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SMOOTH LOCAL SOLUTIONS
TO SCHRÖDINGER FLOWS WITH DAMPING TERM

FOR MAPS INTO SYMPLECTIC MANIFOLDS

BO CHEN AND YOUDE WANG

We show the existence of short-time very regular solutions to the initial
Neumann boundary value problem of Schrödinger flows with damping term
(or Landau–Lifshitz–Gilbert flows) for maps from a 3-dimensional compact
Riemannian manifold with smooth boundary into a compact symplectic
manifold.

1. Introduction

Let (M, g) be a compact Riemannian manifold with smooth boundary and (N , J, ω)

be a symplectic manifold, where ω is the symplectic form and J : TN → TN with
J 2

=− id is an ω-tamed almost complex structure. For a smooth map u ∈C2(M, N ),
the tension field is defined by

τ(u) = trg(∇du),

where ∇ denotes the induced connection on the pullback bundle u∗TN.
Recently, in [Chen and Wang 2023b; 2023a] we have addressed the local existence

of strong or even smooth solutions to the initial Neumann boundary value problems
to the Schrödinger flows from a smooth bounded domain �m (m = 2, 3) into a
standard sphere S2. A natural problem is whether or not one can extend the local
existence of smooth solutions to the initial Neumann boundary value problem to the
following Schrödinger flow from a compact Riemannian manifold with boundary
(M, g) into a general symplectic manifold (N , J, ω):

∂t u = J (u)τ (u), (x, t) ∈ M × R+,

∂u/∂ν = 0, (x, t) ∈ ∂ M × R+,

u(x, 0) = u0 : M → N .

Wang is the corresponding author.
MSC2020: 35K51, 35Q60, 58J35.
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In this paper, we are concerned with a geometric flow for maps between (M, g)

and (N , J, ω), which is a close relative of the Schrödinger flow. If u is a time-
dependent map from (M, g) into N satisfying

∂t u + γ∇vu = ατ(u) − β J (u)τ (u),

we call this geometric flow a Schrödinger flow with damping term ατ(u) (or
a Landau–Lifshitz–Gilbert (LLG) geometric flow) for maps from (M, g) into
(N , J, ω), where α > 0, β and γ are fixed real numbers, v : M × R+

→ TM
is a vector field satisfying div(v) = 0 inside M for any t ∈ R+, and ∇vu is defined
by

∇vu = du(v).

We are interested in the well-posedness to the initial Neumann boundary value
problem of the above geometric flow

(1-1)


∂t u + γ∇vu = ατ(u) − β J (u)τ (u), (x, t) ∈ M × R+,

∂u/∂ν = 0, (x, t) ∈ ∂ M × R+,

u(x, 0) = u0 : M → N .

In fact, the study of system (1-1) above can be regarded as the first step to
approach the previous initial Neumann boundary value problem on the Schrödinger
map flow. This is also the main motivation of this paper.

On the other hand, system (1-1) is of strong physical background. Now, let us
recall some background materials and related equations of this flow.

1A. Background: Landau–Lifshitz–Gilbert equation and the Schrödinger map
flow. Let � be a bounded domain in R3. In physics, for a map u from � into a
standard sphere S2, the Landau–Lifshitz (LL) equation

(1-2) ∂t u = −u × 1u

is a fundamental evolution equation for the ferromagnetic spin chain and was
proposed on the phenomenological ground in studying the dispersive theory of
magnetization of ferromagnets. It was first derived by Landau and Lifshitz [1935],
and then proposed by Gilbert [1955] with dissipation as the form

(1-3) ∂t u = −αu × (u × 1u) − βu × 1u,

where β is a real number and α ≥ 0 is called the Gilbert damping coefficient. Hence,
equation (1-3) above is also called the Landau–Lifshitz–Gilbert (LLG) equation if
α > 0. Here “×” denotes the cross product in R3 and 1 is the Laplace operator
in R3.

Let i : S2
→ R3 be the canonical inclusion map, which induces an embedding

i∗ : T S2
→ S2

× R3, namely i∗(p, v) = (p, di p(v)) for any p ∈ S2 and v ∈ TpS2.



SMOOTH LOCAL SOLUTIONS TO SCHRÖDINGER FLOWS WITH DAMPING TERM 189

Let ι : R3
\ {0} → S2 be the projection defined by ι(y) = y/|y|. Then a direct

calculation shows
dι|y(w) = πy(w) = w − ⟨w, y⟩y

for y ∈ S2 and w ∈ R3, where π is the orthogonal projection from R3 to TyS2.
Moreover, it satisfies

i∗y ◦ πy = πy, πy ◦ i∗y = id.

Then u× has the intrinsic form

u× = i∗u ◦ J (u) ◦ πu .

Here J is the complex structure on S2, i.e., J (u) : TuS2
→ TuS2 rotates vectors

π
2 radians counterclockwise in the tangent space of S2. Therefore, (1-3) can be
written as

∂t u = απu1u − βi∗(u) ◦ J (u) ◦ πu1u.

Since τ(u) = πu1u ∈ TuS2 (i.e., the tension field) and πu∂t u = ∂t u, we get the
intrinsic version of (1-3) as

(1-4) ∂t u = ατ(u) − β J (u)τ (u).

In the case α = 0, it is just the Schrödinger flow into S2, which is introduced inde-
pendently in [Ding and Wang 2001] and [Terng and Uhlenbeck 2006] as a geometric
Hamiltonian flow of maps between manifolds. The intrinsic equation (1-4) can be
defined between general manifolds and gives a natural generalization of the LLG
equation, which is a parabolic perturbation of the Schrödinger flow. Namely, suppose
that (M, g) is a Riemannian manifold and (N , J, ω) is a symplectic manifold, the
LLG geometric flow for map u : M × R+

→ N ↪→ RK is defined by

(1-5) ∂t u = ατ(u) − β J (u)τ (u),

where
τ(u) = 1u + A(u)(∇u, ∇u)

is the tension field, A(u)( · , · ) is the second fundamental form of N in RK. Here
we have embedded isometrically N into RK by applying the well-known Nash
embedding theorem. In the following, we always assume that N ⊂ RK is just a
submanifold in RK for the sake of convenience and without loss of generality.

Let v : M ×R+
→ TM be a vector field with div(v) ≡ 0 inside M. The equation

(1-6) ∂t u + γ∇vu = ατ(u) − β J (u)τ (u)

appears in magnetoelastic theory, where γ ∈ R is a constant. One can refer to
[Benešová et al. 2018; Kalousek et al. 2021] for more details.
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In the special case of α = 0, the equation

∂t u + γ∇vu = −β J (u)τ (u)

is called an incompressible Schrödinger flow, which was derived for the purely
Eulerian simulation of incompressible fluids by Chern et al. [2016].

We should mention that (1-5) and (1-6) are gauge equivalent. Let φt : M → M
be a family of diffeomorphisms of M generated by γ v, which preserves the volume
element. Namely, φt is the solution to the ODE

(1-7)


∂φ

∂t
= γ v(φt(x), t),

φ( · , 0) = φ0,

where φ0 : M → M is a given diffeomorphism. If ∂ M ̸=∅, we additionally assume
γ ⟨v, ν⟩|∂ M = 0, where ν is the outer normal vector of ∂ M. Let u solve (1-6), and
set ũ(x, t) = u(φt(x), t). Then we have

∂t ũ = (∂t u + γ∇vu) ◦ φt(x) = φ∗

t (ατ(u) − β J (u)τ (u)) = ατ(ũ) − β J (ũ)τ (ũ).

This is the standard LLG equation

∂t ũ = ατ(ũ) − β J (ũ)τ (ũ)

with respect to the pullback metric gt = φ∗
t g.

It is worthy to point out that if the vector field v is the velocity field in magnetic
fluid, which satisfies a Navier–Stokes equation involving a magnetic term, we can
derive the so-called magnetic elasticity system (see [Benešová et al. 2018] for more
details)

(1-8)


∂tv + ∇vv + ∇ P = µ1v − ∇ · (∇u ⊙ ∇u − W ′(F)F),

div(v) = 0,

∂t F + (v · ∇)F − ∇vF = κ1F,

∂t u + γ∇vu = ατ(u) − βu × 1u,

accompanied by some suitable initial-boundary value conditions. Here µ, κ are two
positive constants, u : �m

×R+
→ S2 is the magnetization field, v : �m

×R+
→ Rm

is the velocity field of the fluid, P is the pressure function, and F : �m
→ Rm×m is

the deformation gradient, where �m is a domain in Rm with m = 2, 3. The term
∇u ⊙ ∇u is an m × m matrix with (i, j)-th entry

(∇u ⊙ ∇u)i j = ⟨∇i u, ∇ j u⟩,
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W is the elastic energy which satisfies W (RS) = W (S) for all R ∈ SO(m) (and
thus W ′(RS) = RW ′(S)) for all matrices S ∈ Rm×m, and

τ(u) = 1u + |∇u|
2u.

In the special case α =0 and F ≡0, equation (1-8) is the Navier–Stokes–Schrödinger
flow, which can be used to describe the dispersive theory of magnetization of
ferromagnets with quantum effects.

Next, we briefly recall a few results that are closely related to our work in the
present paper. In 1985, the existence of global weak solutions to the LLG equation
(i.e., (1-3) with α > 0) was established by Visintin [1985]. P.L. Sulem, C. Sulem,
and C. Bardos [Sulem et al. 1986] employed a difference method to prove that the
LL equation (1-2) without a dissipation term defined on Rn admits a global weak
solution and a smooth local solution. Later, Alouges and Soyeur [1992] showed the
nonuniqueness of weak solutions to the LLG equation defined on a bounded domain
� ⊂ R3. Y.D. Wang [1998] adopted a more geometric approximation method (i.e.,
the complex structure approximation method) than the Ginzburg–Landau penalized
method used for the LLG equation in [Alouges and Soyeur 1992; Bonithon 2007;
Tilioua 2011] to obtain the global existence of weak solutions to the Schrödinger
flow for maps from a closed Riemannian manifold or a bounded domain in Rn

into S2. For recent developments of weak solutions to a class of generalized LL
equations and related flows, we refer to [Jia and Wang 2019; 2020; Chen and Wang
2021] for various results.

The global well-posedness result for the LL equation on Rn with n ≥ 2 was
well studied by Ionescu, Kenig, and Bejanaru et al., we refer to [Bejenaru 2008;
Bejenaru et al. 2007; 2011; Ionescu and Kenig 2007] for more details. For the
Schrödinger flow from a closed manifold or Rn onto a compact Kähler manifold
(i.e., (1-9) with α = 0), the existence of local smooth solutions was obtained by
Ding and Wang et al., one can refer to [Ding and Wang 1998; 2001; Sulem et al.
1986; Pang et al. 2000; 2001; 2002; Zhou et al. 1991].

In the case the domain manifold is a smooth bounded domain in R3, Carbou
and Fabrie [2001] proved the local existence and uniqueness of regular solutions
of the initial Neumann boundary value problem to the LLG equation. Recently,
the local existence of very regular solutions to the LLG equation with α > 0 was
addressed by applying the delicate Galerkin approximation method and adding
initial Neumann boundary compatibility conditions on the initial map [Carbou and
Jizzini 2018]. Inspired by this method, which essentially stems from [Sulem et al.
1986], we obtained local-in-time very regular solutions to the LLG equation with
spin-polarized transport in [Chen and Wang 2023c].

Very recently, the authors of this paper studied the most challenging LL equation
(i.e., the Schrödinger flow into S2) on a smooth bounded domain in R3, and proved
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the existence and uniqueness of local-in-time strong solutions and local very regular
solutions to its initial Neumann boundary value problem (see [Chen and Wang
2023b; 2023a]).

1B. Motivations and main results. Although we have proved the existence and
uniqueness of local-in-time strong solutions and local very regular solutions to the
initial Neumann boundary value problem of the Schrödinger flow from a smooth
bounded domain in R3 into S2 (see [Chen and Wang 2023b; 2023a]), the existence
of the initial Neumann boundary value problem of the Schrödinger flow from a
smooth bounded domain M in R3 into a compact Kähler manifold N is still an
open problem: 

∂t u = J (u)τ (u), (x, t) ∈ M × R+,

∂u/∂ν = 0, (x, t) ∈ ∂ M × R+,

u(x, 0) = u0 : M → N .

To this end, the first step is to extend Carbou’s work [Carbou and Jizzini 2018] on
the LLG equation for maps from a smooth bounded domain in R3 into S2 to the
case from a compact Riemannian manifold with smooth boundary into a symplectic
manifold. So, in this paper we consider the existence of regular solutions to the
initial Neumann boundary value problem of (1-5) with α > 0.

Because the geometry of the domain manifold M does not affect our analysis and
the main results, for simplicity, we assume that � is a smooth bounded domain in Rm.
Let u be a time-dependent map from � to N. We consider the initial Neumann
boundary value problem of the general LLG flow (equation)

(1-9)


∂t u + γ∇vu = ατ(u) − β J (u)τ (u), (x, t) ∈ � × R+,

∂u/∂ν = 0, (x, t) ∈ ∂� × R+,

u(x, 0) = u0 : � → N ↪→ RK,

where α > 0, γ and β are fixed real numbers. Here v : �× R+
→ Rm is a vector

field satisfying div(v) = 0, and ∇vu is defined by

∇vu = du(v).

No doubt, the initial Neumann boundary value problem of the corresponding
incompressible Schrödinger flow

(1-10)


∂t u + γ∇vu = −β J (u)τ (u), (x, t) ∈ � × R+,

∂u/∂ν = 0, (x, t) ∈ ∂� × R+,

u(x, 0) = u0 : � → N ,

and related problems are more challenging and will be carried out in our forthcoming
papers.
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Our main results are the following two theorems:

Theorem 1.1. Let � be a smooth bounded domain in R3 and N be a compact
symplectic manifold. Let u0 ∈ H 2(�, N ) satisfy the compatibility condition

∂u0

∂ν
|∂� = 0.

Suppose v ∈ L∞(R+, W 1,3(�)), div(v)= 0 for any t ∈ R+, and ⟨v, ν⟩|∂�×R+ = 0.
Then there exists a constant T0 > 0 depending only on γ , α, β, ∥u0∥H2(�), and
∥v∥L∞(R+,W 1,3(�)) such that (1-9) admits a unique local solution u for any T < T0

which satisfies

(1-11) u ∈ C0(
[0, T ], H 2(�, N )

)
∩ L2(

[0, T ], H 3(�, N )
)
.

Furthermore, if u0 ∈ H 3(�, N ), v ∈ C0(R+, H 1(�)), and ∂tv ∈ L2(R+, H 1(�)),
then this solution u satisfies

(1-12) ∂ i
t u ∈ C0(

[0, T ], H 3−2i (�)
)
∩ L2(

[0, T ], H 4−2i (�)
)

for T < T0 and i = 0, 1.

Moreover, we can obtain a very regular solution to (1-9) by adding higher order
compatibility conditions on an initial map:

Theorem 1.2. Let � be a smooth bounded domain in R3 and N be a compact
symplectic manifold. Let k ≥ 4, u0 ∈ H k(�, N ) satisfy the compatibility condition
at

[ k
2

]
− 1 order, which is given in the Definition 5.1. Suppose that div(v) = 0 for

any t ∈ R+ and ⟨v, ν⟩|∂�×R+ = 0, and for any i ≤
[ k

2

]
− 1,

∂ i
t v ∈ C0(R+, H k−2(i+1)(�, R3)

)
∩ L2(R+, H 2[k/2]−2i (�, R3)

)
;

moreover, if k is odd, we additionally assume that ∂
[k/2]

t v ∈ L2(R+, L2(�)). Then,
for u and T0 > 0 which are given in Theorem 1.1, we have that for any T < T0 and
0 ≤ i ≤

[ k
2

]
− 1,

∂ i
t u ∈ C0(

[0, T ], H k−2i (�, N )
)
∩ L2(

[0, T ], H k+1−2i (�, N )
)
.

Remark 1.3. (1) Theorems 1.1 and 1.2 still hold true when � is a compact
3-dimensional Riemannian manifold with smooth boundary.

(2) By almost the same arguments as in the proofs of Theorem 1.1 and Theorem 1.2,
we can also get a short-time very regular solution to the equation

(1-13)


∂t u + γ∇vu = α(τ(u) + γ J (u)∇vu) + J (u)τ (u), (x, t) ∈ � × R+,

∂u/∂ν = 0, (x, t) ∈ ∂� × R+,

u(x, 0) = u0 : � → N ↪→ RK,

on �× R+, provided that u0 satisfies some suitable compatibility conditions on the
boundary. Here α > 0 and γ ∈ R.
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To prove Theorem 1.1, we need to consider an extrinsic version (see (3-1)) of
(1-9) and then use the solution of the auxiliary equation

(1-14)


∂t u + γ∇vu =α(1u +P(u)(∇u, ∇u)) − βJ(u)1u, (x, t)∈� × R+,

∂u/∂ν =0, (x, t)∈∂� × R+,

u(x, 0)=u0 :�→ N ↪→RK,

which preserves the original geometric structures of (1-9), to approximate a solution
of (1-9). Here P( · , · ) and J(u) are the extensions of A( · , · ) and J defined in
Section 3A, respectively. We then prove the main result Theorem 1.1 by the
following process T (1):

(1) We apply Galerkin approximation to (1-14), and then estimate some suitable
energies directly to get a unique solution u to (1-14) satisfying

u ∈ C0(
[0, T ], H 2(�, RK )

)
∩ L2(

[0, T ], H 3(�, RK )
)
.

Since u0 ∈ H 2(�, N ), the geometric structures of the above auxiliary equation (1-14)
guarantee u(x, t) ∈ N for a.e. (x, t) ∈ � × [0, T0). Therefore, u is also a solution
to (1-9) satisfying (1-11).

(2) Since the space of test functions associated to (1-14) is small, we cannot get
higher energy estimates directly to improve the regularity of u. We then consider
the differential of Galerkin approximation to (1-14) with respect to time and then
apply an energy method to show (1-12).

Next, with higher order compatibility conditions on initial data at hand we can
prove Theorem 1.2 by following the ideas in [Carbou and Jizzini 2018; Chen and
Wang 2023c]. More precisely, we consider the equation satisfied by ∂k

t u (i.e., (5-9))
with k ≥ 1 and repeat the process T (1) in the proof of Theorem 1.1 with ∂k

t u in
place of u. Namely, we prove the main result Theorem 1.2 by showing the so-called
property T (k) which is defined in Section 5.

Our proof of Theorems 1.1 and 1.2 is similar to that of [Carbou and Jizzini
2018; Chen and Wang 2023c], but is more complicated. There are two technical
issues we need to address in our presentation. The first one is that we obtain the
extensions of A( · , · ) and J in a tubular neighborhood U2δ(N ) of N by using the
canonical projections ι : U2δ(N ) → N and π : N × RK

→ TN, which satisfy the
original geometric structures of A( · , · ) and J , respectively. Then by multiplying a
truncation function involving the distance function dist( · , N ), we get the desired
extensions (i.e., P( · , · ) and J(u)) on RK (see Section 3A). In particular, the
extension J of J is still antisymmetric, which plays an essential role in our proof.
The second one is that the property div(v) = 0 can be applied to eliminate some
terms involving v in the process of the energy estimate. This makes the assumptions
on regularity for v in Theorems 1.1 and 1.2 weaker than those for the electric current
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in [Carbou and Jizzini 2018], one can refer to [Carbou and Jizzini 2018] for more
details.

The rest of our paper is organized as follows: In Section 2, we introduce basic
notations on Sobolev spaces and some preliminary lemmas. In Section 3 and
Section 4, we give the proof of Theorem 1.1. Finally, the proof of Theorem 1.2 is
given in Section 5.

2. Preliminary

2A. Notations. In this subsection, we fix some notations on manifolds and Sobolev
spaces which will be used in the following context:

Let (N , J, ω) be an n-dimensional symplectic manifold, where ω is the symplec-
tic form and J : TN → TN with J 2

= − id is an ω-tamed almost complex structure,
that is, for any X, Y ∈ 0(TN ),

ω(JX, JY ) = ω(X, Y ).

Then ω and J induce a canonical Riemannian metric g on N as

g(X, Y ) = ω(X, JY ),

which also satisfies
g(JX, JY ) = g(X, Y ).

By the Nash embedding theorem, we always embed isometrically (N , g) into RK

hence without loss of generality we assume N ⊂ RK is an embedded submanifold
of RK with the induced metric. Let � be a smooth bounded domain in Rm with
m ≥ 1. Let u = (u1, . . . , uK ) : � → N ↪→ RK be a map. We set

H k(�) = W k,2(�, RK )

and
H k(�, N ) = {u ∈ H k(�) : u(x) ∈ N for a.e. x ∈ �}.

Moreover, let (B, ∥ · ∥B) be a Banach space and f : [0, T ] → B be a map. For
any p > 0 and T > 0, we define

∥ f ∥L p([0,T ],B) :=

(∫ T

0
∥ f ∥

p
B dt

)1/p
,

and set
L p([0, T ], B) := { f : [0, T ] → B : ∥ f ∥L p([0,T ],B) < ∞}.

In particular, we set

L p([0, T ], H k(�, N ))

= {u ∈ L p([0, T ], H k(�)) : u(x, t) ∈ N for a.e. (x, t) ∈ � × [0, T ]},

where k ∈ N and p ≥ 1.
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2B. Some basic lemmas. Next, we recall some crucial lemmas which will be
used later. The following lemma of equivalent norms for Sobolev functions with
Neumann boundary condition can be found in [Wehrheim 2004]:

Lemma 2.1. Let � be a smooth bounded domain in Rm and k ∈ N. There exists a
constant Ck,m such that, for all u ∈ H k+2(�) with ∂u

∂ν
|∂� = 0,

(2-1) ∥u∥H k+2(�) ≤ Ck,m(∥u∥L2(�) + ∥1u∥H k(�)).

Here, for simplicity we define H 0(�) := L2(�).

In particular, the above lemma implies that we can define the H k+2-norm of u
as follows:

∥u∥H k+2(�) := ∥u∥L2(�) + ∥1u∥H k(�).

We also need to use the following ODE comparison theorem and the classical
compactness results in [Boyer and Fabrie 2013; Simon 1987] to show the uniform
estimates and the convergence of solutions to the approximate equation constructed
in the coming sections:

Lemma 2.2. Let f : R+
× R → R be a continuous function, which is locally

Lipschitz in the second variable. Let z : [0, T ∗) → R be the maximal solution of the
Cauchy problem { z′

= f (t, z),

z(0) = z0.

Let y : R+
→ R be a C1 function such that{ y′

≤ f (t, y),

y(0) ≤ z0.

Then, we have
y(t) ≤ z(t), t ∈ [0, T ∗).

Lemma 2.3 (Aubin–Lions–Simon compactness lemma, see [Simon 1987]). Let
X ⊂ B ⊂Y be Banach spaces with compact embedding X ↪→ B. Let 1≤ p, q, r ≤∞.
For T > 0, we define

E p,r =

{
f : f ∈ L p((0, T ), X) and

d f
dt

∈ Lr ((0, T ), Y )

}
,

which is equipped with a norm ∥ f ∥ := ∥ f ∥L p((0,T ),X) + ∥d f/dt∥Lr ((0,T ),Y ). Then
the following properties hold true:

(1) If p < ∞ and p < q , the embedding E p,r ∩ Lq((0, T ), B) in Ls((0, T ), B) is
compact for all 1 ≤ s < q.

(2) If p = ∞ and r > 1, the embedding of E p,r in C0([0, T ], B) is compact.
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Lemma 2.4 [Boyer and Fabrie 2013, Theorem II.5.14]. Let k ∈ N, then the space

E2,2 =

{
f : f ∈ L2((0, T ), H k+2(�)),

∂ f
∂t

∈ L2((0, T ), H k(�))

}
is continuously embedded in C0([0, T ], H k+1(�)).

2C. Galerkin basis and Galerkin projection. Let � be a smooth bounded domain
in Rm, λi be the i-th eigenvalue of the operator 1 − I with Neumann boundary
condition. We denote the corresponding eigenfunction of λi by fi , that is,

(1 − I ) fi = −λi fi with
∂ fi

∂ν

∣∣∣
∂�

= 0.

Without loss of generality, we assume that { fi }
∞

i=1 is a complete, standard or-
thonormal basis of L2(�, R1). Let Hn = span{ f1, . . . fn} be a finite subspace
of L2, Pn : L2

→ Hn be the Galerkin projection such that for any f ∈ L2,
f n

= Pn f =
∑n

1⟨ f, fi ⟩L2 fi . Then the following result is proved in [Carbou and
Jizzini 2018]:

Lemma 2.5. There exists a constant C such that for all n, the projection Pn satisfies
the following properties:

(1) For f ∈ H 1(�, R1), ∥Pn( f )∥H1(�) ≤ ∥ f ∥H1(�),

(2) For f ∈ H 2(�, R1) with ∂ f
∂ν

|∂� = 0, ∥Pn( f )∥H2(�) ≤ C∥ f ∥H2(�),

(3) For f ∈ H 3(�, R1) with ∂ f
∂ν

|∂� = 0, ∥Pn( f )∥H3(�) ≤ C∥ f ∥H3(�).

Here we set H k(�, R1) = W k,2(�, R1) for k ∈ N.

3. Local strong solution

3A. Approximation equation. We start with constructing the approximation equa-
tion of (1-9). Let N be a complete compact Riemannian manifold, and N ⊂ RK.
Let π : N × RK

→ TN be the canonical orthonormal projection induced by the
inclusion map i : N ↪→ RK. Then there exists a positive constant δ such that there
exists a canonical well-defined projection

ι : U2δ(N ) → N , x 7−→ ι(x),

satisfying dist(x, N ) = |x − ι(x)|, where

U2δ(N ) := {x ∈ RK
| dist(x, N ) < 2δ}.

Moreover, we have the following theorem (refer to [Simon 1996] for a proof):

Theorem 3.1. Let N be a compact n-dimensional C∞-submanifold embedded
in RK. Then there exists a positive number δ(N ) > 0 and a smooth projection map

ι : U2δ(N ) → N ⊂ RK
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such that the following properties hold:

(1) For any y ∈ U2δ(N ), we have y − ι(y) ∈ T ⊥

ι(y)N with |y − ι(y)| = dist(y, N ).
Moreover, if z ∈ N \ {ι(y)}, we have |y − z| > |y − ι(y)|.

(2) For any y ∈ N and z ∈ T ⊥
y N with |z| < 2δ, we have

ι(y + z) = y.

(3) For v ∈ RK and y ∈ N, we have

dι|y(v) = πy(v) ∈ Ty N.

(4) For y ∈ N and v1, v2 ∈ Ty N, we have

Hess ι|y(v1, v2) = ∇πy(v1, v2) = −A(y)(v1, v2).

We next restrict to the case where (N , J, ω) is a compact symplectic manifold.
The almost complex structure is a map J : TN → TN such that J 2

= − id. Then
we can define an extension J of J on U × RK by

U × RK J
//

(ι,π◦ι)

��

U × RK

TN J
// TN

i∗

OO

where we define U := U2δ(N ). That is J (u) = (ι(u), i∗ ◦ J (ι(u)) ◦ πι(u)w) for
any (u, w) ∈ U × RK. If we restrict J to RK, the second component of J can be
interpreted as a map

Ĵ = i∗ ◦ J (ι(u)) ◦ πι(u) : U → RK
⊗ RK, Ĵ (u) = ( Ĵα,β(u))K×K .

To proceed, the following property on Ĵ will be used:

Lemma 3.2. Let Ĵ : U → RK
⊗ RK be the smooth map defined as above. Then Ĵ is

antisymmetric. Namely, for any u ∈ U and X, Y ∈ RK,

⟨ Ĵ (u)X, Y ⟩ = −⟨X, Ĵ (u)Y ⟩.

Proof. For any u ∈ U and X, Y ∈ RK,

⟨ Ĵ (u)X, Y ⟩ = ⟨i∗ ◦ J (ι(u)) ◦ πι(u)(X), i∗ ◦ πι(u)Y ⟩

= ⟨J (ι(u)) ◦ πι(u)(X), πι(u)(Y )⟩Tι(u) N

= −⟨πι(u)(X), J (ι(u)) ◦ πι(u)(Y )⟩Tι(u) N = −⟨X, Ĵ (u)Y ⟩.

Hence, the proof is completed. □
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Therefore, (1-9) has the following extrinsic version:

(3-1)


∂t u + γ∇vu =α(1u + P(u)(∇u, ∇u)) − β Ĵ (u)1u, (x, t)∈� × R+,

∂u/∂ν =0, (x, t)∈∂� × R+,

u(x, 0)=u0 :�→ N ↪→RK.

Here we set P(u) = − Hess ι(u), and have used the facts

π ◦ 1u = τ(u) = 1u + A(u)(∇u, ∇u)

and
Hess ι|u(∇u, ∇u) = −A(u)(∇u, ∇u)

for u : � → N (see Theorem 3.1).
Let ζ be a cut-off function such that ζ = 1 on [0, δ2

] and ζ = 0 on [2δ2, ∞).
Then the definition domains of Ĵ and P can be naturally extended to RK in the
following way:

J(u) =

{
ζ(dist(u, N )2)i∗ ◦ J (ι(u)) ◦ πι(u), dist(u, N ) ≤

√
2δ,

0, dist(u, N ) >
√

2δ,

and

P(u) =

{
−ζ(dist(u, N )2) Hess ι(u), dist(u, N ) ≤

√
2δ,

0, dist(u, N ) >
√

2δ,

where J(u) is still a smooth antisymmetric matrix-valued function with compact
support set. Then we consider the following approximation equation of (1-9):

(3-2)


∂t u + γ∇vu =α(1u +P(u)(∇u, ∇u)) − βJ(u)1u, (x, t)∈� × R+,

∂u/∂ν =0, (x, t)∈∂� × R+,

u(x, 0)=u0 :�→ N ↪→RK.

3B. Galerkin approximation of (3-2) and a priori estimates. Next, we seek a
solution un in Hn to the Galerkin approximation equation associated to (3-2), i.e.,

(3-3)
{
∂t un

− α1un
= Pn(−γ∇vun

+ αP(un)(∇un, ∇un)) − β Pn(J(un)1un),

un(x, 0) = un
0 : � → RK.

Here un(x, t) =
∑n

i=1 gn
i (t) fi (x), gn(t) = {gn

1 (t), . . . , gn
n (t)} is a vector-valued

function. One can refer to Section 2C for the notions of Hn and fi . A direct
calculation shows that gn satisfies the ODE

∂gn

∂t
= F(gn(t)),

gn(0) = (⟨u0, f1⟩, . . . , ⟨u0, fn⟩),

where F(y) is a smooth function of y because of the smoothness of P and J. Then
there exists a regular solution gn(t) on [0, T n), where T n is the maximal time of
existence. So, we get a regular solution un to (3-3) on [0, T n).
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Next, by taking un as a test function of (3-3), we can see that

1
2

∂

∂t

∫
�
|un

|
2 dx + α

∫
�
|∇un

|
2 dx

=−γ
∫

�
⟨∇vun, un

⟩ dx+α
∫

�
⟨P(un)(∇un, ∇un), un

⟩ dx−β
∫

�
⟨J(un)1un, un

⟩ dx .

First of all, we use the fact that div(v) = 0 with ⟨v, ν⟩|∂� = 0 for all t to eliminate
the term ∫

�
⟨∇vun, un

⟩ dx =
1
2

∫
�

div(v|un
|
2) dx = 0.

On the other hand, since J(un) is antisymmetric and un
∈ Hn , we have∫

�
⟨J(un)1un, un

⟩ dx = −

∫
�
⟨∇(J(un)) · ∇un, un

⟩ dx .

It follows that

(3-4) 1
2

∂

∂t

∫
�
|un

|
2 dx + α

∫
�
|∇un

|
2 dx ≤ Cα,β

∫
�
|∇un

|
2 dx

since P and J are smooth maps with compact supports.
Next, taking 12un as another test function of (3-3), we can show

(3-5) 1
2

∂

∂t

∫
�
|1un

|
2 dx + α

∫
�
|∇1un

|
2 dx

= γ
∫

�
⟨∇(v · ∇un), ∇1un

⟩ dx + β
∫

�
⟨∇(J(un))1un, ∇1un

⟩ dx

− α
∫

�
⟨∇(P(un)(∇un, ∇un)), ∇1un

⟩ dx

= I + II + III.
To proceed, we estimate the above three terms as follows:

|I | ≤ |γ |

(∫
�
|∇v||∇un

||∇1un
| dx +

∫
�
|v||∇

2un
||∇1un

| dx
)

≤ C |γ |∥∇v∥L3∥∇un
∥L6∥∇1un

∥L2 + C |γ |∥v∥L6∥∇
2un

∥L3∥∇1un
∥L2

≤ Cα|γ |
2
∥v∥

2
W 1,3∥un

∥
2
H2 +

1
16α∥∇1un

∥
2
L2

+ C |γ |∥v∥H1(∥un
∥H2∥∇1un

∥L2 + ∥un
∥

1/2
H2 ∥∇1un

∥
3/2
L2 )

≤ Cα(|γ |
2
∥v∥

2
H1∥un

∥
2
H2 + |γ |

4
∥v∥

4
H1∥un

∥
2
H2)

+ Cα|γ |
2
∥v∥

2
W 1,3∥un

∥
2
H2 +

1
8α∥∇1un

∥
2
L2,

where we have used the interpolation inequality

∥∇
2un

∥L3 ≤ ∥∇
2un

∥
1/2
L2 ∥∇

2un
∥

1/2
L6 ,

and the Sobolev embedding inequality

∥ f ∥L6 ≤ C∥ f ∥H1

for any f ∈ H 1(�).
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The second term II can be estimated as follows:

|II | ≤ C |β|

∫
�
|∇un

||1un
||∇1un

| dx

≤ C |β|∥∇un
∥L6∥1un

∥L3∥∇1un
∥L2

≤ C |β|∥un
∥H2∥1un

∥
1/2
L2 ∥1un

∥
1/2
L6 ∥∇1un

∥L2

≤ C |β|∥un
∥

3/2
H2 (∥un

∥
1/2
H2 + ∥∇1un

∥
1/2
L2 )∥∇1un

∥L2

≤ Cα,β(∥un
∥

4
H2 + ∥un

∥
6
H2) +

1
8α∥∇1un

∥
2
L2 .

Similarly, for the last term III , we have

|III | ≤ Cα

∫
�
(|∇un

|
3
+ |∇un

||∇
2un

|)|∇1un
| dx

≤ Cα∥∇un
∥

6
L6 +

1
16α∥∇1un

∥
2
L2 + C∥∇un

∥L6∥∇
2un

∥L3∥∇1un
∥L2

≤ Cα∥un
∥

6
H2 + Cα(∥un

∥
4
H2 + ∥un

∥
6
H2) +

1
8α∥∇1un

∥
2
L2 .

In view of the above estimates of terms I , II , and III , we have

(3-6) ∂

∂t

∫
�
|1un

|
2 dx+α

∫
�
|∇1un

|
2 dx ≤Cα,γ,β(∥v∥

2
W 1,3(�)

+1)2(∥un
∥

2
H2(�)

+1)3.

Therefore, by combining (3-4) with (3-6), we conclude

(3-7)
∂

∂t
∥un

∥
2
H2(�)

+α
∫

�
|∇1un

|
2 dx ≤ Cα,γ,β(∥v∥

2
W 1,3(�)

+1)2(∥un
∥

2
H2(�)

+1)3.

Proposition 3.3. Let � be a smooth bounded domain in R3. Suppose that u0 is in
H 2(�) and

∂u0

∂ν

∣∣∣
∂�

= 0,

v ∈ L∞(R+, W 1,3(�)), and div(v) = 0 with ⟨v, ν⟩|∂�×R+ = 0. Then, there exists a
positive constant T0 depending only on α, γ, β, and ∥u0∥H2 , such that the above
approximate solutions un satisfy

(3-8) sup
0≤t≤T

(∥un
∥

2
H2(�)

+∥∂t un
∥

2
L2(�)

)+α
∫ T

0
(∥un

∥
2
H3(�)

+∥∂t un
∥

2
H1(�)

) dt ≤C(T )

for 0 < T < T0, where C(T ) is a constant depending on T.

Proof. Let f (t)=∥un
∥

2
H2 +1. Since v ∈ L∞(R+, W 1,3(�)), inequality (3-7) implies

f (t) satisfies { f ′(t) ≤ C( f (t) + 1)3,

f (0) = ∥un
0∥

2
H2 + 1 ≤ C∥u0∥

2
H2 + 1.

Here we have used the inequality

∥un
0∥

2
H2 ≤ C∥u0∥

2
H2,

since ∂u0
∂ν

|∂� = 0.
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Then, by Lemma 2.1 and the classical comparison theorem of ODE, Lemma 2.2,
we can show that there exists a positive constant T0 depending only on α, γ, β,
and ∥u0∥H2 , such that for any 0 < T < T0,

sup
0≤t≤T

∥un
∥

2
H2(�)

+ α
∫ T

0
∥un

∥
2
H3(�)

dt ≤ C(T ).

By (3-3), it is not difficult to show

sup
0≤t≤T

∥∂t un
∥

2
L2(�)

+ α
∫ T

0
∥∂t un

∥
2
H1(�)

dt ≤ C(T ).

Therefore, the proof is completed. □

With the above uniform estimate (3-8) of un at hand, we can show that there
exists a local strong solution to (3-2) by applying the compactness Lemma 2.3 and
letting n → ∞. Therefore, we conclude:

Theorem 3.4. Let � be a smooth bounded domain in R3 and u0 ∈ H 2(�) with
∂u0

∂ν

∣∣∣
∂�

= 0.

Suppose that v ∈ L∞(R+, W 1,3(�)) and div(v) = 0 with ⟨v, ν⟩|∂�×R+ = 0. Then
there exists a positive constant T0 depending only on α, γ, β, and ∥u0∥H2 , such that
the initial Neumann boundary value problem (3-2) admits a local strong solution
u ∈ C0

(
[0, T ], H 2(�)

)
∩ L2

(
[0, T ], H 3(�)

)
, which satisfies

(3-9) sup
0≤t≤T

(∥u∥
2
H2(�)

+∥∂t u∥
2
L2(�)

)+α
∫ T

0
(∥u∥

2
H3(�)

+∥∂t u∥
2
H1(�)

) dt ≤C(T )

for 0 < T < T0, where C(T ) is a constant depending on T.

Since the proof of the above theorem is almost the same as that in [Chen and
Wang 2023c], we omit it. To show that u is a strong solution to (1-9) or (3-1), we
need to prove u(x, t) ∈ N for almost all (x, t) ∈ � × [0, T0).

Proposition 3.5. The solution u constructed in Theorem 3.4 satisfies u(x, t) ∈ N
for almost every (x, t) ∈ �×[0, T0), and hence u is a local strong solution to (1-9).

Proof. Since u ∈ L∞([0, T ], H 2(�)) and ∂u/∂t ∈ L2([0, T ], L2(�)) for T < T0,
Lemma 2.3 implies

u ∈ C0([0, T ], W 1,4(�)).

It follows that

sup
x∈�

|u(x, t) − u(x, 0)| ≤ C∥u( · , t) − u( · , 0)∥W 1,4 → 0

as t → 0. Then there exists a positive number t1 ≤ T such that for t ≤ t1, we have

sup
x∈�

|u(x, t) − u(x, 0)| ≤ δ,
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namely u(x, t) ∈ Uδ(N ) for (x, t) ∈ �×[0, t1]. Therefore, by the definition of the
cut-off function ζ , u satisfies

∂u
∂t

+ γ∇vu = α(1u − Hess ι(∇u, ∇u)) − βi∗ ◦ J (ι(u)) ◦ πι(u)1u.

Let ρ(u) = u − ι(u), then we have

1
2

∂

∂t

∫
�
|ρ(u)|2 dx =

∫
�

〈
ρ(u),

∂u
∂t

〉
dx

=

∫
�
⟨ρ(u), α(1ρ(u) + dι(1u))⟩ dx

− β
∫

�
⟨ρ(u), Ĵ (u)1u⟩ dx − γ

∫
�
v · ⟨ρ(u), ∇u⟩ dx

= α
∫

�
⟨ρ(u), 1ρ(u)⟩ dx −

γ

2

∫
�
v · ∇|ρ(u)|2 dx

= −α
∫

�
|∇ρ(u)|2 dx .

Here we have used the following facts:

(1) Since 1ι(u) = dι(1u) + Hess ι(∇u, ∇u), we have

1u − Hess ι(∇u, ∇u) = 1ρ(u) + dι(1u).

(2) Since ρ(u) ∈ T ⊥

ι(u)
N and Ĵ (u)1u ∈ Tι(u)N,

⟨ρ(u), Ĵ (u)1u⟩ = 0 and ⟨ρ(u), dι(1u)⟩ = 0.

(3) Since div(v) = 0 and ⟨v, ν⟩|∂� = 0,∫
�
v · ∇|ρ(u)|2 dx = 0.

Then the Gronwall inequality implies ρ(u) = 0 for almost all (x, t) ∈ �×[0, t1].
Finally, we can prove this proposition by repeating the above argument. □

To end this section, we show the uniqueness of the solution u constructed above:

Proposition 3.6. The solution to (3-1) in L∞
(
[0, T ], H 2(�)

)
∩ L2

(
[0, T ], H 3(�)

)
is unique.

Proof. Assume u1 and u2 are two solutions in L∞
(
[0, T ], H 2

)
∩L2

(
[0, T ], H 3(�)

)
,

then ū = u1 − u2 satisfies

(3-10)


∂t ū = −γ∇vū + α1ū + α(P(u1)(∇u1, ∇u1) − P(u2)(∇u2, ∇u2))

− β( Ĵ (u1) − Ĵ (u2))1u1 − β Ĵ (u2)1ū,

ū(x, 0) = 0
∂ ū/∂ν = 0.

By taking ū as a test function to (3-10), we can show

1
2

∂

∂t

∫
�
|ū|

2 dx + α
∫

�
|∇ū|

2 dx = −γ
∫

�
⟨∇vū, ū⟩ dx + I + II + III.
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Here

|γ | ·

∣∣∣∫
�
⟨∇vū, ū⟩ dx

∣∣∣ =

∣∣∣γ2 ∣∣∣ · ∣∣∣∫
�

div(v|ū|
2) dx

∣∣∣ = 0,

since ⟨v, ν⟩|∂� = 0 and div(v) = 0.

|I | = α

∣∣∣∫
�
⟨P(u1)(∇u1, ∇u1) − P(u2)(∇u2, ∇u2), ū⟩ dx

∣∣∣
≤ Cα

(∫
�
|ū|

2
|∇u1|

2 dx +

∫
�
|∇ū|(|∇u1| + |∇u2|)|ū| dx

)
≤ Cα(∥u1∥

2
H3 + ∥u2∥

2
H3)

∫
�
|ū|

2 dx +
α

8

∫
�
|∇ū|

2 dx,

|II | = |β|

∣∣∣∫
�
⟨( Ĵ (u1) − Ĵ (u2))1u1, ū⟩ dx

∣∣∣
≤ C |β|

∣∣∣∫
�
⟨div(( Ĵ (u1) − Ĵ (u2))∇u1), ū⟩ dx

∣∣∣
+ C |β|

∣∣∣∫
�
⟨∇(( Ĵ (u1) − Ĵ (u2)) · ∇u1), ū⟩ dx

∣∣∣
≤ C |β|

∫
�
| Ĵ (u1) − Ĵ (u2)||∇u1||∇ū| dx

+ C |β|

∣∣∣∫
�
⟨∇(( Ĵ (u1) − Ĵ (u2)) · ∇u1), ū⟩ dx

∣∣∣
≤ C |β|∥∇u1∥L∞

∫
�
|∇ū||ū| dx + C |β|(|∇u1|

2
∞

+ |∇u2|
2
∞

)
∫

�
|ū|

2 dx

≤ Cα|β|(∥u1∥
2
H3 + ∥u2∥

2
H3)

∫
�
|ū|

2 dx +
α

8

∫
�
|∇ū|

2 dx,

|III | = |β|

∣∣∣∫
�
⟨ Ĵ (u2)1ū, ū⟩ dx

∣∣∣
≤ |β|

∣∣∣∫
�
⟨∇( Ĵ (u2)) · ∇ū, ū⟩ dx

∣∣∣ + |β|

∣∣∣∫
�
|⟨div( Ĵ (u2)∇ū), ū⟩ dx

∣∣∣
≤ C |β||

∫
�
|∇u2||∇ū||ū| dx |

≤ Cα|β|∥u2∥
2
H3

∫
�
|ū|

2 dx +
α

8

∫
�
|∇ū|

2 dx .

In view of the above estimates of terms I , II and III , we get

∂

∂t

∫
�
|ū|

2 dx + α
∫

�
|∇ū|

2 dx ≤ Cα,β,γ (∥u1∥
2
H3(�)

+ ∥u2∥
2
H3(�)

+ 1)
∫

�
|ū|

2 dx .

Then, since ∥u1∥
2
H3(�)

+ ∥u2∥
2
H3(�)

∈ L1
[0, T ], the Gronwall inequality implies

u1 ≡ u2. □
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4. Local regular solution

In the previous section, we obtained a strong solution u to the equation

(4-1)


∂t u+γ∇vu=α(1u+ P(u)(∇u, ∇u))−β Ĵ (u)1u, (x, t)∈�×[0, T0),

∂u/∂ν=0, (x, t)∈∂�×[0, T0),

u(x, 0)=u0 :�→N ↪→RK.

Here u : � × [0, T0) → N,

P(u) = − Hess ι(u) : RK
⊗ RK

→ RK

is a bilinear functional, and

Ĵ (u) = i∗ ◦ J ◦ dι(u) : RK
→ RK

is an antisymmetric matrix, since dι(u) = πu .
Suppose u0 ∈ H 3(�, N ) and ∂u0

∂ν
|∂� = 0, we can improve the regularity of u by

applying the differential of Galerkin approximation to (3-2) with respect to the time
variable t .

Theorem 4.1. Let � be a smooth bounded domain in R3 and u0 ∈ H 3(�, N ) with

∂u0

∂ν

∣∣∣
∂�

= 0.

Suppose that v ∈ L∞
(
R+, W 1,3(�)

)
∩ C0

(
R+, H 1(�)

)
, ∂tv ∈ L2(R+, H 1(�)), and

div(v)= 0 with ⟨v, ν⟩|∂�×R+ = 0. Then, the solution u given in Theorem 3.4 satisfies

∂ i
t u ∈ C0(

[0, T ], H 3−2i (�)
)
∩ L2(

[0, T ], H 4−2i (�)
)

for T < T0 and i = 0, 1.

Proof. We divide the proof into two steps.

Step 1: H 2-estimate of ∂t u.
To get H 2-estimates of the solution ∂t u, we consider the equation of wn

= ∂t un

as follows, where un is the Galerkin approximation of u:

(4-2) ∂tw
n

= α1wn
+ Pn(−γ∇vw

n
− γ∇∂tvun)

+αPn(P(un)(∇wn, ∇un) + ∂tP(un)(∇un, ∇un))

−β Pn(∂tJ(un)1un
− J(un)1wn).
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Then we take 1wn as a test function for (4-2) to give

∂

∂t

∫
�
|∇wn

|
2 dx + 2α

∫
�
|1wn

|
2 dx

≤ Cα,β(
∫

�
|wn

|
2
|1un

|
2 dx +

∫
�
|wn

|
2
|∇un

|
4 dx)

+Cα,γ (
∫

�
|∇wn

|
2
|∇un

|
2 dx + |∂tv|

2
|∇un

|
2 dx)

+|γ |

∫
�
|∇wn

|
2
|∇v| dx +

α

2

∫
�
|1wn

|
2 dx

≤ Cα,β,γ (∥un
∥

2
H3 + ∥un

∥
4
H2 + 1)∥wn

∥
2
H1 + Cα,γ ∥un

∥
2
H2∥∂tv∥

2
H1

+|γ |

∫
�
|∇wn

|
2
|∇v| dx +

α

2

∫
�
|1wn

|
2 dx .

Here we have used the fact div(v) = 0 and ⟨v, ν⟩|∂�×R+ = 0 to show∫
�
⟨v · ∇wn, 1wn

⟩ dx = −

∫
�
⟨∇v · ∇wn, ∇wn

⟩ dx .

On the other hand, we have∫
�
|∇wn

|
2
|∇v| dx≤∥∇wn

∥
2
L3∥∇v∥L3 ≤∥∇wn

∥L2∥∇wn
∥L6∥∇v∥L3

≤C∥v∥W 1,3∥∇wn
∥L2(∥wn

∥L2 + ∥1wn
∥L2)

≤Cα∥v∥
2
W 1,3∥w

n
∥

2
H1 +

α

2

∫
�
|1wn

|
2 dx .

It follows that
∂

∂t

∫
�
|∇wn

|
2 dx + α

∫
�
|1wn

|
2 dx

≤ C(α, β, γ )(∥un
∥

2
H3 +∥un

∥
4
H2 +∥v∥

2
W 1,3 +1)∥wn

∥
2
H1 +C(α, γ )∥un

∥
2
H2∥∂tv∥

2
H1 .

By assumption we know that v ∈ L2(R+, W 1,3(�)) and ∂tv ∈ L2(R+, H 1(�)).
Hence, by applying the Gronwall inequality we can derive from (3-8) that

(4-3) sup
0<t≤T

∥wn
∥H1(�) + α

∫ T

0
∥wn

∥
2
H2(�)

dt ≤ C(α, β, γ, T, ∥wn
|t=0∥H1(�)).

Now, it remains to give a bound of ∥wn
|t=0∥H1 . Since

wn( · , 0) = α1un
0 + Pn(−γ∇vun

0 + αP(un
0)(∇un

0, ∇un
0) − βJ(un

0)1un
0),

it is not difficult to show

∥wn
|t=0∥H1(�) ≤ C(∥u0∥

2
H3(�)

, ∥v( · , 0)∥2
H1).

Here we have used the fact

∥un
0∥

2
H3(�)

≤ C∥u0∥
2
H3(�)

by providing ∂u0
∂ν

|∂� = 0.
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Without loss of generality, the estimate (4-3) implies wn weakly converges to ∂t u,
which satisfies

∂t u ∈ L∞
(
[0, T ], H 1(�)

)
∩ L2(

[0, T ], H 2(�)
)

for any 0 < T < T0.

Step 2: H 4-estimate of u.
Equation (1-5) is equivalent to

1u = −A(u)(∇u, ∇u)+
1

α2+β2 (α∂t u+β J (u)∂t u)+
γ

α2+β2 (α∇vu+β J (u)∇vu).

Under the assumption that v ∈ L∞(R+, H 1(�)), one can easily show

1u ∈ L∞([0, T ], L3(�)),

the classical L p-theory of elliptic equations gives

u ∈ L∞([0, T ], W 2,3(�)).

Hence, by using the assumption v ∈ L∞
(
R+, W 1,3(�)

)
∩ L2

(
R+, H 2(�)

)
, we can

take almost the same argument as in [Chen and Wang 2023c] to show

1u ∈ L∞
(
[0, T ], H 1(�)

)
∩ L2(

[0, T ], H 2(�)
)
,

hence the classical L2-theory of elliptic equations again gives

u ∈ L∞
(
[0, T ], H 3(�)

)
∩ L2(

[0, T ], H 4(�)
)
.

Moreover, since u ∈ L2([0, T ], H 4(�)) and ∂t u ∈ L2([0, T ], H 2(�)), Lemma 2.4
tells us that u ∈ C0([0, T ], H 3(�)). It follows that

∂t u ∈ C0([0, T ], H 1(�))

by using (4-1) and the fact v ∈ C0(R+, H 1(�)). □

The proof of Theorem 1.1. By combining Theorem 3.4, Propositions 3.5, 3.6, and
Theorem 4.1, we can obtain the results in Theorem 1.1 and finish its proof. □

5. Local very regular solution

In this section, we prove Theorem 1.2.

5A. Compatibility conditions of the initial data. In order to make the LLG equa-
tion (4-1) (an extrinsic version of the LLG equation (1-9)) admit a regular or smooth
solution, we need to pose some compatibility conditions of the initial data. We
start with a brief description of the compatibility conditions of the initial data. For
the sake of convenience, we assume v is a smooth vector field and u is a smooth



208 BO CHEN AND YOUDE WANG

solution to the initial Neumann boundary value problem of the LLG equation (4-1).
Then, for any k ∈ N, uk = ∂k

t u satisfies the linear equation

(5-1) ∂t uk = α1uk − β Ĵ (u)1uk − γ∇vuk + Lk(uk, u) + Fk(u)

with the initial data
Vk(u0) := ∂k

t u|t=0.

In particular, V0 = u0 and

V1(u0) = −γ∇v(x,0)u0 + ατ(u0) − β J (u0)τ (u0).

Here we set

Lk(uk, u) = 2αP(u)(∇uk, ∇u) + αd P(u)(uk, ∇u, ∇u) − βd Ĵ (u)(uk)1u,

and

Fk(u) = −γ
∑

i+ j=k
i≥1

C i
k∇vi u j + α

∑
i1+···+is+m+l=k

1≤i j <k

∇
s P(u)#ui1# · · · #uis #∇um#∇ul

+ β
∑

i1+···+is+m=k
1≤i j <k

∇
s Ĵ (u)#ui1# · · · #uis #1um,

where vi = ∂ i
t v and # denotes the linear contraction.

Then the compatibility conditions of the initial data is defined as follows:

Definition 5.1. Let k ∈ N, u0 ∈ H 2k+2(�, N ). Suppose that for any 0 ≤ i ≤ k, v

satisfies
∂ i

t v ∈ C0(R+, H 2k−2i (�)).

We say u0 satisfies the compatibility condition at order k, if for any j ∈ {0, 1, . . . , k}

(5-2)
∂V j

∂ν

∣∣∣
∂�

= 0.

Intrinsically, if we set

Ṽk(u0) = ∇
k
t u(x, 0) ∈ 0(u∗

0(TN ))

where ∇t = ∇
N
∂u/∂t , then the compatibility conditions defined in Definition 5.1 has

the following equivalent characterization:

Proposition 5.2. Let k ∈ N, u0 ∈ H 2k+2(�, N ). Suppose that for any 0 ≤ i ≤ k, v

satisfies
∂ i

t v ∈ C0(R+, H 2k−2i (�)).

Then u0 satisfies the compatibility condition of order k if and only if for any
j ∈ {0, 1, . . . , k},

(5-3) ∇ν Ṽ j |∂� = 0.
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Proof. The necessity is proved by induction on k. Since V1 = Ṽ1, if we assume
∂V1
∂ν

|∂� = 0, then we have

∇ν Ṽ1|∂� =
∂ Ṽ1

∂ν

∣∣∣
∂�

+ A(u0)

(
∂u0

∂ν

∣∣∣
∂�

, Ṽ1

)
= 0.

Then, we assume that the result is true for 1 ≤ l ≤ k − 1. For the case l = k ≤ 2, by
definition of Ṽk , a simple calculations gives

Ṽk = Vk +
∑
σ

Bσ(k)(u0)(Va1, . . . , Vas )

where the sum is over all multi-indices a1, . . . , as such that 1 ≤ ai ≤ k − 1 and
a1 + · · · + as = k for all i ,

(a1, . . . , as) = σ(k)

is a partition of k, and B is a multilinear functional on u∗

0(TN ).
Hence, by using the assumption of induction, we have

∇ν Ṽk |∂� =
∂ Ṽk

∂ν

∣∣∣
∂�

+ A(u0)

(
∂u0

∂ν

∣∣∣
∂�

, Ṽk

)
=

∂Vk

∂ν

∣∣∣
∂�

+

∑
σ

∇ Bσ(k)(u0)

(
∂u0

∂ν

∣∣∣
∂�

, Va1, . . . , Vas

)
= 0.

For the converse the proof is almost the same as above, so we omit it. □

Remark 5.3. If γ = 0 in (1-9) and ∇
N J = 0, we set

Wk = ∇
k−1
t τ(u)(x, 0) and W̃k = ∂k−1

t τ(u)(x, 0)

for any k ≥ 1, and set W0 = W̃0 = u0. Then, by taking a similar argument to that in
the proof of Proposition 5.2 or Proposition 3.2 in [Chen and Wang 2023b], we can
show the k-order compatibility condition defined in Definition 5.1 is equivalent to
one of the following:

(1) For 1 ≤ j ≤ k,
∇νW j |∂� = 0.

(2) For 1 ≤ j ≤ k,
∂W̃ j

∂ν

∣∣∣
∂�

= 0.

Next, we apply the method of induction to show the existence of very regular
solutions to (4-1) by considering the initial Neumann boundary value problem of
equation of ∂k

t u for k ≥ 1 with corresponding initial data Vk . For this purpose, we
intend to prove the main result Theorem 1.2 by showing the following process
T (k) with k ≥ 2:
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(1) Assume that u0 ∈ H 2k(�) satisfies the (k − 1)-order compatibility conditions.
Suppose moreover

∂ i
t v ∈ C0(

[0, T ], H 2k−2(i+1)(�)
)
∩ L2(

[0, T ], H 2k−2i (�)
)

for any 0 < T < T0 and i ∈ {0, 1, . . . , k − 1}. Then for any 0 ≤ i ≤ k − 1, we have

∂ i
t u ∈ C0(

[0, T ], H 2k−2i (�)
)
∩ L2(

[0, T ], H 2k−2i+1(�)
)
,

and
∂k

t u ∈ L∞
(
[0, T ], L2(�)

)
∩ L2(

[0, T ], H 1(�)
)
.

(2) Additionally, if u0 ∈ H 2k+1(�),

∂ i
t v ∈ C0(

[0, T ], H 2k+1−2(i+1)(�)
)
∩ L2(

[0, T ], H 2k−2i (�)
)

for i ∈ {0, 1, . . . , k − 1} and ∂k
t v ∈ L2([0, T ], L2(�)), then for any 0 ≤ i ≤ k we

have
∂ i

t u ∈ C0(
[0, T ], H 2k−2i+1(�)

)
∩ L2(

[0, T ], H 2k−2i+2(�)
)
.

5B. H5-regularity of u (i.e., the proof of property T (2)). For any T < T0,
Theorem 4.1 implies that ∂t u ∈ C0

(
[0, T ], H 1(�)

)
∩ L2

(
[0, T ], H 2(�)

)
is a strong

solution to

(5-4)



∂t u1+γ∇vu1

=α1u1−β Ĵ (u)1u1+L1(u1, u)+F1(u), (x, t)∈�×[0, T ],

∂u1/∂ν =0, (x, t)∈∂�×[0, T ],

u1(x, 0)=V1

where

L1(u1, u) = 2αP(u)(∇u1, ∇u) + αd P(u)(u1, ∇u, ∇u) − βd Ĵ (u)(u1)1u,

and
F1(u) = −γ∇∂tvu.

To improve the regularity of ∂t u, we solve the initial Neumann boundary value
problem (5-4) with compatibility condition

∂V1

∂ν

∣∣∣
∂�

= 0.

As before, we consider the Galerkin approximation equation of (5-4):

(5-5)

{
∂t un

1 +γ Pn(∇vun
1) = α1un

1 −β Pn( Ĵ (u)1un
1)+Pn(L1(un

1, u)+F1(u)),

u1(x, 0) = V n
1 .

Since the operators P and Ĵ satisfy
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(1) |P(u)| + | Ĵ (u)| ≤ C ,

(2) |∇(P(u))| + |∇( Ĵ (u))| ≤ C |∇u|,

(3) Ĵ is antisymmetric,

we can apply almost the same argument as that in [Chen and Wang 2023c] to give
the estimate

sup
0≤t≤T

(∥un
1∥

2
H2 + ∥∂t un

1∥
2
L2) + α

∫ T

0
∥1∇un

1∥
2
L2 + ∥∇∂t un

1∥
2
L2 dt

≤ C(∥u0∥H3, ∥Pn(V1)∥H2),

by providing v ∈ C0(R+, H 2(�)) and ∂tv ∈ L∞
(
R+, L2(�)

)
∩L2

(
R+, H 1(�)

)
, then

taking un
1 and 12un

1 as test functions to (5-5).
On the other hand, since

V1 = −γ∇v(x,0)u0 + ατ(u0) − β J (u0)τ (u0)

and
∂V1

∂ν

∣∣∣
∂�

= 0,

Lemma 2.5 implies that

∥Pn(V1)∥H2(�) ≤ C∥V1∥H2 ≤ C(∥u0∥H4(�), ∥v(., 0)∥H2(�)).

Without loss of generality, by using the compactness in Lemma 2.3, we can infer
that un

1 converges to a map u1 ∈ L∞
(
[0, T ], H 2(�)

)
∩ L2

(
[0, T ], H 3(�)

)
which

solves (5-4). To show that ∂t u = u1 on � × [0, T0), we need to use the following
result:

Proposition 5.4. The solution to (5-4) in C0
(
[0, T ], H 1

)
∩ L2

(
[0, T ], H 2(�)

)
is

unique.

Proof. Let v1 and v2 be two solutions of (5-4), which belong to the space

C0(
[0, T ], H 1(�)

)
∩ L2(

[0, T ], H 2(�)
)
.

Then, ω = v1 − v2 satisfies
∂tω + γ∇vω = α1ω − β Ĵ (u)1ω + L1(ω, u), (x, t) ∈ � × [0, T ],

∂ω/∂ν = 0, (x, t) ∈ ∂� × [0, T ],

ω(x, 0) = 0.
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By choosing ω as a test function of this equation and taking a simple calculation
we obtain
1
2

∂

∂t

∫
�
|ω|

2 dx + α
∫

�
|∇ω|

2 dx

≤ Cα

∫
�
(|∇u||∇ω||ω| + |∇u|

2
|ω|

2) dx − β
∫

�
⟨d Ĵ (u)(ω)1u, ω⟩ dx

≤ Cα

∫
�
(|∇u||∇ω||ω|+|∇u|

2
|ω|

2) dx −β
∫

�
⟨∇u, ∇(d Ĵ (u)(ω)ω)⟩ dx

≤ Cα,β

∫
�
(|∇u||∇ω||ω| + |∇u|

2
|ω|

2) dx

≤ Cα,β∥u∥
2
L∞([0,T ],H3(�))

∫
ω
|ω|

2 dx +
α

2

∫
�
|∇ω|

2 dx .

Consequently, the Gronwall inequality implies ω ≡ 0, completing the proof. □

It follows from Proposition 5.4 that

(5-6) ∂t u ∈ L∞
(
[0, T ], H 2(�)

)
∩ L2(

[0, T ], H 3(�)
)
.

Additionally, if we provide u0 ∈ H 5(�), ∂tv ∈ C0([0, T ], H 1(�)), and ∂2
t v

in L2(R+, L2(�)), we can apply a similar argument to Step 1 of the proof of
Theorem 4.1 to show

(5-7) ∂2
t u ∈ L∞

(
[0, T ], H 1(�)

)
∩ L2(

[0, T ], H 2(�)
)

by considering the equation of ∂un
1/∂t .

To enhance the regularity of u, we need to use the following technical lemmas:

Lemma 5.5. Let � be a smooth bounded domain in R3, n ≥ 0, and m ≥ 2. If
f ∈ H n(�) (we set H 0(�) = L2(�)) and g ∈ H m(�), then f g ∈ H l(�) with
l = min{n, m}. Moreover, there exists a constant C(∥ f ∥Hn , ∥g∥Hm ) such that we
have

∥ f g∥H l (�) ≤ C(∥ f ∥Hn , ∥g∥Hm ).

One can consult [Carbou and Jizzini 2018] for a proof. As a direct corollary, we
have:

Corollary 5.6. Let � be a smooth bounded domain in R3 and N be a compact
Riemannian submanifold of RK. If

u ∈ L∞
(
[0, T ], H k(�, N )

)
∩ L2(

[0, T ], H k+1(�, N )
)

with k ≥ 2 and L : N → RK
⊗ RK is a smooth map, then L(u) belongs to

L∞
(
[0, T ], H k(�)

)
∩ L2

(
[0, T ], H k+1(�)

)
.

Proof. It is not difficult to show that the result holds true for k = 2. Hence, without
loss of generality we can assume that k ≥ 3.
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Since ∇(L(u))=∇L(u)#∇u, the fact that u ∈ L∞([0, T ], H k(�, N )) with k ≥ 3
implies

∇(L(u)) ∈ L∞([0, T ], L2(�, N )).

On the other hand, a simple calculation gives

∇
l(L(u))=

∑
i1+···+is=l
1≤s≤l, i j ≥1

∇
s L(u)#∇

i1u# · · · #∇
is u

=∇L(u)#∇
lu + ∇

2L(u)#∇
l−1u#∇u +

∑
i1+···+is=l

2≤s≤l
1≤i j ≤l−2

∇
sL(u)#∇

i1u# · · · #∇
is u

for 2 ≤ l ≤ k + 1. Since u ∈ L∞([0, T ], H k(�, N )) and supy∈N |∇
s L|(y) ≤ C(s),

Lemma 5.5 above implies

∇
l(L(u)) ∈ L∞([0, T ], L2(�))

for 2 ≤ l ≤ k.
To show ∇

k+1(L(u)) ∈ L2([0, T ], L2(�)), we need only to deal with the follow-
ing term of ∇

k+1(L(u)):

I = ∇
2L(u)#∇

k−1u#∇
2u,

since the other terms can be bounded directly by applying Lemma 5.5.
By using the facts ∇

k−1u ∈ L2([0, T ], H 2(�)) and ∇
2u ∈ L∞([0, T ], H 1(�)),

we have ∫ T

0

∫
�
|I |2 dxdt ≤C

∫ T

0
∥∇

k−1u∥
2
L∞(�) dt sup

t∈[0,T ]

∫
�
|∇

2u|
2 dx

≤C
∫ T

0
∥∇

k−1u∥
2
H2 dt sup

t∈[0,T ]

∫
�
|∇

2u|
2 dx < ∞.

Therefore, we finish the proof. □

We are now in position to prove the main result (i.e., T (2)) of this subsection:

Proposition 5.7. Suppose that u0 ∈ H 4(�, N ) satisfies the 1-order compatibility
condition defined in Definition 5.1, v ∈ C0

(
R+, H 2(�)

)
∩ L2

(
R+, H 3(�)

)
, and

∂tv ∈ L∞
(
R+, L2(�)

)
∩ L2

(
R+, H 1(�)

)
. Then for any 0 < T < T0 we have

∂ i
t u ∈ C0(

[0, T ], H 4−2i (�)
)
∩ L2(

[0, T ], H 5−2i (�)
)

for i ∈ {0, 1}, and

∂2
t u ∈ L∞

(
[0, T ], L2(�)

)
∩ L2(

[0, T ], H 1(�)
)
.
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Additionally, if u0 ∈ H 5(�, N ), ∂ i
t v ∈ C0

(
R+, H 3−2i (�)

)
∩ L2

(
R+, H 4−2i (�)

)
with i = 0, 1, and ∂2

t v ∈ L2(R+, L2(�)), we obtain

∂ i
t u ∈ C0(

[0, T ], H 5−2i (�)
)
∩ L2(

[0, T ], H 6−2i (�)
)

for i ∈ {0, 1, 2}.

Proof. Our proof is divided into two steps:

Step 1: H 5-estimate of u.
By using (4-1) and taking a simple computation we can show

(5-8) 1u = −P(u)(∇u, ∇u) +
1

α2 + β2 (α∂t u + β Ĵ (u)∂t u)

+
γ

α2 + β2 (α∇vu + β Ĵ (u)∇vu).

In the case u0 ∈ H 4(�, N ), Lemma 5.5 and Corollary 5.6 tell us that

1u ∈ L∞([0, T ], H 2(�)),

since u ∈ L∞([0, T ], H 3(�)), v ∈ C0(R+, H 2(�)) and by estimate (5-6). Hence,
by the L2-theory of elliptic equations we know that

u ∈ L∞([0, T ], H 4(�)).

Moreover, if we assume v ∈ L2([0, T ], H 3(�)), we can apply Lemma 5.5 and
Corollary 5.6 again to show

1u ∈ L2([0, T ], H 3(�)),

and hence we have u ∈ L2([0, T ], H 5(�)). Consequently, Lemma 2.4 implies

∂ i
t u ∈ C0([0, T ], H 4−2i (�))

for i = 0, 1.

Step 2: H 6-estimate of u.
On the other hand, it follows from (5-8) that

1∂t u =
1

α2 + β2 (α∂2
t u + β Ĵ (u)∂2

t u) +
β

α2 + β2 d Ĵ (u)#∂t u#∂t u

+
γ

α2 + β2 ∂t(α∇vu + β Ĵ (u)∇vu) − ∂t(P(u)(∇u, ∇u)).

Then, by using estimate (5-7) and taking the same argument as above, we can show

1∂t u ∈ L∞
(
[0, T ], H 1(�)

)
∩ L2(

[0, T ], H 2(�)
)
;

hence the L2-theory of the Laplace operator again implies

∂t u ∈ L∞
(
[0, T ], H 3(�)

)
∩ L2(

[0, T ], H 4(�)
)
.



SMOOTH LOCAL SOLUTIONS TO SCHRÖDINGER FLOWS WITH DAMPING TERM 215

Finally, we can show

u ∈ L∞
(
[0, T ], H 5(�)

)
∩ L2(

[0, T ], H 6(�)
)
,

by providing v ∈ L∞
(
[0, T ], H 3(�)

)
∩ L2

(
[0, T ], H 4(�)

)
.

Now, by Lemma 2.4 we can also derive that

∂ i
t u ∈ C0([0, T ], H 5−2i (�))

for i ∈ 0, 1. Hence, it follows that ∂2
t u ∈ C0([0, T ], H 1(�)) by using the equation

of ∂t u and the fact ∂ i
t v ∈ C0(R+, H 3−2i (�)) with i = 0, 1. □

5C. Higher order regularity of u (i.e., the proof ofT (k)with k≥2). In Section 5B,
we have proved property T (k) in the case k = 2. Next, we assume that T (k) has
been established for k ≥ 2, then we intend to show T (k + 1) is true. To this end,
we assume that u0 ∈ H 2(k+1)(�) satisfies the k-order compatibility conditions, and
v satisfies

∂ i
t v ∈ C0(

[0, T ], H 2(k+1)−2(i+1)(�)
)
∩ L2(

[0, T ], H 2(k+1)−2i (�)
)

for any 0 < T < T0 and any i ∈ {0, 1, . . . , k}. Moreover, property T (k) implies

∂ i
t u ∈ C0(

[0, T ], H 2k−2i+1(�)
)
∩ L2(

[0, T ], H 2k−2i+2(�)
)

for any 0 ≤ i ≤ k.
In particular, uk = ∂k

t u ∈ C0
(
[0, T ], H 1(�)

)
∩ L2

(
[0, T ], H 2(�)

)
is a strong

solution to the equation

(5-9)


∂tw+γ∇vw=α1w−β Ĵ (u)1w+Lk(w, u)+Fk(u), (x, t)∈�×[0, T ],

∂w/∂ν=0, (x, t)∈∂�×[0, T ],

w(x, 0)=Vk(u0):�→RK.

In the following context, we improve the regularity of u by proving the following
three claims:

(1) If u0 ∈ H 2(k+1)(�) satisfies the k-order compatibility conditions, then we get a
regular solution to (5-9):

w ∈ C0(
[0, T ], H 2(�)

)
∩ L2(

[0, T ], H 3(�)
)
.

(2) It follows from an argument on uniqueness that w = uk . Hence we can show

ui ∈ C0(
[0, T ], H 2(k+1)−2i (�)

)
∩ L2(

[0, T ], H 2(k+1)+1−2i (�)
)

for any 0 ≤ i ≤ k + 1, by using (4-1).

(3) Additionally if u0 ∈ H 2(k+1)+1(�), we can further prove

uk+1 ∈ C0(
[0, T ], H 1(�)

)
∩ L2(

[0, T ], H 2(�)
)
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by considering differentiation of the Galerkin approximation equation to (5-9) in
the time direction. This implies

ui ∈ C0(
[0, T ], H 2(k+1)+1−2i (�)

)
∩ L2(

[0, T ], H 2(k+1)+2−2i (�)
)

for any 0 ≤ i ≤ k + 1.

5D. Regular solution to (5-9). To show the existence of local regular solutions to
(5-9) by applying a similar argument to that in Section 3, first of all, we estimate
the nonhomogeneous term Fk by using the estimates given in Lemmas 5.5 and 5.6.

Lemma 5.8. Assume that, for 0 ≤ i ≤ k, the field v satisfies

∂ i
t v ∈ C0(

[0, T ], H 2(k+1)−2(i+1)(�)
)
∩ L2(

[0, T ], H 2(k+1)−2i (�)
)

and property T (k) holds true. Then, we have

Fi ∈ L∞
(
[0, T ], H 2k−2i (�)

)
∩ L2(

[0, T ], H 2k−2i+2(�)
)

for 0 ≤ i ≤ k.

Proof. For any 0 ≤ i ≤ k, by setting vi = ∂ i
t v, we have

Fi (u) = −γ
∑

m+ j=i
m≥1

vm#∇u j + α
∑

i1+···+is+m+l=i
1≤i j <i

∇
s P(u)#ui1# · · · #uis #∇um#∇ul

+ β
∑

i1+···+is+m=i
1≤i j <i

∇
s Ĵ (u)#ui1# · · · #uis #1um

= I + II + III.

Next we estimate the above three terms step by step. For term I : since 1 ≤ m ≤ i
and 0 ≤ j = i − m ≤ i − 1, then we have

vm ∈ L∞
(
[0, T ], H 2k−2i (�)

)
∩ L2(

[0, T ], H 2k−2i+2(�)
)

and
u j ∈ L∞([0, T ], H 2k−2i+3(�)).

Hence, Lemma 5.5 claims

I ∈ L∞
(
[0, T ], H 2k−2i (�)

)
∩ L2(

[0, T ], H 2k−2i+2(�)
)
.

For term II : since 1 ≤ i j ≤ i − 1 and 0 ≤ m ≤ i − 1, we have

ui j ∈ L∞([0, T ], H 2k−2i+3(�))

and
∇um ∈ L∞

(
[0, T ], H 2k−2i+2(�)

)
∩ L2(

[0, T ], H 2k−2i+3(�)
)
.

It follows from Lemma 5.5 that

II ∈ L∞([0, T ], H 2k−2i+2(�)).
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Similarly, by applying Corollary 5.6 with ∇
s Ĵ in place of L , we can also show

III ∈ L∞
(
[0, T ], H 2k−2i+1(�)

)
∩ L2(

[0, T ], H 2k−2i+2(�)
)
.

Therefore, the desired results are proved. □

Now we turn to considering the Galerkin approximation of (5-9):

(5-10)

{
∂tw

n
+γ Pn(∇vw

n) = α1wn
−β Pn( Ĵ (u)1wn)+Pn(Lk(w

n, u)+Fk(u)),

wn(x, 0) = Pn(Vk(u0)) : � → Rn+k.

It is not difficult to show that there exists a unique solution wn
∈ H n to (5-10) on a

maximal interval [0, T n
∗
), and we will show T0 ≤ T n

∗
.

Next, we choose wn and 12wn as test functions of (5-10) and take a simple
calculation to show
∂

∂t

∫
�
|wn

|
2 dx +α

∫
�
|∇wn

|
2 dx ≤ Cα(1+|β|

2)(∥u∥
2
H3 +1)∥wn

∥
2
H1 +

∫
�
|Fk |

2 dx,

∂

∂t

∫
�
|1wn

|
2 dx + α

∫
�
|∇1wn

|
2 dx

≤ Cα(1 + |β|
2
+ |γ |

2)(∥u∥
6
H3 + ∥v∥

2
H2 + 1)∥wn

∥
2
H2 + Cα

∫
�
|∇Fk |

2 dx .

It follows that
∂

∂t
∥wn

∥
2
H2 + α

∫
�
|∇1wn

|
2 dx ≤ Cα,β,γ p(t)∥wn

∥
2
H2 + Cαq(t),

where
p(t) := ∥u∥

6
H3 + ∥v∥

2
H2 + 1 ≤ C(T )

and
q(t) := ∥Fk∥

2
H1 ∈ L1([0, T ])

for any T < T0.
On the other hand, since u0 ∈ H 2k+2(�) and vi ∈ C0([0, T ], H 2k−2i (�)) with

0 ≤ i ≤ k, it is not difficult to show

∥V n
k ∥

2
H2(�)

≤ C∥Vk∥
2
H2(�)

≤ C(T, ∥u0∥
2
H2(k+1)(�)

).

Here we have used Lemma 2.5 in the first inequality.
Thus, by the Gronwall inequality we can infer from the above

sup
0<t≤T

(∥wn
∥

2
H2 + ∥∂tw

n
∥

2
L2) + α

∫ T

0
(∥wn

∥
2
H3 + ∥∂tw

n
∥

2
H1) dt ≤ C(T ).

Hence without loss of generality, we assume that wn converges to a regular
solution w ∈ L∞

(
[0, T ], H 2

)
∩ L2

(
[0, T ], H 3(�)

)
to (5-9). Moreover, ∂tw is

in L∞
(
[0, T ], L2(�)

)
∩ L2

(
[0, T ], H 1(�)

)
. By Lemma 2.4 we know that

w ∈ C0([0, T ], H 2(�)).
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5E. Uniqueness of strong solutions to equation (5-9).

Proposition 5.9. There exists a unique solution to equation (5-9) in the space
L∞

(
[0, T ], H 1(�)

)
∩ L2

(
[0, T ], H 2(�)

)
.

Proof. Suppose w1 and w2 are two solutions to (5-9) belonging to the space
L∞

(
[0, T ], H 1

)
∩ L2

(
[0, T ], H 2(�)

)
. Then, the difference w = w1 −w2 satisfies

∂tw + γ∇vw = α1w − β Ĵ (u)1w, u) + Fk(u), (x, t) ∈ � × [0, T ],

∂w/∂ν = 0, (x, t) ∈ ∂� × [0, T ],

w(x, 0) = 0.

Taking w as a test function to the above equation, we can show

(5-11) 1
2

∂

∂t

∫
�
|w|

2 dx + α
∫

�
|∇w|

2 dx

= −γ
∫

�
⟨v ·∇w, w⟩ dx −β

∫
�
⟨ Ĵ (u)1w, w⟩ dx +

∫
�
⟨Lk(w, u), w⟩ dx

= I + II + III.

We estimates the above three terms as follows:

I = −
γ

2

∫
�
v · ∇|w|

2 dx = −
γ

2

∫
�

div(v|w|
2) dx = 0,

since div(v) = 0 and ⟨v, ν⟩|∂� = 0.

|II | = |β|

∣∣∣∫
�
⟨ Ĵ (u)1w, w⟩ dx

∣∣∣
≤ C |β|

∫
�
|∇w||∇u||w| dx ≤ Cαβ2

∥u∥
2
H3

∫
�
|w|

2 dx +
α

4

∫
�
|∇w|

2 dx .

|III | ≤ Cα
∫

�
(|w||∇w||∇u| + |w|

2
|∇u|) dx + C |β|

∣∣∣∫
�
⟨d Ĵ (w)1u, w⟩ dx

∣∣∣
≤ Cα(1 + β2)∥u∥

2
H3

∫
�
|w|

2 dx +
α

4

∫
�
|∇w|

2 dx .

Here we have used the fact∣∣∣∫
�
⟨∇ Ĵ (w)1u, w⟩ dx

∣∣∣≤ ∣∣∣∫
�
⟨∇(d Ĵ (w))·∇u, w⟩ dx

∣∣∣+∣∣∣∫
�
⟨(d Ĵ (w))·∇u, ∇w⟩ dx

∣∣∣
since ∂u

∂ν
|∂� = 0.

By combining the estimates of I –III with (5-11), we get

∂

∂t

∫
�
|w|

2 dx + α
∫

�
|∇w|

2 dx ≤ Cα,β

∫
�
|w|

2 dx .

It follows from the Gronwall inequality that w ≡ 0. Therefore, the proof is com-
pleted. □

As a direct conclusion of the above proposition, we have uk ≡ w and hence

uk ∈ C0(
[0, T ], H 2(�)

)
∩ L2(

[0, T ], H 3(�)
)
.
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5F. The proof of item (1) of property T (k + 1). Now we are in position to prove
item (1) of property T (k + 1) as follows:

Proposition 5.10. Assume that u0 ∈ H 2(k+1)(�) satisfies the k-order compatibility
condition, for i ∈ {0, 1, . . . , k},

vi = ∂ i
t v ∈ C0(

[0, T ], H 2(k+1)−2(i+1)(�)
)
∩ L2(

[0, T ], H 2(k+1)−2i (�)
)
,

and property T (k) holds true. Then, for any i ∈ {0, 1, . . . , k + 1},

ui ∈ L∞
(
[0, T ], H 2(k+1)−2i (�)

)
∩ L2(

[0, T ], H 2(k+1)+1(�)
)
.

It follows that, for any i ∈ {0, 1, . . . , k},

ui ∈ C0(
[0, T ], H 2(k+1)−2i (�)

)
∩ L2(

[0, T ], H 2(k+1)+1(�)
)
.

Proof. Since

uk+1 = α1uk − β Ĵ (u)1uk − γ∇vuk + Lk(uk, u) + Fk(u)

and uk ∈ L∞
(
[0, T ], H 2

)
∩ L2

(
[0, T ], H 3(�)

)
, a direct calculation shows

uk+1 ∈ L∞
(
[0, T ], L2(�)

)
∩ L2(

[0, T ], H 1(�)
)
.

Next we prove this proposition by inducting on k + 1 − l. We have shown the
result is true for l = 0 and l = 1. Now, we assume that for l = i ≥ 1 the result has
been proved. Then, we need to establish it for l = i + 1, where i ≤ k − 1. Thus, we
consider the following equation of uk−i :

(5-12) 1uk−i =
1
σ

(αuk−i+1 + β Ĵ (u)uk−i+1) +
αγ

σ

∑
q+m=k−i

vq#um

+

∑
i1+···+iq+s+m=k−i

∇
q P#ui1# · · · #uiq #∇us#∇um

+
βγ

σ

∑
i1+···+iq+s+m=k−i

∇
q Ĵ#ui1# · · · #uiq #vs#∇um

+
β

σ

∑
i1+···+iq+m=k−i

m<k−i

∇
q Ĵ#ui1# · · · #uiq #um+1

= J1 + J2 + J3 + J4 + J5,

where σ denotes α2
+ β2.

Next we estimate the above five terms step by step. First of all, by the assumptions
of induction, we have the following:

(1) For i + 1 ≤ l ≤ k + 1, uk+1−l ∈ L∞
(
[0, T ], H 2l−1(�)

)
∩ L2

(
[0, T ], H 2l(�)

)
.

(2) For 0 ≤ l ≤ i < k, uk+1−l ∈ L∞
(
[0, T ], H 2l(�)

)
∩ L2

(
[0, T ], H 2l+1(�)

)
.
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(3) For 0 ≤ s ≤ k,

vs ∈ L∞
(
[0, T ], H 2k−2s(�)

)
∩ L2(

[0, T ], H 2(k+1)−2l(�)
)
.

The estimate of term J1: since

uk−i+1 ∈ L∞
(
[0, T ], H 2i (�)

)
∩ L2(

[0, T ], H 2i+1(�)
)

and
u ∈ L∞

(
[0, T ], H 2k+1(�)

)
∩ L2(

[0, T ], H 2k+2(�)
)
,

by applying Corollary 5.6 with L replaced by Ĵ and Lemma 5.5, we have

J1 ∈ L∞
(
[0, T ], H 2i (�)

)
∩ L2(

[0, T ], H 2i+1(�)
)
.

The estimate of term J3: A simple computation shows that J3 satisfies

J3 = ∇ P#uk−i #∇u#∇u + P(u)#∇uk−i #∇u

+
∑

i1+···+iq+s+m=k−i
i j ,m,s≤k−i−1

∇
q P#ui1# · · · #uiq #∇us#∇um

= a + b + c.

Since uk−i ∈ L∞
(
[0, T ], H 2i+1

)
∩ L2

(
[0, T ], H 2i+2

)
with i ≤ k − 1 and

∇u ∈ L∞
(
[0, T ], H 2k(�)

)
∩ L2(

[0, T ], H 2k+1(�)
)
,

Lemma 5.5 implies

a + b ∈ L∞
(
[0, T ], H 2i (�)

)
∩ L2(

[0, T ], H 2i+1(�)
)
.

On the other hand, by using the fact i j , m, s ≤ k − i − 1, we have

ui j ∈ L∞([0, T ], H 2(i+1)+1(�)) and ∇um ∈ L∞([0, T ], H 2(i+1)(�)).

It follows that c ∈ L∞([0, T ], H 2(i+1)). Consequently, we obtain

J3 ∈ L∞
(
[0, T ], H 2i (�)

)
∩ L2(

[0, T ], H 2i+1(�)
)
.

Taking almost the same argument as in estimating J3, we obtain

J2 + J4 ∈ L∞
(
[0, T ], H 2i (�)

)
∩ L2(

[0, T ], H 2i+1(�)
)
.

Then we show the last term:

J5 =
β

σ
∇ Ĵ (u)#uk−i #u1 +

β

σ

∑
i1+···+iq+m=k−i

i j ,m<k−i

∇
q Ĵ (u)#ui1# · · · #uiq #um+1

= d + e.

Since uk−i ∈ L∞([0, T ], H 2i+1(�)) with i ≤ k − 1 and

u1 ∈ L∞([0, T ], H 2k−1(�)) ⊂ L∞([0, T ], H 2i+1(�)),
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we have
d ∈ L∞([0, T ], H 2i+1(�)).

Since m, i j ≤ k − i − 1, by Lemma 5.5 and Corollary 5.6, it is not difficult to
show

e ∈ L∞([0, T ], H 2i+1(�)).

Combining the above estimates of J1–J5 with formula (5-12), we conclude that

1uk−i ∈ L∞
(
[0, T ], H 2i (�)

)
∩ L2(

[0, T ], H 2i+1(�)
)
.

Then, by the L2-theory of Laplace operator we have

uk−i ∈ L∞
(
[0, T ], H 2(i+1)(�)

)
∩ L2(

[0, T ], H 2(i+1)+1(�)
)

for 1 ≤ i ≤ k − 1.
It remains to show the result in the case of l = k + 1. Since

(5-13) 1u = −P(u)(∇u, ∇u)+
1
σ

(α∂t u +β Ĵ (u)∂t u)+
γ

σ
(α∇vu +β Ĵ (u)∇vu)

and

• u ∈ L∞([0, T ], H 2k+1(�)),

• ∂t u ∈ L∞
(
[0, T ], H 2k(�)

)
∩ L2

(
[0, T ], H 2k+1(�)

)
,

• v ∈ L∞
(
[0, T ], H 2k(�)

)
∩ L2

(
[0, T ], H 2k+2(�)

)
,

we can apply Lemma 5.5 to show

1u ∈ L∞([0, T ], H 2k(�)),

which gives u ∈ L∞([0, T ], H 2k+2(�)).
And again it follows that

1u ∈ L2([0, T ], H 2k+1(�)),

then the L2-theory of the Laplace operator yields

u ∈ L2([0, T ], H 2(k+1)+1(�)).

Therefore, the proof is completed. □

5G. The proof of item (2) in property T (k + 1). In the last part, we assume that
u0 ∈ H 2(k+1)+1(�) satisfies the k-order compatibility conditions. Furthermore,
suppose that there hold true the following properties C(k):

• for any i ∈ {0, 1, . . . , k},

vi ∈ C0(
[0, T ], H 2(k+1)+1−2(i+1)(�)

)
∩ L2(

[0, T ], H 2(k+1)−2i (�)
)

and ∂k+1
t v ∈ L2([0, T ], L2(�));
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• for any i ∈ {0, 1, . . . , k + 1}, we have

ui ∈ C0(
[0, T ], H 2(k+1)−2i (�)

)
∩ L2(

[0, T ], H 2(k+1)+1−2i (�)
)
.

Next, we turn to proving item (2) of property T (k + 1).
First of all, taking almost the same argument as in Lemma 5.8, we can show:

Proposition 5.11. For any i ∈ {0, 1, . . . , k},

∂t Fi ∈ L2([0, T ], H 2k−2i (�)).

Next, we can also prove the following proposition, which is analogous to the
main theorem in Section 4:

Proposition 5.12. Assume that u0 ∈ H 2(k+1)+1(�) satisfies the k-order compatibil-
ity conditions. If the properties C(k) hold true, then we have

uk+1 ∈ C0(
[0, T ], H 1(�)

)
∩ L2(

[0, T ], H 2(�)
)
.

Proof. It follows from the Galerkin approximation equation (5-10) that wn
t := ∂tw

n

satisfies

∂tw
n
t − α1wn

t = Pn∂t(−γ∇vw
n
− β Ĵ (u)1wn

+ Lk(w
n, u) + Fk(u)).

Then, taking −1wn
t as a test function to this equation, we obtain

1
2

∂

∂t

∫
�
|∇wn

t |
2 dx + α

∫
�
|1wn

t | dx

= γ
∫

�
⟨∂t(v · ∇wn), 1wn

t ⟩ dx + β
∫

�
⟨∂t( Ĵ (u)1wn), 1wn

t ⟩ dx

−

∫
�
⟨∂t Lk(w

n, u), 1wn
t ⟩ dx −

∫
�
⟨∂t Fk(u), 1wn

t ⟩ dx

= M1 + M2 + M3 + M4.

By direct calculations, we show the estimates of M1–M4 as follows:

|M1| ≤ C |γ |

∫
�
(|∂tv||∇wn

| + |v||∇∂tw
n
|)|1wn

t | dx

≤ Cα|γ |
2
∥∂tv∥

2
H1∥w

n
∥

2
H2 + Cα∥v∥

2
H2 |γ |

2
∫

�
|∇wn

t |
2 dx +

α

8

∫
�
|1wn

t |
2 dx,

|M2| = |β|

∣∣∣∫
�
⟨∂t( Ĵ (u))1wn, 1wn

t ⟩ dx
∣∣∣

≤ Cα|β|
2
∥∂t u∥

2
H2∥w

n
∥

2
H2 +

α

8

∫
�
|1wn

t |
2 dx,
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|M3| =

∣∣∣∫
�
⟨∂t Lk(w

n, u), 1wn
t ⟩ dx

∣∣∣
≤ Cα

∫
�
(|∇wn

t |
2
|∇u|

2
+ |ut |

2
|∇wn

|
2
|∇u|

2
+ |∇ut |

2
|∇wn

|
2) dx

+ Cα
∫

�
(|wn

t |
2
|∇u|

4
+ |ut |

2
|wn

|
2
|∇u|

4
+ |∇ut |

2
|∇u|

2
|wn

|
2) dx

+ Cα|β|
2
∫

�
(|wn

t |
2
|1u|

2
+ |ut |

2
|wn

|
2
|1u|

2
+ |1ut |

2
|wn

|
2) dx

+
α

8

∫
�
|1wn

t |
2 dx

≤ Cα(1+β2) f (t)
(∫

�
|wn

t |
2 dx

)
+Cα∥u∥

2
H3

∫
�
|∇wn

t |
2 dx +

α

8

∫
�
|1wn

t |
2 dx,

where
f (t) := ∥ut∥

2
H2∥w

n
∥

2
H2(∥u∥

2
H2 + 1)2

≤ C(T ).

The last term satisfies the estimate

|M4| ≤ C(α)∥∂t Fk∥
2
L2 +

α

8

∫
�
|1wn

t |
2 dx .

Hence, we conclude that

∂

∂t

∫
�
|∇wn

t |
2 dx + α

∫
�
|1wn

t | dx ≤ Cγ,α,β,T

∫
�
|∇wn

t |
2 dx + Cα∥∂t Fk∥

2
L2 .

It follows

sup
0≤t≤T

∥∂tw
n
∥

2
H1 + α

∫ T

0

∫
�
|1wn

t |
2 dxdt ≤ C(T, ∥V n

k ∥
2
H3),

since ∥∂t Fk∥
2
L2 ∈ L1([0, T ]).

Now, it remains to show there exists a uniform bound of ∥V n
k ∥

2
H3 . By using the

fact vi ∈ C0([0, T ], H 2k−2i+1) with 0 ≤ i ≤ k, we can show

∥V n
k ∥

2
H3(�)

≤ C∥Vk∥
2
H3(�)

≤ C(∥u0∥
2
H2(k+1)+1(�)

).

Hence, without loss of generality we can assume that wn
t converges weakly to

uk+1 ∈ L∞
(
[0, T ], H 1(�)

)
∩ L2(

[0, T ], H 2(�)
)
.

It follows that
∂t uk+1 ∈ L2([0, T ], L2(�))

by applying the equation of uk+1 and the fact ∂t Fk ∈ L2([0, T ], L2(�)). Then,
Lemma 2.4 gives

uk+1 ∈ C0([0, T ], H 1(�)). □

Consequently, taking the estimates in Propositions 5.10–5.12 into consideration,
and adopting almost the same argument as in the proof of Proposition 5.10, we can
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see that it is not difficult to show

ui ∈ L∞
(
[0, T ], H 2(k+1)−2i+1(�)

)
∩ L2(

[0, T ], H 2(k+1)−2i+2(�)
)

for any 0 ≤ i ≤ k + 1. Hence, Lemma 2.4 implies that for any i ∈ {0, . . . , k},

ui ∈ C0([0, T ], H 2(k+1)−2i+1(�)).

Therefore, the second term (2) in property T (k + 1) is proved.
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MODULES OVER THE PLANAR GALILEAN CONFORMAL
ALGEBRA ARISING FROM FREE MODULES OF RANK ONE

JIN CHENG, DONGFANG GAO AND ZITING ZENG

The planar Galilean conformal algebra G introduced by Bagchi-Gopakumar
and Aizawa is an infinite-dimensional extension of the finite-dimensional
Galilean conformal algebra in (2+1)-dimensional space-time. In this paper,
we give a complete classification of U(CL0)-free modules of rank 1 and
U(h)-free modules of rank 1 over G, where h is the Cartan subalgebra (a
nilpotent self-normalizing subalgebra) of G, CL0 is a subalgebra of h. Also,
we determine the necessary and sufficient conditions for these modules to be
irreducible, and find the maximal proper submodules when these modules
are not irreducible.

1. Introduction

Infinite-dimensional Galilean conformal algebras were introduced by Bagchi and
Gopakumar [2009] in order to construct a systematic nonrelativistic limit of the
AdS/CFT conjecture (see [Maldacena 1998]). Some physicists believe that AdS/CFT
correspondence would be better understood by exploring those algebras (see [Bagchi
et al. 2010; Martelli and Tachikawa 2010]). Moreover, those algebras appear in the
context of Galilean electrodynamics (see [Bagchi et al. 2014; Festuccia et al. 2016])
and may play an important role in Navier–Stokes equations (see [Bhattacharyya et al.
2009; Fouxon and Oz 2008; Fouxon and Oz 2009; Gusyatnikova and Yumaguzhin
1989]). These reasons make the infinite-dimensional Galilean conformal algebras
attract more and more attention from mathematicians and physicists. In particular,
the infinite-dimensional Galilean conformal algebra in (1+1)-dimensional space-
time is the centerless W -algebra W (2, 2); it has been studied in [Bagchi et al.
2010; Chen and Guo 2017; Zhang and Dong 2009]. This algebra is related to
the BMS/GCA correspondence (see [Bagchi 2010]), the tensionless limit of string
theory (see [Bagchi 2013]) and statistical mechanics (see [Henkel et al. 2012]).

The infinite-dimensional Galilean conformal algebra G in (2+1)-dimensional
space-time, named the planar Galilean conformal algebra by Aizawa [2013], is an
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infinite-dimensional Lie algebra with a basis {Ln, Hn, In, Jn | n ∈ Z} and the Lie
brackets are defined by

(1-1)

[Lm, Ln] = (n − m)Lm+n, [Lm, Hn] = nHm+n,

[Lm, In] = (n − m)Im+n, [Lm, Jn] = (n − m)Jm+n,

[Hm, In] = Im+n, [Hm, Jn] = −Jm+n,

[Hm, Hn] = [Im, In] = [Jm, Jn] = [Im, Jn]= 0 for all m, n ∈ Z,

which is the main object in this paper. This algebra is also the special case of
[Martelli and Tachikawa 2010]. As we know, many infinite-dimensional Lie al-
gebras in mathematics and physics are related to finite-dimensional semisimple
Lie algebras. For example, the Virasoro algebra contains infinitely many sl2(C)

as its subalgebras. For the Lie algebra G, there are two interesting features: it
contains the Witt algebra as a subalgebra, and it is associated with the Galilean
algebra, which is a nonsemisimple Lie algebra. Those would suggest that such an
infinite-dimensional algebra is important and its representation theory is different
from semisimple counterparts. So far there are a few of results about structures
and representations of G. The universal central extension G of G was determined in
[Gao et al. 2016]. The highest weight representations and coadjoint representations
of G were investigated in [Aizawa 2013; Aizawa and Kimura 2011], Whittaker
modules and restricted modules over G were studied in [Chen and Yao 2023; Chen
et al. 2022; Gao and Gao 2022].

Recently, a family of nonweight modules over G, called U(h)-free modules,
has attracted more attention from mathematicians, where h = span{L0, H0} is a
nilpotent self-normalizing subalgebra, called the Cartan subalgebra of G. The
notion of U(h)-free modules was first introduced by Nilsson [2015] for the simple
Lie algebra sln+1(C). At the same time, these modules were introduced in a very
different approach in [Tan and Zhao 2015]. Later, U(h)-free modules for many
important infinite-dimensional Lie algebras were determined, for example, the
Virasoro algebra in [Lu and Zhao 2014], the Witt algebra in [Tan and Zhao 2015],
affine Kac–Moody algebras in [Cai et al. 2020]. In the present paper, we will
study this family of modules over G and G. These lead to many new examples of
irreducible modules over G and G.

The paper is organized as follows. In Section 2, we recall the source of the
infinite-dimensional Galilean conformal algebras. Then we review the planar
Galilean conformal algebra G and G. We show that the U(CL0)-free modules of
rank 1 and U(h)-free modules of rank 1 over G coincide with U(CL0)-free modules
of rank 1 and U(h)-free modules of rank 1 over G respectively; see Corollary 2.3.
Lastly, we collect some results about U(CL0)-free modules over some Lie algebras
related to the Witt algebra for later use. In Section 3, we get all U(CL0)-free
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modules of rank 1 over G, and the necessary and sufficient conditions for these
modules to be irreducible are determined; see Theorem 3.2. We also determine
the isomorphism classes of these modules; see Theorem 3.3. In Section 4, we
obtain the main results of this paper. More precisely, we determine that there are
three families of U(h)-free modules of rank 1 over G, where h = span{L0, H0}

is the Cartan subalgebra of G; see Theorem 4.12. Also, we give the necessary
and sufficient conditions for these modules to be irreducible, and find the maximal
proper submodules when these modules are not irreducible; see Theorems 4.13, 4.14
and 4.15. Furthermore, we determine the isomorphism classes of these modules;
see Theorem 4.17. Consequently, we give a complete classification of U(h)-free
modules of rank 1 over G and G.

Throughout this paper, we denote by Z, Z+, N, C and C∗ the set of integers,
nonnegative integers, positive integers, complex numbers and nonzero complex
numbers respectively. All vector spaces and algebras are over C. We denote by U(g)

the universal enveloping algebra for a Lie algebra g.

2. Notation and preliminaries

In this section, we recall the infinite-dimensional Galilean conformal algebras and
collect some known results about U(CL0)-free modules over the Lie algebras related
to the Witt algebra.

2A. From Galilean algebras to infinite-dimensional Galilean conformal algebras.
In this subsection, we recall the background in which the infinite-dimensional
Galilean conformal algebras arise. See [Bagchi and Gopakumar 2009] for more
details. First, it is well-known that Galilean algebra G(d, 1) in Galilean space-time
Rd,1 arises as a contraction of the Poincaré algebra ISO(d, 1). The expressions for
the Poincaré generators (µ, ν = 0, 1, . . . , d)

Jµν = −(xµ∂ν − xν∂µ), Pµ = ∂µ,

give us the Galilean vector field generators {Ji j , Pi , Bi , H | i, j = 1, 2, . . . , d},
where

(2-1)
Ji j = −(xi∂ j − x j∂i ), Pi = ∂i ,

Bi = J0i = t∂i , H = P0 = −∂t .

and t, xi are variables. They obey the commutation relations

(2-2)

[Ji j , Jrs] = δir J js + δis Jr j + δ jr Jsi + δ js Jir ,

[H, Bi ] = −Pi ,

[Ji j , Br ] = −(Biδ jr − B jδir ),

[Ji j , Pr ] = −(Piδ jr − Pjδir ),

[Ji j , H ] = [H, Pi ] = [Bi , Pj ] = [Bi , B j ] = [Pi , Pj ] = 0.
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Consequently, we obtain the Galilean algebra

G(d, 1) = span{Ji j , Pi , Bi , H | i, j = 1, 2, . . . , d}

with the commutation relations (2-2).
To obtain the Galilean conformal algebra, we need additional generators

{D, K , Ki | i = 1, 2, . . . , d},

where

(2-3) D = −

( d∑
i=1

xi∂i + t∂t

)
, K = −

( d∑
i=1

2t xi∂i + t2∂t

)
, Ki = t2∂i .

Thus we get that Galilean conformal algebra in (d+1)-dimensional space-time is
spanned by {Ji j , Pi , Bi , H, D, K , Ki | i, j = 1, 2, . . . , d} with the commutation
relations (2-2) and

[Ji j , Kr ] = −(Kiδ jr − K jδir ), [K , Bi ] = Ki , [K , Pi ] = 2Bi ,

[H, Ki ] = −2Bi , [D, Ki ] = −Ki , [D, Pi ] = Pi ,

[D, H ] = H, [H, K ] = −2D, [D, K ] = −K ,

[Ji j , D] = [Ji j , K ] = [D, Bi ] = [K , Ki ] = [Ki , K j ] = [Ki , B j ] = [Ki , Pj ] = 0.

It is clear that Galilean conformal algebra contains Galilean algebra as a subalgebra.
We denote

L(−1)
= H, L(0)

= D, L(+1)
= K ,

M (−1)
i = Pi , M (0)

i = Bi , M (+1)
i = Ki .

Then Galilean conformal algebra in (d+1)-dimensional space-time is spanned by
{Ji j , L(n), M (n)

i | i, j = 1, 2, . . . , d, n = 0, ±1} with the commutation relations

[L(m), L(n)
] = (m − n)L(m+n), [L(m), M (n)

i ] = (m − n)M (m+n)
i ,

[Ji j , M (m)
k ] = −(M (m)

i δ jk − M (m)
j δik), [Ji j , L(n)

] = [M (m)
i , M (n)

j ] = 0,

where m, n = 0, ±1, i, j = 1, 2, . . . , d . In fact, we can define the vector fields

Ji j = −(xi∂ j − x j∂i ),

L(n)
= −(n + 1)tn

d∑
i=1

xi∂i − t (n+1)∂t ,

M (n)
i = t (n+1)∂i ,

where n = 0, ±1, i, j = 1, 2, . . . , d. These are exactly the vector fields in (2-1)
and (2-3), so they generate the Galilean conformal algebra.
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Now we have a very natural extension, for arbitrary n ∈ Z, define

J (n)
i j = −tn(xi∂ j − x j∂i ),

L(n)
= −(n + 1)tn

d∑
i=1

xi∂i − t (n+1)∂t ,

M (n)
i = t (n+1)∂i ,

where i, j = 1, 2, . . . , d. Therefore, we obtain the infinite-dimensional Galilean
conformal algebra GCA in (d+1)-dimensional space-time,

GCA = span{J (n)
i j , L(n), M (n)

i | n ∈ Z, i, j = 1, 2, . . . , d},

satisfying the commutation relations

[L(m), L(n)
] = (m − n)L(m+n),

[J (m)
i j , J (n)

rs ] = δir J (m+n)
js + δis J (m+n)

r j + δ jr J (m+n)
si + δ js J (m+n)

ir ,

[L(m), J (n)
i j ] = −n J (m+n)

i j , [L(m), M (n)
i ] = (m − n)M (m+n)

i ,

[J (m)
i j , M (n)

k ] = −(δ jk M (m+n)
i − δik M (m+n)

j ), [M (m)
i , M (n)

j ] = 0.

In this paper, we mainly investigate the infinite-dimensional Galilean conformal
algebra in (2+1)-dimensional space-time, which is called the planar Galilean
conformal algebra by Aizawa [2013].

2B. Planar Galilean conformal algebra. From Section 2A, the planar Galilean
conformal algebra is spanned by {J (n)

12 , L(n), M (n)
i | n ∈ Z, i = 1, 2}. We denote this

algebra by G, then G is an infinite-dimensional Lie algebra with the commutation
relations

[L(m), L(n)
] = (m − n)L(m+n), [L(m), J (n)

12 ] = −n J (m+n)
12 ,

[L(m), M (n)
1 ] = (m − n)M (m+n)

1 , [L(m), M (n)
2 ] = (m − n)M (m+n)

2 ,

[J (m)
12 , M (n)

1 ] = M (m+n)
2 , [J (m)

12 , M (n)
2 ] = −M (m+n)

1 ,

[J (m)
12 , J (n)

12 ] = [M (m)
1 , M (n)

1 ] = [M (m)
2 , M (n)

2 ] = [M (m)
1 , M (n)

2 ] = 0 for all m, n ∈ Z.

For convenience, we would like to simplify the notation (see [Chen et al. 2022]).
Let

Ln = −L(n), Hn =
√

−1J (n)
12 ,

In = M (n)
1 +

√
−1M (n)

2 , Jn = M (n)
1 −

√
−1M (n)

2 for all n ∈ Z.

Then it is easy to check that {Ln, Hn, In, Jn | n ∈ Z} satisfy the commutation
relations (1-1). Now, we may describe the definition of the planar Galilean conformal
algebra as follows.
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Definition 2.1. The planar Galilean conformal algebra G is an infinite-dimensional
Lie algebra with a basis {Ln, Hn, In, Jn | n ∈ Z} subject to the commutation relations
(1-1).

Note that the Lie subalgebra ĨJ spanned by {Im, Jm | m ∈ Z} is a commutative
ideal of G. Furthermore, G contains the following interesting subalgebras.

(1) h = span{L0, H0} is a nilpotent self-normalizing subalgebra, called the Cartan
subalgebra of G.

(2) V = span{Lm | m ∈ Z} is the centerless Virasoro algebra, i.e., the Witt algebra.

(3) L= span{Lm, Hm | m ∈ Z} is the Heisenberg–Virasoro algebra with the one-
dimensional center.

(4) W = span{Lm, Im | m ∈ Z} is the centerless W (2, 2) algebra.

(5) W ′
= span{Lm, Jm | m ∈ Z} is the centerless W (2, 2) algebra.

Recall that (see [Gao et al. 2016]) the universal central extension G of the planar
Galilean conformal algebra G is an infinite-dimensional Lie algebra with a basis
{Ln, Hn, In, Jn, c1, c2, c3 | n ∈ Z} subject to the commutation relations

(2-4)

[Lm, Ln] = (n − m)Lm+n +
1
12(m3

− m)δm+n,0 c1,

[Lm, Hn] = nHm+n + m2δm+n,0 c2, [Hm, Hn] = mδm+n,0 c3,

[Lm, In] = (n − m)Im+n, [Lm, Jn] = (n − m)Jm+n,

[Hm, In] = Im+n, [Hm, Jn] = −Jm+n,

[Im, In] = [Jm, Jn] = [Im, Jn] = 0 for all m, n ∈ Z.

Denote L′
= span{Lm, Hm, c1, c2, c3 | m ∈ Z}, which is a subalgebra of G. From

Theorem 3 in [Chen and Guo 2017] and Theorem 3.1 in [Han et al. 2017] we get
the following lemma.

Lemma 2.2. (1) Suppose M is an L′-module such that it is a U(CL0)-free module
of rank 1. Then c1 M = c2 M = c3 M = 0.

(2) Suppose M ′ is an L′-module such that it is a U(h)-free module of rank 1. Then
c1 M ′

= c2 M ′
= c3 M ′

= 0.

So, we have the following corollary.

Corollary 2.3. (1) Let M be a U(G)-module such that M , when considered as
a U(CL0)-module, is free of rank 1. Then c1 M = c2 M = c3 M = 0. Thus
U(CL0)-free modules of rank 1 over G coincide with U(CL0)-free modules of
rank 1 over G.

(2) Let M ′ be a U(G)-module such that M ′, when considered as a U(h)-module,
is free of rank 1. Then c1 M ′

= c2 M ′
= c3 M ′

= 0. Thus U(h)-free modules of
rank 1 over G coincide with U(h)-free modules of rank 1 over G.
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Therefore, we mainly classify U(CL0)-free modules of rank 1 and U(h)-free
modules of rank 1 over G in the following sections.

Now, we conclude this section by recalling U(CL0)-free modules of rank 1 over
algebras V,L and W (2, 2), respectively. For any λ ∈ C∗, α ∈ C, it is not hard to
see that the polynomial algebra C[L0] has a V-module structure with the following
actions

Lm( f (L0)) = λm(L0 + mα) f (L0 − m), ∀ m ∈ Z, f (L0) ∈ C[L0].

Denote this module by �(λ, α). Thanks to [Lu and Zhao 2014], we know that
�(λ, α) is irreducible if and only if α ̸=0, and �(λ, 0) has an irreducible submodule
L0�(λ, 0) with codimension 1. Note that �(λ, α) can be easily viewed as a
W (resp. W ′)-module by defining In(�(λ, α)) = 0 (resp. Jn(�(λ, α)) = 0) for
all n ∈ Z, and the resulting module is denoted by �(λ, α)W (resp. �(λ, α)W

′

).
Moreover, we have the following lemmas.

Lemma 2.4 (cf. [Tan and Zhao 2015, Theorem 3]). Let V be a V-module. Assume
that V can be viewed as a U(CL0)-module is free of rank 1. Then V ∼= �(λ, α) for
some λ ∈ C∗, α ∈ C.

