(x, y, z) := x ∗ (y · z)− (x ∗ y) · z − y · (x ∗ z).

(i) The triple (g, ∗ , · ) is called a pre-F-manifold algebra if

(35) 9(x, y, z)=9(y, x, z) ∀ x, y, z ∈ g,

(ii) The triple (g, ∗ , · ) is called a pre-Lie commutative algebra (or pre-Lie-com
algebra) if

(36) 9(x, y, z)= 0 ∀ x, y, z ∈ g.

It is obvious that a pre-Lie-com algebra is a pre-F-manifold algebra.

Example 5.2 [24]. Let (g, · ) be a commutative associative algebra with a deriva-
tion D. Then the new product

x ∗ y = x · D(y) ∀ x, y ∈ g

makes (g, ∗ , · ) being a pre-Lie-com algebra. Furthermore, (g, [− ,−], · ) is an
F-manifold algebra, where the bracket is given by

[x, y] = x ∗ y − y ∗ x = x · D(y)− y · D(x) ∀ x, y ∈ g.

Let g = R[u1, x2, . . . , xn] be the algebra of polynomials in n variables. Denote
by Dn =

{∑n
i=1 pi ∂ui | pi ∈ g

}
the space of derivations.

Example 5.3 [24]. Let g be the algebra of polynomials in n variables. Define
· : Dn ×Dn → Dn and ∗ : Dn ×Dn → Dn by

(p∂ui ) · (q∂u j )= (pq) δi j ∂ui , (p∂ui ) ∗ (q∂u j )= p∂ui (q)∂u j ∀ p, q ∈ g.

Then (Dn, ∗ , · ) is a pre-Lie-com algebra with the identity e = ∂u1 + · · · + ∂xn .
Furthermore, it follows that (Dn, [− ,−], · ) is an F-manifold algebra with the
identity e, where the bracket is given by

[p∂ui , q∂u j ] = p∂ui (q)∂u j − q∂u j (p)∂ui ∀ p, q ∈ g.

Definition 5.4. A pre-F-algebroid is a vector bundle A over M equipped with
bilinear operations ·A :0(A)×0(A)→0(A) and ∗A :0(A)×0(A)→0(A), and a
bundle map aA : A → TM , called the anchor, such that (A, ∗A, aA) is a pre-Lie
algebroid, (A, ·A) is a commutative associative algebroid and (0(A), ∗A, ·A) is a
pre-F-manifold algebra. In particular, if (0(A), ∗A, ·A) is a pre-Lie-com algebra,
we call this pre-F-algebroid a pre-Lie-com algebroid.

We denote a pre-F-algebroid (or pre-Lie-com algebroid) by (A, ∗A, ·A, aA).
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Definition 5.5. Let (A, ∗A, ·A, aA) and (B, ∗B, ·B, aB) be pre-F-algebroids over M .
A bundle map ϕ : A → B is called a homomorphism of pre-F-algebroids, if the
following conditions are satisfied:

ϕ(X ·A Y )= ϕ(X) ·B ϕ(Y ), ϕ(X ∗A Y )= ϕ(X) ∗B ϕ(Y ), aB ◦ϕ = aA

for all X, Y ∈ 0(A).

Proposition 5.6. Assume that (A, ∗A, ·A, aA) is a pre-F-algebroid. Then we have
an F-algebroid (A, [− ,−]A, ·A, aA), and denoted by Ac, called the subadjacent
F-algebroid of the pre-F-algebroid, where the bracket [− ,−]A is given by

(37) [X, Y ]A = X ∗A Y − Y ∗A X ∀ X, Y ∈ 0(A).

Proof. Since (A, ∗A, aA) is a pre-Lie algebroid, (A, [− ,−]A, aA) is a Lie alge-
broid [22]. Since (0(A), ∗A, ·A) is a pre-F-manifold algebra, (0(A), [− ,−]A, ·A)

is an F-manifold algebra [14]. Thus (A, [− ,−]A, ·A, aA) is an F-algebroid. □

The notion of an F-manifold with a compatible flat connection was introduced
by Manin [29]. Recall that an F-manifold with a compatible flat connection
(pre-Lie-com manifold) is a triple (M,∇, • ), where M is a manifold, ∇ is a flat
connection and • is a C∞(M)-bilinear, commutative and associative multiplication
on the tangent bundle TM such that (TM,∇, • , Id) is a pre-F-algebroid (pre-Lie-
com algebroid). It is obvious that an F-manifold with a compatible flat connection is
a special case of pre-F-algebroids. An F-manifold with a compatible flat connection
(resp. pre-Lie-com manifold) is called semisimple if its subadjacent F-manifold is
semisimple.

Proposition 5.7. Let (M,∇, • , e) be a semisimple pre-Lie-com manifold with the
canonical local coordinate systems (u1, . . . , un). Then we have

∇∂/∂ui
∂

∂u j = 0, i, j ∈ {1, 2, . . . , n}.

Proof. Set
∇∂/∂ui

∂

∂u j =

∑
k

0k
i j
∂

∂xk
.

By (36), for any i, j, k ∈ {1, 2, . . . , n}, we have

(38) 0 = ∇∂/∂ui

(
∂

∂u j
•
∂

∂uk

)
−

(
∇∂/∂ui

∂

∂u j

)
•
∂

∂uk −
∂

∂u j
•

(
∇∂/∂ui

∂

∂uk

)
=

∑
l

δ jk0
l
ik
∂

∂xl
−0k

i j
∂

∂uk −0
j
ik
∂

∂u j .

For j ̸= k in (38), we have 0k
i j = 0 ( j ̸= k). For j = k in (38), we have 0 j

i j = 0.
Thus for any i, j, k ∈ {1, 2, . . . , n}, we have 0k

i j = 0. □
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We give some useful formulas that will be frequently used in what follows.

Lemma 5.8. Let (A, ∗A, ·A, aA) be a pre-F-algebroid. Then 9(X, Y, Z) defined
by (34) is a tensor field of type (3, 1) and symmetric in all arguments. Furthermore,
9 satisfies

9(X ·A Y, Z ,W )−9(X, Z ,W )·A Y =9(X ·A Z , Y,W )−9(X, Y,W )·A Z ,(39)

9(X ·A Y, Z ,W )−9(X ·A Z , Y,W )=9(W ·A Y, X, Z)−9(W ·A Z , X, Y )(40)

for all X, Y, Z ,W ∈ 0(A).

Proof. It is straightforward to check that 9(X, Y, Z) is a tensor field of type (3, 1).
The symmetry of 9(X, Y, Z) in the first two arguments is the consequence of (35)
and in the last two arguments is the consequence of the commutativity of ·A.

By the symmetry of 9, we have

(41) 9(X ·A Y, Z ,W )−9(X, Z ,W ) ·A Y =9(X ·A W, Y, Z)−9(X, Y, Z) ·A W.

Interchanging Z and W in (41), we have

9(X ·A Y,W, Z)−9(X,W, Z) ·A Y =9(X ·A Z , Y,W )−9(X, Y,W ) ·A Z .

By the symmetry of 9, equation (39) follows.
By (39), we have

9(X ·A Y, Z ,W )−9(X ·A Z , Y,W )=9(X, Z ,W ) ·A Y −9(X, Y,W ) ·A Z ,

9(W ·A Y, X, Z)−9(W ·A Z , X, Y )=9(W, X, Z) ·A Y −9(W, X, Y ) ·A Z .

By the symmetry of 9, we have

9(X, Z ,W ) ·A Y −9(X, Y,W ) ·A Z =9(W, X, Z) ·A Y −9(W, X, Y ) ·A Z .

Thus (40) holds. □

Lemma 5.9. Let (A, ∗A, ·A, aA) be a pre-F-algebroid with an identity e. Then,

9(e, X, Y )= −(X ∗A e) ·A Y,(42)

(X ∗A e) ·A Y = (Y ∗A e) ·A X ∀ X, Y ∈ 0(A).(43)

Proof. Equation (42) follows by a direct calculation. By the symmetry of9 and (42),
equation (43) follows. □

Lemma 5.10. Let (A, ∗A, ·A, aA) be a pre-Lie-com algebroid with an identity e.
Then we have

(44) X ∗A e = 0 ∀ X ∈ 0(A).

Proof. The conclusion follows from the following relation:

X ∗A (e ·A e)− (X ∗A e) ·A e − (X ∗A e) ·A e = 0. □
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Example 5.11. Assume that {u} is a coordinate system of R. Define an anchor
map a : T R → T R, a multiplication · : X(R)×X(R)→ X(R) and a multiplication
∗ : X(R)×X(R)→ X(R) by

a
(

f
∂

∂u

)
= u f

∂

∂u
, f

∂

∂u
· g
∂

∂u
= f g

∂

∂u
, f

∂

∂u
∗ g

∂

∂u
= u f

∂g
∂u

∂

∂u

for all f, g ∈ C∞(R). Then (T R, ∗ , · , a) is a pre-Lie-com algebroid with the
identity ∂/∂u. Furthermore, (T R, [− ,−], · , a) is an F-algebroid with the iden-
tity ∂/∂u, where [− ,−] is given by[

f
∂

∂u
, g

∂

∂u

]
= u

(
f
∂g
∂u

− g
∂ f
∂u

)
∂

∂u
.

Definition 5.12. Let (g, ∗ , · ) be a pre-F-manifold algebra (pre-Lie-com algebra).
An action of g on a manifold M is a linear map ρ : g → X(M) from g to the space
of vector fields on M , such that for all x, y ∈ g, we have

ρ(x ∗ y − y ∗ x)= [ρ(x), ρ(y)]X(M).

Given an action of a pre-F-manifold algebra (pre-Lie-com algebra) g on M , let
A= M×g be the trivial bundle. Define an anchor map aρ : A→TM , a multiplication
·ρ : 0(A)×0(A)→ 0(A) and a bracket ∗ρ : 0(A)×0(A)→ 0(A) by

aρ(m, u)= ρ(u)m ∀ m ∈ M, u ∈ g,(45)

X ·ρ Y = X · Y,(46)

X ∗ρ Y = Lρ(X)Y + X ∗ Y ∀ X, Y ∈ 0(A),(47)

where X ·Y and X ∗Y are the pointwise C∞(M)-bilinear multiplication and bracket,
respectively.

Proposition 5.13. With the above notations, we have that (A = M × g, ∗ρ, ·ρ, aρ)
is a pre-F-algebroid (pre-Lie-com algebroid), which we call an action pre-F-
algebroid (action pre-Lie-com algebroid), where ∗ρ , ·ρ and aρ are given by (47),
(46) and (45), respectively.

Proof. It follows by a similar proof of Proposition 2.15. □

It is obvious that the subadjacent F-algebroid of the action pre-F-algebroid is
an action F-algebroid.

Example 5.14. Consider the pre-Lie-com algebra (Dn, · , ∗) given by Example 5.3.
Let (t1, . . . , tn) be the canonical coordinate systems on Rn . Let ρ : Dn → X(Rn) is
a map defined by

ρ(p(u1, . . . , un)∂ui )= p(t1, . . . , tn)
∂

∂ti
, i ∈ {1, 2, . . . , n}.



274 JOHN ALEXANDER CRUZ MORALES, JIEFENG LIU AND YUNHE SHENG

It is straightforward to check that ρ is an action of the pre-Lie-com algebra Dn

on Rn . Thus (A = Rn
×Dn, ∗ρ, ·ρ, aρ) is a pre-Lie-com algebroid, where ∗ρ , ·ρ

and aρ are given by

aρ(m, p(u1, u2, . . . , un)∂ui )= p(m)
∂

∂ti

∣∣∣
m

∀ m ∈ Rn,

( f ⊗ (p∂ui )) ·ρ (g ⊗ (q∂u j ))= ( f g)⊗ (pqδi j ∂ui ),

( f ⊗ (p∂ui )) ∗ρ (g ⊗ (q∂u j ))= f p
∂g
∂ti

⊗ (q∂u j )+ ( f g)⊗ p∂ui (q)∂u j ,

where f, g ∈ C∞(Rn) and p, q ∈ R[u1, . . . , un
].

Eventual identities of pre-F-algebroids.

Definition 5.15. Assume that (A, ∗A, ·A, aA) is a pre-F-algebroid with an identity e.
A section E ∈ 0(A) is called a pseudoeventual identity on A if the following
equalities hold:

9(E, X, Y )= −(E ∗A e) ·A X ·A Y,(48)

(X ∗A E) ·A Y = (Y ∗A E) ·A X ∀ X, Y ∈ 0(A).(49)

A pseudoeventual identity E on the pre-F-algebroid with an identity e is called
an eventual identity if it is invertible.

