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THE HOMOLOGY OF THE PARTITION ALGEBRAS

RACHAEL BOYD, RICHARD HEPWORTH AND PETER PATZT

We show that the homology of the partition algebras, interpreted as appropri-
ate Tor-groups, is isomorphic to that of the symmetric groups in a range of
degrees that increases with the number of nodes. Further, we show that when
the defining parameter δ of the partition algebra is invertible, the homology of
the partition algebra is in fact isomorphic to the homology of the symmetric
group in all degrees. These results parallel those obtained for the Brauer
algebras in the authors’ earlier work, but with significant differences and
difficulties in the inductive resolution and high acyclicity arguments required
to prove them. Our results join the growing literature on homological stabil-
ity for algebras, which now encompasses the Temperley–Lieb, Brauer and
partition algebras, as well as the Iwahori–Hecke algebras of types A and B.

1. Introduction

In the last few years it has become increasingly apparent that the techniques of
homological stability, which are most commonly applied to families of groups, can
be successfully applied to families of algebras, where homology is interpreted as an
appropriate Tor group. Indeed, Boyd and Hepworth [2020], Boyd, Hepworth and
Patzt [2021], Hepworth [2022] and Moselle [2022] proved homological stability for
Temperley–Lieb algebras, Brauer algebras, and Iwahori–Hecke algebras of types A
and B respectively, and identified the stable homology in the first two cases. The
Temperley–Lieb and Brauer algebras failed to satisfy a certain flatness condition
that holds automatically for families of groups, necessitating the introduction of
the new technique of inductive resolutions. Using related techniques, Sroka [2023]
showed that the homology of the Temperley–Lieb algebra on an odd number of
strands vanishes in positive degrees, in contrast to the known nonvanishing for
an even number of strands. More recently, Boyde [2022] used a careful study of
idempotents to unify and generalise the “invertible parameter” results from [Boyd
and Hepworth 2020; Boyd et al. 2021], together with Sroka’s vanishing result.
In this paper, we prove homological stability for the partition algebras, and we
identify their stable homology.
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The partition algebras were introduced independently by Jones [1994] and
Martin [1994] for their relevance in studying Potts models in statistical mechanics.
They are also important in representation theory as a Schur–Weyl dual to the
symmetric group, as in the work of Halverson and Ram [2005, Theorems 5.4, 3.6]
and Bowman, Doty and Martin [2022]. They contain a rich variety of subalgebras,
including the planar partition, rook Brauer, rook, planar rook, Brauer, Motzkin and
Temperley–Lieb algebras.

Given a commutative ring R, an element δ ∈ R, and a nonnegative integer n, the
partition algebra Pn(R, δ) is defined to be the free module over R with basis given
by the partitions of the set {−1, . . . ,−n, 1, . . . , n}. These partitions can be drawn
as diagrams with n nodes labelled −1, . . . ,−n on the left and n nodes labelled
1, . . . , n on the right. Nodes in the same block of a partition are then joined by edges.
For ease of drawing, we do not include all edges but instead rely on transitivity.
Disconnected nodes are allowed, corresponding to blocks of size one. For example,
the following diagram shows the basis element {{−1, −3}, {−2, −4, 4}, {2, 3}, {1}}

of P4(R, δ):
−4
−3
−2
−1

4
3
2
1

Multiplication is given by placing the diagrams side by side, identifying the middle
nodes, and replacing any blocks not connected to the right or left by a factor of δ.

Diagrams in which every node on the left is connected to a single node on the right,
and nothing else, are called permutation diagrams, and are in bijection with elements
of the symmetric group Sn . This gives rise to inclusion and projection maps

RSn
ι

−→ Pn(R, δ)
π

−→ RSn

where ι sends permutations to permutation diagrams, and π does the reverse while
sending all remaining diagrams to 0. In particular, π ◦ ι is the identity map on RSn .

We denote the trivial module of RSn by 1. Pulling back along π , we obtain
the trivial module 1 of Pn(R, δ). This gives us the homology groups H∗(Sn, 1) =

TorRSn
∗

(1, 1) of Sn and TorPn(R,δ)
∗

(1, 1) of Pn(R, δ). There are induced homomor-
phisms ι∗ and π∗ on homology groups for which π∗ ◦ ι∗ is again the identity, so that
the homology of Sn appears as a direct summand of the homology of Pn(R, δ).

Theorem A. Suppose that δ is invertible in R. Then the homology of the partition
algebra is isomorphic to the homology of the symmetric group:

TorPn(R,δ)
∗

(1, 1) ∼= H∗(Sn; 1).
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Indeed, the inclusion and projection maps

RSn
ι

−→ Pn(R, δ)
π

−→ RSn

induce inverse isomorphisms

TorRSn
∗

(1, 1)
ι∗
∼=

−→ TorPn(R,δ)
∗

(1, 1)
π∗

∼=
−→ TorRSn

∗
(1, 1).

Our second result holds without any assumptions on the value of δ.

Theorem B. The inclusion map ι : RSn → Pn(R, δ) induces a map in homology

ι∗ : Hi (Sn; 1) → TorPn(R,δ)
i (1, 1)

that is an isomorphism in the range n ≥ 2i + 1.

An immediate consequence of Theorem B is the following corollary.

Corollary C. The partition algebras satisfy homological stability, that is, the
inclusion Pn−1(R, δ) ↪→ Pn(R, δ) induces a map

TorPn−1(R,δ)

i (1, 1) → TorPn(R,δ)
i (1, 1)

that is an isomorphism in degrees n ≥ 2i + 1, and this stable range is sharp.
Furthermore, Pn(R, δ) and Sn have the same stable homology:

lim
n→∞

H∗(Sn; 1) ∼= lim
n→∞

TorPn(R,δ)
∗

(1, 1).

The first part of this corollary follows by combining Theorem B with Nakaoka’s
homological stability result for the symmetric groups, for which the stable range
is sharp [Nakaoka 1960]. For the stable homology, the left-hand side of this
isomorphism is well known by the Barratt–Priddy–Quillen theorem [Barratt and
Priddy 1972; Friedlander and Mazur 1994]. The above results exactly parallel
the situation for the Brauer algebras, and as discussed in [Boyd et al. 2021] are
reminiscent of the relationship between Sn and the automorphism groups of free
groups Aut(Fn) (see Galatius [2011]).

1A. Outline, and comparison to previous work. In Section 2 we introduce partition
algebras and provide the necessary background needed for the rest of the paper. In
Section 3 we restate an abstract form of the principle that lies behind the technique
of inductive resolutions that was introduced in [Boyd and Hepworth 2020], and
was a crucial ingredient in [Boyd and Hepworth 2020] and [Boyd et al. 2021].
In Section 4 we establish the existence of inductive resolutions for the partition
algebras. These are significantly more complicated than the Temperley–Lieb [Boyd
and Hepworth 2020] and Brauer [Boyd et al. 2021] cases, and we find that we must
consider several families of distinct modules in order to carry out our induction
argument. In Section 5 we follow the argument of Boyd et al. [2021] to replace
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Shapiro’s lemma in the setting of partition algebras. The high connectivity result
required for any new proof of homological stability is found in Section 6. Like our
inductive resolutions argument, this is again more complicated than the analogous
result in [Boyd et al. 2021], and heavily utilises the high connectivity of the complex
of injective words with separators, introduced in that paper. We finish in Section 7
by giving an account of the proof of the main theorem, which follows the same
general argument as in [Boyd et al. 2021].

It is common, in homological stability for families of groups, to find that proofs
of different results have a very similar overall structure, yet the proofs that the
relevant complexes are highly acyclic can differ radically. What we can now see
in homological stability for algebras, comparing the work of this paper to that
of [Boyd and Hepworth 2020] and [Boyd et al. 2021], is an analogous situation
where the overall technique is used in multiple situations, but the details of the
acyclicity proofs — and now also of the inductive resolutions proofs — are where
the important differences and difficulties lie.

2. Partition algebras

In this section we introduce the partition algebra, together with some specific
elements and modules that will be important later in the paper.

Definition 2.1 (the partition algebra [Jones 1994; Martin 1994]). As explained in
the introduction, if R is a commutative ring, δ is a chosen element in R, and n is
a nonnegative integer, then the partition algebra Pn(R, δ) is defined to be the free
module over R with basis given by the partitions of the set {−n, . . . ,−1, 1, . . . , n}.
These are drawn as diagrams with nodes −1, . . . ,−n on the left and nodes 1, . . . , n
on the right, with arcs indicating which nodes lie in the same block of the partition.
(We allow ourselves to omit some arcs and instead use transitivity to determine the
blocks.) An example is shown in Figure 1. Multiplication is given by placing the
diagrams side by side, identifying the middle nodes, and replacing any blocks not
connected to the right or left by a factor of δ, as in Figure 2.

We will use the terms “partition” and “diagram” interchangeably to mean a basis
element of Pn(R, δ), and we will frequently abbreviate Pn(R, δ) as Pn .

−5
−4
−3
−2
−1

5
4
3
2
1

Figure 1. Visualization of the partition {{−5, −3}, {−4, −2, −1, 3, 4}, {1, 5}, {2}}.
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· = = δ ·

Figure 2. Multiplication in the partition algebra.

S2 V13 T3

Figure 3. The elements S2, V13, T3 ∈ P4.

The partition algebra is generated by three types of diagrams [Martin 1996],
corresponding to the following partitions:

• For 1 ≤ i ≤ n −1, Si is the diagram corresponding to the partition with blocks of
pairs {− j, j} for j ̸= i, i + 1, together with {−(i + 1), i} and {−i, (i + 1)}. These
generate the group ring of the symmetric group, Sn , as a subalgebra of Pn .
• For 1 ≤ i ̸= j ≤ n − 1, Vi j is the diagram corresponding to the partition with
blocks of pairs {−k, k} for k ̸= i, j and one block of size four {− j, −i, i, j}.
• For 1 ≤ i ≤ n, Ti is the diagram corresponding to the partition with blocks of
pairs {− j, j} for j ̸= i and two singleton blocks {−i} and {i}.

See Figure 3 for depictions of some of these.
We now introduce the modules we will be working with.
Recall that by a permutation diagram we mean a diagram in which each node

on the left is joined to a single node on the right, and nothing else. Equivalently,
permutation diagrams are ones that do not contain any singletons on the right or
any blocks that contain ≥ 2 elements on the right.

Definition 2.2 (the trivial module 1). For any n, we define the trivial RSn-
bimodule 1 to be the module given by the ring R, upon which the permutations act
as the identity.

For any n, we define the trivial Pn-bimodule 1 to be the module given by the
ring R, upon which the permutation diagrams act as the identity, and all other
diagrams act as 0. This is the same as acting with Pn on R via the projection
π : Pn → Sn .

Definition 2.3. For m ≤ n, we can view Pm as a subalgebra of Pn . Given a parti-
tion of {−m, . . . ,−1, 1, . . . , m}, the map which sends (±1, . . . ,±m) to (±(n −

m +1), . . . ,±n) induces a partition on {−n . . . , −(n−m +1), (n−m +1), . . . , n}.
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We add the blocks {−i, i} for all i ∈ {1, . . . , (n − m)}, resulting in a partition in Pn .
Pictorially, we are taking diagrams in Pm and extending them to ones in Pn by
adding new nodes below the existing ones, with horizontal connections between
the new nodes. Then, under the action of this subalgebra, Pn can be viewed as a
left Pn-module and a right Pm-module, and we obtain the induced left Pn-module
Pn ⊗Pm 1.

Proposition 2.4 [Patzt 2024, Proposition 2.5]. The induced module Pn ⊗Pm 1 is a
free R-module and a quotient of Pn .

In terms of diagrams, a basis for this module is the set of diagrams in which the
top m nodes on the right are placed under a box, satisfying the following condition:

• The box is connected to exactly m distinct blocks.

Under this description, the action of Pn on Pn ⊗Pm 1 is given by pasting and sim-
plifying the diagrams just as in the multiplication of Pn , and then identifying a
diagram with 0 if it violates the condition above.

Thus there are two ways that a diagram could be identified with 0 after left
multiplication by a diagram in Pn: One of the blocks attached to the box could, after
pasting, consist only of nodes in the centre (visually, that block is free to be retracted
into the box, and then disappears). Alternatively, two or more distinct blocks that
were attached to the box can become fused into a single block (visually, there is
now a path of arcs with both ends attached to the box). These two possibilities
correspond to the two ways in which a diagram in Pm can fail to be a permutation
diagram, and therefore act as 0 on 1: It can have a singleton on the right, or it can
have two nodes on the right belonging to the same block.

Example 2.5. Figure 4 depicts the module structure of P5 ⊗P3 1. In the first example
one of the blocks connected to the box consists entirely of nodes in the centre and
therefore “vanishes” or “retracts into the box”. In the second example the factor
of δ arises due to a block that consists entirely of nodes in the centre and is not
attached to the box.

3. The principle of inductive resolutions

In this brief section we state an abstract form of the principle that underlies the
technique of inductive resolutions that appeared in [Boyd and Hepworth 2020]
and [Boyd et al. 2021]. It allows us to identify modules that vanish under a fixed
functor of the form TorA

i (M, −) by resolving them using modules that already have
this property, hence the name “inductive resolutions”. The theorem below is an
abstraction of Section 3.3 of [Boyd and Hepworth 2020]. It can be regarded as an
application of the general principle that a derived functor can be computed using
resolutions by objects that are acyclic for that derived functor.
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·

3
=

3
=

3
= 0

·

3
=

3
= δ ·

3

Figure 4. The module structure of P5 ⊗P3 1.

Theorem 3.1. Let A be an algebra over a ring R, and let M be a right A-module.
Suppose that N is a left A-module equipped with a resolution Q∗ → N with the
following two properties:

• TorA
∗
(M, Q j ) vanishes in positive degrees for all j ⩾ 0.

• M ⊗A Q∗ → M ⊗A N is a resolution.

Then TorA
∗
(M, N ) vanishes in positive degrees.

Proof. Let P∗ → M be a projective resolution, so that for any left A-module B, the
groups TorA

∗
(M, B) are computed by the complex P∗ ⊗A B. Consider the double

complex P∗ ⊗A Q∗. There are two natural spectral sequences converging to the
homology of the totalisation Tot(P∗ ⊗A Q∗). For more on these spectral sequences,
see Section 5.6 of [Weibel 1994] and the summary in Section 3.2 of [Boyd and
Hepworth 2020].

The first spectral sequence has E1-term given by
IE1

i, j = H j (Pi ⊗A Q∗) ∼= Pi ⊗A H j (Q∗),

with d1 induced by the differential of P . The isomorphism holds because each Pi

is projective and therefore flat. It follows that the E2-term is
IE2

i, j = TorA
i (M, H j (Q∗)).

Since Q∗ is a resolution of N , it follows that IE2
∗,∗ is simply TorA

∗
(M, N ) concen-

trated on the x-axis, so that the same is true of IE∞
∗,∗, and therefore we conclude

that H∗(Tot(P∗ ⊗A Q∗)) ∼= TorA
∗
(M, N ).

The second spectral sequence has E1-term given by IIE1
i, j = H j (P∗ ⊗A Qi ), i.e.,

IIE1
i, j = TorA

j (M, Qi ),

with d1 induced by the boundary maps of Q∗. Our first assumption now shows that
IIE1

∗,∗ is concentrated on the x-axis, where it is given by TorA
0 (M, Q∗) = M ⊗A Q∗.
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Consequently IIE2
∗,∗ is given by the homology of M ⊗A Q∗, which by our second

assumption is simply a copy of M ⊗A N at the origin. This shows that the homology
of Tot(P∗ ⊗A Q∗) is simply a copy of M ⊗A N in degree 0.

Comparing the outcomes of the two spectral sequences, we see that TorA
∗
(M, N )

vanishes in positive degrees, as required. □

4. Inductive resolutions

In this section, we will use the technique of inductive resolutions, which originated
in [Boyd and Hepworth 2020] and was further used in [Boyd et al. 2021].

Definition 4.1. Suppose that X is a subset of the set {1, . . . , n}. Define JX to be
the left-ideal in Pn that is the R-span of all diagrams in which, among the nodes on
the right labelled by elements of X , there is at least one singleton or one pair of
nodes that are in the same block. For m ≤ n, let J{n−m+1,...,n} be denoted by Jm .

Observe that Jn = J{1,...,n} is the span of precisely the diagrams that are not
permutation diagrams. It is therefore the kernel of the projection map π : Pn → RSn .

Our aim in this section is to prove the following theorem, which will be used in
the final section to understand the Tor groups TorPn

∗
(1, Pn ⊗Pm 1).

Theorem 4.2. Let X ⊆ {1, . . . , n} and suppose that one of the following conditions
holds:

• |X | ≤ n and δ is invertible in R.

• |X | < n.

Then the groups TorPn
∗

(1, Pn /JX ) vanish in positive degrees.

The proof of Theorem 4.2 will occupy the rest of the section. Aspects of the
material are close to [Boyd and Hepworth 2020, Section 3] and [Boyd et al. 2021,
Section 3], but overall the material here is significantly more complex.

Before we continue, we record the following lemma, which extends Theorem 4.2
to degree 0. We will need this lemma to prove the theorem.

Lemma 4.3. Let J be a left ideal of Pn that is included in Jn . Then

1 ⊗Pn Pn /J ∼= 1.

In particular,
TorPn

0 (1, Pn /JX ) ∼= 1

for all X ⊂ {1, . . . , n}.

Proof. Due to the inclusions 0 ⊂ J ⊂ Jn , we have the surjections

1 ⊗Pn Pn ↠ 1 ⊗Pn Pn /J ↠ 1 ⊗Pn Pn /Jn.
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Because

1 ⊗Pn Pn ∼= 1 and 1 ⊗Pn Pn /Jn ∼= 1 ⊗Pn RSn ∼= 1 ⊗RSn RSn ∼= 1,

the above composition is an isomorphism and the first map must be also injective. □

4A. Reducing to AX,x and BX,x . Our proof of Theorem 4.2 will be by induction
on the cardinality of X . Ideally we would prove the inductive step by resolving
Pn /JX in terms of modules Pn /JX ′ with |X ′

| < |X |. However, we were not able to
find a straightforward argument along these lines. To organise the argument, in this
subsection we introduce some intermediate modules, and later on we will build our
resolutions with these.

Definition 4.4. Let Y ⊆ X ⊆ {1, . . . , n}, and let x ∈ X and y ∈ Y . We define three
left Pn-submodules of Pn:

• Ax is the span of all diagrams in which x is a singleton.
• BX,x is the span of all diagrams in which x lies in the same block as some other
element of X .
• MY is the span of all diagrams in which the elements of Y lie in the same block.

We define quotients of these as follows:

AX,x =
Ax

Ax ∩ JX−{x}

, BX,x =
BX,x

BX,x ∩ JX−{x}

, MX,Y =
MY

MY ∩ JX−Y

The following result will be useful to verify the second condition of Theorem 3.1.

Lemma 4.5. The modules AX,x , BX,x , and MX,Y behave as follows under tensor
product with 1.

• Let x ∈ X ⊆ {1, . . . , n}, and suppose that n ≥ 2. Then 1 ⊗Pn AX,x = 0.

• Let x ∈ X ⊆ {1, . . . , n}. Then 1 ⊗Pn BX,x = 0.

• Let Y ⊆ X ⊆ {1, . . . , n} with |Y | ≥ 2. Then 1 ⊗Pn MX,Y = 0 and MX,Y is a
direct summand of Pn /JX−Y .

Proof. We will show that, under the relevant conditions, each of Ax , BX,x and MY

vanishes under 1 ⊗Pn−, and the same will then follow for AX,x , BX,x and MX,Y .
To show that 1 ⊗Pn Ax = 0, we take a diagram α in Ax , so that x is a singleton

in α. Let β denote a diagram obtained from α by placing x into the same block as
some other element on the right. (This is possible by the assumption that n ≥ 2.)
Then α = β · Tx , and β acts as 0 on 1, so that

1 ⊗ α = 1 ⊗ β · Tx = 1 · β ⊗ Tx = 0 ⊗ Tx = 0,

noting that Tx ∈ Ax . Since Ax is the span of such diagrams α, this completes the
proof.
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The argument for the other two modules is similar. For 1 ⊗Pn BX,x , we take a
diagram α ∈ BX,x , so that x is in the same block as some other element w ∈ X , and
we use the factorisation α = α · Vwx , noting that Vwx ∈ BX,x .

For MY we take a diagram α ∈ MY , so that all elements of Y lie in the same
block, and factorise it as α = α · VY where VY ∈ MY is the diagram with blocks
−Y ∪ Y and {−p, p} for p ̸∈ Y ; the assumption |Y | ≥ 2 ensures that α acts as 0
on 1.

For the final claim about MX,Y , we use the fact that the element VY above is
idempotent and sends JX−Y into itself. □

The following proposition breaks down the problem of resolving Pn /JX into the
analogous problem for AX,x and BX,x .

Proposition 4.6. Let X ⊆ {1, . . . , n}, let x ∈ X , and assume n ≥ 2. The sequence
below, in which all maps are induced by either an inclusion or an identity map, is a
resolution of Pn /JX :

. . . // 0 // AX,x ⊕BX,x // Pn /JX−{x}
// Pn /JX

2 1 0 −1

Moreover, applying 1 ⊗Pn− to the sequence gives a resolution of 1 ⊗Pn Pn /JX .

Proof. The map Pn /JX−{x} → Pn /JX is induced by the identity map on Pn and is
well defined since JX−{x} ⊂ JX . The map AX,x → Pn /JX−{x} is induced by the
inclusion Ax ⊂ Pn and is well defined since (Ax ∩ JX−{x}) ⊂ JX−{x}, and a similar
argument holds for the map BX,x → Pn /JX−{x}.

Surjectivity of the right-hand map is immediate, giving exactness in degree −1.
To show exactness in degree 0, observe that the ideals JX−{x} ⊆ JX are both

spanned by certain diagrams, so that the kernel of

Pn /JX−{x} → Pn /JX

is spanned by those diagrams that lie in JX but not JX−{x}. For a diagram to lie
in JX , some element of X must be a singleton, or two elements of X must lie in
the same block. For it to not also be an element of JX−{x}, there must only be one
singleton, namely x , or only one pair of elements lying in the same block, of which
one must be x . The diagrams with x a singleton are precisely the diagrams that
span Ax , the diagrams in which x lies in the same block as some other element
of X are precisely those that span BX,x , and the proof follows.

To show exactness in degree 1, after unravelling the definitions of AX,x and BX,x ,
it is sufficient to show that if we have a ∈ Ax and b ∈ BX,x with a + b ∈ JX−{x},
then a, b ∈ JX−{x}. This follows quickly from fact that Ax and BX,x have no basis
elements in common.
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To prove the second claim, we will show that after applying 1⊗Pn−, the resolution
becomes

. . . // 0 // 0 // 1
Id
// 1

2 1 0 −1

so that the claim follows directly. The identification of the final two terms and
the map between them follows from Lemma 4.3. The terms in degree 1 vanish by
Lemma 4.5. (This is where we use the assumption n ≥ 2.) □

The last result, together with Theorem 3.1, shows that, in order to prove vanishing
of higher Tor’s for Pn /JX by induction, we must first do the same for AX,x and BX,x .
In the next two subsections we will construct resolutions of these.

4B. Resolving AX,x . We now attempt to resolve AX,x . It will turn out that this
requires different methods depending on which assumption from Theorem 4.2 we
use: that δ is invertible, or that |X | < n. Under the first assumption we have:

Proposition 4.7. Suppose that X ⊆ {1, . . . , n} and that δ is invertible in R. Then
the module AX,x is a direct summand of Pn /JX−{x}.

Proof. The element δ−1Tx is an idempotent, thanks to the computation T 2
x = δTx .

Right-multiplication by δ−1Tx sends JX−{x} into itself, and therefore induces an
idempotent endomorphism of Pn /JX−{x}. The image of this endomorphism consists
of all left multiples of Tx , and this is precisely AX,x =

Ax
Ax∩JX−{x}

as in the second
paragraph of the proof of Lemma 4.5. □

The above result shows that, if Pn /JX−{x} has vanishing higher Tor’s, then so
does AX,x . When δ is not invertible, we need a more elaborate method using the
following resolution.

Definition 4.8 (the resolution C(X, x, y)). Let X ⊂ {1, . . . , n} with |X | < n, let
x ∈ X , and let y ∈ {1, . . . , n} − X . We define C(X, x, y) → AX,x as in Figure 5.

Thus C(X, x, y) is given by Pn /JX−{x} in each degree. The maps are all given by
right-multiplication by the indicated elements, so that the boundary maps alternate
between (1 − Tx Vxy) and Tx Vxy , and the augmentation Pn /JX−{x} → AX,x is given
by Tx . The maps are well defined thanks to the fact that Tx Vxy and Tx send JX−{x}

into itself; in the former case this follows from the fact that y ̸∈ X .
To check that consecutive maps compose to 0, one uses Tx VxyTx = Tx together

with the resulting fact that Tx Vxy is an idempotent. The fact that this really does
define a resolution is given next.

Proposition 4.9. Suppose that X ⊂ {1, . . . , n} with |X | < n, let x ∈ X , and let
y ∈ {1, . . . , n} − X. Assume that n ≥ 2. Then

C(X, x, y) → AX,x and 1 ⊗Pn C(X, x, y) → 1 ⊗Pn AX,x

are both resolutions.
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...

(1−Tx Vxy)

��

Pn /JX−{x}

Tx Vxy

��

2

Pn /JX−{x}

(1−Tx Vxy)

��

1

Pn /JX−{x}

Tx

��

0

AX,x −1

Figure 5. The resolution C(X, x, y) → AX,x .

Proof. First, we must show that C(X, x, y) → AX,x is acyclic. In degree −1 this is
clear since Ax consists of all left multiples of Tx . In degrees 1 and above, this is
an immediate consequence of the fact that Tx Vxy is an idempotent. In degree 0 we
require a more complex argument, as follows.

Suppose α is a diagram in which x is a singleton. If B is a block of α other
than {x}, then we write αB for the diagram obtained from α by incorporating x
into B. And we write αy for the diagram αBy , where By is the block containing y.
For example, the following diagrams show α with By and another block B, together
with αB and αy .

x

y

α αB αy

Now observe that we have the relations

(4-1) α − δαy = α(1 − Tx Vxy)

and, for each block B in α,

(4-2) αB − αy = αB(1 − Tx Vxy).

Now consider an element a ∈ Pn /JX−{x} in degree 0 that lies in the kernel of the
augmentation Tx : Pn /JX−{x} →AX,x . We wish to show that a is in the image of the
differential, and we will do this by explaining how to adjust a by elements in the
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image of the differential (which does not change the fact that it lies in the kernel)
in order to reduce it to 0. We can write a as a linear combination of diagrams in Pn

that do not lie in JX−{x}, and these can be divided into the following cases:

(1) Diagrams α in which x is a singleton. Using elements of the form (4-1), we
may adjust a by elements in the image of the differential in order to replace all
such diagrams α with ones of the form αy .

(2) Diagrams in which x is connected to some element outwith X − {x}. These
diagrams all have the form αB , where α is the diagram obtained from the original
by making x a singleton, and B is the block of α that originally contained x . Note
that the assumption that the original diagram did not lie in JX−{x} means that α

also does not lie in JX−{x}. Using elements of the form (4-2), we may adjust a by
elements in the image of the differential in order to replace all such diagrams αB

with ones of the form αy .

(3) Diagrams β in which x is connected to exactly one element, say w, in X −{x}.
Then in βTx Vxy the element w ∈ X − {x} is a singleton, so that βTx Vxy ∈ JX−{x}.
Consequently β = β(1 − Tx Vxy) in Pn /JX−{x}, and in particular β lies in the image
of the differential. We may therefore adjust a by elements in the image of the
differential to remove all diagrams of this form.

After modifying a as explained in each item above, we may now write it as a
linear combination a =

∑
α λα αy where α ranges over all diagrams that are not

in JX−{x} and in which x is a singleton. We know that a lies in the kernel of the
differential, so that a ·Tx = 0. However, we have a ·Tx =

∑
α λα αy ·Tx =

∑
α λα α,

and since the α are distinct diagrams not in JX−{x}, we can conclude that λα = 0
for all α, or in other words that a = 0. This completes the argument in degree 0,
and so completes the proof that C(X, x, y) → AX,x is a resolution.

We now prove that 1 ⊗Pn C(X, x, y) → 1 ⊗Pn AX,x is a resolution. The target
vanishes by Lemma 4.5, and 1 ⊗Pn Pn /JX−{x} = 1 since JX−{x} acts as 0 on 1.
Under the latter identification, the boundary maps, which used to be given by
right-multiplication by the indicated elements, are now given by the action of those
elements on 1, and therefore alternate between 0 and 1. The result follows. □

4C. Resolving BX,x . We now turn to the module BX,x , for which we build the
following resolution.

Definition 4.10 (the resolution D(X, x) → BX,x ). Let X ⊆ {1, . . . , n} and let
x ∈ X . Define an augmented complex D(X, x) → BX,x as follows. In degree i ≥ 0,
D(X, x) is given by ⊕

(x0,...,xi )

MX,{x,x0,...,xi },
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...

δ3

��⊕
(x0,x1,x2)

MX,{x,x0,x1,x2}

δ2
��

2

⊕
(x0,x1)

MX,{x,x0,x1}

δ1
��

1

⊕
(x0)

MX,{x,x0}

δ0
��

0

BX,x −1

Figure 6. The resolution D(X, x) → BX,x . Summations are over
tuples of distinct elements of X − {x}.

where the sum is over all tuples (x0, . . . , xi ) of distinct elements of X −{x}. And on
the summand corresponding to a tuple (x0, . . . , xi ), the map δi is given by the map

MX,{x,x0,...,xi } → MX,{x,x0,...,xi−1}

obtained from the inclusions

M{x,x0,...,xi } ↪→ M{x,x0,...,xi−1}, JX−{x,x0,...,xi } ↪→ JX−{x,x0,...,xi−1}.

The map δi is simply the sum of these individual maps. To it put briefly, δi is the
map that forgets that xi had to be in the same block as x, x0, . . . , xi−1. The complex
is illustrated in Figure 6.