Lemma 2.5 (cf. [Chen and Guo 2017, Theorem 3]). Let V be a W (resp. W ′)-
module. Assume that V can be viewed as a U(CL0)-module is free of rank 1. Then
V ∼= �(λ, α)W (resp. �(λ, α)W

′

) for some λ ∈ C∗, α ∈ C.

For λ ∈ C∗, α, β ∈ C, thanks to [Chen and Guo 2017], we see that the polynomial
algebra C[L0] is an L-module with the actions

(2-5)
Lm( f (L0)) = λm(L0 + mα) f (L0 − m),

Hm( f (L0)) = βλm f (L0 − m) for all m ∈ Z, f (L0) ∈ C[L0].

We denote by �(λ, α, β) this module. From [Chen and Guo 2017], we also know
that �(λ, α, β) is irreducible if and only if (α, β) ̸= (0, 0), and �(λ, 0, 0) has an
irreducible submodule L0�(λ, 0, 0) with codimension 1. Furthermore:

Lemma 2.6 (cf. [Chen and Guo 2017, Theorem 2]). Let V be an L-module. Assume
that V can be viewed as a U(CL0)-module is free of rank 1. Then V ∼= �(λ, α, β)

for some λ ∈ C∗, α, β ∈ C.

3. U(CL0)-free modules over G

In this section, we determine the G-module structures on U(CL0). We give the
necessary and sufficient conditions for these modules to be irreducible. Also, we
find the maximal proper submodules and get the irreducible quotient modules when
these modules are not irreducible. Moreover, we determine the isomorphism classes
of these modules.
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Note that ĨJ is a commutative ideal of G. Thus for any λ ∈ C∗, α, β ∈ C, by (2-5)
it is easy to see that the polynomial algebra C[L0] equips with a G-module structure
via the actions

Lm( f (L0)) = λm(L0 + mα) f (L0 − m),

Hm( f (L0)) = βλm f (L0 − m),

Im( f (L0)) = Jm( f (L0)) = 0 for all m ∈ Z, f (L0) ∈ C[L0].

(3-1)

We denote this module by A(λ, α, β).
Now we show that {A(λ, α, β) | λ ∈ C∗, α, β ∈ C} exhaust all U(CL0)-free

modules of rank 1 over G up to isomorphism.

Lemma 3.1. Let V be a U(CL0)-free module of rank 1 over G. We identify V with
C[L0] as vector spaces.

(1) Im(V ) = Jm(V ) = 0 for all m ∈ Z.

(2) There exist λ ∈ C∗, α, β ∈ C such that

Lm( f (L0)) = λm(L0 + mα) f (L0 − m),

Hm( f (L0)) = βλm f (L0 − m) for all f (L0) ∈ V, m ∈ Z.

Proof. (1) It is clear that V may be viewed as a U(CL0)-free module of rank 1
over W , since W is a subalgebra containing V of G. By Lemma 2.5, we have
Im(V ) = 0 for all m ∈ Z. Similarly, we may get Jm(V ) = 0 for all m ∈ Z.

(2) We view V as a U(CL0)-free module of rank 1 over L. Then the conclusions
are clear by Lemma 2.6. □

Theorem 3.2. Let V be a U(CL0)-free module of rank 1 over the Lie algebra G.

(1) There exist λ ∈ C∗, α, β ∈ C such that V ∼= A(λ, α, β) as G-modules.

(2) V is an irreducible G-module if and only if V ∼= A(λ, α, β) for some λ ∈ C∗,
α, β ∈ C with (α, β) ̸= (0, 0).

(3) If V is isomorphic to A(λ, 0, 0) for some λ ∈ C∗, then V has an irreducible
submodule L0V with codimension 1.

Proof. (1) is clear from Lemma 3.1 and (3-1).

(2) and (3) follow from the irreducibility of L-module �(λ, α, β). □

From (3-1) and [Chen and Guo 2017] we can get the following theorem.

Theorem 3.3. Let λ, λ′
∈ C∗, α, α′, β, β ′

∈ C. Then A(λ, α, β) and A(λ′, α′, β ′)

are isomorphic as G-modules if and only if λ = λ′, α = α′, β = β ′.
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4. U(h)-free modules over G

In this section, we obtain all U(h)-free modules of rank 1 over G. The necessary and
sufficient conditions for these modules to be irreducible are determined. We also
investigate the maximal proper submodules and the irreducible quotient modules
when these modules are not irreducible. Furthermore, we determine the isomorphism
classes of these modules. These conclusions are the main results of this paper.

4A. U(h)-free modules over G. In this subsection, we determine the G-module
structures on U(h), where h = span{L0, H0} is the Cartan subalgebra of G.

For any λ ∈ C∗, δ ∈ C[H0], denote by T (λ, δ) = C[H0, L0] the polynomial
algebra over C. It is clear that T (λ, δ) is isomorphic to U(h) as vector spaces. First,
we consider the L-module structures on T (λ, δ), where L= span{Lm, Hm | m ∈ Z}.
It is not hard to see that we may give T (λ, δ) an L-module structure via the actions

(4-1)
Lm( f (H0, L0)) = λm f (H0, L0−m)(L0+mδ),

Hm( f (H0, L0)) = λm H0 f (H0, L0−m) for all m ∈ Z, f (H0, L0) ∈ T (λ,δ).

Note that H0T (λ, δ) is always a proper L-submodule of T (λ, δ). Denote the
quotient module T (λ, δ̄) = T (λ, δ)/H0T (λ, δ) = C[L0], where δ̄ is the constant
term of δ. It is easy to see that the actions of L on T (λ, δ̄) are

Lm( f (L0)) = λm f (L0 − m)(L0 + mδ̄),

Hm( f (L0)) = 0 for all m ∈ Z, f (L0) ∈ T (λ, δ̄).

Furthermore, we have the following lemma.

Lemma 4.1. (1) T (λ, δ̄) is an irreducible L-module if and only if δ̄ ̸= 0.

(2) If δ̄ = 0, then T (λ, δ̄) has an irreducible L-submodule L0T (λ, δ̄) with co-
dimension 1.

Proof. This directly follows from the irreducibility of L-module �(λ, δ̄, 0), which
was introduced in Section 2B. □

By Theorem 3.1 in [Han et al. 2017], we have the following theorem.

Theorem 4.2. Let M be a U(L)-module such that M , when considered as a U(h)-
module, is free of rank 1. Then M ∼= T (λ, δ) for some λ ∈ C∗, δ ∈ C[H0].

Next, we investigate the G-module structures on U(h). We first define three fam-
ilies of G-modules “�(λ, δ, 0, 0), �(λ, η1, σ1, 0) and �(λ, η2, 0, σ2)” as follows:
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Definition 4.3. (1) For any λ ∈ C∗, δ ∈ C[H0], the polynomial algebra C[H0, L0]

can be endowed with a G-module structure via the actions

(4-2)

Lm( f (H0, L0)) = λm f (H0, L0−m)(L0+mδ),

Hm( f (H0, L0)) = λm H0 f (H0, L0−m),

Im(C[H0, L0]) = Jm(C[H0, L0]) = 0 for all m ∈ Z, f (H0, L0) ∈ C[H0, L0].

We denote this module by �(λ, δ, 0, 0).

(2) For any λ ∈ C∗, η1 ∈ C, σ1(̸= 0) ∈ C[H0], the polynomial algebra C[H0, L0]

has a G-module structure with the actions

(4-3)

Lm( f (H0, L0) = λm f (H0, L0 − m)(L0 − m H0 + mη1),

Hm( f (H0, L0) = λm H0 f (H0, L0 − m),

Im( f (H0, L0) = λmσ1 f (H0 − 1, L0 − m),

Jm(C[H0, L0) = 0 for all m ∈ Z, f (H0, L0) ∈ C[H0, L0].

This module is denoted by �(λ, η1, σ1, 0).

(3) For any λ ∈ C∗, η2 ∈ C, σ2(̸= 0) ∈ C[H0], the polynomial algebra C[H0, L0]

becomes a G-module under the following actions

(4-4)

Lm( f (H0, L0) = λm f (H0, L0 − m)(L0 + m H0 + mη2),

Hm( f (H0, L0) = λm H0 f (H0, L0 − m),

Im(C[H0, L0) = 0,

Jm( f (H0, L0) = λmσ2 f (H0 + 1, L0 − m),

for all m ∈ Z, f (H0, L0) ∈ C[H0, L0].

Denote this module by �(λ, η2, 0, σ2).

Remark 4.4. (1) It is clear that �(λ, δ, 0, 0) is a G-module by (4-1), since ĨJ is
an ideal of G. By direct computations we can verify that �(λ, η1, σ1, 0) and
�(λ, η2, 0, σ2) are G-modules.

(2) These three families of G-modules in Definition 4.3, when considered as
U(h)-modules, are all free of rank 1.

In the rest of this subsection, we will show that the three families of G-modules
in Definition 4.3 exhaust all U(h)-free modules of rank 1 over G up to isomorphism.
We break the arguments into the following several lemmas.

From now on, throughout this subsection, N always denotes the U(h)-free module
of rank 1 over G. We identify N with C[H0, L0] as vector spaces. Moreover, it is
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clear that we can view N as a U(h)-free module of rank 1 over L. Therefore, by
Theorem 4.2 there exist λ ∈ C∗, δ(H0) ∈ C[H0] such that

Lm( f (H0, L0)) = λm f (H0, L0 − m)(L0 + mδ(H0)),

Hm( f (H0, L0)) = λm H0 f (H0, L0 − m) for all m ∈ Z, f (H0, L0) ∈ N .
(4-5)

Lemma 4.5. The actions of G on N are completely determined by Lm(1), Hm(1),
Im(1), Jm(1) for all m ∈ Z.

Proof. For any f (H0, L0) ∈ N , using the commutation relations of G we see that

Lm( f (H0, L0)) = f (H0, L0 − m)Lm(1),

Hm( f (H0, L0)) = f (H0, L0 − m)Hm(1),

Im( f (H0, L0)) = f (H0 − 1, L0 − m)Im(1),

Jm( f (H0, L0)) = f (H0 + 1, L0 − m)Jm(1) for all m ∈ Z.

So Lemma 4.5 is clear. □

From Lemma 4.5, we only need to determine the actions of Lm, Hm, Im, Jm on 1
for all m ∈ Z.

Lemma 4.6. Assume that there exist k, l ∈ Z such that Ik(1) = Jl(1) = 0. Then
Im(N ) = Jm(N ) = 0 for all m ∈ Z.

Proof. For any i, j ∈ Z+, we have

Ik(H i
0 L j

0) = (H0 − 1)i Ik L j
0 = (H0 − 1)i (L0 − k) j Ik(1) = 0,

Jl(H i
0 L j

0) = (H0 + 1)i Jl L
j
0 = (H0 + 1)i (L0 − l) j Jl(1) = 0.

Thus Ik(N ) = Jl(N ) = 0. Using the defining relations of G we see that Im(N ) =

Jm(N ) = 0 for all m ∈ Z. □

Lemma 4.7. Suppose that Im(1) is nonzero for any m ∈ Z. Denote I0(1) =∑q0
i=0 c0i (H0)L i

0, where q0 ∈ Z+, c0i (H0) ∈ C[H0] for i = 0, 1, . . . , q0.

(1) In (4-5), δ(H0) = αH0 + β, for some α ∈ Z≥−1, β ∈ C.

(2) degL0
(Im(1)) = α + 1 = q0 and

Im(1) = λmc0(α+1)(H0)Lα+1
0 + (lower − degree terms in L0) for all m ∈ Z.

(3) If α ≥ 0, then for any m ∈ Z∗, the coefficient of Lα
0 in Im(1) is

mλm(α + 1)c0(α+1)(H0)
(
αH0 + β −

1
2α

)
.

(4) If α ≥ 0, then α = 1.
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Proof. (1) For any n ∈ Z∗, denote

In(1) =

qn∑
i=0

cni (H0)L i
0,

where qn ∈ Z+, cni (H0) ∈ C[H0] and cnqn (H0) ̸= 0. For any m ∈ Z, we compute

(n−m)Im+n(1)

= [Lm, In](1) = Lm In(1)−In Lm(1)

=

qn∑
i=0

Lmcni (H0)L i
0−In

(
λm(L0+mδ(H0))

)
=

qn∑
i=0

cni (H0)(L0−m)i Lm(1)−
(
λm(L0−n+mδ(H0−1))

)
In(1)

=

qn∑
i=0

cni (H0)(L0−m)iλm(L0+mδ(H0))−
qn∑

i=0
λm(L0−n+mδ(H0−1))cni (H0)L i

0

= λm(L0+mδ(H0))
qn∑

i=0
cni (H0)(L0−m)i

−λm(L0−n+mδ(H0−1))
qn∑

i=0
cni (H0)L i

0.

In the last equality, the coefficients of Lqn
0 and Lqn−1

0 are respectively

(4-6) λmcnqn (H0)
(
mδ(H0) − mqn + n − mδ(H0 − 1)

)
and

(4-7) m2qnλ
mcnqn (H0)

( 1
2(qn − 1) − δ(H0)

)
+ λmcn(qn−1)(H0)

(
mδ(H0) − mδ(H0 − 1) − mqn + m + n

)
.

Taking m = n, from equality (4-6) we deduce

nλncnqn (H0)
(
δ(H0) − qn + 1 − δ(H0 − 1)

)
= 0,

which implies that δ(H0) = αH0 + β and qn = α + 1 for some α, β ∈ C. Note that
qn ∈ Z+, thus α ∈ Z≥−1, β ∈ C.

(2) From (1), we see that the equality (4-6) becomes

λmcnqn (H0)(n − m).

Thus for any m (̸= n) ∈ Z, we have degL0
(Im+n(1)) = qn = α + 1 and

(4-8) Im+n(1) = λmcnqn (H0)Lqn
0 + (lower − degree terms in L0).
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Taking m = −n, we see that q0 = qn = α + 1, c0q0(H0) = λ−ncnqn (H0). Using
equality (4-8) we see that for any m (̸= 2n) ∈ Z,

(4-9)
degL0

(Im(1)) = α + 1,

Im(1) = λmc0(α+1)(H0)Lα+1
0 + (lower − degree terms in L0),

If we substitute n′ for n in the beginning, where n′( ̸= n) is nonzero, then we can
similarly deduce that (4-9) holds for any m ̸= 2n′. Therefore, the equality (4-9)
holds for any m ∈ Z.

(3) Using (1) we see that equality (4-7) reads

m2qnλ
mcnqn (H0)

(1
2(qn − 1) − δ(H0)

)
+ nλmcn(qn−1)(H0).

Taking m = n(̸= 0), we get

(4-10) cmα(H0) = cm(qm−1)(H0) = mqmcmqm (H0)
(
δ(H0) −

1
2(qm − 1)

)
.

So (3) is clear from (2) and equality (4-10).

(4) For m, n ∈ Z∗, we may denote

In(1) =

α+1∑
j=0

cnj (H0)L j
0, Im(1) =

α+1∑
l=0

cml(H0)L l
0,

where cnj (H0), cml(H0) ∈ C[H0] and cn(α+1)(H0), cm(α+1)(H0) ̸= 0. We compute

0 = [In, Im](1) = In Im(1) − Im In(1)

=

α+1∑
l=0

Incml(H0)L l
0 −

α+1∑
j=0

Imcnj (H0)L j
0

=

α+1∑
j=0

α+1∑
l=0

cnj (H0)cml(H0 − 1)L j
0(L0 − n)l

−

α+1∑
j=0

α+1∑
l=0

cnj (H0 − 1)cml(H0)(L0 − m) j L l
0.

In the last equality, the coefficients of L2α+2
0 and L2α+1

0 are respectively

(4-11) cn(α+1)(H0)cm(α+1)(H0 − 1) − cn(α+1)(H0 − 1)cm(α+1)(H0),

and

(4-12) cn(α+1)(H0)cm(α+1)(H0 − 1)(−n)(α + 1)

+ cnα(H0)cm(α+1)(H0 − 1) + cn(α+1)(H0)cmα(H0 − 1)

−
(
cn(α+1)(H0 − 1)cm(α+1)(H0)(−m)(α + 1)

+ cnα(H0 − 1)cm(α+1)(H0) + cn(α+1)(H0 − 1)cmα(H0)
)
.
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Using (2) and (3) we see that (4-11) and (4-12) read as

λm+nc0(α+1)(H0)c0(α+1)(H0 − 1) − λm+nc0(α+1)(H0 − 1)c0(α+1)(H0)

and

(n − m)(α + 1)(α − 1)λm+nc0(α+1)(H0)c0(α+1)(H0 − 1),

which implies

(n − m)(α + 1)(α − 1)λm+nc0(α+1)(H0)c0(α+1)(H0 − 1) = 0

for any m, n ∈ Z∗. Thus α = 1. This completes the proof. □

Proposition 4.8. Suppose that Im(1) is nonzero for any m ∈ Z. Then Im(1) ∈ C[H0]

for all m ∈ Z.

Proof. It is sufficient to show that α = −1 by Lemma 4.7. Now we assume that
α ≥ 0. Then α = 1 by Lemma 4.7. Denote

I0(1) = c02(H0)L2
0 + c01(H0)L0 + c00(H0),

where c02(H0), c01(H0), c00(H0) ∈ C[H0] with c02(H0) ̸= 0. Then by Lemma 4.7
we may write

I1(1) = λc02(H0)L2
0 + 2λ

(
H0 + β −

1
2

)
c02(H0)L0 + c10(H0)

for some c10(H0) ∈ C[H0]. We compute

I1(1) = [H1, I0](1) = H1 I0(1) − I0 H1(1)

= H1
(
c02(H0)L2

0 + c01(H0)L0 + c00(H0)
)
− I0(λH0)

=
(
c02(H0)(L0 − 1)2

+ c01(H0)(L0 − 1) + c00(H0)
)
(λH0)

− λ(H0 − 1)
(
c02(H0)L2

0 + c01(H0)L0 + c00(H0)
)

= λc02(H0)L2
0 + λ

(
−2H0c02(H0) + c01(H0)

)
L0

+ λ
(
H0c02(H0) − H0c01(H0) + c00(H0)

)
,

I1(1) = [I0, L1](1) = I0L1(1) − L1 I0(1)

= I0
(
λ(L0 + H0 + β)

)
− L1

(
c02(H0)L2

0 + c01(H0)L0 + c00(H0)
)

=
(
λ(L0 + H0 − 1 + β)

)(
c02(H0)L2

0 + c01(H0)L0 + c00(H0)
)

−
(
c02(H0)(L0 − 1)2

+ c01(H0)(L0 − 1) + c00(H0)
)(

λ(L0 + H0 + β)
)

= λc02(H0)L2
0 + 2λ(H0 + β −

1
2)c02(H0)L0

− λ
(
(c02(H0) − c01(H0))(H0 + β) + c00(H0)

)
.
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Then by comparing the coefficients of L0 and the constant terms, we obtain

λ(−2H0c02(H0)+c01(H0)) = 2λ
(
H0+β−

1
2

)
c02(H0),

λ
(
H0c02(H0)−H0c01(H0)+c00(H0)

)
= −λ

(
(c02(H0)−c01(H0))(H0+β)+c00(H0)

)
.

Thus we deduce

c01(H0) = (4H0 + 2β − 1)c02(H0),

c00(H0) = (2H0 + β)(2H0 + β − 1)c02(H0).
(4-13)

Finally, we consider

(4-14) 0 = [I1, I0](1) = I1 I0(1)−I0 I1(1)

=
(
c02(H0−1)(L0−1)2

+c01(H0−1)(L0−1)+c00(H0−1)
)

×
(
λc02(H0)L2

0+2λ
(
H0+β−

1
2

)
c02(H0)L0+c10(H0)

)
−

(
λc02(H0−1)L2

0+2λ
(
H0−1+β−

1
2

)
c02(H0−1)L0+c10(H0−1)

)
×

(
c02(H0)L2

0+c01(H0)L0+c00(H0)
)
.

In the equality (4-14), the coefficient of L3
0 is

(4-15) λ
(
c02(H0)c01(H0 − 1) − c02(H0 − 1)c01(H0)

)
.

Substituting (4-13) into (4-15), we get

−4λc02(H0)c02(H0 − 1) = 0,

which implies c02(H0) = 0. This is a contradiction, completing □

Proposition 4.9. Suppose that Jm(1) is nonzero for any m ∈ Z. Then Jm(1)∈ C[H0]

for all m ∈ Z.

Proof. The proof is similar to that of Lemma 4.7 and Proposition 4.8. □

Lemma 4.10. For any m ∈ Z, Im(1) = λm I0(1), Jm(1) = λm J0(1) ∈ C[H0].

Proof. For any m, n ∈ Z, using Proposition 4.8 and equality (4-5) we see that

Im+n(1) = [Hm, In](1) = Hm In(1) − In Hm(1)

= Hm(1)In(1) − In(λ
m H0) = λm H0 In(1) − λm(H0 − 1)In(1)

= λm In(1).

Taking n = 0, we get Im(1) = λm I0(1) for m ∈ Z. Similarly, we may get Jm(1) =

λm J0(1) for m ∈ Z. □

Lemma 4.11. (1) If I0(1) ̸= 0, then δ = −H0 + η′ for some η′
∈ C.

(2) If J0(1) ̸= 0, then δ = H0 + η′′ for some η′′
∈ C.
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Proof. (1) For any m, n ∈ Z, using Proposition 4.8 and equality (4-5) we compute

(n−m)Im+n(1) = [Lm, In](1) = Lm In(1)− In Lm(1)

= Lm(1)In(1)− In
(
λm(L0+mδ(H0))

)
= λm(L0+mδ(H0))In(1)−λm(L0−n)In(1)−mλmδ(H0−1)In(1)

= λm(
m(δ(H0)−δ(H0−1))+n

)
In(1),

which yields (n −m) =
(
m(δ(H0)−δ(H0 −1))+n

)
by Lemma 4.10 and I0(1) ̸= 0.

Thus δ(H0) − δ(H0 − 1) = −1, which forces δ(H0) = −H0 + η′ for some η′
∈ C.

(2) Proved similarly to (1). □

Now we state the main results of this subsection.

Theorem 4.12. Let N be a U(G)-module such that N , when considered as a U(h)-
module, is free of rank 1.

(a) There exist λ ∈ C∗, δ ∈ C[H0] such that L1(1) = λ(L0 + δ), H1(1) = λH0.

(b) If I0(1) = J0(1) = 0, then N ∼= �(λ, δ, 0, 0) as U(G)-modules.

(c) If I0(1) ̸= 0, J0(1) = 0, then δ = −H0 + η′ for some η′
∈ C, and N ∼=

�(λ, η′, σ1, 0) as U(G)-modules, where σ1 = I0(1) ∈ C[H0].

(d) If I0(1) = 0, J0(1) ̸= 0, then δ = H0 + η′′ for some η′′
∈ C, and N ∼=

�(λ, η′′, 0, σ2) as U(G)-modules, where σ2 = J0(1) ∈ C[H0].

(e) The case I0(1) ̸= 0, J0(1) ̸= 0 does not exist.

Proof. (a) follows from equality (4-5).

(b) follows from Lemmas 4.5, 4.6 and equalities (4-2), (4-5).

(c) and (d) follow from Lemmas 4.5, 4.6, 4.10, 4.11 and equalities (4-3), (4-4), (4-5).

(e) follows from Lemma 4.11. □

4B. Irreducibility of U(h)-free modules over G. In Section 4A, we determined
all U(h)-free modules of rank 1 over G. These modules have three families
�(λ, δ, 0, 0), �(λ, η1, σ1, 0) and �(λ, η2, 0, σ2) (see Definition 4.3). Here we
will give the necessary and sufficient conditions for these modules to be irreducible.
Furthermore, we find the maximal proper submodules and obtain irreducible quotient
modules when these modules are not irreducible.

Theorem 4.13. Let λ ∈ C∗, δ ∈ C[H0]. δ̄ denotes the constant term of δ.

(1) �(λ, δ, 0, 0) always has a proper G-submodule H0�(λ, δ, 0, 0). Denote the
quotient module �1(λ, δ, 0, 0) = �(λ, δ, 0, 0)/H0�(λ, δ, 0, 0).

(2) �1(λ, δ, 0, 0) is an irreducible G-module if and only if δ̄ ̸= 0.
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(3) �1(λ, δ, 0, 0) has an irreducible G-submodule L0�1(λ, δ, 0, 0) with codimen-
sion 1 when δ̄ = 0. Consequently, the quotient module

�1(λ, δ, 0, 0)/L0�1(λ, δ, 0, 0)

is irreducible.

Proof. These directly follow from the properties of L-module T (λ, δ), which were
described in Lemma 4.1. □

Theorem 4.14. Let λ ∈ C∗, η1 ∈ C, σ1(̸= 0) ∈ C[H0].

(1) �(λ, η1, σ1, 0) is an irreducible G-module if and only if σ1 ∈ C∗.

(2) If σ1 = H0 +β, where β ∈ C, then �(λ, η1, σ1, 0) has a proper G-submodule
σ1�(λ, η1, σ1, 0). Moreover, denote the quotient module

�1(λ, η1, σ1, 0) = �(λ, η1, σ1, 0)/σ1�(λ, η1, σ1, 0) = C[L0].

(i) �1(λ, η1, σ1, 0) is irreducible if and only if (η1, β) ̸= (0, 0).
(ii) �1(λ, η1, σ1, 0) has an irreducible G-submodule L0�1(λ, η1, σ1, 0) with

codimension 1 when (η1, β) = (0, 0). Consequently,

�1(λ, η1, σ1, 0)/L0�1(λ, η1, σ1, 0)

is irreducible.

(3) If deg(σ1) = n > 1, we may write

σ1 = cσ11σ12 · · · σ1n,

where σ1i = H0+βi , βi ∈C, c∈C∗, for i =1, 2, . . . , n. Then σ1i�(λ, η1, σ1, 0)

is a proper G-submodule of �(λ, η1, σ1, 0) for i = 1, 2, . . . , n. Furthermore,
denote the quotient module

�1i (λ, η1, σ1, 0) = �(λ, η1, σ1, 0)/σ1i�(λ, η1, σ1, 0).

(i) �1i (λ, η1, σ1, 0) is irreducible if and only if (η1, βi ) ̸= (0, 0).
(ii) �1i (λ, η1, σ1, 0) has an irreducible G-submodule L0�1i (λ, η1, σ1, 0) with

codimension 1 when (η1, βi ) = (0, 0). Consequently,

�1i (λ, η1, σ1, 0)/L0�1i (λ, η1, σ1, 0)

is irreducible.

Proof. (1) (⇒). Let �(λ, η1, σ1, 0) be an irreducible G-module. Assume that
degH0

(σ1) ≥ 1. It is easy to see that σ1�(λ, η1, σ1, 0) is a proper G-submodule of
�(λ, η1, σ1, 0), which contradicts that �(λ, η1, σ1, 0) is irreducible.
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(⇐). Suppose σ1 ∈C∗. For arbitrary nonzero f (H0, L0)∈�(λ, η1, σ1, 0), we write

f (H0, L0) =

q∑
j=0

a j (H0)L j
0,

where q ∈ Z+, a j (H0) ∈ C[H0], aq(H0) ̸= 0. Let ⟨ f (H0, L0)⟩ denote the G-
submodule of �(λ, η1, σ1, 0) generated by f (H0, L0).

If q > 0, we compute

H1( f (H0, L0)) − λH0 f (H0, L0)

= λH0

q∑
j=0

a j (H0)(L0 − 1) j
− λH0

q∑
j=0

a j (H0)L j
0

= −qλH0aq(H0)Lq−1
0 + (lower − degree terms in L0).

Denote

f1(H0, L0) = H1( f (H0, L0)) − λH0 f (H0, L0) ∈ ⟨ f (H0, L0)⟩

with degL0
( f1(H0, L0)) = q − 1. Therefore, without loss of generality, we may

assume that degL0
( f H0, L0) = q = 0. Then we write

f (H0, L0) =

p∑
i=0

ci H i
0,

where p ∈ Z+, ci ∈ C with cp ̸= 0.
If p = 0, then ⟨ f (H0, L0)⟩ = �(λ, η1, σ1, 0) is clear. If p > 0, we deduce that

I1( f (H0, L0)) − λσ1 f (H0, L0)

= λσ1

p∑
i=0

ci (H0 − 1)i
− λσ1

p∑
i=0

ci H i
0

= −λσ1 pcp H p−1
0 + (lower − degree terms in H0).

Thus we can get 1 ∈ ⟨ f (H0, L0)⟩, which implies ⟨ f (H0, L0)⟩ = �(λ, η1, σ1, 0).
Hence �(λ, η1, σ1, 0) is irreducible.

(2) First, it is trivial to see that σ1�(λ, η1, σ1, 0) is a proper G-submodule of
�(λ, η1, σ1, 0). From equality (4-3), we see that the actions of G on the quotient
module �1(λ, η1, σ1, 0) are

Lm( f (L0)) = λm f (L0 − m)(L0 + mβ + mη1),

Hm( f (L0)) = −λmβ f (L0 − m),

Im(�1(λ, η1, σ1, 0)) = Jm(�1(λ, η1, σ1, 0)) = 0 for all m ∈ Z.

Then (i), (ii) follow from irreducibility of L-module �(λ, β + η1, −β), which was
introduced in Section 2B.

(3) It is clear that σ1i�(λ, η1, σ1, 0) is a proper G-submodule of �(λ, η1, σ1, 0).
The remaining parts are similar to (2). □
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Theorem 4.15. Let λ ∈ C∗, η2 ∈ C, σ2(̸= 0) ∈ C[H0].

(1) �(λ, η2, 0, σ2) is an irreducible G-module if and only if σ2 ∈ C∗.

(2) If σ2 = H0 + γ , where γ ∈ C, then �(λ, η2, 0, σ2) has a proper G-submodule
σ2�(λ, η2, 0, σ2). Moreover, denote the quotient module

�2(λ, η2, 0, σ2) = �(λ, η2, 0, σ2)/σ2�(λ, η2, 0, σ2) = C[L0].

(i) �2(λ, η2, 0, σ2) is irreducible if and only if (η2, γ ) ̸= (0, 0).
(ii) �2(λ, η2, 0, σ2) has an irreducible G-submodule L0�2(λ, η2, 0, σ2) with

codimension 1 when (η2, γ ) = (0, 0). Consequently,

�2(λ, η2, 0, σ2)/L0�2(λ, η2, 0, σ2)

is irreducible.

(3) If deg(σ2) = n > 1, we may write

σ2 = c′σ21σ22 · · · σ2n,

where σ2i = H0+γi , γi ∈C, c′
∈C∗, for i =1, 2, . . . , n. Then σ2i�2(λ,η2,0,σ2)

is a proper G-submodule of �2(λ, η2, 0, σ2) for i = 1, 2, . . . , n. Furthermore,
denote �2i (λ, η2, 0, σ2) = �2(λ, η2, 0, σ2)/σ2i�2(λ, η2, 0, σ2).
(i) �2i (λ, η2, 0, σ2) is irreducible if and only if (η2, γi ) ̸= (0, 0).

(ii) �2i (λ, η2, 0, σ2) has an irreducible G-submodule L0�2i (λ, η2, 0, σ2) with
codimension 1 when (η2, γi ) = (0, 0). Consequently,

�2i (λ, η2, 0, σ2)/L0�2i (λ, η2, 0, σ2)

is irreducible.

Proof. The proof is similar to that of Theorem 4.14. □

Remark 4.16. By Theorems 3.2, 4.13, 4.14 and 4.15, we may get many new
irreducible modules over the planar Galilean conformal algebra G.

4C. Isomorphism classes of U(h)-free modules over G. In Section 4A, we showed
that three families of modules �(λ, δ, 0, 0), �(λ, η1, σ1, 0) and �(λ, η2, 0, σ2)

exhaust all U(h)-free modules of rank 1 over G. Now we determine the isomorphism
classes of these modules.

Theorem 4.17. Let λ, λ′
∈ C∗, δ, δ′

∈ C[H0], η1, η
′

1, η2, η
′

2 ∈ C, σ1, σ
′

1, σ2, σ
′

2 ∈

C[H0] \ {0}.

(1) �(λ, δ, 0, 0) ∼= �(λ′, δ′, 0, 0) if and only if λ = λ′, δ = δ′.

(2) �(λ, η1, σ1, 0) ∼= �(λ′, η′

1, σ
′

1, 0) if and only if λ = λ′, η1 = η′

1, σ1 = σ ′

1.

(3) �(λ, η2, 0, σ2) ∼= �(λ′, η′

2, 0, σ ′

2) if and only if λ = λ′, η2 = η′

2, σ2 = σ ′

2.

(4) Any two of �(λ, δ, 0, 0), �(λ, η1, σ1, 0), �(λ, η2, 0, σ2) are not isomorphic.
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Proof. (1) The “sufficiency” is trivial. We only need to show the “necessity”.
Suppose

ϕ : �(λ, δ, 0, 0) → �(λ′, δ′, 0, 0)

is a G-module isomorphism.

Claim 1. ϕ(1) ∈ C[H0].

Assume that ϕ(1) =
∑q

i=0 ai (H0)L i
0, where q > 0, ai (H0) ∈ C[H0] for 0 ≤

i ≤ q and aq(H0) ̸= 0. Since ϕ is a G-module isomorphism, we get H1(ϕ(1)) =

ϕ(H1(1)) = ϕ(λH0) = λH0(ϕ(1)). From equality (4-2) we obtain

H1(ϕ(1)) = λ′H0

q∑
i=0

ai (H0)(L0 −1)i

= λ′H0aq(H0)Lq
0 +λ′H0(−qaq(H0)+aq−1(H0))Lq−1

0

+(lower−degree terms in L0),

λH0(ϕ(1)) = λH0

q∑
i=0

ai (H0)L i
0

= λH0aq(H0)Lq
0 +λH0aq−1(H0)Lq−1

0 +(lower−degree terms in L0).

By comparing the coefficients of Lq
0 and Lq−1

0 , we deduce

λ = λ′, −λ′q H0aq(H0) = 0.

But −λ′q H0aq(H0) = 0 is impossible. So ϕ(1) ∈ C[H0]. Claim 1 is proved.
Now we may assume ϕ(1) =

∑p
j=0 c j H j

0 , where p ∈ Z+, c j ∈ C for 0 ≤ j ≤ p
and cp ̸= 0. We consider the equality

L1(ϕ(1)) = ϕ(L1(1)) = ϕ(λ(L0 + δ)) = λ(L0 + δ)(ϕ(1)).

It is clear that

L1(ϕ(1)) = λ′ϕ(1)(L0 + δ′), λ(L0 + δ)(ϕ(1)) = λϕ(1)(L0 + δ),

which imply λ = λ′, δ = δ′.

(2) The “sufficiency” is clear. We only need to show the “necessity”. Suppose that

ϕ′
: �(λ, η1, σ1, 0) → �(λ′, η′

1, σ
′

1, 0)

is a G-module isomorphism. Then ϕ′
: �(λ, η1, σ1, 0) → �(λ′, η′

1, σ
′

1, 0) is an
L-module isomorphism. From (1) and equalities (4-2), (4-3) it is not hard to see
that λ = λ′, η1 = η′

1 and ϕ′(1) ∈ C[H0].
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Set ϕ′(1) =
∑t

k=0 dk H k
0 , where t ∈ Z+, dk ∈ C for 0 ≤ k ≤ t and dt ̸= 0. Note

that ϕ′(λσ1) = ϕ′(I1(1)). We compute

ϕ′(λσ1) = λσ1ϕ
′(1) = λσ1

t∑
k=0

dk H k
0 ,

ϕ′(I1(1)) = I1(ϕ
′(1)) = λ′σ ′

1

t∑
k=0

dk(H0 − 1)k .

By comparing the coefficients of H t
0 we obtain σ1 = σ ′

1.

(3) is similar to (2).

(4) is trivial. □

Remark 4.18. We give a complete classification of U(CL0)-free modules of rank 1
and U(h)-free modules of rank 1 over G and G by Theorems 3.2, 3.3, 4.12, 4.17
and Corollary 2.3.
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First we introduce the notion of F-algebroids, which is a generalization of
F-manifold algebras and F-manifolds, and show that F-algebroids are the
corresponding semiclassical limits of pre-Lie formal deformations of com-
mutative associative algebroids. Then we use the deformation cohomology of
pre-Lie algebroids to study pre-Lie infinitesimal deformations and extension
of pre-Lie n-deformations to pre-Lie (n + 1)-deformations of a commutative
associative algebroid. Next we develop the theory of Dubrovin’s dualities
of F-algebroids with eventual identities and use Nijenhuis operators on F-
algebroids to construct new F-algebroids. Finally we introduce the notion of
pre-F-algebroids, which is a generalization of F-manifolds with compatible
flat connections. Dubrovin’s dualities of pre-F-algebroids with eventual
identities, Nijenhuis operators on pre-F-algebroids are discussed.
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1. Introduction

The concept of Frobenius manifolds was introduced by Dubrovin [15] as a geometri-
cal manifestation of the Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) associativity
equations in the 2-dimensional topological field theories. Hertling and Manin [17]
weakened the conditions of a Frobenius manifold and introduced the notion of
an F-manifold. Any Frobenius manifold has an underlying F-manifold structure.
F-manifolds appear in many fields of mathematics such as singularity theory [16],
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integrable systems [1; 3; 4; 12; 13; 25; 27], quantum K-theory [21], information
geometry [10], operad [30] and so on.

The notion of a Lie algebroid was introduced by Pradines in 1967, which is a
generalization of Lie algebras and tangent bundles. Just as Lie algebras are the
infinitesimal objects of Lie groups, Lie algebroids are the infinitesimal objects of
Lie groupoids. See [28] for the general theory about Lie algebroids. Lie alge-
broids are now an active domain of research, with applications in various parts
of mathematics, such as geometric mechanics, foliation theory, Poisson geometry,
differential equations, singularity theory, operad and so on. The notion of a pre-Lie
algebroid (also called a left-symmetric algebroid or a Koszul–Vinberg algebroid)
is a geometric generalization of a pre-Lie algebra. Pre-Lie algebras arose from
the study of convex homogeneous cones, affine manifolds and affine structures on
Lie groups, deformation and cohomology theory of associative algebras and then
appear in many fields in mathematics and mathematical physics. See the survey
article [7] for more details on pre-Lie algebras and [5; 6; 22; 23] for more details on
cohomology and applications of pre-Lie algebroids. Dotsenko [14] showed that the
graded object of the filtration of the operad encoding pre-Lie algebras is the operad
encoding F-manifold algebras, where the notion of an F-manifold algebra is the
underlying algebraic structure of an F-manifold. In [24], the notion of pre-Lie
formal deformations of commutative associative algebras was introduced and it
was shown that F-manifold algebras are the corresponding semiclassical limits.
This result is parallel to the fact that the semiclassical limit of an associative formal
deformation of a commutative associative algebra is a Poisson algebra.

In this paper, we introduce the notion of F-algebroids, which is a generalization of
F-manifold algebras and F-manifolds. There is a slight difference between this F-
algebroid and the one introduced in [11]. We introduce the notion of pre-Lie formal
deformations of commutative associative algebroids and show that F-algebroids
are the corresponding semiclassical limits. Viewing a commutative associative
algebroid as a pre-Lie algebroid, we show that pre-Lie infinitesimal deformations
and extension of pre-Lie n-deformations to pre-Lie (n + 1)-deformations of a
commutative associative algebroid are classified by the second and third cohomology
groups of the pre-Lie algebroid respectively.

F-manifolds with eventual identities were introduced by Manin [29] and then
were studied systematically by David and Strachan [13]. We generalize Dubrovin’s
dualities of F-manifolds with eventual identities to the case of F-algebroids. We
introduce the notion of (pseudo)eventual identities on F-algebroids and develop the
theory of Dubrovin’s dualities of F-algebroids with eventual identities. We introduce
the notion of Nijenhuis operators on F-algebroids and use them to construct new
F-algebroids. In particular, a pseudoeventual identity naturally gives a Nijenhuis
operator on an F-algebroid.
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The notion of an F-manifold with a compatible flat connection was introduced
by Manin [29]. Applications of F-manifolds with compatible flat connections also
appeared in Painlevé equations [2; 3; 18; 25] and integrable systems [1; 4; 19;
26; 27]. We introduce the notion of pre-F-algebroids, which is a generalization of
F-manifolds with compatible flat connections. A pre-F-algebroid gives rise to an
F-algebroid. We also study pre-F-algebroids with eventual identities and give a
characterization of such eventual identities. Furthermore, the theory of Dubrovin’s
dualities of pre-F-algebroids with eventual identities were developed. We introduce
the notion of a Nijenhuis operator on a pre-F-algebroid, and show that a Nijenhuis
operator gives rise to a deformed pre-F-algebroid.

Mirror symmetry, roughly speaking, is a duality between symplectic and complex
geometry. The theory of Frobenius and F-manifolds plays an important role in
this duality. We expect that the notion of F-algebroids might also be relevant
in understanding the mirror phenomenon. In particular, the Dubrovin’s dual of
F-algebroids constructed in this paper should be related to the mirror construction
along the way the Dubrovin’s dual of Frobenius manifolds is related, at least in
some situations, with mirror symmetry. More precisely the question is: Could we
consider the construction of Dubrovin’s dual of F-algebroids as a kind of mirror
construction? In order to answer the question above, we might need to add some
extra structures to F-algebroids and include those structures in the construction of
the Dubrovin’s dual. This would allow us to give a comprehensible interpretation
of our construction as a manifestation of a mirror phenomenon. We want to follow
this line of thought in future works.

The paper is organized as follows. In Section 2, we introduce the notion of
F-algebroids and give some constructions of F-algebroids including the action
F-algebroids and direct product F-algebroids. In particular, we show that Poisson
manifolds give rise to action F-algebroids naturally. In Section 3, we study pre-Lie
formal deformations of a commutative associative algebroid, whose semiclassical
limits are F-algebroids. We show that the equivalence classes of pre-Lie infini-
tesimal deformations of a commutative associative algebroid A are classified by
the second cohomology group in the deformation cohomology of A. Furthermore,
we study extensions of pre-Lie n-deformations to pre-Lie (n + 1)-deformations
of a commutative associative algebroid A and show that a pre-Lie n-deformation
is extendable if and only if its obstruction class in the third cohomology group
of the commutative associative algebroid A is trivial. In Section 4, we first study
Dubrovin’s duality of F-algebroids with eventual identities. Then we use Nijenhuis
operators on F-algebroids to construct deformed F-algebroids. In Section 5, first
we introduce the notion of a pre-F-algebroid, and show that a pre-F-algebroid
gives rise to an F-algebroid. Then we study Dubrovin’s duality of pre-F-algebroids
with eventual identities. Finally, we introduce the notion of a Nijenhuis operator



254 JOHN ALEXANDER CRUZ MORALES, JIEFENG LIU AND YUNHE SHENG

on a pre-F-algebroid, and show that a Nijenhuis operator on a pre-F-algebroid
gives rise to a deformed pre-F-algebroid. At the end, some relations between
pre-F-algebroids and F-manifolds with a compatible flat structure are discussed.

2. F-algebroids

We introduce the notion of F-algebroids, which is a generalization of F-manifolds
and F-manifold algebras. We give some constructions of F-algebroids including
the action F-algebroids and direct product F-algebroids.

Definition 2.1 [14; 17]. An F-manifold algebra is a triple (g, [− ,−], · ), where
(g, · ) is a commutative associative algebra and (g, [− ,−]) is a Lie algebra, such
that for all x, y, z, w ∈ g, the Hertling–Manin relation holds:

(1) Px ·y(z, w)= x · Py(z, w)+ y · Px(z, w),

where Px(y, z) is defined by

(2) Px(y, z)= [x, y · z] − [x, y] · z − y · [x, z].

Remark 2.2. Even though Hertling and Manin [17] use the expression F-algebras
to refer the objects in the definition above, we will use the terminology introduced
in [14] to emphasize that those algebras arise in the study of F-manifolds.

Example 2.3. Any Poisson algebra is an F-manifold algebra.

Definition 2.4 [17]. An F-manifold is a pair (M, • ), where M is a smooth manifold
and • is a C∞(M)-bilinear, commutative, associative multiplication on the tangent
bundle TM such that (X(M), [− ,−]X(M), • ) is an F-manifold algebra, where
[− ,−]X(M) is the Lie bracket of vector fields.

The notion of Lie algebroids was introduced by Pradines in 1967, as a general-
ization of Lie algebras and tangent bundles. See [28] for the general theory about
Lie algebroids.

Definition 2.5. A Lie algebroid structure on a vector bundle A → M is a pair that
consists of a Lie algebra structure [− ,−]A on the section space 0(A) and a vector
bundle morphism aA : A → TM , called the anchor, such that

[X, f Y ]A = f [X, Y ]A + aA(X)( f )Y ∀ X, Y ∈ 0(A), f ∈ C∞(M).

We denote a Lie algebroid by (A, [− ,−]A, aA), or A if there is no confusion.

Definition 2.6. A commutative associative algebroid is a vector bundle A over M
equipped with a C∞(M)-bilinear, commutative, associative multiplication ·A on
the section space 0(A).
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We denote a commutative associative algebroid by (A, ·A).
In the following, we give the notion of F-algebroids, which are generalizations

of F-manifold algebras and F-manifolds.

Definition 2.7. An F-algebroid is a vector bundle A over M equipped with a
bilinear operation ·A : 0(A)×0(A)→ 0(A), a skew-symmetric bilinear bracket
[− ,−]A : 0(A)× 0(A) → 0(A), and a bundle map aA : A → TM , called the
anchor, such that (A, [− ,−]A, aA) is a Lie algebroid, (A, ·A) is a commutative
associative algebroid and (0(A), [− ,−]A, ·A) is an F-manifold algebra.

We denote an F-algebroid by (A, [− ,−]A, ·A, aA).

Remark 2.8. Cruz Morales and Torres-Gomez [11] had already defined an F-
algebroid. There is a slight difference between the above definition of an F-algebroid
and that one. In [11], it is assumed that the base manifold has an F-manifold
structure (M, • ). An F-algebroid defined in [11] is a vector bundle A over M
equipped with a bilinear operation ·A : 0(A)×0(A)→ 0(A), a skew-symmetric
bilinear bracket [− ,−]A :0(A)×0(A)→0(A), and a bundle map aA : A → TM ,
such that (A, [− ,−]A, aA) is a Lie algebroid, (A, ·A) is a commutative associative
algebroid, (0(A), [− ,−]A, ·A) is an F-manifold algebra and

(3) aA(X ·A Y )= aA(X) • aA(Y ) ∀ X, Y ∈ 0(A).

Example 2.9. Any F-manifold algebra is an F-algebroid over a point. Let (M, • )

be an F-manifold. Then (TM, [− ,−]X(M), • , Id) is an F-algebroid.

Definition 2.10. Let (A, [− ,−]A, ·A, aA), (B, [− ,−]B, ·B, aB) be F-algebroids
on M . A bundle map ϕ : A → B is called a homomorphism of F-algebroids, if
for all X, Y ∈ 0(A), the following conditions are satisfied:

ϕ(X ·A Y )= ϕ(X) ·B ϕ(Y ), ϕ([X, Y ]A)= [ϕ(X), ϕ(Y )]B, aB ◦ϕ = aA.

Definition 2.11. Let (A, [− ,−]A, ·A, aA) be an F-algebroid. A section e ∈ 0(A)
is called the identity if e ·A X = X for all X ∈ 0(A). We denote an F-algebroid
(A, [− ,−]A, ·A, aA) with an identity e by (A, [− ,−]A, ·A, e, aA).

Proposition 2.12. Assume that (A, [− ,−]A, aA) is a Lie algebroid equipped with a
C∞(M)-bilinear, commutative, associative multiplication ·A :0(A)×0(A)→0(A).
Define

(4) 8(X,Y,Z ,W )

:=PX ·AY (Z ,W )−X ·A PY (Z ,W )−Y ·A PX (Z ,W ), ∀X,Y,Z ,W∈0(A),

where P is given by (2). Then 8 is a tensor field of type (4, 1) and

(5) 8(X, Y, Z ,W )=8(Y, X, Z ,W )=8(X, Y,W, Z).
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Proof. By the commutativity of the associative multiplication ·A, we have

8(X, Y, Z ,W )=8(Y, X, Z ,W )=8(X, Y,W, Z).

To prove that 8 is a tensor field of type (4, 1), we only need to show

8( f X, Y, Z ,W )=8(X, Y, f Z ,W )= f8(X, Y, Z ,W ).

By a direct calculation, we have

8( f X, Y, Z ,W )

= [ f (X ·A Y ), Z ·A W ]A − Z ·A [ f (X ·A Y ),W ]A − W ·A [ f (X ·A Y ), Z ]A

− f (X ·A PY (Z ,W ))−Y ·A ([ f X, Z ·A W ]A−Z ·A [ f X,W ]A−W ·A [ f X, Z ]A)

= f PX ·AY (Z ,W )− aA(Z ·A W )( f )(X ·A Y )+ aA(W )( f )(X ·A Y ·A Z)

+ aA(Z)( f )(X ·A Y ·A W )− f (X ·A PY (Z ,W ))− f (Y ·A PX (Z ,W ))

+aA(Z ·A W )( f )(X ·A Y )−aA(W )( f )(X ·A Y ·A Z)−aA(Z)( f )(X ·A Y ·A W )

= f8(X, Y, Z ,W ).

Similarly, we also have 8(X, Y, f Z ,W )= f8(X, Y, Z ,W ). □

Proposition 2.13. Let (A, [− ,−]A, ·A, aA) be an F-algebroid with an identity e.
Then

Pe(X, Y )= 0.

Proof. It follows from (1) directly. □

Definition 2.14. Let (g, [− ,−], · ) be an F-manifold algebra. An action of g on
a manifold M is a linear map ρ : g → X(M) from g to the space of vector fields
on M , such that

ρ([x, y])= [ρ(x), ρ(y)]X(M) ∀ x, y ∈ g.

Given an action of g on M , let A = M × g be the trivial bundle. Define an
anchor map aρ : A → TM , a multiplication ·ρ :0(A)×0(A)→0(A) and a bracket
[− ,−]ρ : 0(A)×0(A)→ 0(A) by

aρ(m, u)= ρ(u)m ∀ m ∈ M, u ∈ g,(6)

X ·ρ Y = X · Y,(7)

[X, Y ]ρ = Lρ(X)Y −Lρ(Y )X + [X, Y ], ∀ X, Y ∈ 0(A),(8)

where X ·Y and [X, Y ] are the pointwise C∞(M)-bilinear multiplication and bracket,
respectively.

Proposition 2.15. With the above notations, (A = M × g, [− ,−]ρ, ·ρ, aρ) is an
F-algebroid, which is called an action F-algebroid, where [− ,−]ρ , ·ρ and aρ are
given by (8), (7) and (6), respectively.



F -ALGEBROIDS AND DEFORMATION QUANTIZATION VIA PRE-LIE ALGEBROIDS 257

Proof. Note that the multiplication ·ρ is a C∞(M)-bilinear, commutative and associa-
tive multiplication and (A, [− ,−]ρ, aρ) is a Lie algebroid. By Proposition 2.12 and
the fact that g is an F-manifold algebra, for all u1, u2, u3, u4 ∈g and f1, f2, f3, f4 ∈

C∞(M), we have

8( f1 u1, f2 u2, f3 u3, f4 u4)= f1 f2 f3 f48(u1, u2, u3, u4)= 0,

which implies that (0(A), [− ,−]ρ, ·ρ) is an F-manifold algebra. Thus, we obtain
(A, [− ,−]ρ, ·ρ, aρ) is an F-algebroid. □

Example 2.16. Let g be a 2-dimensional vector space with basis {e1, e2}. Then
(g, [− ,−], · ) with the nonzero multiplication · and the bracket [− ,−]

e1 · e1 = e1, e1 · e2 = e2 · e1 = e2, [e1, e2] = e2

is an F-manifold algebra with the identity e1. Let (t1, t2) be the canonical coordinate
systems on R2. It is straightforward to check that the map ρ : g→X(R2) defined by

ρ(e1)= t2
∂

∂t2
, ρ(e2)= t2

∂

∂t1
+ t2

2
∂

∂t2

is an action of the F-manifold algebra g on R2. Then (A = R2
×g, [− ,−]ρ, ·ρ, aρ)

is an F-algebroid with an identity 1 ⊗ e1, where [− ,−]ρ , ·ρ and aρ are given by

aρ(m, c1 e1 + c2 e2)=

(
c1 t2

∂

∂t2
+ c2 t2

∂

∂t1
+ c2 t2

2
∂

∂t2

)∣∣∣
m

∀ m ∈ R2,

f ⊗ (c1 e1) ·ρ g ⊗ (c2 ei )= ( f g)⊗ (c1 c2 ei ), f ⊗ (c1 e2) ·ρ g ⊗ (c2 e2)= 0,

[ f ⊗ (c1 e1), g ⊗ (c2 e2)]ρ

= f c1 t2
∂g
∂t2

⊗ (c2 e2)− gc2

(
t2
∂ f
∂t1

+ t2
2
∂ f
∂t2

)
⊗ (c1e1)+ f g ⊗ (c1 c2[e1, e2]),

where f, g ∈ C∞(R2), c1, c2 ∈ R, i ∈ {1, 2}.

Let A1 and A2 be vector bundles over M1 and M2 respectively. Denote the
projections from M1 × M2 to M1 and M2 by pr1 and pr2 respectively. The product
vector bundle A1 × A2 → M1 × M2 can be regarded as the Whitney sum over
M1 × M2 of the pullback vector bundles pr!1 A1 and pr!2 A2. Sections of pr!1 A1 are of
the form

∑
ui ⊗ X1

i , where ui ∈ C∞(M1×M2) and X1
i ∈0(A1). Similarly, sections

of pr!2 A2 are of the form
∑

u′

i ⊗ X2
i , where u′

i ∈ C∞(M1 × M2) and X2
i ∈ 0(A2).

The tangent bundle T (M1 × M2) may in the same way be regarded as the Whitney
sum pr!1(TM1)⊕ pr!2(TM2). Let (A1, [− ,−]A1, aA1) and (A2, [− ,−]A2, aA2) be
two Lie algebroids over the base manifolds M1 and M2 respectively. We define the
anchor a : A1 × A2 → T (M1 × M2) by

a
(∑

(ui ⊗ X1
i )⊕

∑
(u′

j ⊗ X2
j )
)

=
∑
(ui ⊗ aA1(X

1
i ))⊕

∑
(u′

j ⊗ aA2(X
2
j )).
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And the Lie bracket on A1 × A2 is determined by the following relations with the
Leibniz rule:

[[1 ⊗ X1, 1 ⊗ Y 1
]] = 1 ⊗ [X1, Y 1

]A1, [[1 ⊗ X1, 1 ⊗ Y 2
]] = 0,

[[1 ⊗ X2, 1 ⊗ Y 2
]] = 1 ⊗ [X2, Y 2

]A2, [[1 ⊗ X2, 1 ⊗ Y 1
]] = 0

for X1, Y 1
∈ 0(A1) and X2, Y 2

∈ 0(A2). See [28] for more details of the direct
product Lie algebroids.

Proposition 2.17. Let (A1, [− ,−]A1, ·A1, aA1) and (A2, [− ,−]A2, ·A2, aA2) be
two F-algebroids over M1 and M2 respectively. Then (A1 × A2, [[− ,−]],⋄, a) is
an F-algebroid over M1 × M2, where for

X =
∑
(ui ⊗ X1

i )⊕
∑
(u′

j ⊗ X2
j ), Y =

∑
(vk ⊗ Y 1

k )⊕
∑
(v′

l ⊗ Y 2
l ),

the associative multiplication ⋄ is defined by

X ⋄ Y =
∑
(uivk ⊗ (X1

i ·A1 Y 1
k ))⊕

∑
(u′

jv
′

l ⊗ (X2
j ·A2 Y 2

l )).

Proof. It follows from straightforward verifications. □

The F-algebroid (A1×A2, [[− ,−]],⋄, a) is called the direct product F-algebroid.

3. Pre-Lie deformation quantization of commutative associative algebroids

In this section, we study pre-Lie formal deformations of a commutative associative
algebroid, whose semiclassical limits are F-algebroids. Viewing the commutative
associative algebroid A as a pre-Lie algebroid, we show that the equivalence classes
of pre-Lie infinitesimal deformations of a commutative associative algebroid A are
classified by the second cohomology group in the deformation cohomology of A
and a pre-Lie n-deformation can be extended to a pre-Lie (n + 1)-deformation if
and only if its obstruction class in the third cohomology group is trivial.

Definition 3.1 [9]. A pre-Lie algebra is a pair (g, ∗), where g is a vector space and
∗ : g⊗g→ g is a bilinear multiplication such that for all x, y, z ∈ g, the associator

(9) (x, y, z)≜ x ∗ (y ∗ z)− (x ∗ y) ∗ z

is symmetric in x, y, i.e.,

(x, y, z)= (y, x, z), or equivalently, x ∗(y∗z)−(x ∗ y)∗z = y∗(x ∗z)−(y∗x)∗z.

Definition 3.2 [22; 5]. A pre-Lie algebroid structure on a vector bundle A → M
is a pair that consists of a pre-Lie algebra structure ∗A on the section space 0(A)
and a vector bundle morphism aA : A → TM , called the anchor, such that for all
f ∈ C∞(M) and X, Y ∈ 0(A), the following conditions are satisfied:
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(i) X ∗A ( f Y )= f (X ∗A Y )+ aA(X)( f )Y ,

(ii) ( f X) ∗A Y = f (X ∗A Y ).

We usually denote a pre-Lie algebroid by (A, ∗A, aA). Any pre-Lie algebra is a
pre-Lie algebroid over a point.

A connection ∇ on a manifold M is said to be flat if the torsion and the curva-
ture of the connection ∇ vanish identically. A manifold M endowed with a flat
connection ∇ is called a flat manifold.

Proposition 3.3 [22]. Let (A, ∗A, aA) be a pre-Lie algebroid. Define a skew-
symmetric bilinear bracket operation [− ,−]A on 0(A) by

(10) [X, Y ]A = X ∗A Y − Y ∗A X ∀ X, Y ∈ 0(A).

Then (A, [− ,−]A, aA) is a Lie algebroid, and denoted by Ac, called the subadja-
cent Lie algebroid of (A, ∗A, aA).

Example 3.4. Let M be a manifold with a flat connection ∇. Then (TM,∇, Id)
is a pre-Lie algebroid whose subadjacent Lie algebroid is exactly the tangent Lie
algebroid. We denote this pre-Lie algebroid by T∇ M .

Definition 3.5. Let E be a vector bundle over M . A multiderivation of degree n
on E is a pair (D, σD), where

D ∈ Hom(3n−10(E)⊗0(E), 0(E)) and σD ∈ 0(Hom(3n−1 E, TM)),

such that for all f ∈ C∞(M) and sections X i ∈ 0(E), the following conditions are
satisfied:

D(X1,..., f X i ,...,Xn−1,Xn)= f D(X1,...,X i ,...,Xn−1,Xn), i = 1,...,n−1,

D(X1,...,Xn−1, f Xn)= f D(X1,...,Xn−1,Xn)+ σD(X1,...,Xn−1)( f )Xn.

We will denote by Dern(E) the space of multiderivations of degree n, n ≥ 1.

Let (A, ∗A, aA) be a pre-Lie algebroid. From [22] the deformation complex of A
is a cochain complex (C∗

def(A, A)=
⊕

n≥0 Dern(A), ddef), where for all X i ∈ 0(A),
i = 1, 2 . . . , n+1, the coboundary operator ddef : Dern(A)→ Dern+1(A) is given by

ddefω(X1, . . . , Xn+1)

=

n∑
i=1
(−1)i+1 X i ∗A ω(X1, . . . , X̂ i , . . . , Xn+1)

+

n∑
i=1
(−1)i+1ω(X1, . . . , X̂ i , . . . , Xn, X i ) ∗A Xn+1

−

n∑
i=1
(−1)i+1ω(X1, . . . , X̂ i , . . . , Xn, X i ∗A Xn+1)

+
∑

1≤i< j≤n
(−1)i+ jω([X i , X j ]A, X1, . . . , X̂ i , . . . , X̂ j , . . . , Xn+1),
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in which σddefω is given by

(11) σddefω(X1, . . . , Xn)

=

n∑
i=1
(−1)i+1

[aA(X i ), σω(X1, . . . , X̂ i , . . . , Xn)]X(M)

+
∑

1≤i< j≤n
(−1)i+ jσω([X i , X j ]A, X1, . . . , X̂ i , . . . , X̂ j , . . . , Xn)

+

n∑
i=1
(−1)i+1aA(ω(X1, . . . , X̂ i , . . . , Xn, X i )).

The corresponding cohomology, which we denote by H•

def(A, A), is called the
deformation cohomology of the pre-Lie algebroid.

Since any commutative pre-Lie algebra is a commutative associative algebra, we
have the following conclusion obviously.

Lemma 3.6. Any commutative pre-Lie algebroid is a commutative associative
algebroid.

Note that in a commutative pre-Lie algebroid, the anchor must be zero.

Definition 3.7. Assume that (A, ·A) is a commutative associative algebroid. A
pre-Lie formal deformation of A is a sequence of pairs (µk, σµk ) ∈ Der2(A) with
µ0 being the commutative associative algebroid multiplication ·A on 0(A) and
σµ0 = 0 such that the R[[h̄]]-bilinear product ·h̄ on 0(A)[[h̄]] and R[[h̄]]-linear map
ah̄ : A ⊗ R[[h̄]] → TM ⊗ R[[h̄]] determined by

X ·h̄ Y =

∞∑
k=0

h̄kµk(X, Y ),(12)

ah̄(X)=

∞∑
k=0

h̄kσµk (X) ∀ X, Y ∈ 0(A)(13)

is a pre-Lie algebroid.

One checks directly that (0(A)[[h̄]], ·h̄) is a pre-Lie algebra if and only if

(14)
∑

i+ j=k

(
µi (µ j (X, Y ), Z)−µi (X, µ j (Y, Z))

)
=

∑
i+ j=k

(
µi (µ j (Y, X), Z)−µi (Y, µ j (X, Z))

)
for k ≥ 0.

Theorem 3.8. Assume that (A, ·A) is a commutative associative algebroid and
(A ⊗ R[[h̄]], ·h̄, ah̄) a pre-Lie formal deformation of A. Define a bracket

[− ,−]A : 0(A)×0(A)→ 0(A)

by
[X, Y ]A = µ1(X, Y )−µ1(Y, X) ∀ X, Y ∈ 0(A).
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Then (A, [− ,−]A, ·A, σµ1) is an F-algebroid which is called the semiclassical
limit of (A ⊗ R[[h̄]], ·h̄, ah̄). The pre-Lie algebroid (A ⊗ R[[h̄]], ·h̄, ah̄) is called a
pre-Lie deformation quantization of (A, ·A).

Proof. Define the bracket [− ,−]h̄ on 0(A)[[h̄]] by

[X, Y ]h̄ = X ·h̄ Y − Y ·h̄ X
= h̄[X, Y ]A + h̄2(µ2(X, Y )−µ2(Y, X))+ · · · ∀ X, Y ∈ 0(A).

By the fact that (A ⊗ R[[h̄]], ·h̄, ah̄) is a pre-Lie algebroid, (A[[h̄]], [− ,−]h̄, ah̄) is
a Lie algebroid. The h̄2-terms of the Jacobi identity for [− ,−]h̄ gives the Jacobi
identity for [− ,−]A and h̄-terms of [X, f Y ]h̄ = f [X, Y ]h̄ + ah̄(X)( f )Y gives

[X, f Y ]A = f [X, Y ]A + σµ1(X)( f )Y.

Thus (A, [− ,−]A, σµ1) is a Lie algebroid.
For k = 1 in (14), by the commutativity of µ0, we have

µ0(µ1(X, Y ), Z)−µ0(X, µ1(Y, Z))−µ1(X, µ0(Y, Z))

= µ0(µ1(Y, X), Z)−µ0(Y, µ1(X, Z))−µ1(Y, µ0(X, Z)).

By a similar proof given by Hertling [16], we can show that the Hertling–Manin
relation holds with X ·A Y = µ0(X, Y ) and [X, Y ]A = µ1(X, Y )− µ1(Y, X) for
X, Y ∈ 0(A). Thus (A, [− ,−]A, ·A, σµ1) is an F-algebroid. □

In what follows, we study pre-Lie n-deformations and pre-Lie infinitesimal
deformations of commutative associative algebroids.

Definition 3.9. Let (A, ·A) be a commutative associative algebroid. A pre-Lie
n-deformation of A is a sequence of pairs (µk, σµk ) ∈ Der2(A) for 0 ≤ k ≤ n
with µ0 being the commutative associative algebroid multiplication ·A on 0(A)
and σµ0 = 0, such that the R[[h̄]]/(h̄n+1)-bilinear product ·h̄ on 0(A)[[h̄]]/(h̄n+1)

and R[[h̄]]/(h̄n+1)-linear map ah̄ : A ⊗ R[[h̄]] → TM ⊗ R[[h̄]] determined by

X ·h̄ Y =

n∑
k=0

h̄kµk(X, Y ),(15)

ah̄(X)=

n∑
k=0

h̄kσµk (X) ∀ X, Y ∈ 0(A)(16)

is a pre-Lie algebroid.

We call a pre-Lie 1-deformation of a commutative associative algebroid (A, ·A)

a pre-Lie infinitesimal deformation and denote it by (A, µ1, aA = σµ1).
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By direct calculations, (A, µ1, σµ1) is a pre-Lie infinitesimal deformation of a
commutative associative algebroid (A, ·A) if and only if for all X, Y, Z ∈ 0(A)

(17) µ1(X, Y ) ·A Z − X ·A µ1(Y, Z)−µ1(X, Y ·A Z)
= µ1(Y, X) ·A Z − Y ·A µ1(X, Z)−µ1(Y, X ·A Z).

Equation (17) means that µ1 is a 2-cocycle, i.e., ddef µ1 = 0.
Two pre-Lie infinitesimal deformations Ah̄ = (A, µ1, σµ1) and A′

h̄ = (A, µ′

1, σµ′

1
)

of a commutative associative algebroid (A, ·A) are said to be equivalent if there
exist a family of pre-Lie algebroid homomorphisms Id + h̄ϕ : Ah̄ → A′

h̄ modulo h̄2

for ϕ ∈ Der1(A). A pre-Lie infinitesimal deformation is said to be trivial if there
exist a family of pre-Lie algebroid homomorphisms Id+ h̄ϕ : Ah̄ → (A, ·A, aA = 0)
modulo h̄2.

By direct calculations, Ah̄ and A′

h̄ are equivalent pre-Lie infinitesimal deforma-
tions if and only if

σµ1 = σµ′

1
,(18)

µ1(X, Y )−µ′

1(X, Y )= X ·A ϕ(Y )+ϕ(X) ·A Y −ϕ(X ·A Y ).(19)

Equation (19) means that µ1 −µ′

1 = ddef ϕ and (18) can be obtained by (19). Thus
we have:

Theorem 3.10. Let (A, ·A) be a commutative associative algebroid. There is a
one-to-one correspondence between the space of equivalence classes of pre-Lie
infinitesimal deformations of A and the second cohomology group H2

def(A, A).

It is routine to check that:

Proposition 3.11. Let (A, ·A) be a commutative associative algebroid such that

H2
def(A, A)= 0.

Then all pre-Lie infinitesimal deformations of A are trivial.

Definition 3.12. Let {(µ1, σµ1), . . . , (µn, σµn )} be a pre-Lie n-deformation of a
commutative associative algebroid (A, ·A). If there exists (µn+1, σµn+1) ∈ Der2(A)
such that

{(µ1, σµ1), . . . , (µn, σµn ), (µn+1, σµn+1)}

is a pre-Lie (n + 1)-deformation of (A, ·A), then

{(µ1, σµ1), . . . , (µn, σµn ), (µn+1, σµn+1)}

is called an extension of the pre-Lie n-deformation {(µ1, σµ1), . . . , (µn, σµn )}.
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Theorem 3.13. For any pre-Lie n-deformation of a commutative associative alge-
broid (A, ·A), the pair (2n, σ2n ) ∈ Der3(A) defined by

2n(X, Y, Z)=
∑

i+ j=n+1
i, j≥1

(
µi (µ j (X, Y ), Z)−µi (X, µ j (Y, Z))(20)

−µi (µ j (Y, X), Z)+µi (Y, µ j (X, Z))
)
,

σ2n (X, Y )=
∑

i+ j=n+1
i, j≥1

(
σµi (µ j (X, Y )−µ j (Y, X))−[σµi (X), σµ j (Y )]X(M)

)
(21)

is a cocycle, i.e., ddef2n = 0.
Moreover, the pre-Lie n-deformation {(µ1, σµ1), . . . , (µn, σµn )} extends to some

pre-Lie (n + 1)-deformation if and only if [2n] = 0 in H3
def(A, A).

Proof. It is obvious that 2n(X, Y, Z) = −2n(Y, Z , X) for all X, Y, Z ∈ 0(A). It
is straightforward to check that

2n(X, f Y, Z)= f2n(X, Y, Z),

2n(X, Y, f Z)= f2n(X, Y, Z)+ σ2n (X, Y )( f )Z .

Thus2n is an element of Der3(A). By a direct calculation, we have that the cochain
2n ∈ Der3(A) is closed.

Assume that the pre-Lie (n + 1)-deformation {(µ1, σµ1), . . . , (µn+1, σµn+1)}

of a commutative associative algebroid (A, ·A) is an extension of the pre-Lie n-
deformation {(µ1, σµ1), . . . , (µn, σµn )}. Then we have∑
i+ j=n+1

i, j≥1

(
µi (µ j (X, Y ), Z)−µi (X, µ j (Y, Z))−µi (µ j (Y, X), Z)+µi (Y, µ j (X, Z))

)
= X ·A µn+1(Y, Z)− Y ·A µn+1(X, Z)+µn+1(Y, X) ·A Z −µn+1(X, Y ) ·A Z

+µn+1(Y, X) ·A Z −µn+1(X, Y ) ·A Z .

Note that the left-hand side of the above equality is just 2n(X, Y, Z). We can
rewrite the above equality as

2n(X, Y, Z)= ddef µn+1(X, Y, Z).

We conclude that, if a pre-Lie n-deformation of a commutative associative algebroid
(A, ·A) extends to a pre-Lie (n + 1)-deformation, then 2n is a coboundary.

Conversely, if2n is a coboundary, then there exists an element (ψ, σψ)∈Der2(A)
such that

2n(X, Y, Z)= ddef ψ(X, Y, Z).

It is not hard to check that {(µ1, σµ1), . . . , (µn+1, σµn+1)} with µn+1 = ψ is a pre-
Lie (n + 1)-deformation of (A, ·A) and thus this pre-Lie (n + 1)-deformation is an
extension of the pre-Lie n-deformation {(µ1, σµ1), . . . , (µn, σµn )}. □
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4. Some constructions of F-algebroids

In this section, we use eventual identities and Nijenhuis operators to construct
F-algebroids. In particular, a pseudoeventual identity naturally gives a Nijenhuis
operator on an F-algebroid.

(Pseudo)eventual identities and Dubrovin’s dual of F-algebroids.

Definition 4.1. Let (A, [− ,−]A, ·A, aA) be an F-algebroid with an identity e.
A section E ∈ 0(A) is called a pseudoeventual identity on the F-algebroid if the
following equality holds:

(22) PE(X, Y )= [e, E]A ·A X ·A Y ∀ X, Y ∈ 0(A).

A pseudoeventual identity E on the F-algebroid A is called an eventual identity
if it is invertible, i.e., there is a section E−1

∈0(A) such that E−1
·AE = E ·AE−1

= e.

Denote the set of all pseudoeventual identities on an F-algebroid A by E(A),
i.e.,

E(A)= {E ∈ 0(A) | PE(X, Y )= [e, E]A ·A X ·A Y ∀ X, Y ∈ 0(A)}.

Proposition 4.2. Let (A, [− ,−]A, ·A, aA) be an F-algebroid with an identity e.
Then E(A) is an F-manifold subalgebra of 0(A). Moreover, if E ∈ 0(A) is an
eventual identity on the F-algebroid A, then E−1 is also an eventual identity on A.

Proof. By a straightforward calculation, E(A) is a subspace of the vector space0(A).
For any two pseudoeventual identities E1 and E2, by (1), we have

PE1·AE2(X,Y )= E1 ·A PE2(X,Y )+E2 ·A PE1(X,Y )

= (E1 ·A [e,E2]A +E2 ·A [e,E1]A) ·A X ·A Y = [e,E1 ·A E2]A ·A X ·A Y,

where in the last equality we used Pe(E1, E2)= 0. Thus E1 ·A E2 is a pseudoeventual
identity.

By (1) and (22), we have

P[E2,E2]A(Z ,W )= [E1, [e, E2]A ·A Z ·A W ]A − [e, E2]A ·A [E1, Z ]A ·A W

− [e, E2]A ·A Z ·A [E1,W ]A − [E2, [e, E1]A ·A Z ·A W ]A

+ [e, E1]A ·A [E2, Z ]A ·A W + [e, E1]A ·A Z ·A [E2,W ]A.

On the other hand, by (22), we have

[E1, [e, E2]A ·A Z ·A W ]A = 2[e, E1]A · [e, E2]A ·A Z ·A W +[E1, [e, E2]A]A ·A Z ·A W
+[e, E2]A ·A [E1, Z ]A ·A W +[e, E2]A ·A Z ·A [E1,W ]A,

[E2, [e, E1]A ·A Z ·A W ]A = 2[e, E2]A · [e, E1]A ·A Z ·A W +[E2, [e, E1]A]A ·A Z ·A W
+[e, E1]A ·A [E2, Z ]A ·A W +[e, E1]A ·A Z ·A [E2,W ]A.
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Thus

P[E2,E2]A(Z ,W )= [E1, [e, E2]A]A ·A Z ·A W − [E2, [e, E1]A]A ·A Z ·A W

= [e, [E1, E2]A]A ·A Z ·A W,

which implies that [E1, E2]A is a pseudoeventual identity. Therefore, E(A) is an
F-manifold subalgebra of 0(A).

Assume that E is an eventual identity on the F-algebroid A. By Proposition 2.13,
we have Pe(X, Y ) = 0. Applying the Hertling–Manin relation with X = E and
Y = E−1, by (22), we obtain

PE−1(X, Y )= −E−2
·A [e, E]A ·A X ·A Y.

On the other hand, by Pe(X, Y )= 0, we have

[e, E]A ·A E−2
= ([e, E]A ·A E−1) ·A E−1

= (−E ·A [e, E−1
]A) ·A E−1

= −[e, E−1
]A.

Thus we have
PE−1(X, Y )= [e, E−1

]A ·A X ·A Y,

which implies that E−1 is also an eventual identity on A. □

A pseudoeventual identity on an F-algebroid gives a new F-algebroid.

Theorem 4.3. Let (A, [− ,−]A, ·A, aA) be an F-algebroid with an identity e.
Then E is a pseudoeventual identity on A if and only if (A, [− ,−]A, ·E , aA) is
an F-algebroid, where ·E : 0(A)×0(A)→ 0(A) is defined by

(23) X ·E Y = X ·A Y ·A E ∀ X, Y ∈ 0(A).

Proof. The proof of this theorem is similar to the proof of Theorem 3 in [13]. We
give a sketchy proof here for completeness. Assume that E is a pseudoeventual
identity on A. It is straightforward to check that the multiplication ·E defined by (23)
is C∞(M)-bilinear, commutative and associative.

For X, Y, Z ∈ 0(A), we set

PE
X (Y, Z) := [X, Y ·E Z ]A − [X, Y ]A ·E Z − Y ·E [X, Z ]A.

By a direct calculation, we have

(24) PE
X (Y, Z)= PX (E ·A Y, Z)+ PX (E, Y ) ·A Z + [X, E]A ·A Y ·A Z .
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Since E is a pseudoeventual identity on A, by (24), we have

PE
X ·EY (Z ,W )− X ·E PE

Y (Z ,W )− Y ·E PE
X (Z ,W )

= X ·A Y ·A (PE(E ·A Z ,W )+ W ·A PE(E, Z))
− Z ·A W ·A ([X ·A Y ·A E,E]A +E ·A X ·A [Y,E]A +E ·A Y ·A [X,E]A)

= X ·AY ·A(PE(E ·A Z ,W )+W ·A PE(E, Z))−Z ·AW ·A(PE(E, X)·AY+PE(E ·A X,Y ))

= X ·A Y ·A ([e,E]A ·A E ·A Z ·A W + [e,E]A ·A E ·A Z ·A W )

− Z ·A W ·A ([e,E]A ·A E ·A X ·A Y + [e,E]A ·A E ·A X ·A Y )

= 2[e,E]A ·A E ·A X ·A Y ·A Z ·A W − 2[e,E]A ·A E ·A X ·A Y ·A Z ·A W

= 0,

which implies that (A, [− ,−]A, ·E , aA) is an F-algebroid.
The converse can be proved similarly. We omit the details. □

Theorem 4.4. Let (A, [− ,−]A, ·A, aA) be an F-algebroid with an identity e.
Then E is an eventual identity on A if and only if (A, [− ,−]A, ·E , aA) is also
an F-algebroid with the identity E−1, which is called the Dubrovin’s dual of
(A, [− ,−]A, ·A, aA), where ·E is given by (23). Moreover, e is an eventual identity
on the F-algebroid (A, [− ,−]A, ·E , E−1, aA) and the map

(25) (A, [− ,−]A, ·A, e, aA, E)→ (A, [− ,−]A, ·E , E−1, aA, e†)

is an involution of the set of F-algebroids with eventual identities, where e†
:= E−2

is the inverse of e with respect to the multiplication ·E .

Proof. By Theorem 4.3, (A, [− ,−]A, ·E , aA) is an F-algebroid. It is obvious that
E−1 is the identity with respect to the multiplication ·E defined by (23).

Next, we show that e is an eventual identity on (A, [− ,−]A, ·E , E−1, aA). Since
the identity with respective to the multiplication ·E is E−1, we need to show that

[e, X ·E Y ]A − [e, X ]A ·E Y − X ·E [e, Y ]A = [E−1, e]A ·E X ·E Y ∀ X, Y ∈ 0(A).

By a straightforward computation, for any Z ∈ 0(A), we have

(26) [Z , X ·E Y ]A − [Z , X ]A ·E Y − X ·E [Z , Y ]A

= PZ (E ·A X, Y )+ PZ (E, X) ·A Y + [Z , E]A ·A X ·A Y.

Letting Z = e in (26) and using Pe(X, Y )= 0, we have

[e, X ·EY ]A−[e, X ]A ·EY −X ·E [e, Y ]A =[e, E]A ·A X ·AY = ([e, E]A ·AE−2)·E X ·EY.

Recall now from the proof of Proposition 4.2 that [e, E]A ·A E−2
= [E−1, e]A. Thus

e is an eventual identity on the F-algebroid (A, [− ,−]A, ·E , E−1, aA).
Now we show that the map (25) is an involution. Note that e†

:= E−2 is the
inverse of e with respect to the multiplication ·E . By Proposition 4.2, e† is also an
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eventual identity on the F-algebroid (A, [− ,−]A, ·E , E−1, aA). Furthermore, for
X, Y ∈ 0(A), we have

X ·A Y = X ·E Y ·E E−2
= X ·E Y ·E e†,

which implies that the map defined by (25) is an involution of the set of F-algebroids
with eventual identities. □

Definition 4.5. An F-manifold (M, • , e) is called semisimple if there exists canon-
ical local coordinates (u1, . . . , un) on M such that e =

∂
∂u1 + · · · +

∂
∂un and

∂

∂ui
•
∂

∂u j = δi j
∂

∂u j , i, j ∈ {1, 2, . . . , n}

Example 4.6. Let (M, • , e) be a semisimple F-manifold. Then e is an identity on
the F-algebroid (TM, [− ,−]X(M), • , Id). It is straightforward to check that any
pseudoeventual identity on (TM, [− ,−]X(M), • , Id) is of the form

E = f1(u1)
∂

∂u1 + · · · + fn(un)
∂

∂xn
,

where fi (ui )∈ C∞(M) depends only on ui for i = 1, 2, . . . , n. Furthermore, it was
shown in [13] that if all fi (ui ) are nonvanishing everywhere, then E ∈ X(M) is an
eventual identity.

Nijenhuis operators and deformed F-algebroids. Recall from [8] that a Nijenhuis
operator on a commutative associative algebra (A, ·A) is a linear map N : A → A
such that

(27) N (x) ·A N (y)= N
(
N (x) ·A y + x ·A N (y)− N (x ·A y)

)
∀ x, y ∈ A.

and a Nijenhuis operator on a Lie algebroid (A, [− ,−]A, aA) is a bundle map
N : A → A such that

(28) [N (X), N (Y )]A

= N
(
[N (X), Y ]A + [X, N (Y )]A − N ([X, Y ]A)

)
∀ X, Y ∈ 0(A).

Definition 4.7. Assume that (A, [− ,−]A, ·A, aA) is an F-algebroid. A bundle
map N : A → A is called a Nijenhuis operator on the F-algebroid A if N is
both a Nijenhuis operator on the commutative associative algebra (0(A), ·A) and a
Nijenhuis operator on the Lie algebroid (A, [− ,−]A, aA).

Define the deformed operation ·N : 0(A)× 0(A) → 0(A) and the deformed
bracket [− ,−]N : 0(A)×0(A)→ 0(A) by

X ·N Y = N (X) ·A Y + X ·A N (Y )− N (X ·A Y ),(29)

[X, Y ]N = [N (X), Y ]A + [X, N (Y )]A − N ([X, Y ]A) ∀ X, Y ∈ 0(A).(30)



268 JOHN ALEXANDER CRUZ MORALES, JIEFENG LIU AND YUNHE SHENG

Theorem 4.8. Assume that N : A → A is a Nijenhuis operator on an F-algebroid
(A, [− ,−]A, ·A, aA). Then, (A, [− ,−]N , ·N , aN = aA ◦ N ) is an F-algebroid
and N is an F-algebroid homomorphism from the F-algebroid

(A, [− ,−]N , ·N , aN = aA ◦ N )
to (A, [− ,−]A, ·A, aA).

Proof. Since N is a Nijenhuis operator on the commutative associative algebra
(0(A), ·A), it follows that (0(A), ·N ) is a commutative associative algebra [8].
Since N is a Nijenhuis operator on the Lie algebroid (A, [− ,−]A, aA), we get that
(A, [− ,−]N , aN ) is a Lie algebroid [20].

Define

(31) 8N (X, Y, Z ,W ) := P N
X ·N Y (Z ,W )− X ·N P N

Y (Z ,W )− Y ·N P N
X (Z ,W ),

where X, Y, Z ,W ∈ 0(A) and

P N
X (Y, Z) := [X, Y ·N Z ]N − [X, Y ]N ·N Z − Y ·N [X, Z ]N .

Since A is an F-algebroid and N is a Nijenhuis operator on A, by a direct calculation,
we have

8N (X, Y, Z ,W )= 0,
which implies that

P N
X ·N Y (W, Z)− X ·N P N

Y (W, Z)− Y ·N P N
X (W, Z)= 0.

Thus (A, [− ,−]N , ·N , aN = aA ◦ N ) is an F-algebroid. It is obvious that N is an
F-algebroid homomorphism from the F-algebroid (A, [− ,−]N , ·N , aN = aA ◦ N )
to (A, [− ,−]A, ·A, aA). □

Lemma 4.9. Let (A, [− ,−]A, ·A, aA) be an F-algebroid and N a Nijenhuis oper-
ator on A. For all k, l ∈ N:

(i) (A, [− ,−]N k , ·N k , aN k ) is an F-algebroid.

(ii) N l is also a Nijenhuis operator on the F-algebroid (A, [− ,−]N k , ·N k , aN k ).

(iii) The F-algebroids

(A, ([− ,−]N k )N l , (·N k )N l , aN k+l ) and (A, [− ,−]N k+l , ·N k+l , aN k+l )

are the same.

(iv) N l is an F-algebroid homomorphism between the F-algebroid

(A, [− ,−]N k+l , ·N k+l , aN k+l ) and (A, [− ,−]N k , ·N k , aN k ).

Proof. Since the above conclusions with respect to Nijenhuis operators on com-
mutative associative algebras [8] and Lie algebroids [20] simultaneously hold, by
Theorem 4.8, the conclusions follow immediately. □
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We now show that pseudoeventual identities naturally give Nijenhuis operators.

Proposition 4.10. Let (A, [− ,−]A, ·A, aA) be an F-algebroid with an identity e
and E a pseudoeventual identity on A. Then the endomorphism N = E ·A is a
Nijenhuis operator on the F-algebroid A. Consequently, (A, [− ,−]E , ·E , aE) is an
F-algebroid, where

(32) [X, Y ]E = [E ·A X, Y ]A + [X, E ·A Y ]A − E ·A [X, Y ]A ∀ X, Y ∈ 0(A),

with ·E given by (23) and aE(X)= aA(E ·A X).

Proof. For any X, Y ∈ 0(A), we have

N (X) ·A N (Y )− N
(
N (X) ·A Y + X ·A N (Y )− N (X ·A Y )

)
= X ·A Y ·A E2

− E ·A (X ·A Y ·A E + X ·A Y ·A E − X ·A Y ·A E)

= X ·A Y ·A E2
− X ·A Y ·A E2

= 0.

Thus N = E ·A is a Nijenhuis operator on the associative algebra (0(A), ·A).
Then we show that N = E ·A is a Nijenhuis operator on the Lie algebroid

(A, [− ,−]A, aA). It is obvious that N is a bundle map. Since E is a pseudoeventual
identity on the F-algebroid A, taking Y = E in (22), we have

(33) [X ·A E, E]A − [X, E]A ·A E = [E, e]A ·A X ·A E .

For any X, Y ∈0(A), expanding [E ·A X, E ·A Y ]A using the Hertling–Manin relation
and by (33), we have

[N (X), N (Y )]A − N
(
[N (X), Y ]A + [X, N (Y )]A − N ([X, Y ]A)

)
= 0.

Thus N = E ·A is a Nijenhuis operator on the Lie algebroid (A, [− ,−]A, aA).
Therefore, N = E ·A is a Nijenhuis operator on the F-algebroid A.

The second claim follows from Theorem 4.8. □

Corollary 4.11. Let (M, • ) be an F-manifold with an identity e and E a pseudo-
eventual identity on M. Then there is a new F-algebroid structure on TM given by

X •E Y = X • Y • E, [X, Y ]E = [E • X, Y ]X(M)+[X, E • Y ]X(M)− E • [X, Y ]X(M),

aE(X)= E • X ∀ X, Y ∈ X(M).

5. Pre-F-algebroids and eventual identities

In this section, we introduce the notion of a pre-F-algebroid, and show that a
pre-F-algebroid gives rise to an F-algebroid. Then we study eventual identities
on a pre-F-algebroid, which give new pre-F-algebroids. Finally, we introduce the
notion of a Nijenhuis operator on a pre-F-algebroid, and show that a Nijenhuis
operator gives rise to a deformed pre-F-algebroid.
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Some properties of pre-F-algebroids.

Definition 5.1. Let (g, · ) be a commutative associative algebra and (g, ∗) a pre-Lie
algebra. Define 9 : ⊗

3g → g by

(34) 9(x, y, z) := x ∗ (y · z)− (x ∗ y) · z − y · (x ∗ z).

(i) The triple (g, ∗ , · ) is called a pre-F-manifold algebra if

(35) 9(x, y, z)=9(y, x, z) ∀ x, y, z ∈ g,

(ii) The triple (g, ∗ , · ) is called a pre-Lie commutative algebra (or pre-Lie-com
algebra) if

(36) 9(x, y, z)= 0 ∀ x, y, z ∈ g.

It is obvious that a pre-Lie-com algebra is a pre-F-manifold algebra.

Example 5.2 [24]. Let (g, · ) be a commutative associative algebra with a deriva-
tion D. Then the new product

x ∗ y = x · D(y) ∀ x, y ∈ g

makes (g, ∗ , · ) being a pre-Lie-com algebra. Furthermore, (g, [− ,−], · ) is an
F-manifold algebra, where the bracket is given by

[x, y] = x ∗ y − y ∗ x = x · D(y)− y · D(x) ∀ x, y ∈ g.

Let g = R[u1, x2, . . . , xn] be the algebra of polynomials in n variables. Denote
by Dn =

{∑n
i=1 pi ∂ui | pi ∈ g

}
the space of derivations.

Example 5.3 [24]. Let g be the algebra of polynomials in n variables. Define
· : Dn ×Dn → Dn and ∗ : Dn ×Dn → Dn by

(p∂ui ) · (q∂u j )= (pq) δi j ∂ui , (p∂ui ) ∗ (q∂u j )= p∂ui (q)∂u j ∀ p, q ∈ g.

Then (Dn, ∗ , · ) is a pre-Lie-com algebra with the identity e = ∂u1 + · · · + ∂xn .
Furthermore, it follows that (Dn, [− ,−], · ) is an F-manifold algebra with the
identity e, where the bracket is given by

[p∂ui , q∂u j ] = p∂ui (q)∂u j − q∂u j (p)∂ui ∀ p, q ∈ g.

Definition 5.4. A pre-F-algebroid is a vector bundle A over M equipped with
bilinear operations ·A :0(A)×0(A)→0(A) and ∗A :0(A)×0(A)→0(A), and a
bundle map aA : A → TM , called the anchor, such that (A, ∗A, aA) is a pre-Lie
algebroid, (A, ·A) is a commutative associative algebroid and (0(A), ∗A, ·A) is a
pre-F-manifold algebra. In particular, if (0(A), ∗A, ·A) is a pre-Lie-com algebra,
we call this pre-F-algebroid a pre-Lie-com algebroid.

We denote a pre-F-algebroid (or pre-Lie-com algebroid) by (A, ∗A, ·A, aA).
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Definition 5.5. Let (A, ∗A, ·A, aA) and (B, ∗B, ·B, aB) be pre-F-algebroids over M .
A bundle map ϕ : A → B is called a homomorphism of pre-F-algebroids, if the
following conditions are satisfied:

ϕ(X ·A Y )= ϕ(X) ·B ϕ(Y ), ϕ(X ∗A Y )= ϕ(X) ∗B ϕ(Y ), aB ◦ϕ = aA

for all X, Y ∈ 0(A).

Proposition 5.6. Assume that (A, ∗A, ·A, aA) is a pre-F-algebroid. Then we have
an F-algebroid (A, [− ,−]A, ·A, aA), and denoted by Ac, called the subadjacent
F-algebroid of the pre-F-algebroid, where the bracket [− ,−]A is given by

(37) [X, Y ]A = X ∗A Y − Y ∗A X ∀ X, Y ∈ 0(A).

Proof. Since (A, ∗A, aA) is a pre-Lie algebroid, (A, [− ,−]A, aA) is a Lie alge-
broid [22]. Since (0(A), ∗A, ·A) is a pre-F-manifold algebra, (0(A), [− ,−]A, ·A)

is an F-manifold algebra [14]. Thus (A, [− ,−]A, ·A, aA) is an F-algebroid. □

The notion of an F-manifold with a compatible flat connection was introduced
by Manin [29]. Recall that an F-manifold with a compatible flat connection
(pre-Lie-com manifold) is a triple (M,∇, • ), where M is a manifold, ∇ is a flat
connection and • is a C∞(M)-bilinear, commutative and associative multiplication
on the tangent bundle TM such that (TM,∇, • , Id) is a pre-F-algebroid (pre-Lie-
com algebroid). It is obvious that an F-manifold with a compatible flat connection is
a special case of pre-F-algebroids. An F-manifold with a compatible flat connection
(resp. pre-Lie-com manifold) is called semisimple if its subadjacent F-manifold is
semisimple.

Proposition 5.7. Let (M,∇, • , e) be a semisimple pre-Lie-com manifold with the
canonical local coordinate systems (u1, . . . , un). Then we have

∇∂/∂ui
∂

∂u j = 0, i, j ∈ {1, 2, . . . , n}.

Proof. Set
∇∂/∂ui

∂

∂u j =

∑
k

0k
i j
∂

∂xk
.

By (36), for any i, j, k ∈ {1, 2, . . . , n}, we have

(38) 0 = ∇∂/∂ui

(
∂

∂u j
•
∂

∂uk

)
−

(
∇∂/∂ui

∂

∂u j

)
•
∂

∂uk −
∂

∂u j
•

(
∇∂/∂ui

∂

∂uk

)
=

∑
l

δ jk0
l
ik
∂

∂xl
−0k

i j
∂

∂uk −0
j
ik
∂

∂u j .

For j ̸= k in (38), we have 0k
i j = 0 ( j ̸= k). For j = k in (38), we have 0 j

i j = 0.
Thus for any i, j, k ∈ {1, 2, . . . , n}, we have 0k

i j = 0. □
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We give some useful formulas that will be frequently used in what follows.

Lemma 5.8. Let (A, ∗A, ·A, aA) be a pre-F-algebroid. Then 9(X, Y, Z) defined
by (34) is a tensor field of type (3, 1) and symmetric in all arguments. Furthermore,
9 satisfies

9(X ·A Y, Z ,W )−9(X, Z ,W )·A Y =9(X ·A Z , Y,W )−9(X, Y,W )·A Z ,(39)

9(X ·A Y, Z ,W )−9(X ·A Z , Y,W )=9(W ·A Y, X, Z)−9(W ·A Z , X, Y )(40)

for all X, Y, Z ,W ∈ 0(A).

Proof. It is straightforward to check that 9(X, Y, Z) is a tensor field of type (3, 1).
The symmetry of 9(X, Y, Z) in the first two arguments is the consequence of (35)
and in the last two arguments is the consequence of the commutativity of ·A.

By the symmetry of 9, we have

(41) 9(X ·A Y, Z ,W )−9(X, Z ,W ) ·A Y =9(X ·A W, Y, Z)−9(X, Y, Z) ·A W.

Interchanging Z and W in (41), we have

9(X ·A Y,W, Z)−9(X,W, Z) ·A Y =9(X ·A Z , Y,W )−9(X, Y,W ) ·A Z .

By the symmetry of 9, equation (39) follows.
By (39), we have

9(X ·A Y, Z ,W )−9(X ·A Z , Y,W )=9(X, Z ,W ) ·A Y −9(X, Y,W ) ·A Z ,

9(W ·A Y, X, Z)−9(W ·A Z , X, Y )=9(W, X, Z) ·A Y −9(W, X, Y ) ·A Z .

By the symmetry of 9, we have

9(X, Z ,W ) ·A Y −9(X, Y,W ) ·A Z =9(W, X, Z) ·A Y −9(W, X, Y ) ·A Z .

Thus (40) holds. □

Lemma 5.9. Let (A, ∗A, ·A, aA) be a pre-F-algebroid with an identity e. Then,

9(e, X, Y )= −(X ∗A e) ·A Y,(42)

(X ∗A e) ·A Y = (Y ∗A e) ·A X ∀ X, Y ∈ 0(A).(43)

Proof. Equation (42) follows by a direct calculation. By the symmetry of9 and (42),
equation (43) follows. □

Lemma 5.10. Let (A, ∗A, ·A, aA) be a pre-Lie-com algebroid with an identity e.
Then we have

(44) X ∗A e = 0 ∀ X ∈ 0(A).

Proof. The conclusion follows from the following relation:

X ∗A (e ·A e)− (X ∗A e) ·A e − (X ∗A e) ·A e = 0. □
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Example 5.11. Assume that {u} is a coordinate system of R. Define an anchor
map a : T R → T R, a multiplication · : X(R)×X(R)→ X(R) and a multiplication
∗ : X(R)×X(R)→ X(R) by

a
(

f
∂

∂u

)
= u f

∂

∂u
, f

∂

∂u
· g
∂

∂u
= f g

∂

∂u
, f

∂

∂u
∗ g

∂

∂u
= u f

∂g
∂u

∂

∂u

for all f, g ∈ C∞(R). Then (T R, ∗ , · , a) is a pre-Lie-com algebroid with the
identity ∂/∂u. Furthermore, (T R, [− ,−], · , a) is an F-algebroid with the iden-
tity ∂/∂u, where [− ,−] is given by[

f
∂

∂u
, g

∂

∂u

]
= u

(
f
∂g
∂u

− g
∂ f
∂u

)
∂

∂u
.

Definition 5.12. Let (g, ∗ , · ) be a pre-F-manifold algebra (pre-Lie-com algebra).
An action of g on a manifold M is a linear map ρ : g → X(M) from g to the space
of vector fields on M , such that for all x, y ∈ g, we have

ρ(x ∗ y − y ∗ x)= [ρ(x), ρ(y)]X(M).

Given an action of a pre-F-manifold algebra (pre-Lie-com algebra) g on M , let
A= M×g be the trivial bundle. Define an anchor map aρ : A→TM , a multiplication
·ρ : 0(A)×0(A)→ 0(A) and a bracket ∗ρ : 0(A)×0(A)→ 0(A) by

aρ(m, u)= ρ(u)m ∀ m ∈ M, u ∈ g,(45)

X ·ρ Y = X · Y,(46)

X ∗ρ Y = Lρ(X)Y + X ∗ Y ∀ X, Y ∈ 0(A),(47)

where X ·Y and X ∗Y are the pointwise C∞(M)-bilinear multiplication and bracket,
respectively.

Proposition 5.13. With the above notations, we have that (A = M × g, ∗ρ, ·ρ, aρ)
is a pre-F-algebroid (pre-Lie-com algebroid), which we call an action pre-F-
algebroid (action pre-Lie-com algebroid), where ∗ρ , ·ρ and aρ are given by (47),
(46) and (45), respectively.

Proof. It follows by a similar proof of Proposition 2.15. □

It is obvious that the subadjacent F-algebroid of the action pre-F-algebroid is
an action F-algebroid.

Example 5.14. Consider the pre-Lie-com algebra (Dn, · , ∗) given by Example 5.3.
Let (t1, . . . , tn) be the canonical coordinate systems on Rn . Let ρ : Dn → X(Rn) is
a map defined by

ρ(p(u1, . . . , un)∂ui )= p(t1, . . . , tn)
∂

∂ti
, i ∈ {1, 2, . . . , n}.
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It is straightforward to check that ρ is an action of the pre-Lie-com algebra Dn

on Rn . Thus (A = Rn
×Dn, ∗ρ, ·ρ, aρ) is a pre-Lie-com algebroid, where ∗ρ , ·ρ

and aρ are given by

aρ(m, p(u1, u2, . . . , un)∂ui )= p(m)
∂

∂ti

∣∣∣
m

∀ m ∈ Rn,

( f ⊗ (p∂ui )) ·ρ (g ⊗ (q∂u j ))= ( f g)⊗ (pqδi j ∂ui ),

( f ⊗ (p∂ui )) ∗ρ (g ⊗ (q∂u j ))= f p
∂g
∂ti

⊗ (q∂u j )+ ( f g)⊗ p∂ui (q)∂u j ,

where f, g ∈ C∞(Rn) and p, q ∈ R[u1, . . . , un
].

Eventual identities of pre-F-algebroids.

Definition 5.15. Assume that (A, ∗A, ·A, aA) is a pre-F-algebroid with an identity e.
A section E ∈ 0(A) is called a pseudoeventual identity on A if the following
equalities hold:

9(E, X, Y )= −(E ∗A e) ·A X ·A Y,(48)

(X ∗A E) ·A Y = (Y ∗A E) ·A X ∀ X, Y ∈ 0(A).(49)

A pseudoeventual identity E on the pre-F-algebroid with an identity e is called
an eventual identity if it is invertible.

Proposition 5.16. Let (A, ∗A, ·A, e, aA) be a pre-F-algebroid with an identity e.
If E ∈ 0(A) is a pseudoeventual identity on A, then E ∈ 0(A) is a pseudoeventual
identity on its subadjacent F-algebroid Ac.

Proof. By a direct calculation, for X, Y ∈ 0(A), we have

PE(X, Y )− [e, E]A ·A X ·A Y

= E ∗A (X ·A Y )− (X ·A Y ) ∗A E − (E ∗A X) ·A Y + (X ∗A E) ·A Y
− (E ∗A Y ) ·A X + (Y ∗A E) ·A X − (e∗A E) ·A X ·A Y + (E ∗A e) ·A X ·A Y

=9(E, X, Y )+ (E ∗A e) ·A X ·A Y − (X ·A Y ) ∗A E + (X ∗A E) ·A Y
+ (Y ∗A E) ·A X − (e ∗A E) ·A X ·A Y.

By (48) and (49), we have

PE(X, Y )− [e, E]A ·A X ·A Y = 0.

Thus E ∈ 0(A) is a pseudoeventual identity on its subadjacent F-algebroid Ac. □

By Lemma 5.10, we have:

Proposition 5.17. Let (A, ∗A, ·A, aA) be a pre-F-algebroid with an identity e and E
an invertible element in 0(A). If (A, ∗A, ·A, aA) is a pre-Lie-com algebroid, then E
is an eventual identity on A if and only if (49) holds.
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Lemma 5.18. Let (A, ∗A, ·A, e, aA) be a pre-F-algebroid. Then for E ∈ 0(A),
equation (48) holds if and only if

(50) 9(X, E ·A Y, Z)=9(Y, E ·A X, Z) ∀ X, Y, Z ∈ 0(A).

Proof. Assume that (50) holds. By (39), we have

(51) 9(E, X, Z) ·A Y −9(E, Y, Z) ·A X =9(X, E ·A Y, Z)−9(Y, E ·A X, Z)= 0.

Taking Y = e in (51), we have

9(E, X, Z)= −(E ∗A e) ·A X ·A Z .

This implies that (48) holds.
Conversely, if (48) holds, then we have

9(E, X, Z)·AY−9(E, Y, Z)·A X =−(E∗Ae)·A X ·A Z ·AY+(E∗Ae)·AY ·A Z ·A X =0.

By (39), we have
9(X, E ·A Y, Z)=9(Y, E ·A X, Z).

This implies that (50) holds. □

Let the set of all pseudoeventual identities on a pre-F-algebroid (A, ∗A, ·A, aA)

be E(A) with an identity e.

Proposition 5.19. Let (A, ∗A, ·A, aA) be a pre-F-algebroid with an identity e. Then
for any E1, E2 ∈ E(A), we have E1 ·A E2 ∈ E(A). Furthermore, if E is an eventual
identity on A, then E−1 is also an eventual identity on A.

Proof. Let E1, E2 be two pseudoeventual identities on the pre-F-algebroid A. For
all X, Y, Z ∈ 0(A), by (50), the symmetry of 9 and Lemma 5.18, we have

9(E1 ·A E2, X, Y )= −((E1 ·A E2) ∗A e) ·A X ·A Y.

For all X, Y ∈ 0(A), by (35), we have

(X ∗A (E1 ·A E2)) ·A Y − (Y ∗A (E1 ·A E2)) ·A X

=9(E1, X, E2) ·A Y + (X ∗A E1) ·A E2 ·A Y + (X ∗A E2) ·A E1 ·A Y
−9(E1, Y, E2) ·A X − (Y ∗A E1) ·A E2 ·A X − (Y ∗A E2) ·A E1 ·A X.

By (39) and (50), we have

9(E1, X, E2) ·A Y −9(E1, Y, E2) ·A X =9(E1 ·A Y, X, E2)−9(E1 ·A X, Y, E2)= 0.

Using the above relation and by (49), we have

(X ∗A (E1 ·A E2)) ·A Y − (Y ∗A (E1 ·A E2)) ·A X = 0.

Thus E1 ·A E2 ∈ E(A).
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Using (50) with X and Y replaced by E−1
·A X and E−1

·A Y respectively, we get

0 =9(E−1
·A X, E ·A E−1

·A Y, Z)−9(E−1
·A Y, E ·A E−1

·A X, Z)

=9(E−1
·A X, Y, Z)−9(E−1

·A Y, X, Z).

By the symmetry of 9 and Lemma 5.18, we have

9(E−1, X, Y )= −(E−1
∗A e) ·A X ·A Y.

By (39) and (50), we have

(52) 9(X, E, E−1) ·A Y =9(Y, E, E−1) ·A X.

Furthermore, by a direct calculation, we have

(X ∗A E−1) ·A Y ·A E =9(X, E, E−1) ·A Y − (X ∗A e) ·A Y + (X ∗A E) ·A Y ·A E−1,

(Y ∗A E−1) ·A X ·A E =9(Y, E, E−1) ·A X − (Y ∗A e) ·A X + (Y ∗A E) ·A X ·A E−1.

By (43), (49) and (52), we have

(X ∗A E−1) ·A Y ·A E = (Y ∗A E−1) ·A X ·A E .

Because E is invertible, we have

(X ∗A E−1) ·A Y = (Y ∗A E−1) ·A X.

Thus E−1 is an eventual identity on A. □

Proposition 5.20. Let (A, ∗A, ·A, aA) be a pre-F-algebroid with an identity e.
Then E is a pseudoeventual identity on A if and only if (A, ∗A, ·E , aA) is a pre-F-
algebroid, where ·E : 0(A)×0(A)→ 0(A) is given by (23).

Proof. Define

9̃(X, Y, Z)= X ∗A (Y ·E Z)− (X ∗A Y ) ·E Z − Y ·E (X ∗A Z) ∀ X, Y, Z ∈ 0(A).

By a straightforward computation, we have

9̃(X, Y, Z)=9(X, E ·A Y, Z)+9(X, E, Y ) ·A Z + (X ∗A E) ·A Y ·A Z ,(53)

9̃(Y, X, Z)=9(Y, E ·A X, Z)+9(Y, E, X) ·A Z + (Y ∗A E) ·A X ·A Z .(54)

By the symmetry of 9, (A, ∗A, ·E , aA) is a pre-F-algebroid if and only if

(55) 9(X, E ·A Y, Z)−9(Y, E ·A X, Z)= (Y ∗A E) ·A X ·A Z − (X ∗A E) ·A Y ·A Z .

By the symmetry of 9 and (40), we have

9(X, E ·A Y, e)−9(Y, E ·A X, e)=9(e ·A Y, E, X)−9(e ·A X, E, Y )= 0.
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Taking Z = e in (55), we have

(X ∗A E) ·A Y = (Y ∗A E) ·A X.

This implies that (49) holds. Furthermore, by (49), (55) implies that (50) holds.
By Lemma 5.18, equation (50) is equivalent to (48). Thus E is a pseudoeventual
identity on (A, ∗A, ·A, e, aA).

On the other hand, if E is a pseudoeventual identity on (A, ∗A, ·A, e, aA), by
Lemma 5.18, we have

9(X, E ·A Y, Z)=9(Y, E ·A X, Z).

Furthermore, (55) follows by (49). Thus (A, ∗A, ·E , aA) is a pre-F-algebroid. □

Corollary 5.21. Let (M,∇, • ) be an F-manifold with a compatible flat connection
and E a pseudoeventual identity on M. Then (M,∇, •E) is also an F-manifold with
a compatible flat connection, where •E is given by

(56) X •E Y = X • Y • E ∀ X, Y ∈ X(M).

Theorem 5.22. Let (A, ∗A, ·A, aA) be a pre-F-algebroid with an identity e. Then
E is an eventual identity on A if and only if (A, ∗A, ·E , aA) is a pre-F-algebroid
with the identity E−1, which is called the Dubrovin’s dual of (A, ∗A, ·A, aA), where
·E is given by (23). Moreover, on the pre-F-algebroid (A, ∗A, ·E , E−1, aA), e is an
eventual identity and the map

(57) (A, ∗A, ·A, e, aA, E)→ (A, ∗A, ·E , E−1, aA, e†)

is an involution of the set of pre-F-algebroids with eventual identities, where
e†

= E−2 is the inverse of e with respect to the multiplication ·E .

Proof. By Proposition 5.20, the first claim follows immediately. For the second
claim, assume that E is an eventual identity on (A, ∗A, ·A, e, aA). We need to show
that e is an eventual identity on the pre-F-algebroid (A, ∗A, ·E , E−1, aA), i.e.,

9̃(e, X, Y )= −(e ∗A E−1) ·E X ·E Y,(58)

(X ∗A e) ·E Y = (Y ∗A e) ·E X.(59)

By (43), we have

(X ∗A e) ·E Y − (Y ∗A e) ·E X = ((X ∗A e) ·A Y − (Y ∗A e) ·A X) ·A E = 0,

which implies that (59) holds.
On the one hand, by (48) and (50), we have

9̃(e, X, Y )=9(E, X, Y )+9(E, e, X) ·A Y + (e ∗A E) ·A X ·A Y

= −2(E ∗A e) ·A X ·A Y + (e ∗A E) ·A X ·A Y.
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On the other hand, taking X = E and Y = E−1 in (48), by the symmetry of 9, we
have

e ∗A e − (e ∗A E) ·A E−1
− (e ∗A E−1) ·A E = −(E ∗A e) ·A E−1.

Furthermore, by (43), we have

(e ∗A E−1) ·A E2
= (e ∗A e) ·A E − e ∗A E + E ∗A e = 2E ∗A e − e ∗A E .

Thus we have

9̃(e, X, Y )= −(e ∗A E−1) ·A E2
·A X ·A Y = −(e ∗A E−1) ·E X ·E Y.

which implies that (58) holds.
By Proposition 5.19, we have that e†

= E−2 is an eventual identity on the pre-
F-algebroid (A, ∗A, ·E , E−1, aA). Then similar to the proof of Theorem 4.4, the
map given by (57) is an involution of the set of pre-F-algebroids with eventual
identities. □

Example 5.23. Consider the pre-Lie-com algebra (g, ∗ , · ) with an identity e given
by Example 5.2. By a direct calculation, for any E ∈ g, we have

(x ∗ E) · y − (y ∗ E) · x = x · D(E) · y − y · D(E) · x = 0 ∀ x, y ∈ g.

By Proposition 5.17, E is a pseudoeventual identity on g. Thus any element of g
is a pseudoeventual identity on g. Furthermore, for any E ∈ g, there is a new
pre-F-manifold algebra structure on g given by

x ·E y = x · y · E, x ∗ y = x · D(y) ∀ x, y ∈ g.

Example 5.24. Let (M,∇, • , e) be a semisimple pre-Lie-com manifold with local
coordinate systems (u1, . . . , un). Then any pseudoeventual identity on TM is

E = f1(u1)
∂

∂u1 + · · · + fn(un)
∂

∂un ,

where fi (ui ) ∈ C∞(M) depends only on ui for i = 1, 2, . . . , n. Furthermore, if
all fi (ui ) are nonvanishing everywhere, then E ∈ X(M) is an eventual identity.

Example 5.25. Let (u1, u2) be a local coordinate systems on R2. Define

∂

∂u1
•
∂

∂ui =
∂

∂ui ,
∂

∂u2
•
∂

∂u2 = 0,
∂

∂ui ∗
∂

∂u j = 0, i, j ∈ {1, 2}.

Then (T R2, ∗ , • , Id) is a pre-Lie-com algebroid with the identity ∂/∂u1 and thus
(T R2, ∗ , • , Id) is a pre-F-algebroid with the identity ∂/∂u1.

Furthermore, any pseudoeventual identity on (T R2, ∗ , • , Id) is of the form

E = f1(u1)
∂

∂u1 + f2(u1, u2)
∂

∂u2 ,
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with ∂ f1/∂u1
= ∂ f2/∂u2, where f1 ∈ C∞(R2) depends only on u1 and f2 is any

smooth function. Furthermore, any pseudoeventual identity on the subadjacent
F-algebroid of (T R2, ∗ , • , Id) is of the form

E = f1(u1)
∂

∂u1 + f2(u1, u2)
∂

∂u2 .

In particular, if f1(u1) is nonvanishing everywhere, then E is an eventual identity
on the subadjacent F-algebroid of (T R2, ∗ , • , Id).

Theorem 5.26 [27]. Let (M,∇, • ) be an F-manifold with a compatible flat connec-
tion. Let (u1, u2, . . . , un) be the canonical coordinate systems on M. If X and Y
in X(M) satisfy

(∇Z X) • W = (∇W X) • Z , (∇Z Y ) • W = (∇W Y ) • Z ∀ W, Z ∈ X(M),

then the associated flows

(60) ui
t = ci

jk X k ui
x and ui

τ = ci
jkY k u j

x

commute, where

∂

∂ui
•
∂

∂u j = ck
i j
∂

∂uk , X = X i ∂

∂ui and Y = Y i ∂

∂ui .

Proposition 5.27. Let (M,∇, • ) be an F-manifold with a compatible flat connec-
tion and an identity e. Assume that E1, E2 ∈ X(M) are pseudoeventual identities.
Then the flows

(61) ui
t = ci

jk X k ui
x , ui

τ = ci
jkY k u j

x , ui
s = X p Y qci

jk ck
pq ui

x

commute, where

∂

∂ui
•
∂

∂u j = ck
i j
∂

∂uk , E1 = X i ∂

∂ui and E2 = Y i ∂

∂ui .

Proof. Since E1 ∈X(M) and E2 ∈X(M) are pseudoeventual identities on (M,∇, • ),
by Proposition 5.19, E1 •E2 is also a pseudoeventual identity. Thus E1, E2 and E1 •E2

satisfy (49). Furthermore, we have

E1 • E2 = X p Y qck
pq

∂

∂uk .

By Theorem 5.26, the claim follows. □

Theorem 5.28 [27]. Let (M,∇, • ) be an F-manifold with a compatible flat con-
nection. Let (u1, u2, . . . , un) be the canonical coordinate systems on M and
(X(1,0), . . . , X(n,0)) a basis of flat vector fields. Define the primary flows by

(62) ui
t(p,0) = ci

jk X k
(p,0)u

j
x .
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Then there is a well-defined higher flows of the hierarchy defined by

(63) ui
t(p,α) = ci

jk X k
(p,α)u

j
x ,

by means of the following recursive relations:

(64) ∇∂/∂u j X i
(p,α) = ci

jk X k
(p,α−1)u

k
x .

Furthermore, the flows of the principal hierarchy (63) commute.

Proposition 5.29. Let (M,∇, • ) be an F-manifold with a compatible flat con-
nection and an identity e. Let (X(1,0), . . . , X(n,0)) be a basis of flat vector fields.
Assume that E ∈ X(M) is a pseudoeventual identity. Define the primary flows by

(65) ui
t(p,0) = cm

jk ci
ml E

l X k
(p,0)u

j
x ,

where E = E i (∂/∂ui ). Then there is a well-defined higher flows of the hierarchy
defined by

(66) ui
t(p,α) = cm

jk ci
ml E

l X k
(p,α)u

j
x ,

by means of the following recursive relations:

(67) ∇∂/∂u j X i
(p,α) = cm

jk ci
ml E

l X k
(p,α−1)u

k
x .

Furthermore, the flows of the principal hierarchy (66) commute.

Proof. Since E ∈ X(M) is a pseudoeventual identity on (M,∇, • ), we have by
Proposition 5.20 that (M,∇, •E) is also an F-manifold with a compatible flat
connection, where

X •E Y = X • Y • E ∀ X, Y ∈ X(M).

Furthermore, we have
∂

∂ui
•E

∂

∂u j = cm
i j ck

ml E
l ∂

∂uk .

By Theorem 5.28, the claim follows. □

Nijenhuis operators and deformed pre-F-algebroids. From [22] a Nijenhuis oper-
ator on a pre-Lie algebroid (A, ∗A, aA) is a bundle map N : A → A such that

(68) N (X)∗A N (Y )= N
(
N (X)∗A Y +X ∗A N (Y )−N (X ∗A Y )

)
∀ X, Y ∈0(A).

Definition 5.30. Let (A, ∗A, ·A, aA) be a pre-F-algebroid. A bundle map N : A→ A
is called a Nijenhuis operator on (A, ∗A, ·A, aA) if N is both a Nijenhuis operator
on the commutative associative algebra (0(A), ·A) and a Nijenhuis operator on the
pre-Lie algebroid (A, ∗A, aA).
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Theorem 5.31. Assume that N : A → A is a Nijenhuis operator on a pre-F-
algebroid (A, ∗A, ·A, aA). Then (A, ∗N , ·N , aN = aA ◦ N ) is a pre-F-algebroid
and N is a homomorphism from the pre-F-algebroid (A, ∗N , ·N , aN = aA ◦ N ) to
(A, ∗A, ·A, aA), where the operation ·N is given by equation (29) and the operation
∗N : 0(A)×0(A)→ 0(A) is given by

(69) X ∗N Y = N (X) ∗A Y + X ∗A N (Y )− N (X ∗A Y ) ∀ X, Y ∈ 0(A).

Proof. Since N is a Nijenhuis operator on the commutative associative algebra
(0(A), ·A), it follows that (0(A), ·N ) is a commutative associative algebra. Since
N is a Nijenhuis operator on the pre-Lie algebroid (A, ∗A, aA), (A, ∗N , aN ) is a
pre-Lie algebroid [22].

Define

(70) 9N (X, Y, Z)
:= X ∗N (Y ·N Z)− (X ∗N Y ) ·N Z − (X ∗N Z) ·N Y ∀ X, Y, Z ∈ 0(A).

By a direct calculation, we have

9N (X, Y, Z)=9(N X, NY, Z)+9(N X, Y, N Z)+9(X, NY, N Z)
− N

(
9(N X, Y, Z)+9(X, NY, Z)+9(X, Y, N Z)

)
+ N 2(9(X, Y, Z)).

Thus by (35), we have

9N (X, Y, Z)=9N (Y, X, Z).

This implies that (A, ∗N , ·N , aN = aA ◦ N ) is a pre-F-algebroid. It is not hard to
see that N is a homomorphism from the pre-F-algebroid (A, ∗N , ·N , aN = aA ◦ N )
to (A, ∗A, ·A, aA). □

Proposition 5.32. Let (A, ∗A, ·A, aA) be a pre-F-algebroid with an identity e and E
a pseudoeventual identity on A. Then the endomorphism N = E ·A is a Nijenhuis
operator on the pre-F-algebroid (A, ∗A, ·A, aA). Furthermore, (A, ∗E , ·E , aE) is a
pre-F-algebroid, where the multiplication ∗E is given by

(71) X ∗E Y = (E ·A X) ∗A Y + X ∗A (E ·A Y )− E ·A (X ∗A Y ) ∀ X, Y ∈ 0(A),

the multiplication ·E is given by (23) and aE(X)= aA(E ·A X).

Proof. By (35), we have

9(E ·A X, E, Y )=9(Y, E ·A X, E) ∀ X, Y ∈ 0(A),

which implies that

(72) (E ·A X)∗A(E ·AY )=Y ∗A(X ·AE ·AE)−(Y ∗A(E ·A X))·AE+((E ·X)∗AY )·AE .
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Since E is a pseudoeventual identity on A, by (48) and the symmetry of 9, we have

9(X, E, Y )= −(E ∗A e) ·A X ·A Y.

which implies that

(73) X ∗A (E ·A Y )= −(E ∗A e) ·A X ·A Y − (X ∗A E) ·A Y − (X ∗A Y ) ·A E .

By (48), (49), (72), (73) and the symmetry of 9, we have

N (X) ∗A N (Y )− N
(
N (X) ∗A Y + X ∗A N (Y )− N (X ∗A Y )

)
= 0.

Thus N = E ·A is a Nijenhuis operator on the pre-Lie algebroid (A, ∗A, aA).
Also, N = E ·A is a Nijenhuis operator on the commutative associative algebra

(0(A), ·A). Therefore, N = E ·A is a Nijenhuis operator on the pre-F-algebroid
(A, ∗A, ·A, aA). The second claim follows. □

Corollary 5.33. Let (M,∇, • ) be an F-manifold with a compatible flat connection
and E a pseudoeventual identity on M. Then there is a new pre-F-algebroid struc-
ture on TM given by

X •E Y = X • Y • E, X ∗E Y = ∇E•X Y + ∇E•Y X − E • (∇X Y ),

aE(X)= E • X ∀ X, Y ∈ X(M).
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EXISTENCE OF PRINCIPAL VALUES OF
SOME SINGULAR INTEGRALS ON CANTOR SETS,

AND HAUSDORFF DIMENSION

JULIÀ CUFÍ, JUAN JESÚS DONAIRE, PERTTI MATTILA AND JOAN VERDERA

Consider a standard Cantor set in the plane of Hausdorff dimension 1. If
the linear density of the associated measure µ vanishes, then the set of
points where the principal value of the Cauchy singular integral of µ exists
has Hausdorff dimension 1. The result is extended to Cantor sets in Rd of
Hausdorff dimension α and Riesz singular integrals of homogeneity −α,
0 < α < d: the set of points where the principal value of the Riesz singular
integral of µ exists has Hausdorff dimension α. A martingale associated with
the singular integral is introduced to support the proof.

1. Introduction

Our main result deals with the Cauchy singular integral on Cantor sets in the plane
and the proof extends with minor variations to the Riesz transforms in Rd . We first
proceed to formulate the result for the Cauchy integral and then we take care of the
Riesz transforms.

The appropriate Cantor sets for the Cauchy integral are defined as follows.
Let (λn)

∞

n=1 a sequence of real numbers satisfying 1
4 ≤ λn ≤ λ < 1

2 . Let Q0 :=

[0, 1] × [0, 1] be the unit square. Take the 4 squares contained in Q0 with sides
of length λ1 parallel to the coordinate axis having a vertex in common with Q0

(the 4 “corner squares” of side length λ1). Repeat in each of these 4 squares the
same procedure with the dilation factor λ1 replaced by λ2 to get 16 squares of
side length λ1λ2. Proceeding inductively we obtain at the n-th step 4n squares Qn

j ,
1 ≤ j ≤ 4n , of side length sn = λ1 · · · λn . Our Cantor set is

K =

∞⋂
n=1

4n⋃
j=1

Qn
j .
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Keywords: Cauchy singular integral, Riesz singular integral, Cantor set, Hausdorff dimension,

martingale.
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Let µ be the Borel probability measure on K with µ(Qn
j ) = 4−n and denote by an

the linear density at generation n, that is,

an =
1

4nsn
=

µ(Qn
j )

sn
≤ 1.

Set Dn = {Qn
j : j = 1, . . . , 4n

} and D =
⋃

∞

n=1 Dn .

Theorem 1.1. If limn→∞ an = 0, then the set of points z ∈ K for which the
principal value

(1-1) lim
ε→0

∫
|w−z|>ε

1
w − z

dµw

exists has Hausdorff dimension greater than or equal to 1.

This solves a problem posed in [Cufí et al. 2022, Open problem 5.5, p. 1621].
If an = 1 for all n, then K is the famous Garnett–Ivanov Cantor set, which has

positive and finite one-dimensional Hausdorff measure but zero analytic capacity. In
this case it was noticed in [Cufí et al. 2022] that the principal value does not exist at
any point of K . If an →0, then the Hausdorff dimension of K is greater than or equal
to 1 and it has non-sigma finite one-dimensional Hausdorff measure. If in addition∑

n a2
n <∞, then the principal value exists µ almost everywhere. So Theorem 1.1 is

relevant only when an →0 slowly. That the condition
∑

n a2
n <∞ implies the almost

everywhere existence of principal values can be seen in two ways. First, we introduce
a martingale (Sn)

∞

n=0 (see (2-1)) and show that the increments |Sn+1(x)− Sn(x)| are
bounded by C an , with the constant C independent of n and x . In Lemma 2.4 we
prove that for any point x the principal value exists at x if and only if (Sn(x))∞n=0
converges. If

∑
n a2

n <∞, then Sn is an L2 martingale and consequently it converges
almost everywhere. Alternatively, the condition

∑
n a2

n <∞ implies that the Cauchy
singular integral operator is bounded in L2(µ). In [Mattila and Verdera 2009] it
was shown in a very general setting that L2 boundedness together with zero density
of the measure yields the almost everywhere existence of principal values.

The main argument in the proof of Theorem 1.1 deals with case where
∑

n a2
n =∞.

It is a variation of a line of reasoning used in other situations (see [Donaire et al.
2014]). We use a stopping time argument to show that (Sn(x))∞n=0 converges
to 0 in a set of Hausdorff dimension 1 (indeed, given any complex number z0 the
martingale (Sn(x))∞n=0 converges to z0 in a set of Hausdorff dimension 1). We get the
dimension 1 conclusion by applying a lemma of Hungerford [1988]. For the sake of
the reader we present a proof of Hungerford’s lemma in our context in Appendix A.

Our proof extends with only technical modifications to cover the case of other
odd kernels, for instance,

zm

zm+1 , m = 1, 2, . . .
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But one of the ingredients of our method fails for the odd kernel (z + z)/z2 and we
do not know whether Theorem 1.1 holds in this case. The difficulty is indicated at
the fifth line after the statement of Lemma 3.1.

In Rd our proof works for the Riesz transforms of any homogeneity −α, 0<α<d .
These are the vector valued singular integrals with kernel

Rα(x) =
x

|x |1+α
, 0 < α < d.

The appropriate Cantor sets for the α-Riesz transform are those of Hausdorff
dimension α. They are constructed by the procedure outlined before in the planar
case with dilation factors that satisfy 2−d/α

≤ λn ≤ λ < 2−1. At generation n one
has 2dn cubes Qn

j of side length sn = λ1 · · · λn . The Cantor set is defined by

K =

∞⋂
n=1

2dn⋃
j=1

Qn
j

and the canonical measure on K by µ(Qn
j ) = 2−dn , 1 ≤ j ≤ 2dn . The α density

is an = 2−dns−α
n = µ(Qn

j )s
−α
n ≤ 1. For λn = 2−d/α , n = 1, 2 . . . , one gets the self

similar Cantor set of dimension α. If an → 0 then our Cantor set has Hausdorff
dimension ≥ α and non σ finite Hausdorff α-dimensional measure.

Theorem 1.2. If limn→∞ an = 0, then the set of points x ∈ K for which the
principal value

(1-2) lim
ε→0

∫
|y−x |>ε

Rα(y − x) dµy

exists has Hausdorff dimension greater than or equal to α.

In Appendix B we give some indications on how to adapt the proof for the
Cauchy kernel to the Riesz transforms in higher dimensions.

We let diam(A) denote the diameter and dim A the Hausdorff dimension of a
set A. We use the notation a ≲ b to mean that a ≤ C b for some constant C which
may depend on λ and d , and a ∼ b for a ≲ b and b ≲ a.

2. Martingales

Let C be the Cauchy kernel, C(x) = 1/x for x ∈ C, x ̸= 0. For each x ∈ K
let Qn(x) be the square in Dn containing x . Define the truncated Cauchy integral
at generation n as

Tn(x) =

∫
K\Qn(x)

C(x − y) dµy, x ∈ K ,

and a martingale (Sn(x))∞n=0 by

(2-1) Sn(x) = SQn(x) = /
∫

Qn(x)

Tn dµ, x ∈ K .
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Remark 2.1. That Sn is a martingale is easily checked. The reader will realise that
the martingale condition also holds for kernels K (x, y) satisfying the antisymmetry
condition K (x, y) = −K (y, x).

We shall prove:

Theorem 2.2. If limn→∞ an = 0, then the set of points x ∈ K for which (Sn(x))∞n=0
converges has Hausdorff dimension greater than or equal to 1.

We first show that the martingale (2-1) has uniformly bounded increments.

Lemma 2.3. There exists a positive constant C = C(λ) such that

(2-2) |Sn+1(x) − Sn(x)| ≤ Can, n = 0, 1, . . . and x ∈ K .

Thus if
∑

n an converges, (Sn(x))∞n=0 converges for all x ∈ K . As mentioned in
the introduction, even the weaker condition

∑
n a2

n < ∞ implies that (Sn(x))∞n=0
converges for µ almost all x ∈ K . Hence we shall assume that

∑
n a2

n = ∞. Under
this assumption one proves in [Cufí et al. 2022] that the set where the principal
values fail to exist has full µ measure. In Lemma 2.4 below we show that principal
values exist if and only if the martingale converges. Hence (Sn(x))∞n=0 is not
convergent for µ almost all x ∈ K . By a standard result in martingale theory (see,
for example, [Shiryaev 1996, Corollary 6, p. 561]) we get

(2-3) lim sup
n→∞

|Sn(x) − Sm(x)| = ∞, for all m = 0, 1, . . . and µ a.e.

Proof of Lemma 2.3. Set Qn = Qn(x), x ∈ K , n = 1, 2, . . . Then

Sn+1(x)−Sn(x) = /
∫

Qn+1

∫
K\Qn+1

C(z−y)dµy dµz−/
∫

Qn

∫
K\Qn

C(w−y)dµy dµw

=

∫
K\Qn

(
/
∫

Qn+1

C(z−y)dµz−/
∫

Qn

C(w−y)dµw

)
dµy

+

∫
Qn\Qn+1

/
∫

Qn+1

C(z−y)dµz dµy.

The last double integral is ≲ an , where the implicit constant depends on λ here and
for the rest of the proof.

To estimate the first summand above we remark that for each z′
∈ Qn+1 and

w′
∈ Qn we have

/
∫

Qn+1

C(z − y) dµz − /
∫

Qn

C(w − y) dµw

= /
∫

Qn+1

(
C(z − y) − C(z′

− y)
)

dµz − /
∫

Qn

(
C(w − y) − C(w′

− y)
)

dµw

+ C(z′
− y) − C(w′

− y).
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Clearly ∣∣C(z′
− y) − C(w′

− y)
∣∣ ≲ sn |x − y|

−2, y ∈ K \ Qn, x ∈ Qn.

Hence ∣∣∣∣ /
∫

Qn+1

(
C(z − y) − C(z′

− y)
)

dµz
∣∣∣∣ ≲ sn |x − y|

−2

and ∣∣∣∣ /
∫

Qn

(
C(w − y) − C(w′

− y)
)

dµz
∣∣∣∣ ≲ sn |x − y|

−2.

Setting
R j = Q j \ Q j+1,

the absolute value of the first summand of Sn+1(x) − Sn(x) is

≲ sn

∫
K\Qn

|x − y|
−2 dµy ∼ sn

n−1∑
j=0

s−2
j µ(R j )

= sn

n−1∑
j=0

s−2
j 4− j ≲ sns−2

n 4−n
= an,

because s−2
j 4− j

≤ (s−2
j+1λ

2)4− j
= (4λ2)s−2

j+14− j−1, so s−2
j 4− j ≲ (4λ2)n− j s−2

n 4−n .
Hence |Sn+1(x) − Sn(x)| ≲ an . □

By the following lemma Theorem 2.2 is equivalent to Theorem 1.1.

Lemma 2.4. If limn→∞ an = 0, then for each x ∈ K the principal value (1-1) exists
if and only if the sequence (Sn(x))∞n=0 converges.

Proof. Set Qn = Qn(x) for x ∈ K and n = 1, 2, . . . Then by the proof of Lemma 2.3∣∣∣∣Sn(x) −

∫
K\Qn

1
x − y

dµy
∣∣∣∣ =

∣∣∣∣ /
∫

Qn

∫
K\Qn

(
1

x ′ − y
−

1
x − y

)
dµy dµx ′

∣∣∣∣
≤ C an,

where the constant depends on λ. Compare now a given truncation
∫

K\B(x,ε)
1

x−y dµy,
0 < ε < 1, with

∫
K\Qn

1
x−y dµy where n is chosen so that diam(Qn) ≤ ε <

diam(Qn−1). Since Qn ⊂ B(x, ε) we have∣∣∣∣∫
K\Qn

1
x − y

dµy −

∫
K\B(x,ε)

1
x − y

dµy
∣∣∣∣ =

∣∣∣∣∫
B(x,ε)\Qn

1
x − y

dµy
∣∣∣∣

≤ C
µB(x, ε)

sn
,
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with C = C(λ). To complete the proof just remark that, since ε < diam(Qn−1),
B(x, ε) can intersect at most N squares in Dn , with N an absolute constant. Hence
µB(x, ε) ≤ C µ(Qn). □

We proceed now to discuss relative martingales.
For x ∈ R ⊂ Q, Q ∈ Dm , R ∈ Dn , m < n, we define the relative martingale

starting at Q as

SQ,R(x) = SQ,R = /
∫

R

∫
Q\R

C(z − y) dµy dµz.

Then for some constant C ,

(2-4) |SR − SQ − SQ,R| ≤ C am .

Indeed, we have

SR − SQ = /
∫

R

∫
K\R

C(z − y) dµy dµz − /
∫

Q

∫
K\Q

C(w − y) dµy dµw

=

∫
K\Q

(
/
∫

R
C(z − y) dµz − /

∫
Q

C(w − y) dµw

)
dµy

+

∫
Q\R

/
∫

R
C(z − y) dµz dµy

=

∫
K\Q

(
/
∫

R
C(z − y) dµz − /

∫
Q

C(w − y) dµw

)
dµy + SQ,R.

The first summand above is bounded in absolute value by a constant times am by
the same argument as in the proof of (2-2).

As for (2-2) we have for R ⊂ R̃ ⊂ Q, Q ∈ Dm, R̃ ∈ Dn, R ∈ Dn+1,

(2-5) |SQ,R − SQ,R̃| ≤ C an.

3. The stopping time argument

The proof of Theorem 2.2 is based on a stopping time argument for which we need
some preliminary facts.

Given a nonzero complex number z consider the sector σ(z, θ), 0 < θ < π , with
vertex at z and aperture θ whose axis is the semiline emanating from z and passing
through 0. That is, w ∈ σ(z, θ) if and only if〈

w − z
|w − z|

,
−z
|z|

〉
≥ cos

(
θ

2

)
where ⟨ ·, · ⟩ denotes the scalar product in the plane.
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The octants with vertex 0 are the eight sectors

σ j =

{
w ∈ C : w = |w|eiφ, ( j − 1)

π

4
≤ φ ≤ j π

4

}
, 1 ≤ j ≤ 8.

These are the sectors with vertex the origin of amplitude 45◦ degrees and having an
edge over a coordinate axis. It will be convenient to expand these octants so that
they have the same axis and amplitude of 75◦. In other words, we are adding 15◦

in each direction. Denote the expanded sectors by σ̃ j . The octants with vertex z are
the sectors σ j (z) = z + σ j , 1 ≤ j ≤ 8, and the expanded octants σ̃ j (z) = z + σ̃ j .

We have the following obvious lemma.

Lemma 3.1. Given any sector σ of vertex z and amplitude 120◦ there exists an
octant with vertex z, say σ j (z) for some index j between 1 and 8, such that σ̃ j (z)⊂σ .

Consider the symmetries with respect to the coordinate axis and the main diagonal.
That is, f1(x + iy) = −x + iy, f2(x + iy) = x − iy and f3(x + iy) = y + i x for
x + iy ∈ C. For any j, k = 1, . . . , 8, by composing two such symmetries we obtain
a linear mapping f j,k that maps the octant σ j onto the octant σk . Observe that
C( f j (z)) = f j (C(z)) for j = 1, 2, and C( f3(z)) = − f3(C(z)). It is precisely this
last identity that fails for the kernel (z + z)/z2.

Let Q ∈ D and let cQ be its centre. Define

fQ, j,k(x) = f j,k(x − cQ) + cQ, x ∈ Q, j, k = 1, . . . , 8,

so that

fQ, j,k(x) − fQ, j,k(y) = f j,k(x − y), x, y ∈ Q, j, k = 1, . . . , 8.

We claim that

(3-1) SQ, fQ, j,k(R) = ε j,k f j,k(SQ,R), R ⊂ Q, Q, R ∈ D,

where ε j,k = ±1. We check (3-1) by the general formula for the image (push-
forward) ν♯, f of a measure ν under a Borel map f (see, for example, [Mattila 1995,
Theorem 1.19]) ∫

f (A)

g dν♯, f
=

∫
A
(g ◦ f ) dν.

The restriction of µ to Q is invariant under the maps fQ, j,k , i.e., (µ|Q)♯, fQ, j,k =µ|Q.
Hence, since Q \ fQ, j,k(R) = fQ, j,k(Q \ R) and

C
(

fQ, j,k(z) − fQ, j,k(w)
)
= ε j,k f j,k(C(z − w)),

we obtain∫
Q\ fQ, j,k(R)

∫
fQ, j,k(R)

C(z −w) dµz dµw = ε j,k f j,k

(∫
Q\R

∫
R

C(z −w) dµz dµw

)
,

from which (3-1) follows.



292 JULIÀ CUFÍ, JUAN JESÚS DONAIRE, PERTTI MATTILA AND JOAN VERDERA

Assume that we have fixed an octant σ j and that for some square R ∈D contained
in Q we have SQ,R ∈ σk with k ̸= j . We claim that we can find a square R′

∈ D
contained in Q, of the same size as R, such that |SQ,R′ | = |SQ,R| and SQ,R′ ∈ σk .

If ε j,k = 1 then the value of the relative martingale at the square fQ, j,k(R)

is f j,k(SQ,R) ∈ σ j . Note that the size of fQ, j,k(R) is exactly the size of R and
|SQ, fQ, j,k(R)| = |SQ,R|.

To treat the case ε j,k = −1 let us introduce the mapping γ : Q → Q defined by
γ (x)=−(x−cQ)+cQ . Then γ 2 is the identity mapping on Q and SQ,γ (R) =−SQ,R

for each square R ∈ D contained in Q. Setting R′
= (γ ◦ fQ, j,k)(R) we get

f jk(SQ,R) = −SQ, fQ, j,k(R) = SQ,(γ ◦ fQ, j,k)(R) = SQ,R′ .

We shall need the following elementary lemma.

Lemma 3.2. If z ∈ C, w ∈ σ(z, 120◦) and 0 < |w − z| < |z|/2, then |w| ≤

|z| − |w − z|/4.

Proof. Let R = |z|, r = |w − z| and let v be the third vertex, in addition to 0 and z,
of the equilateral triangle containing w. Under the assumptions of the lemma |w|

is maximized when w lies on the side connecting z and v. Assuming that w is on
that side, project w on the side connecting 0 and z and apply Pythagoras to obtain

|w|
2
= (R − r/2)2

+ (
√

3r/2)2
= r2

+ R2
− r R ≤ (R − r/4)2

= (|z|− |w − z|/4)2

because of the assumption r < R/2. □

Proof of Theorem 2.2. We assume, as we may, that
∑

n a2
n = ∞. Then for µ almost

all x the sequence (Sn(x))∞n=0 diverges and (2-3) holds.
Let M be a big positive integer to be chosen later. We replace (an)

∞

n=0 by the
nonincreasing sequence bn = C maxm≥n am , where C is as in inequalities (2-2),
(2-4) and (2-5), which now read

|Sn+1(x) − Sn(x)| ≤ bn, n = 0, 1, . . . and x ∈ K ,(3-2)

|SR − SQ − SQ,R| ≤ bm, Q ∈ Dm, R ∈ Dn, R ⊂ Q,(3-3)

|SQ,R − SQ,R̃| ≤ bn, Q ∈ Dm, R ∈ Dn+1, R̃ ∈ Dn, R ⊂ R̃ ⊂ Q.(3-4)

We plan to define a sequence of stopping time conditions. At each step a family
of stopping time squares will arise, which is going to be the family Fn in Lemma A.1
(Hungerford’s lemma). The first stopping time is special and its goal is to have a
family of squares with relatively large |SQ | for each square Q in the family.

The first stopping time condition is

(3-5) |SQ | > M b0.

Declare Q a stopping time square of first generation if Q is a square in D for which
|SQ | > M b0 and |SQ′ | ≤ M b0, Q⊊ Q′. We call F1 the set of stopping time squares
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of first generation. One may think of this as a process as follows. One takes a
point x ∈ K and looks at the squares in D containing x . One examines all those
squares, starting at Q0 and checks whether condition (3-5) is satisfied. If it is not,
then one proceeds to the square containing x in the next generation. The process
stops when one finds a square Q containing x for which (3-5) holds. Note that
the set of x for which the process never stops has vanishing µ measure by (2-3).
Hence

∑
Q∈F1

µ(Q) = 1. Since SQ0 = 0, it follows from (3-2) that it is necessary
to descend at least M + 1 generations to find the first stopping time square.

The second stopping time condition is slightly different. Let Q ∈F1. The second
stopping time is performed on the relative martingale associated with Q and its
condition is

(3-6) |SQ,R| > M bM .

A stopping time square R of second generation satisfies |SQ,R| > M bM and

|SQ,R′ | ≤ M bM , R′
∈ D, R ⊊ R′

⊂ Q.

By (2-3) and (3-3) the stopping time squares of second generation cover almost
all Q. Again, by (3-4) and the fact that SQ,Q = 0 one has to descend through at
least M +1 generations to find a stopping time square of second generation. Hence
if R is a stopping time square of second generation and R ∈ Dn then n ≥ 2(M + 1).
We do not put all stopping time squares of second generation in F2(Q). We put a
stopping time square of second generation R in F2(Q) provided SR ∈ σ(SQ, 120◦).
That there are many such stopping time squares can be shown as follows.

Let R be a stopping time square of second generation. Let α denote the angle
between the vectors SR − SQ and SQ,R . Then by (3-3),

|SR − SQ | ≥ |SQ,R| − bM ≥ (M − 1)bM

and

0 ≤ | sin α| ≤
|SR − SQ − SQ,R|

|SR − SQ |
≤

bM

(M − 1)bM
=

1
M − 1

< sin 15◦,

provided M −1 > 1/ sin 15◦, which we assume. Since |SR −SQ −SQ,R|< |SR −SQ |

and SR,Q = SR − SQ + (SQ,R − SR − SQ), we see that cos α > 0. Thus |α| < 15◦.
By Lemma 3.1 there is j with 1 ≤ j ≤ 8 such that σ̃ j (SQ) ⊂ σ(SQ, 120◦). If

we are lucky enough that we have SQ,R ∈ σ j and so SR − SQ ∈ σ̃ j , which yields
SR ∈ σ̃ j (SQ) ⊂ σ(SQ, 120◦).

But it may occur that SQ,R ∈σk , k ̸= j . Applying two symmetries fQ, j,k of Q, or a
symmetry of the form γ ◦ fQ, j,k in the worst case, as we discussed before Lemma 3.2,
we obtain a stopping time square R′ of second generation and of the same size as R
such that SQ,R′ ∈ σ j and so SR′ ∈ σ̃ j (S(Q)) ⊂ σ(SQ, 120◦), as desired.
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Therefore, subdividing the stopping time squares of second generation in eight
classes, according to the octant to which SQ,R belongs, we get

(3-7)
∑

R∈F2(Q)

µ(R) ≥
1
8 µ(Q).

Define F2 =
⋃

Q∈F1
F2(Q).

Let us obtain some properties of stopping time squares R in F2(Q). Let R̃ be
the father of R. Then |SQ,R̃| ≤ M bM and so

|SR̃ − SQ| ≤ |SQ,R̃| + |SR̃ − SQ − SQ,R̃| ≤ (M + 1)bM

and

|SR − SQ | ≤ |SR − SR̃| + |SR̃ − SQ | ≤ bM + (M + 1)bM = (M + 2)bM .

Now two possibilities appear.
If |SQ | ≤ 2|SR − SQ | ≤ 2(M + 2)bM , then

|SR| ≤ |SR − SQ | + |SQ | ≤ 3(M + 2)bM .

If |SQ | > 2|SR − SQ |, since SR ∈ σ(SQ, 120◦) we can apply Lemma 3.2 to get

|SR| ≤ |SQ | − |SR − SQ |/4 ≤ |SQ| − (M − 1)bM/4 ≤ |SQ | − bM

provided M ≥ 5.
Therefore at least one of the following two inequalities holds: either

(3-8) |SR| ≤ 3(M + 2)bM ,

or

(3-9) |SR| ≤ |SQ | − bM .

We can proceed to define inductively Fn for n ≥ 3, in a way analogous to what we
did to define F2 from F1. Assume that we have defined Fn−1 =

⋃
Q∈Fn−2

Fn−1(Q).
Given Q ∈ Fn−1 we set the n generation stopping time in the relative martingale
associated with Q as

|SQ,R| > Mb(n−1)M

If R is a stopping time square of n-th generation then besides the previous inequality
one has

|SQ,R′ | ≤ Mb(n−1)M , R′
∈ D, R ⊊ R′

⊂ Q,

whence

(3-10) |SR′ − SQ | ≤ |SQ,R′ | + b(n−1)M ≤ (M + 1)b(n−1)M .
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Note that if R is a stopping time square of generation n, we can take advantage of
the symmetries of Q, as before, to find another one, say R′, of the same size with
the additional property that SR′ ∈ σ(SQ, 120◦). Define Fn(Q) as the stopping time
squares R of generation n such that SR ∈ σ(SQ, 120◦) and Fn =

⋃
Q∈Fn−1

Fn(Q).
We then have

(3-11)
∑

R∈Fn(Q)

µ(R) ≥
1
8 µ(Q).

Given R ∈ Fn(Q), we have as before that at least one of the following two inequal-
ities holds: either

(3-12) |SR| ≤ 3(M + 2)b(n−1)M

or

(3-13) |SR| ≤ |SQ | − b(n−1)M .

Set F =
⋂

∞

n=1
⋃

Q∈Fn
Q. To complete the proof we shall show that the hypo-

theses of Hungerford’s Lemma A.1 are fulfilled and that

(3-14) lim
m→∞

Sm(x) = 0, x ∈ F.

For (b) in Hungerford’s Lemma A.1 recall that each stopping time square has
descended at least M + 1 generations from the generating square in the previous
family. Then one has (b) with ε replaced by 1/4M and taking M big enough one
has 1/4M < ε. Condition (c) with c = 1/8 is (3-11).

To prove (3-14), take x ∈ F . For every n = 1, 2, . . . , there is a unique Qn ∈ Fn

such that x ∈ Qn . Let mn be the unique positive integer satisfying Qn ∈ Dmn .
Clearly the sequence mn is increasing and mn > M n. Since SQn = Smn (x) we have
by (3-12) and (3-13) that either

(3-15) |Smn (x)| ≤ 3(M + 2)b(n−1)M

or

(3-16) |Smn (x)| ≤ |Smn−1(x)| − b(n−1)M , n = 1, 2, . . .

For mn−1 < m < mn we have by (3-10)

(3-17) |Sm(x) − Smn−1(x)| ≤ (M + 1)b(n−1)M .

To conclude that limm→∞ Sm(x) = 0 it is enough to show that limn→∞ Smn (x) = 0.
We say that n ∈ N1, if (3-16) holds and n ∈ N2, if (3-15) holds and (3-16) fails.

Because
∑

n bn diverges and (bn)
∞

n=1 is nonincreasing,
∑

n b(n−1)M also diverges.
It follows that (3-16) cannot hold for infinitely many consecutive n, whence N2

is infinite.
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Let n ∈ N2 and let N > n be such that k ∈ N1 for all n < k < N . Then by (3-16)
and (3-15) for n < k < N ,

|Smk (x)| ≤ |Smn (x)| ≤ 3(M + 2)b(n−1)M .

It follows that limm→∞ Sm(x) = 0. □

Appendix A. A lemma on Hausdorff dimension

Let µ be the canonical measure associated with a Cantor set in Rd , as defined in
the Introduction before the statement of Theorem 1.2. Denote by Dn the set of all
cubes Qn

j , 1 ≤ j ≤ 2dn , appearing at the n-th generation of the construction and
D =

⋃
n Dn .

The following lemma is due to Hungerford [1988], who worked in a one-
dimensional context.

Lemma A.1. Let 0 < ε < c < 1 and let Fn be a disjoint family of cubes in D, for
n = 0, 1, 2, . . . , satisfying the following.

(a) F0 = {Q0}.

(b) If Q ∈ Fn+1, then there exists Q̃ ∈ Fn with Q ⊂ Q̃ and µ(Q) ≤ εµ(Q̃).

(c) If Q ∈ Fn , then ∑
R⊂Q, R∈Fn+1

µ(R) ≥ cµ(Q).

Let E =
⋂

n
⋃

Q∈Fn
. Then

dim E ≥ α(1 − log c/ log ε).

Proof. Set β = α(1− log c/ log ε). We will construct a Borel probability measure ν

with ν(E) = 1 such that for some constant C and for all balls B(x, r) centred at x
of radius r one has

(A-1) ν(B(x, r)) ≤ Crβ for x ∈ E, 0 < r ≤ 1.

Then Frostman’s lemma will give the result.
Let us define the functions νn : Fn → R, n = 0, 1, 2 . . . , setting first ν0(Q0) = 1.

Suppose that ν1, . . . , νn−1 are defined and let for Q ∈ Fn , with Q̃ as in (b),

νn(Q) =
νn−1(Q̃)∑

R∈Fn,R⊂Q̃ µ(R)
µ(Q).

Then we define the Borel measures νn setting

νn(A) =

∑
Q∈Fn

νn(Q)

µ(Q)
µ(A ∩ Q) for A ⊂ Rd .
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Then for Q ∈ Fn ,

νn+1(Q) =

∑
R∈Fn+1,R⊂Q

νn+1(R)

=

∑
R∈Fn+1,R⊂Q

νn(Q)∑
P∈Fn+1,P⊂Q µ(P)

µ(R)

= νn(Q).

Iterating this we have

(A-2) νm(Q) = νn(Q) for Q ∈ Fn, m > n.

In particular, each νn is a probability measure and some subsequence of (νn)

converges weakly to a probability measure ν such that ν(Q) = νn(Q) for Q ∈ Dn .
Since

ν

( ⋃
Q∈Fn

Q
)

=

∑
Q∈Fn

ν(Q) =

∑
Q∈Fn

νn(Q) = 1,

we have ν(E) = 1. Therefore ν(E \
⋃

Q∈Fn
Q) = 0 for every n, so

(A-3) ν(Q) =

∑
R⊂Q,R∈Fn+1

ν(R), Q ∈ Fn.

It remains to verify (A-1). First of all we have by condition (c) for Q ∈Fn, n ≥ 2,

ν(Q)

µ(Q)
=

νn(Q)

µ(Q)
=

νn−1(Q̃)∑
R⊂Q̃,R∈Fn

µ(R)
≤

ν(Q̃)

cµ(Q̃)
,

and by induction,

(A-4)
ν(Q)

µ(Q)
≤ c−n for Q ∈ Fn, n = 1, 2 . . . .

Now let us prove that

(A-5) ν(Q) ≤ Cd(Q)β for Q ∈ D.

Take n such that εn+1
≤ µ(Q) < εn . We may assume that ν(Q) > 0. Then Q

intersects a square R in the family Fn+1. Since by (b) µ(R) ≤ εn+1
≤ µ(Q), one

has R ⊂ Q. We have, by (A-3) and (A-4),

ν(Q) =

∑
R⊂Q,R∈Fn+1

ν(R) ≤ c−n−1
∑

R⊂Q,R∈Fn+1

µ(R) ≤ c−n−1µ(Q).
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Since µ(Q) ≤ d(Q)α it is enough to show that c−nµ(Q) ≤ µ(Q)β/α which is

c−n
≤ µ(Q)− log c/ log ε,

that is,
−n log c ≤ −(log c/ log ε) log µ(Q),

or n ≤ log µ(Q)/ log ε, which is a consequence of µ(Q) < εn .
To finish, let x ∈ E and 0 < r ≤ 1. For some n, x belongs to a square Q ∈ Dn

with d(Q)/4 ≤ r ≤ d(Q). Then B(x, r) can meet at most 4d squares of Dn , and so
by (A-5), ν(B(x, r)) ≤ 4d ν(Q) ≤ 4d C d(Q)β ≤ 4β+d C rβ and (A-1) follows. □

Appendix B. The Riesz transforms in Rd

We first slightly modify the argument in [Cufí et al. 2022] to show that
∑

∞

n=1 a2
n =∞

yields divergence a.e. of the martingale. If the martingale converges in a set of
positive measure, then also the principal values of the Riesz transform exist in a
set E of positive measure, by the analog of Lemma 2.4. By a result of Tolsa [2014,
Theorem 8.13] we find a set F ⊂ E of positive measure on which the singular Riesz
transform operator is bounded on L2(µ|F ). In particular, the capacity of F associated
with the Riesz kernel is positive and so also that of the Cantor set. The main result
of [Mateu and Tolsa 2004] (see Theorem 1.2, p. 678 and its extension in the last
formula in p. 696) states that the α-Riesz capacity of the Cantor set is comparable to(∑

∞

n=1 a2
n
)−1/2, so that positive capacity yields a convergent series. We remark that

the previous argument uses very strong results, in particular the nonhomogeneous
T (1)-Theorem of Nazarov, Treil and Volberg, to extract the subset F on which
the singular Riesz transform is L2(µ|F ) bounded. In [Cufí et al. 2022] one resorts
to Menger curvature, which is not available for kernels of homogeneity −α with
1 < α < d , and the proof is slightly simpler. It would be desirable to have a direct
argument relating the series to the convergence of the martingale.

The part of the stopping time argument of Section 3 that does not obviously
extend to higher dimensions is related to the sector σ(z, 120◦). In particular, one
should replace the 45◦ degrees sectors centred at the origin with one edge on a
coordinate axis with other regions. We proceed as follows. Divide Rd into 2d

regions (which in R3 are the usual octants) by requiring that each coordinate has a
definite sign. For example,

O = {x ∈ Rd
: x1 ≥ 0, x2 ≥ 0, . . . xd ≥ 0}

or
O ′

= {x ∈ Rd
: x1 ≤ 0, x2 ≥ 0, . . . xd ≥ 0}

are such regions. Let us concentrate in the region O . Divide O in the d! subregions
determined by a permutation σ of the d variables

Oσ = {x ∈ Rd
: 0 ≤ xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(d)}.
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Note that the maximal angle between two vectors lying in a subregion Oσ is
precisely arccos(d−1/2), which approaches 90◦ as d → ∞. Given a cone 0 with
vertex at the origin and aperture θ , we would like to find a region Oσ contained in
the cone 0. This can be done as follows. The axis of the cone is a ray emanating
from the origin contained in Oσ for some σ . Taking θ = θ(d) < π close enough
to π one can achieve Oσ ⊂ 0. Indeed, something stronger can be obtained: there
exists a sufficiently small angle γ = γ (d) such that expanding Oσ in all directions
by at most γ degrees one still remains in the cone 0.

The planar argument now works with θ in place of 120◦.
One also needs to have enough linear isometries to transport one region Oσ into

another Oσ ′ . Consider the following kinds of linear isometries. Fix a variable xi

and take the mapping that leaves the other variables invariant and changes the sign
to the xi variable. Given two variables xi and x j with i ̸= j consider the mapping
that leaves the other variables invariant and interchanges xi and x j . Finally take the
mapping x → −x . Let S be the set of such linear isometries. One can easily check
that given two regions Oσ and Oσ ′ one can map one into the other by composing
finitely many isometries in S.

All these elements lead to a stopping time argument that proves Theorem 1.2.
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CERTAIN FOURIER OPERATORS AND THEIR
ASSOCIATED POISSON SUMMATION FORMULAE ON GL1

DIHUA JIANG AND ZHILIN LUO

We explore the possibility of using harmonic analysis on GL1 to understand
Langlands automorphic L-functions in general, as a vast generalization of the
PhD Thesis of J. Tate in 1950. For a split reductive group G over a number
field k, let G∨(C) be its complex dual group and ρ be an n-dimensional
complex representation of G∨(C). For any irreducible cuspidal automorphic
representation σ of G(A), where A is the ring of adeles of k, we introduce the
space Sσ,ρ(A×) of (σ, ρ)-Schwartz functions on A× and (σ, ρ)-Fourier oper-
ator Fσ,ρ,ψ that takes Sσ,ρ(A×) to Sσ̃ ,ρ(A×), where σ̃ is the contragredient
of σ . By assuming the local Langlands functoriality for the pair (G, ρ), we
show that the (σ, ρ)-theta functions 2σ,ρ(x, φ) :=

∑
α∈k× φ(αx) converge

absolutely for all φ ∈ Sσ,ρ(A×). We state conjectures on the (σ, ρ)-Poisson
summation formula on GL1, and prove them in the case where G = GLn

and ρ is the standard representation of GLn(C). This is done with the help
of results of Godement and Jacquet (1972). As an application, we provide
a spectral interpretation of the critical zeros of the standard L-functions
L(s, π ×χ) for any irreducible cuspidal automorphic representation π of
GLn(A) and idele class character χ of k, extending theorems of C. Soulé
(2001) and A. Connes (1999). Other applications are in the introduction.
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1. Introduction

Let k be a number field and A be the ring of adeles of k. It is well known that
A is a locally compact abelian group and the diagonal embedding of k into A is
a lattice, i.e., the image, which is still denoted by k, is discrete and the quotient
k\A is compact. The classical theory of harmonic analysis on the quotient k\A —
in particular, the famous 1950 Princeton thesis of J. Tate [44] — has had a great
impact on the modern development of number theory, especially on the theory of
automorphic L-functions.

In Tate’s thesis, the classical Fourier transform and the associated Poisson summa-
tion formula are responsible for the meromorphic continuation and global functional
equation of the Hecke L-function L(s, χ) attached to an automorphic character χ
of k×

\A×.
In their pioneering work in 1972, R. Godement and H. Jacquet extended the

work of Tate on L(s, χ) (and also the work of T. Tamagawa in [43]) to the standard
automorphic L-function L(s, π) attached to any irreducible cuspidal automorphic
representation π of GLn(A) [16]. In their work, the Fourier transform and the
associated Poisson summation formula for Mn(k)\Mn(A) are responsible for the
meromorphic continuation and global functional equation of L(s, π). Here Mn

denotes the space of all n×n matrices.
In 2000, A. Braverman and D. Kazhdan [6] proposed that there should exist a

generalized Fourier transform Fρ,ψ on G(A) for any reductive group G defined
over k and any finite-dimensional complex representation ρ of the L-group L G;
and if the associated Poisson summation formula could be established, then there
is a hope to prove the Langlands conjecture [29] on meromorphic continuation
and global functional equation for automorphic L-function L(s, π, ρ) attached to
the pair (π, ρ), where π is any irreducible cuspidal automorphic representation of
G(A). In [33; 34], one may find careful discussions on the spherical case of and a
helpful introduction to the proposal. In his 2020 paper [37], B. C. Ngô suggests that
such generalized Fourier transforms could be put in a framework that generalizes the
classical Hankel transform for harmonic analysis on GL1 and might be more useful
in the trace formula approach to establish the Langlands conjecture of functoriality
in general.

1A. GL1-theory. We develop GL1-theory to explore a possibility of using har-
monic analysis on GL1 to understand Langlands automorphic L-functions in general,
which would be a vast generalization of the classical work of Tate in [44] or of the
more systematical treatment by A. Weil in [48]. The development goes in two steps.
The first step is to establish it for the standard automorphic L-function L(s, π)
associated with an irreducible cuspidal automorphic representation π of GLn(A).
When n = 1 and π is an automorphic character χ , it is the theory developed in Tate’s
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thesis. The second step is to formulate the framework for the general automorphic
L-function L(s, π, ρ) associated with a pair (π, ρ) as introduced above.

The GL1-theory for a standard L-function L(s, π) is a reformulation and refine-
ment of the Godement–Jacquet theory [16] for L(s, π) of GLn . It is based on the
determinant morphism

(1-1) det : Mn → Ga; GLn → Gm,

where Ga(k) = k and Gm(k) = GL1(k) = k×. We write π =
⊗

ν∈|k|
πν where |k|

is the set of local places of k and πν is an irreducible admissible representation of
GLn(kν), which is of Casselman–Wallach type if kν is an Archimedean local field.
For each πν , by taking the fiber integration along det as defined in (3-6), we define
in Definition 3.3 the πν-Schwartz space Sπν (k×

ν ). It is important to understand the
structure of the space Sπν (k×

ν ) of πν-Schwartz functions on k×
ν , whose properties are

discussed intensively in Section 3. In particular, by Proposition 3.2 and Corollary 3.8,
we have that

C∞

c (k
×

ν )⊂ Sπν (k
×

ν )⊂ C∞(k×

ν ).

It is important to mention that Theorem 7.1 provides a new characterization of
C∞

c (k
×
ν ) as a subspace of Sπν (k×

ν ) by means of the fiber integration along det in
(3-6). Through diagram (3-16), we define the πν-Fourier operator (or transform)
Fπν ,ψν , where ψν is the ν-component of a fixed nontrivial character ψ of k\A.
By the local GL1-theory (Theorems 3.4 and 3.10), there exists a so-called basic
function Lπν ∈ Sπν (k×

ν ) when ν < ∞ and πν is unramified, and the πν-Fourier
operator maps the πν-Schwartz space Sπν (k×

ν ) to the π̃ν-Schwartz space Sπ̃ν (k×
ν )

with Fπν ,ψν (Lπν )= Lπ̃ν . The global π -Schwartz space Sπ (A×) is defined to be the
restricted tensor product

Sπ (A×) :=

⊗
ν∈|k|

Sπν (k
×

ν )

with respect to the basic functions Lπν for almost all finite local places, and the
global π -Fourier operator Fπ,ψ is defined by

Fπ,ψ(φ) :=

⊗
ν∈|k|

Fπν ,ψν (φν)

for any factorizable functions φ =
⊗

ν∈|k|
φν ∈ Sπ (A×). One of the main results in

the global GL1-theory is the π -Poisson summation formula on GL1.

Theorem 1.1 (π-Poisson summation formula, Theorem 4.7). Let π be an irre-
ducible cuspidal automorphic representation of GLn(A). For any φ ∈ Sπ (A×), the
π -theta function

2π (x, φ) :=

∑
α∈k×

φ(αx)
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converges absolutely and locally uniformly as a function in x ∈ A×, and we have
the identity

(1-2) 2π (x, φ)=2π̃ (x−1,Fπ,ψ(φ)) for x ∈ A×.

According to the tradition in literature, the π-Poisson summation formula in
(1-2) may also be called the π -theta inversion formula. Our proof of Theorem 1.1
(Theorem 4.7) is based on the work of Godement–Jacquet in [16].

The GL1-theory for general L-functions L(s, σ, ρ) is formulated by means of
the local Langlands functorial conjecture associated with ρ, which is the major
conjecture in the local theory of the Langlands program.

For a k-split reductive group G, let G∨(C) be its complex dual group and
ρ be an n-dimensional complex representation of G∨(C). For any irreducible
cuspidal automorphic representation σ =

⊗
ν∈|k|

σν of G(A), we assume that the
local Langlands functorial transfer πν = πν(σν, ρ) exists and is an irreducible
admissible representation of GLn(kν), which is of the Casselman–Wallach type if
kν is Archimedean. We define as in (6-5) the (σν, ρ)-Schwartz space on k×

ν to be

Sσν ,ρ(k
×

ν ) := Sπν (k
×

ν ),

and at unramified local places, the (σν, ρ)-basic function Lσν ,ρ is taken to be the
πν-basic function Lπν ∈Sπν (k×

ν ). Then we can define as in (6-6) the (σ, ρ)-Schwartz
space on A× to be

Sσ,ρ(A×) :=

⊗
ν

Sσν ,ρ(k
×

ν ),

which is the restricted tensor product with respect to the basic function Lσν ,ρ at
almost all finite local places, and define, as in (6-8), the (σ, ρ)-Fourier operator (or
transform) Fσ,ρ,ψ that takes Sσ,ρ(A×) to Sσ̃ ,ρ(A×), where σ̃ is the contragredient
of σ . The first result in the global GL1-theory for L(s, σ, ρ) is the following.

Theorem 1.2. With notations as introduced above, for all φ ∈ Sσ,ρ(A×), the (σ, ρ)-
theta function

2σ,ρ(x, φ) :=

∑
α∈k×

φ(αx)(1-3)

converges absolutely and locally uniformly as a function in x ∈ A×.

It is clear that Theorem 1.2 is a special case of Theorem 6.2, which asserts the
same result as in Theorem 1.2 for much more general σ . The proof of Theorem 6.2
is deduced from the technical result (Theorem 5.4), which can be stated as follows.

Theorem 1.3 (Theorem 5.4). Let π =
⊗

ν∈|k|
πν be an irreducible admissible

representation of GLn(A) with Assumption 5.1. Then for any φ ∈ Sπ (A×) :=
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ν∈|k|

Sπν (k×
ν ), the π -theta function

2π (x, φ) :=

∑
α∈k×

φ(αx)

converges absolutely and locally uniformly as a function in x ∈ A×.

We refer to Section 5 for notation not given here. Section 5 is devoted to develop
the basic properties of such general theta functions. Then we show that for any irre-
ducible admissible automorphic representation π of GLn(A), Assumption 5.1 holds
(Proposition 5.5). As a consequence, we obtain the following general assertion.

Corollary 1.4 (Corollary 5.6). Let π be any irreducible admissible automorphic
representation of GLn(A). For any φ ∈ Sπ (A×), the π -theta function

2π (x, φ)=

∑
α∈k×

φ(αx)

converges absolutely and locally uniformly as a function in x ∈ A×.

It remains to be an interesting problem to establish the π-Poisson summation
formula for such general π -theta functions as in Corollary 1.4, although Theorem 7.3
obtains the π -Poisson summation formula as in Theorem 1.1 for 2π (x, φ) when π
is any irreducible square-integrable automorphic representation of GLn(A) and φ
has restrictions at two local places (see Theorem 7.3 for details).

The following is the main statement in the global GL1-theory for L(s, σ, ρ).

Conjecture 1.5 ((σ, ρ)-Poisson summation formula). Let ρ : G∨(C)→ GLn(C)

be any finite-dimensional representation of the complex dual group G∨(C) and σ
be an irreducible cuspidal automorphic representation of G(A). Then there exist
nontrivial k×-invariant linear functionals Eσ,ρ and Eσ̃ ,ρ on Sσ,ρ(A×) and Sσ̃ ,ρ(A×),
respectively, such that the (σ, ρ)-Poisson summation formula

Eσ,ρ(φ)= Eσ̃ ,ρ(Fσ,ρ,ψ(φ))

holds for φ ∈ Sσ,ρ(A×), where Sσ,ρ(A×) and Fσ,ρ,ψ are defined in Section 6B.

It is expected that such Poisson summation formulae on GL1 should be responsi-
ble for the Langlands conjecture on the global functional equation of automorphic
L-functions associated with the pairs (σ, ρ). Variants of Conjecture 1.5 will be dis-
cussed in Section 7C and see Conjecture 7.4 for details. It is clear that Theorem 1.1
proves Conjecture 1.5 for the case when σ is an irreducible cuspidal automor-
phic representation π of G(A) = GLn(A) and ρ is the standard representation
of G∨(C) = GLn(C) (Theorem 4.7). A variant of Theorem 4.7 (Theorem 1.1) is
established in Theorem 7.3 when π is an irreducible square-integrable automorphic
representation of GLn(A), based on the characterization in Theorem 7.1 of the
subspace C∞

c (k
×
ν ) in Sπν (k×

ν ) through the fiber integration.
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It is important to mention that according to the definition of Sσ,ρ(A×) and Fσ,ρ,ψ
in (6-6) and (6-8), respectively, if the image of σ under the Langlands functorial
transfer associated with ρ (if it exists) is an irreducible cuspidal automorphic
representation π of GLn(A), then the nontrivial k×-invariant linear functionals Eσ,ρ
and Eσ̃ ,ρ in Conjecture 1.5 can be taken to be

Eσ,ρ(φ)=2σ,ρ(1, φ) and Eσ̃ ,ρ(φ)=2σ̃ ,ρ(1, φ)

for any φ ∈ Sσ,ρ(A×) (see Corollary 6.3 for details). In this case, Conjecture 1.5
follows from Theorem 1.1 (Theorem 4.7). Therefore, Conjecture 1.5 is supported
by various known cases of the global Langlands functoriality conjecture associated
with ρ : G∨(C)→ GLn(C).

From the point of view of the global Langlands functoriality conjecture, it
is important to extend Theorem 1.1 (Theorem 4.7) to more general irreducible
automorphic representations of GLn(A), which may yield new understanding of
the nature of the both nontrivial k×-invariant linear functionals Eσ,ρ and Eσ̃ ,ρ in
Conjecture 1.5. At this point, we would also like to bring the attention of the reader
to the work of L. Lafforgue [27; 28] on the relations between the global Langlands
functoriality conjecture and a certain nonlinear Poisson formula conjecture.

The ultimate goal in the global theory for L(s, σ, ρ) is to prove Conjecture 1.5
without using the global Langlands functoriality. It is expected that Conjecture 1.5
can be proved directly for a split classical group G and the standard representation ρ
of the complex dual group G∨(C), by using the doubling method of I. Piatetski-
Shapiro and S. Rallis in [14] and the recent work of L. Zhang and the authors in
[26] and of J. Getz and B. Liu in [15].

As applications of the GL1-theory for automorphic L-functions and the π -Poisson
summation formulas, we are able to provide in Theorem 8.1 a spectral interpretation
of the critical zeros of the standard L-functions L(s, π × χ) for any irreducible
cuspidal automorphic representation π of GLn(A) and idele class character χ of k.
Theorem 8.1 is a reformulation of [40, Theorem 2] in the adelic framework of
A. Connes in [11] and is an extension of [11, Theorem III.1] from the Hecke
L-functions L(s, χ) to the automorphic L-functions L(s, π ×χ). In [24], Zhaolin
Li and Dihua Jiang provide a new proof of the Voronoi summation formula for
GLn [20, Theorem 1] by means of Theorem 4.7 (Theorem 1.1), in other words, by
means of the GL1-reformulation of the Godement–Jacquet theory for the standard
L-functions of GLn . This GL1-theory also proves in [24] the (GLn, π)-version with
the Godement–Jacquet kernels of the Clozel theorem [10, Theorem 1.1], which
was proved by L. Clozel for n = 1 and with the Tate kernels. In their upcoming
work [35], Ngô and Luo use the ideas and the methods of this paper and of [25] to
treat the local theory of the Braverman–Kazhdan–Ngô proposal for the torus case.
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1B. Brief explanation of each section. In Section 2, we reformulate the local
theory of Godement–Jacquet [16] in terms of the framework of the Braverman–
Kazhdan–Ngô proposal. We take F = kν for every ν ∈ |k| and recall the local theory
of the Mellin transforms, mainly from [21, Chapter I]. In general, it could be highly
nontrivial to reformulate the known Rankin–Selberg theory for certain automorphic
L-functions in terms of the framework of the Braverman–Kazhdan–Ngô proposal
as indicated in [26]. The key point is that one has to figure out the invariant
distribution 8ν on G(kν), which controls the local theory proposed by Braverman–
Kazhdan in [6] and by Ngô in [37]. Even in the case of Godement–Jacquet, the
candidate of such an invariant distribution 8GJ,ν is expected to the experts, but
there is no written document available. We provide the details in Section 2C and
the results are given in Proposition 2.8.

In Section 3, we fully develop the local theory of harmonic analysis on GL1 for
the Langlands local L-factors L(s, π) and γ -factors γ (s, π, ψ), attached to any
irreducible admissible representations π of GLn(F). When F is non-Archimedean,
we take π to be irreducible smooth representations of GLn(F); and when F is
Archimedean, we take π to be irreducible Casselman–Wallach representations of
GLn(F) [4; 9; 41; 46]. The set of equivalence classes of all such representations of
GLn(F) is denoted by 5F (GLn).

By Theorem 2.3, via the Mellin inversion, the local Godement–Jacquet L-
functions (or L-factors) (or even general local Langlands L-functions) could be
a GL1-object, i.e., there exists a subspace of smooth functions C∞(F×), whose
Mellin transform sees the corresponding local L-functions. One of the goals in
this section is to recover such a subspace associated to a local Godement–Jacquet
L-function L(s, π) by means of the matrix coefficients of π . More precisely,
we introduce the space of π-Schwartz functions on F× for any π ∈ 5F (GLn),
which is denoted by Sπ (F×) (Definition 3.3). By Proposition 3.2, we have that
Sπ (F×) ⊂ C∞(F×). The first local result is Theorem 3.4, which establishes the
local theory of zeta integrals on GL1 for the Langlands local L-function L(s, π)
for any π ∈5F (GLn). The relevant local functional equation and the properties
of the π-Fourier operator (transform) Fπ,ψ as defined in (3-17) is established in
Theorem 3.10, the second local result.

We note that in [25], a further local theory has been developed so that the
π-Fourier operator Fπ,ψ can be expressed as a convolution operator with kernel
functions kπ,ψ for any π ∈ 5F (GLn) [25, Theorem 5.1]. In [24], such kernel
functions are proved to be the normalized Bessel functions associated with π and
a certain Weyl group element of GLn . Hence, the π-Fourier operator Fπ,ψ is a
natural generalization of the classical Hankel transform.

In Section 4, we develop the global theory of harmonic analysis on GL1 for the
standard automorphic L-functions L(s, π) associated with any irreducible cuspidal
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automorphic representation π of GLn(A). To do this, we consider any irreducible
admissible representation π =

⊗
ν∈|k|

πν of GLn(A), with πν ∈ 5kν (GLn), and
introduce, for more general π , the π-Schwartz space Sπ (A×) =

⊗
ν∈|k|

Sπν (k×
ν )

in (4-1), where the restricted tensor product with respect to the basic function
Lπν (as defined in Theorem 3.4) is taken at almost all finite local places ν. The
π-Fourier operator Fπ,ψ(φ) =

⊗
ν∈|k|

Fπν ,ψν (φν) is defined in (4-3), with φ =⊗
ν φν ∈ Sπ (A×). The main global result in this section is Theorem 4.7, which is a

restatement of Theorem 1.1 and establishes the π-Poisson summation formula on
GL1 for any irreducible cuspidal automorphic representation π of GLn(A).

To understand the Poisson summation formulae in Conjecture 1.5, it is desirable to
explore variants of Theorem 4.7 when the automorphic representation π may not be
cuspidal, from the point of view of the global Langlands functoriality. In Section 5,
we first show that for any irreducible admissible representation π of GLn(A), which
may not be automorphic, but satisfies Assumption 5.1, the π -theta functions

2π (x, φ)=

∑
γ∈k×

φ(γ x) for φ ∈ Sπ (A×)

converge absolutely and locally uniformly as functions in x ∈ A× (Theorem 5.4).
Then we show that Assumption 5.1 holds for any automorphic representation π
of GLn(A) (Proposition 5.5). With Theorem 5.4, we are ready to explore a more
general situation in order to formulate Conjecture 1.5 and its variant (Conjecture 7.4).

In Section 6, we consider any k-split reductive group G. In Section 6B, for any
finite-dimensional representation ρ of the complex dual group G∨(C), we define the
relevant Schwartz spaces Sσ,ρ(A×), called the (σ, ρ)-Schwartz space, in (6-6), and
(σ, ρ)-Fourier operators Fσ,ρ,ψ in (6-8) for any irreducible cuspidal automorphic
representation σ of G(A), under the assumption (Assumption 6.1) that the local
Langlands reciprocity map exists for G over all finite local places ν of k. We
prove in such a generality the convergence properties of the (σ, ρ)-theta function
2σ,ρ(x, φ) as defined in (1-3) for any φ ∈ Sσ,ρ(A×) and any x ∈ A× (Theorem 6.2,
which contains Theorem 1.2 as a special case).

In Section 7, after we establish a new characterization of C∞
c (k

×
ν ) as a subspace

of Sπν (k×
ν ) in Theorem 7.1 at all local places of k, we prove a variant of Theorem 4.7

when π is an irreducible square-integrable automorphic representation of GLn(A)

(Theorem 7.3). Finally we write down a variant of Conjecture 1.5 with more details
in Conjecture 7.4.

In order to understand the Poisson summation formulae in Conjectures 1.5
and 7.4, we have to explore and develop harmonic analysis on GL1 initiated by
the (σ, ρ)-Fourier operator Fσ,ρ,ψ and the (σ, ρ)-Schwartz space Sσ,ρ(A×), both
locally and globally. We refer to [24; 25] for a further discussion of the local theory,
while a further global theory remains to be developed in our future work.
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In Section 8, as an application of the GL1-harmonic analysis we developed be-
forehand, we provide a spectral interpretation of the critical zeros of the automorphic
L-functions L(s, π ×χ) (Theorem 8.1) for any irreducible cuspidal automorphic
representation π of GLn(A) and any character χ of the idele class group of k. It
can be viewed as a reformulation of [40, Theorem 2] in the adelic framework of
A. Connes in [11] and an extension of [11, Theorem III.1] from Hecke L-functions
L(s, χ) to automorphic L-functions L(s, π ×χ). The proof uses a combination of
arguments in [40], and those in [11], together with the results developed before
Section 8. Further results along the line of [11] will be written in our forthcoming
work.

2. Godement–Jacquet theory and reformulation

2A. Mellin transforms. We recall the local theory of Mellin transforms from the
book of Igusa [21, Chapter I] and state them in a slightly more general situation in
order to treat the case that meromorphic functions may have poles that are not real
numbers. Since the proofs are almost the same, we omit the details.

Let F be a local field of characteristic zero. This means that it is either the
complex field C, the real field R, or a finite extension of the p-adic field Qp for
some prime p.

When F is non-Archimedean, let oF be the ring of integers with maximal
ideal pF and fix a uniformizer ϖF of pF . Let oF/pF = κF ≃ Fq . Fix the norm
|x |F = q−ordF (x) where ordF : F → Z is the valuation on F such that ordF (ϖF )= 1.
Fix the Haar measure d+x on F so that vol(d+x, oF ) = 1. Let ψ = ψF be an
additive character of F which is trivial on oF but nontrivial on ϖ−1

F · oF . In
particular the standard Fourier transform defined via ψF is self-dual w.r.t. d+x .
Similarly, fix a multiplicative Haar measure d×x on F×, which is normalized so
that vol(d×x, o×

F )= 1. In particular d×x = (1/ζF (1)) · (d+x/|x |F ), where ζF (s) is
the local Dedekind zeta factor attached to F .

When F is Archimedean, define on F the norm

|z|F =

{
absolute value of z, F = R,

zz̄, F = C.

Take the Haar measure d+x on F that is the usual Lebesgue measure on F , and set

d×x =

{
d+x

2|x |F
, F = R,

d+x
2π |x |F

, F = C,

the multiplicative Haar measures on F×. The additive character ψ = ψF of F is
chosen as

ψF (x)=

{
exp(2π i x), F = R,

exp(2π i(x + x̄)), F = C.
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For convenience, define on F the norm

| · | =

{
| · |F , F ̸= C,

| · |
1/2
F , F = C.

We denote by X(F×) the set of all quasicharacters of F×. Define the topological
group �F to be {±1} if F = R, C×

1 if F = C, and the unit group o×

F if F is
non-Archimedean. It is clear that any χ ∈ X(F×) can be written as

(2-1) χ(x)= χu(x)= χu,ω(x)= |x |
u
F ω(ac(x)),

for any x ∈ F×, with u ∈ C and ω ∈ �∧

F , the Pontryagin dual of �F . Here
ac(x)= x/|x |F ∈ o×

F if F is non-Archimedean, and

(2-2) ac(x)=

{ x
|x |F

∈ {±1}, F = R,
x
|x |

=
x

|x |
1/2
F

∈ C×

1 , F = C.

It is clear that the unitary character ω of �F is uniquely determined by χ ∈X(F×),
in particular, we have

ω(ac(x))= ac(x)p,(2-3)

with p ∈ {0, 1} if F = R and p ∈ Z if F = C. Hence, we may sometimes write
χ = (u, ω) and ω(x)= ω(ac(x)) for x ∈ F×.

For any local field F of characteristic zero, following [21, Sections I.4 and I.5],
we define the following two spaces of functions associated to the local field F .

Definition 2.1. Let F(F×) be the space of complex-valued functions f such that:

(1) f ∈ C∞(F×), the space of all smooth functions on F×.

(2) When F is non-Archimedean, f(x) = 0 for |x |F sufficiently large. When
F is Archimedean, we define f(n) := dnf/dxn if F = R, and f(n) = f(a+b)

:=

∂a+bf/(∂ax∂b x̄) if F = C and n = a + b. Then we have

f(n)(x)= o(|x |
ρ
F )

as |x |F → ∞ for any ρ and any n = a + b ∈ Z≥0 with a, b ∈ Z≥0.

(3) When F is Archimedean, there exists

• a sequence {mk}
∞

k=0 of positive integers,

• a sequence of smooth functions {ak,m} on {±1} if F = R and on C×

1 if F = C,
parameterized by m = 1, 2, . . . ,mk and k ∈ Z≥0,

• a sequence {λk}
∞

k=0 of complex numbers with {Re(λk)}
∞

k=0 a strictly increasing
sequence of real numbers with no finite accumulation point and Re(λ0)≥λ∈ R,
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such that

lim
|x |F →0

{
f(x)−

∞∑
k=0

mk∑
m=1

ak,m(ac(x))|x |
λk
F (ln |x |F )

m−1
}

= 0.

The limit is termwise differentiable and uniform (even after termwise differentiation)
in ac(x).

When F is non-Archimedean, one can take the sequence {λk} to be a finite
set 3 and the sequence {mk} to be a finite subset of Z≥0. The smooth functions
{ak,m(ac(x))} are on the unit group o×

F .

Since the topological group � is compact and abelian, we have the following
Fourier expansion for the smooth functions {ak,m(ac(x))} on �:

ak,m(ac(x))=

∑
ω∈�∧

ak,m,ωω(ac(x)).

In the Archimedean case, we may write ak,m,ω = ak,m,p with p ∈ {0, 1} if F = R

and p ∈ Z if F = C.

Definition 2.2. With the same notation as in Definition 2.1, let Z(X(F×)) be the
space of complex-valued functions z(χs,ω)= z

(
| · |

s
F ω(ac( · ))

)
on X(F×) such that:

(1) z(χs,ω) is meromorphic on X(F×) with poles at most for s = −λ j with λ j

belonging to the given set {λk}
∞

k=0 if F is Archimedean; and belonging to the given
finite set 3 if F is non-Archimedean.

(2) For any k ≥ 0, the difference

z(χs,ω)−

mk∑
m=1

bk,m,ω

(s + λk)m

is holomorphic for s in a small neighborhood of −λk if F is Archimedean; and is a
polynomial in C[qs, q−s

] if F is non-Archimedean.

(3) When F is non-Archimedean, the function z(χs,ω) is identically zero for almost
all characters ω ∈�∧ with �= o×

F . When F is Archimedean, for every polynomial
P(s, p) in s, p with coefficients in C, and every pair of real numbers a < b, the
function P(s, p)z(χs,ω) is bounded when s belongs to the vertical strip

Sa,b = {s ∈ C | a ≤ Re(s)≤ b},(2-4)

with neighborhoods of −λ0,−λ1, . . . removed therefrom. More precisely, there
exists a constant c depending only on P , z, a, b, but neither on s nor on p, such that

|P(s, p)z(χs,ω)| ≤ c
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when s runs in the vertical strip Sa,b with small neighborhoods of −λ0,−λ1, . . .

removed.

The main results on the local theory of Mellin transforms established in [21,
Chapter I] are as follows.

Theorem 2.3 (Mellin transforms). There is a bijective linear correspondence M =

MF between the space F(F×) and the space Z(X(F×)). More precisely, for
f ∈ F(F×),

M(f)(χs,ω)=

∫
F×

f(x)χs,ω(x) d×x

defines a holomorphic function on

X−σ0(F
×)= {χs,ω( · )= | · |

s
Fω(ac( · )) ∈ X(F×) | Re(s) >−σ0}

for some σ0 ∈ R, which has a meromorphic continuation to all characters χs,ω ∈

X(F×) and belongs to Z(X(F×)) after meromorphic continuation. Conversely, for
z ∈ Z(X(F×)) and x ∈ F×, the Mellin inverse transform M−1

F (z)(x) belongs to the
space F(F×). We have the identities

M(M−1(z))= z and M−1(M(f))= f

for any f∈F(F×) and z∈Z(X(F×)). Here the Mellin inverse transform is explicitly
given as follows.

When F is Archimedean, the Mellin inverse transform M−1
F (z)(x) is given by

(2-5) M−1(z)(x) :=

∑
ω∈�∧

F

1
2π i

∫ σ+i∞

σ−i∞
z(χs,ω)χs,ω(x)−1 ds

with ω(ac(x))= ac(x)p, which defines a function f in F(F×) independent of σ >
−σ0, and the coefficients ak,m,p and bk,m,p satisfy the relations

bk,m,p = (−1)m−1(m − 1)! · ak,m,−p

for every k ≥ 0,m ≥ 1 with p ∈ {0, 1} if F = R and p ∈ Z if F = C. The coefficients
ak,m,p and bk,m,p satisfy the relations

bλ,m,ω =

mλ∑
j=m

e j,m(− ln q) j−1aλ, j,ω−1

with e j,m defined by the following identity of polynomials in a formal unknown t :

tn−1
=

n∑
ℓ=1

en,ℓ

( t+ℓ−1
ℓ−1

)
.
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If F is non-Archimedean, the Mellin inverse transform M−1
F (z)(x) is given by

(2-6) M−1
F (z)(x) :=

∑
ω∈�∧

(
Resz=0(z(χs,ω)|x |

−s
F qs)

)
ω(ac(x))−1,

which defines a function f in F(F×). Here z = q−s for abbreviation.

2B. Local theory of Godement–Jacquet. Let Gn := GLn be the general linear
group defined over F . Fix the following maximal (open if F is non-Archimedean)
compact subgroup K of Gn(F)= GLn(F):

K =


GLn(oF ), F is non-Archimedean,
O(n), F = R,

U (n), F = C.

(2-7)

Fix the Haar measure dg = d+g/|det g|
n
F on Gn(F) where d+g is the measure

induced from the standard additive measure on Mn(F), the F-vector space of
n×n-matrices. In particular, Gn(F) embeds into Mn(F) in a standard way.

Let 5F (Gn) be the set of equivalence classes of irreducible smooth representa-
tions of Gn(F)when F is non-Archimedean; and of irreducible Casselman–Wallach
representations of Gn(F) when F is Archimedean. Let C(π) be the space of smooth
matrix coefficients attached to π .

Let S(Mn(F)) be the space of the standard Schwartz–Bruhat functions on Mn(F).
The standard Fourier transform Fψ acting on S(Mn(F)) is defined as

(2-8) Fψ( f )(x)=

∫
Mn(F)

ψ(tr(xy)) f (y) d+y,

where ψ is a nontrivial additive character of F . The standard Fourier transform Fψ
extends to a unitary operator on the space L2(M(F), d+x) and satisfies the identity

(2-9) Fψ ◦Fψ−1 = Id.

For any π ∈5F (Gn) and any quasicharacter χ ∈ X(F×), the local zeta integral
of Godement and Jacquet is defined by

(2-10) Z(s, f, ϕπ , χ)=

∫
Gn(F)

f (g)ϕπ (g)χ(det g)|det g|
s+(n−1)/2
F dg,

for any f ∈ S(Mn(F)) and ϕπ ∈ C(π). The following theorem contains the main
results in the local theory of the Godement and Jacquet zeta integrals [16, Chapter I].

Theorem 2.4. With the notation introduced above, the following statements hold
for any f ∈ S(Mn(F)) and ϕπ ∈ C(π):
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(1) The zeta integral Z(s, f, ϕπ , χ) defined in (2-10) is absolutely convergent for
Re(s) sufficiently large and admits a meromorphic continuation to s ∈ C.

(2) Z(s, f, ϕπ , χ) is a holomorphic multiple of the Langlands local L-function
L(s, π ×χ) associated to (π, χ) and the standard embedding

std : GLn(C)× GL1(C)→ GLn(C).

When F is non-Archimedean, the fractional ideal Iπ,χ that is generated by the local
zeta integrals Z(s, f, ϕπ , χ) is of the form

Iπ,χ = {Z(s, f, ϕπ , χ) | f ∈ S(Mn(F)), ϕπ ∈ C(π)} = L(s, π ×χ) · C[qs, q−s
];

and when F is Archimedean, the local zeta integrals Z(s, f, ϕπ , χ), with unitary
characters χ , have the following property. Let Sa,b be the vertical strip for any a<b,
defined in (2-4). If Pχ (s) is a polynomial in s such that the product Pχ (s)L(s, π×χ)

is bounded in the vertical strip Sa,b, then the product Pχ (s)Z(s, f, ϕπ , χ) must be
bounded in the same vertical strip Sa,b.

(3) The local functional equation

Z(1 − s,Fψ( f ), ϕ∨

π , χ
−1)= γ (s, π ×χ,ψ) ·Z(s, f, ϕπ , χ)

holds after meromorphic continuation, where the function ϕ∨
π (g) is defined as

ϕπ (g−1) ∈ C(π̃), and γ (s, π × χ,ψ) is the Langlands local gamma function
associated to (π, χ) and std.

(4) When F is non-Archimedean and π is unramified, take f ◦(g) = 1Mn(oF )(g)
to be the characteristic function of Mn(oF ) and ϕ◦

π (g) to be the zonal spherical
function associated to π . Then the identity

Z(s, f ◦, ϕ◦

π , χ)= L(s, π ×χ)

holds for any unramified characters χ and all s ∈ C as meromorphic functions in s.

For the statements of the current version of Theorem 2.4, we have some comments
in order. When F is non-Archimedean, the theorem is [16, Theorem 3.3]. When F
is Archimedean, the statements were established in [16] only for K -finite vectors f
in S(Mn(F)) and ϕπ in C(π), and were extended to general smooth vectors in [23,
Section 4.7] and also in [32, Theorem 3.10]. About the boundedness on vertical
strips, we refer to [23, Section 4].

2C. Reformulation of Godement–Jacquet theory. The local theory of Godement–
Jacquet zeta integrals can be reformulated within harmonic analysis and L2-theory.

For f ∈ S(Mn(F)), we define

(2-11) ξ f (g) := |det g|
n/2
F · f (g)



FOURIER OPERATORS AND POISSON FORMULAE ON GL1 315

for g ∈ Gn(F). Then we define the Schwartz space on Gn(F) to be

(2-12) Sstd(Gn(F)) := {ξ ∈ C∞(Gn(F)) | |det g|
−n/2

· ξ(g) ∈ S(Mn(F))}.

Proposition 2.5. The Schwartz space Sstd(Gn(F)) is a subspace of L2(Gn(F), dg),
which is the space of square-integrable functions on Gn(F).

Proof. For ξ ∈ Sstd(Gn(F)), write ξ(g)= |det g|
n/2
F · f (g) for some f ∈ S(Mn(F)).

We deduce the square-integrability of ξ by the computation∫
Gn(F)

ξ(g)ξ(g) dg =

∫
Gn(F)

f (g) f (g) d+g =

∫
Mn(F)

f (g) f (g) d+g <∞. □

Define the distribution kernel in the local theory of Godement–Jacquet to be

(2-13) 8GJ(g) := ψ(tr g) · |det g|
n/2
F ,

where ψ is a nontrivial additive character of F . We compute the convolution
8GJ ∗ ξ∨ for any ξ ∈ Sstd(Gn(F)) with ξ(g)= |det g|

n/2
F · f (g) for some f ∈

S(Mn(F)):

8GJ ∗ ξ∨(g)=

∫
Gn(F)

8GJ(h)ξ(g−1h) dh

=

∫
Gn(F)

ψ(tr h) · |det h|
n/2
F · |det g−1h|

n/2
F · f (g−1h) dh

=

∫
Gn(F)

f (h)ψ(tr gh) · |det gh|
n/2
F · |det h|

n/2
F dh

= |det g|
n/2
F

∫
Mn(F)

f (h)ψ(tr gh) d+h

= |det g|
n/2
F ·Fψ( f )(g).

Since Fψ( f )(g) belongs to S(Mn(F)), by definition, we must have that8GJ ∗ ξ∨(g)
belongs to Sstd(Gn(F)). We define the Fourier operator FGJ in the Godement–
Jacquet theory to be

(2-14) FGJ(ξ)(g) := (8GJ ∗ ξ∨)(g)

for any ξ ∈ Sstd(Gn(F)).

Proposition 2.6. For any ξ ∈ Sstd(Gn(F)) with ξ(g) = |det g|
n/2
F · f (g) for some

f ∈ S(Mn(F)), the Fourier operator FGJ on Sstd(Gn(F)) and the classical Fourier
transform Fψ on S(Mn(F)) are related by the identity

FGJ(ξ)(g)= (8GJ ∗ ξ∨)(g)= |det g|
n/2
F ·Fψ( f )(g)= |det g|

n/2
F ·Fψ

(
|det( · )|−n/2ξ

)
(g).
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For any ξ ∈ Sstd(Gn(F)) with ξ(g)= |det g|
n/2
F · f (g) for some f ∈ S(Mn(F)),

the zeta integral can be renormalized as

(2-15) Z(s, f, ϕπ , χ)=

∫
Gn(F)

|det g|
n/2
F f (g)ϕπ (g)χ(det g)|det g|

s−1/2
F dg

= Z(s, ξ, ϕπ , χ).

We compute the other side of the functional equation of the Godement–Jacquet zeta
integrals:

Z(1 − s,Fψ( f ),ϕ∨

π ,χ
−1)=

∫
Gn(F)

|det g|
n/2
F Fψ( f )(g)ϕ∨

π (g)χ
−1(g)|det g|

1/2−s
F dg

=

∫
Gn(F)

FGJ(ξ)(g)ϕ∨

π (g)χ
−1(g)|det g|

1/2−s
F dg

= Z(1 − s,FGJ(ξ),ϕ
∨

π ,χ
−1).

Proposition 2.7. For any ξ ∈ Sstd(Gn(F)), ϕπ ∈ C(π), and χ ∈ X(F×), the zeta
integral defined by

Z(s, ξ, ϕπ , χ)=

∫
Gn(F)

ξ(g)ϕπ (g)χ(det g)|det g|
s−1/2
F dg

satisfies the functional equation

Z(1 − s,FGJ(ξ), ϕ
∨

π , χ
−1)= γ (s, π ×χ,ψ) ·Z(s, ξ, ϕπ , χ),

which holds as meromorphic functions in s.

We are going to understand the Godement–Jacquet distribution 8GJ in terms of
the Bernstein center of Gn(F), when F is non-Archimedean. Recall from [3] that
the Bernstein center Z(G(F)) of a reductive group G(F) over a non-Archimedean
local field F is defined to be the endomorphism ring of the identity functor on the
category of smooth representations of G(F). It turns out that the Bernstein center
Z(G(F)) can be identified with the space of invariant and essentially compactly
supported distributions on G(F), where an invariant distribution 8 on G(F) is
called essentially compactly supported if 8 ∗ C∞

c (G(F)) ⊂ C∞
c (G(F)). It was

proved in [3] that through the Plancherel transform, the Bernstein center Z(G(F))
can also be identified with the space of regular functions on the Bernstein variety
�(G(F)) attached to G(F), where �(G(F)) is an infinite disjoint union of finite-
dimensional complex algebraic varieties.

Proposition 2.8. Let F be a non-Archimedean local field of characteristic zero. For
any m ∈ Z, define

Gn(F)m = {g ∈ Gn(F) | |det g|F = q−m
F }.

Let 1m := 1Gn(F)m be the characteristic function of Gn(F)m ⊂ Gn(F). Then the
following statements hold:
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(1) The invariant distribution

8GJ,m(g) :=8GJ(g)1Gn(F)m (g)=8GJ(g)1m(g)(2-16)

lies in the Bernstein center Z(Gn(F)) of Gn(F).

(2) Let fGJ,m be the regular function on �(Gn(F)) attached to 8GJ,m ∈ Z(Gn(F)).
For every π ∈5F (Gn), χ ∈ X(F×), and s ∈ C, define

πχs := π ⊗χs = π ⊗χ(det)|det|sF .

Then the Laurent series

fGJ(πχs )=

∑
m∈Z

fGJ,m(πχs )

is convergent for Re(s) sufficiently large, with a meromorphic continuation to s ∈ C,
and

fGJ(πχs )= γ
( 1

2 , π̃χs , ψ
)
= γ

( 1
2 − s, π̃ ×χ−1, ψ

)
.

Proof. For part (1), we have to show that the invariant distribution 8GJ,m(g) is
essentially compact on Gn(F). By a simple reduction, it suffices to show that, for
any open compact subgroup K of Gn(oF ), we have

8GJ,m ∗ 1K ∈ C∞

c (Gn(F)).

Since 1K(g)= 1K(g−1)= 1∨
K(g), the convolution 8GJ,m ∗ 1K =8GJ,m ∗ 1∨

K can be
written as

8GJ,m ∗ 1∨

K(g)=

∫
Gn(F)

8GJ,m(h)1K(g−1h) dh

=

∫
Gn(F)

8GJ,m(gh)1K(h) dh

=

∫
Gn(F)

ψ(tr gh)|det gh|
n/21m(gh)1K(h) dh.

By definition, 1K(h) ̸= 0 if and only if |det h|F = 1, and 1m(gh) ̸= 0 if and only
if |det g|F = q−m

F , i.e., g ∈ Gn(F)m . This implies that 1m(gh)= 1m(g). The last
integral can be written as

q−(mn)/2
F 1m(g)

∫
Gn(F)

ψ(tr(gh))1K(h) dh,

which can be written as

q−(mn)/2
F 1m(g)

∫
Mn(F)

ψ(tr(gh))1K(h) d+h = q−(mn)/2
F 1m(g)Fψ(1K)(g).
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Hence, we obtain that

8GJ,m ∗ 1K(g)= |det g|
n/2
F 1m(g)Fψ(1K)(g).

Since Fψ(1K)(g) ∈ S(Mn(F)) and |det g|
n/2
F 1m(g) is smooth on Mn(F), we ob-

tain that the convolution 8m,ψ ∗ 1K(g) belongs to C∞
c (Gn(F)) and the invariant

distribution 8GJ,m(g) is essentially compact on Gn(F).
For part (2), recall from [3] that the regular function fGJ,m attached to 8GJ,m is

defined as follows. For any π ∈5F (Gn) and v ∈ π , there exists an open compact
subgroup K of Gn(F), such that v ∈ πK, the subspace of K-fixed vectors in π . We
may define an action of 8GJ,m on π via

(2-17) π(8GJ,m)(v) := π(8GJ,m ∗ cK)(v),

where cK := vol(K)−11K is the normalized characteristic function of K. Since
8GJ,m ∗ cK lies in C∞

c (Gn(F)), the right-hand side is well defined, and so is the
left-hand side. It is clear that the action defined in (2-17) does not depend on the
choice of such an open compact subgroup K. By Schur’s lemma, there exists a
constant fGJ,m(π), depending on π , such that

(2-18) π(8GJ,m)= fGJ,m(π) · Idπ .

For each m ∈ Z, we define, for any ξ ∈ C∞
c (Gn(F)),

(2-19) FGJ,m(ξ)(g) := (8GJ,m ∗ ξ∨)(g)=

∫
Gn(F)

8GJ,m(h)ξ(g−1h) dh.

In order to include the quasicharacters χ ∈ X(F×) in the gamma function, we
write

(2-20) ϕπ [χ ](g) := ϕπ [χ ](g) := ϕπ (g)χ(det g)= (χ(g)π(g)v, ṽ),

with v ∈ Vπ and ṽ ∈ Vπ̃ , which is a matrix coefficient of π twisted by χ . We may
denote the space of such twisted matrix coefficients of π by C(π [χ ]). It is clear
that we have

Z(s, ξ, ϕπ [χ ])= Z(s, ξ, ϕπ , χ).

For each m ∈ Z, ϕπ [χ ] ∈ C(π [χ ]), and χ ∈ X(F×), consider the zeta function of
Godement–Jacquet, with FGJ,m(ξ) defined as in (2-19),

Z(1 − s,FGJ,m(ξ), ϕ
∨

π [χ ]
)= Z(1 − s,8GJ,m ∗ ξ∨, ϕ∨

π [χ ]
).(2-21)

By part (1) as proved above, we obtain that 8GJ,m ∗ ξ∨
∈ C∞

c (Gn(F)) for any
ξ ∈ C∞

c (Gn(F)). Hence, the integral in (2-21) is absolutely convergent for any
s ∈ C when ξ ∈ C∞

c (Gn(F)).
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We write the right-hand side of (2-21) as

(2-22)
∫

Gn(F)
8GJ,m ∗ ξ∨(g)ϕπ (g−1)χ−1(det g)|det g|

1/2−s
F dg,

which is equal to

(2-23)
∫

Gn(F)
8GJ,m ∗ ξ∨(g)(v, π̃(g)ṽ)χs−1/2(det g)−1 dg

=

(
v,

∫
Gn(F)

8GJ,m ∗ ξ∨(g)π̃χs−1/2(g)ṽ dg
)
.

It is clear that∫
Gn(F)

8GJ,m ∗ ξ∨(g)π̃χs−1/2(g)ṽ dg = π̃χs−1/2(8GJ,m ∗ ξ∨)ṽ

= π̃χs−1/2(8GJ,m)(π̃χs−1/2(ξ
∨)ṽ).

Since ξ∨ belongs to C∞
c (Gn(F)), the vector π̃χs−1/2(ξ

∨)ṽ belongs to the space of
π̃χs−1/2 . By definition, we have

(2-24) π̃χs−1/2(8GJ,m)= fGJ,m(π̃χs−1/2) · Iπ̃χs−1/2
.

Hence, we can write the right-hand side of (2-23) as(
v,

∫
Gn(F)

8GJ,m ∗ ξ∨(g)π̃χs−1/2(g)ṽ dg
)

= fGJ,m(π̃χs−1/2) · (v, π̃χs−1/2(ξ
∨)ṽ).

Next we compute the twisted coefficient (v, π̃χs−1/2(ξ
∨)ṽ) on the right-hand side

of the above equation as

(v, π̃χs−1/2(ξ
∨)ṽ)

=

∫
Gn(F)

ξ∨(h)(v, π̃χs−1/2(h)ṽ) dh =

∫
Gn(F)

ξ(h−1)(πχs−1/2(h
−1)v, ṽ) dh

=

∫
Gn(F)

ξ(h)(πχs−1/2(h)v, ṽ) dh =

∫
Gn(F)

ξ(h)ϕπ [χ ](h)|det h|
s−1/2 dh

= Z(s, ξ, ϕπ [χ ]).

Hence, we obtain the functional equation

Z(1 − s,FGJ,m(ξ), ϕ
∨

π [χ ]
)= fGJ,m(π̃χs−1/2) ·Z(s, ξ, ϕπ [χ ])(2-25)

for any ξ ∈ C∞
c (Gn(F)), ϕπ ∈ C(π) and χ ∈ X(F×).

Theorem 2.4 implies that, when Re(s) is sufficiently small, the zeta integral
Z(1 − s,FGJ(ξ), ϕ

∨

π [χ ]
) converges absolutely for any ξ ∈ C∞

c (Gn(F)), any ϕπ ∈
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C(π) and any unitary character χ ∈ X(F×). We write it as

Z(1 − s,FGJ(ξ), ϕ
∨

π [χ ]
)

=

∑
m∈Z

Z(1 − s,FGJ,m(ξ), ϕ
∨

π [χ ]
)= Z(s, ξ, ϕπ [χ ]) ·

∑
m∈Z

fGJ,m(π̃χs−1/2).

By comparing with the right-hand side of the functional equation in Theorem 2.4,
we obtain that, whenever Re(s) is sufficiently small,

fGJ(π̃χs−1/2)=

∑
m∈Z

fGJ,m(π̃χs−1/2)= γ (s, π ⊗χ,ψ)= γ (s, πχ , ψ).(2-26)

By changing s → s +
1
2 , we get

fGJ(π̃χs )= γ
(
s +

1
2 , πχ , ψ

)
= γ

( 1
2 , πχs , ψ

)
.

By taking the contragredient of πχs , we obtain that

fGJ(πχs )= γ
( 1

2 , π̃χs , ψ
)
= γ

( 1
2 − s, π̃ ×χ−1, ψ

)
.

This finishes the proof of part (2). □

3. π -Schwartz functions and Fourier operators

3A. Two spaces associated to π . For any π ∈ 5F (Gn), we are going to define
two spaces associated to π : Lπ (X(F×)) and Sπ (F×).

The space Lπ = Lπ (X(F×)) consists of C-valued meromorphic functions z(χ)
on X(F×) that satisfy the following conditions:

(1) z(χs,ω) is a holomorphic multiple of the standard local L-function L(s, π×ω)

with χs,ω(x)= |x |
s
Fω(ac(x)).

(2) If F is non-Archimedean, z(χs,ω) is nonzero for finitely many ω ∈ �∧, and
for each ω ∈�∧, z(χs,ω) ∈ L(s, π ×ω) · C[qs, q−s

].

(3) If F is Archimedean, for any polynomial P(χs,ω) = Pω(s), if the function
P(χs,ω)L(s, π ×ω) is holomorphic in any vertical strip Sa,b as in (2-4), with
small neighborhoods at the possible poles of the L-function L(s, π × ω)

removed, then for any z(χs,ω) ∈ Lπ , the product P(χs,ω)z(χs,ω) is bounded
in the same strip Sa,b, with small neighborhoods at the possible poles of the
L-function L(s, π ×ω) removed.

From part (3), we define a seminorm to be

µa,b:P(z) := sup
a≤Re(s)≤b

|P(χs,ω) · z(χs,ω)|.

Then the space Lπ is complete under the topology that is defined by the family of
seminorms µa,b:P for all possible choice of data a, b; P as in part (3) [23, Section 4].
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Proposition 3.1. For any π ∈5F (Gn), the space Lπ is a subspace of Z(X(F×))

as defined in Definition 2.2.

Proof. When F is non-Archimedean, the statement is a consequence of Theorem 2.4.
We would like to focus on the case when F is Archimedean. In this case, it suffices
to estimate the boundedness condition. To do so, recall the classical Stirling formula
(see [23, p. 81], for instance)

(3-1) 0(x + iy)∼ (2π)1/2|y|
x−1/2e−(π/2)|y|

for x fixed and |y| → ∞.
Consider the Archimedean local L-functions L(s, π ×ω)= L(s, π × ac( · )p),

which can be explicitly expressed in terms of classical 0-functions with the local
Langlands parameter of π . For instance, from [16, Section 8], there exists a finite
family of pairs {(li , ui )}

t
i=1 with

ui ∈ C, li ∈

{
Z/2Z ≃ {0, 1}, F = R,

Z, F = C,

such that in the fixed bounded vertical strip

Sa,b = {s ∈ C | a ≤ Re(s)≤ b},

up to a bounded factor in Sa,b, we have

L(s, π × ac( · )p)∼

{∏t
i=1 0

( s+ui +li +p
2

)
, F = R,∏t

i=1 0
(
s + ui +

|li +p|

2

)
, F = C,

with p ∈ Z/2Z ≃ {0, 1} if F = R; and p ∈ Z if F = C. Here li + p is understood
to be zero if both li and p are equal to 1 when F = R.

It follows from the classical Stirling formula in (3-1), in particular the exponential
decay of0(x+iy) along the imaginary axis, for any polynomial Pω(s)= P(s)∈C[s]
when F = R, and Pω(s)= P(s, p) ∈ C[s, p], the product P(s, p)L(s, π×ac( · )p)

is bounded in vertical strip Sa,b with small neighborhoods at the possible poles
removed. Hence, from the definition of the space Lπ (X(F×)), for any z(χs,ω) ∈

Lπ (X(F×)), the product P(s, p)z(χ), with χ(x)= |x |
s
F ac(x)p is bounded in ver-

tical strip Sa,b with small neighborhoods at the possible poles of the L-function
L(s, π × ac( · )p) removed. Therefore, we obtain that the space Lπ = Lπ (X(F×))

is contained in the space Z(X(F×)), as defined in Definition 2.2. □

For any π ∈5F (Gn), we define (Definition 3.3) the π -Schwartz space Sπ (F×)⊂

C∞(F×) attached to π , by using the theory of local zeta integrals of Godement–
Jacquet, and prove that

(3-2) Sπ (F×)= M−1(Lπ )⊂ C∞(F×)

by Theorems 2.3 and 2.4.
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Consider the determinant map

(3-3) det = detF : Gn(F)= GLn(F)→ F×.

It is clear that the kernel ker(det) equals SLn(F). For each x ∈ F×, the fiber of the
determinant map det is

(3-4) Gn(F)x := {g ∈ Gn(F) | det g = x}.

It is clear that each fiber Gn(F)x is an SLn(F)-torsor. Hence, one has the SLn(F)-
invariant measure dx g that is induced from the (normalized) Haar measure d1g on
SLn(F).

For ξ ∈ Sstd(Gn(F)) as defined in (2-12), ϕπ ∈ C(π), and χ ∈ X(F×), the local
zeta integral of Godement and Jacquet, as normalized in (2-15), can be written as

(3-5) Z(s, ξ, ϕπ , χ)=

∫
F×

( ∫
Gn(F)x

ξ(g)ϕπ (g) dx g
)
χ(x)|x |

s−1/2
F d×x .

By part (1) of Theorem 2.4, the local zeta integral converges absolutely for Re(s)
large. Hence, the inner integral of (3-5) satisfies

(3-6) φξ,ϕπ (x) :=

∫
Gn(F)x

ξ(g)ϕπ (g) dx g = |x |
n/2
F

∫
Gn(F)x

f (g)ϕπ (g) dx g,

if ξ(g) = |det g|
n/2

· f (g) for some f ∈ S(Mn(F)), is absolutely convergent for
almost all x ∈ F× and defines the fiber integration along the fibration in (3-3).

Proposition 3.2. For ξ ∈ Sstd(Gn(F)) and ϕπ ∈ C(π), the fiber integration in (3-6)
that defines the function φξ,ϕπ (x) is absolutely convergent for all x ∈ F×, and the
function φξ,ϕπ (x) is smooth over F×.

Proof. It is enough to show the proposition for the integral

(3-7)
∫

Gn(F)x
f (g)ϕπ (g) dx g

with any f ∈S(Mn(F)) and ϕπ ∈ C(π). In this case, the product f ·ϕπ is smooth on
Gn(F). Since the fiber Gn(F)x for any x ∈ F× is closed in Gn(F) and in Mn(F),
the restriction of f to the fiber Gn(F)x is a Schwartz function on Gn(F)x (see [5]
for F non-Archimedean and [1, Theorem 4.6.1] for F Archimedean).

When F is non-Archimedean, any ϕπ (g) ∈ C(π) is locally constant (smooth) on
Gn(F), and hence is smooth on the fiber Gn(F)x . This implies that the restriction
of f ·ϕπ is locally constant and compactly supported on the fiber Gn(F)x . Hence,
the integral in (3-7) is absolutely convergent for all x ∈ F×, and defines a smooth
function in x over F×.

When F is Archimedean, since π is a Casselman–Wallach representation of
Gn(F), the matrix coefficient ϕπ has at most polynomial growth on Gn(F) [45,
Theorem 4.3.5], as well as on the fiber Gn(F)x . This implies that the restriction of
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f ·ϕπ is a Schwartz function on the fiber Gn(F)x ([1, Definition 4.1.1]). Thus the
integral in (3-7) is absolutely convergent for all x ∈ F×. Now we write the integral
in (3-7) as

(3-8)
∫

Gn(F)x
f (g)ϕπ (g) dx g =

∫
SLn(F)

f (t1(x)g)ϕπ (t1(x)g) d1g,

where t1(x)= diag(x, 1, . . . , 1) ∈ Gn(F) and d1g is the Haar measure of SLn(F).
It is clear that the absolute convergence of the integral in (3-8) is uniform when x
runs in any compact subset of F×. Hence, the integral in (3-7) defines a smooth
function in x over F×. □

For ξ ∈Sstd(Gn(F)) and ϕπ ∈C(π), the function φξ,ϕπ (x) given in Proposition 3.2
via the fiber integration (3-6) is called a π -Schwartz function on F× associated to
the pair (ξ, ϕπ ). Here is the definition of π -Schwartz space.

Definition 3.3 (π -Schwartz space). For any π ∈5F (Gn), the space of π -Schwartz
functions is defined by

Sπ (F×)= Span{φξ,ϕπ ∈ C∞(F×) | ξ ∈ Sstd(Gn(F)), ϕπ ∈ C(π)},

where the π -Schwartz function φξ,ϕπ associated to a pair (ξ, ϕπ ) is defined in (3-6).

For any φ ∈ Sπ (F×) and a quasicharacter χ ∈X(F×), define a GL1 zeta integral
Z(s, φ, χ) associated to the pair (φ, χ) to be

(3-9) Z(s, φ, χ)=

∫
F×
φ(x)χ(x)|x |

s−1/2
F d×x .

When φ = φξ,ϕπ for some ξ ∈ Sstd(Gn(F)) and ϕπ ∈ C(π), from Theorem 2.4, we
have the identity of local zeta integrals

(3-10) Z(s, φ, χ)= Z(s, ξ, ϕπ , χ),

which holds for Re(s) sufficiently large and then for all s ∈ C by meromorphic
continuation. Therefore, Theorem 2.4 can be restated for the GL1 zeta integrals
Z(s, φ, χ).

Theorem 3.4 (GL1 zeta integrals). The GL1 zeta integral Z(s, φ, χ) as defined in
(3-9) for any φ ∈ Sπ (F×) and any quasicharacter χ ∈X(F×) enjoys the properties:

(1) The zeta integral Z(s, φ, χ) is absolutely convergent for Re(s) sufficiently large,
and admits a meromorphic continuation to s ∈ C.

(2) The zeta integral Z(s, φ, χ) is a holomorphic multiple of the Langlands local
L-function L(s, π ×χ) associated to (π, χ) and the standard embedding

std : GLn(C)× GL1(C)→ GLn(C).
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When F is non-Archimedean, the fractional ideal generated by the local zeta
integrals Z(s, φ, χ) is of the form

{Z(s, φ, χ) | φ ∈ Sπ (F×)} = L(s, π ×χ) · C[qs, q−s
];

and when F is Archimedean, the GL1 zeta integrals Z(s, φ, χ), with unitary char-
acters χ , have the following property. Let Sa,b be the vertical strip for any a < b, as
defined in (2-4). If Pχ (s) is a polynomial in s such that the product Pχ (s)L(s, π×χ)

is bounded in the vertical strip Sa,b, with small neighborhoods at the possible poles
of the L-function L(s, π ×χ) removed, then the product Pχ (s)Z(s, φ, χ) must be
bounded in the same vertical strip Sa,b, with small neighborhoods at the possible
poles of the L-function L(s, π ×χ) removed.

(3) When F is non-Archimedean, and π is unramified, define

Lπ (x) := φξ◦,ϕ◦
π
(x),

where ξ ◦(g)= |det g|
n/21Mn(oF )(g), with 1Mn(oF )(g) being the characteristic func-

tion of Mn(oF ), and ϕ◦
π (g) is the zonal spherical function associated to π . Then the

identity

Z(s, Lπ , χ)= L(s, π ×χ)

holds for any unramified characters χ and all s ∈ C as meromorphic functions in s.

We are going to discuss the relation between the π-Schwartz functions and the
square-integrable functions in L2(F×, d×x).

Proposition 3.5. For any π ∈5F (Gn), there exists a real number απ such that for
any φ ∈ Sπ (F×) and for any κ ≥ απ + n/2, the function |x |

κ
Fφ(x) belongs to the

space L2(F×, d×x) of square-integrable functions on F×.

Proof. For any α0 ∈ R, we consider the following inner product of the function
|x |

α0/2φ(x) for any φ(x) ∈ Sπ (F×). We write φ = φξ,ϕπ for some ξ ∈ Sstd(Gn(F))
and ϕπ ∈ C(π) and write ξ(g)= |det g|

n/2
F f (g) with f ∈ S(Mn(F)). Then

(3-11)
∫

F×
φ(x)φ(x)|x |

α0
F d×x

=

∫
F×

|x |
α0+n
F d×x

∫
det g1=det g2=x

f (g1)ϕπ (g1) f (g2)ϕπ (g2) dx g1 dx g2

=

∫
(Gn(F)×Gn(F))◦

f (g1)ϕπ (g1) f (g2)ϕπ (g2)|det g1|
α0+n
F d(g1, g2)

◦,

where (Gn(F)× Gn(F))◦ := {(g1, g2) ∈ Gn(F)× Gn(F) | det g1 = det g2} and
d(g1, g2)

◦ is a Haar measure on (Gn(F)× Gn(F))◦, which makes the above fiber
integration factorization hold.
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We consider the natural embedding

(Gn(F)× Gn(F))◦ ↪→ (Mn(F)× Mn(F))◦

with an open dense image, where

(Mn(F)× Mn(F))◦ := {(X, Y ) ∈ Mn(F)× Mn(F) | det X = det Y },

which is the fiber product with respect to the determinant map X 7→ det X , and is a
closed subvariety of the affine space Mn(F)× Mn(F). The natural group action of
Gn × Gn on Mn × Mn via

(g, h)((X, Y ))= (gX, hY )

for (g, h)∈ Gn ×Gn and (X, Y )∈ Mn × Mn yields the action of (Gn(F)×Gn(F))◦

on (Mn(F)× Mn(F))◦ by restriction. Take d+X ∧ d+Y to be an additive Haar
measure on Mn(F)× Mn(F) with |det gh|

n
F the modulus function of the action of

Gn×Gn on Mn×Mn . Take the measure d+(X, Y )◦ on (Mn(F)×Mn(F))◦, which is
the pullback of the measure d+X ∧d+Y through the fiber product embedding. Then
the modulus function of the action of (Gn(F)×Gn(F))◦ on (Mn(F)× Mn(F))◦ is

|det gh|
n
F = |det g|

2n
F = |det h|

2n
F

for any (g, h) ∈ (Gn(F)× Gn(F))◦. It is easy to check that d+(g, h)◦/|det gh|
n
F is

a Haar measure on (Gn(F)× Gn(F))◦. Hence, there is a constant c > 0, such that

d(g, h)◦ = c ·
d+(g, h)◦

|det gh|
n
F
.

The integral in (3-11) can be written as

(3-12)
∫
(Mn(F)×Mn(F))◦

f (X)ϕπ (X) f (Y )ϕπ (Y )|det X |
α0−n
F d+(X, Y )◦.

Here we assume that α0 ≥ n and both ϕπ (g1) and ϕπ (g2) are viewed as measurable
functions on Mn(F) that extend by zero to the boundary Mn(F)\GLn(F).

Since the F-analytical manifold (Mn(F)×Mn(F))◦ is closed in Mn(F)×Mn(F),
the restriction of the Schwartz function f (g1)× f (g2) to (Mn(F)× Mn(F))◦ is
still a Schwartz function, which is smooth and compactly supported when F
is non-Archimedean, and is in the sense of [1] when F is Archimedean. By
Theorem 2.4, the zeta integral of Godement–Jacquet Z(s, f, ϕπ , χ) converges
absolutely for Re(s) sufficiently large. It follows that for any π ∈5F (Gn), there
exists a real number απ such that for any ϕπ ∈ C(π) and any Re(s) ≥ απ , the
product |det(g)|sFϕπ (g) is bounded when det g tends to zero.
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We write the F-analytical closed submanifold (Mn(F)× Mn(F))◦ as a union of
two closed submanifolds:

(Mn(F)× Mn(F))◦ = (Mn(F)× Mn(F))◦≥ε ∪ (Mn(F)× Mn(F))◦≤ε,

where

(Mn(F)× Mn(F))◦≥ε = {(g1, g2) ∈ Mn(F)1 det
| |det g1|F ≥ ε}

and

(Mn(F)× Mn(F))◦≤ε = {(g1, g2) ∈ Mn(F)1 det
| |det g1|F ≤ ε}.

For any π ∈5F (Gn), the restriction of the product ϕπ (g1)ϕπ (g2) · |det g1|
s−n
F to the

closed submanifold (Mn(F)× Mn(F))◦≥ε is of moderate growth and its restriction
to the closed submanifold (Mn(F)× Mn(F))◦≤ε is bounded whenever Re(s) ≥

2απ+n. It is also clear the Schwartz function f (g1)× f (g2) on (Mn(F)×Mn(F))◦

remains a Schwartz function when restricted to either the closed submanifold
(Mn(F)× Mn(F))◦≥ε or the closed submanifold (Mn(F)× Mn(F))◦≤ε. Hence, for
any α0 ∈ R with α0 ≥ 2απ + n, the integral∫

(Mn(F)×Mn(F))◦
f (X)ϕπ (X) f (Y )ϕπ (Y )|det X |

α0−n
F d+(X, Y )◦

converges absolutely, and so does the integral∫
F×
φ(x)φ(x)|x |

α0
F d×x .

It follows that the product φ(x)|x |
κ
F is square integrable on F× for κ = α0/2 ≥

απ + n/2. □

Corollary 3.6. If π ∈5F (Gn) is unitarizable, then for any φ ∈ Sπ (F×), the func-
tion |x |

n/2
F ·φ(x) belongs to the space L2(F×, d×x) of square-integrable functions

on F×.

Proof. If π ∈5F (Gn) is unitarizable, then the matrix coefficient ϕπ (g) is bounded
above over Gn(F). For φ ∈ Sπ (F×), we write φ = φξ,ϕπ with ξ ∈ Sstd(Gn(F)) and
ϕπ ∈ C(π), and write ξ(g)= |det g|

n/2
F · f (g) with f ∈ S(Mn(F)). We compute

the inner product of |x |
n/2
F ·φ(x) as

(3-13)
∫

F×
φ(x)φ(x)|x |

n
F d×x

≤

∫
F×

|x |
2n
F

∫
Gn(F)x

| f (g1)ϕπ (g1)| dx g1

∫
Gn(F)x

| f (g2)ϕπ (g2)| dx g2 d×x

≤ c(ϕπ ) ·
∫

F×
|x |

2n
F

∫
Gn(F)x

| f (g1)| dx g1

∫
Gn(F)x

| f (g2)| dx g2 d×x
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for some positive constant c(ϕπ ) depending on ϕπ . By following the proof of
Proposition 3.5, we obtain that

(3-14)
∫

F×
φ(x)φ(x)|x |

n
F d×x ≤c·c(ϕπ )

∫
(Mn(F)×Mn(F))◦

| f (X)|·| f (Y )| d(X, Y )◦.

The integral on the right-hand side of (3-14) comes from the integral in (3-12) with
α0 = n. As explained in the proof of Proposition 3.5, the product f (X)× f (Y ) is
a Schwartz function on (Mn(F)× Mn(F))◦. Hence, the integral on the right-hand
side of (3-14) converges. □

By using Proposition 3.5 and Theorem 3.4, together with Theorem 2.3, we are
able to understand the π-Schwartz space Sπ (F×) by means of the L-functions
L(s, π ×χ) for any π ∈5F (n).

Proposition 3.7. For any π ∈5F (Gn), the π -Schwartz space Sπ (F×) is contained
in the space F(F×) as defined in Definition 2.1

Proof. Note first that the GL1 zeta integral attached to φ ∈Sπ (F×) is the same as the
Mellin transform of φ up to a shift in s by the unramified part of χ . By Theorem 3.4
and Proposition 3.1, the image of Sπ (F×) under Mellin transform is contained in
the space Lπ (X(F×)) and hence in the space Z(X(F×)). By Theorem 2.3, for any
φ ∈ Sπ (F×), there exists φ0 ∈ F(F×), such that

M(φ−φ0)(χ)= 0(3-15)

holds identically for any quasicharacter χ ∈ X(F×). It remains to show that
φ−φ0 = 0 holds identically. By smoothness of φ and φ0, it suffices to show that
after unramified twist, both φ and φ0 are square integrable on F×.

For φ0 ∈ F(F×), there exists s0 ∈ R such that, for any Re(s) > s0,

lim
x→0

φ0(x)|x |
s+1
F = 0,

and the limit is preserved by differentiation on both sides when F is Archimedean.
It follows that φ0(x)|x |

s
F is indeed square integrable on F× for Re(s) > s0, via the

asymptotic formula appearing in the definition of F(F×).
For any φ ∈ Sπ (F×), by Proposition 3.5, there exists απ ∈ R>0 such that

the function |x |
s
Fφ(x) is square integrable if Re(s) ≥ απ + n/2. By taking κ >

max{s0, απ + n/2}, we obtain that both φ0(x)|x |
κ
F and φ(x)|x |

κ
F are square inte-

grable over F×. From (3-15), we obtain that the Mellin transform

M
(
φ(x)|x |

κ
F −φ0(x)|x |

κ
F
)
(χ)= 0

for all quasicharacters χ ∈ X(F×), in particular, for all unitary characters χ of F×.
Therefore, by the Mellin inversion formula (Theorem 2.3), we obtain that

φ(x)|x |
κ
F −φ0(x)|x |

κ
F = 0
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as functions in the space L2(F×, d×x). Since both φ(x) and φ0(x) are smooth, we
must have that φ(x)= φ0(x) ∈ F(F×). □

Finally we are ready to characterize the Mellin inversion M−1(Lπ ) in terms of
the π -Schwartz space Sπ (F×) as in (3-2).

Corollary 3.8. For any π ∈ 5F (Gn), the Mellin inversion M−1(Lπ ) coincides
with the space Sπ (F×) defined by

Sπ (F×)= M−1(Lπ )⊂ C∞(F×).

In particular, the space C∞
c (F

×) of smooth compactly supported functions on F×

is contained in the π -Schwartz space Sπ (F×).

Proof. By Proposition 3.7, we have that the space Sπ (F×) is contained in the
space F(F×). By Theorem 3.4, the Mellin transform (GL1 zeta integral) of the
space Sπ (F×) is equal to the space Lπ = Lπ (X(F×)). Hence, we obtain that
Sπ (F×)= M−1(Lπ ), because the Mellin transform is a bijective correspondence
between the space F(F×) and the space Z(X(F×)) (Theorem 2.3). Finally, since
the space Lπ contains the space of holomorphic functions on X(F×) that are of
Paley–Wiener type along the vertical strips, it is clear from Theorem 2.3 again that
C∞

c (F
×) is contained in the π -Schwartz space Sπ (F×). □

The relevant functional equation for GL1 zeta integrals will be discussed in the
next section.

3B. Fourier operators. We define a Fourier operator Fπ,ψ from the π-Schwartz
space Sπ (F×) to the π̃ -Schwartz space Sπ̃ (F×) for any π ∈5F (Gn) with smooth
contragredient π̃ and prove the functional equation for GL1 zeta integrals Z(s, φ, χ).

The Fourier operator (transform) Fπ,ψ is defined by the diagram

Sstd(Gn(F))⊗ C(π)

��

(FGJ,( · )
∨)

// Sstd(Gn(F))⊗ C(π̃)

��

Sπ (F×)
Fπ,ψ

// Sπ̃ (F×)

(3-16)

where ψ is a nontrivial additive character of F . More precisely, for φ = φξ,ϕπ ∈

Sπ (F×) with a ξ ∈ Sstd(Gn(F)) and a ϕπ ∈ C(π), we define

Fπ,ψ(φ)= Fπ,ψ(φξ,ϕπ ) := φFGJ(ξ),ϕ∨
π
,(3-17)

where ϕ∨
π (g)= ϕπ (g−1) ∈ C(π̃). Hence, we obtain that

Fπ,ψ(φ)= Fπ,ψ(φξ,ϕπ ) ∈ Sπ̃ (F×).(3-18)

It remains to check that the definition of the Fourier operator in (3-17) is independent
of the choice of ξ ∈ Sstd(Gn(F)) and ϕπ ∈ C(π).
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Proposition 3.9. The Fourier operator Fπ,ψ as in (3-17) is independent of the
choice of ξ ∈ Sstd(Gn(F)) and ϕπ ∈ C(π).

Proof. Assume that φξ1,ϕπ,1 =φξ2,ϕπ,2 for some ξ1, ξ2 ∈Sstd(Gn(F)) and ϕπ,1, ϕπ,2 ∈

C(π). We want to show that Fπ,ψ(φξ1,ϕπ,1)= Fπ,ψ(φξ2,ϕπ,2).
From (3-10), we must have that

Z(s, ξ1, ϕπ,1, χ)= Z(s, ξ2, ϕπ,2, χ)

for all quasicharacters χ ∈ X(F×) and all s ∈ C. Of course, the identity holds for
Re(s) large and then for all s ∈ C by meromorphic continuation. By the functional
equation in Proposition 2.7, we obtain the identity

Z(1 − s,FGJ(ξ1), ϕ
∨

π,1, χ
−1)= Z(1 − s,FGJ(ξ2), ϕ

∨

π,2, χ
−1)

for all χ ∈X(F×) with Re(s) sufficiently small first and then all s ∈ C by meromor-
phic continuation. It follows by the identity in (3-10) again that, for all χ ∈ X(F×)

and for Re(s)+ Re(χ) sufficiently large, the identity∫
F×
(φFGJ(ξ1),ϕ

∨

π,1
(x)−φFGJ(ξ2),ϕ

∨

π,2
(x))χ(x)|x |

s−1/2
F d×x = 0

holds. By Proposition 3.7, we have that φFGJ(ξ1),ϕ
∨

π,1
(x)−φFGJ(ξ2),ϕ

∨

π,2
(x) belongs to

F(F×). Finally, by Theorem 2.3, we must have that

φFGJ(ξ1),ϕ
∨

π,1
(x)−φFGJ(ξ2),ϕ

∨

π,2
(x)= 0

as functions on F×. Therefore, we proved that

φFGJ(ξ1),ϕ
∨

π,1
(x)= φFGJ(ξ2),ϕ

∨

π,2
(x)

as functions on F×, and Fπ,ψ(φξ1,ϕπ,1)= Fπ,ψ(φξ2,ϕπ,2). □

The following theorem on the local functional equation for the GL1 zeta integrals
Z(s, φ, χ) is a direct consequence of Theorem 2.4 and Proposition 3.9.

Theorem 3.10 (GL1 functional equation). For any π ∈5F (Gn) and its contragre-
dient π̃ ∈5F (Gn), there exists a Fourier operator Fπ,ψ , which takes φ ∈ Sπ (F×)

to Fπ,ψ(φ) ∈ Sπ̃ (F×), such that, after meromorphic continuation, the functional
equation

Z(1 − s,Fπ,ψ(φ), χ−1)= γ (s, π ×χ,ψ) ·Z(s, φ, χ),

holds for any φ ∈ Sπ (F×). The identities

Fπ̃ ,ψ−1 ◦Fπ,ψ = Id and Fπ,ψ ◦Fπ̃ ,ψ−1 = Id
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hold. When F is non-Archimedean, and π is unramified, the Fourier operator Fπ,ψ
takes the basic function Lπ ∈ Sπ (F×) to the basic function Lπ̃ ∈ Sπ̃ (F×):

Fπ,ψ(Lπ )= Lπ̃ ,

where the basic function Lπ is defined in Theorem 3.4.

4. π -Poisson summation formula on GL1

Let k be a number field and A be the ring of adeles of k. Denote by |k| the set of
all local places of k and by |k|∞ the set of all Archimedean local places of k. We
may write

|k| = |k|∞ ∪ |k| f ,

where |k| f is the set of non-Archimedean local places of k. For each ν ∈ |k|,
we write F = kν . Let 5A(Gn) be the set of equivalence classes of irreducible
admissible representations of Gn(A). If we write π =

⊗
ν∈|k|

πν , then we assume
that πν ∈5kν (Gn), where at almost all finite local places ν, the local representations
πν are unramified. When ν is a finite local place, πν is an irreducible admissible rep-
resentation of Gn(kν), and when ν is an infinite local place, we assume that πν is of
Casselman–Wallach type as representation of Gn(kν). Let A(Gn)⊂5A(Gn) be the
subset consisting of equivalence classes of irreducible admissible automorphic repre-
sentations of GLn(A), and Acusp(Gn) be the subset of cuspidal members of A(Gn).

4A. π -Schwartz space and Fourier operator. Take any π =
⊗

ν∈|k|
πν ∈5A(Gn).

At each ν ∈ |k|, the πν-Schwartz space Sπν (k×
ν ) is defined in Definition 3.3. Recall

from Theorems 3.4 and 3.10 the basic function Lπν ∈ Sπν (k×
ν ) of πν when the local

component πν of π is unramified. It is clear from the definition that Lπν (1) = 1
(We have to normalize various local measures in the computations. Actually it
follows from the fact that the Laurent expansion of the unramified local L-factor
has constant term 1.)

For the given π =
⊗

ν πν ∈5A(Gn), we define the π -Schwartz space on A× to be

Sπ (A×) :=

⊗
ν∈|k|

Sπν (k
×

ν ),(4-1)

which is the restricted tensor product of the local πν-Schwartz space Sπν (k×
ν ) with

respect to the family of the basic functions Lπν for the local places ν at which πν
are unramified. The factorizable vectors φ =

⊗
ν φν in Sπ (A×) can be written as

φ(x)=

∏
ν∈|k|

φν(xν).(4-2)

Here for almost all finite local places ν, φν(xν) = Lπν (xν). According to our
normalization, we have Lπν (xν)= 1 when xν ∈ o×

ν , the unit group of the ring oν of
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integers at ν. Hence, for any given x ∈ A×, the product in (4-2) is a finite product
over Archimedean local places and finitely many non-Archimedean local places
containing all ramified local places of π .

For any factorizable vectors φ =
⊗

ν φν in Sπ (A×), we define the π-Fourier
operator

Fπ,ψ(φ) :=

⊗
ν∈|k|

Fπν ,ψν (φν),(4-3)

where for each ν ∈ |k|, Fπν ,ψν is the local Fourier operator as defined in (3-16)
and (3-17). It is clear that Fπν ,ψν takes the πν-Schwartz space Sπν (k×

ν ) to the
π̃ν-Schwartz space Sπ̃ν (k×

ν ) and enjoys the property

Fπν ,ψ(Lπν )= Lπ̃ν

when the data are unramified at ν. Hence, the Fourier operator Fπ,ψ as defined in
(4-3) maps the π -Schwartz space Sπ (A×) to the π̃ -Schwartz space Sπ̃ (A×).

4B. Global zeta integral. For any π =
⊗

ν πν ∈ 5A(Gn), we define the global
zeta integrals to be

(4-4) Z(s, φ, χ) :=

∫
A×

φ(x)χ(x)|x |
s−1/2
A d×x

for any φ ∈ Sπ (A×) and characters χ of k×
\A×. When φ =

⊗
ν φν , we have

Z(s, φ, χ)=

∏
ν∈|k|

Z(s, φν, χν).

Let S be a finite subset of |k|, which contains all Archimedean local places and all
the finite local places ν at which πν or χν is ramified. Then we write

Z(s, φ, χ)= L S(s, π ×χ) ·
∏
ν∈S

Z(s, φν, χν),

according to Theorem 3.4. If π is unitarizable, the partial L-function L S(s, π ×χ)

converges absolutely for Re(s) large. By Theorem 3.4 again, the finite Euler product∏
ν∈S Z(s, φν, χν) converges absolutely for Re(s) large. We deduce the following

proposition.

Proposition 4.1. Let π ∈ 5A(Gn) be unitarizable. Then for any φ ∈ Sπ (A×)

and any character χ of k×
\A×, the zeta integral Z(s, φ, χ) as defined in (4-4)

converges absolutely for Re(s) sufficiently large.

We apply Proposition 4.1 to the case that π ∈ Acusp(Gn)⊂ A(Gn)⊂5A(Gn).
If π ∈ Acusp(Gn), then it is unitary. In this case, the zeta integral Z(s, φ, χ) can be
identified with the Godement–Jacquet global zeta integral. For any f =

⊗
ν fν ∈
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S(Mn(A)) and any ϕπ ∈ C(π), the Godement–Jacquet global zeta integral is defined
to be

(4-5) Z(s, f, ϕπ , χ) :=

∫
GLn(A)

f (g)ϕπ (g)χ(det g)|det g|
s+(n−1)/2
F dg,

Theorem 4.2 [16, Theorem 13.8]. For π ∈Acusp(Gn) and any unitary automorphic
character χ of k×

\A×, the global zeta integral Z(s, f, ϕπ , χ) converges absolutely
for Re(s) > (n + 1)/2, admits analytic continuation to an entire function in s ∈ C,
and satisfies the global functional equation

(4-6) Z(s, f, ϕπ , χ)= Z(1 − s,Fψ( f ), ϕ∨

π , χ
−1),

where Fψ is the global Fourier transform from S(Mn(A)) to S(Mn(A)) associated
to the additive character ψ of k\A.

For Re(s) > (n + 1)/2, we write

(4-7) Z(s, f, ϕπ , χ)=

∫
A×

(
|x |

n/2
A

∫
Gn(A)x

f (g)ϕπ (g) dx g
)
χ(x)|x |

s−1/2
A d×x,

where Gn(A)x := {g ∈ Gn(A) | det g = x} is an SLn(A)-torsor, and the measure
dx g is SLn(A)-invariant. As in the local situations, we define, for any x ∈ A×,

(4-8) φξ,ϕπ (x) :=

∫
Gn(A)x

ξ(g)ϕπ (g) dx g = |x |
n/2
A

∫
Gn(A)x

f (g)ϕπ (g) dx g,

where ξ(g) := |det g|
n/2
A · f (g) belongs to the space

(4-9) Sstd(Gn(A))= {ξ ∈ C∞(Gn(A)) | ξ(g) · |det g|
−n/2
A ∈ S(Mn(A))}.

It is clear that

(4-10) Sstd(Gn(A))=

⊗
ν∈|k|

Sstd(Gn(kν)).

Write Gn(A) as a direct product decomposition:

(4-11) Gn(A)= An(R)
+

· Gn(A)
1,

where Gn(A)
1
:= {g ∈ Gn(A) | |det g|A = 1} and An(R)

+ is the identity connected
component of the center ZGn (R) of Gn(R). As in [16, Section 13], any matrix
coefficient ϕπ of π ∈ Acusp(Gn) can be written as

(4-12) ϕπ (g)=

∫
An(R)+Gn(k)\Gn(A)

απ (hg)απ̃ (h) dh =

∫
Gn(k)\Gn(A)1

απ (hg)απ̃ (h) dh

for some απ ∈ Vπ and απ̃ ∈ Vπ̃ , where Vπ is the cuspidal automorphic realization
of π in L2(Gn(k)\Gn(A), ω) with central character ωπ = ω. In this case, we
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have ωπ̃ = ω−1. In the integral in (4-8), the coefficient ϕπ (g) is bounded over
Gn(A). Since f ∈ S(Mn(A)) and Gn(A)x is a closed submanifold in Mn(A), the
restriction to Gn(A)x of the Schwartz function f is still a Schwartz function on
Gn(A)x . Hence, the integral in (4-8) converges absolutely for any x ∈ A×, and the
convergence is uniform when x runs in any given compact neighborhood of A×.

Proposition 4.3. For π ∈ Acusp(Gn), the function φξ,ϕπ (x) as defined in (4-8) is
smooth on A×. If ξ(g)=

⊗
ν ξν =|det g|

n/2
· f (g)∈Sstd(Gn(A)) with f =

⊗
ν fν ∈

S(Mn(A)) and ϕπ =
⊗

ν ϕπν , then the function defined by

φξ,ϕπ (x)=

∏
ν∈|k|

φξν ,ϕπν (xν)

for any x ∈ A× belongs to Sπ (A×).

Proof. Since the integral in (4-8) converges absolutely for any x ∈ A×, and the
convergence is uniform when x runs in any given compact neighborhood of A×,
the function φξ,ϕπ (x) is smooth on A×.

To prove the second statement, we take f =
⊗

ν fν ∈ S(Mn(A)). Since C(π)=⊗
ν C(πν), we take ϕπ =

⊗
ν ϕπν with ϕπν ∈ C(πν). Then there exists a finite

subset S0 which contains all Archimedean local places of k such that for any finite
local place ν of k, if ν ̸∈ S0, then fν = f ◦

ν = 1Mn(oν), πν is unramified and ϕπν = ϕ◦
πν

,
which is the zonal spherical function on Gn(kν) associated to πν . For any x ∈ A×,
and for any finite subset S of |k| that contains S0 and xν ∈ o×

ν if ν ̸∈ S, we have

(4-13) φξ,ϕπ (x)=
∫

det g=x
ξ(g)ϕπ (g) dx g = lim

S

∏
ν∈S

∫
det gν=xν

ξν(gν)ϕπν (gν) dxνgν

with ξ(g) = |det g|
n/2
A · f (g) and ξ =

⊗
ν ξν , where ξν(g) = |det g|

n/2
ν · fν(g). At

ν ̸∈ S, we have |xν |ν = 1 and the local integral identity∫
det gν=xν

ξν(gν)ϕπν (gν) dxνgν

=

∫
det gν=xν

1Mn(oν)(gν)ϕ
◦

πν
(gν) dxνgν = vol(Gn(oν)xν )= 1.

Hence, we obtain that φξ,ϕπ (x)=
∏
ν φξν ,ϕπν (xν). □

Hence, we obtain the relation between the global GL1 zeta integrals defined in
(4-4) and the global Godement–Jacquet zeta integrals defined in (4-5).

Corollary 4.4. If π ∈ Acusp(Gn), then for any φ = φξ,ϕπ ∈ Sπ (A×) with ξ(g) =

|det g|
n/2
A · f (g) ∈ Sstd(Gn(A)) for some f ∈ S(Mn(A)) and ϕπ ∈ C(π), the identity

Z(s, φ, χ)= Z(s, f, ϕπ , χ)

holds for any character χ of k×
\A× and Re(s) sufficiently large.
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Proposition 4.5. If π ∈ Acusp(Gn), then for any φ = φξ,ϕπ ∈ Sπ (A×) with ξ(g)=

|det g|
n/2
A · f (g) ∈ Sstd(Gn(A)) for some f ∈ S(Mn(A)) and ϕπ ∈ C(π), the identity

Fπ,ψ(φξ,ϕπ )(x)= φFGJ(ξ),ϕ∨
π
(x)

holds for any x ∈ A×. For any x ∈ A×, the A×-equivariant property

Fπ,ψ(φx)(y)= Fπ,ψ(φ)(yx−1)

holds, where φx(y) := φ(yx).

Proof. Assume that φ=φξ,ϕπ ∈Sπ (A×) with ξ(g)= |det g|
n/2
A · f (g)∈Sstd(Gn(A))

for some f ∈ S(Mn(A)) and ϕπ ∈ C(π) is factorizable: φ =
⊗

ν φν . By definition
(4-3), we have

Fπ,ψ(φ)(x)=

∏
ν∈|k|

Fπν ,ψν (φν)(xν).

Write φν(xν)= φξν ,ϕπν (xν). Then we have

Fπν ,ψν (φν)(xν)= φFGJ,ν(ξν),ϕ∨
πν
(xν).

When the data involved are unramified, we have from the simple calculation below
(4-13) that Fπν ,ψν (φν)(xν)= 1. Hence, we obtain

Fπ,ψ(φ)(x)=

∏
ν

Fπν ,ψν (φν)(xν)=

∏
ν

φFGJ,ν(ξν),ϕ∨
πν
(xν)= φFGJ(ξ),ϕ∨

π
(x)

as in (4-13).
In order to verify the A×-equivariant property Fπ,ψ(φx)(y)=Fπ,ψ(φ)(yx−1) for

any x, y ∈ A×, it is enough to verify that the local Fourier operators Fπν ,ψν for all lo-
cal place ν ∈ |k| enjoy the same equivariant property. This local equivariant property
for the Fourier operators Fπν ,ψν can be deduced from the local functional equation
for the zeta integral Z(s, φ, χ) in Theorem 3.10 through a simple computation. □

We can deduce the following result from Theorem 4.2.

Theorem 4.6. Let π be an irreducible unitary cuspidal automorphic representation
of Gn(A) with the local component πν being of Casselman–Wallach type at all
ν ∈ |k|∞. For any φ ∈ Sπ (A×) and any unitary character χ of k×

\A×, the global
zeta integral Z(s, φ, χ) converges absolutely for Re(s)> (n+1)/2, admits analytic
continuation to an entire function in s ∈ C, and satisfies the functional equation

Z(s, φ, χ)= Z(1 − s,Fπ,ψ(φ), χ−1),

where Fπ,ψ is the Fourier operator as defined in (4-3) that takes Sπ (A×) to Sπ̃ (A×).
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4C. π-Poisson summation formula. We establish here the Poisson summation
formula on GL1 for the Fourier operator Fπ,ψ , which is associated to any π ∈

Acusp(Gn), and takes Sπ (A×) to Sπ̃ (A×). Technically, it is possible to establish
such a summation formula from the global functional equation in Theorem 4.6.
However, we are going to take a slightly different way below.

Theorem 4.7 (π-Poisson summation formula). For any π ∈ Acusp(Gn), take π̃ to
be the contragredient of π . For any φ ∈ Sπ (A×), the π -theta function

2π (x, φ) :=

∑
α∈k×

φ(αx)

converges absolutely and locally uniformly for any x ∈ A×, and we have the identity

2π (x, φ)=2π̃ (x−1,Fπ,ψ(φ)),

as functions in x ∈ A×, where Fπ,ψ is the Fourier operator as defined in (4-3) that
takes Sπ (A×) to Sπ̃ (A×).

Proof. It is clear that2π (x, φ)=2π (1, φx)with φx(y)=φ(xy). By Proposition 4.5,
we have 2π̃ (x−1,Fπ,ψ(φ))=2π̃ (1,Fπ,ψ(φx)). Since φ ∈ Sπ (A×) is arbitrary, it
is enough to show that

2π (1, φ) :=

∑
α∈k×

φ(α)

converges absolutely and the identity

2π (1, φ)=2π̃ (1,Fπ,ψ(φ))

holds.
In order to prove that the summation 2π (1, φ) is absolutely convergent, we

write φ = φξ,ϕπ ∈ Sπ (A×) with ξ(g)= |det g|
n/2
A · f (g) ∈ Sstd(Gn(A)) for some

f ∈ S(Mn(A)) and ϕπ ∈ C(π). From (4-12) we have

(4-14) ϕπ (g)=

∫
An(R)+Gn(k)\Gn(A)

β1(hg)β2(h) dh =

∫
Gn(k)\Gn(A)1

β1(hg)β2(h) dh

for some β1 ∈ Vπ and β2 ∈ Vπ̃ , where Vπ is the cuspidal automorphic realization
of π in L2(Gn(k)\Gn(A), ω) and so is Vπ̃ .

First, we have that

(4-15) 2π (1, φ)=

∑
α∈k×

φξ,ϕπ (α)

=

∑
α∈k×

∫
Gn(A)α

ξ(g)
∫

Gn(k)\Gn(A)1
β1(hg)β2(h) dh dαg.
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By changing variable g →h−1g, we have that det g =α·det h and the last expression
in (4-15) becomes∫

Gn(k)\Gn(A)1

∑
α∈k×

∫
Gn(A)α·det h

ξ(h−1g)β1(g)β2(h) dα·det hg dh.(4-16)

For g ∈ Gn(A)α·det h , we change g to t1(α) · y with det y = det h, where t1(α) =

diag(α, In−1) ∈ Gn(k). Then (4-16) can be written as∫
Gn(k)\Gn(A)1

∑
α∈k×

∫
GLn(A)det h

ξ(h−1t1(α)g)β1(g)β2(h) ddet hg dh,(4-17)

since β1 is automorphic. For any h ∈ Gn(A)
1, we have |det h|A = 1. Hence, we

must have that Gn(A)det h ⊂ Gn(A)
1. It is clear that Gn(A)det h is an SLn(A)-torsor

and the measure ddet hg is left-SLn(k)-invariant. Hence, (4-17) can be written as∫
Gn(k)\Gn(A)1

∑
α∈k×

∑
ϵ∈SLn(k)

∫
SLn(k)\Gn(A)det h

ξ(h−1t1(α)ϵg)β1(g)β2(h) ddet hg dh.

Since any element γ ∈ Gn(k) can be written as a product of t1(α) and ϵ in a unique
way, we obtain that the above expression is equal to

(4-18)
∫

Gn(k)\Gn(A)1

∫
SLn(k)\Gn(A)det h

( ∑
γ∈Gn(k)

ξ(h−1γ g)
)
β1(g)β2(h) ddet hg dh.

Since ξ(g) = |det g|
n/2
A · f (g) ∈ Sstd(Gn(A)) for some f ∈ S(Mn(A)), and h ∈

Gn(A)
1 and g ∈ Gn(A)det h , we must have that

(4-19) ξ(h−1γ g)= |det(h−1γ g)|n/2A · f (h−1γ g)= f (h−1γ g).

Hence, we obtain that ∑
γ∈Gn(k)

ξ(h−1γ g)=

∑
γ∈Gn(k)

f (h−1γ g).(4-20)

By [16, Lemma 11.7], for any f ∈ S(Mn(A)), the summation
∑

γ∈Gn(k) f (h−1γ g)
is of moderate growth in g, h ∈ Gn(k)\Gn(A) as an automorphic function on
Gn(k)\Gn(A)×Gn(k)\Gn(A), and so is the summation

∑
γ∈Gn(k) ξ(h

−1γ g) as an
automorphic function in g, h ∈ Gn(k)\Gn(A)

1. Since both β1(g) and β2(h) are
cuspidal, we obtain that the integral in (4-18) converges absolutely, and so does the
π -theta function 2π (1, φ) at x = 1.

Now we continue with the integral in (4-18) to prove the identity

(4-21) 2π (1, φ)=2π̃ (1,Fπ,ψ(φ)).
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Recall from [16, Section 11; 34, Theorem 4.0.1] the classical Poisson summation
formula

(4-22)
∑

γ∈Mn(k)

f (h−1γ g)=

∑
γ∈Mn(k)

|det gh−1
|
−n
A Fψ( f )(g−1γ h)

for any f ∈ S(Mn(A)) and h, g ∈ Gn(A). When g, h ∈ Gn(A)
1, it can be rewritten

according to the rank of γ ∈ Mn(k) as∑
γ∈Gn(k)

f (h−1γ g)

=

∑
γ∈Gn(k)

Fψ( f )(g−1γ h)+
∑

γ∈Mn(k)
rank(γ )<n

Fψ( f )(g−1γ h)−
∑

γ∈Mn(k)
rank(γ )<n

f (h−1γ g).

We denote the boundary terms by

(4-23) B f (h, g) :=

∑
γ∈Mn(k)

rank(γ )<n

Fψ( f )(g−1γ h)−
∑

γ∈Mn(k)
rank(γ )<n

f (h−1γ g).

Then (4-18) can be written as a sum of the two terms

(4-24)
∫

Gn(k)\Gn(A)1

∫
SLn(k)\Gn(A)det h

( ∑
γ∈Gn(k)

Fψ( f )(g−1γ h)
)
β1(g)β2(h) ddet hg dh,

and

(4-25)
∫

Gn(k)\Gn(A)1

∫
SLn(k)\Gn(A)det h

B f (h, g)β1(g)β2(h) ddet hg dh.

From the proofs of [16, Lemma 12.13; 34, Lemma 4.1.4], we must have that the
term in (4-25) is zero, because of the cuspidality of both β1(g) and β2(h). Hence,
we obtain that 2π (1, φ)=2π (1, φξ,ϕπ ) is equal to the term in (4-24).

Now we write (4-24) as∫
Gn(k)\Gn(A)1

∫
SLn(k)\Gn(A)det h

( ∑
γ∈Gn(k)

Fψ( f )((γ g)−1h)
)
β1(g)β2(h) ddet hg dh.

By writing back that γ = t1(α) · ϵ with α ∈ k× and ϵ ∈ SLn(k), we obtain that the
above expression is equal to

(4-26)
∫

Gn(k)\Gn(A)1

∫
Gn(A)det h

( ∑
α∈k×

Fψ( f )((t1(α)g)−1h)
)
β1(g)β2(h) ddet hg dh.
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By changing t1(α)g to g, we write (4-26) as∑
α∈k×

∫
Gn(k)\Gn(A)1

∫
Gn(A)α·det h

Fψ( f )(g−1h)β1(g)β2(h) dα·det hg dh.(4-27)

After changing variable g → hg, (4-27) can be written as∑
α∈k×

∫
Gn(A)α

Fψ( f )(g−1)

∫
Gn(k)\Gn(A)1

β1(hg)β2(h) dh dαg,(4-28)

which is equal to ∑
α∈k×

∫
Gn(A)α

Fψ( f )(g−1)ϕπ (g) dαg.(4-29)

Finally, by changing g to g−1, we obtain that (4-18) is equal to∑
α∈k×

∫
Gn(A)α

Fψ( f )(g)ϕπ (g−1) dαg.(4-30)

By Proposition 2.6, when det g = α ∈ k×, we have

Fψ( f )(g)= FGJ(ξ)(g)

for ξ(g)= |det g|
n/2

· f (g). Hence, the summation in (4-30) is equal to∑
α∈k×

Fπ,ψ(φξ,ϕπ )(1)=2π̃ (1,Fπ,ψ(φξ,ϕπ )).

This proves the π -Poisson summation formula

2π (1, φ)=2π̃ (1,Fπ,ψ(φ))
for all φ ∈ Sπ (A×).

For the locally uniform convergence of the π-theta function 2π (x, φ), since
2π (x, φ)=2π (1, φx), it is enough to prove the locally uniform convergence of
the π -theta function 2π (x, φ) around x = 1. One may verify this directly from the
discussion in the proof given above. It also follows directly from Proposition 4.8
below in this case. We are done. □

Similar to the work of [40], we obtain the following uniform estimate of the
π -theta function 2π (x, φ), which is important to the application in Section 8.

Proposition 4.8. For any π ∈ Acusp(Gn), take any φ ∈ Sπ (A×). For any κ > 0,
there exists a positive constant cκ,φ such that the π -theta function 2π (x, φ) enjoys
the property

|2π (x, φ)| ≤ cκ,φ · min{|x |A, |x |
−1
A }

κ .
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Proof. This is a reformulation of part (ii) of [40, Theorem 1] and can be proved
accordingly. We omit the details. □

Remark 4.9. The proof of the π -Poisson summation formula in Theorem 4.7 uses
the Poisson summation formula associated to the classical Fourier transform Fψ
over the affine space Mn(A), without using the global functional equation for the
global zeta integrals Z(s, φ, χ) in Theorem 4.6. Hence, we are able to obtain the
global functional equation for the global zeta integrals Z(s, φ, χ) as in Theorem 4.6
by using the π-Poisson summation formula in Theorem 4.7. Of course, this is
essentially the same proof as the one that uses the global functional equation
of Godement–Jacquet zeta functions in Theorem 4.2. However, it seems still
meaningful to point out the contribution of the π -Poisson summation formulae on
GL1 in the theory of the global functional equation for the standard automorphic
L-function L(s, π×χ) for any automorphic characters χ of A× and any irreducible
cuspidal automorphic representations π of GLn(A), as an extension in a different
perspective of Tate’s thesis to the study of higher degree automorphic L-functions.

5. Convergence of generalized theta functions

In order to prove Theorem 1.2 and explore other possible cases of Conjecture 1.5,
beyond Theorem 4.7 (or Theorem 1.1), we study the convergence issue of general
π -theta functions associated with π ∈5A(Gn), which may not be automorphic.

5A. Convergence of π -theta functions. Recall from Section 4, if π =
⊗

ν∈|k|
πν ∈

5A(Gn), then for every ν ∈ |k|, πν ∈ 5kν (Gn), the set of equivalence classes of
irreducible admissible representations of Gn(kν), where at almost all finite local
places ν, πν is unramified and at any infinite local place ν, πν is of Casselman–
Wallach type as representation of Gn(kν). As in (4-1), for any π=

⊗
ν πν ∈5A(Gn),

we have that

Sπ (A×)=

⊗
ν∈|k|

Sπν (k
×

ν ).

For φ ∈ Sπ (A×), we are going to show that the π -theta function

(5-1) 2π (x, φ)=

∑
α∈k×

φ(αx)

converges absolutely and locally uniformly as a function in x ∈ A×, under an
assumption (Assumption 5.1) on the unramified local components πν of π .

For any π =
⊗

ν πν ∈ 5A(Gn), let Sπ be a finite subset of local places of k
containing |k|∞ such that for any finite local place ν ̸∈ Sπ , the local component πν
is unramified. For any πν with ν ̸∈ Sπ , via the Satake isomorphism, one has the
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Frobenius–Hecke conjugacy class c(πν) in G∨
n (C) associated to πν . We write

(5-2) c(πν) := diag(qs1(πν)
ν , . . . , qsn(πν)

ν ) ∈ GLn(C)= G∨

n (C),

up to the adjoint action of G∨
n (C), with s j (πν) ∈ C for j = 1, 2, . . . , n, where qν is

the cardinality of the residue field κν = oν/pν . The following is the assumption we
take on the unramified local components πν of π .

Assumption 5.1 (uniform bound). Let π =
⊗

ν πν ∈ 5A(Gn) be an irreducible
admissible representation of Gn(A). There exists a positive real number κπ , which
depends only on π , such that

max
1≤ j≤n

{Re(s j (πν))}< κπ

for every ν ̸∈ Sπ .

Then we need to prove some technical local results.

Lemma 5.2. For any π =
⊗

ν πν ∈ 5A(Gn) with Assumption 5.1, there exists a
positive real number sπ ≥ κπ such that, for any real number a0 > sπ , the limit

lim
|x |ν→0

φν(x)|x |
a0
ν = 0

holds, as a function in x ∈ k×
ν , for any φν ∈ Sπν (k×

ν ) and any local place ν ∈ |k|. In
particular, φν(x)|x |

a0
ν extends to a continuous function on kν , which is compactly

supported on kν if ν ∈ |k| f and is of Schwartz type at ∞ of kν if ν ∈ |k|∞.

Proof. By Proposition 3.7, at any ν ∈ |k|, we have that Sπν (k×
ν )⊂ F(k×

ν ), which is
defined in Definition 2.1. In the following we discuss separately for ν ∈ |k|∞ and
for ν ∈ |k| f .

When ν ∈ |k|∞, the asymptotic of φν ∈ Sπν (k×
ν ) near x = 0 is characterized in

Definition 2.1. In particular, following the notation in Definition 2.1, the fixed
sequence {λk}

∞

k=0 has strictly increasing real part {Re(λk)}
∞

k=0. Hence, for any
positive real number s0 ∈ R satisfying the inequality

s0 + Re(λ0) > 0,

the limit

(5-3) lim
|x |ν→0

φν(x) · |x |
s0
ν = 0

holds, because the limit formula in Definition 2.1 is termwise differentiable and
uniform (even after termwise differentiation). Hence, the function φν(x) · |x |

s0
ν is

continuous over kν for any positive real number s0 satisfying s0 + Re(λ0) > 0. It
is clear that the function φν(x) · |x |

s0
ν is still of Schwartz type at ∞. Since the set

|k|∞ is finite, it is possible to choose a sufficiently positive s∞ ∈ R such that the
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prescribed property holds for all functions φν(x) · |x |
a0
ν with φν ∈ Sπν (k×

ν ) at all
ν ∈ |k|∞, as long as a0 ≥ s∞.

It remains to treat the case when ν ∈ |k| f , the finite local places of k. We consider
the local zeta integrals Z(s, φν, ων) for any φν ∈ Sπν (k×

ν ), and any unitary character
ων ∈�∧

ν . By Theorem 3.4, it converges absolutely for Re(s) sufficiently positive
and admits a meromorphic continuation to s ∈ C. For each ν ∈ |k| f , we take cπν to
be a sufficiently positive real number, such that Z(s, φν, ων) converges absolutely
for Re(s) > cπν . If ν ̸∈ Sπ , then πν is unramified. In this case, the zeta integral
Z(s, φν, ων) converges absolutely for Re(s) > κπ , where the positive real number
κπ depends on π only, according to Assumption 5.1. Hence, if we take a positive
real number cπ with

(5-4) cπ := max{κπ , cπν | ν ∈ Sπ ∩ |k| f },

then for any φν ∈Sπν (k×
ν ), and any unitary character ων ∈�∧

ν , the local zeta integral
Z(s, φν, ων) converges absolutely for Re(s) > cπ at all finite local places ν ∈ |k| f .

By the Mellin inversion formula as displayed in (2-6), we have

(5-5) φν(x) · |x |
d
ν =

∑
ων∈�∧

ν

(
Resz=0(Z(s + d, φν, ων)|x |

−s
ν qs

ν)
)
ων(ac(x))−1,

where z = q−s
ν and d > cπ . Since the summation on the right-hand side is finite, it

suffices to show that the limit formula

(5-6) lim
|x |ν→0

Resz=0(Z(s + d, φν, ων)|x |
−s
ν qs

ν)= 0

holds for each ων ∈�∧
ν .

It is clear that Z(s + d, φν, ων) is holomorphic for Re(s) > −(d − cπ ). By
Theorem 3.4, we have

Z(s + d, φν, ων)= pν(s) · L(s + d, πν ×ων),

where pν(s) ∈ C[qs
ν, q−s

ν ], depending on φν . By the supercuspidal support of
πν⊗ων , we obtain that the representation πν⊗ων can be embedded, as an irreducible
subrepresentation, into the induced representation

πν ⊗ων ↪→5ν := IndGn(kν)
P(kν) τν,1 ⊗ · · · ⊗ τν,tν ,

where τν, j is an irreducible supercuspidal representation of Gaν, j (kν) with n =

aν,1 + · · · + aν,tν (see [22]). By [16, Theorem 3.4], we have

L(s,5ν)= L(s, τν,1) · · · L(s, τν,tν ).



342 DIHUA JIANG AND ZHILIN LUO

By [16, Corollary 3.6], we have

L(s, πν ×ων)

L(s,5ν)

is a polynomial in q−s
ν . Hence, we obtain that for the given φν ∈ Sπν (k×

ν ), there
exists a polynomial Pv(s) in qs

ν and q−s
ν , depending on πν ⊗ων and φν , such that

Z(s + d, φν, ων)= Pν(s)L(s + d,5ν).(5-7)

By applying [16, Proposition 5.11] to the local L-functions L(s, τν, j ), we obtain
that L(s, τν, j )=1 when τν, j is either supercuspidal (aν, j ≥2) or a ramified character
(aν, j = 1). Hence, there exists an integer 1 ≤ rν ≤ tν ≤ n, such that

(5-8) Z(s + d, φν, ων)= Pν(s)
rν∏

j=1

1

1 − q−s−d+sν, j
ν

=

rν∏
j=1

( ∞∑
ℓ j =0

q−(s+d−sν, j )ℓ j
ν

)
for some sν, j ∈ C, with j = 1, 2, . . . , rν .

Now we are ready to discuss the limit in (5-6). For z = q−s
ν , we have

(5-9) Z(s + d, φν, ων)|x |
−s
ν qs

ν = Pν(z) ·

∏rν
j=1

(∑
∞

ℓ j =0 q−ℓ j (d−sν, j )
ν · zℓ j

)
zordν(x)+1 ,

where Pν(z) is a polynomial function in z, z−1. By taking the residue at z = 0, we
obtain that

(5-10) Resz=0(Z(s + d, φν, ων)|x |
−s
ν qs

ν)= C0(x),

where C0(x) is the coefficient of the constant term of

(5-11) Pν(z) ·

∏rν
j=1

(∑
∞

ℓ j =0 q−ℓ j (d−sν, j )
ν · zℓ j

)
zordν(x)

.

Since Pν(z) is a polynomial function in z, z−1 with degree depending on π , without
loss of generality, we may assume that Pν(z)≡ 1 when we compute C0(x). In this
case, the constant term of (5-11) with Pν(z)≡ 1 is equal to

(5-12)
∑

ℓ1+···+ℓrν=ordν(x)
ℓ1,...,ℓrν≥0

q
−ℓ1(d−sν, j )−···−ℓt0 (d−sν, j )
ν .

When ν /∈ Sπ , πν is unramified,

diag(qsν,1
ν , . . . , qsν,n

ν )= c(πν)

is the Frobenius–Hecke conjugacy class associated to πν in G∨
n (C)with sν, j =s j (πν)

for j =1, 2, . . . , n. By Assumption 5.1 and the definition of the positive real number
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cπ as in (5-4), we take d0 = 0 and have

d − Re(sν, j ) > cπ − Re(sν, j )≥ 0(5-13)

for all j = 1, 2, . . . , n. For the remaining finite local places ν, we may choose a
positive real number d0 such that

d + d0 − Re(sν, j ) > cπ + d0 − Re(sν, j )≥ 0(5-14)

for all j = 1, 2, . . . , rν and all ν ∈ Sπ ∩|k| f . Hence, with the choice of d0, we have

(5-15)
∣∣Resz=0(Z(s + d + d0, φν, ων)|x |

−s
ν qs

ν)
∣∣

≤

∑
ℓ1+···+ℓrν=ordν(x)

ℓ1,...,ℓrν≥0

q
−

∑rν
j=1 ℓ j (d+d0−Re(sν, j ))

ν

≤

∑
ℓ1+···+ℓrν=ordν(x)

ℓ1,...,ℓrν≥0

q−ordν(x)(d+d0−max j {Re(sν, j )})
ν

=

(ordν(x)+rν−1
rν−1

)
· q−ordν(x)(d+d0−max j {Re(sν, j )})
ν .

Since d + d0 − max j {Re(sν, j )}> 0, and the function
(ordν(x)+rν−1

rν−1

)
is a polynomial

in ordν(x), we must have that

lim
ordν(x)→+∞

(ordν(x)+rν−1
rν−1

)
· q−ordν(x)(d+d0−max j {Re(sν, j )})
ν = 0.

By (5-5), if d > cπ + d0, then we must have that

lim
xν→0

φν(x) · |x |
d
ν = 0

for all φν ∈ Sπν (k×
ν ) and at all ν ∈ |k| f . It is clear that the function φν(x) · |x |

d
ν is

continuous over kν and has compact support.
Finally, by taking a positive real number sπ = max{s∞, cπ + d0}, we obtain that

for any a0 > sπ , the function φν(x)|x |
a0
ν is continuous over kν and has the limit

lim
|x |ν→0

φν(x)|x |
a0
ν = 0,

for any φν ∈ Sπν (k×
ν ) and at any local place ν ∈ |k|. We are done. □

Lemma 5.3. Let π =
⊗

ν πν ∈ 5A(Gn) satisfy Assumption 5.1. For any ν /∈ Sπ ,
the basic function Lπν ∈ Sπν (k×

ν ) is supported on oν − {0} with

Lπν (o
×

ν )= 1.
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There exists a positive real number bπ ≥ sπ , which is independent of ν, such that,
for any b0 > bπ , ∣∣Lπν (x) · |x |

b0
ν

∣∣ ≤ 1

holds, as a function in x ∈ k×
ν , for all ν /∈ Sπ .

Proof. We continue with the proof of Lemma 5.2 for the non-Archimedean case, and
specialize it to the unramified situation. Note that the basic function Lπν ∈ Sπν (k×

ν )

is the Mellin inversion of the local unramified L-factor

Z(s, Lπν )= L(s, πν),

whose Mellin inversion can be calculated by (5-5) after setting Pν(s)= 1. In other
words, taking the constant sπ as in Lemma 5.2, we have, for any a0 > sπ ,

Lπν (x) · |x |
a0 = Resz=0(Z(s + a0, Lπν )|x |

−s
ν qs

ν).

As in (5-9), we write

(5-16) Z(s +a0, Lπν )=
1∏n

j=1(1 − q−s−a0+s j (πν)
ν )

=

n∏
j=1

( ∑
ℓ j ≥0

qℓ j (s j (πν)−a0)
ν zℓ j

)
,

where we write z = q−s
ν and c j (πν)= qs j (πν)

ν . From the Laurent expansion on the
right-hand side, we obtain that the function

Z(s + a0, Lπν )|x |
−s
ν qs

ν

is holomorphic in z = q−s
ν whenever x /∈ oν . By taking the residue at z = 0, we

obtain that
Lπν (x) · |x |

a0 = 0 for x /∈ oν .

Hence, the basic function Lπν (x) has support included in oν . Similarly, we apply
the Mellin inversion, as calculated by (5-5), to the case x ∈ o×, and obtain that the
residue picks up the constant term of the right-hand side of (5-16) as a function of
z = q−s , which is equal to 1. Therefore, we obtain

Lπν (o
×

ν )= 1.

Finally, whenever x ∈ oF ∖ {0}, we apply (5-15) to the unramified case, and
obtain that∣∣Lπν (x) · |x |

b
∣∣ ≤

(ordν(x)+n−1
n−1

)
· q−ordν(x)·min j {b−Re(s j (πν))}
ν ,

as long as b > sπ . By Assumption 5.1, we have

min1≤ j≤n{b − s j (πν)}>min1≤ j≤n{κπ − s j (πν)}> 0.
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Therefore, whenever ordν(x)≥ 1,(ordν(x)+n−1
n−1

)
· q−ordν(x)·min j {b−Re(s j (πν))}
ν

≤

(ordν(x)+n−1
n−1

)
· 2−ordν(x)·min j {b−Re(s j (πν))}

since qν ≥ 2 for any ν /∈ Sπ . It turns out that we only need to find a positive integer
bπ ≥ sπ ∈ R such that, for any b > bπ ,(ordν(x)+n−1

n−1

)
· 2−ordν(x)·min j {b−Re(s j (πν))} ≤ 1

holds for any ν /∈ Sπ and ordν(x) ≥ 1. Equivalently, after applying the function
log2 on both sides, the above inequality becomes

log2

(ordν(x)+n−1
n−1

)
− ordν(x) · min

j
{b − Re(s j (πν))} ≤ 0.

Hence, it suffices to show the existence of bπ ∈ R so that

min
j

{b − Re(s j (πν))} = b − max
j

{Re(s j (πν))}

> bπ − κπ ≥
log2

(ordν(x)+n−1
n−1

)
ordν(x)

for any ordν(x)≥ 1, i.e.,

(5-17) bπ ≥ κπ +
log2

(ordν(x)+n−1
n−1

)
ordν(x)

for any ordν(x)≥ 1. As a function of t ≥ 1,

log2

( t+n−1
n−1

)
= log2

∏n−1
k=1(t + k)
(n − 1)!

≥ log2

∏n−1
k=1(1 + k)
(n − 1)!

≥ log2 n ≥ 0.

Thus we obtain that
log2

(t+n−1
n−1

)
t

≥ 0

for any t ≥ 1. On the other hand, by L’Hôspital’s rule, one must have that

lim
t→∞

log2
(t+n−1

n−1

)
t

= 0.

It follows, as a continuous function in t ≥ 1, there exists a constant c0 ∈ R such that

log2
(t+n−1

n−1

)
t

< c0



346 DIHUA JIANG AND ZHILIN LUO

for any t ≥ 1. It is clear now that the inequality in (5-17) holds for any

bπ ≥ κπ + c0.

Therefore it suffices to take bπ = max{sπ , κπ + c0}. We are done. □

We are ready to establish the first property for the π -theta functions 2π (x, φ) in
such generality.

Theorem 5.4 (convergence of π-theta functions). Fix any π =
⊗

ν πν ∈5A(Gn)

with Assumption 5.1. Then, for any φ ∈ Sπ (A×), the π -theta function

2π (x, φ) :=

∑
α∈k×

φ(αx)

converges absolutely and locally uniformly as a function in x ∈ A×.

Proof. For any π =
⊗

ν πν ∈5A(Gn), let Sπ be a finite subset of local places of k
containing |k|∞ and for any finite local place ν ̸∈ Sπ , the local component πν is
unramified. We may assume that φ ∈ Sπ (A×) is a pure restricted tensor of the form

(5-18) φ =

( ⊗
ν /∈Sπ

Lπν

)
⊗

( ⊗
ν∈Sπ

φν

)
= φ∞ ⊗φ f

with φν ∈ Sπν (k×
ν ) for all ν ∈ Sπ , φ∞ =

⊗
ν∈|k|∞

φν and φ f =
⊗

ν∈|k| f
φν .

Fix a positive real number s0 > bπ ≥ sπ ≥ κπ where the constants κπ , sπ , and
bπ are as given in Assumption 5.1, Lemma 5.2, and Lemma 5.3, respectively. By
Lemma 5.3, for any ν /∈ Sπ , we have the function Lπν (x)|x |

s0
ν is continuous on kν

and supported on oν . We have

(5-19)
∣∣Lπν (x)|x |

s0
ν

∣∣ ≤ 1

for every ν /∈ Sπ . Similarly, for any finite ν ∈ Sπ ∩ |k| f , the function φν(x)|x |
s0
ν

is continuous on kν with compact support. We may assume that the support of
φν(x)|x |

s0
ν is contained in a fractional ideal pmν

ν for some integer mν ∈ Z. Write
oφ :=

∏
ν /∈Sπ oν and mφ :=

∏
ν∈Sπ∩|k| f

pmν . Then, by the weak approximation
theorem [48], the product

(5-20) m(φ) := oφ ·mφ

is a fractional ideal of o = ok , the ring of integers in k.
For any α ∈ k×, the Artin product formula shows that |α|A = 1 [48]. Hence, we

obtain that

(5-21) 2π (1, φ)=

∑
α∈k×

φ(α)=

∑
α∈k×

φ(α) · |α|
s0
A .
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From the support of the functions φν · | · |
s0 for all ν ∈ |k| f , we write

2π (1, φ)=

∑
α∈k×∩m(φ)

(φ∞(α) · |α|
s0
∞
) · (φ f (α) · |α|

s0
f ).(5-22)

It is clear that for α ∈ k×
∩m(φ), we have that∣∣φ f (α) · |α|

s0
f

∣∣ =

( ∏
ν ̸∈Sπ

∣∣Lπν (α) · |α|
s0
ν

∣∣) ·

( ∏
ν∈Sπ∩|k| f

∣∣φν(α) · |α|
s0
ν

∣∣)
≤

∏
ν∈Sπ∩|k| f

∣∣φν(α) · |α|
s0
ν

∣∣,
because of (5-19). By Lemma 5.2, there exists a real constant cφ , such that

(5-23)
∏

ν∈Sπ∩|k| f

∣∣φν(α) · |α|
s0
ν

∣∣ ≤ cφ.

Hence, we obtain that

(5-24)
∣∣2π (1, φ)∣∣ ≤ cφ ·

∑
α∈k×∩m(φ)

|φ∞(α)| · |α|
s0
∞
.

Since the fractional ideal m(φ) of k is a lattice in A∞ =
∏
ν∈|k|∞

kν , it suffices to
show that the summation

(5-25)
∑

α∈m(φ)

|φ∞(α)| · |α|
s0
∞

is absolutely convergent.
Consider the compact set

B∞(1) := {(αν) ∈ A∞ | |αν |ν ≤ 1, ∀ν ∈ |k|∞}.(5-26)

We write (5-25) as∑
α∈m(φ)∩B∞(1)

|φ∞(α)| · |α|
s0
∞

+

∑
α∈m(φ)∖(m(φ)∩B∞(1))

|φ∞(α)| · |α|
s0
∞
.(5-27)

It is clear that the intersection of m(φ) with B∞(1) is a finite set. By Lemma 5.2,
the function φ∞(x)|x |

s0
∞ is continuous over A∞, and hence is bounded over B∞(1).

Thus, in (5-27), the first summation∑
α∈m(φ)∩B∞(1)

|φ∞(α)| · |α|
s0
∞

is bounded. The second summation in (5-27), which is∑
α∈m(φ)∖(m(φ)∩B∞(1))

|φ∞(α)| · |α|
s0
∞
,
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where the function φ∞(x) · |x |
s0
∞ is of Schwartz type over A∞ ∖B∞(1), is bounded

by the same proof for the absolute convergence of the classical Poisson summation
formula [21, Chapter 4; 47]. This proves the absolute convergence of 2π (x, φ) for
any φ ∈ Sπ (A×).

For any x ∈ A×, we have 2π (x, φ) =2π (1, φx) with φx(y) = φ(yx). Hence,
2π (x, φ) converges absolutely for any φ ∈ Sπ (A×).

For the locally uniform convergence of the π-theta function 2π (x, φ) at any
x ∈ A×, by using 2π (x, φ) = 2π (1, φx) again, it is enough to show the locally
uniform convergence of 2π (x, φ) at x = 1 for any given factorizable function φ as
in (5-18). As in (5-21), we may write

2π (x, φ)=

∑
α∈k×

φ(αx) · |α|
s0
A .(5-28)

Since φ =
(⊗

ν /∈Sπ Lπν
)
⊗

(⊗
ν∈Sπ φν

)
as in (5-18), we have m(φ)=

∏
ν∈|k| f

m(φ)ν
as in (5-20), where m(φ)ν is a fractional ideal of kν containing the support of the
function φν(x) · |x |

s0
ν . As in (5-22), we write

(5-29) 2π (x, φ)=

∑
α∈k×∩m(φ)

(φ∞(αx∞) · |α|
s0
∞
) · (φ f (αx f ) · |α|

s0
f ).

Take a compact open neighborhood � f (φ) of x f = 1 in A×

f to be

� f (φ)=

( ∏
ν /∈Sπ

o×

ν

)
·

( ∏
ν∈|k| f ∩Sπ

(1 + pdν
ν )

)
,

where dν is a positive integer for ν ∈ |k| f ∩ Sπ . For any x f ∈ � f (φ), if ν /∈ Sπ ,
then xν ∈ o×

ν and α ̸= 0 and α ∈ oν . Hence, αxν ̸= 0 and αxν ∈ oν . In this case, we
have that ∣∣φν(αxν) · |α|

s0
ν

∣∣ =
∣∣Lπν (αxν) · |αxν |s0

ν

∣∣ ≤ 1

by (5-19). If ν ∈ Sπ ∩ |k| f , then α ∈ pmν
ν and xν ∈ 1 + pdν

ν , and hence we have that
αxν ∈ pmν

ν . In this case, we have that∣∣φν(αxν) · |α|
s0
ν

∣∣ =
∣∣φν(αxν) · |αxν |s0

ν

∣∣.
As in (5-23), there exists a real constant cφ , which is independent of x f ∈� f (φ),
such that ∣∣φ f (αx f ) · |α|

s0
f

∣∣ ≤

∏
ν∈Sπ∩|k| f

∣∣φν(αxν) · |α|
s0
ν

∣∣ ≤ cφ.

Hence, we obtain that

(5-30) |2π (x, φ)|≤cφ ·
∑

α∈k×∩m(φ)

∣∣φ∞(αx∞)·|α|
s0
∞

∣∣≤cφ ·
∑

α∈m(φ)

∣∣φ∞(αx∞)·|α|
s0
∞

∣∣.
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When x∞ runs over a compact neighborhood�∞ of 1 in A∞, by the same argument,
we are reduced to showing that∑
α∈m(φ)∖(m(φ)∩B∞(1))

|φ∞(αx∞)| · |α|
s0
∞

= |x∞|
−s0
∞

·

∑
α∈m(φ)∖(m(φ)∩B∞(1))

|φ∞(αx∞)| · |αx∞|
s0
∞

converges uniformly. Since the function φ∞(x) · |x |
s0
∞ is of Schwartz type over

A∞∖B∞(1), the uniform convergence of the last summation with x∞ ∈�∞ follows
from the same proof of that for the classical theta functions. We omit the details
and finish the proof. □

5B. Justification of Assumption 5.1. We prove Assumption 5.1 when π ∈A(Gn) is
any irreducible admissible automorphic representation of Gn(A), which is contained
in 5A(Gn).

Proposition 5.5. For any π ∈ A(Gn), Assumption 5.1 holds.

Proof. A cuspidal datum (P, ε) of Gn consists of a standard parabolic subgroup P of
Gn with Levi decomposition P = M ·N with the Levi subgroup M and the unipotent
radical N , and an irreducible cuspidal automorphic representation ε of M(A), which
is square integrable up to a twist of automorphic character of M(A). For any
π =

⊗
ν∈|k|

πν ∈ A(Gn), by [30], there exists a cuspidal datum (P, ε) of Gn , such
that π can be realized as an irreducible subquotient of the induced representation
IndGn(A)

P(A) (ε) of Gn(A). It follows that for any ν ∈ |k|, the ν-component πν can be
realized as an irreducible subquotient of the induced representation IndGn(kν)

P(kν) (εν)

of Gn(kν), where εν is the ν-component of ε =
⊗

ν εν .
Let T be the maximal torus of Gn , consisting of all diagonal matrices, and

B = T · U be the Borel subgroup of Gn , consisting of all upper-triangular matrices.
Take S to be a finite subset of |k|, such that S contains |k|∞ and for any ν /∈ S,
πν and εν are unramified. It is well known (see [7], for instance) that there exists
an unramified character ην of the maximal torus T (kν), such that εν embeds as a
subrepresentation into the unramified induced representation IndM(knu)

(M∩B)(kν)(ην). By
induction in stages, we have IndGn(kν)

P(kν) (εν) embeds as a subrepresentation into the
spherical induced representation IndGn(kν)

B(kν) (ην) of Gn(kν). Hence, the irreducible
spherical representation πν is the unique spherical subquotient of IndGn(kν)

B(kν) (ην). Via
the Satake isomorphism, the Frobenius–Hecke conjugacy class of πν in Gn(C) is

c(πν)= diag(η1
ν(ϖν), . . . , η

n
ν (ϖν)).

Here ϖν is the uniformizer of the prime ideal pν , and for any t = diag(t1, . . . , tn) ∈
T (kν), the unramified character ην is given by

ην(t)= η1
ν(t1) · · · η

n
ν (tn).
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It is clear that the conjugacy class of the semisimple element c(πν) in the complex
dual group M∨(C) of the Levi subgroup M is the Frobenius–Hecke conjugacy class
c(εν) of εν . In other words, both πν and εν share the same Satake parameter in
T ∨(C)Wn , where Wn is the Weyl group of G∨

n (C).
Take δε to be an automorphic character of M(A) such that δε ⊗ ε is square

integrable modulo the center of M . Then for ν /∈ S, the ν-component (δε ⊗ ε)ν is
spherical and unitary. By the classification of the spherical unitary dual of GLn

over a non-Archimedean local field kν [42], we obtain∣∣logqν max
1≤ j≤n

{
|(δε)

j
ν(ϖν)η

j
ν (ϖν)|

}∣∣ ≤
n − 1

2
.

Since the unramified part of the automorphic character δε is completely determined
by ε and the cuspidal datum (P, ε) of π is uniquely determined by π , up to
conjugation, we obtain that there exists a positive real number κπ , depending only
on π ∈ A(Gn), such that ∣∣logqν max

1≤ j≤n

{
|η j
ν (ϖν)|

}∣∣< κπ .
This justifies the assumption. □

By Theorem 5.4 and Proposition 5.5, we obtain the following absolute conver-
gence.

Corollary 5.6. For any π ∈ A(Gn) and for any φ ∈ Sπ (A×), the π -theta function

2π (x, φ)=

∑
α∈k×

φ(αx)

converges absolutely and locally uniformly as a function in x ∈ A×.

Another consequence of Proposition 5.5 is the absolute convergence of the global
zeta integral of Godement–Jacquet type for any π ∈ A(Gn).

Corollary 5.7. For any π ∈A(Gn), there exists a positive real number rπ ∈ R, such
that the global zeta integral

Z(s, f, ϕπ )=
∫

GLn(A)

f (g)ϕπ (g)|det g|
s+(n−1)/2
A dg, f ∈ S(Mn(A)), ϕπ ∈ C(π)

is absolutely convergent for any Re(s) > rπ .

Proof. There is no harm to assume that f =
⊗

ν fν is a pure restricted tensor.
Similarly, one can write ϕπ =

∏
ν ϕπν . For the given π ∈ A(Gn), take the finite

subset S of |k| as in the proof of Proposition 5.5. Then for ν /∈ S, the function fν
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is the characteristic function of Mn(oν), and ϕπν is the zonal spherical function
attached to the unramified representation πν . From [16, Chapter I, §7], we have

Z(s, fν, ϕπν )=
1

det(In −α(πν)q−s
ν )

= L(s, πν),

where the left-hand side is absolutely convergent whenever Re(s) > κπ , where κπ
is determined in the proof of Proposition 5.5. It follows that∏

ν /∈S

Z(s, fν, ϕπν )=

∏
ν /∈S

1
det(In −α(πν)q−s

ν )
= L S(s, π)

is absolutely convergent for Re(s) > κπ + 1. As S is a finite set, it is clear that one
can choose a real number rπ to be sufficiently positive (depending on π only) such
that the global zeta integral

Z(s, f, ϕπ )= L S(s, π) ·
∏
ν∈S

Z(s, fν, ϕπν )

converges absolutely for Re(s) > rπ . We are done. □

6. (σ, ρ)-theta functions on GL1

For any k-split reductive group G, as in Section 4, we denote by 5A(G) the set
of irreducible admissible representations of G(A). If we write σ =

⊗
ν∈|k|

σν ,
then we assume that σν ∈ 5kν (G), where at almost all finite local places ν, the
local representations σν are unramified. When ν is a finite local place, σν is an
irreducible admissible representation of G(kν), and when ν is an infinite local place,
we assume that σν is of Casselman–Wallach type as a representation of G(kν). Let
A(G) ⊂ 5A(Gn) be the subset consisting of equivalence classes of irreducible
admissible automorphic representations of G(A), and Acusp(G) be the subset of
cuspidal members of A(G).

For any σ ∈ 5A(G) and ρ : G∨
→ GLn(C), we are going to introduce the

(σ, ρ)-Schwartz space Sσ,ρ(A×), the (σ, ρ)-Fourier operator Fσ,ρ,ψ and (σ, ρ)-theta
functions 2σ,ρ(x, φ) by means of the existence of the local Langlands reciprocity
map as in the local Langlands conjecture for G. The idea is to use the local
Langlands conjecture for the pair (G, ρ) as input and to formulate the global
statements, such as the (σ, ρ)-Poisson summation formula, which is expected to
be responsible for the global functional equation for the Langlands L-function
L(s, σ, ρ) as predicted by the Langlands conjecture, as output. The goal in this
section is to prove Theorem 6.2, which contains Theorem 1.2 as a special case and
serves a base for the discussion on Conjecture 1.5 and its refinement in Section 7.
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6A. On the local Langlands conjecture. We briefly review the local Langlands
conjecture for G over any local field F = kν for any local place ν ∈ |k|.

For any Archimedean local field, the local Langlands conjecture for G is a
theorem of Langlands, which follows from the Langlands classification theory [31].
At any non-Archimedean local places, for unramified representations, their local
Langlands parameters are uniquely determined by the Satake isomorphism [7; 38].
In the following we review the local Langlands conjecture for an F-split reductive
group G over a non-Archimedean local field F of characteristic zero.

Let WF be the Weil group attached to F . The set of local Langlands parame-
ters is denoted by 8F (G), which consists of continuous, Frobenius semisimple
homomorphisms

ς : WF × SL2(C)→ G∨,(6-1)

up to conjugation by G∨. The local Langlands conjecture asserts that there exists a
reciprocity map

RF,G : Rep(G(F))→8F (G),(6-2)

where Rep(G(F)) is the set of equivalence classes of smooth representations of
G(F) of finite length. RF,G is expected to be surjective with finite fibers, and
to satisfy a series of compatibility conditions. Beyond the existence, one has to
formulate and prove the uniqueness of such a local Langlands reciprocity map.

When G = GLn , it is a theorem of Harris–Taylor [17], of G. Henniart [19] and
of P. Scholze [39] that the local Langlands reciprocity map exists and is unique
with compatibility of local factors, plus other conditions. Note that in this case, the
uniqueness of such a local Langlands reciprocity map is proved by Henniart using
the special case of the local converse theorem [18]. However, such a uniqueness is
not known in general. When G is an F-quasisplit classical group, then such a local
Langlands reciprocity map exists due to the endoscopic classification of J. Arthur [2].

In their recent work [13], L. Fargues and P. Scholze use the geometrization
method to understand the local Langlands conjecture. In particular, they establish a
local Langlands reciprocity map for any F-split reductive groups considered in this
paper. More precisely, Theorem I.9.6 of [13] asserts that for any F-split reductive
group G, there exists a local Langlands reciprocity map RF,G from Rep(G(F))
to 8F (G), satisfying nine compatibility conditions. In particular when G = GLn ,
the reciprocity map of Fargues and Scholze coincides with the unique one for GLn .
When G is an F-quasisplit classical group, the reciprocity map of Fargues and
Scholze coincides with the one by Arthur. Although it is still not known (as far as
the authors know) if the reciprocity map of Fargues and Scholze is unique, it is the
most promising one towards the local Langlands conjecture in great generality.

From now on, we are going to take the following assumption.
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Assumption 6.1. Over any non-Archimedean local field F of characteristic zero,
for any F-split reductive group G, the reciprocity map RF,G exists for the local
Langlands conjecture for G.

We may simply take the reciprocity map RF,G as defined in [13, Theorem I.9.6]
for the local Langlands conjecture. In fact, the relevant discussions in the rest of
this paper make no essential difference on which reciprocity map RF,G we are
going to take. Of course, the difference may occur if one discuss the definition of
local L-functions L(s, σ, ρ) or γ -functions γ (s, σ, ρ, ψ). but we are not going to
discuss those objects in the rest of this paper.

6B. Convergence of (σ, ρ)-theta functions. Let G be a k-split reductive group.
Take ρ : G∨(C) → GLn(C) to be any finite-dimensional representation of the
complex dual group G∨(C). For any σ ∈ 5A(G), we write σ =

⊗
ν σν with

σν ∈5kν (G). By Assumption 6.1, for any local place ν ∈ |k|, there exists a local
L-parameter ςν = ςν(σν) such that the composition ρ ◦ ςν is a local L-parameter
for Gn(kν)= GLn(kν). By the local Langlands conjecture for GLn [17; 19; 31; 39],
there exists a unique irreducible admissible representation

πν = πν(σ, ρ,Rkν ,G)(6-3)

belonging to 5F (Gn), which we may simply denote, if there is no confusion, by

πν = πν(σν, ρ).(6-4)

According to the Langlands functoriality conjecture, it makes sense to define the
(σν, ρ)-Schwartz space on k×

ν to be

Sσν ,ρ(k
×

ν ) := Sπν (k
×

ν ).(6-5)

At unramified local places, the (σν, ρ)-basic function Lσν ,ρ is taken to be the πν-
basic function Lπν ∈ Sπν (k×

ν ). Then we can define the (σ, ρ)-Schwartz space on
A× to be the restricted tensor product

Sσ,ρ(A×) :=

⊗
ν

Sσν ,ρ(k
×

ν )(6-6)

with respect to the basic function Lσν ,ρ at almost all finite local places. Note that
the definition of the (σ, ρ)-Schwartz space Sσ,ρ(A×) may rely on the assumption
of the local Langlands reciprocity map (Assumption 6.1) at the ramified finite local
places of σ , when G is a general k-split reductive group.

Let ψ =
⊗

ν ψν be a nontrivial additive character of A with ψ(a)= 1 for any
a ∈ k. Define the (σν, ρ)-Fourier operator Fσν ,ρ,ψν on k×

ν to be

(6-7) Fσν ,ρ,ψν := Fπν ,ψν ,
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which is a linear transformation from the (σν, ρ)-Schwartz space Sσν ,ρ(k×
ν ) to the

(σ̃ν, ρ)-Schwartz space Sσ̃ν ,ρ(k×
ν ). Then we define the (σ, ρ)-Fourier operator

Fσ,ρ,ψ :=

⊗
ν

Fσν ,ρ,ψν ,(6-8)

which is a linear transformation from the (σ, ρ)-Schwartz space Sσ,ρ(A×) to the
(̃σ , ρ)-Schwartz space Sσ̃ ,ρ(A×). Again, the definition of the (σ, ρ)-Fourier op-
erator Fσ,ρ,ψ may rely on the assumption of the local Langlands reciprocity map
(Assumption 6.1) at the ramified finite local places of σ , when G is a general k-split
reductive group.

Theorem 6.2 (convergence of (σ, ρ)-theta functions). Let ρ : G∨(C)→ GLn(C)

be any finite-dimensional representation of the complex dual group G∨(C). Take
Assumption 6.1 for G. Then, for any given unitary σ ∈ 5A(G), the (σ, ρ)-theta
function

2σ,ρ(x, φ) :=

∑
α∈k×

φ(αx)

converges absolutely and locally uniformly for any φ ∈ Sσ,ρ(A×) and x ∈ A×.

Proof. As discussed above, under Assumption 6.1 for G, for any σ =
⊗

ν σν ∈

5A(G), we obtain πν = πν(σν, ρ) of GLn(kν) for all ν ∈ |k|. Note that at ν ∈ |k|∞,
πν is taken to be of Casselman–Wallach type. Hence, π :=

⊗
ν πν is an irreducible

admissible representation of Gn(A) and belongs to 5A(Gn). From (6-5) and (6-6),
we have that

2σ,ρ(x, φ)=2π (x, φ)

for any φ ∈ Sσ,ρ(A×) = Sπ (A×). By Theorem 5.4, it is sufficient to verify
Assumption 5.1 for this π .

Since σ =
⊗

ν σν is unitary as a representation of G(A), we must have that σν
is an irreducible admissible unitary representation of G(kν) at every ν ∈ |k|, and
is unramified for almost all ν ∈ |k|. Since G is k-split, we can fix a Borel pair
(B, T ) of G defined over k, with a fixed maximal k-split torus T of G. Let ϱ be
the half-sum of positive roots with respect to the given pair (B, T ) and let δB be
the modular character of B(kν). Then, for any coweight ω∨

∈ Hom(Gm, T ),

δB(ω
∨(ϖν))

1/2
= q⟨ϱ,ω∨

⟩

ν ,

where ϖν is a fixed uniformizer in oν and ω∨ is viewed as a cocharacter from k×
ν

to T (kν).
Let S be a finite subset of |k| containing |k|∞, such that for any ν /∈ S, both σν

and πν are unramified. For any ν /∈ S, σν is unitary and unramified. Then the zonal
spherical function attached to σν , which is the normalized matrix coefficient of σν
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attached to spherical vectors in σν , is bounded by 1 — see [7, p. 151, (40)], for
instance. Now let

c(σν)= (qs1(σν)
ν , . . . , qsr (σν)

ν )

be the Frobenius–Hecke conjugacy class of σν inside T ∨(C)≃ (C×)r , where r is
the k-rational rank of G. Then, by [36, Theorem 4.7.1],

max
1≤ j≤r

{|s j (σν)|} ≤ max
1≤ j≤r

{|⟨ϱ, ω∨

j ⟩|},

where {ω∨

j }
r
j=1 is a fixed set of fundamental coweights. Note that the result of

[36] assumes G to be simple-connected. But if we go over the proof of [36,
Theorem 4.7.1], the only result used is the explicit formula for zonal spherical
functions when the Frobenius–Hecke conjugacy class c(σν) of σν is nonsingular.
Hence, it suffices to apply the general formula appearing in [8, Theorem 4.2] to the
proof of [36, Theorem 4.7.1]. Therefore max1≤ j≤r {|s j (σν)|} has an upper bound
which is independent of the local places ν.

At unramified local places, we obtain the Frobenius–Hecke conjugacy class
c(πν) of πν to be

c(πν)= ρ(c(σν))

for all ν /∈ S. It is clear that for this π =
⊗

ν πν ∈ 5A(Gn), the family of the
Frobenius–Hecke conjugacy classes

{c(πν) | ∀ν /∈ S}

associated to the irreducible admissible representation π satisfies Assumption 5.1.
We are done. □

Note that the definition of the (σ, ρ)-theta function 2σ,ρ(x, φ) may depend
on the existence of the local Langlands reciprocity map RF,G for general G
(Assumption 6.1), However, the absolute convergence of2σ,ρ(x, φ) in Theorem 6.2
only depends on the unramified data, and hence is independent of Assumption 6.1.
As a consequence of Theorem 4.7, we have:

Corollary 6.3. Assume the global Langlands functoriality is valid for (G, ρ). For
σ ∈ Acusp(G), if its functorial transfer π is cuspidal on Gn(A), then Conjecture 1.5
holds with Eσ,ρ(φ)=2σ,ρ(1, φ) for any φ ∈ Sσ,ρ(A×).

7. Variants of Conjecture 1.5

In Theorem 4.7, we established a π-Poisson summation formula (Conjecture 1.5)
for any π ∈ Acusp(Gn) and ρ = std. We explore the possibilities when π is not
cuspidal.
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7A. Certain special Schwartz functions. As before, we take F to be any local
field of characteristic zero. For any π ∈ 5F (Gn), recall from Definition 3.3 the
space of π -Schwartz functions

Sπ (F×)= Span{φξ,ϕπ ∈ C∞(F×) | ξ ∈ Sstd(Gn(F)), ϕπ ∈ C(π)},

where the π -Schwartz function φξ,ϕπ associated to a pair (ξ, ϕπ ) is defined in (3-6).
We introduce here a subspace of Sπ (F×):

S◦

π (F
×) := Span{φξ,ϕπ | ξ ∈ C∞

c (Gn(F)), ϕπ ∈ C(π)}.(7-1)

We prove the following result, which provides a new description of the test functions
in C∞

c (F
×), the space of all smooth, compactly supported functions on F×.

Theorem 7.1. Let F be any local field of characteristic zero. For any π ∈5F (Gn),
the subspace S◦

π (F
×) of Sπ (F×) as defined in (7-1) is equal to the space C∞

c (F
×),

i.e.,
S◦

π (F
×)= C∞

c (F
×).

First of all, via the determinant morphism det : Gn → Gm , it is not hard to verify
that the fiber integration

ξ 7→

∫
det g=x

ξ(g) dx g

yields a surjective homomorphism from C∞
c (Gn(F)) to C∞

c (F
×). For any ξ ∈

C∞
c (Gn(F)) and ϕπ ∈ C(π), the product ξ(g)ϕπ (g) belongs to C∞

c (Gn(F)). With
the fiber integration through det, the function φξ,ϕπ (x) belongs to C∞

c (F
×). Hence,

we obtain that

S◦

π (F
×)⊂ C∞

c (F
×)(7-2)

for any π ∈5F (Gn). To prove the converse of (7-2), we are going to use different
arguments for the non-Archimedean case and the Archimedean case.

We first consider the non-Archimedean case. For any quasicharacter χ ∈X(F×),
it can be written in a unique way as χ(x) = |x |

s
F ·ω(x) with s ∈ C and ω ∈ �∧.

We may write χ = χs,ω and X(F×) = C ×�∧. Furthermore, we write the space
Z(X(F×)) defined in Definition 2.2 as Z(C×�∧). We denote by Lcpt the subspace
of Z(C ×�∧) consisting of functions z(χs,ω)= z(s, ω) ∈ Z(C ×�∧) with the two
properties

(1) z(s, ω) is nonzero at finitely many ω ∈�∧;

(2) for any ω ∈�∧, z(s, ω) ∈ C[qs, q−s
].

By Theorem 2.3, the subspace Lcpt is in one-to-one correspondence with C∞
c (F

×)

via the Mellin transform and its inversion. Denote by L◦
π the subspace of Lcpt that
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is in one-to-one correspondence with the subspace S◦
π (F

×). From the discussion
right after [34, Theorem 3.1.1], for any given ω ∈�∧, the subspace

I◦

π,ω := {Z(s, ξ, ϕπ , ω) | ξ ∈ C∞

c (Gn(F)), ϕπ ∈ C(π)}

of the fractional ideal Iπ,ω as in Theorem 2.4 is equal to C[qs, q−s
]. For the fixed

ω ∈�∧, the space I◦
π,ω consists of the restriction of functions in Lcpt to the slice

C × {ω}, according to the definition of the space Lcpt. In other words, for any
fixed ω ∈ �∧ and z(s, ω) ∈ Lcpt, there exists finitely many ξ j

ω ∈ C∞
c (Gn(F)) and

ϕ
j
π,ω ∈ C(π), such that

z(s, ω)=

∑
j

Z(s, ξ j
ω, ϕ

j
π,ω, ω)=

∑
j

Z(s, φ
ξ

j
ω,ϕ

j
π,ω
, ω)

for any s ∈ C. Hence, with any fixed ω ∈ �∧, for any z(s, ω) ∈ Lcpt, there exists
z◦(s, ω) ∈ L◦

π such that

z(s, ω)= z◦(s, ω)(7-3)

as functions in s ∈ C.
Define, for each ω0 ∈�∧, a function zω0(s, ω) with the property

zω0(s, ω)=

{
1, if ω = ω0,

0, if ω ̸= ω0.

By definition, the function zω0(s, ω) belongs to Lcpt for each ω0 ∈�∧. Hence, from
(7-3), we have

z(s, ω)=

∑
ω0∈�∧

zω0(s, ω) · z(s, ω)=

∑
ω0∈�∧

zω0(s, ω) · z
◦(s, ω0),(7-4)

for any z(s, ω) ∈ Lcpt. Note here that the summations only take finitely many
ω0 ∈�∧. Hence, to prove the converse of (7-2), it is enough to show that

zω0(s, ω) · z
◦(s, ω0) ∈ L◦

π(7-5)

for every ω0 ∈ �∧. It is clear that (7-5) is an easy consequence of the following
proposition.

Proposition 7.2. The space Lcpt is an associative algebra without identity, and the
space L◦

π is an Lcpt-module under multiplication.

Proof. From the definition of Lcpt, it is clear that Lcpt is an associative algebra under
the multiplication and has no identity.

To prove that L◦
π is an Lcpt-module, we take z(s, ω) ∈ Lcpt and write φ as the

Mellin inversion of z(s, ω). Via the determinant morphism det : Gn(F)→ F×, we
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write
φ(x)=

∫
det g=x

f (g) dx g

for some f ∈ C∞
c (Gn(F)). For any ξ ∈ C∞

c (Gn(F)) and ϕπ ∈ C(π), we write
z◦(s, ω) ∈ L◦

π to be the Mellin transform of the function φξ,ϕπ ∈ S◦
π (F

×). It is
enough to show that

z(s, ω) · z◦(s, ω) ∈ L◦

π .(7-6)

It is clear that

z(s, ω) · z◦(s, ω)= Z(s, φ ∗φξ,ϕπ , ω).(7-7)

Now we compute the right-hand side of (7-7) with a fixed ω ∈�∧:

(7-8) Z(s, φ ∗φξ,ϕπ , ω)=

∫
x∈F×

ω(x)|x |
s−1/2
F d×x

∫
y∈F×

φ(y)φξ,ϕπ (y
−1x) d×y

=

∫
F×
ω(x)|x |

s−1/2
F d×x

∫
F×

d×y
∫

det g=y
f (g) dyg

·

∫
det h=y−1x

ξ(h)ϕπ (h) dy−1x h.

After changing variable g → gh−1, the right-hand side of (7-8) is equal to

(7-9)
∫

F×
ω(x)|x |

s−1/2
F d×x

∫
F×

d×y
∫

det g=x
f (gh−1) dx g

·

∫
det h=y−1x

ξ(h)ϕπ (h) dy−1x h.

In (7-9), the integration in y ∈ F× yields the identity

(7-10)
∫

y∈F×
d×y

∫
det h=y−1x

f (gh−1)ξ(h)ϕπ (h) dy−1x h

=

∫
Gn(F)

f (gh−1)ξ(h)ϕπ (h) dh.

By applying (7-10) to (7-9), we can write (7-9) as∫
F×
ω(x)|x |

s−1/2
F d×x

∫
det g=x

∫
Gn(F)

f (gh−1)ξ(h)ϕπ (h) dh dx g,

which is equal to

(7-11)
∫

g∈Gn(F)

∫
h∈Gn(F)

f (gh−1)ξ(h)ϕπ (h)ω(det g)|det g|
s−1/2
F dh dg.

By taking a change of variable h → h−1g, (7-11) can be written as

(7-12)
∫

g∈Gn(F)

∫
h∈Gn(F)

f (h)ξ(h−1g)ϕπ (h−1g)ω(det g)|det g|
s−1/2
F dh dg.
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Since f, ξ ∈ C∞
c (Gn(F)), the function

(g, h) 7→ f (h)ξ(h−1g)

belongs to the space C∞
c (Gn(kν)× Gn(kν)). By [5, 1.22], we have

C∞

c (Gn(kν)× Gn(kν))≃ C∞

c (Gn(kν))⊗ C∞

c (Gn(kν)).

We may write

f (h)ξ(h−1g)=

r∑
j=1

ξ j (g)ξ j (h)

for some ξ j (g) and ξ j (h) in C∞
c (Gn(F)). Meanwhile, we write

(7-13) ϕπ (h−1g)= ⟨π(h−1g)v, ṽ⟩ = ⟨π(g)v, π̃(h)ṽ⟩, v ∈ π, ṽ ∈ π̃ .

By applying those explicit expressions to the integral in (7-12), we obtain that
(7-12) is equal to

r∑
j=1

∫
g∈Gn(F)

∫
h∈Gn(F)

ξi (g)ξ i (h)⟨π(g)v, π̃(h)ṽ⟩ω(det g)|det g|
s−1/2
F dh dg

=

r∑
j=1

∫
g∈Gn(F)

ξi (g)ω(det g)|det g|
s−1/2
F dg

∫
h∈Gn(F)

ξ i (h)⟨π(g)v, π̃(h)ṽ⟩ dh

=

r∑
j=1

∫
Gn(F)

ξi (g)⟨π(g)v, π̃(ξ j )ṽ⟩ω(det g)|det g|
s−1/2
F dg.

By writing ϕπ, j (g) := ⟨π(g)v, π̃(ξ j )ṽ⟩, we obtain that

(7-14) Z(s, φ ∗φξ,ϕπ , ω)=

r∑
j=1

∫
Gn(F)

ξi (g)ϕπ, j (g)ω(det g)|det g|
s−1/2
F dg

=

r∑
j=1

Z(s, φξ j ,ϕπ, j , ω).

By definition of L◦
π , we obtain that the right-hand side of (7-14) belongs to the

space L◦
π , and so does the function Z(s, φ∗φξ,ϕπ , ω). Therefore we have established

(7-6). We are done. □

We have finished the proof of Theorem 7.1 for the non-Archimedean case.
Now we turn to the proof the converse of (7-2), and hence Theorem 7.1 for the
Archimedean case.
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We first treat the case when F ≃ C. It is clear that the multiplication map

(7-15)
m : C×

× SLn(C)→ Gn(C)

(a, h) 7→ a · h

provides a surjective group homomorphism with finite kernel, which in particular
is a smooth (covering) map. The push-forward map along m, which we denote by

m∗ : C∞

c (C
×

× SLn(C))→ C∞

c (Gn(C))(7-16)

is surjective. In fact, the surjectivity can be easily verified as follows. For any
f ∈ C∞

c (Gn(C)), let m∗( f ) be the pull-back of f along m, which is given by

m∗( f )(a, h)= f (a · h), (a, h) ∈ C×
× SLn(C).

Then we obtain that

m∗(m
∗( f ))(h)=

∑
(a,h)∈C×

×SLn(C)
a·h=g

f (a · h)= |ker(m)| · f (g), g ∈ Gn(C).

It is clear now that the subspace S◦
π (C

×) of Sπ (C×) is equal to the space spanned
by the functions

(7-17) φm∗( f ),ϕπ (x)=

∫
det g=x

m∗( f )(g)ϕπ (g) dx g

=

∫
det g=x

∑
(a,h)∈C×

×SLn(C)
a·h=g

f (a, h)ϕπ (g) dx g

with all f ∈ C∞
c (C

×
×SLn(C)) and ϕπ ∈ C(π). Thus, in order to show the converse

of (7-2), it suffices to show that any function in C∞
c (C

×) is of the form as in the
last line of (7-17).

Let χπ be the central character of π . By a change of variable, we write (7-17) as

(7-18) φm∗( f ),ϕπ (x)=

∫
SLn(C)

∑
an=x

f (a, h) ·χπ (a) ·ϕπ (h) d1h.

Assume that f ∈ C∞
c (C

×
× SLn(C)) is given by a pure tensor

f (a, h)= f1(a) · f2(h)

with f1 ∈ C∞
c (C

×) and f2 ∈ C∞
c (SLn(C)). Then (7-18) can be written as

(7-19) φm∗( f ),ϕπ (x)=

( ∑
an=x

f1(a)χπ (a)
)

·

∫
SLn(C)

f2(h)ϕπ (h) d1h.
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It is clear that multiplying by the character χπC
stabilizes the space C∞

c (C
×), which

means that f1(a)χπ (a) ∈ C∞
c (C

×) for any f1 ∈ C∞
c (C

×). The map

C∞

c (C
×)→ C∞

c (C
×) with f 7→

(
x 7→

∑
an=x

f (a)
)

is surjective, since it is the push-forward map along the surjective covering map

C×
→ C× with a 7→ an.

Therefore, any function in C∞
c (C

×) can be written as φm∗( f ),ϕπ (x) for some ϕπ ∈

C(π) and f ∈ C∞
c (C

×
× SLn(C)). This finishes the proof of the converse of (7-2).

We now turn to the case when F = R and treat the cases of n odd and of n even
separately.

When n is odd, the multiplication map

m : R×
× SLn(R)→ Gn(R)

(a, g) 7→ a · g

is surjective, the proof in the complex case is applicable and yields a proof for this
case. We omit the details here.

When n is even, we write Gn(R) as a disjoint union two real smooth manifolds:

Gn(R)= G+

n (R)⊔ G−

n (R),

where G+
n (R) (resp. G−

n (R)) consists of elements in Gn(R) with positive (resp.
negative) determinant.

By the surjectivity of the map

R>0 × SLn(R)→ G+

n (R) with (a, g) 7→ a · g,

the proof in the complex case shows that the space S◦
π (R

×) contains the space
C∞

c (R>0). Since R×
= R>0 ⊔ R<0, we have that

C∞

c (R
×)= C∞

c (R>0)⊕ C∞

c (R<0).

It remains to show that

C∞

c (R<0)⊂ S◦

π (R
×).(7-20)

Take θ = diag(−1, 1, . . . , 1) ∈ Gn(R) and consider the map

m−
: R>0 × SLn(R)→ G−

n (R) with (a, h) 7→ a · h · θ.
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As the complex situation, for any f ∈ C∞
c (R>0 × SLn(R)), we set

(7-21) φm−
∗ ( f ),ϕπ (x)=

∫
det g=x

∑
(a,h)∈R>0×SLn(R)

a·h·θ=g

f (a, h) ·ϕπ (g) dx g,

for x ∈ R<0. We only need to show the space spanned by the functions of the form

(7-22) {x 7→ φm−
∗ ( f ),ϕπ (x) | f ∈ C∞

c (R>0 × SLn(R)), ϕπ ∈ C(π)}

with x ∈ R<0 contains (and hence is equal to) the space C∞
c (R<0).

By a simple change of variable, we obtain that

φm−
∗ ( f ),ϕπ (x)=

∫
SLn(R)

∑
an=−x

f (a, h) ·χπ (a)ϕπ (h · θ) d1h,(7-23)

where χπ is the central character of π ∈5R(n). Assume that f (a, h)= f1(a)· f2(h)
is a pure tensor with f1 ∈ C∞

c (R>0) and f2 ∈ C∞
c (SLn(R)). Then (7-23) can be

written as

φm−
∗ ( f ),ϕπ (x)=

∑
an=−x

f1(a)χπR
(a) ·

∫
SLn(R)

f2(h)ϕπ (h · θ) d1h,(7-24)

with x ∈ R<0. For y = −x > 0, the functions of the form∑
an=y

f1(a)χπR
(a) ·

∫
SLn(R)

f2(h)ϕπ (h · θ) d1h

recover the space C∞
c (R>0), as treated in the previous case. Thus, the functions

of the form in (7-24) recover the space C∞
c (R<0). This completes the proof for

the converse of (7-2) for the Archimedean case. Therefore, we finish the proof of
Theorem 7.1.

7B. A variant of π -Poisson summation formulae. For any π =
⊗

ν∈|k|
∈5A(Gn),

we define in (4-1) the space of π -Schwartz functions on A×:

Sπ (A×)=

⊗
ν

Sπν (k
×

ν ).

We define S◦
π (A

×) to be the subspace of Sπ (A×) that is spanned by the functions
of the form φ =

⊗
ν φν ∈ Sπ (A×) with at least one local component φν belonging

to C∞
c (k

×
ν ). Note that for any φ =

⊗
ν φν ∈ Sπ (A×), there are at most finitely many

local components from C∞
c (k

×
ν ). It is also easy to verify from the definition of

the π -Fourier operator Fπ,ψ as in (4-3) and Theorem 7.1 that there exist functions
φ =

⊗
ν φν ∈ Sπ (A×), such that

Fπ,ψ(φ)=

⊗
ν∈|k|

Fπν ,ψν (φν) ∈ S◦

π̃ (A
×).
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We define S◦◦
π (A

×) to be the subspace of S◦
π (A

×) that is spanned by the functions
of the form φ =

⊗
ν φν ∈ S◦

π (A
×) with the property that Fπ,ψ(φ) ∈ S◦

π̃ (A
×).

Theorem 7.3. Assume that π ∈ A(Gn) is square integrable. For any φ ∈ S◦◦
π (A

×),
the π -Poisson summation formula

2π (x, φ)=2π̃ (x−1,Fπ,ψ(φ))

holds as functions in x ∈ A×.

Proof. By Corollary 5.6, both 2π (x, φ) and 2π̃ (x−1,Fπ,ψ(φ)) are absolutely
convergent. It suffices to show the equality. The proof goes in the same way as
Theorem 4.7 when π ∈ Acusp(Gn). The first key point is that when π is square
integrable, its matrix coefficients can also be realized as the integrals in (4-14), with
β1, β2 ∈ Vπ being not necessarily cuspidal.

The second key point is to prove that the boundary terms defined in (4-23) vanish
automatically by the local assumption on φ at the two local places ν1 and ν2. More
precisely, take φ = φξ,ϕπ ∈ Sπ (A×) and assume that

φ =

⊗
ν

φν =

⊗
ν

φξν ,ϕπν

with ξν(g) = |det g|
n/2
ν fν(g) for some fν ∈ S(Mn(kν)), and ϕπν ∈ C(πν). The

assumption at the two local places ν1 and ν2 is the same as that fν1 ∈ C∞
c (Gn(kν1))

and Fψν2 ( fν2) ∈ C∞
c (Gn(kν2)). For f =

⊗
ν fν and Fψ( f ) =

⊗
ν Fψν ( fν) with

the above fν1 at the given local place ν1 and Fψν2 ( fν2) at the given local place ν2,
the boundary terms B f (h, g) in (4-23) must vanish automatically. Therefore, the
summation identity is established. We refer the other details of the proof to the
proof of Theorem 4.7. □

7C. Refinement of Conjecture 1.5. We are going to state our conjecture on (σ, ρ)-
Poisson summation formula on GL1 with more details, which refines Conjecture 1.5.
We will continue with the discussions in Section 6B. By Assumption 6.1, for
σ ∈ Acusp(G), there exists a π =

⊗
ν πν ∈5A(Gn) with πν = πν(σν, ρ) for all ν.

We define the space Sσ,ρ(A×) of (σ, ρ)-Schwartz functions as in (6-5) and (6-6);
and the (σ, ρ)-Fourier operator Fσ,ρ,ψ as in (6-7) and (6-8). Finally we define the
space S◦◦

σ,ρ(A
×) to be equal to the space S◦◦

π (A
×), which is defined in Section 7B.

Conjecture 7.4 (refinement of Conjecture 1.5). Let G be a k-split reductive group,
and ρ : G∨(C)→ GLn(C) be a representation of the complex dual group G∨(C).
With Assumption 6.1, for any σ ∈ Acusp(G), there exist k×-invariant linear func-
tionals Eσ,ρ and Eσ̃ ,ρ on Sσ,ρ(A×) and Sσ̃ ,ρ(A×), respectively, such that the (σ, ρ)-
Poisson summation formula

(7-25) Eσ,ρ(φ)= Eσ̃ ,ρ(Fσ,ρ,ψ(φ))



364 DIHUA JIANG AND ZHILIN LUO

holds for φ ∈ Sσ,ρ(A×). If φ ∈ S◦◦
σ,ρ(A

×), then the identity in (7-25) holds for

Eσ,ρ(φ)(x)=2σ,ρ(x, φ)=

∑
α∈k×

φ(αx)

with x ∈ A×.

We make remarks on Conjecture 1.5 and its refinement Conjecture 7.4.

Remark 7.5. In Corollary 6.3, we have proved that if the global Langlands functo-
riality is valid for (G, ρ) and the image of σ under the functorial transfer is cuspidal
on Gn(A), then Conjectures 1.5 and 7.4 hold with

Eσ,ρ(φ)(x)=2σ,ρ(x, φ)=

∑
α∈k×

φ(αx)

for any φ ∈ Sσ,ρ(A×) and any x ∈ A×. If the global Langlands functoriality is valid
for (G, ρ) and the image of σ under the functorial transfer is square integrable
on Gn(A), then by Theorem 7.3, a similar (σ, ρ)-Poisson summation formula in
Conjecture 7.4 holds for φ ∈ S◦◦

π (A
×).

8. Critical zeros of L(s, π ×χ)

We provide a spectral interpretation of critical zeros of the automorphic L(s, π×χ)

for any π ∈ Acusp(Gn) and character χ of the idele class group Ck = k×
\A× for

a number field k. This can be viewed as a reformulation of [40, Theorem 2] (see
also [12]) in the adelic formulation of A. Connes [11], and is a extension of [11,
Theorem III.1] from the Hecke L-functions L(s, χ) to the standard automorphic
L-functions L(s, π ×χ).

8A. Pólya–Hilbert–Connes pairs. For a number field k, denote by A1
= A1

k :=

ker(| · |A) the norm one ideles of k. Denote by Ck := k×
\A× the idele class group

of k, and define C1
k := k×

\A1. Then A× has a noncanonical decomposition

A×
= A1

× R×

+
,(8-1)

where R×

+ = |A×
|A is the connected component of 1. In the following, we choose

and fix a section of the short exact sequence

1 → A1
→ A×

→ R×

+
→ 1.

This gives a fixed noncanonical decomposition

Ck = C1
k × R×

+
.(8-2)

For any δ > 0, define L2
δ(Ck) to the space consisting of measurable functions

θ : Ck → C
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with a finite Sobolev norm ∥ · ∥δ as defined by

(8-3) ∥θ∥2
δ :=

∫
Ck

|θ(x)|2(1 + (log |x |A)
2)δ/2 d×x .

It is clear that the space L2
δ(Ck) is a Ck-module via the right translation rδ defined by

rδ(a)(θ)(x) := θ(xa)(8-4)

for any θ ∈ L2
δ(Ck) and a, x ∈ Ck . Note that the Ck-module L2

δ(Ck) is not unitary,
but has the property

∥rδ(x)∥ = o(log |x |A)
δ/2, |x |A → ∞.(8-5)

For any π ∈Acusp(Gn), take any φ ∈ Sπ (A×). By Proposition 4.8, for any κ > 0,
there exists a positive constant cκ,φ such that the π -theta function 2π (x, φ) enjoys
the property

|2π (x, φ)| ≤ cκ,φ · min{|x |A, |x |
−1
A }

κ ,

in particular, 2π (x, φ) decays rapidly when |x |A → 0 or |x |A → ∞, and hence
belongs to L2

δ(Ck). Define

(8-6) ∥φ∥
2
δ :=

∫
Ck

|2π (x, φ)|2(1 + (log |x |A)
2)δ/2 d×x

for any φ ∈ Sπ (A×). Then we have the embedding

(8-7) 2π : φ ∈ Sπ (A×) 7→2π ( · , φ) ∈ L2
δ(Ck)

with respect to the Sobolev norms defined in (8-3) and (8-6), respectively.
Denote by 2π the completion of the image 2π (Sπ (A×)) in L2

δ(Ck). Since

rδ(y)(2π ( · , φ))(x)=2π (x, rδ(y)φ)

for any φ ∈ Sπ (A×), with x, y ∈ Ck , the closed subspace 2π is also a Ck-module.
Define the quotient space

Hπ,δ := L2
δ(Ck)/2π ,(8-8)

which is also a Ck-module. The associated representation is denoted by rπ,δ. It is
clear that the restriction of the Ck-module to C1

k is unitary and has the decomposition

Hπ,δ|C1
k
=

⊕
χ∈Ĉ1

k

Hπ,δ,χ .(8-9)

By the fixed (noncanonical) decomposition in (8-2), each eigenspace Hπ,δ,χ is a
module of R×

+. The associated representation is denoted by rπ,δ,χ . Note that rπ,δ,χ
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is also a representation of Ck = C1
k × R×

+ on Hπ,δ,χ . The action of R×

+ on Hπ,δ,χ

generates a flow with the infinitesimal generator

(8-10) Dπ,δ,χ (θ) := lim
ϵ→0

1
ϵ

(
rπ,δ,χ (exp(ϵ)− 1)

)
θ

for any θ ∈ Hπ,δ,χ . As in [11], one should take the pair

(Hπ,δ,χ ,Dπ,δ,χ )(8-11)

to be a candidate of the Pólya–Hilbert space. We call it a Pólya–Hilbert–Connes
pair.

For any χ ∈ Ĉ1
k , by the fixed noncanonical decomposition Ck = C1

k × R×

+ as in
(8-2), the character χ has a unique extension to Ck by defining that it is trivial on R×

+.
We may still denote the extended character by χ .

Theorem 8.1 (critical zeros of L(s, π × χ)). Given any π ∈ Acusp(Gn) and any
character χ ∈ Ĉ1

k , take Dπ,δ,χ as in (8-10) with δ > 1.

(1) The spectrum Sp(Dπ,δ,χ ) is discrete and is contained in i · R with i =
√

−1.

(2) µ ∈ Sp(Dπ,δ,χ ) if and only if L
( 1

2 +µ, π ×χ
)
= 0.

(3) The multiplicity mSp(Dπ,δ,χ )(µ) is equal to the largest integer m < 1
2(1 + δ) with

m ≤ mL(s,π×χ)

( 1
2 +µ

)
, the multiplicity of 1

2 +µ as a zero of the automorphic
L-function L(s, π ×χ).

Note Theorem 8.1 can be viewed as a reformulation of [40, Theorem 2] in the
adelic framework of [11] and is an extension of [11, Theorem III.1] from the Hecke
L-functions L(s, χ) to the standard automorphic L-functions L(s, π×χ). See also
[12] for relevant discussion.

8B. Proof of Theorem 8.1. We are going to prove Theorem 8.1 by using an
argument that combines the approach of [11] and that of [40].

Consider the pairing

L2
δ(Ck)× L2

−δ(Ck)→ C with (θ, η) 7→ ⟨θ, η⟩,(8-12)

where the pairing is defined by the integral

⟨θ, η⟩ :=

∫
Ck

θ(x)η(x) d×x .

For any y ∈ Ck , we have

⟨rδ(y)θ, η⟩ = ⟨θ, r−δ(y−1)η⟩

for any θ ∈ L2
δ(Ck) and η ∈ L2

−δ(Ck).
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Consider a function η∈ L2
−δ(Ck) as a distribution on the eigenspace Hπ,δ,χ . Then

⟨θ, η⟩ = 0(8-13)

for any θ ∈2π , and, for any t ∈ C1
k ,

r−δ(t)η = χ−1(t)η

as a distribution on Hπ,δ,χ . Hence, we may write, for x = ta ∈ Ck = C1
k × R×

+, the
fixed noncanonical decomposition, that

η(x)= χ−1(t)β(a),(8-14)

where β(a) is a measurable function on R×

+ with

∥β∥δ =

∫
R×

+

|β(a)|2(1 + (log |a|)2)−δ/2 d×a <∞.

The orthogonality in (8-13) can be written as

(8-15)
∫
Ck

2π (x, φ)η(x) d×x = 0

for any φ ∈ Sπ (A×). As in [40], we prove the following lemma, which is a
reformulation of Lemma 1 of [40].

Lemma 8.2. The subspace of 2π generated by functions of type

(b ∗2π ( · , φ))(t)=

∫
Ck

b(x)2π (x−1t, φ) d×x

with all b(x) ∈ C∞
c (Ck) is dense in 2π .

Proof. We reformulate the proof of [40, Lemma 1]. For any θ ∈2π , we have

(b ∗ θ)(t)=

∫
Ck

b(x)θ(x−1t) d×x =

∫
Ck

b(x)θ∨(t−1x) d×x = rδ(b)(θ∨)(t−1)

for any b(x)∈ C∞
c (Ck). Since2π is a closed subspace of L2

δ(Ck) and is a Ck-module,
it is clear that b ∗θ belongs to 2π . In particular, we have that b ∗2π ( · , φ) belongs
to 2π for all b(x) ∈ C∞

c (Ck) and all φ ∈ Sπ (A×).
Next, by [11, Lemma 5], there exists a sequence of functions { fn} with fn

belonging to the space S(Ck) of the Bruhat–Schwartz functions on Ck , such that
rδ( fn) tends strongly to 1 in L2

δ(Ck) and the norm of rδ( fn) are bounded. Now
following the same argument as in the proof of [40, Lemma 1], we obtain that there
exists a sequence of functions bn ∈ C∞

c (Ck) with the properties

(1) rδ(bn) converges strongly to 1;

(2) the norm of rδ(bn) is bounded;

(3) bn ∗2π ( · , φ) converges to 2π ( · , φ) for any φ ∈ Sπ (A×).
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Therefore the linear span of b ∗2π ( · , φ) with b(x) ∈ C∞
c (Ck) and φ ∈ Sπ (A×) is

dense in 2π . We are done. □

By Lemma 8.2, it is enough to consider the orthogonality

(8-16)
∫
Ck

(b ∗2π ( · , φ))(x)η(x) d×x = 0

for any φ ∈ Sπ (A×) and b(x) ∈ C∞
c (Ck).

Lemma 8.3. For any η ∈ L2
−δ(Ck), the integral∫
Ck

(b ∗2π ( · , φ))(x)η(x) d×x

is zero for any b ∈ C∞
c (Ck) and any φ ∈ Sπ (A×) if and only if

L
( 1

2 + iµ, π ×χ
)
·M(η)(χiµ)

is zero as a function in χiµ, where χiµ is any unitary character of Ck that can be
written as χiµ(x) = χ(t)aiµ for x = ta ∈ Ck = C1

k × R×

+, the fixed noncanonical
decomposition.

Proof. We are going to apply the Parseval formula for the Fourier transform from
Ck to its unitary dual Ĉk to (8-16). Since χiµ(x)= χ(t)aiµ, the Fourier transform
for Ck is

M(θ)(χiµ)=

∫
Ck

θ(x)χ−1
iµ (x) d×x .

By applying the Parseval formula to the integral∫
Ck

(b ∗2π ( · , φ))(x)η(x) d×x,

we obtain that (8-16) is equivalent to

(8-17)
∫
Ĉk

M(b)(χiµ)M(2π ( · , φ))(χiµ)M(η)(χiµ) dχiµ = 0

for any φ ∈ Sπ (A×) and b(x) ∈ C∞
c (Ck). It is easy to verify from definition that

M(2π ( · , φ))(χiµ)= Z
( 1

2 + iµ, φ, χ
)
,

where the right-hand side is the global (GL1) zeta integral as defined in (4-4). From
Corollary 4.4 and [16, Proposition 13.9], the global zeta integral Z

(1
2 + iµ, φ, χ

)
is a bounded function in µ. Hence, the product

Tφ,η(χiµ) := Z
( 1

2 + iµ, φ, χ
)
·M(η)(χiµ)

is a tempered distribution on Ĉk . It follows that (8-17) is the same as

(8-18)
∫
Ĉk

M(b)(χiµ)Tφ,η(χiµ) dχiµ = 0
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for any φ ∈ Sπ (A×) and b(x) ∈ C∞
c (Ck). Denote by T̂φ,η(x) the (inverse) Fourier

transform of Tφ,η(χiµ). By using the Parseval formula for the (inverse) Fourier
transform, we obtain that (8-18) is equivalent to

(8-19)
∫
Ck

b(x)T̂φ,η(x) d×x = 0

for all φ ∈ Sπ (A×) and b(x) ∈ C∞
c (Ck). Hence, we must have that (8-19) holds if

and only if T̂φ,η(x)= 0 as distribution on Ck , which is equivalent to Tφ,η(χiµ)= 0 as
distribution on Ĉk . In other words, we obtain that for any η ∈ L2

−δ(Ck), the integral∫
Ck

(b ∗2π ( · , φ))(x)η(x) d×x

is zero for any b ∈ C∞
c (Ck) and any φ ∈ Sπ (A×) if and only if

(8-20) Z
( 1

2 + iµ, φ, χ
)
·M(η)(χiµ)= 0

for all φ ∈ Sπ (A×). By Corollary 4.4 and [16, Theorem 13.8], there exist finitely
many φ1, . . . , φℓ ∈ Sπ (A×) such that

Z
( 1

2 + iµ, φ1, χ
)
+ · · · +Z

( 1
2 + iµ, φℓ, χ

)
= L

( 1
2 + iµ, π ×χ

)
.

Thus we obtain that (8-20) implies

L
( 1

2 + iµ, π ×χ
)
·M(η)(χiµ)= 0(8-21)

as a function in χiµ.
To prove the converse, we consider factorizable data φ =

⊗
ν φν ∈ Sπ (A×) and

χ =
⊗

ν χν . The global zeta integral factorizes into an Euler product

Z(s, φ, χ)=

∏
ν

Z(s, φν, χν).

By Theorem 3.4, we obtain that

Z(s, φ, χ)= L(s, π ×χ) ·
∏
ν∈S

Z(s, φν, χν)
L(s, πν ×χν)

,

where S is the finite set of local places, including all Archimedean local places
of k, such that for any ν ̸∈ S, the data πν and χν are unramified, and the quotient
Z(s, φν, χν)/L(s, πν ×χν) is holomorphic in s ∈C. Hence, if η∈ L2

−δ(A
×) satisfies

L
( 1

2 + iµ, π ×χ
)
·M(η)(χiµ)= 0

as a function in χiµ, i.e., (8-21) holds, then (8-20) holds for factorizable data
φ =

⊗
ν φν ∈ Sπ (A×) and χ =

⊗
ν χν . Hence, it holds for all φ ∈ Sπ (A×) and

all χ . We are done. □
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The rest of the proof of Theorem 8.1 is exactly the same as the proof of [40,
Theorem 2, page 178], which follows from the same argument of Connes (in the
proof of [11, Theorem III.1, pp. 86–87]). We omit the details.
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