Proposition 5.16. Let (A, ∗A, ·A, e, aA) be a pre-F-algebroid with an identity e.
If E ∈ 0(A) is a pseudoeventual identity on A, then E ∈ 0(A) is a pseudoeventual
identity on its subadjacent F-algebroid Ac.

Proof. By a direct calculation, for X, Y ∈ 0(A), we have

PE(X, Y )− [e, E]A ·A X ·A Y

= E ∗A (X ·A Y )− (X ·A Y ) ∗A E − (E ∗A X) ·A Y + (X ∗A E) ·A Y
− (E ∗A Y ) ·A X + (Y ∗A E) ·A X − (e∗A E) ·A X ·A Y + (E ∗A e) ·A X ·A Y

=9(E, X, Y )+ (E ∗A e) ·A X ·A Y − (X ·A Y ) ∗A E + (X ∗A E) ·A Y
+ (Y ∗A E) ·A X − (e ∗A E) ·A X ·A Y.

By (48) and (49), we have

PE(X, Y )− [e, E]A ·A X ·A Y = 0.

Thus E ∈ 0(A) is a pseudoeventual identity on its subadjacent F-algebroid Ac. □

By Lemma 5.10, we have:

Proposition 5.17. Let (A, ∗A, ·A, aA) be a pre-F-algebroid with an identity e and E
an invertible element in 0(A). If (A, ∗A, ·A, aA) is a pre-Lie-com algebroid, then E
is an eventual identity on A if and only if (49) holds.
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Lemma 5.18. Let (A, ∗A, ·A, e, aA) be a pre-F-algebroid. Then for E ∈ 0(A),
equation (48) holds if and only if

(50) 9(X, E ·A Y, Z)=9(Y, E ·A X, Z) ∀ X, Y, Z ∈ 0(A).

Proof. Assume that (50) holds. By (39), we have

(51) 9(E, X, Z) ·A Y −9(E, Y, Z) ·A X =9(X, E ·A Y, Z)−9(Y, E ·A X, Z)= 0.

Taking Y = e in (51), we have

9(E, X, Z)= −(E ∗A e) ·A X ·A Z .

This implies that (48) holds.
Conversely, if (48) holds, then we have

9(E, X, Z)·AY−9(E, Y, Z)·A X =−(E∗Ae)·A X ·A Z ·AY+(E∗Ae)·AY ·A Z ·A X =0.

By (39), we have
9(X, E ·A Y, Z)=9(Y, E ·A X, Z).

This implies that (50) holds. □

Let the set of all pseudoeventual identities on a pre-F-algebroid (A, ∗A, ·A, aA)

be E(A) with an identity e.

Proposition 5.19. Let (A, ∗A, ·A, aA) be a pre-F-algebroid with an identity e. Then
for any E1, E2 ∈ E(A), we have E1 ·A E2 ∈ E(A). Furthermore, if E is an eventual
identity on A, then E−1 is also an eventual identity on A.

Proof. Let E1, E2 be two pseudoeventual identities on the pre-F-algebroid A. For
all X, Y, Z ∈ 0(A), by (50), the symmetry of 9 and Lemma 5.18, we have

9(E1 ·A E2, X, Y )= −((E1 ·A E2) ∗A e) ·A X ·A Y.

For all X, Y ∈ 0(A), by (35), we have

(X ∗A (E1 ·A E2)) ·A Y − (Y ∗A (E1 ·A E2)) ·A X

=9(E1, X, E2) ·A Y + (X ∗A E1) ·A E2 ·A Y + (X ∗A E2) ·A E1 ·A Y
−9(E1, Y, E2) ·A X − (Y ∗A E1) ·A E2 ·A X − (Y ∗A E2) ·A E1 ·A X.

By (39) and (50), we have

9(E1, X, E2) ·A Y −9(E1, Y, E2) ·A X =9(E1 ·A Y, X, E2)−9(E1 ·A X, Y, E2)= 0.

Using the above relation and by (49), we have

(X ∗A (E1 ·A E2)) ·A Y − (Y ∗A (E1 ·A E2)) ·A X = 0.

Thus E1 ·A E2 ∈ E(A).
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Using (50) with X and Y replaced by E−1
·A X and E−1

·A Y respectively, we get

0 =9(E−1
·A X, E ·A E−1

·A Y, Z)−9(E−1
·A Y, E ·A E−1

·A X, Z)

=9(E−1
·A X, Y, Z)−9(E−1

·A Y, X, Z).

By the symmetry of 9 and Lemma 5.18, we have

9(E−1, X, Y )= −(E−1
∗A e) ·A X ·A Y.

By (39) and (50), we have

(52) 9(X, E, E−1) ·A Y =9(Y, E, E−1) ·A X.

Furthermore, by a direct calculation, we have

(X ∗A E−1) ·A Y ·A E =9(X, E, E−1) ·A Y − (X ∗A e) ·A Y + (X ∗A E) ·A Y ·A E−1,

(Y ∗A E−1) ·A X ·A E =9(Y, E, E−1) ·A X − (Y ∗A e) ·A X + (Y ∗A E) ·A X ·A E−1.

By (43), (49) and (52), we have

(X ∗A E−1) ·A Y ·A E = (Y ∗A E−1) ·A X ·A E .

Because E is invertible, we have

(X ∗A E−1) ·A Y = (Y ∗A E−1) ·A X.

Thus E−1 is an eventual identity on A. □

Proposition 5.20. Let (A, ∗A, ·A, aA) be a pre-F-algebroid with an identity e.
Then E is a pseudoeventual identity on A if and only if (A, ∗A, ·E , aA) is a pre-F-
algebroid, where ·E : 0(A)×0(A)→ 0(A) is given by (23).

Proof. Define

9̃(X, Y, Z)= X ∗A (Y ·E Z)− (X ∗A Y ) ·E Z − Y ·E (X ∗A Z) ∀ X, Y, Z ∈ 0(A).

By a straightforward computation, we have

9̃(X, Y, Z)=9(X, E ·A Y, Z)+9(X, E, Y ) ·A Z + (X ∗A E) ·A Y ·A Z ,(53)

9̃(Y, X, Z)=9(Y, E ·A X, Z)+9(Y, E, X) ·A Z + (Y ∗A E) ·A X ·A Z .(54)

By the symmetry of 9, (A, ∗A, ·E , aA) is a pre-F-algebroid if and only if

(55) 9(X, E ·A Y, Z)−9(Y, E ·A X, Z)= (Y ∗A E) ·A X ·A Z − (X ∗A E) ·A Y ·A Z .

By the symmetry of 9 and (40), we have

9(X, E ·A Y, e)−9(Y, E ·A X, e)=9(e ·A Y, E, X)−9(e ·A X, E, Y )= 0.
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Taking Z = e in (55), we have

(X ∗A E) ·A Y = (Y ∗A E) ·A X.

This implies that (49) holds. Furthermore, by (49), (55) implies that (50) holds.
By Lemma 5.18, equation (50) is equivalent to (48). Thus E is a pseudoeventual
identity on (A, ∗A, ·A, e, aA).

On the other hand, if E is a pseudoeventual identity on (A, ∗A, ·A, e, aA), by
Lemma 5.18, we have

9(X, E ·A Y, Z)=9(Y, E ·A X, Z).

Furthermore, (55) follows by (49). Thus (A, ∗A, ·E , aA) is a pre-F-algebroid. □

Corollary 5.21. Let (M,∇, • ) be an F-manifold with a compatible flat connection
and E a pseudoeventual identity on M. Then (M,∇, •E) is also an F-manifold with
a compatible flat connection, where •E is given by

(56) X •E Y = X • Y • E ∀ X, Y ∈ X(M).

Theorem 5.22. Let (A, ∗A, ·A, aA) be a pre-F-algebroid with an identity e. Then
E is an eventual identity on A if and only if (A, ∗A, ·E , aA) is a pre-F-algebroid
with the identity E−1, which is called the Dubrovin’s dual of (A, ∗A, ·A, aA), where
·E is given by (23). Moreover, on the pre-F-algebroid (A, ∗A, ·E , E−1, aA), e is an
eventual identity and the map

(57) (A, ∗A, ·A, e, aA, E)→ (A, ∗A, ·E , E−1, aA, e†)

is an involution of the set of pre-F-algebroids with eventual identities, where
e†

= E−2 is the inverse of e with respect to the multiplication ·E .

Proof. By Proposition 5.20, the first claim follows immediately. For the second
claim, assume that E is an eventual identity on (A, ∗A, ·A, e, aA). We need to show
that e is an eventual identity on the pre-F-algebroid (A, ∗A, ·E , E−1, aA), i.e.,

9̃(e, X, Y )= −(e ∗A E−1) ·E X ·E Y,(58)

(X ∗A e) ·E Y = (Y ∗A e) ·E X.(59)

By (43), we have

(X ∗A e) ·E Y − (Y ∗A e) ·E X = ((X ∗A e) ·A Y − (Y ∗A e) ·A X) ·A E = 0,

which implies that (59) holds.
On the one hand, by (48) and (50), we have

9̃(e, X, Y )=9(E, X, Y )+9(E, e, X) ·A Y + (e ∗A E) ·A X ·A Y

= −2(E ∗A e) ·A X ·A Y + (e ∗A E) ·A X ·A Y.
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On the other hand, taking X = E and Y = E−1 in (48), by the symmetry of 9, we
have

e ∗A e − (e ∗A E) ·A E−1
− (e ∗A E−1) ·A E = −(E ∗A e) ·A E−1.

Furthermore, by (43), we have

(e ∗A E−1) ·A E2
= (e ∗A e) ·A E − e ∗A E + E ∗A e = 2E ∗A e − e ∗A E .

Thus we have

9̃(e, X, Y )= −(e ∗A E−1) ·A E2
·A X ·A Y = −(e ∗A E−1) ·E X ·E Y.

which implies that (58) holds.
By Proposition 5.19, we have that e†

= E−2 is an eventual identity on the pre-
F-algebroid (A, ∗A, ·E , E−1, aA). Then similar to the proof of Theorem 4.4, the
map given by (57) is an involution of the set of pre-F-algebroids with eventual
identities. □

Example 5.23. Consider the pre-Lie-com algebra (g, ∗ , · ) with an identity e given
by Example 5.2. By a direct calculation, for any E ∈ g, we have

(x ∗ E) · y − (y ∗ E) · x = x · D(E) · y − y · D(E) · x = 0 ∀ x, y ∈ g.

By Proposition 5.17, E is a pseudoeventual identity on g. Thus any element of g
is a pseudoeventual identity on g. Furthermore, for any E ∈ g, there is a new
pre-F-manifold algebra structure on g given by

x ·E y = x · y · E, x ∗ y = x · D(y) ∀ x, y ∈ g.

Example 5.24. Let (M,∇, • , e) be a semisimple pre-Lie-com manifold with local
coordinate systems (u1, . . . , un). Then any pseudoeventual identity on TM is

E = f1(u1)
∂

∂u1 + · · · + fn(un)
∂

∂un ,

where fi (ui ) ∈ C∞(M) depends only on ui for i = 1, 2, . . . , n. Furthermore, if
all fi (ui ) are nonvanishing everywhere, then E ∈ X(M) is an eventual identity.

Example 5.25. Let (u1, u2) be a local coordinate systems on R2. Define

∂

∂u1
•
∂

∂ui =
∂

∂ui ,
∂

∂u2
•
∂

∂u2 = 0,
∂

∂ui ∗
∂

∂u j = 0, i, j ∈ {1, 2}.

Then (T R2, ∗ , • , Id) is a pre-Lie-com algebroid with the identity ∂/∂u1 and thus
(T R2, ∗ , • , Id) is a pre-F-algebroid with the identity ∂/∂u1.

Furthermore, any pseudoeventual identity on (T R2, ∗ , • , Id) is of the form

E = f1(u1)
∂

∂u1 + f2(u1, u2)
∂

∂u2 ,
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with ∂ f1/∂u1
= ∂ f2/∂u2, where f1 ∈ C∞(R2) depends only on u1 and f2 is any

smooth function. Furthermore, any pseudoeventual identity on the subadjacent
F-algebroid of (T R2, ∗ , • , Id) is of the form

E = f1(u1)
∂

∂u1 + f2(u1, u2)
∂

∂u2 .

In particular, if f1(u1) is nonvanishing everywhere, then E is an eventual identity
on the subadjacent F-algebroid of (T R2, ∗ , • , Id).

Theorem 5.26 [27]. Let (M,∇, • ) be an F-manifold with a compatible flat connec-
tion. Let (u1, u2, . . . , un) be the canonical coordinate systems on M. If X and Y
in X(M) satisfy

(∇Z X) • W = (∇W X) • Z , (∇Z Y ) • W = (∇W Y ) • Z ∀ W, Z ∈ X(M),

then the associated flows

(60) ui
t = ci

jk X k ui
x and ui

τ = ci
jkY k u j

x

commute, where

∂

∂ui
•
∂

∂u j = ck
i j
∂

∂uk , X = X i ∂

∂ui and Y = Y i ∂

∂ui .

Proposition 5.27. Let (M,∇, • ) be an F-manifold with a compatible flat connec-
tion and an identity e. Assume that E1, E2 ∈ X(M) are pseudoeventual identities.
Then the flows

(61) ui
t = ci

jk X k ui
x , ui

τ = ci
jkY k u j

x , ui
s = X p Y qci

jk ck
pq ui

x

commute, where

∂

∂ui
•
∂

∂u j = ck
i j
∂

∂uk , E1 = X i ∂

∂ui and E2 = Y i ∂

∂ui .

Proof. Since E1 ∈X(M) and E2 ∈X(M) are pseudoeventual identities on (M,∇, • ),
by Proposition 5.19, E1 •E2 is also a pseudoeventual identity. Thus E1, E2 and E1 •E2

satisfy (49). Furthermore, we have

E1 • E2 = X p Y qck
pq

∂

∂uk .

By Theorem 5.26, the claim follows. □

Theorem 5.28 [27]. Let (M,∇, • ) be an F-manifold with a compatible flat con-
nection. Let (u1, u2, . . . , un) be the canonical coordinate systems on M and
(X(1,0), . . . , X(n,0)) a basis of flat vector fields. Define the primary flows by

(62) ui
t(p,0) = ci

jk X k
(p,0)u

j
x .
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Then there is a well-defined higher flows of the hierarchy defined by

(63) ui
t(p,α) = ci

jk X k
(p,α)u

j
x ,

by means of the following recursive relations:

(64) ∇∂/∂u j X i
(p,α) = ci

jk X k
(p,α−1)u

k
x .

Furthermore, the flows of the principal hierarchy (63) commute.

Proposition 5.29. Let (M,∇, • ) be an F-manifold with a compatible flat con-
nection and an identity e. Let (X(1,0), . . . , X(n,0)) be a basis of flat vector fields.
Assume that E ∈ X(M) is a pseudoeventual identity. Define the primary flows by

(65) ui
t(p,0) = cm

jk ci
ml E

l X k
(p,0)u

j
x ,

where E = E i (∂/∂ui ). Then there is a well-defined higher flows of the hierarchy
defined by

(66) ui
t(p,α) = cm

jk ci
ml E

l X k
(p,α)u

j
x ,

by means of the following recursive relations:

(67) ∇∂/∂u j X i
(p,α) = cm

jk ci
ml E

l X k
(p,α−1)u

k
x .

Furthermore, the flows of the principal hierarchy (66) commute.

Proof. Since E ∈ X(M) is a pseudoeventual identity on (M,∇, • ), we have by
Proposition 5.20 that (M,∇, •E) is also an F-manifold with a compatible flat
connection, where

X •E Y = X • Y • E ∀ X, Y ∈ X(M).

Furthermore, we have
∂

∂ui
•E

∂

∂u j = cm
i j ck

ml E
l ∂

∂uk .

By Theorem 5.28, the claim follows. □

Nijenhuis operators and deformed pre-F-algebroids. From [22] a Nijenhuis oper-
ator on a pre-Lie algebroid (A, ∗A, aA) is a bundle map N : A → A such that

(68) N (X)∗A N (Y )= N
(
N (X)∗A Y +X ∗A N (Y )−N (X ∗A Y )

)
∀ X, Y ∈0(A).

Definition 5.30. Let (A, ∗A, ·A, aA) be a pre-F-algebroid. A bundle map N : A→ A
is called a Nijenhuis operator on (A, ∗A, ·A, aA) if N is both a Nijenhuis operator
on the commutative associative algebra (0(A), ·A) and a Nijenhuis operator on the
pre-Lie algebroid (A, ∗A, aA).
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Theorem 5.31. Assume that N : A → A is a Nijenhuis operator on a pre-F-
algebroid (A, ∗A, ·A, aA). Then (A, ∗N , ·N , aN = aA ◦ N ) is a pre-F-algebroid
and N is a homomorphism from the pre-F-algebroid (A, ∗N , ·N , aN = aA ◦ N ) to
(A, ∗A, ·A, aA), where the operation ·N is given by equation (29) and the operation
∗N : 0(A)×0(A)→ 0(A) is given by

(69) X ∗N Y = N (X) ∗A Y + X ∗A N (Y )− N (X ∗A Y ) ∀ X, Y ∈ 0(A).

Proof. Since N is a Nijenhuis operator on the commutative associative algebra
(0(A), ·A), it follows that (0(A), ·N ) is a commutative associative algebra. Since
N is a Nijenhuis operator on the pre-Lie algebroid (A, ∗A, aA), (A, ∗N , aN ) is a
pre-Lie algebroid [22].

Define

(70) 9N (X, Y, Z)
:= X ∗N (Y ·N Z)− (X ∗N Y ) ·N Z − (X ∗N Z) ·N Y ∀ X, Y, Z ∈ 0(A).

By a direct calculation, we have

9N (X, Y, Z)=9(N X, NY, Z)+9(N X, Y, N Z)+9(X, NY, N Z)
− N

(
9(N X, Y, Z)+9(X, NY, Z)+9(X, Y, N Z)

)
+ N 2(9(X, Y, Z)).

Thus by (35), we have

9N (X, Y, Z)=9N (Y, X, Z).

This implies that (A, ∗N , ·N , aN = aA ◦ N ) is a pre-F-algebroid. It is not hard to
see that N is a homomorphism from the pre-F-algebroid (A, ∗N , ·N , aN = aA ◦ N )
to (A, ∗A, ·A, aA). □

Proposition 5.32. Let (A, ∗A, ·A, aA) be a pre-F-algebroid with an identity e and E
a pseudoeventual identity on A. Then the endomorphism N = E ·A is a Nijenhuis
operator on the pre-F-algebroid (A, ∗A, ·A, aA). Furthermore, (A, ∗E , ·E , aE) is a
pre-F-algebroid, where the multiplication ∗E is given by

(71) X ∗E Y = (E ·A X) ∗A Y + X ∗A (E ·A Y )− E ·A (X ∗A Y ) ∀ X, Y ∈ 0(A),

the multiplication ·E is given by (23) and aE(X)= aA(E ·A X).

Proof. By (35), we have

9(E ·A X, E, Y )=9(Y, E ·A X, E) ∀ X, Y ∈ 0(A),

which implies that

(72) (E ·A X)∗A(E ·AY )=Y ∗A(X ·AE ·AE)−(Y ∗A(E ·A X))·AE+((E ·X)∗AY )·AE .
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Since E is a pseudoeventual identity on A, by (48) and the symmetry of 9, we have

9(X, E, Y )= −(E ∗A e) ·A X ·A Y.

which implies that

(73) X ∗A (E ·A Y )= −(E ∗A e) ·A X ·A Y − (X ∗A E) ·A Y − (X ∗A Y ) ·A E .

By (48), (49), (72), (73) and the symmetry of 9, we have

N (X) ∗A N (Y )− N
(
N (X) ∗A Y + X ∗A N (Y )− N (X ∗A Y )

)
= 0.

Thus N = E ·A is a Nijenhuis operator on the pre-Lie algebroid (A, ∗A, aA).
Also, N = E ·A is a Nijenhuis operator on the commutative associative algebra

(0(A), ·A). Therefore, N = E ·A is a Nijenhuis operator on the pre-F-algebroid
(A, ∗A, ·A, aA). The second claim follows. □

Corollary 5.33. Let (M,∇, • ) be an F-manifold with a compatible flat connection
and E a pseudoeventual identity on M. Then there is a new pre-F-algebroid struc-
ture on TM given by

X •E Y = X • Y • E, X ∗E Y = ∇E•X Y + ∇E•Y X − E • (∇X Y ),

aE(X)= E • X ∀ X, Y ∈ X(M).
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