Each composite δi−1 ◦ δi vanishes, because any element in its image is a sum
of diagrams that each contain two elements xi−1, xi ∈ X − {x, x1, . . . , xi−2} in the
same block, and which therefore lie in JX−{x,x1,...,xi−2}. We prove that this is indeed
a resolution in Proposition 4.11.

Proposition 4.11. D(X, x) → BX,x is indeed a resolution, and the same is true for
1 ⊗Pn D(X, x) → 1 ⊗Pn BX,x .

Proof. We first prove that D(X, x) → BX,x is acyclic.
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In degree −1 we must show that δ0 is surjective. A diagram in BX,x has x in the
same block as some other element x0 of X −{x}, and therefore lies in the image of
the inclusion M{x,x0} ↪→ BX,x , and surjectivity follows.

In degree 0, we first observe that if we consider any two summands in degree 0,
then their images under δ0 have trivial intersection. Indeed, this follows quickly
from the fact that if x0 and x ′

0 are distinct elements of X − {x}, then

M{x,x0} ∩ M{x,x ′

0}
⊆ JX−{x},

which itself holds because a diagram in M{x,x0} ∩ M{x,x ′

0}
has x0 and x ′

0 in the same
block as x , and therefore in the same block as one another. So to prove exactness
in degree 0 we can look at just one x0-summand at a time:⊕

x1∈X−{x,x0}

MX,{x,x0,x1}

δ1
��

1

MX,{x,x0}

δ0
��

0

BX,x −1

To prove that this sequence is exact at its middle term, observe that the kernel of δ0

is spanned by diagrams in M{x,x0} that lie in JX−{x}− JX−{x,x0}. Pick such a diagram.
For the diagram to lie in JX−{x}, two elements of X − {x} must be in the same
block, or an element of X −{x} must be a singleton. For the diagram to lie outwith
JX−{x,x0}, since x0 cannot be a singleton in M{x,x0}, we conclude that x0 must be in
the same block as some other element of X −{x}. So, x0 lies in the same block as
some element x1 ∈ X − {x, x0}, and since the diagram is in M{x,x0} it follows that
x, x0, x1 must all be in the same block. Thus the diagram is in M{x,x0,x1}, and so
lies in the image of δ1.

To prove exactness in degree i ⩾ 1 and above, one first observes that in degrees
i − 1, i, i + 1 the complex splits as a direct sum over (x0, . . . , xi−1). It is therefore
enough to concentrate on a single (x0, . . . , xi−1)-summand at a time. Having
restricted to such a summand, one now proves exactness similarly to the degree 0
case, and we leave the details of this to the reader.

The fact that the resolution remains acyclic after applying 1 ⊗Pn− follows imme-
diately from Lemma 4.5, which shows that in fact the resolution vanishes under
this operation. □

Proof of Theorem 4.2. We first tackle the cases n = 0, 1. When n = 0 we have
Pn = R and the claim follows immediately. When n = 1, we either have X = ∅, or
we have X ={1} and δ invertible. When X =∅ we have JX = 0, so that Pn /JX = Pn
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and the claim follows. Finally, when X = {1} and δ is invertible, then JX is the
R-span, and indeed the Pn-span, of the idempotent δ−1T1. Thus JX and Pn /JX are
both direct summands of Pn , and in particular the latter is projective, so that the
claim follows.

We now assume that n ≥ 2, and prove the claim by strong induction on the
cardinality of X . When X = ∅ we have JX = 0, so that Pn /JX = Pn and the claim
is immediate.

Suppose now that |X | > 0 and that the claim holds for all X ′ of a smaller
cardinality. According to Proposition 4.6 and Theorem 3.1, it will be sufficient to
show that the modules

Pn /JX−{x} AX,x BX,x

all vanish under TorPn
i (1, −) for i > 0.

In the case of Pn /JX−{x} we have TorPn
i (1, Pn /JX−{x}) = 0 by the inductive

hypothesis.
For AX,x , we divide into the case where δ is invertible, and the case where

|X | < n. When δ is invertible, Proposition 4.7 shows that AX,x is a direct summand
of Pn /JX−{x}, which vanishes under TorPn

i (1, −) by the inductive hypothesis, so
that AX,x does as well. When |X | < n, Proposition 4.9 gives us resolutions

C(X, x, y) → AX,x and 1 ⊗Pn C(X, x, y) → 1 ⊗Pn AX,x .

The terms of C(X, x, y) are all Pn /JX−{x}, which vanish under TorPn
i (1, −) by the

inductive hypothesis, so that Theorem 3.1 applies to tell us that the same is true
for AX,x itself.

For BX,x , Proposition 4.11 gives us the resolutions

D(X, x) → BX,x and 1 ⊗Pn D(X, x) → 1 ⊗Pn BX,x .

The terms of D(X, x) are direct sums of modules of the form MX,{x,x0,...,xi }. Each
MX,{x,x0,...,xi } is a direct summand of Pn /JX−{x,x0,...,xi } by Lemma 4.5, and since
TorPn

i (1, −) vanishes on the latter, it also vanishes on the former. (Note that this
is the only place in our argument where we have used strong induction.) We can
now apply Theorem 3.1 to D(X, x) to find that BX,x vanishes under TorPn

i (1, −)

as required. □

5. Replacing Shapiro’s lemma

This section closely follows Section 4 of [Boyd et al. 2021]. We include all
statements, and proofs of the lemmas which slightly differ in the case of partition
algebras. The proof of Theorem 5.1 is identical to that in [Boyd et al. 2021], with
adapted inputs.
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As in the case for the Brauer algebras, we have inclusion and projection maps

RSm
ι

−→ Pm
π

−→ RSm .

These are compatible with the inclusions Pm → Pn and RSm → RSn , and also
respect the actions on the trivial module. They therefore induce the following maps
of Tor-groups:

TorRSn
∗

(1, RSn ⊗RSm 1)
ι∗

−→ TorPn
∗

(1, Pn ⊗Pm 1)
π∗

−→ TorRSn
∗

(1, RSn ⊗RSm 1).

Then the main result of this section is the next theorem, which replaces Shapiro’s
lemma in the Quillen style proof of homological stability for groups.

Theorem 5.1. Let n ⩾m ⩾ 0. Suppose that δ is invertible in R, or that m < n. Then
the maps

ι∗ : TorRSn
∗

(1, RSn ⊗RSm 1) → TorPn
∗

(1, Pn ⊗Pm 1)

and
π∗ : TorPn

∗
(1, Pn ⊗Pm 1) → TorRSn

∗
(1, RSn ⊗RSm 1)

are mutually inverse isomorphisms.

Theorem A follows immediately from Theorem 5.1 by taking δ invertible and
m = n, using the identifications RSn ⊗RSm 1 ∼= 1 and Pn ⊗Pm 1 ∼= 1.

The remainder of this section is devoted to proving Theorem 5.1, which follows
in exactly the same way as Theorem 4.1 of [Boyd et al. 2021] after some preparatory
definitions and lemmas.

Recall from Definition 4.1 that Jm ⊆ Pn denotes the ideal consisting of all
diagrams in which, among the nodes on the right labelled by {n − m + 1, . . . , n},
there is a least one singleton or one pair of nodes in the same block. Observe
that Pn is a right RSm-module, via the inclusions RSm ⊆ Pm ⊆ Pn , and that this
module structure preserves Jm , since right multiplying by a diagram which permutes
the nodes {n − m + 1, . . . , n} does not change whether there exists a singleton or
two nodes in the same block in this set. Therefore we have that Pn /Jm is a right
RSm-module.

Lemma 5.2. For m ≤ n, Pn /Jm is free when regarded as a right RSm-module.

Proof. We have that Pn /Jm has basis consisting of the diagrams for which the nodes
in {n − m + 1, . . . , n} have no singleton, and no two nodes in the same block. This
means that each node in {n − m + 1, . . . , n} is attached to a distinct block in the
diagram. Now, Sm acts freely on this basis, since multiplying such a diagram with a
permutation in Sm results again in a diagram where the nodes in {n−m +1, . . . , n}

are attached to distinct blocks. Under this action, the stabilizer of any such diagram
is trivial. □
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Lemma 5.3. For m ≤ n, there is an isomorphism of left Pn-modules

Pn /Jm ⊗RSm 1 ∼= Pn ⊗Pm 1,

under which (b + Jm) ⊗ r ∈ Pn /Jm ⊗RSm 1 corresponds to b ⊗ r ∈ Pn ⊗Pm 1.

Proof. Throughout this proof we regard Jm as an ideal in Pn , and write Jm ∩ Pm for
the corresponding ideal in Pm .

Let us show that the maps

(b + Jm) ⊗ r 7→ b ⊗ r and b ⊗ r 7→ (b + Jm) ⊗ r

are well defined. It then immediately follows that they are inverses and thus
isomorphisms.

For the first map, we need to show that bσ ⊗ r = b ⊗ r for σ ∈ Sm and that
j ⊗ r ∈ Pn ⊗Pm 1 is zero if j ∈ Jm . The first equation follows immediately as
σ ∈ Sm ⊂ Pm acts as the identity on 1. The second condition holds because if
j ∈ Jm , then we can write j as a sum of products of the form b · j ′ where b ∈ Pn and
j ′

∈ Jm ∩Pm , and for each such summand we have b · j ′
⊗r = b⊗ j ′

·b = b⊗0 = 0.
For the second map, we let b ∈ Pn , b′

∈ Pm , and r ∈ 1, and show that

(bb′
+ Jm) ⊗ r = (b + Jm) ⊗ (b′

· r).

It is enough to prove this for b′
∈ RSm and b′

∈ Jm ∩Pm as Pm = RSm ⊕(Jm ∩Pm).
For b′

∈ RSm , we get the equation directly from the definition of the tensor product.
For b′

∈ Jm ∩ Pm , we note that bb′
∈ Jm = Pn · Jm and thus (bb′

+ Jm) ⊗ r is zero,
as is (b + Jm) ⊗ (b′

· r) since b′
· r = 0. □

Now recall from Theorem 4.2 that, under the hypotheses of Theorem 5.1,

TorPn
∗

(1, Pn /Jm) =

{
1 if ∗ = 0,

0 if ∗ > 0.

Proof of Theorem 5.1. The proof of Theorem 5.1 now follows exactly as in [Boyd
et al. 2021, Proof of Theorem 4.1], replacing the occurrences of Brn with Pn ,
and inputting Lemma 5.3 and Theorem 4.2 as appropriate. □

6. High connectivity

We build a complex similar to the one in [Hepworth 2022] and [Boyd et al. 2021].

Definition 6.1. For n a nonnegative integer, we define the chain complex Cn = (Cn)∗

of Pn-modules as follows. The degree p part (Cn)p is nonzero in degrees −1 ≤ p ≤

n − 1, where it is given by

(Cn)p = Pn ⊗Pn−(p+1)
1.
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So in degree −1 it follows that (Cn)−1 = Pn ⊗Pn 1 ∼= 1. For 0 ≤ p ≤ n − 1 the
degree p differential ∂ p is given by the alternating sum

∂ p
=

p∑
i=0

(−1)i d p
i : (Cn)p → (Cn)p−1,

where, algebraically, the map d p
i for 1 ≤ i ≤ p is given by

d p
i : Pn ⊗Pn−(p+1)

1 → Pn ⊗Pn−p 1, x ⊗ r 7→ (x · Sn−p+i−1 . . . Sn−p) ⊗ r

and
d p

0 : Pn ⊗Pn−(p+1)
1 → Pn ⊗Pn−p 1, x ⊗ r 7→ x ⊗ r.

In other words, when i = 0 the product Sn−p+i−1 . . . Sn−p is taken to be the empty
product, i.e., the identity element.

In terms of diagrams, elements in degree p can be described as diagrams with
an (n − (p +1))-box at the top right, as in Proposition 2.4 and the paragraph which
follows it. If we label the nodes below the (n − (p + 1))-box by 0, . . . , p from top
to bottom, then d p

i lifts up node i and plugs it into the box.

We now filter Cn . Note that in [Boyd et al. 2021] we first decomposed Cn

based on the number of disjoint blocks on the left, and we could also do that here.
However this is not necessary for the proof.

Definition 6.2. We define a filtration

F0 Cn ⊆ F1 Cn ⊆ · · · ⊆ F⌊n/2⌋Cn = Cn

of Cn as follows. The j-th level F j Cn is generated by diagrams with at most j
blocks that have at least 2 positive (right-hand) nodes and are not connected to the
box. Note that this is indeed a filtration, since the boundary map can only decrease
the number of blocks on the right not connected to the box.

We briefly recall the definition of the complex of injective words with separators.

Definition 6.3 (injective words with separators). Let X be a finite set and let k ⩾ 0.
An injective word on X with k separators is a word with letters taken from the
set X ⊔ { | } consisting of X and the separator |, where each letter from X appears
at most once, and where the separator appears exactly k times. When k = 0, then
these are simply the injective words on X .

Definition 6.4 (the complex of injective words with separators). Let X be a finite
set, let s ⩾ 0, and let R be a commutative ring. The complex of injective words with s
separators is the R-chain complex W (s)

X concentrated in degrees −1 ≤ p ≤ |X |− 1,
and defined as follows. In degree p, (W (s)

X )p has basis given by the injective
words on X with s separators, and with (p + 1) letters from X . Thus such a word
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a ∈ (W (s)
X )p has length s + p +1. Let r = s + p and a = a0 a1 . . . ar . The boundary

operator ∂ p
: (W (s)

X )p → (W (s)
X )p−1 is defined by the rule

∂ p(a0 a1 . . . ar ) =

r∑
i=0

(−1)i a0 . . . âi . . . ar

subject to the condition that if the omitted letter is a separator, then the corresponding
term is omitted (or identified with 0). In other words, the boundary is the signed sum
of the words obtained by deleting the letters that come from X and not deleting any
separators, but with signs determined by the position of the deleted letter among
all letters including the separator:

∂ p(a0 a1 . . . ar ) =
∑

ai ∈X
(−1)i a0 . . . âi . . . ar .

We will aim to identify the filtration quotients F j Cn/F j−1 Cn with a sum of
shifted copies of the complex of injective words with separators, as in [Boyd et al.
2021]. (Note that in [Boyd et al. 2021] the argument for the Brauer algebras is
somewhat simpler, and so the reader may wish to look at the Brauer proof first.)

To complete this identification, we exhibit a one-to-one correspondence between
diagrams and tuples of data. This correspondence is complicated, so we start with
the simple example of the tuple corresponding to a diagram with no box, and no
restriction on the right-hand side blocks. Recall that a diagram is a pictorial way of
representing a partition of the set {−n, . . . ,−1, 1, . . . , n}.

A diagram D determines, and is determined by, a tuple (L , R, φ) consisting of:

• A partition L of {−1, . . . ,−n}.

• A partition R of {1, . . . , n}.

• A labelling φ : R → {∅} ∪ L with the property that φ(r) = φ(r ′) only when
r = r ′ or φ(r) = φ(r ′) = ∅.

The correspondence sends a diagram D to the tuple (L , R, φ) for which:

• L is the induced partition on the left-hand nodes −1, . . . ,−n.

• R is the induced partition on the right-hand nodes 1, . . . , n.

• φ labels a block on the right by the (necessarily unique) block on the left to
which it is attached, if any, and labels it by ∅ otherwise.

An example is shown in Figure 7. Here, the process of restricting the partition
to the left and right sides of the diagram amounts to discarding all the left-to-right
connections. Those left-to-right connections are instead recorded in the labelling φ.
To see that φ satisfies the third property above because, observe that if it did not,
then the diagram would have two distinct blocks r, r ′ on the right attached to the
same block on the left. That would be a contradiction because then r and r ′ would
in fact themselves be the same.



THE HOMOLOGY OF THE PARTITION ALGEBRAS 21

P1

P2

P3

P4

P5

7→ P5

7→ P2

7→ ∅

7→ P1

7→ ∅

L D R φ

Figure 7. The process of extracting from a diagram D the tuple
(L , R, φ). Blocks in L , and the labellings of R are indicated at
their lowermost node.

2

D

Figure 8. An example of a diagram D, when n = 9, j = 1 and p = 6.

We now observe that the filtration quotient F j Cn/F j−1 Cn has a basis in degree p
consisting of diagrams which have an (n − (p + 1))-box on the right, and exactly
j blocks with ≥ 2 nodes on the right that are not connected to the box. Here, the
size of the box is determined by the degree as in Definition 6.1, and the condition
on the j blocks follows from the definition of the filtration given in Definition 6.2.
An example is given in Figure 8.

In the next definition, we explain how these basis diagrams determine a tuple of
data, analogously to the discussion above. Once this data has been stripped from
the diagram, we are left with the desired information of an injective word with
separators. In this injective word, the letters encode left-to-right connections for
which the block on the right has a single element; and the separators correspond to
all other nodes below the box on the right. There are at least 2 j of these separators,
because there are precisely j blocks on the right that have 2 or more right-hand
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nodes and are not connected to the box. Later, in Lemma 6.8 we show how to
conversely start with an injective word with separators and our tuple of data and
rebuild the diagram.

Definition 6.5. A diagram in the basis of (F j Cn/F j−1 Cn)p determines a tuple

(P, X, s, Y, f )

consisting of the following data:

• A partition P of {−1, . . . ,−n}.
• A subset X of the blocks of P .
• A number 2 j ≤ s ≤ n − |X |.
• A partition Y of {1, . . . , s}, such that ≥ j blocks have size ≥ 2.
• A labelling f :Y → ({∅}∪P\X)×{□, ¬□} (where the symbols □, ¬□ represent
“box” and “not-box” respectively) such that

– singletons have first label ∅
– no two blocks in Y can have the same first label in P \ X

– exactly j blocks of size ≥ 2 have second label ¬□

– exactly n − s − |X | blocks have second label □.

The diagram D determines the tuple as follows (an example is shown in Figure 9):

• P is the partition of {−1, . . . ,−n} given by restricting the blocks of D to the
negative elements, i.e., to the nodes on the left-hand side of the diagram.
• X is the set of blocks in P which, when viewed in D, are connected to exactly
one thing on the right (this can be a connection to the box, or to a single node).
• The number s is equal to the number of nodes on the right of D not connected to a
block in X . These nodes are precisely those which are singletons, or are connected
to another element on the right, or to the box. Therefore, every node in one of the
j blocks of D that have at least 2 positive (right-hand) nodes and are not connected
to the box (as in Definition 6.2) is included and so s ≥ 2 j . Also, none of the nodes
that are connected to a block in X are included, so s ≤ n − |X |. It follows that
n − |X | − s is the number of blocks connected to the box and to at least one node
on the right.
• Y is the partition given by restricting D to the set of s nodes on the right that are
not connected to the blocks of X (we relabel these 1, . . . , s, maintaining the order).
• The first entry of the labelling f , in ∅∪ P \ X , indicates whether the blocks of Y
are disconnected from the rest of D (in which case the label is ∅), or connected
to the left-hand side (in which case the label is the block in P \ X that they are
connected to). Singletons in Y cannot be connected to the left because otherwise
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2

P1

P2

P3

P4

P5

P2

P5

7→ (∅,□)

7→ (P1, ¬□)

7→ (∅, ¬□)

P2

X P D s = 6 Y f a = ∥P2∥

Figure 9. The process of extracting from the diagram D in
Figure 8 the tuple (P, X, s, Y, f ) and injective word a described in
Definition 6.5. Blocks in P and the labelling f of Y are indicated
at their lowermost node.

they would be connected to a block in X on the left. Thus their first label must
be ∅. Two blocks in Y cannot be connected to the same block in P \ X , so two
first labels can only be the same if they are both ∅.

The second entry of the labelling f is □ if the block in Y is connected to the
box in D and ¬□ if it is not. The condition that there are exactly j blocks of
size ≥ 2 with second label ¬□ accounts for the diagram being in the filtration
quotient F j Cn/F j−1 Cn . The condition that there are exactly n − s − |X | blocks
with second label □ follows from the above observation that this is the number of
blocks connected to the box, containing at least one node on the right.

The remaining data in the diagram determines an injective word with s separa-
tors a, of length p +1− s, on the set X , obtained as follows: If the i-th node (from
the top) on the right is connected to a block in X , then the i-th letter of a is the
corresponding element of X . Otherwise the i-th letter of a is a separator, and there
are exactly s of these.

Definition 6.6. By the above discussion, we can define a map

8∗ :
F j Cn

F j−1 Cn
→

⊕
P,X,s,Y, f

W (s)
X [−s].

The direct sum is over all 5-tuples (P, X, s, Y, f ) satisfying the properties listed
at the start of Definition 6.5. A diagram D in (F j Cn/F j−1 Cn)p is sent by 8p to
the injective word with separators a in the degree p part of the summand W (s)

X [−s]
corresponding to (P, X, s, Y, f ), where (P, X, s, Y, f ) and a are obtained as in
Definition 6.5.
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We now prove that 8∗ is a chain map and isomorphism. This will allow us to
leverage the high connectivity of the complex of injective words with separators
[Boyd et al. 2021, Proposition 5.14] to a high connectivity result for Cn , via the
filtration.

Lemma 6.7. 8∗ is a chain map.

Proof. First, we claim that the 5-tuple (P, X, s, Y, f ) associated, via 8∗, to a
basis diagram D in (F j Cn/F j−1 Cn)p is preserved in all diagrams appearing in
the boundary of D. Recall from Definition 6.1 that the boundary map ∂ p sends a
diagram to the alternating sum of the diagrams obtained as follows: work through
the nodes on the right of the diagram, and in each case move the node into the
box. This clearly does not change the left-hand end of the diagram, and therefore
all of the diagrams in the boundary have the same X and P associated to them.
If the node that is moved into the box is a singleton, or was part of a block that
was connected to the box, then these nodes are included in the count for s, but
after moving it into the box, the resulting diagram either has a singleton in the box
or has a loop at the box, and therefore again vanishes. The other nodes counting
towards s are those that are part of a block with ≥ 2 elements from the right, and
are not connected to the box. There are exactly j such blocks, and so moving any
of their nodes into the box gives zero in the quotient (F j Cn/F j−1 Cn)p. Therefore
the only nodes we can move into the box without getting zero, are those that are
not counted by s, i.e., s remains constant under the boundary map. It follows that
Y and f remain constant, since Y partitions these s nodes and f labels them.

The above paragraph demonstrates that F j Cn/F j−1 Cn splits as a direct sum
indexed by the 5-tuples (P, X, s, Y, f ). It now suffices to show that the assignment
that sends a diagram with fixed (P, X, s, Y, f ) to the corresponding injective word
with separators a respects the boundary map. But this is clear: moving a node
joined to a block in X into the box corresponds exactly to deleting one of the
nonseparator letters from a. □

Lemma 6.8. 8∗ is an isomorphism.

Proof. We will prove that 8∗ is an isomorphism by showing that it is obtained from
a bijection between the basis of (F j Cn/F j−1 Cn), which is given by diagrams, and
the basis of

⊕
X,P,s,Y, f W (s)

X [−s], which is given by injective words with separators.
To do this, we will explain how to (re)build a diagram in (F j Cn/F j−1 Cn) from a
tuple (P, X, s, Y, f ) and an injective word with separators a.

We work in degree s + k − 1 in the summand W (s)
X [−s] associated to a 5-tuple

(P, X, s, Y, f ). We therefore take an injective word a of length k with s separators,
and we will build a diagram in (F j Cn/F j−1 Cn)s+k−1. We begin with an empty
diagram with s + k nodes on the right-hand side, and a box of size n − s − k; this
is possible since s + k ≤ s + |X | ≤ n, where the latter inequality is one of the
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conditions imposed on the 5-tuple. Next, we build all the blocks on the left using P ,
and draw half-edges from the blocks in X to the right (don’t connect these edges to
anything yet). We place the injective word with separators vertically against the
s + k nodes on the right-hand side, and the word indicates connections from k of
the nodes to half-edges from X . We connect the remaining half edges from X to
the box. The separators indicate the positioning of the s nodes {1, . . . , s} which
are then partitioned by Y , and labelled by f . The first labels of Y indicate which
blocks are connected to blocks on the left-hand side in P \ X . Finally, if the second
label of a block in Y is □ we connect the block to the box. Note that |X |−k blocks
of X are connected to the box, and n −s −|X | blocks of Y are connected to the box,
the latter property being another of our conditions on the 5-tuple. This means that
exactly n − s − k distinct blocks are connected to the box, and since this is the size
of the box the diagram is nonzero in (Cn)s+k . The diagram lies in F j Cn/F j−1 Cn

since exactly j blocks in Y of size ≥ 2 have second label ¬□ and are therefore not
joined to the box, again by our conditions on the 5-tuple.

The last paragraph shows how to obtain, from a tuple (P, X, s, Y, f ) and an
injective word a ∈ W (s)

X [−s]s+k−1, a diagram in the basis of (F j Cn/F j−1 Cn)s+k−1.
It is now immediate to verify that this is inverse to the effect of 8∗ on bases. □

Proposition 6.9. For all 0 ≤ j ≤
⌊ n

2

⌋
, the filtration quotients F j Cn/F j−1 Cn satisfy

Hi (F j Cn/F j−1 Cn) = 0 for i ≤
n−3

2 .

Proof. We first consider the case n = 0, where the only possibility is that j = 0
so that F0 C0 = C0. The claim is then that Hi (C0) = 0 for i ≤ −

3
2 , but since C0

consists of a single copy of 1 in degree −1, this is immediate.
We now consider the case n > 0. Using Lemma 6.8 this is equivalent to the ho-

mology of W (s)
X [−s] vanishing in the desired range, for each 5-tuple (P, X, s, Y, f )

satisfying the conditions of Definition 6.5. By [Boyd et al. 2021, Proposition 5.14],
Hi (W (s)

X ) = 0 for i ≤ |X |− 2, so that Hi (W (s)
X [−s]) = 0 for i ≤ |X |+ s − 2. It will

therefore suffice to show that
⌊ n−3

2

⌋
≤ |X | + s − 2, or equivalently{

n ≤ 2|X | + 2s if n even,

n ≤ 2|X | + 2s − 1 if n odd.

Let us first prove that we always have n ≤ 2|X |+2s. Our conditions on the 5-tuple
(P, X, s, Y, f ) mean that n − s − |X | is the number of blocks of Y with second
f -label □, so that in particular n − s − |X | ≤ |Y |. And since Y is a partition of
{1, . . . , s} we have |Y | ≤ s. Combining the last two inequalities and rearranging
gives us n ≤ |X | + 2s. Because |X | ≥ 0, we therefore have n ≤ 2|X | + 2s. In
particular, this proves the proposition if n is even. If n is odd, it certainly cannot
be equal to 2|X | + 2s which is even. Therefore it can be at most one smaller:
n ≤ 2|X | + 2s − 1. □
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Theorem 6.10. Hi (Cn) = 0 for i ≤
n−3

2 .

Proof. By Proposition 6.9, the homology of the filtration quotient F j Cn/F j−1 Cn

vanishes in degrees i ≤
n−3

2 for all j . The same then holds for Cn itself by
considering the long exact sequences associated to the short exact sequences

0 → F j−1 Cn → F j Cn →
F j Cn

F j−1 Cn
→ 0. □

7. Proof of Theorem B

The proof of Theorem B directly mirrors the proof of [Boyd et al. 2021, Theorem B],
with the following substitutions:

• All instances of the Brauer algebra should be replaced with the partition algebra.

• The maps ι and π of [Boyd et al. 2021] should be replaced by the maps of the
same name in the current paper. Similarly for the complex C∗.

• Theorem 5.4 of [Boyd et al. 2021] should be replaced with Theorem 6.10.

• Theorem 4.1 of [Boyd et al. 2021] should be replaced with Theorem 5.1.

We note that in the second paragraph of the proof of [Boyd et al. 2021, Theorem 6.3],
there is an error, and the words “odd” and “even” should be transposed.
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REMARKS ON EIGENSPECTRA
OF ISOLATED SINGULARITIES

BEN CASTOR, HAOHUA DENG, MATT KERR AND GREGORY PEARLSTEIN

We introduce a simple calculus, extending a variant of the Steenbrink spec-
trum, to describe Hodge-theoretic invariants for smoothings of isolated
singularities with relative automorphisms. After computing these “eigenspec-
tra” in the quasihomogeneous case, we give three applications to singularity
bounding and monodromy of variations of Hodge structure (VHS).

Introduction

Recent work of M. Kerr and R. Laza on the Hodge theory of degenerations [Kerr
et al. 2021; Kerr and Laza 2023] reexamined the mixed Hodge theory of the
Clemens–Schmid and vanishing-cycle sequences, with an emphasis on applications
to limits of period maps and compactifications of moduli. When a degenerating
family of varieties has a finite group G acting on its fibers, these become exact
sequences in the category of mixed Hodge structures with G ×µk-action, where k
is the order of Tss (the semisimple part of monodromy). These kinds of situations
often show up in generalized Prym or cyclic-cover constructions; for instance,
instead of using the period map attached to a family of varieties, one may want to
use the “exotic” period map arising from a cyclic cover branched along the family
(e.g., [Allcock et al. 2002; 2011; Casalaina-Martin et al. 2012; Deligne and Mostow
1986; Dolgachev and Kondō 2007]).

In this note we explain how to encode the contributions of isolated singularities
with G-action to the vanishing cohomology in terms of G-spectra (Definition 1.11).
These are formal sums (with positive integer coefficients) of triples in Z × Q ×R,
where R is the set of irreducible representations of G. The term eigenspectrum
(Definition 1.12) refers to the specific case of a cyclic group ⟨g⟩ with fixed generator.
(At the end of Section 3 and in most of Section 5 a larger group G nontrivially
permutes the singularities; G always denotes a subgroup stabilizing them.)

In Section 1 this formalism emerges naturally from the general setting of a
proper morphism of 1-parameter degenerations over a disk, by specializing the
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morphism to an automorphism g ∈ Aut(X/1) fixing a singularity x ∈ X0. The
eigenspectrum σ

g
f,x simply records the dimensions of simultaneous eigenspaces

of g∗ and Tss in the (p, q)-subspaces of Vx (Definition 1.12). We give a general
computation in Section 2 of σ g

f,x in the case of a quasihomogeneous singularity, in
terms of a monomial basis for the associated Jacobian ring (Corollary 2.7).

In the remaining sections, we give three applications. The first, in Section 3, is to
bounding the number of nodes on Calabi–Yau hypersurfaces in weighted projective
spaces (Theorem 3.6) by passing to cyclic covers. There is already a large literature
on node-bounding, including [Jaffe and Ruberman 1997; Kerr and Laza 2023;
Miyaoka 1984; Schoen 1985; Varchenko 1983; van Straten 2020]. In the case
of Pn+1, our approach does not improve Varchenko’s bound (e.g., 135 nodes for
a quintic hypersurface in P4), but does yield a simpler proof. However, we do
obtain the interesting result (in Theorem 3.11) that a CY hypersurface in Pn+1

with isolated singularities and symmetric under Sn+2 cannot contain a node whose
Sn+2-orbit has cardinality (n + 2)! (i.e., trivial stabilizer).

The other two applications concern codimension-one monodromy phenomena
for VHSs over moduli of configurations of points and hyperplanes. In Section 4,
the moduli space is M0,2n , with the VHS arising from cyclic covers of P1 branched
along the 2m ordered points. Propositions 4.5–4.6 and Example 4.7 describe
the eigenspectra, LMHS and monodromy types along boundary strata of certain
compactifications M H

0,2n due to Hassett [2003], generalizing a computation of
[Gallardo et al. 2021]. The cases m = 2, 3, 4, and 6 go back to work of Deligne
and Mostow [1986] and feature a period map (isomorphism) to an arithmetic ball
quotient. While the global/extended period map is not as elegant in the remaining
cases, the point is that the codimension-one boundary behavior can be dealt with
uniformly and efficiently using our calculus.

Our other main example, treated in Section 5, is the VHS H → S on the moduli
space of general configurations of (2n + 2) hyperplanes in Pn , arising from the
middle (intersection) cohomology of a 2 : 1 cover X → Pn branched along these
hyperplanes. These are singular Calabi–Yau n-folds admitting a crepant resolution,
and have been studied in [Dolgachev and Kondō 2007; Gerkmann et al. 2007a;
2013; Sheng et al. 2015]. By passing to a smooth complete intersection 22n-cover
of X and applying the Cayley trick (see [Kerr 2003, Section 4.5]), we replace X by
a smooth hypersurface

Y ⊂ P(OP2n+1(2)⊕(n+1))

with automorphisms by a group of order 22n . In codimension-one in moduli,
Y acquires nodes, and a variant of Schoen’s [1985] result ensures that these produce
nontrivial symplectic transvections for H when n is odd. This gives an easy proof
that the geometric monodromy group of H is maximal (for all n), and the period
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map “nonclassical”, a fact first proved by Gerkmann et al. [2013] for n = 3 and by
Sheng et al. [2015] in general.

Notation. In this paper MHS stands for Q-mixed Hodge structure. We shall make
frequent use of the Deligne bigrading on a MHS V [Deligne 1971]. This is (by
definition) the unique decomposition VC =

⊕
p,q∈Z V p,q with the properties that

Fk VC =
⊕
p,q
p≥k

V p,q , WℓVC =
⊕
p,q

p+q≤ℓ

V p,q , and V q,p ≡ V p,q mod
⊕
a<p
b<q

V a,b.

We shall make free use of standard multiindex notation (for n-tuples of variables or
field-elements) to simplify formulas, viz. z = (z1, . . . , zn), C[z] = C[z1, . . . , zn],
zm

=
∏

i zmi
i , m ·w=

∑
i mi wi , |m| =

∑
i mi , e(i) = i-th standard basis vector, etc.

1. G-spectra and eigenspectra

Morphisms and mixed spectra. We begin in the general setting of a proper morphism

(1.1)

Y π
//

f ′
��

X

f��

1

of complex analytic spaces over a disk, which we assume is the restriction to 1 of a
proper morphism of quasiprojective varieties over an algebraic curve. (In particular,
at the level of fibers we have that πt : Yt → X t is a proper algebraic morphism of
quasiprojective varieties.) Let K•

∈ Db MHM(X ) and L•
∈ Db MHM(Y) be given,

with a morphism ρ : K•
→ Rπ∗L•. Writing ı : X0 ↪→ X for the inclusion, the

vanishing cycle triangle

(1.2) ı∗ sp
−→ ψ f

can
−→ φ f

δ

[+1]
−−→

consists of functors from Db MHM(X ) to Db MHM(X0), with natural transforma-
tions between them; also, monodromy T = Tss eN induces natural automorphisms
of ψ f and φ f . By proper base-change and faithfulness of rat : Db MHM(X0)→

Db
c (X0), Rπ∗ : Db MHM(Y0) → Db MHM(X0) intertwines the corresponding

triangle (and monodromy actions) for (Y, f ′). Taking hypercohomology on X0

yields:

1.3. Proposition. We have the commutative diagram

→ Hk(X0, ı∗K•)
sp
//

ρ

��

Hk(X0, ψ f K•)
can
//

ρ

��

Hk(X0, φ f K•)
δ
//

ρ

��

Hk+1(X0, ı∗K•)→

ρ

��

→ Hk(Y0, ı∗L•)
sp
// Hk(Y0, ψ f ′L•)

can
// Hk(Y0, φ f ′L•)

δ
// Hk+1(Y0, ı∗L•)→
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with rows the vanishing-cycle (long-exact) sequences, in which all arrows are
morphisms of MHS. Moreover, the diagram intertwines the actions of Tss (by
automorphisms of MHS) and N (by nilpotent (−1,−1)-endomorphisms of MHS),
which are trivial (Id resp. 0) on the end terms.

1.4. Remark. If f, f ′ are themselves projective (hence proper), and K•,L• semisim-
ple with respect to the perverse t-structure (e.g., K•

= IC•

X , L•
= IC•

Y ), then the
decomposition theorem applies, yielding Clemens–Schmid sequences (see [Kerr
et al. 2021, Section 5]) which are then automatically compatible under ρ. The main
consequence is that the local invariant cycle theorem holds, i.e., sp surjects onto
the T -invariants.

Next, assume X ,Y, {X t }t ̸=0, and {Yt }t ̸=0 are smooth, and take L•
= QY and

K•
= QX ; then the diagram in Proposition 1.3 becomes

(1.5)

→ H k(X0)
sp
//

π∗

��

H k
lim(X t)

can
//

π∗

��

H k
van(X t)

δ
//

π∗

��

H k+1(X0)→

π∗

��

→ H k(Y0)
sp
// H k

lim(Yt)
can
// H k

van(Yt)
δ
// H k+1(Y0)→

Now if n = dim X0 and 6 := sing(X0) is finite, then H k
van(X t)= {0} for k ̸= n and,

defining Vx := H 0 ı∗
xφ f QX [n],

(1.6) H n
van(X t)∼=

⊕
x∈6

Vx

as MHS. We have of course π−1(6) ⊂ 6̃ := sing(Y0), and if dim Y0 = n and
|6̃|<∞ then, writing Ṽy := H 0 ı∗

y φ f ′ QY [n] for y ∈ 6̃, π∗ restricts to morphisms

(1.7) [π∗
]x : Vx →

⊕
y∈π−1(x)

Ṽy

of T -MHS — i.e., morphisms of MHS intertwining T (hence Tss and N ). These
are local invariants.

Recall that Tss acts through finite cyclic groups on each Vx (and Ṽy), and let κ
be the least common multiple of their orders. Write ζκ := e2π i/κ and V p,q

x,e(a/κ) for
the e(a/κ) := e2π i(a/κ)

= ζ a
κ -eigenspace of Tss in V p,q

x ⊂ Vx,C. The explicit choice
of ζκ ∈ C is needed to make the following.

1.8. Definition. The mixed spectrum σ f,x of the isolated singularity x ∈ 6 is
the element

∑
α,w m f,x

α,w(α,w) of the free abelian group Z⟨Q × Z⟩, where we put
m f,x
α,w = dim(V ⌊α⌋,w−⌊α⌋

x,e(α) ).1

1Here ⌊ · ⌋ is the greatest integer (floor) function; note also that e(α) is equivalent to taking the
fractional part {α} := α− ⌊α⌋ of α.
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Evidently (1.7) must be compatible with the decompositions recorded by the
mixed spectra.

Automorphisms and eigenspectra. Now let G ≤ Aut(X/1), with X and {X t }t ̸=0

smooth and |6| <∞. Applying the foregoing results with Y = X , f = f ′, and
π := g ∈ G, together with [Kerr et al. 2021, Proposition 5.5(i)], yields:

1.9. Corollary. The vanishing-cycle sequence

(1.10) 0 → H n(X0)
sp

−→ H n
lim(X t)

can
−→

⊕
x∈6

Vx
δ

−→ H n+1
ph (X0)→ 0

is an exact sequence of G × µκ -MHS,2 where the ⟨Tss⟩ ∼= µκ -action on the end
terms is trivial. If X/1 is proper, then H n+1

ph (X0) := ker(sp)⊆ H n+1(X0) is pure
of weight n + 1.

The decomposition of terms in (1.10) into irreducible representations for G ×µκ

only becomes useful if we understand the action on the vanishing cohomology⊕
x∈6Vx for a given collection of singularities. In particular, if gx = x then we

need to further refine the spectrum under the resulting automorphism g∗
: Vx → Vx

of T -MHS.

1.11. Definition. Write G ≤ stab(x)≤G, and RG for the set of complex irreducible
representations of G. The G-spectrum σG

f,x of x is the element∑
(α,w,U )

m f,x,G
α,w,U (α,w,U )

of the free abelian group Z⟨Q × Z ×RG⟩, where (for each (α,w))

V ⌊α⌋,w−⌊α,⌋

x,e(α)
∼=

⊕
U∈RG

U⊕m f,x,G
α,w,U

as G-representations.

In the special case where G = ⟨g⟩ ∼= µℓ is cyclic, the C-irreps are characters
indexed by the power ζ c

ℓ = e2π i(c/ℓ) of ζℓ to which g is sent.

1.12. Definition. The eigenspectrum of an isolated singularity x with automor-
phism g is the element

σ
g
f,x =

∑
(α,w,γ )

m f,x,g
α,w,γ (α,w, γ ) ∈ Z⟨Q × Z × Q/Z⟩,

where m f,x,g
α,w,γ is the dimension of the eigenspace (V ⌊α⌋,w−⌊α,⌋

x,e(α) )e(γ ) ⊆ V ⌊α⌋,w−⌊α⌋

x,e(α)
for g∗ with eigenvalue e(γ )= e2π iγ .

2Again, this means that the action of G and Tss on the MHSs (as automorphisms of MHS) commute
with each other and with sp, can, and δ.
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1.13. Remark. For X/1 proper (with hypotheses as in Corollary 1.9), H n(X t) is
a VHS on 1∗ whose automorphism group contains G. For any field extension K/Q,
this decomposes as K -VHS into a direct sum of G-isotypical components, cor-
responding to K -irreps of G. The G-action on and decomposition of H n

lim(X t)

obtained by taking limits are the same as those arising from the G-MHS structure
on H n

lim(X t) in Corollary 1.9.

We now turn to the explicit computation of these eigenspectra in the simplest case.

2. Quasihomogeneous singularities with automorphism

Let F ∈ C[z1, . . . , zn+1] (with n > 0) be a quasihomogeneous polynomial with
an isolated singularity at the origin 0. That is to say, choosing a weight vector
w = (w1, . . . , wn+1) ∈ Qn+1

>0 and setting

Mw := {m ∈ Zn+1
≥0 | m ·w = 1},

we have

(2.1) F =
∑

m∈Mw

am zm

for some am ∈ C. We recall that the degree κF of F is the least integer such that
κF wi ∈ N for i = 1, . . . , n + 1; define wi := κF wi and set κ := (κ1, . . . , κn+1).

Next recall the setting of Definition 1.8, where f : X → 1 is a holomorphic
map with quasiprojective fibers and smooth total space, with X t smooth for t ̸= 0
and sing(X0)=:6 finite. A singularity x ∈6 ⊂ X0 is quasihomogeneous if f can
be locally analytically identified with (2.1) for some w. In that case, Vx and σ f,x

identify with the vanishing cohomology

(2.2) VF := H 0 ı∗

0 φF QCn+1

of F : Cn+1
→ C at 0, and its mixed spectrum σF . These were first computed by

Steenbrink [1977], and we briefly review the treatment from [Kerr and Laza 2023,
Section 2] before passing to eigenspectra.

Writing
JF :=

(
∂F
∂z1

, . . . ,
∂F
∂zn+1

)
⊆ C[z]

for the Jacobian ideal, let B ⊂ Zn+1
≥0 be chosen so that the monomials {zβ}β∈B

provide a basis of C[z]/JF . Write µF := |B| for the Milnor number of F , and
ℓ(β) :=

1
κF

∑n+1
i=1 κi (βi + 1)=

∑n+1
i=1 wi (βi + 1).

2.3. Proposition. We have µF = dim VF for the Milnor number and

σF =
∑
β∈B

(α(β),w(β)) ∈ Z⟨Q × Z⟩
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for the mixed spectrum, where α(β) := n + 1 − ℓ(β) and w(β) := n (resp. n + 1) if
α(β) /∈ Z (resp. ∈ Z).

Sketch. Perform a base-change followed by weighted blow-up at 0:

(2.4)

Cn+1

F ��

X

F̂ ��

oo Y
Blκ
oo

F̃zz
C 1oo

tκF t�oo

with exceptional divisor E = {T κF = F(Z)} ⊂ WP[1 : κ] =: P (in weighted
homogeneous coordinates T, Z1, . . . , Zn+1). The singular fiber Y0 := F̃−1(0) is
the union of E and the proper transform X̃0 of X0 := F−1(0)= F̂−1(0), meeting in

E := E ∩ X̃0 = {F(Z)= 0} ⊂ H := {T = 0} (∼= WP[κ])⊂ P .

The claim is then that VF ∼= H n(E \ E), which can be checked using (1.5) with
π = Blκ . Since E [resp. 0] is a deformation retract of Y0 [resp. X0], while Yt = Xt

for t ̸= 0, and φF̃ QY ≃ ı E
∗

QE(−1)[−1] (see [Kerr et al. 2021, 6.3 and 8.3–8.4]),
the diagram becomes

0 // H n
lim(Xt)

∼=
// VF

Bl∗
��

// 0

H n−2(E)(−1) // H n(E) // H n
lim(Yt) // H n−1(E)(−1) // H n+1(E)

whence the result.
Next, one constructs a basis of H n(E \ E) from B, using residue theory. Writing

(with T := Z0)

�P =

n+1∑
j=0
(−1) j Z j d Z0 ∧ · · · ∧ d̂ Z j ∧ · · · ∧ d Zn+1,

for each β ∈ B we set (with Zβ = Zβ1
1 · · · Zβn+1

n+1 )

(2.5) �β :=
T κF Zβ �P

T (F(Z)− T κF )⌈ℓ(β)⌉
∈�n+1(P \ E ∩ H)

and ωβ := ResE\E([�β]) ∈ H n(E \ E). See [Kerr and Laza 2023, Theorem 2.2] for
the proof that this has (p, q)-type (⌊α(β)⌋, ⌊ℓ(β)⌋), and [Steenbrink 1977, Theo-
rem 1] for the assertion that the {ωβ} give a basis. Note that ⌊α(β)⌋+⌊ℓ(β)⌋=w(β).

Finally, the action of Tss is computed by T 7→ ζκF T , or equivalently (in weighted
projective coordinates) by Zi 7→ ζ−κi

κF
Zi = e−2π iwi Zi . Clearly the effect of this

on (2.5) is to multiply it by e2π i
∑
wi (βi +1)

= e2π iα(β), as desired. □
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Now given a finite group G ≤ Aut(X/1) fixing x ∈6, we can always choose
local holomorphic coordinates on which the action is linear [Cartan 1954]. So for
a given g ∈ G, we can choose coordinates to make the action diagonal, through
roots of unity. Accordingly, we shall compute the eigenspectrum in the case where
g ∈ Aut(Cn+1, 0) is given by

(2.6) g(z1, . . . , zn+1) := (ζ
c1
ℓ z1, . . . , ζ

cn+1
ℓ zn+1)

and F ∈ C[z]⟨g⟩ is a g-invariant quasihomogeneous polynomial. In fact, taking
B ⊂ Zn+1

≥0 as above, we have:

2.7. Corollary. The eigenspectrum σ
g
F is given by∑

β∈B
(α(β),w(β), γ (β)) ∈ Z⟨Q × Z × Q/Z⟩,

where γ (β) :=
1
ℓ

∑n+1
i=1 ci (βi + 1).

Proof. We only need to compute the action of g∗ on ωβ , which is to say the effect
of Zi 7→ ζ

ci
ℓ Zi on Zβ �β . This is just multiplication by ζ

∑
ci (βi +1)

ℓ = e2π iγ (β). □

2.8. Example. For a Brieskorn–Pham singularity F =
∑n+1

i=1 zλi
i , λi =1/wi =κF/κi ,

we have B = ×
n+1
i=1 {Z∩[0, di −2]}. Hence, writing 0m =

∑m−1
j=1 [ j/m] in the group

ring Z[Q] (with product ∗), we have∑
β∈B

[α(β)] = 0λ1 ∗ · · · ∗0λn+1 .

This extends to ∑
β∈B

[(α(β), γ (β))] = 0̃λ1

(
c1

ℓ

)
∗ · · · ∗ 0̃λn+1

(
cn+1

ℓ

)
in the group ring Z[Q × (Q/Z)] if we write 0̃m

( c
ℓ

)
=

∑m−1
j=1

[(m− j
m ,

jc
ℓ

)]
.

2.9. Example. As a specific example, consider F = z2
1 + z2

2 + zm+1
3 + z3

4, with
g(z1, z2, z3, z4) := (z1, z2, z3, ζ3 z4). Applying Example 2.8 to compute the eigen-
spectrum gives

m∑
j=1

[(
5
3 +

j
m+1

, 1
3

)]
+

m∑
j=1

[(
4
3 +

j
m+1

, 2
3

)]
.

We can interpret this scenario as a local snapshot of a 3 : 1 cover of P3 branched
over a cubic surface acquiring an Am singularity. So the ζ3-eigenspace of the
(1, 2)-part of vanishing cohomology has rank equal to the number of j’s for which
5
3 + j/(m + 1) < 2. Since the ζ3-eigenspace of the general fiber (= cubic 3-fold)
has Hodge numbers h1,2

= 1 and h2,1
= 4, from 5

3 +
2
7 < 2 we see that m cannot

be ≥ 6. This bound is sharp, since A5 can occur on a cubic surface in the form
z3

1 + z3
2 − z2 z2

3 (see, for example, [Sakamaki 2010]).
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Applying the vanishing-cycle analysis directly on a cubic surface, without passing
to a triple cover and using eigenspectra, does not rule out A6. It was this sort of
phenomenon that motivated this paper.

2.10. Remark. The eigenspectrum of a µ-constant (semiquasihomogeneous) de-
formation of (F, γ ) remains constant. Even in the more general case of [Kerr and
Laza 2023, Section 5.2], one can in principle still use the action of γ ∗ on the (local)
Jacobian ring On+1/JF to refine σF to σ g

F . But Corollary 2.7 (and quasihomogeneous
deformations of Example 2.8) will suffice for our purposes below.

3. Bounding nodes on Calabi–Yau hypersurfaces

It is a classical problem to bound the number of nodes (ordinary double points)
on a projective hypersurface, especially for Calabi–Yau (CY) varieties. In this
section, we use eigenspectra to produce such a bound for hypersurfaces in many
weighted projective spaces (Example 3.8). Though our emphasis is on CY varieties
for illustrative purposes, it is not limited to them. In the special case of projective
space, our formula recovers the bound conjectured by Arnol’d [1981] and proved
by Varchenko [1983] (see also [van Straten 2020]) by applying his semicontinuity
theorem to the Bruce deformation. This includes the famous bound of 135 for a
quintic threefold; see Examples 3.10.

Let W = WP[e0 : · · · : en+1] be a weighted projective (n + 1)-space with finitely
many singularities.3 Suppose we want to bound (numbers and types of) singu-
larities on a hypersurface X0 = {F0(W ) = 0} ⊂ W of degree d, where a smooth
such hypersurface would have Hodge numbers h = (hn,0, hn−1,1, . . . , h0,n). Write
di = d/ei for i = 0, . . . , n + 1.

We shall assume that the singularities of X0 are all isolated. Taking a general
deformation Ft = F0 + tG to produce a family of f : X → 1 with smooth total
space, the vanishing-cycle sequence

(3.1) 0 → H n(X0)→ H n
lim(X t)→

⊕
x∈6

Vx
δ

−→ H n+1
ph (X0)→ 0

offers a naive such bound: first, by Schmid’s nilpotent orbit theorem, the rank
of Grp

F remains constant in the limit, giving the second equality of

(3.2) h p,n−p
= h p,n−p(X t)=

∑
q

h p,q
lim (X t)≥

∑
q

h p,q(ker(δ)).

Moreover, the mixed spectrum σ f,x tells us the h p,q
ζ (Vx) = dim(V p,q

x,ζ ) (for each
eigenvalue ζ of Tss), and only the V p,n+1−p

x,1 can map nontrivially under δ. Since

3We may assume (without loss of generality) that no n + 1 of the ei have a common factor.
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the hyperplane class also has Tss-eigenvalue 1, equation (3.2) forces∑
q

∑
ζ ̸=1

dim(V p,q
x,ζ )≤ h p,n−p

pr .

When x is a node, i.e., f
loc
∼

∑n+1
i=1 z2

i , Proposition 2.3 gives Vx,C = V (n/2),(n/2)
x,−1 for

n even and V (n+1)/2,(n+1)/2
x,1 for n odd. In the latter case, (3.2) yields no immediate

bound on the number of nodes (though one does have results like [Kerr and Laza
2023, Theorem 2.9 and Corollary 2.11]). For n = 2m even, (3.2) yields4

(3.3) h(n/2),(n/2)pr (X t)= coefficient of
[

n
2

+ 1
]

in 0d0 ∗0d1 ∗ · · · ∗0dn+1

as a bound, which while better than nothing is rather weak.

3.4. Example. The simplest nontrivial case is given by W = P3 (n = 2) and
(d0 = d1 = d2 = d3) d = 4, where

(3.5) 0∗4
4 =

([1
4

]
+

[ 1
2

]
+

[3
4

])∗4

= [1] + 4
[5

4

]
+ 10

[ 3
2

]
+ 16

[ 7
4

]
+ 19[2] + 16

[9
4

]
+ 10

[ 5
2

]
+ 4

[11
4

]
+ [3]

correctly gives 19 = h1,1
pr (X t). This is also a poor bound for the number of nodes

on a quartic surface (see Example 3.8).

However, a simple trick can improve the bound while also giving one for odd n:

3.6. Theorem. The number of nodes on X0 is bounded by the coefficient, in
0d0 ∗ 0d1 ∗ · · · ∗ 0dn+1 , of

[ n+1
2 +

1
2d

]
if n is even and d is odd, or of

[ n+1
2 +

1
d

]
otherwise.

Proof. Let Yt = {Ft(W )+ W d
n+2 = 0} ⊂ WP[e : 1] =: W̃ be the cyclic d : 1-cover

of W branched over X t , with g : Wn+2 7→ ζd Wn+2 the cyclic automorphism. By
Dolgachev’s extension of the Griffiths residue theorem [Dolgachev 1982], a basis
for the g∗-eigenspace H n−q+1,q

pr (Yt)
ζ̄

j
d (t ̸= 0, 0 ≤ j < d) is given by the Poincaré

residue classes
ResYt

(
W k−1 W d− j−1

n+2 �W̃

(Ft + W d
n+2)

q+1

)
,

with ki ∈ Z∩(0, di ) for i = 0, . . . , n +1 and weights of numerator and denominator
equal, that is,

∑n+1
i=0 ei ki + (d − j)= (q + 1) d , or equivalently (dividing by d)

n+1∑
i=0

ki

di
= q +

j
d
.

Hence dim Grn−q+1
F H n+1

lim (Yt)
ζ̄

j
d = hn−q+1,q(Yt)

ζ̄
j

d is given (for 0< j < d) by the
coefficient of [q + j/d] in 0d0 ∗ · · · ∗0dn+1 .

4This is by the same residue theory as used in the proof of Theorem 3.6 below. The notation ∗ is
from Example 2.8.
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Each node x ∈ X0 becomes an Ad−1 singularity y ∈ Y0, with eigenspectrum∑d−1
j=1((n +1)/2+ j/d, n +1,− j/d) unless n is even and d is even (in which case

the middle entry is n+2 at j = d/2). If r is the number of nodes, applying equations
(3.1)–(3.2) to Y and refining by g∗-eigenspaces therefore yields h p j ,q j (Yt)

ζ̄
j

d ≥ r
(for 0< j < d), where p j = ⌊(n + 1)/2 + j/d⌋ and q j = n + 1 − p j . Taking j = 1
if n is odd and j = ⌈(d + 1)/2⌉ if n is even (so that p j = (n + 1)/2 resp. n/2 + 1)
yields q j + j/d = (n +1)/2+1/d resp. n/2+(1/d)⌈(d +1)/2⌉, hence the claimed
bound. □

3.7. Remark. As mentioned above, when W = Pn+1 this recovers Varchenko’s
[1983] bound. While Varchenko also uses the “cyclic-cover trick”, our approach
avoids the use of deformations and semicontinuity.

3.8. Example. For CY hypersurfaces in Pn+1 (d = n + 2), Theorem 3.6 yields
the bounds 3, 16, 135, 1506, and 20993 for n = 1, 2, 3, 4, 5, the first two of which
are sharp.5 (This is also better than what (3.3) yields for n = 2 and 4, namely 19
and 1751.) It is still not known whether 135 is sharp for quintic 3-folds. The well-
known Fermat pencil has fiber W 5

0 +· · ·+W 5
4 = 5W0 · · · W4, with 125 = |(Z/5Z)3|

nodes, while the example of van Straten [1993] with 130 nodes remains the record.

3.9. Remark. For n = 2, the following bound by Miyaoka [1984] sometimes yields
better results. If X is any smooth projective surface which is smooth except at
r nodes, and K X is nef, then r ≤ 8χ(OX )−

8
9 K 2

X .

(a) For X ⊂ P3 a surface of degree d, this yields the bound

4
3(d − 1)(d − 2)(d − 3)+ 8 −

8
9 d(d − 4)2 =

4
9 d(d − 1)2,

which is better than Theorem 3.6 for d ≥ 6 even or d ≥ 15 odd. A case in point is
d = 6, where we get 85 by (3.3), 68 by Theorem 3.6, and 66 by [Miyaoka 1984];
this was further reduced to 65 (which is sharp) by a clever use of coding theory
[Jaffe and Ruberman 1997]. Another is d = 8, where we get r ≤ 174.

(b) As a weighted projective example, one can consider surfaces X of degree 10 in
WP[1 : 1 : 1 : 2]. We have χ(OX )= 1 + h2(OX )= 35 and

(K X · K X )X = (X · (X + KW)
2)W =

10(10−5)2

1·1·1·2
= 125,

and hence r ≤
⌊1520

9

⌋
= 168.

3.10. Examples. We consider some CY 3-fold hypersurfaces with r nodes in
weighted projective 4-folds.

5The union of 3 lines in P2 has 3 nodes, and a Kummer quartic K 3 in P4 has 16 nodes. The
bounds here are the coefficients of

[ n+1
2 +

1
n+2

]
in 0∗(n+2)

n+2 , e.g., 16 is the coefficient of
[ 7

4
]

in (3.5).
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(i) X0 ⊂ WP[1 : 1 : 1 : 1 : 2] of degree 6: Theorem 3.6 yields r ≤ 137, while
the “Fermat pencil” type example W 6

0 + · · · + W 6
3 + W 3

4 = 3 · 22/3W0 · · · W4 has
|((Z/6Z)3 × Z/3Z)/(Z/6Z)| = 108 nodes.

(ii) X0 ⊂ WP[1 : 1 : 1 : 1 : 4] of degree 8: the Theorem yields r ≤ 180, while W 8
0 +

· · ·+ W 8
3 + W 2

4 = 4W0 · · · W4 has |((Z/8Z)3 × Z/2Z)/(Z/8Z)| = 128 nodes. Here
we can improve both the bound and example, since X0 is (by the quadratic formula)
a double-cover of P3 branched along an r-nodal octic surface. So Remark 3.9(a)
gives r ≤ 174, while the Endrass [1997] example has r = 168.

(iii) X0 ⊂ WP[1 : 1 : 1 : 2 : 5] of degree d = 10: Theorem 3.6 yields r ≤ 169, but
because these are double covers of WP[1 : 1 : 1 : 2] branched along an r-nodal
dectic surface, Remark 3.9(b) reduces the bound to 168. The standard example is
W 10

0 + W 10
1 + W 10

2 + W 5
3 + W 2

4 = 24/5 51/2 W0 · · · W4, but this has only 100 nodes.
One can do somewhat better by taking the preimage of a Togliatti quintic [Beauville
1980] (with 31 nodes avoiding the coordinate axes) under

WP[1 : 1 : 1 : 2]
1:2
−↠WP[1 : 1 : 2 : 2]

1:2
−↠WP[1 : 2 : 2 : 2] ∼= P3,

to get 4 · 31 = 124.

In the case of a symmetric hypersurface X0 ⊂ Pn+1, cut out by F0 ∈ C[W ]
Sn+2

(homogeneous of degree d), one can consider the family Y →1 of d-fold cyclic
covers branched along an Sn+2-invariant smoothing X → 1. A full accounting
of this story gets into G-spectra (G ∼= µd × stabSn+2(x)) of the resulting Ad−1

singularities of Y0. This leads to constraints, via character theory of Sn+2, on how
6 can be built out of Sn+2-orbits. (However, it does not, for example, rule out the
possibility of 135 nodes on an S5-symmetric quintic threefold.) Here we shall only
give the simplest result in this direction:

3.11. Theorem. A symmetric CY hypersurface in Pn+1 (of degree d = n + 2) with
isolated singularities cannot contain a node with trivial stabilizer in Sn+2.

Proof. Suppose otherwise; then Y0 has a set of (n + 2)! An+1 singularities with
eigenspectra

n+1∑
j=1

(
n+1

2
+

j
n+2

, n + 1, − j
n+2

)
,

contributing a subspace V of dimension (n+2)! to the g∗-eigenspace6 H n+1
van (Yt)

ζn+2 .
It is closed under the action of Sn+2, and the triviality of the stabilizers of these
An+1 singularities means that the trace of any σ ∈ Sn+2 \ {1} is zero. So V is a
copy of the regular representation of Sn+2, which belongs to

ker(δ)⊆ H (n+1)/2,(n+1)/2
van (Yt)

ζn+2 .

6As before, g : Wn+2 7→ ζn+2Wn+2 denotes the cyclic automorphism of Yt .



REMARKS ON EIGENSPECTRA OF ISOLATED SINGULARITIES 41

By the compatibility7 of the vanishing-cycle sequence for Y with g∗ and Sn+2,
this forces a copy of the regular representation in H (n+1)/2,(n+1)/2

lim (Yt)
ζn+2 , hence

H (n+1)/2,(n+1)/2(Yt)
ζn+2 for t ̸= 0 (as Sn+2 acts on the VHS, compatibly with taking

limits, see Remark 1.13).
Now U := H(n+1)/2,(n+1)/2(Yt)

ζn+2 has a basis of the form

ηk := ResYt

(
W k−1�Pn+2(

F0(W )+ W n+2
n+2

)(n+3)/2

)
,

where 0< ki < n+2 (for i = 0, . . . , n+1) and (for equality of weights of numerator
and denominator)

(∑n+1
i=0 ki

)
+ 1 =

n+3
2 (n + 2). Here Sn+2 acts trivially on the

denominator, through the sign representation χ on �Pn+2 , and by permutations of
the Wi on W k−1. We claim that U contains no copy of the trivial representation,
a fortiori of the regular representation, furnishing the desired contradiction.

Clearly it is equivalent to show that the representation of Sn+2 on the C-span
Ũ (∼= U ⊗ χ) of the monomials {W k

}k as above contains no copy of χ . Suppose
o := Sn+2.W k is an orbit and Ũo ⊆ Ũ its span. By Burnside’s lemma,

1
(n+2)!

∑
g∈Sn+2

|og
| = 1.

On the other hand, k = (k0, . . . , kn+1) contains a repeated entry since there are
only n + 1 choices for each ki ; hence for some transposition τ , |oτ | ̸= 0. Since
sgn(τ )= −1, this forces

1
(n+2)!

∑
g∈Sn+2

sgn(g) |og
|,

which computes the number of copies of χ in Ũo, to be zero. □

For n = 1 or 2 this result is obvious (since 6> 3 and 24> 16), but for n = 3, 4,
or 5 it is less so (as 120< 135, 720< 1506, and 5040< 20993). In particular, since
the examples of quintic 3-folds with 125 and 130 nodes are S5-symmetric, and the
latter has a 60-node orbit, it is interesting that a 120-node orbit is impossible.

4. Cyclic covers of P1

In the final two sections we turn to “codimension-one” monodromy phenomena for
period maps arising from cyclic covers. We begin with a story that generalizes ellip-
tic curves and goes back to Deligne and Mostow [1986] (see also [Moonen 2018]).
Given distinct points t1, . . . , t2m ∈ P1 (with projective coordinates [Si : Ti ]), define

Ct :=

{
[Z0 : Z1 : Z2] ∈ P[1 : 1 : 2] | Zm

2 =

2m∏
i=1
(Si Z1 − Ti Z0)

}
,

7This is nothing but Corollary 1.9 with G = ⟨g⟩ ×Sn+2.
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with automorphism g([Z0 : Z1 : Z2]) := [Z0 : Z1 : ζm Z2]. For m = 2, 3, 4, or 6,
the sum of g∗-eigenspaces H 1(Ct)

ζm ⊕ H 1(Ct)
ζ̄m produces a Q-VHS over M0,2m ,8

and hence a period map to an arithmetic ball quotient 0\B2m−3. This turns out to
be injective,9 and extends to an isomorphism between GIT resp. Hassett/KSBA
compactifications of M0,2m and Baily–Borel resp. toroidal compactifications of the
ball quotient [Deligne and Mostow 1986; Gallardo et al. 2021].

So what if m ̸= 2, 3, 4, or 6? In the discussion that ensues, we will not be
concerned with ball quotients or even the period map per se, but only with

• the Q-VHS V over M0,2m arising from H 1(Cx),

• its sub-C-VHSs Vζ
j

m := ker(g∗
− ζ

j
m I ) (1 ≤ j ≤ m − 1), and

• their limiting behavior along the boundary of the Hassett compactifications
M0,[(1/m)+ϵ]2m (see below).

The point is that these can be considered uniformly for all m ≥ 2, not just m = 2, 3, 4,
and 6. Moreover, using eigenspectra, we can easily compute LMHS and monodromy
types along the Hassett boundary strata, as we demonstrate in Propositions 4.5–4.6
and Example 4.7. This is the first step toward a global study of the extended period
map for this series of examples, which will necessarily go beyond the arithmetic ball
quotient setting (see Remark 4.8). We also refer the reader to [Deng and Gallardo
2023], where global partial compactifications of the period maps for some other
non-Deligne–Mostow cases are constructed.

To begin with, in affine coordinates x = Z1/Z0, y = Z2/Z0, Ct takes the form

ym
= ft(x) :=

2m∏
i=1
(x − ti )

[resp.
∏

i ̸= j (x − ti ) if t j = ∞]. While there are three possibilities for the Newton
polytope 1, they all have the same interior integer points

(1 \ ∂1)∩ Z2
= {(i, j) | 1 ≤ j ≤ m − 1, 1 ≤ i ≤ 2(m − j)− 1},

which provide a basis of �1(Ct) via

ω(i, j) := ResCt

(
x i−1 y j−1 dx ∧ dy

ym − ft(x)

)
.

Since g∗ω(i, j) = ζ
j

mω(i, j), we find that

(4.1)

{
rk(Vζ

j
m )1,0 = 2(m − j)− 1, rk(Vζ

j
m )0,1 = 2 j − 1,

rkVζ
j

m = 2m − 2, rkV = 2(m − 1)2.

8 M0,n parametrizes ordered n-tuples of distinct points on P1 modulo the action of PSL2(C).
9For m = 6 one has to quotient M0,12 by S12; see [Gallardo et al. 2021].
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For example, if m = 5, then Ct has genus 12; and VC decomposes into four C-VHSs
{Vζ

j
5 }

4
j=1 with respective Hodge numbers (7, 1), (5, 3), (3, 5), and (1, 7).

4.2. Definition [Hassett 2003]. A weighted stable rational curve for the weight
µ := (µ1, . . . , µn) ∈ {(0, 1] ∩ Q}

×n is a pair10 (C,
∑
µi pi ) with:

• C a nodal connected projective curve of arithmetic genus 0.

• Each pi a smooth point of C.

• If pi1 = · · · = pir , then µi1 + · · · +µir ≤ 1.

• The Q-divisor KC +
∑n

i=1 µi pi is ample (i.e., on each irreducible component,
the sum of weights plus number of nodes is > 2).

We will write (µ, . . . , µ)=: [µ]n for repeated weights.

4.3. Theorem [Hassett 2003]. (i) There exists a smooth projective fine moduli
space M0,µ parametrizing µ-weighted stable rational curves, and containing M0,n

as a Zariski-open subset.

(ii) Given weights µ = (µ1, . . . , µn) and µ̃ = (µ̃1, . . . , µ̃n) with µi ≤ µ̃i (∀i),
there exists a birational reduction morphism πµ̃,µ : M0,µ̃↠ M0,µ contracting all
components which violate the ampleness property in Definition 4.2 for the weight µ̃.

4.4. Remark. (a) M0,[1]n reproduces the Deligne–Mumford–Knudsen compactifi-
cation M0,n .

(b) Although the ampleness property forces
∑
µi > 2, if for |µ| = 2 we define

M0,µ to be the GIT quotient (P1)n//µ SL2, then Theorem 4.3(ii) extends to this
case; and if we take µ̃i = µi + ϵ (ϵ ∈ Q, 0< ϵ ≪ 1) then πµ̃,µ is Kirwan’s partial
desingularization which blows up the strictly semistable locus.

Our interest henceforth is in the equal-weight Hassett compactification

M H
0,2m := M0,[(1/m)+ϵ]2m

and its morphism π to MGIT
0,2m := M0,[1/m]2m . As the reader may check, the irreducible

components of M H
0,2m \ M0,2m are of two types, parametrizing11 stable weighted

curves as shown (up to reordering of the {pi }):

10Despite the sum notation, the order of points with equal weights is retained.
11More precisely, it is a dense open subset of each component that parametrizes the displayed

objects.
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p1 = p2

p3

. . .

pn

type (A)

p1

p2

. . .

pm

pm+1

pm+2

. . .

p2m

type (B)

It is also clear that π preserves the type (A) strata whilst contracting the type (B)
ones to a (strictly semistable) point parametrizing the object

p1 = · · · = pm pm+1 = · · · = p2m

The C-VHSs Vζ
j

m admit canonical extensions across the smooth part of M H
0,2m\M0,2m ,

and we and we shall now compute the LMHS types there.

4.5. Proposition. Along type (A) strata:

• Vζ
j

m
lim is pure of weight 1, with h1,0

= 2m − 2 j − 1 and h0,1
= 2 j − 1, unless

j = m/2.
• If j = m/2, then h1,1

= h0,0
= 1, h1,0

= h0,1
= m − 1, and T = eN (with N an

isomorphism from the (1, 1) to (0, 0 part).
• If j > m/2 (resp. < m/2), then we have the decomposition

Vζ
j

m
lim = Vζ

j
m

lim,1 ⊕Vζ
j

m

lim,ζ̄ 2 j
m

into T = Tss-eigenspaces, where Vζ
j

m

lim,ζ̄ 2 j
m

is 1-dimensional of type (0, 1) (resp. (1, 0)).

Proof. Begin by locally modeling (the effect on Ct of) the collision of two points
by ym

+ z2
= s, as s → 0. This has eigenspectrum

m−1∑
j=1

(
3
2 −

j
m
, w( j), j

m

)
,

where w( j)= 2 if j = m/2 and 1 otherwise. Next, we apply the vanishing-cycle
sequence (with H 2

ph ={0} since the degenerate curve remains irreducible) to compute
the LMHS. Finally, we perform a base-change by s 7→ s2 to preserve ordering of
points, which squares the eigenvalues of the Tss-action; in other words, we replace
3
2 −

j
m by

{
2
( 3

2 −
j

m

)}
+

⌊ 3
2 −

j
m

⌋
({·} denoting the fractional part), which gives the

result. □

4.6. Proposition. Along the type (B) strata, for each 1 ≤ j ≤ m − 1, Vζ
j

m
lim has

Hodge numbers h1,1
= h0,0

= 1, h1,0
= 2m − 2 j − 2, and h0,1

= 2 j − 2; N is an
isomorphism from the (1, 1) to (0, 0) part, and T = eN is unipotent.
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Proof. In the GIT compactification for unordered points, the degeneration is locally
modeled by two copies of ym

+ xm
= s, each with eigenspectrum

m−1∑
j=1

(
1, 2, j

m

)
+

m−1∑
j=2

j−1∑
k=1

(
k+m− j

m
, 1, j

m

)
+

m−2∑
j=1

m−1∑
k= j+1

(
k+m− j

m
, 1, j

m

)
.

At this point one applies the vanishing-cycle sequence to deduce the form of the
LMHS, noting that the degenerate curve is a union of m P1’s and H 2

ph
∼=Q(−1)⊕m−1.

For M H
0,2m , one then applies the base-change by s 7→ sm , which trivializes Tss,

allowing the extension class to vary along the type (B) stratum. □

4.7. Example. Combining (4.1) with the two propositions, V ζ̄m has Hodge–Deligne
diagrams

1Tss = ζ 2
m

1

2m − 4

type (A)

lim

1

2m − 3

lim N

1
2m − 4

1

type (B)

For m = 4 (resp. 6), the monodromy in type (A) is thus given by a complex reflection
(resp. “triflection”).

4.8. Remark. For any m, we have that V ζ̄m (⊕Vζm ) induces a map from the universal
cover M̃un

0,2m to a ball B2m−3. Moreover, both LMHS types have 2m − 4 complex
moduli. However, for m different from 2, 3, 4, or 6, this does not lead to a tidy
extended period map: as the projection of the monodromy to U (1, 2m − 3) is not
discrete [Mostow 1988], the quotient of B2m−3 by this is not Hausdorff.

To circumvent this problem, we must replace B2m−3 by its product with other
(nonball) symmetric domains, which receives the image of the period map for the
Q-VHS ⊕( j,m)=1Vζ

j
m . For instance, if m = 5 then the real points of the generic

Mumford–Tate group of V take the form U (1, 7)×U (3, 5), and the full period map
lands in a discrete quotient of the product B7 × I3,5.

5. Hyperplane configurations and Dolgachev’s conjecture

Both differential and asymptotic methods in Hodge theory can be used to establish
that a VHS is “generic” in some sense. In [Gerkmann et al. 2013], differential
methods (characteristic varieties and Yukawa couplings) were employed to show
that the period map for the family of CY 3-folds X 2:1

−↠ P3 branched over 8 planes
does not factor through a locally symmetric variety of the form 0\SU(3, 3)/K .
Indeed, the geometric monodromy and Mumford–Tate groups of the corresponding
VHS turn out to be as large as they can be (with both equal to the symplectic
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group Sp20). This was later extended to similarly constructed CY n-fold families
[Sheng et al. 2015], see below. Our goal here is to quickly deduce these results
using eigenspectra and local monodromy, demonstrating the effectiveness of the
asymptotic approach.

Let L0, . . . , L2n+1 ⊂ Pn be hyperplanes defined by linear forms ℓi , in general
position in the sense that

⋃
L i is a normal crossing divisor. Consider the 2 : 1 cover

X π
−↠ Pn branched along

⋃
L i , and the rank-1 Q-local system L on

U = Pn
\
(⋃

L i
) ȷ
↪→ Pn,

with monodromy −1 about each L i . Since X has finite quotient singularities, we
have IC•

X = QX [n] and12

(5.1) H := H n
pr(X) :=

H n(X)
π∗H n(Pn)

∼= H n(Pn, ȷ∗ L)∼= IHn(Pn, L)

is a pure HS of weight n. By [Dolgachev and Kondō 2007, Lemma 8.2], it has
Hodge numbers

(5.2) h p,n−p
pr (X)=

( n
p

)2
=⇒ hn

pr(X)=

(2n
n

)
.

It is polarized by the intersection form Q, which presents no difficulties as X has a
smooth finite cover.

Taking S ⊂ (P̌n)2n+2/PGLn+1(C)=: S to be the (n2-dimensional) moduli space
of 2n + 2 ordered hyperplanes in Pn in general position, this construction yields a
Z-PVHS H → S of CY-n type with H as reference fiber. Let

ρ : π1(S)→ Aut(H, Q)◦ =: Mmax

be the monodromy representation of H,13 5 its geometric monodromy group,
and M its Hodge (special Mumford–Tate) group. Here 5 is the identity connected
component of 5̃ := ρ(π1(S))Q-Zar, and 5≤ M ≤ Mmax. A conjecture attributed by
[Sheng et al. 2015] to Dolgachev states that the period map for H factors through a
locally symmetric variety (also n2-dimensional) of type In,n ,14 which would imply
that mR

∼= su(n, n). This is equivalent to saying that,

up to finite data (i.e., after passing to a finite cover),
H is the n-th wedge power of a VHS of weight 1 and rank 2n.(5.3)

12See [Hotta et al. 2008, Proposition 8.2.30] for the statement that IC•

Pn L = ȷ∗ L[n].
13Here ( · )◦ means the identity component as algebraic group (i.e., SO(H) instead of O(H) if n is

even).
14Note that the “tautological VHS” over In,n is already geometrically realized by the n-th primitive

cohomology of a universal family of Weil abelian 2n-folds.



REMARKS ON EIGENSPECTRA OF ISOLATED SINGULARITIES 47

The conjecture does hold for n = 1 and n = 2, but this merely reflects exceptional
isomorphisms of Lie groups in low rank, namely

SU(1, 1)∼= SL2(R) and SU(2, 2)∼= Spin(2, 4)+.

That is, in both of these cases we also have 5∼= Mmax (= SL2 resp. SO(2, 4)). For
n ≥ 3, in contrast, the conjecture would have5<Mmax a proper algebraic subgroup.
In [Sheng et al. 2015, Proposition 8.2.30] (and earlier works [Gerkmann et al. 2007a;
2007b; 2013]), it was shown via quite computationally involved differential methods
that in fact the monodromy is maximal for all n, and the conjecture fails for n ≥ 3:

5.4. Theorem. 5= M = Mmax for all n ≥ 1.

In the remainder of this section, we explain how asymptotic methods provide
a much simpler approach to these results. First we will give a careful argument
disproving the conjecture for n ≥ 3 odd, which a priori is a weaker statement than
the Theorem in that case. (The relation to the main theme of his paper — specifically,
to the setting of Corollary 1.9 — enters when we pass to the smooth finite cover X̂
of X .) Then we sketch a proof of Theorem 5.4 using a more topological and
monodromy-theoretic approach.

Disproof of (5.3) for n odd. Most of the analysis that follows works for all n,
though the last step is inconclusive for even n.

To begin, consider a pencil P1 ε
↪→ S of hyperplane configurations given by fixing

L0, . . . , L2n (in general position) and letting L2n+1 := Ls vary along a line in P̌n

(chosen to avoid linear spans of any n − 2 L i in P̌n).15 Writing 6 = ε−1(S \ S),
we have |6| =

(2n+1
n

)
; and degenerations Xσ →1σ of our double-covers at σ ∈6

are locally modeled (with t = s − σ ) by

(5.5) w2
=
loc

x1 · · · xn(t − x1 − · · · − xn)

after a PGLn+1(C)-action. Accordingly, writing X0, . . . , Xn for projective coor-
dinates on Pn , we take ℓi = X i for 0 ≤ i ≤ n and ℓn+1 = t X0 −

∑n
i=1 X i , and

ℓn+2, . . . , ℓ2n+1 “general”.
Let ℓ : Pn ↪→ P2n+1 denote the linear embedding

[X0 : · · · : Xn] 7→ [ℓ0(X) : · · · : ℓ2n+1(X)]

and φ : P2n+1
→ P2n+1 denote the map sending

[Z0 : · · · : Z2n+1] 7→ [Z2
0 : · · · : Z2

2n+1].

15It already follows from Zariski’s theorem [Voisin 2003, Theorem 3.22] that ρ(π1(P
1
\6))=

ρ(π1(S)) but we won’t need this.
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Then the variety X̂ := φ−1(ℓ(Pn))⊂ P2n+1 is a smooth complete intersection on
which16 A := (Z/2Z)2n+2/∆(Z/2Z) acts via e(i) 7→ {Zi 7→ −Zi }, with quotient Pn;
explicitly, we have

(5.6) X̂ =

n⋂
k=0

{0 = Fk(Z) := −Z2
n+k+1 + ℓn+k+1(Z2

0, . . . , Z2
n)}.

Write χ ∈ X∗(A) for the character sending each e(i) 7→ −1, A◦
:= ker(χ) ≤ A,

and q : X̂ ↠ X for the quotient by A◦; then H ∼= q∗H n
pr(X)∼= H n(X̂)χ . Since

F0(Z)= t Z2
0 −

n+1∑
i=1

Z2
i ,

we have thus replaced our original non-isolated degeneration (5.5) by a nodal one.
Next, we use the “Cayley trick” to replace the complete intersection X̂ by a

hypersurface

(5.7) Y :=

{
0 = F :=

n∑
k=0

Yk Fk(Z)
}

⊂ P(OP2n+1(2)⊕n+1)=: P

of dimension 3n. We have an A-equivariant isomorphism H 3n(Y )(n)∼= H n(X̂) of
HSs, so that H ∼= H 3n(Y )χ (n). In affine coordinates (z1, . . . , z2n+1; y1, . . . , yn),
notice that F = 0 becomes17

(5.8) 0 = t − z2
1 − · · · − z2

n+1 +

n∑
k=1

yk(bk − zn+k+1)(bk + zn+k+1)+ h.o.t.,

where bk :=
√

Fk(1, 0, . . . , 0). So at t = 0, the singular fiber Yσ has 2n nodes at

(5.9) (Z0; Z1, . . . , Zn+1; Zn+2, . . . , Z2n+1; Y0; Y1, . . . , Yn)

=
(
1; 0, . . . , 0; (−1)a1b1, . . . , (−1)an bn; 1; 0, . . . , 0

)
, a ∈ (Z/2Z)n,

and the degeneration Yσ → 1σ has smooth total space. The mixed spectrum of
each node is [((3n + 1)/2, 3n + 1)] for n odd and [((3n + 1)/2, 3n)] for n even; so
Tσ acts through multiplication by (−1)n+1 on

(5.10) H 3n
van(Yt)∼= Q

(
−

⌊
3n+1

2

⌋)⊕2n

.

Moreover, since the summands of (5.10) are represented by

ηa = (−1)|a|(dz1 ∧ · · · ∧ dz2n+1 ∧ dy1 ∧ · · · ∧ dyn)/F⌈(3n+1)/2⌉

near the nodes (5.9) (in the sense of [Kerr and Laza 2023, Section 2]), it has a 1-
dimensional subspace (generated by ηχ :=

∑
(−1)|a|ηa) on which A acts through χ .

16Here ∆ denotes the diagonal embedding.
17Here “h.o.t.” means terms vanishing to order 3 at the nodes.
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Taking χ -eigenspaces of the vanishing-cycle sequence for Yσ →1σ and twisting
by Q(n) now yields

(5.11) 0 → H 3n(Yσ )χ (n)
spχ
−→

H 3n
lim(Yt)

χ (n)︸ ︷︷ ︸
∼=Hlim

canχ
−−→ Q

(
−

⌊
n+1

2

⌋)
δχ

−→ H 3n+1
ph (Yσ )χ (n)→ 0.

We claim that δ = 0. For n even, this is clear, since Tσ acts trivially on H 3n+1
ph (Yσ )

and by −1 on Q(−⌊(n + 1)/2⌋). So we conclude that Tσ acts on Hlim via an
orthogonal reflection. This doesn’t factor through

∧n of any automorphism of C2n ,
but because it is finite (of order 2), this does not (yet) disprove the conjecture.

On the other hand, for n odd, it is not automatic that δ = 0. (This is a well-
known problem with nodal degenerations in odd dimensions, see [Kerr and Laza
2023, Section 2.2]; and as we saw in the proof of (5.5), our degenerations are
finite quotients of nodal ones.) But if we can show δ = 0, then the conjecture is
immediately disproved (for odd n ≥ 3). Here is why: by (5.6), Hlim then has a class
of type (n + 1, n + 1), which must go to an (n, n) class by Nσ ,

Nσ1

1

p

q

forcing rk(Nσ ) = 1 (rather than 0). (In different terms, each Tσ is a nontrivial
symplectic transvection.) But this is impossible for

∧n of a nilpotent endomorphism
of C2n .

To complete the (dis)proof, then, we apply [Kerr and Laza 2023, Theorem 2.9]:
for a nodal degeneration Y ⇝ Yσ of an odd-dimensional hypersurface of a smooth
projective variety P satisfying Bott vanishing, the rank of δ is the number m of
nodes minus the rank of the map

ev : H 0
(

P, KP

(
3n+1

2
Yσ

))
→ Cm

given by evaluation at the nodes. The proof in [loc. cit.] is equivariant in A, and so
we find that δχ = 0 ⇐⇒ ev is nonzero on H 0

(
P, KP

( 3n+1
2 Yσ

))χ , which can be
checked at any node. Writing

e1 :=

n∑
i=0

Yi
∂

∂Yi
, e2 :=

2n+1∑
j=0

Z j
∂

∂Z j
− 2e1, and � := ⟨e2, ⟨e1, d Z ∧ dY ⟩⟩,



50 BEN CASTOR, HAOHUA DENG, MATT KERR AND GREGORY PEARLSTEIN

one checks that

(5.12) Y0 Z2
0�/(Ft=0)

(3n+1)/2

is a well-defined section of KP
( 3n+1

2 Yσ
)

(see [Kerr 2003, Section 4.5]); and evi-
dently A acts on it through χ . Clearly, it is nonzero on the fiber of KP

(3n+1
2 Yσ

)
at

any of the nodes (5.9).

Sketch of proof of Theorem 5.4. Returning to the local picture (5.5), we now seek
a more concrete topological description of the orthogonal reflections (n even) and
symplectic transvections (n odd) through which Tσ acts on H . So let U0 ⊂ An

be the complement of the hyperplanes x1 = 0, . . . , xn = 0 and x1 + · · · + xn = 1,
and L0 the rank-1 local system on U0 with monodromies −1 about each of them.
While the singularity xσ

ıσ↪→ Xσ “at 0” in (5.5) isn’t isolated, the vanishing-cycle
complex φt QX is nothing but ıσ

∗
V [−n], where V := IHn(An, L0) (as MHS). We

begin with a local analogue of the covering argument just seen.

5.13. Lemma. (i) IHn(An, L0)∼= Q(−⌊(n + 1)/2⌋).

(ii) Local monodromy Tσ acts on V through multiplication by (−1)n+1.

(iii) The canonical map canσ : Hlim → V is onto.

Proof. Define maps

• f0 : An ↪→ An+1 by x 7→
(
x, 1 −

∑n
i=1 xi

)
and

• φ0 : An+1
→ An+1 by squaring all coordinates zi .

Then X̂0 := φ−1
0 ( f0(A

n)) ⊂ An+1 is the quadric hypersurface
∑n+1

i=1 z2
i = 1. The

group A0 := (Z/2Z)n+1 acts on X̂0 (multiplying coordinates by ±1), with quo-
tient An . The quotient q0 : X̂0↠ X0 by the augmentation subgroup A◦

0 yields the
obvious 2 : 1 branched cover of An , with H n(X0)∼= IHn(An, L0).

By the localization sequence for X̂0 (relative to its closure X̂0 ⊂ Pn+1) and weak
Lefschetz, one easily shows that H j (X̂0)= 0 for j ̸= n,18 and

H n(X̂0)∼= Q
(
−

⌊
n+1

2

⌋)
.

(Writing ∂ X̂0 = X̂0 \ X̂0, this is H n(X̂0)/H n−2(∂ X̂0)(−1) for n even, and for n
odd ker{H n−1(∂ X̂0)(−1)→ H n+1(X̂0)}.) A generator for the dual group H n

c (X̂0)

is given by the real (vanishing) n-sphere Sn
1 :=

{∑
z2

i = 1
}
∩ Rn+1, whose class is

invariant under A◦

0 hence comes from H n
c (X0). This gives (i).

The degeneration is modeled by replacing
∑

z2
i = 1 by

∑
z2

i = t ; as the spectrum
of

∑
z2

i is [(n + 1)/2], the monodromy is as described in (ii). Finally, (iii) follows
from the last subsection since canσ identifies with canχ in (5.11). □

18This simply recovers perversity of φ f QX [n].
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The vanishing sphere Sn
t :=

{∑
z2

i = t
}
∩ Rn+1 in X̂0 has image in X0 (by q0)

given by the double cover of
(⋂n

i=1{xi ≥ 0}
)
∩

{∑
xi ≤ t

}
. Let its image in X

(essentially via canχ : H n
c (X0)→ H n(X)) be denoted by νσ ; this is the vanishing

cycle at σ , a “double simplex” branched along Hs and n additional hyperplanes.
It follows from (iii) that Tσ is a transvection/reflection in νσ . More precisely,
rescaling Q to have Q(νσ , νσ )=

1
2(1 + (−1)n),

(5.14) Tσ (u)= u − 2Q(u, νσ ) νσ

for u ∈ H .
Now consider the general setting where L2n+1 = Ls , L0 = {X0 = 0}, and the

remaining L i are in general position. An easy extension of (5.1) gives

H ∼= IHn
c (A

n, L)∼= H n
c (X \ L0),

whence H n
pr(X) is spanned by double simplices branched along n + 1 of the L i≥0.

Obviously all of these can be rewritten as Z-linear combinations of double simplices
branched along Ls and n of the {L i }1≤i≤2n; call these νI , where I ⊂ {1, . . . , 2n}

with |I | = n. Since rk H =
(2n

n

)
and there are

(2n
n

)
of these vanishing cycles, they

form a Q-basis of H = H n
pr(X). Write TI for the corresponding monodromies,

and 0 ≤ Aut(HC, Q) for the smallest C-algebraic group containing them; clearly
0≤ 5̃C. Moreover, we note that if |I ∩ I ′

| = n −1, then Q(νI , νI ′)= ±1 (rescaling
as above, compatibly with (5.14)).

Suppose then that |I ∩ I ′
|= n−1. If n is odd, then TI (νI ′)= νI ±νI ′ =±T −1

I ′ (νI ),
whence νI ′ is in the 0-orbit of νI ; so all the νJ are in the 0-orbit of νI . If n is
even, then reasoning as in [Deligne 1980, Section 4.4] (see the paragraph after
Lemme 4.4.3s), TI T ±1

I ′ is a transvection and its Zariski closure a Ga including
transformations which send νI 7→ νI ′ and vice versa; once again, all the νJ are in
the 0-orbit of a single νI .

Let R := 0.νI denote this orbit. Obviously it spans HC. Furthermore, for any
δ ∈ R, we have that 0 contains the transvection/reflection Tδ: writing δ = γ.νI

(γ ∈ 0), we have Tδ = Tγ.νI = γ TI γ
−1

∈ 0. So 0 is in fact the C-algebraic
closure of the {Tδ}δ∈R , and we are exactly in the situation of [Deligne 1980,
Lemme 4.4.2]. Conclude that 0 = Aut(HC, Q), and hence 5̃ = Aut(H, Q), and
thus 5= Aut(H, Q)◦, proving Theorem 5.4.

5.15. Remark. After writing this paper we encountered the article [Xu 2018] which
treats the more general setting of r-covers of Pn branched along hyperplanes by
considering local monodromies (as we have just done). The argument is necessarily
more complicated and technical than ours. However, in the case r = 2 (i.e., our
setting) it appears to be incomplete.

If r = 2 and n is odd, Proposition 3.4 of [Xu 2018] does not actually establish that,
in the notation of [loc. cit.], e(1) is nonzero; this is exactly the issue regarding possible
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nonvanishing of δ dealt with above. One could read [Xu 2018, Proposition 4.2] as
confirming this in retrospect, but this makes the argument quite convoluted.

If r = 2 and n is even, the proof of [Xu 2018, Proposition 4.2] is wrong, as
it makes use of the (false) statement that Sp2n(R) “does not admit any nontrivial
one-dimensional invariant subspace” in its action on

∧n
R2n .
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FOURIER BASES OF A CLASS
OF PLANAR SELF-AFFINE MEASURES

MING-LIANG CHEN, JING-CHENG LIU AND ZHI-YONG WANG

Let µM,D be the planar self-affine measure generated by an expansive integer
matrix M ∈ M2(Z) and a noncollinear integer digit set

D =

{(
0
0

)
,

(
α1

α2

)
,

(
β1

β2

)
,

(
−α1−β1

−α2−β2

)}
.

We show that µM,D is a spectral measure if and only if there exists a matrix
Q ∈ M2(R) such that (M̃, D̃) is admissible, where M̃ = QMQ−1 and D̃ =

Q D. In particular, when α1β2 −α2β1 /∈ 2Z, µM,D is a spectral measure if and
only if M ∈ M2(2Z). This completely settles the spectrality of the self-affine
measure µM,D.

1. Introduction

Let µ be a Borel probability measure with compact support on Rn , and let ⟨ · , · ⟩

denote the standard inner product on Rn . We say that µ is a spectral measure
if there exists a countable set 3 ⊂ Rn such that the exponential function system
E3 := {e2π i⟨λ,x⟩

: λ ∈ 3} forms an orthonormal basis for the Hilbert space L2(µ).
In this case, we call 3 a spectrum of µ and (µ, 3) a spectral pair. In particular, if
µ is the normalized Lebesgue measure supported on a Borel set �, then � is called
a spectral set.

Spectral measure is a natural generalization of spectral set introduced by Fu-
glede [20], who proposed the famous conjecture that � is a spectral set if and only
if � is a translational tile. It is known [22] that a spectral measure µ must be of
pure type: µ is either discrete, or absolutely continuous or singularly continuous.
The first singularly continuous spectral measure was constructed by Jorgensen and
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Pedersen in 1998 [24]. They proved that the middle-fourth Cantor measure is a
spectral measure with a spectrum

3 =

{ n∑
k=0

4kℓk : ℓk ∈ {0, 1}, n ∈ N

}
.

Following this discovery, there is a considerable number of papers on the spectrality
of self-affine measures and the construction of their spectra; see [2; 3; 5; 6; 7; 8;
12; 13; 16; 18; 29]. These results are generalized further to some classes of Moran
measures (see, e.g., [1; 9; 19]), and some surprising convergence properties of the
associated Fourier series were discovered in [38; 39]. These fractal measures also
have very close connections with the theory of multiresolution analysis in wavelet
analysis; see [11].

In [14], Dutkay and Jorgensen summarized some known results regarding iterated
function systems (IFS); see [23] for details. Two approaches to harmonic analysis
on IFS have been popular: one based on a discrete version of the more familiar
and classical second-order Laplace differential operator of potential theory; see
[27; 28; 30]; and the other is based on Fourier series. The first model in turn is
motivated by infinite discrete network of resistors, and the harmonic functions are
defined by minimizing a global measure of resistance, but this approach does not
rely on Fourier series. In contrast, the second approach begins with Fourier series,
and it has its classical origins in lacunary Fourier series [26].

For an expansive real matrix M ∈ Mn(R) and a finite digit set D ⊂ Rn with
cardinality #D, the iterated function system (IFS) {φd(x)}d∈D is defined by φd(x) =

M−1(x + d) (x ∈ Rn , d ∈ D). By [23], there exists a unique probability measure
µM,D satisfying

(1-1) µM,D =
1

#D

∑
d∈D

µM,D ◦ φ−1
d .

It is supported on the unique nonempty compact set T (M, D)=
⋃

d∈D φd(T (M, D)).
Hence

T (M, D) =

{ ∞∑
k=1

M−kdk : dk ∈ D
}

:=

∞∑
k=1

M−k D.

The measure µM,D and the set T (M, D) are called self-affine measure and self-
affine set, respectively. It is known that a self-affine measure µM,D can be expressed
by the infinite convolution of discrete measures as

µM,D = δM−1 D ∗ δM−2 D ∗ δM−3 D ∗ · · · ,

where ∗ is the convolution sign, δE =
1

#E

∑
e∈E δe for a finite set E and δe is the

Dirac measure at the point e.
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Self-affine measures have the advantage that their Fourier transforms (see (2-1))
can be explicitly written down as an infinite product, which allows us to compute
their zeros. The previous research on self-affine measures µM,D and their Fourier
transform have revealed some surprising connections with a number of areas in
mathematics such as harmonic analysis, dynamical systems, number theory and
others (see, e.g., [21; 25; 37]).

In the previous works, the spectral self-affine measures are usually generated by
compatible pairs (known also as Hadamard triples). The appearance of compatible
pairs stems from the terminology of [38].

Definition 1.1. Let M ∈ Mn(Z) be an expansive integer matrix, and let D, S ⊂ Zn

be two finite digit sets with #D = #S = N . We say that (M, D) is admissible (or
(M−1 D, S) forms a compatible pair or (M, D, S) forms a Hadamard triple) if the
matrix

H =
1

√
N

(
e2π i⟨M−1d,s⟩

)
d∈D,s∈S

is unitary, i.e., H∗H = I , where I is a n×n identity matrix.

The well-known result of Jorgensen and Pedersen [24] shows that if (M, D) is
admissible, then there are infinite families of orthogonal exponential functions in
L2(µM,D). Dutkay and Jorgensen [13; 15] formulated the famous conjecture that
if (M, D) is admissible, then µM,D is a spectral measure. It was first proved in one
dimension by Łaba and Wang [29]. The conjecture is true in higher dimensions
under some additional assumptions, introduced by Strichartz [38]. There are many
other papers that investigated it in higher dimensional cases; see [12; 32]. In the
end, Dutkay, Haussermann and Lai [16] proved that:

Theorem 1.2. Let M ∈ Mn(Z) be an expansive integer matrix, and let D ⊂ Zn be a
finite digit set. If (M, D) is admissible, then µM,D is a spectral measure.

In [18], Fu, He and Lau gave an example to illustrate that the sufficient condition
in Theorem 1.2 is not necessary in one dimension. For an expansive integer matrix
M ∈ M2(Z) and the classic digit set D =

{( 0
0

)
,
( 1

0

)
,
( 0

1

)}
, the spectrality and

nonspectrality of the corresponding self-affine measure µM,D has been widely
investigated by many researchers; see [12; 31; 32]. Eventually, An, He and Tao [2]
completely settled the spectrality of µM,D . More precisely, they showed that µM,D

is a spectral measure if and only if (M, D) is admissible. For a more general integer
digit set D with 0 ∈ D and #D = 3, there is also a complete spectral characterization;
see [4; 35; 36]. In addition to these, another important integer digit set is

(1-2) D =

{(
0
0

)
,

(
α1

α2

)
,

(
β1

β2

)
,

(
−α1−β1

−α2−β2

)}
,
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where α1β2 −α2β1 ̸= 0. The existence of infinitely many orthogonal exponentials
in L2(µM,D) has been fully studied in [33; 40; 41]. Recently, Fu and Tang [17]
considered the special case where α1 = 1, α2 = 0, β1 = 0 and β2 = 1. They fully
characterized the spectrality of the corresponding self-affine measures. However, to
the best of our knowledge, the complete description of spectral properties of the
general case (1-2) is not known yet. A natural subsequent question is:

Question 1. For an expansive integer matrix M ∈ M2(Z) and the digit set D given
by (1-2), what is the sufficient and necessary condition for µM,D to be a spectral
measure?

In the study of the spectrality of self-affine measures µM,D on Rn , the finiteness
and rationality of the set Zn

D :=
{

x ∈ [0, 1)n
:
∑

d∈D e2π i⟨d,x⟩
= 0

}
are pivotal.

Many classic digit sets, such as {0, 1, . . . , N − 1}, {(0, 0)t , (1, 0)t , (0, 1)t
} and the

digit set D given by (1-2), exhibit the desired property. This has attracted a large
number of researchers to study their spectrality of the corresponding self-affine
measures. However, if Zn

D is infinite or irrational, resolving the spectrality of the
corresponding self-affine measure becomes a formidable challenge. For instance,
consider M ∈ M2(Z) and D = {(0, 0)t , (1, 0)t , (0, 1)t , (1, 1)t

}. It is easy to get that

Z2
D =

{( 1
2
a

)
∪

(
a
1
2

)
: a ∈ [0, 1)

}
.

This means that Z2
D encompasses a submanifold characterized by the free variable

a ∈ [0, 1). For the more general digit set D = {0, u, v, u + v} ⊂ Z2, the set Z2
D

is infinite and includes free variables. The spectral properties of these self-affine
measures have not been resolved.

The cardinality #D of a digit set D significantly influences the properties of Zn
D .

In [3], An, He and Lai extensively classified four-element digit spectral self-similar
measures on R. They showed that if #D = 4 and the corresponding self-similar
measure is a spectral measure, then D is rational and Z1

D is finite and rational.
However, if D does not have any special structures and #D ≥ 5, the set Zn

D is
hard to calculate and may be irrational. For example, let D = {0, 1, 3, 5, 6}. Then
Z1

D ⊂ R\Q by [3, Example 5.2]. This makes it very difficult to study the spectrality
of the corresponding self-similar measure.

Inspired by the above researches and due to the finiteness and rationality of the
set Z2

D corresponding to the digit set D given by (1-2), we can give an answer to
Question 1. Before presenting our results, a reasonable assumption for the digit set D
is necessary. Without loss of generality, we can assume that gcd(α1, α2, β1, β2) = 1
by Lemma 2.2.

Our first main result is as follows:
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Theorem 1.3. Let µM,D be defined by (1-1), where M ∈ M2(Z) is an expansive
integer matrix and D is given by (1-2). Then µM,D is a spectral measure if and
only if there exists a matrix Q ∈ M2(R) such that (M̃, D̃) is admissible, where
M̃ = QMQ−1 and D̃ = Q D.

We remark that Theorem 1.3 gives a complete answer to the spectral Question 1.
We now outline the strategy of the proof of Theorem 1.3. The sufficiency of
Theorem 1.3 follows directly from Theorem 1.2 and Lemma 2.2. The more chal-
lenging part of the proof is the necessity. The key point is to construct a self-affine
measure µM̃,D̃ so that it has the same spectrality as the measure µM,D, and then
the necessity follows immediately from Theorems 1.5 and 1.6. What is exciting
is that the proof method of the necessity is new and completely different from the
previous work proving spectral self-affine measures.

It is worth noting that if D satisfies α1β2 −α2β1 /∈ 2Z, we can give more explicit
sufficient and necessary conditions for µM,D to be a spectral measure. Before
presenting them, some notation is needed. For any integer p ≥ 2, we define

(1-3) F2
p :=

1
p

{(
l1

l2

)
: 0 ≤ l1, l2 ≤ p − 1, li ∈ Z

}
and F̊2

p := F2
p \ {0}.

Under the above notation and the assumption of α1β2 − α2β1 /∈ 2Z, we give the
second main result:

Theorem 1.4. Let µM,D and F̊2
p be defined by (1-1) and (1-3), respectively, where

M ∈ M2(Z) is an expansive integer matrix and D is given by (1-2). If α1β2 −α2β1 /∈

2Z, then the following statements are equivalent:

(i) µM,D is a spectral measure.

(ii) M ∈ M2(2Z).

(iii) MF̊2
2 ⊂ Z2.

(iv) (M, D) is admissible.

We point out that the proofs of Theorems 1.3 and 1.4 are based on the precise
form of the matrix M̃ in Theorem 1.3. Before giving the form, some technical work
needs to be done. For an expansive integer matrix M ∈ M2(Z) and the digit set D
given by (1-2), we can let M =

(a
c

b
d

)
and α1β2 −α2β1 = 2ηγ with η ≥ 0 and γ /∈ 2Z.

Without loss of generality, we assume gcd(α1, α2) = α with α /∈ 2Z (otherwise, we
can choose α =gcd(β1, β2) with α /∈2Z since gcd(α1, α2, β1, β2)=1). Let α1 =αt1
and α2 = αt2 with gcd(t1, t2) = 1. Then there exist p, q ∈ Z such that pt1 +qt2 = 1.
Clearly, α = pα1 + qα2 and α | γ . For convenience, we define ω = pβ1 + qβ2 and
β = γ /α. It is easy to check that t1α2 = t2α1 and t1β2 − t2β1 = 2ηβ with β /∈ 2Z.
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Define Q =
( p

−t2
q
t1

)
. Then one has

(1-4) M̃ := QM Q−1
=

(
(pa+qc)t1+(pb+qd)t2 (pb+qd)p−(pa+qc)q
(ct1−at2)t1+(dt1−bt2)t2 (dt1−bt2)p−(ct1−at2)q

)
and

(1-5) D̃ := Q D =

{(
0
0

)
,

(
α

0

)
,

(
ω

2ηβ

)
,

(
−α−ω

−2ηβ

)}
⊂ Z2.

Obviously, M̃ is an expansive integer matrix with det(M̃) = det(M). Also, η = 0
and η > 0 are equivalent to α1β2 − α2β1 /∈ 2Z and α1β2 − α2β1 ∈ 2Z, respectively.

For η = 0 in D̃, we have the following conclusion, which is equivalent to
Theorem 1.4 by using the property of similarity transformation.

Theorem 1.5. Let µM̃,D̃ and F̊2
p be defined by (1-1) and (1-3), respectively, where

M̃ and D̃ are given by (1-4) and (1-5), respectively. If η = 0, then the following
statements are equivalent:

(i) µM̃,D̃ is a spectral measure.

(ii) M̃ ∈ M2(2Z).

(iii) M̃F̊2
2 ⊂ Z2.

(iv) (M̃, D̃) is admissible.

On the other hand, if η > 0 in D̃, the form of M̃ is different from that in the case
η = 0.

Theorem 1.6. Let µM̃,D̃ be defined by (1-1), where M̃ and D̃ are given by (1-4)
and (1-5), respectively. If η > 0, then µM̃,D̃ is a spectral measure if and only if the
matrix M̃ =

( ã
c̃

b̃
d̃

)
satisfies ã, d̃ ∈ 2Z and 2η+1

| c̃.

We now give a brief explanation of the proofs of Theorems 1.5 and 1.6. The
main technical difficulty in the proofs lies in “(i) H⇒ (ii)” of Theorem 1.5 and the
necessity of Theorem 1.6. More precisely, the key point is to construct a Moran
measure µA,M̃,D̃ (see (3-1)) so that it has the same spectrality as µM̃,D̃. For the
matrix A, we need to cleverly describe its complete residue system (Proposition 3.3).
We carefully investigate the structure of the spectrum of µA,M̃,D̃ (see (3-11)). And
then we get a property of decomposition on the spectrum of µM̃,D̃ under the
assumption that µA,M̃,D̃ is a spectral measure (Lemma 3.5). With their help, the
proof becomes within reach.

The paper is organized as follows. In Section 2, we introduce some basic
definitions and lemmas. In Section 3, we focus on proving Theorems 1.5 and 1.6.
Finally, we prove Theorems 1.3 and 1.4, and give some concluding remarks in
Section 4.
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2. Preliminaries

For the self-affine measure µM,D defined by (1-1), the Fourier transform of µM,D

is defined by

(2-1) µ̂M,D(ξ) =

∫
e2π i⟨x,ξ⟩ dµM,D(x) =

∞∏
j=1

m D(M∗− j
ξ), ξ ∈ Rn,

where M∗ denotes the transpose of M and m D( · ) =
1

#D

∑
d∈D e2π i⟨d,· ⟩ is the

mask polynomial of D. We denote the set of all the roots of f (x) by Z( f ), i.e.,
Z( f ) = {x : f (x) = 0}. Using (2-1), one has

(2-2) Z(µ̂M,D) =

∞⋃
j=1

M∗ j (Z(m D)).

For a countable set 3 ⊂ Rn , E3 = {e2π i⟨λ,x⟩
: λ ∈ 3} is an orthogonal family of

L2(µM,D) if and only if µ̂M,D(λ1 −λ2) = 0 for any λ1 ̸= λ2, which is equivalent to

(2-3) (3 − 3) \ {0} ⊂ Z(µ̂M,D).

If E3 forms an orthogonal family of L2(µM,D), then 3 is called an orthogonal set
of µM,D. Note that the properties of spectra are invariant under a translation, so
we can always assume that 0 ∈ 3.

In a number of applications, one encounters a measure µ and a subset 3 such
that the functions e2π i⟨λ,x⟩ indexed by 3 are orthogonal in L2(µ), but a separate
argument is needed in order to show that the family is complete. Let

(2-4) Qµ,3(ξ) =

∑
λ∈3

|µ̂(ξ + λ)|2, ξ ∈ Rn.

The following result is a basic criterion for the spectrality of µ.

Theorem 2.1 [24]. Let µ be a Borel probability measure with compact support
on Rn , and let 3 ⊂ Rn be a countable set. Then:

(i) 3 is an orthogonal set of µ if and only if Qµ,3(ξ) ≤ 1 for ξ ∈ Rn .

(ii) 3 is a spectrum of µ if and only if Qµ,3(ξ) ≡ 1 for ξ ∈ Rn .

The following lemma indicates that the spectrality of µM,D is invariant under a
similarity transformation.

Lemma 2.2 [12]. Let D1, D2 ⊂ Rn be two finite digit sets with the same cardinality,
and let M1, M2 ∈ Mn(R) be two expansive real matrices. If there exists a matrix
Q ∈ Mn(R) such that M2 = QM1 Q−1 and D2 = Q D1, then µM1,D1 is a spectral
measure with spectrum 3 if and only if µM2,D2 is a spectral measure with spectrum
Q∗−13.
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The following result is a known fact, which was proved in [16] and will be used
in the proof of Proposition 3.3.

Lemma 2.3. Let M ∈ Mn(Z) be an expansive integer matrix, and let D, S ⊂ Zn be
two finite digit sets with the same cardinality. Then the following three statements
are equivalent:

(i) (M, D, S) is a Hadamard triple.

(ii) m D(M∗−1(s1 − s2)) = 0 for any distinct s1, s2 ∈ S.

(iii) (δM−1 D, S) is a spectral pair.

Recalling that µM,D is defined by (1-1), we let A be a nonsingular matrix and
define the Moran measure

(2-5) µA,M,D = δA−1 D ∗ δA−1 M−1 D ∗ δA−1 M−2 D ∗ · · · .

It is clear that µA,M,D = µM,D if A = M . The following lemma indicates the spec-
trality of µM,D is independent of A. The proof is the same as that of [9, Lemma 3.1;
10, Lemma 2.6]. For the convenience of readers, we include the proof here.

Lemma 2.4. Let A be a nonsingular matrix, and let µA,M,D be defined by (2-5).
Then

µM,D = µA,M,D ◦ (A−1 M).

Also, (µM,D, 3) is a spectral pair if and only if (µA,M,D, A∗M∗−13) is a spectral
pair.

Proof. Applying (2-1) and (2-5), we have

(2-6) µ̂A,M,D(A∗M∗−1ξ) = m D(A∗−1 A∗M∗−1ξ)

∞∏
j=1

m D(M∗− j A∗−1 A∗M∗−1ξ)

=

∞∏
j=1

m D(M∗− jξ) = µ̂M,D(ξ).

Then µM,D = µA,M,D ◦ (A−1 M) by the uniqueness of Fourier transform.
Recall Qµ,3(ξ) is defined by (2-4). Then, for ξ ∈ R2, it follows from (2-6) that

QµM,D,3(ξ) =

∑
λ∈3

|µ̂M,D(ξ + λ)|2

=

∑
λ∈3

|µ̂A,M,D(A∗M∗−1(ξ + λ))|2

=

∑
λ∈3

|µ̂A,M,D(A∗M∗−1ξ + A∗M∗−1λ)|2

= QµA,M,D,A∗ M∗−13(A∗M∗−1ξ).

Hence the second assertion follows by Theorem 2.1. □
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We conclude this section by recalling a useful lemma in our investigation, which
was proved by Deng et al. in [9, Lemma 2.5].

Lemma 2.5. Let pi, j be positive numbers such that
∑n

j=1 pi, j = 1, and let qi, j be
nonnegative numbers such that

∑m
i=1 max1≤ j≤n qi, j ≤ 1. Then

m∑
i=1

n∑
j=1

pi, j qi, j = 1

if and only if qi,1 = · · · = qi,n for 1 ≤ i ≤ m and
∑m

i=1 qi,1 = 1.

3. Proofs of Theorems 1.5 and 1.6

We focus on proving Theorems 1.5 and 1.6, that is, studying the spectrality of the
measure µM̃,D̃ , where M̃ and D̃ are given by (1-4) and (1-5), respectively. For this
purpose, we first give some properties of Z(m D̃), and then investigate the structure
of the spectrum of µM̃,D̃ under the assumption that µA,M̃,D̃ is a spectral measure,
where µA,M̃,D̃ is defined by (2-5). With these preparations, we will achieve our goal.

By Lemma 2.4, without loss of generality, we assume in the rest of the paper that

A =

(
2η+1αβ 0

0 2η+1αβ

)
.

The matrix A will be pivotal in constructing the spectrum of µM̃,D̃ . Consequently,

(3-1)

µA,M̃,D̃ = δ 1
2η+1αβ

D̃ ∗ (µM̃,D̃ ◦ 2η+1αβ),

µ̂A,M̃,D̃(ξ) = m D̃

(
ξ

2η+1αβ

)
µ̂M̃,D̃

(
ξ

2η+1αβ

)
.

It is known that m D̃(x) = 0 if and only if

(3-2)
{
αx1 =

1
2 +k1,

ωx1+2ηβx2 = k ′

1,

{
αx1 = k2,

ωx1+2ηβx2 =
1
2 +k ′

2,
or

{
αx1 =

1
2 +k3,

ωx1+2ηβx2 =
1
2 +k ′

3,

where k1, k2, k3, k ′

1, k ′

2, k ′

3 ∈ Z. By a direct calculation, we have that

(3-3) Z(m D̃) = 21 ∪ 22 ∪ 23,

where

21 =

{
1

2η+1αβ

(
2η(2k1β+β)

2k ′

1α−2k1ω−ω

)
: k1, k ′

1 ∈ Z

}
,

22 =

{
1

2η+1αβ

(
2η+1k2β

2k ′

2α−2k2ω+α

)
: k2, k ′

2 ∈ Z

}
,

23 =

{
1

2η+1αβ

(
2η(2k3β+β)

2k ′

3α−2k3ω+α−ω

)
: k3, k ′

3 ∈ Z

}
.
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Define

20 =

{
1

2η+1αβ

(
2η+1k0β

2k ′

0α−2k0ω

)
: k0, k ′

0 ∈ Z

}
.

We now make a detailed analysis on the zero set Z(m D̃) of m D̃ .

Proposition 3.1. With the above notation, the following statements hold:

(i) (2i − 2i ) ∩Z(m D̃) = ∅ for any i ∈ {0, 1, 2, 3}.

(ii) 2i − 2 j ⊂ Z(m D̃) for any distinct i , j ∈ {0, 1, 2, 3}.

(iii) If η = 0, then F̊2
2 ⊂ Z(m D̃), where F̊2

2 is defined by (1-3).

Proof. (i) Since α, β ∈ 2Z + 1, from the definitions of Z(m D̃) and 20, it can
easily be seen that 2i −2i ⊂ 20 for any i ∈ {0, 1, 2, 3} and 2i ∩20 = ∅ for any
i ∈ {1, 2, 3}. This yields (2i − 2i ) ∩Z(m D̃) = ∅ for all i , which proves (i).

(ii) For any θi ∈ 2i , it is easy to verify that

±(θi − θ0) ∈ 2i (i ∈ {1, 2, 3}),

±(θ1 − θ2) ∈ 23, ±(θ1 − θ3) ∈ 22 and ± (θ2 − θ3) ∈ 21.

Hence the assertion follows by using (3-3).

(iii) As η = 0 and α, β ∈ 2Z + 1, it follows from (3-2) and (3-3) that( 1
2 , 0

)t
∈ 21,

(
0, 1

2

)t
∈ 22 and

( 1
2 , 1

2

)t
∈ 23

if ω ∈ 2Z and ( 1
2 , 0

)t
∈ 23,

(
0, 1

2

)t
∈ 22 and

( 1
2 , 1

2

)t
∈ 21

if ω ∈ 2Z + 1. Therefore, F̊2
2 ⊂ 21 ∪ 22 ∪ 23 = Z(m D̃). □

Remark 3.2. Observing that α, β ∈ 2Z + 1 in D̃, without loss of generality, we
can further assume that α, β ≥ 1. In fact, if α < 0 or β < 0, we take

Q =


diag(−1, 1), if α < 0, β > 0,

diag(1, −1), if α > 0, β < 0,

diag(−1, −1), if α, β < 0.

Let M̄ = QM̃Q−1 and D̄ = Q D̃. By Lemma 2.2, we only need to consider the
spectrality of µM̄,D̄ . This implies that the assumption is reasonable.

To investigate the spectrality of µM̃,D̃ , we need to construct a complete residue
system of matrix A. In view of (3-1) and (3-3), one may easily get that

(3-4) Z(µ̂A,M̃,D̃)=

∞⋃
j=0

A∗M̃∗ j (Z(m D̃))=

∞⋃
j=0

M̃∗ j (2η+1αβ(21∪22∪23))⊂Z2.
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Throughout this paper, we set h̄ p = {0, 1, . . . , p − 1} for an integer p ≥ 1, and let

(3-5) Sq =

{(
s1

s2

)
: s1 ∈ h̄2qβ, s2 ∈ h̄α

}
and Tq =

3⋃
i=0

Tq,i ,

where q is a nonnegative integer and

Tq,0 =

{
1

2q+1αβ

(
2q+1k0β

2k ′

0α−2k0ω

)
: k0 ∈ h̄α, k ′

0 ∈ h̄2qβ

}
,

Tq,1 =

{
1

2q+1αβ

(
2q(2k1β+β)

2k ′

1α−2k1ω−ω

)
: k1 ∈ h̄α, k ′

1 ∈ h̄2qβ

}
,

Tq,2 =

{
1

2q+1αβ

(
2q+1k2β

2k ′

2α−2k2ω+α

)
: k2 ∈ h̄α, k ′

2 ∈ h̄2qβ

}
,

Tq,3 =

{
1

2q+1αβ

(
2q(2k3β+β)

2k ′

3α−2k3ω+α−ω

)
: k3 ∈ h̄α, k ′

3 ∈ h̄2qβ

}
.

Proposition 3.3. With the above notation, the following statements hold:

(i) Tη,i ⊂ 2i for any i ∈ {0, 1, 2, 3}.

(ii) (δA−1 D̃, C) is a spectral pair, where A = diag(2η+1αβ, 2η+1αβ) and C =

2η+1αβ{ℓ0, ℓ1, ℓ2, ℓ3} for any ℓi ∈ Tη,i .

(iii) Sη ⊕ 2η+1αβTη is a complete residue system of matrix A in (ii).

Proof. According to the definitions of Tη,i and 2i , (i) is obvious. We now prove (ii).
In view of Lemma 2.3, it suffices to prove that m D̃(A∗−1(c−c′)) = 0 for all distinct
c, c′

∈ C. Since A = diag(2η+1αβ, 2η+1αβ), it follows from Proposition 3.1(ii) and
Proposition 3.3(i) that A∗−1(c − c′) ∈ Z(m D̃). This implies m D̃(A∗−1(c − c′)) = 0,
and the assertion (ii) follows.

Finally, we prove (iii). It is clear that the set Sη ⊕ 2η+1αβTη can be written as

(3-6) Sη ⊕ 2η+1αβTη

=

{(
s1

s2

)
: s1 ∈ h̄2ηβ, s2 ∈ h̄α

}
⊕

(
2ηβ 0
−ω α

) {(
k
k ′

)
: k ∈ h̄2α, k ′

∈ h̄2η+1β

}
:= Sη ⊕

(
2ηβ 0
−ω α

)
Q.

To prove Sη⊕2η+1αβTη is a complete residue system of A =diag(2η+1αβ, 2η+1αβ),
by using (3-6), it suffices to show that for any (x, y)t

∈ Z2, there exist (s1, s2)
t
∈ Sη,

(k, k ′)t
∈ Q and (x ′, y′)t

∈ Z2 such that

(3-7)
(

x
y

)
=

(
s1

s2

)
+

(
2ηβ 0
−ω α

) (
k
k ′

)
+ 2η+1αβ

(
x ′

y′

)
.
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Since {0, 1, . . . , 2ηβ − 1}⊕ 2ηβ{0, 1, . . . , 2α − 1} is a complete residue system of
2η+1αβ, it follows that there exist s1 ∈ {0, 1, . . . , 2ηβ − 1}, k ∈ {0, 1, . . . , 2α − 1}

and x ′
∈ Z such that

(3-8) x = s1 + 2ηβk + 2η+1αβx ′.

Also note that {0, 1, . . . , α−1}⊕α{0, 1, . . . , 2η+1β−1} is another complete residue
system of 2η+1αβ; thus there exist s2 ∈ {0, 1, . . . , α−1}, k ′

∈ {0, 1, . . . , 2η+1β −1}

and y′
∈ Z such that

(3-9) y + ωk = s2 + αk ′
+ 2η+1αβy′.

The above equations (3-8) and (3-9) imply that (3-7) holds. □

Let 3 be a spectrum of µA,M̃,D̃ with 0 ∈ 3. By (2-3) and (3-4), we have 3 ⊂ Z2.
This together with Proposition 3.3(iii) implies that for any λ ∈ 3, there exist some
s ∈ Sη and ℓ ∈ Tη such that λ = s + 2η+1αβℓ + 2η+1αβγ for some γ ∈ Z2. Then
for s ∈ Sη and ℓ ∈ Tη, define

(3-10) 3s,ℓ = {γ ∈ Z2
: s + 2η+1αβℓ + 2η+1αβγ ∈ 3}.

Then using (3-5), we have the decomposition

(3-11) 3 =

⋃
s∈Sη

⋃
i∈{0,1,2,3}

⋃
ℓ∈Tη,i

(s + 2η+1αβℓ + 2η+1αβ3s,ℓ),

where s + 2η+1αβℓ + 2η+1αβ3s,ℓ = ∅ if 3s,ℓ = ∅. As 0 ∈ 3, it follows that

(3-12) 30,0 ̸= ∅.

Lemma 3.4. Let 3 be a spectrum of µA,M̃,D̃ with 0 ∈ 3. If 3s,ℓ is a nonempty set,
then 3s,ℓ is an orthogonal set of µM̃,D̃ for each s ∈ Sη and ℓ ∈ Tη.

Proof. Suppose that 3s,ℓ is a nonempty set for s ∈ Sη and ℓ ∈ Tη. Then for any
distinct λ1, λ2 ∈ 3s,ℓ, it follows from (3-11) that

s + 2η+1αβℓ + 2η+1αβλ1, s + 2η+1αβℓ + 2η+1αβλ2 ∈ 3.

Applying (2-3), we have 2η+1αβ(λ1 − λ2) ∈ Z(µ̂A,M̃,D̃). Together with (3-1),
λ1, λ2 ∈ Z2 and m D̃(λ1 − λ2) = 1, we have

0 = µ̂A,M̃,D̃(2η+1αβ(λ1 − λ2)) = m D̃(λ1 − λ2)µ̂M̃,D̃(λ1 − λ2) = µ̂M̃,D̃(λ1 − λ2).

Thus λ1 − λ2 ∈ Z(µ̂M̃,D̃), which means that 3s,ℓ is an orthogonal set of µM̃,D̃ . □

The following lemma gives the structure of the spectrum of µM̃,D̃ under the
assumption that µA,M̃,D̃ is a spectral measure.
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Lemma 3.5. Let 3 be a spectrum of µA,M̃,D̃ with 0 ∈ 3. For any s ∈ Sη, choose a
is ∈ {0, 1, 2, 3} and write

0 =

⋃
s∈Sη

⋃
ℓ∈Tη,is

(
s + 2η+1αβℓ

2η+1αβ
+ 3s,ℓ

)
,

where 3s,ℓ is defined by (3-10). Then 0 is a spectrum of µM̃,D̃ or an empty set.

Proof. If 0 is a nonempty set, we will complete the proof in the following two
steps.

Step 1. We prove that 0 is an orthogonal set of µM̃,D̃ .
For any distinct ς1, ς2 ∈ 0, we can write

ςk =
sk + 2η+1αβℓk

2η+1αβ
+ λk,

where sk ∈ Sη, ℓk ∈ Tη,isk
, λk ∈ 3sk ,ℓk and isk ∈ {0, 1, 2, 3}, k = 1, 2. Applying (3-1),

the fact λ1, λ2 ∈ Z2 and the Z2-periodicity of m D̃ , one has

(3-13) 0 = µ̂A,M̃,D̃(2η+1αβ(ς1 − ς2))

= m D̃(ς1 − ς2)µ̂M̃,D̃(ς1 − ς2)

= m D̃

(
s1 − s2

2η+1αβ
+ ℓ1 − ℓ2 + λ1 − λ2

)
µ̂M̃,D̃(ς1 − ς2)

= m D̃

(
s1 − s2

2η+1αβ
+ ℓ1 − ℓ2

)
µ̂M̃,D̃(ς1 − ς2).

We now claim that m D̃((s1−s2)/(2η+1αβ)+ℓ1−ℓ2) ̸= 0. The proof will be divided
into the following two cases.

Case 1: s1 = s2. In this case, it is clear that ℓ1, ℓ2 ∈ Tη,is1
by the definition of 0.

With Proposition 3.1(i) and Proposition 3.3(i), we derive that ℓ1 − ℓ2 /∈ Z(m D̃).
Thus the claim follows.

Case 2: s1 ̸= s2. For this case, we prove the claim by contradiction. Suppose, on
the contrary, that

(3-14)
s1 − s2

2η+1αβ
+ ℓ1 − ℓ2 ∈ Z(m D̃).

By Proposition 3.1 and Proposition 3.3(i), one has ℓ1−ℓ2 ∈20∪Z(m D̃). Combining
this with (3-14), we conclude that

(3-15)
s1 − s2

2η+1αβ
∈ 20 ∪Z(m D̃).
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Using (3-5) and s1 ̸= s2, it is easy to check that s1 − s2 ∈ B, where

B =

{(
t1
t2

)
: t1 ∈ {1 − 2ηβ, . . . , 2ηβ − 1}, t2 ∈ {1 − α, . . . , α − 1}

}
\ {0}.

Write s1 − s2 = (t1, t2)t
∈ B. We first prove t1 = 0. If t1 ̸= 0, it follows t1 /∈ 2ηβZ.

Then from the definitions of Z(m D̃) and 20, it can easily be seen that

s1 − s2

2η+1αβ
=

1
2η+1αβ

(
t1
t2

)
/∈ 20 ∪Z(m D̃).

This contradicts (3-15), which proves t1 = 0.
Since t1 = 0, it follows from β ∈ 2Z + 1 that

s1 − s2

2η+1αβ
/∈ 21 ∪ 23.

Together with (3-15) and t1 = 0, we have

s1 − s2

2η+1αβ
=

1
2η+1αβ

(
0
t2

)
∈ 20 ∪ 22.

By a simple calculation, we deduce from β ∈ 2Z + 1 that t2 ∈ αZ. However,
(t1, t2)t

= (0, t2)t
∈B means that t2 /∈ αZ, a contradiction. Hence the claim follows.

Applying the claim and (3-13), we obtain that

µ̂M̃,D̃(ς1 − ς2) = 0.

This implies that 0 is an orthogonal set of µM̃,D̃ .

Step 2. We prove the completeness of the exponential function system E0 =

{e2π i⟨λ,x⟩
: λ ∈ 0}.

Fix s ∈ Sη. In view of Proposition 3.3(ii) and Theorem 2.1, one may get that, for
any ℓis ∈ Tη,is ,

(3-16)
3∑

is=0

∣∣∣∣m D̃

(
s + 2η+1αβℓis + ξ

2η+1αβ

)∣∣∣∣2

≡ 1.

In (3-16), let three of ℓ0, ℓ1, ℓ2 and ℓ3 be fixed, and the other be altered in Tη,is . We
can easily verify that, for all distinct ℓ, ℓ′

∈ Tη,is ,

(3-17)
∣∣∣∣m D̃

(
s + 2η+1αβℓ + ξ

2η+1αβ

)∣∣∣∣ =

∣∣∣∣m D̃

(
s + 2η+1αβℓ′

+ ξ

2η+1αβ

)∣∣∣∣.
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Since 3s,ℓ ⊂ Z2 and 3 is a spectrum of µA,M̃,D̃ , it follows from the Z2-periodicity
of m D̃(x) that

1 ≡

∑
λ∈3

|µ̂A,M̃,D̃(ξ + λ)|2(3-18)

=

∑
s∈Sη

3∑
is=0

∑
ℓ∈Tη,is

∑
λ′∈3s,ℓ

|µ̂A,M̃,D̃(ξ + s + 2η+1αβℓ + 2η+1αβλ′)|2

=

∑
s∈Sη

3∑
is=0

∑
ℓ∈Tη,is

∣∣∣m D̃

(s+2η+1αβℓ+ξ

2η+1αβ

)∣∣∣2

∑
λ′∈3s,ℓ

∣∣∣µ̂M̃,D̃

(s+2η+1αβℓ+ξ

2η+1αβ
+ λ′

)∣∣∣2

=

∑
s∈Sη

3∑
is=0

∣∣∣m D̃

(s+2η+1αβℓis +ξ

2η+1αβ

)∣∣∣2

∑
ℓ∈Tη,is

∑
λ′∈3s,ℓ

∣∣∣µ̂M̃,D̃

(s+2η+1αβℓ+ξ

2η+1αβ
+ λ′

)∣∣∣2
,

where ℓis ∈ Tη,is , the first line follows from Theorem 2.1 and the second, third and
fourth line follow from (3-11), (3-1) and (3-17), respectively.

We now choose ξ ∈ R2
\ Q2, and, for simplicity, write

ps,is =

∣∣∣m D̃

(s+2η+1αβℓis +ξ

2η+1αβ

)∣∣∣2
,

qs,is =

∑
ℓ∈Tη,is

∑
λ′∈3s,ℓ

∣∣∣µ̂M̃,D̃

(s+2η+1αβℓ+ξ

2η+1αβ
+ λ′

)∣∣∣2
.

Then one may derive from (3-3) that ps,is > 0, and (3-18) becomes

(3-19)
∑
s∈Sη

3∑
is=0

ps,is qs,is = 1.

Note that 0 is an orthogonal set of µM̃,D̃; thus Theorem 2.1 implies that∑
s∈Sη

max{qs,0, qs,1, qs,2, qs,3} ≤ 1.

Together with (3-16), (3-19) and Lemma 2.5, we conclude that

(3-20)
∑
s∈Sη

∑
ℓ∈Tη,is

∑
λ′∈3s,ℓ

∣∣∣µ̂M̃,D̃

(s+2η+1αβℓ+ξ

2η+1αβ
+ λ′

)∣∣∣2
= 1, is = 0, 1, 2, 3,
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and

(3-21)
∑

ℓ∈Tη,0

∑
λ′∈3s,ℓ

∣∣∣∣µ̂M̃,D̃

(
s + 2η+1αβℓ + ξ

2η+1αβ
+ λ′

)∣∣∣∣2

=

∑
ℓ∈Tη,1

∑
λ′∈3s,ℓ

∣∣∣∣µ̂M̃,D̃

(
s + 2η+1αβℓ + ξ

2η+1αβ
+ λ′

)∣∣∣∣2

=

∑
ℓ∈Tη,2

∑
λ′∈3s,ℓ

∣∣∣∣µ̂M̃,D̃

(
s + 2η+1αβℓ + ξ

2η+1αβ
+ λ′

)∣∣∣∣2

=

∑
ℓ∈Tη,3

∑
λ′∈3s,ℓ

∣∣∣∣µ̂M̃,D̃

(
s + 2η+1αβℓ + ξ

2η+1αβ
+ λ′

)∣∣∣∣2

for any s ∈ Sη.
By continuity, we conclude that (3-20) and (3-21) hold for all ξ ∈ R2. Therefore,

Theorem 2.1 shows that 0 is a spectrum of µM̃,D̃ for any group {is}s∈Sη
with

is ∈ {0, 1, 2, 3}. The proof is complete. □

Remark 3.6. Suppose 3 =
⋃

s∈Sη

⋃
i∈{0,1,2,3}

⋃
ℓ∈Tη,i

(s +2η+1αβℓ+2η+1αβ3s,ℓ)

is a spectrum of µA,M̃,D̃ with 0 ∈ 3. Then we can conclude from (3-21) that for
any s ∈ Sη, one of the following two statements holds:

(i) There exist some ℓis ∈ Tη,is such that 3s,ℓis
̸= ∅ for all 0 ≤ is ≤ 3.

(ii) 3s,ℓ = ∅ for any ℓ ∈ Tη =
⋃3

i=0 Tη,i .

In particular, the assumption 0 ∈ 3 implies 30,0 ̸= ∅. Therefore, (i) always holds
for s = 0, which illustrates that there must exist ℓi0 ∈ Tη,i0 such that 30,ℓi0

̸= ∅ for
all 1 ≤ i0 ≤ 3.

In order to prove Theorems 1.5 and 1.6 more conveniently, we define

80 = {υ ∈ Z2
: υ = (0, 0)t (mod 2Z2)},

81 = {υ ∈ Z2
: υ = (1, 0)t (mod 2Z2)},

82 = {υ ∈ Z2
: υ = (0, 1)t (mod 2Z2)},

83 = {υ ∈ Z2
: υ = (1, 1)t (mod 2Z2)}.

Then

(3-22) Z2
=

3⋃
i=0

8i .

We have all ingredients for the proof of Theorem 1.5.

Proof of Theorem 1.5. We will prove this theorem by the circle (ii) H⇒ (iii) H⇒

(iv) H⇒ (i) H⇒ (ii).
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(ii) H⇒ (iii): If M̃ ∈ M2(2Z), we can write M̃ =
( 2ã

2c̃
2b̃
2d̃

)
with ã, b̃, c̃, d̃ ∈ Z. Then

with (1-3), it is easy to verify that

M̃F̊2
2 =

{(
ã
c̃

)
,

(
b̃
d̃

)
,

(
ã+b̃
c̃+d̃

)}
⊂ Z2.

Hence the assertion follows.

(iii) H⇒ (iv): Suppose M̃F̊2
2 ⊂ Z2, which implies C̃ := M̃∗F2

2 ⊂ Z2. Then using
Lemma 2.3 and Proposition 3.1(iii), we obtain that (M̃, D̃, C̃) is a Hadamard triple.
Therefore, (M̃, D̃) is admissible.

(iv) H⇒ (i): If (M̃, D̃) is admissible, µM̃,D̃ is a spectral measure by Theorem 1.2.

(i) H⇒ (ii): Suppose that µM̃,D̃ is a spectral measure, and let A = diag(2αβ, 2αβ).
In view of Lemma 2.4, one may derive that µA,M̃,D̃ is also a spectral measure. Let
3 be a spectrum of µA,M̃,D̃ with 0 ∈ 3. First, we construct a spectrum of µM̃,D̃.
Recall that Tη,i and 8i are defined by (3-5) and (3-22), respectively. By η = 0 and
a simple calculation, one has 2αβ M̃∗Tη,0 ⊂ 80. For i ∈ {1, 2, 3}, we can suppose
that 2αβ M̃∗Tη,i ⊂ 8 ji for some ji ∈ {0, 1, 2, 3}. Consequently,

3⋃
i=1

2αβ M̃∗Tη,i ⊂

3⋃
i=1

8 ji .

This means that for any s ∈Sη\{0}, there exists is ∈{0, 1, 2, 3} such that s+2αβℓs /∈⋃3
j=1 2αβ M̃∗Tη, j + 2Z2 for any ℓs ∈ Tη,is . Define

(3-23) 0 = 10,0 ∪

⋃
s∈Sη\{0}

1s,is ,

where 10,0 =
⋃

ℓ0∈Tη,0
(ℓ0 + 30,ℓ0), 1s,is =

⋃
ℓs∈Tη,is

((s + 2αβℓs)/(2αβ) + 3s,ℓs )

with

(3-24) (s + 2αβTη,is ) ∩

( 3⋃
j=1

2αβ M̃∗Tη, j + 2Z2
)

= ∅,

and 3s,ℓs is defined by (3-10). In view of Lemma 3.5, we get that 0 is a spectrum
of µM̃,D̃ . Moreover, it follows from 0 ∈ 3 and Lemma 2.4 that 0 ∈ 0.

Second, we prove that for any i ∈ {1, 2, 3}, there must exist ℓi ∈ Tη,i such
that 2αβ M̃∗ℓi ∈ 2Z2. Since 0 is a spectrum of µM̃,D̃ with 0 ∈ 0, it follows from
Lemma 2.4 that 2αβ M̃∗−10 is a spectrum of µA,M̃,D̃ with 0 ∈ 2αβ M̃∗−10. Using
(3-11), one has

(3-25) 2αβ M̃∗−10 =

⋃
s′∈Sη

⋃
i∈{0,1,2,3}

⋃
ℓ′

i ∈Tη,i

(s ′
+ 2αβℓ′

i + 2αβ3′

s′,ℓ′

i
),
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where
3′

s′,ℓ′

i
= {γ ∈ Z2

: s ′
+ 2αβℓ′

i + 2αβγ ∈ 2αβ M̃∗−10}.

For s ′
=0 and ℓ′

i =0∈Tη,0, we have 3′

0,0 ̸=∅ since 0∈2αβ M̃∗−10. By Remark 3.6,
there must exist ℓ′

i ∈ Tη,i such that 3′

0,ℓ′

i
̸= ∅ for all 1 ≤ i ≤ 3. Let λ′

i ∈ 3′

0,ℓ′

i
,

where i = 1, 2, 3. Therefore, (3-23) and (3-25) imply that there exist si ∈ Sη,
ℓi ∈

⋃3
j=0 Tη, j and λi ∈ 3si ,ℓi such that (si + 2αβℓi )/(2αβ) + λi ∈ 0 and

(3-26) 2αβ M̃∗ℓ′

i + 2αβ M̃∗λ′

i = si + 2αβℓi + 2αβλi for i = 1, 2, 3.

Moreover, it follows from (3-24) that si +2αβℓi /∈
⋃3

j=1 2αβ M̃∗Tη, j + 2Z2 if si ̸= 0
for i = 1, 2, 3. However, by noting that λi , λ

′

i ∈ Z2, (3-26) implies that

si + 2αβℓi ∈ 2αβ M̃∗ℓ′

i + 2Z2
⊂ 2αβ M̃∗Tη,i + 2Z2

⊂

3⋃
j=1

2αβ M̃∗Tη, j + 2Z2

for i = 1, 2, 3. Therefore, the above discussion shows that si = 0 for i = 1, 2, 3, and
hence ℓi ∈Tη,0 by the definition of 0. This implies 2αβℓi ∈ 2Z2 for i = 1, 2, 3. Com-
bining this with M̃ ∈ M2(Z), si = 0 and λi , λ

′

i ∈ Z2, one may infer from (3-26) that

2αβ M̃∗ℓ′

i = 2αβℓi + 2αβ(λi − M̃∗λ′

i ) ∈ 2Z2 for i = 1, 2, 3.

Therefore, 2αβ M̃∗ℓ′

i ∈ 2Z2 for some ℓ′

i ∈ Tη,i , where i = 1, 2, 3.
It remains to prove M̃ ∈ M2(2Z). For any i ∈{1, 2, 3}, the above conclusion shows

that there must exist ℓi ∈Tη,i such that 2αβ M̃∗ℓi ∈2Z2. For these ℓi ∈Tη,i , i =1, 2, 3,
by the definition of Tη,i and the fact α, β ∈ 2Z + 1, it can easily be checked that

{2αβℓi : i = 1, 2, 3} =

{(
1
0

)
,

(
0
1

)
,

(
1
1

)}
(mod 2Z2).

This together with 2αβ M̃∗ℓi ∈2Z2 and a simple calculation gives that M̃∗
∈ M2(2Z),

which is equivalent to M̃ ∈ M2(2Z). This finishes the proof of Theorem 1.5. □

The following lemma plays an important role in the proof of Theorem 1.6.

Lemma 3.7. Let µM̃,D̃ be a spectral measure, where M̃ and D̃ are given by (1-4)
and (1-5), respectively. If η > 0 in D̃, then M̃ =

( ã
c̃

b̃
d̃

)
satisfies 2η+1

| c̃.

Proof. Suppose, on the contrary, that 2η+1 ∤ c̃. Then one may write c̃ = 2τ c′ for some
integer τ ≤ η and c′

∈ 2Z + 1. Let Q1 = diag(1, 1/2τ ). A simple calculation gives

M1 := Q1 M̃ Q−1
1 =

(
ã 2τ b̃
c′ d̃

)
∈ M2(Z)

and

D1 := Q1 D̃ =

{(
0
0

)
,

(
α

0

)
,

(
ω

2η−τβ

)
,

(
−α−ω

−2η−τβ

)}
⊂ Z2,



FOURIER BASES OF A CLASS OF PLANAR SELF-AFFINE MEASURES 73

where α, β ∈ 2Z + 1. Since µM̃,D̃ is a spectral measure, it follows from Lem-
mas 2.2 and 2.4 that µM1,D1 and µA1,M1,D1 are also spectral measures, where
A1 = diag(2η−τ+1αβ, 2η−τ+1αβ) and µA1,M1,D1 is defined by (2-5).

If τ = η, it follows from Theorem 1.5 that M1 ∈ M2(2Z). This means that c′
∈ 2Z,

a contradiction. Hence the assertion follows.
If τ < η, we derive the contradiction by constructing a spectrum of µM1,D1 .

Recall that Sη−τ and Tη−τ =
⋃3

i=0 Tη−τ,i are defined by (3-5). We first prove the
following two claims.

Claim 1. Let 81 and 83 be given by (3-22). Then

2η−τ+1αβM∗

1Tη−τ,2 ⊂

{
81, if d̃ ∈ 2Z,

83, if d̃ ∈ 2Z + 1.

Proof of Claim 1. For any ℓ ∈ Tη−τ,2, there exist k ∈ h̄α and k ′
∈ h̄2η−τ β such that

(3-27) ℓ =
1

2η−τ+1αβ

(
2η−τ+1kβ

2k ′α−2kω+α

)
.

Since M1 =
( ã

c′

2τ b̃
d̃

)
, τ < η and α, c′

∈ 2Z + 1, it follows from (3-27) that

2η−τ+1αβM∗

1 ℓ =

(
2(2η−τ kãβ+(k ′α−kω)c′)+c′α

2(2ηkb̃β+(k ′α−kω)d̃)+d̃α

)
=

(
1
d̃

)
(mod 2Z2).

Consequently, 2η−τ+1αβM∗

1 ℓ∈81 if d̃ ∈ 2Z, and 2η−τ+1αβM∗

1 ℓ∈83 if d̃ ∈ 2Z+1.
So the claims follows. □

Claim 2. Let 81 and 83 be given by (3-22). Then for any s ∈ Sη−τ \ {0}, the
following two statements hold:

(i) There exist some is ∈ {0, 1, 2, 3} such that s + 2η−τ+1αβℓs /∈ 81 for any
ℓs ∈ Tη−τ,is .

(ii) There exist some is ∈ {0, 1, 2, 3} such that s + 2η−τ+1αβℓs /∈ 83 for any
ℓs ∈ Tη−τ,is .

Proof of Claim 2. Begin by observing that if α ∈ 2Z + 1 and τ < η, then for any
ℓi ∈ Tη−τ,i , i = 0, 1, 2, 3, we have

2η−τ+1αβℓ0 =

(
2η−τ+1k0β

2k ′

0α−2k0ω

)
=

(
0
0

)
(mod 2Z2),

2η−τ+1αβℓ1 =

(
2η−τ (2k1β+β)

2k ′

1α−2k1ω−ω

)
=

(
0
ω

)
(mod 2Z2),

2η−τ+1αβℓ2 =

(
2η−τ+1k2β

2k ′

2α−2k2ω+α

)
=

(
0
1

)
(mod 2Z2)
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and

2η−τ+1αβℓ3 =

(
2η−τ (2k3β+β)

2k ′

3α−2k3ω+α−ω

)
=

(
0

ω−1

)
(mod 2Z2)

for some ki ∈ h̄α and k ′

i ∈ h̄2η−τ β . Without loss of generality, we assume that ω ∈ 2Z

(the case ω ∈ 2Z + 1 can be similarly proved). Then a simple calculation gives

(3-28) 2η−τ+1αβℓ0, 2η−τ+1αβℓ1 ∈ 80 and 2η−τ+1αβℓ2, 2η−τ+1αβℓ3 ∈ 82.

Recall that Tη−τ =
⋃3

i=0 Tη−τ,i . Then for any s = (s1, s2)
t
∈ Sη−τ \ {0}, we take

ℓs ∈


Tη−τ , if s1 ∈ 2Z,

Tη−τ,2 ∪ Tη−τ,3, if s1 ∈ 2Z + 1, s2 ∈ 2Z,

Tη−τ,0 ∪ Tη−τ,1, if s1, s2 ∈ 2Z + 1.

This together with (3-28) yields that s+2η−τ+1αβℓs /∈81, which proves (i). For (ii),
we take

ℓs ∈


Tη−τ , if s1 ∈ 2Z,

Tη−τ,0 ∪ Tη−τ,1, if s1 ∈ 2Z + 1, s2 ∈ 2Z,

Tη−τ,2 ∪ Tη−τ,3, if s1, s2 ∈ 2Z + 1.

Consequently, s + 2η−τ+1αβℓs /∈ 83 by (3-28). Thus Claim 2 follows. □

We now continue with the proof of the case τ < η. In the following proof,
we might as well assume d̃ ∈ 2Z in M1. If d̃ ∈ 2Z + 1, we only need to replace
Claim 2(i) with Claim 2(ii).

Since τ < η and d̃ ∈ 2Z, it follows from Claim 2(i) that for any s ∈ Sη−τ \ {0},
there must exist some is ∈ {0, 1, 2, 3} such that s + 2η−τ+1αβℓs /∈ 81 for any
ℓs ∈ Tη−τ,is . Let 3̃ be a spectrum of µA1,M1,D1 with 0 ∈ 3̃. Define

0̃ = 1̃0,0 ∪

⋃
s∈Sη−τ \{0}

1̃s,is ,

where

1̃0,0 =

⋃
ℓ0∈Tη−τ,0

(ℓ0 + 3̃0,ℓ0), 1̃s,is =

⋃
ℓs∈Tη−τ,is

(
s + 2η−τ+1αβℓs

2η−τ+1αβ
+ 3̃s,ℓs

)
with

(s + 2η−τ+1αβTη−τ,is ) ∩ 81 = ∅,

and
3̃s,ℓs = {γ ∈ Z2

: s + 2η−τ+1αβℓs + 2η−τ+1αβγ ∈ 3̃}.

Using the similar argument as in the proof of Lemma 3.5, we can show that 0̃ is
a spectrum of µM1,D1 with 0 ∈ 0̃.
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Next, we prove that there must exist ℓ ∈ Tη−τ,2 such that 2η−τ+1αβM∗

1 ℓ ∈ 2Z2.
Since 0̃ is a spectrum of µM1,D1 with 0 ∈ 0̃, it follows from Lemma 2.4 that
2η−τ+1αβM∗−1

1 0̃ is a spectrum of µA1,M1,D1 with 0 ∈ 2η−τ+1αβM∗−1
1 0̃. Similar

to (3-25), we have that

2η−τ+1αβM∗−1
1 0̃ =

⋃
s′∈Sη−τ

⋃
i∈{0,1,2,3}

⋃
ℓ′

i ∈Tη−τ,i

(s ′
+ 2η−τ+1αβℓ′

i + 2η−τ+1αβ3̃′

s′,ℓ′

i
),

where

3̃′

s′,ℓ′

i
= {γ ∈ Z2

: s ′
+ 2η−τ+1αβℓ′

i + 2η−τ+1αβγ ∈ 2η−τ+1αβM∗−1
1 0̃}.

For s ′
= 0 and ℓ′

i = 0 ∈ Tη−τ,0, it follows from 0 ∈ 2η−τ+1αβM∗−1
1 0̃ that 3̃′

0,0 ̸=∅.
Similar to Remark 3.6, one may infer that there exists ℓ′

2 ∈Tη−τ,2 such that 3̃′

0,ℓ′

2
̸=∅.

Therefore, applying Claim 1 and the similar argument as in the proof of Theorem 1.5,
we can easily conclude that 2η−τ+1αβM∗

1 ℓ′

2 ∈ 2Z2. Thus the assertion follows.
Finally, we prove 2η+1

| c̃. The above discussion means that there exist some
ℓ ∈ Tη−τ,2 such that 2η−τ+1αβM∗

1 ℓ ∈ 2Z2. For these ℓ ∈ Tη−τ,2, it follows from
(3-27) that

2η−τ+1αβM∗

1 ℓ =

(
2(2η−τ kãβ+(k ′α−kω)c′)+c′α

2(2ηkb̃β+(k ′α−kω)d̃)+d̃α

)
for some k ∈ h̄α and k ′

∈ h̄2η−τ β . Together with 2η−τ+1αβM∗

1 ℓ ∈ 2Z2, it yields that
c′α ∈ 2Z. This contradicts the fact c′, α ∈ 2Z+1, and hence the assumption 2η+1 ∤ c̃
does not hold. Therefore, we obtain 2η+1

| c̃, and complete the proof. □

Having established the above preparation, now we are in a position to prove
Theorem 1.6.

Proof of Theorem 1.6. We first prove the necessity. Suppose µM̃,D̃ is a spectral
measure. In view of Lemma 3.7, we have that M̃ =

( ã
c̃

b̃
d̃

)
satisfies 2η+1

| c̃. Thus one
may write c̃ = 2η+1κ with κ ∈ Z. Let Q̃ = diag(1, 1/2η). By a simple calculation,
we get

(3-29) M̄ := Q̃ M̃Q̃−1
=

(
ã 2ηb̃

2κ d̃

)
and

(3-30) D̄ := Q̃ D̃ =

{(
0
0

)
,

(
α

0

)
,

(
ω

β

)
,

(
−α−ω

−β

)}
.

Since µM̃,D̃ is a spectral measure, it follows from Lemma 2.2 that µM̄,D̄ is also a
spectral measure. Then with Theorem 1.5, we have M̄ ∈ M2(2Z). This together
with (3-29) gives that ã, d̃ ∈ 2Z. Hence the necessity follows.
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Now we are devoted to proving the sufficiency. Suppose M̃ =
( ã

c̃
b̃
d̃

)
, where

ã, d̃ ∈ 2Z and 2η+1
| c̃. Then there exist a∗, c∗, d∗

∈ Z such that ã = 2a∗, c̃ = 2η+1c∗

and d̃ = 2d∗. Let Q̃ = diag(1, 1/2η). A simple calculation gives

M ′
:= Q̃ M̃Q̃−1

=

(
2a∗ 2ηb̃
2c∗ 2d∗

)
,

and D̄ = Q̃ D̃ is given by (3-30). Since η > 0, it follows from Theorem 1.5 that
µM ′,D̄ is a spectral measure. Therefore, µM̃,D̃ is a spectral measure by Lemma 2.2.

This completes the proof of Theorem 1.6. □

4. Proofs of Theorems 1.3 and 1.4

We are committed to investigating the spectrality of the measure µM,D, where
M ∈ M2(Z) is an expansive integer matrix and D is given by (1-2). We first prove
Theorem 1.3 by using Theorems 1.5 and 1.6, and then prove Theorem 1.4. Finally,
we provide some concluding remarks.

Proof of Theorem 1.3. The sufficiency follows directly from Theorem 1.2 and
Lemma 2.2. Now we are devoted to proving the necessity. Suppose that µM,D is a
spectral measure. Let η = max{r : 2r

| (α1β2 −α2β1)}, and let M̃ and D̃ be given
by (1-4) and (1-5), respectively. That is, M̃ = QMQ−1 and D̃ = Q D. In view
of Lemma 2.2, µM̃,D̃ is a spectral measure. It suffices to prove that there exists
a matrix Q̃ ∈ M2(R) such that (M̄, D̄) is admissible, where M̄ = Q̃ M̃Q̃−1 and
D̄ = Q̃ D̃. The proof will be divided into the following two cases.

Case 1: η = 0. Since µM̃,D̃ is a spectral measure, it follows from η = 0 and
Theorem 1.5 that (M̃, D̃) is admissible. Thus the assertion follows by taking
Q̃ = diag(1, 1).

Case 2: η > 0. Since µM̃,D̃ is a spectral measure, Theorem 1.6 implies that one may
write M̃ =

( 2a′

2η+1c′

b′

2d ′

)
, where a′, b′, c′, d ′

∈ Z. We take Q̃ = diag(1, 1/2η). Then

M̄ = Q̃ M̃Q̃−1
=

(
2a′ 2ηb′

2c′ 2d ′

)
and D̄ = Q̃ D̃ =

{(
0
0

)
,

(
α

0

)
,

(
ω

β

)
,

(
−α−ω

−β

)}
.

Using η > 0, it is clear that M̄ ∈ M2(2Z). Hence (M̄, D̄) is admissible by
Theorem 1.5.

This completes the proof of Theorem 1.3. □

Next, we focus on proving Theorem 1.4.

Proof of Theorem 1.4. Let M̃ and D̃ be given by (1-4) and (1-5), respectively. That is,

(4-1) M̃ = QMQ−1 and D̃ = Q D,



FOURIER BASES OF A CLASS OF PLANAR SELF-AFFINE MEASURES 77

where the matrix Q ∈ M2(Z) satisfies det(Q) = 1. In view of Lemma 2.2, µM,D

is a spectral measure if and only if µM̃,D̃ is a spectral measure. This implies that
Theorem 1.4(i) is equivalent to Theorem 1.5(i). Note that det(Q) = 1; hence, by
a simple calculation, one has that

M ∈ M2(2Z) ⇐⇒ M̃ ∈ M2(2Z).

Thus Theorem 1.4(ii) and (iii) are equivalent to Theorem 1.5(ii) and (iii), respectively.
Finally, from the Definition 1.1 and (4-1), it is easy to see that (M̃, D̃) is admissible
⇐⇒ there exists a set C̃ ⊂ Z2 such that (M̃, D̃, C̃) is a Hadamard triple ⇐⇒

(M, D, Q∗C̃) is a Hadamard triple ⇐⇒ (M, D) is admissible. Consequently,
Theorem 1.4(iv) is equivalent to Theorem 1.5(iv).

Therefore, the desired result now is obtained by appeal to Theorem 1.5. □

At the end of this paper, we give some further remarks and list an open question
which is related to our main results. The following example is specifically used to
display our results, which are convenient to judge whether the measure µM,D in
Question 1 is a spectral measure.

Example 4.1. Let M1 =
( 2

2
b
2

)
and M2 =

( 2
4

b
2

)
be two expansive integer matrices,

and let

D1 =

{(
0
0

)
,

(
1
0

)
,

(
0
1

)
,

(
−1
−1

)}
and D2 =

{(
0
0

)
,

(
1
0

)
,

(
0
2

)
,

(
−1
−2

)}
.

Then the following statements hold:

(i) µM1,D1 and µM2,D1 are spectral measures if and only if b ∈ 2Z.

(ii) µM1,D2 is a nonspectral measure, while µM2,D2 is a spectral measure.

Proof. By a simple calculation, this follows directly from Theorems 1.5 and 1.6. □

It is worth noting that if α1β2 − α2β1 ∈ 2Z in Theorem 1.3, we cannot give the
specific form of matrix M . However, if α1, α2, β1 and β2 are fixed, we can describe
the specific form by applying Theorem 1.6. The following simple but interesting
example is devoted to illustrating this fact.

Example 4.2. Let M =
(a

c
b
d

)
be an expansive integer matrix, and let

D =

{(
0
0

)
,

(
1
2

)
,

(
3
8

)
,

(
−4
−10

)}
.

Then µM,D is a spectral measure if and only if a, d ∈ 2Z and c ∈ 4Z.

Proof. Write Q =
( 3

−2
−1

1

)
. Then it is direct to compute that

M̃ := QMQ−1
=

(
3a−c+2(3b−d) 3a−c+3(3b−d)

c−2a+2(d−2b) c−2a+3(d−2b)

)
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and

D̃ := Q D =

{(
0
0

)
,

(
1
0

)
,

(
1
2

)
,

(
−2
−2

)}
.

By Lemma 2.2, µM,D is a spectral measure if and only if µM̃,D̃ is a spectral measure.
For the sufficiency, it follows from a, d ∈2Z and c ∈4Z that there exist ã, c̃, d̃ ∈Z

such that a = 2ã, d = 2d̃ and c = 4c̃. Thus M̃ becomes

M̃ =

(
2(3ã−2c̃+3b−d) 3a−c+3(3b−d)

4(c̃−ã+d̃−b) 2(2c̃−a+3d̃−b)

)
.

This together with Theorem 1.6 yields that µM̃,D̃ is a spectral measure, and hence
the sufficiency follows.

Conversely, suppose µM̃,D̃ is a spectral measure. Applying Theorem 1.6, we have

3a − c + 2(3b − d) ∈ 2Z,

c − 2a + 2(d − 2b) ∈ 4Z,

c − 2a + 3(d − 2b) ∈ 2Z.

Consequently, 3a − c, c + 3d ∈ 2Z and c − 2a + 2d ∈ 4Z. By a simple calculation,
we infer that a, d ∈ 2Z and c ∈ 4Z. This proves the necessity. □

We remark here that the digit set D in (1-2) satisfies α1β2 − α2β1 ̸= 0, and so it
is of interest to consider the following question:

Question 2. For an expansive matrix M ∈ M2(Z) and the digit set

D =

{(
0
0

)
,

(
α1

α2

)
,

(
β1

β2

)
,

(
−α1−β1

−α2−β2

)}
with α1β2 − α2β1 = 0, what is the sufficient and necessary condition for µM,D to
be a spectral measure?

In fact, for the matrix M and the digit set D given in the above question, using
the methods of [34], we can find an integer matrix Q such that M̄ := QMQ−1 and

D̄ := Q D =

{(
0
0

)
,

(
α

0

)
,

(
β

0

)
,

(
−α−β

0

)}
,

where α, β ∈ Z and M̄ is an expansive integer matrix with det(M̄) = det(M).
Lemma 2.2 indicates that to consider the spectrality of µM,D, we only need to
consider the measure µM̄,D̄. However, it is apparent that the set Z(m D̄) includes
free variables since the root of

m D̄(ξ) =
1

#D̄

∑
d∈D̄

e2π i⟨d,ξ⟩
=

1
#D̄

(1 + e2παξ1 + e2πβξ1 + e2π(−α−β)ξ1) = 0



FOURIER BASES OF A CLASS OF PLANAR SELF-AFFINE MEASURES 79

is independent of ξ2, where ξ = (ξ1, ξ2)
t . We have not yet discovered an effective

method to address this situation. An answer to Question 2 may provide insights
into the study of the spectrality of fractal measures.
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GROUP TOPOLOGIES ON AUTOMORPHISM GROUPS
OF HOMOGENEOUS STRUCTURES

ZANIAR GHADERNEZHAD AND JAVIER DE LA NUEZ GONZÁLEZ

We provide sufficient conditions for the standard topology (generated by
stabilizers of finite sets) on the automorphism group of a countable homoge-
neous structure to be minimal among all Hausdorff group topologies on the
group. Under certain assumptions, such as when the structure is the Fraïssé
limit of a relational class with the free amalgamation property, we are able
to classify all the group topologies on the automorphism group coarser than
the standard topology even when the latter is not minimal.

1. Introduction

Minimality. A topological group (G, τ ) consists of a group (G, · ) and a topology τ
on G such that the map ρ : G×G → G, where ρ(g, h)= gh−1, is jointly continuous.

Definition 1.1. A Hausdorff topological group (G, τ ) is called minimal if G does
not admit a Hausdorff group topology strictly coarser than τ or, equivalently, if
every bijective continuous homomorphism from G to another Hausdorff topological
group is a homeomorphism. The topological group (G, τ ) is totally minimal if every
continuous surjective homomorphism to a Hausdorff topological group is open.

Clearly, every totally minimal group is minimal. Also, for a topological group
(G, τ ), if the only strictly coarser topology is {∅,G} then (G, τ ) is totally minimal.
Indeed, in that case for any continuous surjective homomorphism φ :(G, τ )→(H, σ )
the pullback φ∗(σ ) of σ by φ satisfies φ∗(σ )⊆ τ and thus φ∗(σ ) ∈ {τ, {∅,G}}, so
the map σ is either a homeomorphism or the trivial map. For a group topology
τ ′ ⊊ τ , by considering the closure of the identity in τ ′, one easily sees that this
applies, in particular, to the case in which (G, τ ) is minimal and has no nontrivial
normal closed subgroups.
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The notion of minimality for topological groups was introduced as early as 1971
as a generalization of compactness. In fact it is easy to see that any compact
Hausdorff topological group is minimal. For more information about minimality,
we refer the reader to the survey by Dikranjan and Megrelishvili [2014].

Given a group G of permutations of some set � and A ⊆�, let

G A = {g ∈ G | ga = a for all a ∈ A}.

Let [�]
<ω be the set of all finite subsets of �. The collection {G A | A ∈ [�]

<ω
}

is a base of neighbourhoods at the identity of a group topology which we call the
standard topology and denote by τst. More generally for each G-invariant X ⊆�

there is an associated group topology τ X
st generated by {G A | A ∈ [X ]

<ω
}.

One of the earliest results on minimality due to Gaughan [1967] states that
(S∞, τst) is totally minimal, where S∞ denotes the group of all permutations of a
countable set �.

Given a countable first-order structure M with universe M , the automorphism
group of M is a τst-closed subgroup of S∞ = S(M) and vice versa: any closed
subgroup of S(M) is the automorphism group of some countable structure on M .
The interplay between the dynamical properties of Aut(M) and the logical and
combinatorial properties of M has been widely studied in the literature, beginning
with the characterization due to Engeler, Ryll-Nardzewski, Svenonius and others
of oligomorphic subgroups of S∞ as the automorphism groups of ω-categorical
countable structures. Recall that an oligomorphic group is a closed subgroup of S∞

whose diagonal action on Mn has finitely many orbits, for each n ∈ N.
In this context τst is often referred to in the literature as the pointwise convergence

topology.
In light of the above the following is thus a natural question, already asked in

[Dikranjan and Megrelishvili 2014].

Problem 1. Let M be a countable ω-categorical (ω-saturated, sufficiently nice)
first-order structure and G = Aut(M). When is (G, τst) (totally) minimal?

A deep result in this direction appeared in recent work by Ben Yaacov and
Tsankov [2016], where the authors show that automorphism groups of countable
ω-categorical, stable continuous structures are totally minimal with respect to the
pointwise convergence topology. This specializes to the result that the automorphism
groups of classical ω-categorical stable structures are totally minimal with respect
to τst.

Not all oligomorphic groups are minimal with respect to τst. As pointed out in
[Ben Yaacov and Tsankov 2016], an example of this is Aut(Q, <) (see Corollary C
for a generalization). However even in those cases it is possible to formulate the
following more general question:
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Problem 2. Let M be a countable ω-categorical (or sufficiently nice) first-order
structure and G = Aut(M). Describe the lattice of all Hausdorff group topologies
on G coarser than τst.

This work was mainly motivated by [Ben Yaacov and Tsankov 2016] and is
meant as a preliminary exploration of Problems 1 and 2 in the classical setting
outside the stability constraint.

In its broadest lines the strategy followed by [Ben Yaacov and Tsankov 2016]
goes back to [Uspenskij 2008], where the author shows that the isometry group of
the Urysohn sphere is totally minimal with the pointwise convergence topology.
Both proofs rely on the assumption that the group in question is Roelcke precompact
and use a well-behaved independence relation among (small) subsets of the structure
to endow the Roelcke precompletion of the group with a topological semigroup
structure. Information on the topological quotients of the original group is then
recovered from the latter via the functoriality of Roelcke compactification and the
Ellis lemma. Recall that a topological group (G, τ ) is Roelcke precompact if for
any neighbourhood W of 1 there exists a finite F ⊂ G such that W FW = G. For
closed subgroups of S∞ this is equivalent to being oligomorphic.

In contrast, our methods for obtaining (partial) minimality results are completely
elementary. There are drawbacks to this lack of sophistication: for instance, we
are not able to recover the result in [Ben Yaacov and Tsankov 2016] for classical
structures. On the other hand we do not rely on assumptions of Roelcke precom-
pactness (except for certain residual assumptions in some cases). Although we are
not discussing metric structures or Urysohn spaces in this paper, we would like
to mention that a refinement of the approached presented here has enabled us to
answer in the positive the question about the minimality of the isometry group of
the (unbounded) Urysohn space posed in [Uspenskij 2008].

Problems 1 and 2 could be also formulated for semigroup topologies on the
endomorphism monoid of a countable relational structure. Some general techniques
for characterising minimal and maximal semigroup topologies on the endomorphism
monoid of a countable relational structure have been recently introduced in [Elliott
et al. 2023].

Main results. Generally speaking, an independence relation is a ternary relation |⌣

defined on some collection of sets of elements of the structure such that A |⌣C B is
meant to capture the intuitive idea that B does not contain any information about A
not already contained in C . The paradigmatic example is that of forking indepen-
dence in model theory. The study of the connections between the existence of a
well-behaved independence relation on a homogeneous structure (see Definition 2.1)
and the properties of the automorphism group goes back to [Tent and Ziegler 2013]
(see also [Evans et al. 2016]).



86 ZANIAR GHADERNEZHAD AND JAVIER DE LA NUEZ GONZÁLEZ

We provide a simple technical criterion (Proposition 2.12) for (relative) minimal-
ity for τst in a relatively general setting. We derive from this general minimality
results stated in terms of the existence of an independence relation satisfying
certain axioms and in turn derive from this two main theorems. The first applies to
Fraïssé limits of free amalgamation classes, i.e., Fraïssé classes closed under free
amalgamation (more details in Section 3). Some well-known examples of Fraïssé
limits of free amalgamation classes are the random graph, random hypergraph,
homogeneous Kn-free graphs for n ⩾ 3, etc.

Theorem A. Let M be the Fraïssé limit of a free amalgamation class in a countable
relational language. Let G = Aut(M). Then any group topology τ ⊆ τst on G is
of the form τ X

st , where X ⊆ M is some G-invariant set. In particular, if the action
of G on M is transitive, then there are no nontrivial group topologies on G strictly
coarser than τst and thus (G, τst) is totally minimal.

Rather than the free amalgamation property directly, the proof of Theorem A
uses the freedom axiom, a more abstract property introduced in [Conant 2017].

The second application of the Proposition 2.12 is in the context of simple theories.
Simple structures (i.e., theories) occupy an important place in classification theory.
We refer the reader to [Tent and Ziegler 2012], [Wagner 2000] and [Kim 2014] for
the definition of simple theories, forking and canonical bases.

A simple theory T is called one-based if Cb(a/A)⊆ bdd(a) for any hyperimagi-
nary element a and a small subset A of the monster model. Our second main result
is the following:

Theorem B. Let M be a simple, ω-saturated countable structure with locally finite
algebraic closure and weak elimination of imaginaries. Assume furthermore that
Th(M) is one-based. Let G = Aut(M). Then:

(1) If G acts transitively on M, then (G, τst) is minimal.

(2) If all singletons are algebraically closed, then any group topology τ on G
coarser than τst is of the form τ X

st for some G-invariant X ⊆ M.

Technically speaking, the use of the freedom axiom and stationarity in Theorem A
is replaced in Theorem B by that of one-basedness and the independence property
for forking independence in simple theories.

One important class of structures that fall under the assumptions of Theorem B
are Lie geometries and their affine spaces as described in [Cherlin and Hrushovski
2003] and [Kantor et al. 1989]. Another class of examples of structures to which
Theorem B applies can be obtained using the general techniques in [Chatzidakis
and Pillay 1998].

Finally, we present a natural variant of ideas of [Uspenskij 2008] and [Ben Yaacov
and Tsankov 2016] in the context of automorphism groups of first-order structures.
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Given a structure M with group of automorphisms G, we describe a semigroup of
partial types Rpa(M) containing G consisting of partial infinitary types encoding the
relationships between two copies of M, and show that any idempotent in Rpa(M)

which is invariant under the involution given by exchanging the blocks of coordinates
corresponding to the two models and the action of G can be associated to a group
topology on G coarser than τst.

We show that under certain mild conditions, the topology τst on the automorphism
group of any distal Fraïssé limit is not minimal.

Corollary C. Let M be any distal Fraïssé limit in a finite relational language
with trivial algebraic closure. Then the type qinf defines a group topology on
G = Aut(M) strictly coarser than τst.

Layout. The paper is organized as follows. In Section 2 we prove our main technical
criterion, Proposition 2.12, of (relative) minimality for τst.

Section 3 contains some preliminary discussion on independence relations and
Fraïssé constructions, along with the proofs of Theorems A and B. In Section 3D we
have provided an example where we show total minimality is not preserved under
taking open finite-index subgroups. Finally in Section 3E we have shown that τst

in certain simple ω-categorical structures built using the Hrushovski construction
method are minimal (Corollary 3.11). Structures that are built using this method
and predimension functions are not one-based.

Section 4 is dedicated to the systematic connection between group topologies
below the standard topology and types described above as well as the proof
of Corollary C.

2. A relative minimality criterion for τst

Given a topological group (G, τ ) and g ∈ G we denote by Nτ (g) the filter of (not
necessarily open) neighbourhoods of g in τ . Since Nτ (g)= gNτ (1G)= Nτ (1G)g
for any g ∈ G, any group topology τ is uniquely determined by Nτ (1G). Given a
filter V on G at 1G such that

• for every U ∈ V there is V ∈ V such that V −1
⊆ U ,

• for every U ∈ V there is V ∈ V such that V V ⊆ U , and

• U g
∈ V for every U ∈ V and g ∈ G,

there is a unique group topology τ on G such that V = Nτ (1G). Given a family Y
of subsets of G containing 1G , we say that Y generates a group topology τ at the
identity if Y generates Nτ (1G) as a filter.

Given a set X we let [X ]
<ω stand for the collection of all finite subsets of X .

Our setting consists of an infinite set � and some G ⩽ S(�), where S(�) is the
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group of permutations of �. It is easy to see using the criterion above that the
collection {G A | A ∈ [�]

<ω
} is a base of neighbourhoods of the identity of a unique

group topology τst, which we will refer to as the standard topology. We are mainly
interested in the case in which � is countable, in which case S(�), abbreviated
as S∞, is a Polish group.

By a closure operator on [�]
<ω we mean a map cl : [�]

<ω
→ [�]

<ω that
preserves inclusion and satisfies A ⊆ cl(A)= cl(cl(A)), for each A ∈ [�]

<ω. There
is a bijective correspondence between (G-equivariant) closure operators cl and
(G-invariant) families X ⊆ [�]

<ω closed under intersections. Each X gives a
closure operator cl(−) by taking as cl(A) for any finite A the smallest set in X

containing A. In the opposite direction we associate cl with the class of cl-closed
sets: X = {A ∈ [�]

<ω
| cl(A)= A}.

Given a family X of subsets of a set �, denote by (X) the collection of all
(finite) tuples of elements whose coordinates enumerate some member of X. As is
customary, the same letter will be used to refer to either a tuple or the corresponding
set depending on the context. In particular we might use an expression such as BC
to denote the union of the ranges of B and C .

Given tuples A, B, C of elements from � we write A ∼=
G B if there exists some

g ∈ G such that g A = B and given an additional C we write A ∼=
G
C B if there

is g ∈ GC such that g A = B. Given A ⊂ � we let aclG(A) stand for the union
of all elements of � whose orbit under G A0 is finite for some finite subset A0

of A. We say aclG(−) is locally finite if aclG(A) is finite whenever A is. In that
case the restriction of aclG to [�]

<ω is a closure operator on [�]
<ω. We write

XG
= {A ∈ [�]

<ω
| aclG(A)= A} and we say that aclG is trivial if XG

= [�]
<ω.

Definition 2.1. Let M be a structure with universe M .
• The structure M is called homogeneous if for every A, B ⊆ M such that

|A| = |B| < |M | and tp(A) = tp(B) there is an automorphism of M which
sends A to B.

• The structure M is called ω-saturated if for every A ∈ [M]
<ω any type over A

is realised in M.

• A relational structure M is called ultrahomogeneous if any isomorphism
between finite substructures of M extends to an automorphism of M.

Let G be the group of automorphisms of some structure M with universe M .
Recall that if M is countable and ω-saturated, then for finite A we have that aclG(A)
coincides with the algebraic closure of A. If M is ω-saturated and countable, then it
is homogeneous. In particular a relational structure M if ω-saturated and countable,
then it is ultrahomogeneous. Typical examples of countable ultrahomogeneous
structures are structures obtained from the Fraïssé construction method in a relational
language (see Section 3B).
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The proof of the following statements contains two auxiliary observations. As
usual in such cases we mark the end of the proof of the subordinate results with a
shaded (as opposed to white) square.

Proposition 2.2. Let G be a group of permutations of a set � for which aclG(−) is
locally finite. Suppose we are given some G-invariant X ⊆� and another group
topology τ ∗

⊂ τ X
st such that for some constant K ∈ N the following property holds:

(⋄) For any A, B ∈ XG and U ∈ Nτ ∗(1G) there exists U ′
∈ Nτ ∗(1G) such that

((G A ∩ U )G B)
K

= G A∩B ∩ U ′.

Then any group topology τ ⊆ τ X
st must satisfy at least one of the following two

conditions:

(1) Given x ∈ X there exists W ∈ Nτ (1G) such that gx ∈ aclG(x) for each g ∈ W .

(2) There exists some G-invariant X ′ ⊊ X such that for all W ∈ Nτ (1G) there is
U ′

∈ Nτ ∗(1G) and U ′′
∈ N

τ X ′

st
(1G) such that U ′

∩ U ′′
⊆ W .

Proof. Assume the first alternative does not hold. Then there is x0 ∈ X such that for
any W ∈Nτ (1G) there exists g ∈ W such that g(x0) ̸∈ aclG(x0). Let X ′

= X \G ·x0.
Our goal is to show point (2), that is, that any neighbourhood W of 1G in τ is also
a neighbourhood of the identity in any topology containing τ ∗ and τ X ′

st . We prove
this via two observations.

Observation 2.3. For any a ∈ G · x0, any finite B ⊂� and any W ∈ Nτ (1G) there
exists some g ∈ W such that ga ̸∈ B.

Proof. Suppose the condition above fails for some a, B, and W . By Neumann’s
lemma there exists some h ∈ Ga such that h(B)∩ B ⊆ aclG(a). This means that
any g in W ∩ W h−1

∈ Nτ (1G) must take a to a point in aclG(a). This contradicts
the choice of x0 and the fact that any a ∈ G · x0 must have the same property, by
invariance of Nτ (1G) under conjugation. ■

The following observation follows from (⋄) by an induction argument and we
leave the proof to the reader.

Observation 2.4. There is a function µ : N → N such that given any finite collection
{B j }

r
j=1 ⊂ XG , U ∈ Nτ ∗(1G) and W ⊆ G containing U ∩

⋃r
j=1 G B j there exists

U ′
∈ Nτ ∗(1G) such that G⋂r

j=1 B j
∩ U ′

⊆ Wµ(r).

Fix some arbitrary W ∈Nτ (1G). Pick W0 = W −1
0 ∈Nτ (1G) such that W 2K

0 ⊆ W .
Since τ ⊆ τ X

st , there exists some finite A ⊂ X such that G A ⊆ W0. By local finiteness
we may assume A = aclG(A). Let {a j }

r
j=1 := A ∩ (G · x0).

Pick W1 = W −1
1 ∈ Nτ (1G) such that W 3µ(r)

1 ⊆ W0, where µ is the function
given by Observation 2.4. Let B ⊂ � be a finite subset such that G B ⊂ W1. We
may assume again B ∈ XG . By Observation 2.3 for any 1 ⩽ j ⩽ r there exists
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some g j ∈ W1 such that g j a j ̸∈ B or, equivalently, a j ̸∈ B j := g−1
j B. Notice that

G B j = Gg j
B ⊆ W 3

1 .
Let C =

⋂r
j=1 B j . According to Observation 2.4 (for U = G) there is U ′

∈

Nτ ∗(1G) such that GC ∩ U ′
⊂ (W 3

1 )
µ(r)

⊆ W0. A final direct application of (⋄)
(again with U = G) yields some U ′

0 ∈ Nτ ∗(1G) such that

U ′

0 ∩ GC∩A ⊆ (GC G A)
K

⊆ W 2K
0 ⊆ W.

By construction C ∩ A ⊆ X ′ and thus U ′′

0 := G A∩C ∈ τ X ′

st . As W is an arbitrary
neighbourhood of 1G in τ we conclude that case (2) of the statement holds and so
we are done. □

We elaborate further on the same idea:

Lemma 2.5. Let G be a group of permutations of a set �, {X j } j∈J some collection
of G-invariant subsets of � and Z =

⋂
j∈J X j . Assume that aclG(x) = x for

any x ∈ � and that there exists K > 0 such that for any finite A, B ⊂ � we have
(G AG B)

K
= G A∩B . Then τ Z

st =
⋂

j∈J τ
X j
st .

Proof. We begin by noting that just as in Observation 2.4 one can show by induction:

Observation 2.6. There exists a function µ : N → N such that for any finite
collection {Bl}

r
l=1 ⊆ [�]

<ω and any V ⊆ G containing G Bl for all 1 ⩽ l ⩽ r we
have G⋂r

l=1 Bl
⊆ V µ(r).

Let τ0 =
⋂

j∈J τ
X j
st . The inclusion τ Z

st ⊆ τ0 is clear. Take now any W ∈ Nτ0(1G).
Fix j0 ∈ J . Since W ∈ τ X j0st , there exists some finite A ⊆ X j0 such that G A ⊆ W .
Let {a j }

r
j=1 := A \ Z . Pick W0 = W −1

0 ∈ Nτ0(1G) such that Wµ(r+1)
0 ⊆ W . For

each 1 ⩽ l ⩽ r choose some jl ∈ J such that al ̸∈ X jl and then some finite Bl ⊆ X jl
such that G Bl ⊆ W0. Observation 2.6 and the choice of W0 implies GC ⊆ W , where
C = A ∩

⋂r
l=1 Bl . Since C ⊆ Z we have shown U ⊆ W for some U ∈ τ Z

st . Since
W ∈ Nτ0(1G) was arbitrary we have τ0 ⊆ τ Z

st and we are done. □

Lemma 2.7. Let G be the automorphism group of some structure M endowed with
a G-invariant locally finite closure operator cl(−) on M and a group topology τ
coarser than τst. Assume that the action of G is transitive and there is some
W ∈ Nτ (1G) and a ∈ M such that ga ∈ cl(a), for each g ∈ W . Then either τ is not
Hausdorff or τ = τst.

Proof. Notice that by the transitivity of the action of G on M and continuity of the
inverse operation for every a ∈ M there are Ua,Wa ∈Nτ (1G) such that f (a)∈ cl(a)
for any f ∈ Wa and g−1(a) ∈ cl(a) for any g ∈ Ua . For a finite tuple A in M we
write WA =

⋂
a∈A Wa . Given a, b ∈ M , we say that a ∼ b if a ∈ cl(b) and b ∈ cl(a).

This is clearly an equivalence relation. If we let W ′
a = Wa ∩

⋂
z∈cl(a) Uz , then any

f ∈ W ′
a must preserve the class [a] ∈ M/∼ setwise, that is, W ′

a ⊂ G[a]. Indeed,
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if g ∈ W ′
a , then ga ∈ cl(a). On the other hand, since g ∈ Uga we must have

a = g−1ga ∈ cl(ga), so a ∼ ga.
For any V ∈ Nτ (1G) and any finite ∼-closed A ⊂ M consider the set

Y A
V = { f : A → A | ∃g ∈ V such that g↾A = f and g([a])= [a] for all a ∈ A}.

Notice that this set is finite, and that given ∼-closed A ⊂ B ⊂ M and f ∈ Y B
V we

have f ↾A ∈ Y A
V . Invariance should be clear from the fact that A is ∼-closed and

the definition of Y A
V .

Lemma 2.8. Either Y A
V = {idA} for some V ∈ Nτ (1G) and finite ∼-closed A or

there exists f ∈ G \ {1G} such that for all ∼-closed A ⊂ M and all V ∈ Nτ (1G) we
have f ↾A ∈ Y A

V .

Proof. Recall that according to the assumption the closure is locally finite. If the
first alternative is not the case, then from Observation 2.4 and König’s lemma it
follows that there is a function f : M → M such that f ↾A ∈ Y A

V for any ∼-closed A
and V ∈ Nτ (1G). The fact that f ↾A is a type-preserving bijection of A for any
such A implies f ∈ G. ■

If the first possibility in Lemma 2.8 holds, then G A contains W ′

A ∩ V and is thus
a neighbourhood of the identity in τ , which implies that τ = τst. We claim that if the
second possibility is satisfied the resulting f ∈ G \ {1G} satisfies f ∈

⋂
V ∈Nτ (1G)

V ,
and therefore τ is not Hausdorff. Given any V ∈ Nτ (1G), the closure in τ of any
W ∈Nτ (1G)∩τst satisfying W = W −1 and W 2

⊂ V is itself contained in V . Indeed,
if h ∈ W then there is h′

∈ hW ∩ W and thus h = h′(h′′)−1
∈ W 2 for some h′′

∈ W .
Hence, Nτ (1G) admits a basis consisting entirely of τst-closed neighbourhoods of
the identity. It is thus enough to show that f belongs to the closure of V in τst for
any V ∈ Nτ (1G), which is immediate from the definition of Y A

V . □

The following ubiquitous observation is crucial for the application of the results
above. We provide a proof for the sake of completeness.

Lemma 2.9. Let G be a group of permutations of a set � and A, B tuples of
elements from � for which there is a chain A = A0, B0, . . . , Bn−1, An = g(A) such
that Ai Bi ∼=

G Ai+1 Bi ∼=
G AB for 0 ⩽ i < n. Then g ∈ (G AG B)

nG A.

Proof. The proof is by induction on n. In the base case n = 0 we have A = g(A),
that is, g ∈ G A. Assume now n > 0. Since AB0 ∼=

G AB, there exists h ∈ G A such
that h(B0)= B. Now A1 B0 ∼=

G AB implies h(A1)B = h(A1)h(B0)∼=
G A1 B0 ∼=

G AB,
which implies that there exists h′

∈ G B such that h′(h(A1))= A. Applying induction
to the sequence (A′

i , B ′

i )
n−1
i=0 given by A′

i = h′h(Ai+1), B ′

i = h′h(Bi+1) yields that
h′hg ∈ (G AG B)

n−1G A, from which it follows that g ∈ (G AG B)
nG A, as desired. □

Definition 2.10. Suppose we are given a group G of permutations of a set �, and X

a G-invariant family of subsets of � closed under intersection. We say X has
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the n-zigzag property (with respect to the action of G) if for every A, B ∈ (X) and
any A′ with A ∼=

G
A∩B A′ there are A0, . . . , An and B0, . . . , Bn−1 such that

(1) A0 := A, and An = A′;

(2) Ai Bi ∼=
G Ai+1 Bi ∼=

G AB for 0 ⩽ i ⩽ n − 1.

We will refer to the sequence A0, B0, A1, . . . , An above as an (n, B)-zigzag path
from A to A′.

Observation 2.11. Given an n-zigzag path as above if we write C = A ∩ B then
C ⊆ Ai Bi ∼=

G
C Ai+1 Bi ∼=

G
C AB for all 0 ⩽ i ⩽ n − 1. In particular, Ai ∩ Bi =

Ai+1 ∩ Bi = C.

Notice that for fixed A, B and n, the existence of a (n, B)-zigzag path from A
to A′ depends only on the orbit of A′ under G A.

Proposition 2.12. Suppose M is a countable first-order structure and G = Aut(M).
Assume aclG(−) is locally finite and XG corresponding to aclG has the n-zigzag
property for some n. Then:

(1) If the action of G on M is transitive, then (G, τst) is minimal.

(2) If aclG(x)= x for any x ∈ M , then any group topology τ ⊆ τst is of the form τ X
st

for some G-invariant X ⊆ M.

Proof. For any A, B ∈ X and any g ∈ G A∩B the n-zigzag property applied to A, B
and A′

= g A, together with Lemma 2.9, implies that g ∈ (G AG B)
nG A. Therefore

G A∩B = (G AG B)
nG A and we can apply Proposition 2.2 with τ ∗

= {∅,G} under
the common assumptions of (1) and (2). By the same reason we can also apply
Lemma 2.5 under the assumptions of (2).

Let us show (1) first. Let τ be a group topology on G coarser than τst. If the first
alternative in Proposition 2.2 holds, then by Lemma 2.7 either τ is not Hausdorff
or τ = τst. Since by assumption the only invariant subsets of M are ∅ and M , the
second alternative implies that τ = {∅,G}.

Let us now show (2). Let τ be a group topology on G coarser than τst. By
Lemma 2.5 (see the discussion in the first paragraph) there exists some unique min-
imal G-invariant set X such that τ ⊆ τ X

st . Apply Proposition 2.2 with τ ∗
= {∅,G}.

The second alternative produces some G-invariant X ′ ⊊ X such that τ ⊆ τ X ′

st , in
contradiction with the choice of X . Since we assume aclG to be trivial, the first
alternative implies τ = τ X

st . □

3. Minimality and independence

3A. Independence. Throughout this section we work in the following setting: �
is a set, G is a permutation group of �, cl(−) a G-equivariant closure operator
on [�]

<ω and X = {cl(A) | A ∈ [�]
<ω

} the associated family of closed sets. Our
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goal is to derive concrete applications from the results of the previous section to the
case where � is the underlying set of a first-order structure M and G = Aut(M).

Definition 3.1. Given cl(−) and X as above and a ternary relation |⌣ between
members of [�]

<ω we say that (cl, |⌣) (alternatively, (X, |⌣)) is a compatible pair
if for all A, B,C, D ∈ [�]

<ω the following properties are satisfied:

• (compatibility) A |⌣C B if and only if A |⌣cl(C) B if and only if cl(AC) |⌣C
cl(BC).

• (invariance) If g ∈ G and A |⌣B C then g A |⌣gB gC .

• (weak monotonicity) If A |⌣B C D or AD |⌣B C then A |⌣B C .

• (antireflexivity) If A |⌣C B, then A ∩ B ⊆ cl(C).

We write A |⌣ B as an abbreviation of A |⌣∅ B.

Definition 3.2. We define some additional properties for a compatible pair (X, |⌣):

• (transitivity) If A |⌣B C and A |⌣BC D, then A |⌣B C D.

• (symmetry) If A |⌣B C then C |⌣B A.

• (existence) For any A, B,C there is g ∈ G B such that g A |⌣B C .

• (independence) Suppose we are given A, B1, B2,C1,C2 ∈ (X) such that
B1 |⌣ A B2, A ⊆ Bi and Ci |⌣ A Bi for i = 1, 2 and C1 ∼=

G
A C2. Then there

exists D ∈ X such that D ∼=
G
Bi

Ci for i = 1, 2 and D |⌣ A B1 B2.

• (stationarity) If B ∈ X and Ai |⌣B C for i = 1, 2, then A1 ∼=
G
B A2 implies

A1 ∼=
G
BC A2.

We also consider these properties:

• (freedom) X = [�]
<ω and if A |⌣C B and C ∩ AB ⊆ D ⊆ C , then A |⌣D B.

• (one-basedness) A |⌣ A∩B B for every A, B ∈ X.

The one-basedness property admits the following generalization:

Definition 3.3. Given k ⩾ 1, we say that (X, |⌣) satisfies k-narrowness if, for
any C, A0, A1, . . . , Ak in X, the conditions

• Ai ∩ Ai+1 = C for each 0 ⩽ i ⩽ k − 1,

• Ai+1 |⌣ Ai
Ai−1 · · · A0 for each 1 ⩽ i ⩽ k − 1

imply that A0 |⌣C Ak (notice that for k = 1 we recover the one-basedness property).

Lemma 3.4. Let (X, |⌣) be a compatible pair that satisfies existence. Then:

(1) If it satisfies freedom or one-basedness, then for any A, B ∈ X there is A′
∈ X

such that A′ ∼=
G
B A, A′

∩ A = A ∩ B and A |⌣ A∩B A′.
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(2) If it satisfies transitivity, symmetry and 2m-narrowness, then for any A, B ∈ X

there is A′
∈ X such that an (m, B)-zigzag path from A to A′ exists, A′

∩ A =

A′
∩ B and A |⌣ A∩B A′.

Proof. Existence yields A′
∈ X such that A′ ∼=

G
B A and A′ |⌣B A. Antireflexivity

implies that A′
∩ A ⊆ B, i.e., A′

∩ A ⊆ A ∩ B. On the other hand A′ ∼=
G
B A implies

A ∩ B = A′
∩ B.

If we assume the freedom axiom, then A′ |⌣ A∩B A follows from A′ |⌣B A and
B ∩ (A′

∪ A) = (B ∩ A′)∪ (B ∩ A) = B ∩ A. Alternatively, the same conclusion
follows directly from one-basedness.

Let C = A ∩ B. For (2) construct sequences B0 = B, B1, . . . , Bm−1 and A0 = A,
A1, . . . , Am as follows. Assuming we have already taken (Ai , Bi )

k
i=0, existence

provides Ak+1 ∼=
G
Bk

Ak with Ak+1 |⌣Bk
A0 B0 · · · Ak Bk . By the same token, for k ⩽m

we can choose Bk+1 ∼=
G
Ak+1

Bk with Bk+1 |⌣ Ak
A0 B0 · · · Ak+1. It is clear that this

yields an (m, B)-zigzag path from A to Am .
By transitivity, A j |⌣B j−1

Al for any 0 ⩽ l ⩽ j − 1, so that A j ∩ Al ⊆ A j ∩ B j−1

by antireflexivity. Since A j ∩ B j−1 = C and C ⊂ A j ∩ Al by Observation 2.11
we conclude that A j ∩ Al = C . Arguing in a similar manner one can show that
A j ∩ Bl = C for any 0⩽ j ⩽m and 0⩽ l ⩽m−1. This establishes that the sequence
A0, B0, . . . , Bm−1, Am satisfies the first property of the condition in the definition
of 2m-narrowness, while the second follows by transitivity and construction. If we
let A′

= Am we then get A′ |⌣C A and A |⌣C A′ by symmetry, while the sequence
above is an (m, B)-zigzag path from A to A′. □

Lemma 3.5. Let (X, |⌣) be a compatible pair satisfying symmetry, existence and
transitivity and assume that for any A, B ∈ X there exists an (m, B)-zigzag path
from A to some A1 such that A1 |⌣ A∩B A. Then:

(1) If stationarity holds, then X has the 2m-zigzag property.

(2) If independence holds, then X has the 4m-zigzag property.

Proof. Let A, A′, B ∈ X with A′ ∼=
G
A∩B A. Let C := A ∩ B. In both cases using

the assumption we start by choosing A1 ∈ X for which there is an m-zigzag path
from A to A1 and A1 |⌣C A.

Consider (1) first. By extension there is A2 such that A2 ∼=
G
A A1 and A2 |⌣ A A′ A.

The first implies the existence of an (m, B)-zigzag path from A to A2. The second,
together with A2 |⌣C A, implies A2 |⌣C A′ A by right transitivity. By weak mono-
tonicity we get A2 |⌣C A′ and by symmetry A |⌣C A2 and A′ |⌣C A2. Stationarity
yields A ∼=

G
A2

A′. Thus, there is also an (m, B ′)-zigzag path from A2 to A′, where
A′B ′ ∼=

G AB and combining both paths we get a (2m, B)-zigzag path from A to A′.
We move on to case (2). By invariance and existence there is A′

1 such that
A′

1 A′ ∼=
G A1 A (so that by invariance A′

1 |⌣C A′) and A′

1 |⌣ A′ A′ A1. Transitivity and
monotonicity then imply A′

1 |⌣C A1.
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Independence applied to the tuple C , A1, A′

1, A, A′ in place of the A, B1, B2,
C1, C2 of the definition implies the existence of some D such that D A1 ∼=

G AA1

and D A′

1
∼=

G AA1. This witnesses the existence of a (4m, B)-zigzag path from A
to A′. Notice that symmetry is required in order to get A′ |⌣C A′

1. □

3B. Review of Fraïssé construction. Let us briefly review the Fraïssé construction
method in a relational language. For a more detailed discussion we refer the reader
to the survey by Macpherson [2011].

Let L be a relational signature and K be a countable class of finite L-structures
closed under isomorphism. Suppose A, B ∈ K. By A ⊆ B we mean A is an L-
substructure of B. We say K is a Fraïssé class if it satisfies the following properties:

• (HP) K is closed under substructures.

• (JEP) For any A, B ∈ K there is C in K such that A, B ⊆ C .

• (AP) Given A1, A2, B ∈K and isometric embeddings gi : B → Ai for i = 1, 2
there exists C ∈ K and isometric embeddings hi : Ai → C such that h1 ◦ g1 =

h2 ◦ g2.

According to a theorem of Fraïssé, for any Fraïssé class K there is a unique
countable structure M called the Fraïssé limit of K, denoted by Flim(K), such that

• M is ultrahomogeneous (see Definition 2.1);

• Age(M), the collection of all finite substructures of M, coincides with K.

Classical examples of Fraïssé limit structures are (Q, <) and the random graph. If L
is empty, then K is the class of finite sets and Flim(K) an infinite countable set. More
generally, we say K is trivial if the equality type of a finite tuple of elements from M
determines its type (equivalently, if Aut(M) is the full permutation group of M).

Suppose A, B and C are structures in some relational language L with A ⊆ B,C .
By the free-amalgam of B and C over A, denoted by B⊗A C , we mean the structure
with domain B ⨿A C in which a relation holds for a tuple a if and only if it already
did in either B or C .

By a free amalgamation class we mean a class K of finite structures in a relational
language satisfying (HP) and such that B ⊗A C ∈ K for any A, B,C ∈ K such that
A ⊆ B,C . We write B |⌣

fr
A C if and only if the structure generated by ABC is

isomorphic (with the right identifications) with the free amalgam B⊗AC . If B |⌣
fr C

we say B and C are free from each other.

Theorem A. Let M be the Fraïssé limit of a free amalgamation class in a countable
relational language. Let G = Aut(M). Then any group topology τ ⊆ τst on G is
of the form τ X

st , where X ⊆ M is some G-invariant set. In particular, if the action
of G on M is transitive, then there are no nontrivial group topologies on G strictly
coarser than τst and thus (G, τst) is totally minimal.
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Proof. First note that the algebraic closure in any Fraïssé limit of a free amalgamation
class is trivial (follows from Lemma 2.1.4 in [Macpherson 2011]). If we let
X = [M]

<ω, where M is the underlying set of M and |⌣ = |⌣
fr, then part (1) of

Lemma 3.4 and part (1) of Lemma 3.5 apply to the pair (X, |⌣). Together, they
imply X has the 2-zigzag property with respect to the action of G. The result then
follows from an application of Proposition 2.12. □

3C. Small, one-based simple theories. Recall that given an L-structure M and
A ⊆ M, a subset X of Mn is called definable over A it is the solution set of
some L-formula with parameters in A. For a model M of a complete theory and
any definable equivalence relation E over ∅ on n-tuples one can consider the
equivalence classes of Mn/E as elements of a new sort in an extended multisorted
language. These classes are referred to as imaginary elements. A theory T is
said to have weak elimination of imaginaries if for any n ⩾ 1 and any imaginary
element e = a/E , where E is a definable equivalence relation on Mn over the
empty set, there is a finite tuple c in M such that e is definable over c (i.e., the
single solution of some formula over c) and c is algebraic over e (i.e., every element
of c is a solution of some formula over e which has only finitely many solutions);
see [Tent and Ziegler 2012]. Within a saturated model of the theory an element a
is definable (algebraic) over B if its orbit under the stabilizer of B is a singleton
(finite). Roughly speaking in theories with weak elimination of imaginaries, the
imaginary elements are coded (in a weak sense) in the original structure.

Understanding simple theories requires dealing with hyperimaginaries. A hy-
perimaginary is an equivalence class of a type definable equivalence relation of a
possibly infinite tuple over the empty set, where a type is an infinite conjunction
of finitely consistent formulas. Recall that a theory eliminates hyperimaginaries if
any hyperimaginary element is interdefinable with a sequence of imaginaries. See
[Wagner 2000] or [Kim 2014] for details on these concepts.

Theorem B. Let M be a simple, ω-saturated countable structure with locally finite
algebraic closure and weak elimination of imaginaries. Assume furthermore that
Th(M) is one-based. Let G = Aut(M). Then:

(1) If G acts transitively on M, then (G, τst) is minimal.

(2) If all singletons are algebraically closed, then any group topology τ on G
coarser than τst is of the form τ X

st for some G-invariant X ⊆ M.

Proof. As cl we take the algebraic closure acl and |⌣ the forking independence. We
claim part (1) of Lemma 3.4 and part (2) of Lemma 3.5 both apply to (X, |⌣).

The pair clearly satisfies invariance, weak monotonicity, transitivity and symmetry.
Existence follows from the fact that M is ω-saturated, so it is left to check one-
basedness and independence in the sense of Definition 3.2.
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It is known that small simple theories which admit finite coding have elimination
of hyperimaginaries (for definitions and details, see [Wagner 2000, Section 6 and
Proposition 6.1.21]). Furthermore, one-based simple theories admit the finite coding
property. These all imply in our setting that we have elimination of hyperimaginaries.

Take A, B ∈ X. The fact that the theory is one-based and has elimination of
hyperimaginaries implies A |⌣acleq(A)∩acleq(B) B. The relation A |⌣ A∩B B follows
then from weak elimination of imaginaries.

Lastly, elimination of hyperimaginaries and weak elimination of imaginaries
imply that the type of a tuple over a finite acl-closed set determines its Lascar strong
type over that same set. Hence, Kim and Pillay’s independence theorem [1998]
(see also Chapter 2.3 and Theorem 2.3.1 in [Kim 2014]) translates into abstract
independence (amalgamation of types) for (acl, |⌣) in that case. □

For stable theories the notion of being k-ample (for some k ⩾ 1) generalizes the
negation of one-basedness. See [Evans 2003] for details. When algebraic closure is
trivial, not k-ampleness translates into (acl, |⌣

f ) being k-narrow, where |⌣
f is the

forking independence. From an argument similar to the one in the two theorems
above we can deduce the following result:

Theorem 3.6. Let M be a countable ω-saturated stable structure such that Th(M)

has trivial algebraic closure, has weak elimination of imaginaries, and is not k-
ample for some k ⩾ 1. Then any group topology on G = Aut(M) coarser than τst

is of the form τ X
st for some G-invariant X ⊆ M.

3D. An example that shows total minimality is not preserved under taking open
finite-index subgroups. Consider the relational language L1 = {E (2), P (1)}, and
let K1 be the class of all finite L1-structures in which E is interpreted as the
edge relation of a bipartite graph with edges only between the domain of the
unary predicate P and its complement. Consider also the class K2 in the language
L2 = {E (2), F (2)} consisting of all finite L-structures in which F is interpreted as an
equivalence relation with at most 2 classes and E as the edge relation of a bipartite
graph with edges only among vertices that belong to distinct F-classes.

Let Mi = Flim(Ki ) and Gi = Aut(Mi ). Clearly M2 is a reduct of M1, so that
G1◁G2 and in fact [G2 : G1]= 2. It is easy to check that K1 has free amalgamation
and then by Theorem A there are exactly two group topologies on G1 strictly coarser
than τst, namely τ P(M1)

st and τ¬P(M1)
st . Notice that both are Hausdorff, since no auto-

morphism of M1 can fix P(M1) or its complement (given any two points a, b, there
exists c in P (resp. ¬P) such that tp(c, a) ̸= tp(c, b)), so (G1, τst) is not minimal.

In this case we have an additional non-Hausdorff group topology, τ ∗
= {∅,G1}.

Apply Proposition 2.2 to conclude that any group topology on G1 strictly contained
in τst is contained in τ ∗.

On the other hand, it follows from Theorem B that (G2, τst) is minimal.
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3E. Simple nonmodular predimension Hrushovski construction. Hrushovski’s
predimension construction was introduced as a means of producing countable
structures with a certain combinatorial property of the algebraic closure. This
method was used by Hrushovski to build strongly minimal structures which are not
field-like or vector space-like, as well as a stable ω-categorical pseudoplane. There
are many variants of the method, but to fix notation, we consider the following
basic case and later focus on a version that produces ω-categorical structures. We
refer readers to [Wagner 1994; Baldwin and Shi 1996; Evans et al. 2016] for most
of the properties that are mentioned here about Hrushovski constructions and some
of their variations.

Suppose s ⩾ 2 and η ∈ (0, 1]. We work with the class C of finite s-uniform
hypergraphs, that is, structures in a language with a single s-ary relation symbol
R(x1, . . . , xs) whose interpretation is invariant under permutation of coordinates
and satisfies R(x1, . . . , xs)→

∧
i< j (xi ̸= x j ).

To each B ∈ C we assign the predimension

δ(B)= |B| − η|R[B]|,

where R[B] denotes the set of hyperedges on B. For A ⊆ B, we define A ⩽ B if
and only if for all B ′ with A ⊆ B ′

⊆ B we have δ(A)⩽ δ(B ′), and let Cη := {B ∈ C |

∅⩽ B}. The following is standard.

Lemma 3.7. Suppose A, B ⊆ C ∈ Cη. Then:

(1) δ(AB)⩽ δ(A)+ δ(B)− δ(A ∩ B).

(2) If A ⩽ B and X ⊆ B, then A ∩ X ⩽ X.

(3) If A ⩽ B ⩽ C , then A ⩽ C.

If A, B ⊆ C ∈ Cη then we define δ(A/B) = δ(AB)− δ(B). Note that this is
equal to |A \ B| − η|R[AB] \ R[B]|. Then B ⩽ AB if and only if δ(A′/B)⩾ 0 for
all A′

⊆ A. Moreover, if N is an infinite L-structure such that A ⊆ N , we write
A ⩽ N whenever A ⩽ B for every finite substructure B of N that contains A. For
L-structures A and X , where A is finite and X is of any cardinality, if A⩽ X then we
say A is ⩽-closed in X . One can show Cη has the ⩽-free amalgamation property (see
Lemma 4.8 in [Baldwin and Shi 1996]), by which we mean free amalgamation with
respect to ⩽ inclusions. An analogue of Fraïssé’s theorem holds in this situation:

Proposition 3.8. There is a unique countable structure Mη, up to isomorphism,
satisfying:

(1) The set of all finite substructures of Mη, up to isomorphism, is precisely Cη.
(2) Mη

=
⋃

i∈ω Ai , where (Ai : i ∈ ω) is a chain of ⩽-closed finite sets.

(3) If A ⩽ Mη and A ⩽ B ∈ Cη, then there is an embedding f : B → Mη with
f ↾A = idA and f (B)⩽Mη.
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The structure Mη that is obtained in the above proposition is called the Hrushovski
generic structure.

Here we briefly discuss a variation on the Hrushovski’s predimension construction
method as a way to generate ω-categorical structures. The original version of this
is used to provide a counterexample to Lachlan’s conjecture, where it is used to
construct a stable ω-categorical pseudoplane (see Section 5 in [Wagner 1994]).
Here we follow a similar setting to that used in Section 5.2 of [Evans et al. 2016].

Suppose η = m/n ∈ (0, 1], where gcd(m, n) = 1. Consider the same setting
of the previous subsection for L and Cη. For A, B ∈ Cη, where A ⊂ B, define
A ⩽d B when δ(A′/A) > 0, for all A′ with A ⊊ A′

⊆ B. For a suitable choice of
an unbounded convex increasing function f : R⩾0

→ R⩾0 and restricting Cη to

C f
η := {A ∈ Cη | δ(X)⩾ f (|X |) for all X ⊆ A},

one can show (C f
η ,⩽d) has the ⩽d-free amalgamation property. We call these f

good and denote the associated countable generic structure by M f
η , which is going

to be ω-categorical.

Remark 3.9. To obtain a good function, we can take some piecewise smooth f
whose right derivative f ′ satisfies f ′(x)⩽ 1/x and is nonincreasing for x ⩾ 1. The
latter condition implies that f (x + y)⩽ f (x)+ y f ′(x) (for y ⩾ 0). It can be shown
that, under these conditions, C f

η has the free ⩽d-amalgamation property. Details
can be found in Section 6.2 and Example 6.2.27 in [Wagner 2000].

We assume that f is a good function. We will assume that f (0)= 0 and f (1)> 0,
and in this case the ⩽-closure of the empty set is empty. We shall also assume that
f (1)= n and one can show Aut(M f

η ) acts transitively on M f
η . See Examples 5.11

and 5.12 in Section 5.2 of [Evans et al. 2016] for details.
Given any finite subset X of M f

η , one can show there is a smallest finite sub-
set Y with X ⊆ Y ⩽d M f

η , for which we use the notation cld(X). Let Xd
:=

{cld(A) | A ∈ [M f
η ]
<ω

}. Given A, B,C ∈ Xd one can define A |⌣
d
B C if and only

if cld(AB)∪ cld(BC)= cld(ABC) and cld(AB)∩ cld(BC)= B. Note that in this
case, cld(ABC) is the free amalgam of cld(AB) and cld(BC) over B.

Lemma 3.10. (Xd , |⌣
d) satisfies 3-narrowness.

Proof. Suppose C , A0, A1, A2, A3 are d-closed sets in Xd with Ai ∩ Ai+1 = C
for 0 ⩽ i ⩽ 2, where A3 |⌣

d
A2

A1 A0 and A2 |⌣
d
A1

A0. We want to show A3 |⌣
d
C A0.

First we claim A3 ∩ A0 = C . By the assumption C ⊆ A0 ∩ A3. From A3 |⌣
d
A2

A1 A0

we know cld(A3 A2)∩ cld(A2 A1 A0)= A2, which implies A3 ∩ A0 ⊆ A3 ∩ A2 = C .
It remains to show A0 A3 is d-closed. If not, then there is e ∈ cld(A0 A3) \ A0 A3

such that e is R-related to some elements in Â3 ⊆ A3 \ C and to some elements
in Â0 ⊆ A0 \ C , where δ(E/ Â0 Â3C)⩽ 0 for some E ⊆ cld(A0 A3), where e ∈ E
(see Section 4.2 in [Evans et al. 2016] for details of properties of minimally simply
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algebraic extensions). From A3 |⌣
d
A2

A1 A0 we know cld(A0 A1 A2 A3) is the free
amalgam of cld(A3 A2) and cld(A2 A1 A0) over A2. Since e ∈ cld(A0 A1 A2 A3), then
this implies e ∈ A2. Because A2 |⌣

d
A1

A0, we have Â0 ⊆ A1. This contradicts the
fact that A0 ∩ A1 = C . □

Then, combining Lemma 5.7 in [Evans et al. 2016] with Lemma 3.4(2), by
Lemma 3.10, one can see (Xd , |⌣

d) satisfies all the properties of Lemma 3.5(1).
Then using Proposition 2.12 we conclude the following.

Corollary 3.11. Suppose that f is a good function and let M f
η be an ω-categorical

Hrushovski generic structure such that G = Aut(M f
η ) acts transitively on M f

η .
Then (G, τst) is a minimal topological group.

4. Topologies and types

In this section we describe a general way of constructing group topologies below
the standard topology on the automorphism group of a first-order structure. Our
ideas are inspired by [Ben Yaacov and Tsankov 2016] and [Uspenskij 2008]. In
fact, when M is an ω-categorical structure the space Rpa(M) as defined below
consisting of complete types can be identified with the Roelcke compactification
of Aut(M) as described in [Ben Yaacov and Tsankov 2016]. However the goal
here is to establish a way of parametrizing topologies that does not depend on the
existence of a well-behaved independence relation. We prove Corollary C at the
end of the section as an application.

Let M be a first-order structure and T = Th(M). Consider two tuples of
variables x = (xm)m∈M and y = (ym)m∈M indexed by the elements of M . Given
some finite tuple a = (a1, a2, . . . , ak)⊂ M we write xa in lieu of (xa1, xa2, . . . , xak ).
Let pM(x) = tp(M), where the variable xm is made to correspond with m ∈ M .
Let R(M) stand for the collection of all T -complete types in variables x, y con-
taining pM(x) ∪ pM(y) and write Rpa(M) for the collection of partial types in
variables x, y in T containing pM(x)∪ pM(y). Here we assume types are deduc-
tion closed. Given any partial type p(x, y) we will denote the deduction closure
of p(x, y)∪ pM(x)∪ pM(y) in T as ⟨p⟩. The set Rpa(M) can be endowed with
the so-called logic topology, which we denote by τL , generated by neighbourhoods
of the form [φ] = {p ∈ Rpa(M) | φ ∈ p}, where φ is any formula in (x, y). The
result is a Stone space.

Given p1, p2 ∈ Rpa(M) we let (p1∗ p2)(x, y)∈ Rpa(M) denote the collection of
all formulas ψ(x, y) such that there exist φi (x, y) ∈ pi (x, y) for i = 1, 2 such that

φ1(x, z)∧φ2(z, y) ⊢ ψ(x, y).

Given p ∈ Rpa, let p̄ ∈ Rpa be defined by θ(x, y) ∈ p̄ ↔ θ(y, x) ∈ p. It can be
checked that ∗ endows Rpa(M) with a semigroup structure. Furthermore, one can



GROUP TOPOLOGIES ON AUTOMORPHISM GROUPS 101

show that ∗ is a continuous map Rpa(M)× Rpa(M) → Rpa(M) and p 7→ p̄ is
also continuous with respect to τL . For the first, assume p1, p2 ∈ Rpa(M) and
ψ(x, y) is a formula with p1 ∗ p2 ∈ [ψ(x, y)]. Then the definition of ∗, together
with compactness, implies the existence of φ1(x, z) ∈ p1 and φ2(z, y) ∈ p2 such
that T ∪{φ1(x, z), φ2(z, y)} ⊢ψ(x, y), which implies that [φ1] ∗ [φ2] ⊆ [ψ]. If we
let 0 = ⟨∅⟩ ∈ Rpa then clearly p ∗0 = 0 for any p ∈ Rpa. We write p ⩽ q for p ⊢ q .

Every g ∈ Aut(M) is associated to some type ι(g)= ⟨xgm = ym⟩m∈M ∈ Rpa. It
can be easily checked that ι is a continuous homomorphic embedding of (G, τst)

into (Rpa(M), τL) whose image is contained in R(M). We will write simply g
instead of ι(g). Notice that pg

:= g−1
∗ p ∗ g = {φ(xa, yb) | φ(xg·a, yg·b) ∈ p} for

any p ∈ Rpa and g ∈ G.

Definition 4.1. Suppose M is an L-structure and G =Aut(M). We say that q ∈ Rpa

is an invariant idempotent if the following conditions are satisfied:

(1) 1G ⩽ q;

(2) q = q̄;

(3) q ∗ q = q; and

(4) q = qg for any g ∈ G.

Notice that (1) implies q = 1G ∗ q ⩽ q ∗ q , so that item (3) could be replaced by
the a priori weaker condition q ∗ q ⩽ q.

Given a formula φ(x, y), let Nφ := ι−1([φ])= {g ∈ G | M |H φ(ga, b)}. Given
an invariant idempotent q ∈ Rpa(M), let Nq = {Nφ | φ(x, y) ∈ q}.

Lemma 4.2. Given any structure M the following statements hold, where G =

Aut(M):

(1) Given any invariant idempotent q ∈ Rpa(M) the family Nq forms a basis of
neighbourhoods of a group topology τq on G (necessarily unique by invariance
under translations).

(2) The closure of 1G in τq coincides with the collection of all g ∈ G such that
g ⩽ q.

(3) Given invariant idempotents p, q ∈ Rpa(M) such that p ⩽ q we have τp ⊇ τq .
Conversely, if M is countable and ω-saturated then τp ⊇ τq implies p ⩽ q.

Proof. On the one hand, for any φ(xA, yB) ