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APPROXIMATION OF REGULAR SASAKIAN MANIFOLDS

GIOVANNI PLACINI

We investigate the problem of approximating a regular Sasakian structure
by CR immersions in a standard sphere. Namely, we show that this is
always possible for compact Sasakian manifolds. We prove an approximation
result for noncompact η-Einstein manifolds via immersions in the infinite-
dimensional sphere and complement this with several examples.

1. Introduction and statements of the main results

Sasakian geometry is often considered the odd-dimensional analogue of Kähler
geometry. This is due to the fact that a Sasakian manifold sits in a so-called “Kähler
sandwich”. Namely, a (2n+1)-dimensional Sasakian manifold comes with a Kähler
(2n+2)-dimensional cone and a transverse Kähler geometry of dimension 2n. This
interplay translates to the fact that the solution of some problems in Sasakian
geometry is equivalent to that of others in its older even-dimensional analogue. The
problem considered in this paper falls into this case. Namely, we ask whether a given
regular Sasakian structure can be approximated by CR immersions in a standard
sphere. In analogy with a celebrated result of Tian, Ruan and Zelditch [14; 15; 16],
it was proven in [9] that any compact Sasakian manifold is approximated by CR
embeddings in a weighted sphere. Here we investigate two related questions. Firstly,
when the Sasakian structure is regular, it is natural to ask whether one can get a simi-
lar result to [9, Theorem 1] under the requirement that the model space is a standard
Sasakian sphere. Our first result shows that one can trade the injectivity of the embed-
dings for regularity in order to obtain immersions into the standard Sasakian sphere.

Theorem 1. Let (M, η, g) be a compact regular Sasakian manifold. Then there
exist a sequence of CR immersions ϕk : M → S2N+1 into standard Sasakian spheres
such that suitable transverse homotheties of the induced structures converge to
(η, g) in the C∞-norm.
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The solution to this problem is related to Kähler geometry in the following way.
In the regular case the Kähler cone of a Sasakian manifold M is the total space of a
line bundle L over a Kähler manifold X (without the zero section). It turns out that
one can construct such immersions by means of an orthonormal basis for the space
of sections of L with respect to a certain scalar product. Finding such a basis is a
classical problem in Kähler geometry deeply connected with the computation of
Bergman kernels, special metrics and approximation of metrics; see, for instance,
[6; 7; 8; 12; 15]. Notice that one cannot avoid transverse homotheties because
the transverse Kähler metric induced by an immersion in the standard sphere is an
integral basic class while this is not necessarily true for the Sasakian structures we
want to approximate.

Theorem 1 above heavily relies on the compactness of the Sasakian manifold M .
Our second question asks which conditions are sufficient for the existence of such
approximation results in the noncompact case. This is clearly a very broad question
so we focus on the case of η-Einstein manifolds. In the compact case Cappelletti-
Montano and Loi [5] studied immersions of compact regular η-Einstein manifolds
into spheres with codimension 2. Here we prove an approximation result for
(possibly noncompact) regular complete η-Einstein manifolds.

Theorem 2. Let M be a complete regular η-Einstein manifold. Then the Sasakian
structure on M can be approximated by suitable D-homotheties of a sequence of
Sasakian structures induced by CR embeddings in S∞.

Also in this case, the immersions are constructed from a basis of the space of
sections of a certain line bundle L over a Kähler manifold X . The main difference
with Theorem 1 is the fact that X is not compact so that the space of sections of L
could be infinite-dimensional.

As a particular case, all homogeneous Sasakian manifolds can be endowed
with homogeneous η-Einstein metrics. One should compare our result with [11,
Theorem 1.5] where the authors classify homogeneous Sasakian manifolds which
admit an immersion in S∞. In fact, the approximation in Theorem 2 is constant for
those homogeneous Sasakian manifolds which can be immersed in S∞. In the last
section of the paper we exhibit two examples of genuine approximations. Namely,
we consider a Sasakian structure on C∗

× S1 and D∗
× S1 where C∗ and D∗ are the

punctured plane and disc, respectively. We provide a sequence of embeddings of
C∗

× S1 and D∗
× S1 into S∞ which approximate the given structures. In terms of

Kähler geometry, we compute the orthonormal basis of the space of sections of the
trivial bundle over C∗ and D∗.

Structure of the paper. The paper is organized as follows. In Section 2 we review
the basics of Sasakian geometry with particular focus on Sasakian immersions
and regular Sasakian structures. The remainder of the paper is divided into three
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sections. Namely, in Sections 3 and 4 we prove Theorems 1 and 2, respectively.
Finally, Section 5 contains the computation of some explicit CR immersions of
noncompact η-Einstein manifolds into S∞ approximating the given structure.

2. Sasakian manifolds

Sasakian geometry can be understood in terms of contact metric geometry and via
the associated Kähler cone (see the monograph of Boyer and Galicki [4]). We will
present both formulations for the reader’s convenience, but we will focus mostly
on the regular case for it is central in this paper. In the following all manifolds and
orbifolds are assumed to be connected.

A K-contact structure (η,8, R, g) on a manifold M consists of a contact form η

and an endomorphism 8 of the tangent bundle TM , satisfying the properties

• 82
= −Id +R ⊗ η where R is the Reeb vector field of η,

• 8|D is an almost complex structure compatible with the symplectic form dη
on D = ker η,

• the Reeb vector field R is Killing with respect to the metric

g( · , · )=
1
2 dη( · ,8( · ))+ η( · )η( · ).

Given such a structure one can consider the almost complex structure I on the
Riemannian cone (M × R+, t2g + dt2) given by

• I =8 on D = ker η, and

• R = I (t∂t)|{t=1}
.

A Sasakian structure is a K -contact structure (η,8, R, g) such that the associated
almost complex structure J is integrable, and therefore (M × R+, t2g + dt2, J ) is
Kähler. A Sasakian manifold is a manifold M , equipped with a Sasakian structure
(η,8, R, g).

Equivalently, one can define Sasakian manifolds in terms of Kähler cones.
Namely, a Sasakian structure on a smooth manifold M is defined to be a Kähler
cone structure on M × R+

= Y , that is, a Kähler structure (gY , J ) on Y of the
form gY = t2g + dt2 where t is the coordinate on R+ and g a metric on M . Then
(Y, gY , J ) is called the Kähler cone of M which, in turn, is identified with the
submanifold {t = 1}. The Kähler form on Y is then given by

�Y =
i
2
∂∂t2.

The Reeb vector field on Y is defined as

R = J (t∂t).
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This defines a holomorphic Killing vector field with metric dual 1-form

η =
gY (R, · )

t2 = dc log t = i(∂ − ∂) log t,

where dc
= i(∂ − ∂). Notice that J induces an endomorphism 8 of TM by setting

• 8= J on D = ker η|TM , and

• 8(R)= 0.

Equivalently, the endomorphism 8 is determined by g and η by setting

g(X, Z)=
1
2 dη(X,8Z) for X, Z ∈ D.

It is easy to see that, when restricted to M = {t = 1}, (η,8, R, g) is a Sasakian
structure in the contact metric sense whose Kähler cone is (Y, gY , J ) itself. When
this does not lead to confusion, we will use R and η to indicate both the objects on
Y and on M .

Since g and η are invariant for R, the Reeb foliation is transversally Kähler in
the sense that the distribution D admits a Kähler structure (gT , ωT , J T ) which is
invariant under R. Explicitly, we have

ωT
=

1
2 dη, J T

=8|D and gT (X, Z)=
1
2 dη(X, J T Z)= g|D .

In particular, one can see that

(1) ωT
=

1
2 dη =

i
2

d(∂ − ∂) log t = i∂∂ log t.

The Reeb vector field defines a foliation on M , called the Reeb foliation. A very
important dichotomy of Sasakian structures is given by the regularity of the leaves
of the Reeb foliation. Namely, if there exist foliated charts such that each leaf
intersects a chart finitely many times, the Sasakian structure is called quasiregular.
Other wise it is called irregular. If every leaf intersects every chart only once, the
Sasakian structure is said to be regular. Compact regular and quasiregular Sasakian
manifold are fairly well understood due to the following result.

Theorem 3 [4]. Let (M, η,8, R, g) be a quasiregular compact Sasakian manifold.
Then the space of leaves of the Reeb foliation (X, ω, gω) is a compact Kähler cyclic
orbifold with integral Kähler form 1

2πω so that the projection π : (M, g)→ (X, gω)
is a Riemannian submersion. Also, X is a smooth manifold if and only if the
Sasakian structure on M is regular.

Any principal S1-orbibundle M with Euler class −
1

2π [ω] ∈ H 2
orb(X,Z) over a

compact Kähler cyclic orbifold (X, ω) admits a Sasakian structure.

This result allows us to reformulate the geometry of a compact regular Sasakian
manifold M in terms of the algebraic geometry of the Kähler manifold X . We will
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illustrate in detail this correspondence for its importance in the remainder of the
paper. Let us first introduce the concept of a D-homothetic transformation of a
Sasakian structure.

Definition 4 (D-homothety or a transverse homothety). Let (M, η,8, R, g) be a
(not necessarily compact) Sasakian manifold and a ∈ R a positive number. One can
define the Sasakian structure (ηa,8a, Ra, ga) from (η,8, R, g) as

ηa = aη, 8a =8, Ra =
R
a
, ga = ag + (a2

− a)η⊗ η = agT
+ ηa ⊗ ηa.

Equivalently, we can define the same structure on M by setting a new coordinate
on the Kähler cone as t̃ = ta . It is clear from the formulation above that this induces
on M = {t̃ = 1} = {t = 1} the same Sasakian structure (ηa,8a, Ra, ga). We will
call this structure the Da-homothety of (η,8, R, g).

Now let the compact regular Sasakian manifold (M, η,8, R, g) be given and
consider the projection π : (M, g) → (X, ω) given above. Notice that π locally
identifies the contact distribution D with the tangent space of X . Therefore, up to
D-homothety, we have that π∗(ω) =

1
2 dη. The endomorphism 8 determines the

complex structure on X and g induces the Kähler metric gω, i.e., gT
= π∗gω.

In this case the class 1
2π [ω] ∈ H 2(X,Z) defines an ample line bundle L over X .

The cone Y = M × R+ is identified with the complement of the zero section in
L−1

= L∗ in the following way. Let h be a Hermitian metric on L such that

ω = −i∂∂ log h.

Then its dual h−1 on L−1 defines the second coordinate of (p, t) ∈ M × R+
=

L−1
\ {0} by

(2)
t : L−1

\ {0} → R+,

(p, v) 7→ |v|h−1
p
,

where v is a vector of L−1 in the fiber over p. With this notation the Kähler form
on the Kähler cone (M × R+, t2g + dt2, I ) is given by

(3) �=
i
2
∂∂t2.

The Sasakian structure can be read from this data as

(4) ωT
= −i∂∂ log h, η = i(∂ − ∂) log t.

Therefore, the choice of a Hermitian metric h on an ample line bundle L over
a compact Kähler manifold X completely determines a Sasakian structure on the
U (1)-orbibundle associated to L−1. The Sasakian manifold (M, η, R, g,8) so
obtained is called a Boothby–Wang bundle over (X, ω). Observe that, although the
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differentiable manifold is uniquely determined by 1
2π [ω], the Sasakian structure

does depend on, and is in fact determined by, the choice of h.
The most basic example is the standard Sasakian structure on S2n+1, that is,

the Boothby–Wang bundle determined by the Fubini–Study metric h = hFS on
O(1) over CPn . We give the details of this construction to further illustrate the
formulation above.

Example 5 (standard Sasakian sphere). Let h = hFS be the Fubini–Study Hermitian
metric on the holomorphic line bundle O(1) over CPn . Recall that its dual metric
h−1 on O(−1) \ {0} = Cn+1

\ {0} is given by the Euclidean norm. This defines a
coordinate t on the Kähler cone O(−1) \ {0} = Cn+1

\ {0} = S2n+1
× R+. Namely,

for coordinates z = (z0, z1, . . . , zn) on Cn+1 we have

t : Cn+1
→ R+,

z 7→ |z| =

√
n∑

j=0

z j z̄ j .

Now the Kähler metric on the cone is nothing but the flat metric

�flat =
i
2
∂∂t2

=
i
2

∑
dz j ∧ dz̄ j .

The Reeb vector field R0 and the contact form η0 read

R0 = J (t∂t)= i
∑

z j∂z j − z̄ j∂z̄ j , η0 = i(∂ − ∂) log t =
i

2t2

∑
z j dz̄ j − z̄ j dz j .

It is clear that, when restricted to S2n+1, η0 and R0, together with the round metric g0

and the restriction 80 of J to ker η0, give a Sasakian structure on S2n+1. This
corresponds exactly to the Hopf bundle S2n+1

→ CPn . We have

π∗ωFS = ωT
=

1
2 dη0 =

i
2 |z|4

∑
j

|z j |
2dz j ∧ dz̄ j −

∑
j,k

z̄ j zkdz j ∧ dz̄k,

where π : Cn+1
\ {0} → CPn is the standard projection.

Analogously, one can define the standard Sasakian structure on the infinite
dimensional sphere S∞

=
{
(zo, z1, . . .) ∈ ℓ2(C) :

∑
|z|2 = 1

}
(all sums are now

infinite). In this case the Kähler cone S∞
× R+ is the complex space ℓ2(C) \ {0}

with the flat Kähler metric and the space of Reeb leaves is CP∞.

In general the space of leaves of the Reeb foliations X is not even an orbifold.
Nevertheless, when the Sasakian structure is regular and complete, X is a Kähler
manifold; see, for example, [13].

We now switch our attention back to not necessarily compact Sasakian manifolds
and recall another well known class of deformations of Sasakian structures, the so-
called transverse Kähler transformations. Namely, given a Kähler cone Y = M ×R+,
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we consider all Kähler metrics on (Y, J ) that are compatible with the Reeb field R.
In other terms, these are potentials t̃ 2 such that t∂t = t̃∂t̃ . This means that the
corresponding Kähler and contact forms satisfy

�̃=�+ i∂∂e2 f , η̃ = η+ dc f

for a function f invariant under ∂t and R. Such functions are called basic functions.
We still need to identify the manifolds {t̃ = 1} and {t = 1}. This is done by means
of the diffeomorphism

F : Y → Y,

(p, t) 7→ (p, te− f (p)),

which maps {t = 1} to {t = e− f (p)
} = {t̃ = 1}. It is elementary to check that η, R

and dc f are invariant under F so that η̃ = η+ dc f holds on M . Furthermore, the
transverse Kähler forms are related by ω̃T

= ωT
+ i∂∂ f . Notice that when the

Sasaki structure is quasiregular, basic functions correspond to functions on the
base orbifold X . Thus, if t comes from a Hermitian metric h−1 on L−1, such a
transformation is given by replacing h−1 with e f h−1 for a function f : X → C such
that ω+ i∂∂ f > 0. This is equivalent to picking a different Kähler form ω̃ in the
same class as ω. We summarize the above discussion in the following definition.

Definition 6 (transverse Kähler deformations). Let (M, η, R, g,8) be a Sasakian
manifold with Kähler cone (Y, J ) and Kähler potential t2. A transverse Kähler
transformation is given by replacing t with t̃ = e f t for a basic function f and
leaving (Y, J, R) unchanged. When the Sasaki structure is quasiregular and given
as in (4), a transverse Kähler transformation is given by replacing h−1 with e f h−1.

We are mostly interested with immersions and embeddings of Sasakian manifolds.
We recall the relevant definitions. Two Sasakian manifolds (M1, η1, R1, g1, φ1) and
(M2, η2, R2, g2, φ2) are equivalent if there exists a diffeomorphism ϕ : M1 → M2

such that

ϕ∗η2 = η1 and ϕ∗g2 = g1.

If this holds, then ϕ also satisfies ϕ∗ ◦φ1 = φ2 ◦ϕ∗ and ϕ∗ R1 = R2. As implicitly
intended in the definitions above, a Sasakian equivalence from a Sasakian manifold
(M, η, R, g, φ) to itself is often called a Sasakian transformation of (M, η, R, g, φ).

One can relax the condition on Sasakian equivalences to define Sasakian em-
bedding and immersions. Namely, one does not request the map between Sasakian
manifolds to be a diffeomorphism while requiring that it preserves the Sasakian
structures. In particular, given two Sasakian manifolds (M1, η1, R1, g1, φ1) and
(M2, η2, R2, g2, φ2), a Sasakian immersion (resp. embedding) of M1 in M2 is an
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immersion (resp. embedding) ϕ : M1 → M2 such that

ϕ∗η2 = η1, ϕ∗g2 = g1, ϕ∗ R1 = R2 and ϕ∗ ◦φ1 = φ2 ◦ϕ∗.

We can rephrase this definition in terms of the Kähler cone of the Sasakian manifolds
M1 and M2. Namely, the map ϕ satisfying the conditions above clearly extends to
a map

ϕ̃ : M1 × R → M2 × R,

(p, t) 7→ (ϕ(p), t).

It is clear that if ϕ is a Sasakian immersion (resp. embedding), then ϕ̃ is a Kähler
immersion (resp. embedding).

If, conversely, Y1 and Y2 are the Kähler cones of M1 and M2 with coordinates t1
and t2, then a Kähler immersion (resp. embedding) ϕ̃ : Y1 → Y2 such that ϕ̃∗(t2)= t1
restricts to a Sasakian immersion (resp. embedding) ϕ : M1 → M2. Since it is often
more useful to our purposes, we give the following definition.

Definition 7 (Sasakian immersion and embedding). Let M1 and M2 be two Sasakian
manifolds with Kähler cones Y1 and Y2 and coordinates t1 and t2 respectively. A
Sasakian immersion (resp. embedding) of M1 in M2 is a Kähler immersion (resp.
embedding) ϕ : Y1 → Y2 such that ϕ∗(t2)= t1.

Remark 8. Given the equivalence between a Sasakian immersion M1 → M2 and
a Kähler immersion of the Kähler cones, with an abuse of notation, we will often
denote both maps with the same letter.

A special class among Sasakian structures is that of η-Einstein structures. These
are the Sasakian analogues of Kähler–Einstein metrics. Namely, using the canonical
splitting T M = D⊕ TF where D = ker η and TF denotes the tangent bundle to the
Reeb foliation F , write the metric as

(5) g = gT
+ η⊗ η.

With an abuse of notation we write gT for both the transverse metric and the
metric on X in the quasiregular case. It follows from (5) that the Riemannian
properties of M can be expressed in terms of those of the transverse Kähler geometry
and of the contact form η. For instance, the Ricci tensor of g is given by

(6) Ricg = RicgT − 2g.

A Sasakian manifold (M, η, φ, R, g) is said to be η-Einstein if the Ricci tensor
satisfies

(7) Ricg = λg + νη⊗ η
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for some constants λ, ν ∈ R. It follows from (6) and (7) that a Sasakian manifold is
η-Einstein with constants (λ, ν) if and only if, its transverse geometry is Kähler–
Einstein with Einstein constant λ+ 2 (see, e.g., [4] for details).

2.1. CR immersions of regular and complete Sasakian manifolds into spheres.
We recall now some facts about CR immersions of Sasakian manifolds into finite-
and infinite-dimensional standard spheres. We only set the notation and report some
useful results for us; the interested reader can refer to [11, Section 5]

Let M be a compact regular Sasakian manifold. By Theorem 3, M is a U (1)-
principal bundle π : M → X over a compact Kähler manifold (X, ω)with 2π∗ω=dη.
Furthermore, M is the unitary bundle associated to the line bundle L−1 where
c1(L)= [ω]. This last condition implies that L is ample. In other terms, (X, L) is a
polarized Kähler manifold. Therefore, for k ∈ N large enough, the bundle L⊗k

= Lk

is very ample, and we can define the Kodaira embedding ψk : X → CPNk where
dim(H 0(L)) = Nk + 1. Then there exists a CR embedding ϕk : M → S2Nk+1 of
M into the standard sphere covering the Kodaira embedding ψk or, equivalently, a
holomorphic embedding of ϕk : Y → CNk+1

\ {0} of the Kähler cone Y = M × R+

into the Kähler cone S2Nk+1
× R+. In fact we have:

Proposition 9 [11, Proposition 5.1]. Let M be the compact regular Sasakian
manifold determined by the Hermitian bundle (L , h) over a compact projective
manifold X. For every integer k ≫ 0 there exists a holomorphic embedding
ϕk : M × R+

→ S2Nk+1
× R+ such that ϕ∗

k (τ ) = Bk tk where Bk is the Bergman
kernel of Lk , τ and t are the coordinates on the second factor of S2Nk+1

× R+ and
M × R+, respectively.

The same construction can be performed when the Sasakian manifold M is the
unitary bundle associated to the positive Hermitian bundle (L , h) on a noncompact
Kähler manifold (X, ω) with ω = −i∂∂ log h. In this case we cannot immerse M
into a finite-dimensional sphere because the space of sections H 0(L) is replaced by
the Hilbert space Hk,h of integrable sections; see [11] for details. Nevertheless one
gets the following noncompact analogue.

Proposition 10. Let M be the regular Sasakian manifold determined by the Hermit-
ian bundle (L , h) over a noncompact Kähler manifold X and assume the space Hk,h

is nontrivial. Then there exists a holomorphic immersion ϕk : M × R+
→ S∞

× R+

such that ϕ∗

k (τ )=εk tk where εk is the ε-function of Hk,h , τ and t are the coordinates
on the second factor of S∞

× R+ and M × R+, respectively.

Remark 11. Although ϕ∗

k (h
−1
FS ) is not a Hermitian metric on the line bundle L−1

(it does not scale correctly under the C∗-action), it defines a change of coordinate
(p, t) 7→ (p, Bk tk) (or (p, t) 7→ (p, εk tk) in the noncompact case) on M × R+
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corresponding to the composition of the Dk-homothetic transformation (t 7→ tk)
with a transverse Kähler deformation (tk

7→ Bk tk).

3. Approximation of compact regular structures via immersions into spheres

Proof of Theorem 1. Assume (M, η, R, g,8) to be a compact regular Sasakian
manifold. Suppose we have performed a D-homothetic transformation so that M
is the unit bundle π : M → X associated to a holomorphic line bundle L−1 over a
projective manifold (X, ω) with π∗ω =

1
2 dη.

We can then apply Proposition 9 to get a sequence of holomorphic immersions
ϕk : M × R+

→ S2Nk+1
× R+ such that ϕ∗

k (τ ) = Bk tk where Bk is the Bergman
kernel of Lk , τ and t are the coordinates on the second factor of S2Nk+1

× R+ and
M × R+, respectively. Notice that τ is the coordinate induced by the flat metric on
CNk+1

\{0} = S2Nk+1
×R+ or, equivalently, by the Hermitian metric hFS on O(−1)

whose curvature is −ωFS.
Now the 1

k -transverse homothety of the structure induced on M by the immersion
into S2Nk+1 is a transverse Kähler deformation of the original Sasakian structure
determined by the Bergman kernel Bk , (compare Definition 6 and Remark 11). By
[16, Corollary 2] the first coefficient of the asymptotic expansion of the Bergman
kernel Bk smoothly converges to 1 when k goes to infinity. Therefore, the D1/k-
homotheties of the structures determined by pullback coordinates ϕ∗

k (τ ) = Bk tk

converge smoothly to (η, R, g,8).
We can resume the maps involved in the proof, with the notation of Section 2.1,

in the diagram

(M, ηk, gk)

(Mk, η̄k, ḡk) (S2Nk+1, η0, g0)

(X, ωk)
(
CPNk , ωFS

)

pk

π

ϕk

ψ̃k

πk πFS

ψk

where (Mk, η̄k, ḡk) is the unit bundle associated to L−k endowed with the Sasakian
structure pulled back via ψk and (M, ηk, gk) is the Sasakian structure determined
by the coordinate ϕ∗

k (τ )= Bk tk . □

Remark 12. Notice that we used a D-homothety as the first step of the proof to get
an actual Boothby–Wang bundle π : M → X . To avoid this and obtain the conver-
gence to the original Sasakian metric, one can compose the D1/k-homothety in our
proof with the inverse of the homothetic transformation considered in the beginning.
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4. Approximation of η-Einstein regular structures

Proof of Theorem 2. We cannot deduce that M is an S1-bundle over a Kähler
manifold because M is not necessarily compact. Nevertheless, the Reeb foliation
still defines a fibration π : M → X over a Kähler manifold (X, ω) because M is
regular and complete; see [13]. Now the fiber of this fibration is either R or S1.

Let us deal first with the case where the fiber is S1. Regardless of whether or
not M is compact, since the Sasakian structure on M is regular and the fiber is S1,
it is the unit bundle of a line bundle L−1 over X such that c1(L)= [ω]. Choose a
Hermitian metric h on L whose Ricci curvature form is ω. Notice that (X, ω) is
Kähler–Einstein because M is η-Einstein.

We now invoke a result of Ma and Marinescu on the Bergman kernel of non-
compact manifolds. Namely, we apply [12, Theorem 6.1.1] to the line bundle L
over X . The hypotheses of this theorem are satisfied as (X, ω) is a Kähler–Einstein
manifold so that there exists a positive constant C such that iRic(ω) > Cω. In our
case this implies that the space of sections Hk,h is nontrivial so that Proposition 10
provides a sequence of holomorphic immersions ϕk : M × R+

→ S∞
× R+ such

that ϕ∗

k (τ )= εk tk where εk is the ε-function of Hk,h , τ and t are the coordinates on
the second factor of S∞

× R+ and M × R+, respectively.
Again by [12, Theorem 6.1.1] (see also [1]) the ε-function εk admits an asymptotic

expansion whose first coefficient is 1. Therefore, taking the 1
k -homothety of the

Sasakian structure on M defined by the pullback coordinate ϕ∗

k (τ )= εk tk we get a
sequence of structures which converge to the given η-Einstein one for k → ∞.

Now the argument when the fiber is R easily follows from the previous one.
Namely, in this case the fibration is trivial, i.e., M ∼= X ×R. Since Z acts on X ×R

by Sasakian isometries via the flow of the Reeb vector field, the quotient is the
η-Einstein manifold N = X × S1 and the Z-covering map π̃ : M → N is a Sasakian
immersion. Now N is an η-Einstein manifold fibering over a Kähler–Einstein
manifold X with fiber S1. By the previous case, there exists a sequence of CR
immersions ϕk : N → S∞ such that suitable D-homotheties of the induced structures
converge on N to the original η-Einstein structure. Therefore, the pullback to M of
such structures under π̃ converge to the η-Einstein structure we began with. Notice
that these structures are transverse homotheties of the ones induced via the CR
immersions π̃ ◦ϕk : M → S∞. That is, we can perform the transverse homotheties
on N or on M interchangeably. This concludes the proof. □

5. Explicit examples of approximations of η-Einstein structures

We exploit the equivalence between polarizations (L , h) of a Kähler manifold X
and Sasakian structures on a Boothby–Wang bundle over X to describe explicitly
some embeddings of noncompact inhomogeneous η-Einstein manifolds into S∞.
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Namely, we compute an orthonormal basis for the Hilbert space Hk,h of sections of
a line bundle L over a noncompact inhomogeneous Kähler manifold. This provides
instances of approximations of inhomogeneous η-Einstein metrics which cannot be
isometrically CR immersed in a sphere.

Example 13 (fibring on the punctured plane). Consider the punctured plane C∗
=

C\{0} endowed with the complete Calabi–Yau metric g∗

0 induced by the Kähler form

(8) ω∗

0 =
i
2

dz ∧ dz̄
|z|2

,

where z is the coordinate on C∗. Since this Kähler form admits a global potential
F =

1
2 log2

|z|2, it is exact. Therefore, we can endow C∗
× S1, i.e., the unit bundle

of the trivial bundle L = C∗
× C, with an η-Einstein structure. Namely, denoting

the standard volume form on S1 by α, the contact form η on C∗
× S1 is given by

η=α+i(∂−∂) log F . The Sasakian metric is g =g∗

0+η⊗η and the endomorphism φ

is given by the lift of the complex structure of C∗ to the contact distribution. We
want to give an explicit expression of the embeddings of the η-Einstein manifolds
C∗

× S1 just described into S∞.
The Kähler space (C∗, ω∗

0) and its polarizations were studied by Loi and Zuddas
in [10]. We report here the essential points which are relevant to our discussion.
For any positive integer k

(9) hk( f (z), f (z))= e
−k
2 log2

|z|2
| f (z)|2

is a Hermitian metric on Lk whose curvature is kω∗

0 . By the discussion in the
previous section, it is enough to compute an orthonormal basis of Hk,h to get the
components of the embedding ϕk of L−k

\ {0} into ℓ2(C); see also [11, Section 5].
Namely, we need sections s j such that

(10) ⟨s j , s j ⟩k =

∫
C∗

hk(s j (z), s j (z))ω∗

0 =

∫
C∗

e
−k
2 log2

|z|2
|s j (z)|2

i
2

dz ∧ dz̄
|z|2

= 1

and such that ⟨s j , sl⟩k = 0 for j ̸= l. It is easy to check that the functions z j for
j ∈ Z are orthogonal and they form a basis of Hk,h for all k since holomorphic
functions are determined by their Laurent series. A simple computation shows that

(11) ⟨z j , z j
⟩k =

∫
C∗

e
−k
2 log2

|z|2
|z|2 j i

2
dz ∧ dz̄

|z|2
=

√
2
k
π

3
2 e

j2
2k .

Hence an orthonormal basis for the Hilbert space Hk,h consists of the sections

sk, j =

(√
ke

− j2
2k

√
2π

3
2

)1
2

z j
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for j ∈ Z. In other words, the sections sk, j are the components of a holomorphic im-
mersion ϕk of C∗

×C∗ into ℓ2(C) and the potential of the induced transverse metric is

Fk := ϕ∗

k (| · |
2)=

∑
j∈Z

√
ke

− j2
2k

√
2π

3
2

|z|2 j

so that the induced Hermitian metric on L−k is

ϕ∗

k (h
−1
FS )( f (z), f (z))= eFk | f (z)|2.

One can check that the k-th root of this Hermitian metric converges to (a multiple of)
the metric h = eF

| · |
2 without invoking [12, Theorem 6.1.1]; see [10, Theorem 3.6]

for a direct proof.

Example 14 (fibring on the punctured disc). As in the previous example we
will construct noncompact Sasakian manifolds fibring over a noncompact inho-
mogeneous Kähler manifold X with a global Kähler potential. Here we take
X = D∗

={z ∈ C : 0< |z|2<1} equipped with the hyperbolic Kähler–Einstein metric

(12) ω∗

hyp =
i
2

dz ∧ dz̄

|z|2 log2(|z|2)

whose potential is F =−log(−log |z|2). By Theorem 2, in analogy with the previous
example, we can endow D∗

× S1 with an η-Einstein structure with contact structure
η= α+ i(∂− ∂) log F . By Theorem 2 this Sasakian structure can be approximated
by (suitable transverse homotheties) of structures induced by immersions of C∗

×S1

into S∞. We want to give here the explicit expression of these immersions.
The Kähler space (C∗, ω∗

hyp) was studied in [2; 3] in relation to Bergman kernels
of punctured surfaces. The polarization we are interested in is the k-th powers of
the trivial line bundle endowed with the Hermitian metric

(13) hk( f (z), f (z))= ek log(−log |z|2)
| f (z)|2.

We compute an orthonormal basis of Hk,h to get the components of the embedding
ϕk of L−k

\ {0} into ℓ2(C); see also [11, Section 5]. Namely, we need sections s j

such that

⟨s j , s j ⟩k =

∫
D∗

hk(s j (z), s j (z))ω∗

hyp =

∫
D∗

ek log(−log |z|2)
|s j (z)|2

i
2

dz ∧ dz̄

|z|2 log2
|z|2

= 1

and such that ⟨s j , sl⟩k = 0 for j ̸= l. It is easy to check that if a holomorphic
function on D∗ has finite norm, then its Laurent expansion involves only the terms
z j for positive j ∈ Z. The functions z j for j > 0 are orthogonal and they form a
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basis of Hk,h for all k. We can then compute

⟨z j , z j
⟩k =

∫
D∗

ek log(−log |z|2)
|z|2 j i

2
dz ∧ dz̄

|z|2 log2
|z|2

=
i
2

∫
D∗

(−log |z|2)k−2
|z|2 j−2 dz ∧ dz̄

= 2π
∫ 1

0
(−log ρ2)k−2ρ2 j−1 dρ,

where the last equality is obtained passing to polar coordinates. Substituting ex
=ρ2

first and − j x = w one gets

⟨z j , z j
⟩k = 2π

∫ 1

0
(−log ρ2)k−2ρ2 j−1 dρ

= π

∫ 0

−∞

(−x)k−2e j x dx

=
π

j k−1

∫
∞

0
wk−2e−w dw =

π(k − 2)!
j k−1 .

Hence an orthonormal basis for the Hilbert space Hk,h consists of the sections

sk, j =

(
j k−1

π(k − 2)!

)1
2

z j

for j > 0 and these are the components of the holomorphic immersion ϕk of D∗
×C∗

into ℓ2(C). In particular the potential of the induced transverse metric is

Fk := ϕ∗

k (| · |
2)=

∑
j>0

j k−1
|z|2 j

π(k − 2)!

so that the induced Hermitian metric on L−k is

ϕ∗

k (h
−1
FS ) ( f (z), f (z))= eFk | f (z)|2.

The k-th root of this Hermitian metric converges to (a multiple of) the metric
h = eF

| · |
2 by [12, Theorem 6.1.1].

Remark 15. Notice that we can lift the η-Einstein structure of C∗
× S1 (resp.

D∗
× S1) to C∗

× R (resp. D∗
× R). As in the proof of Theorem 2, by composing

with the covering map, we can lift the immersions into S∞ too.
Observe that none of these Sasakian manifolds are homogeneous Sasakian so that

we provided explicit Sasakian immersions ϕk of regular inhomogeneous η-Einstein
manifolds into S∞ (when considered with the induced structure). This should be
compared with [11, Theorem 1.5] where it is proven that a homogeneous Sasakian
manifold can be immersed into S∞ if and only if its fundamental group is cyclic.
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Our examples show that, if the manifold is not assumed to be homogeneous, there
is no such restriction on the fundamental group.
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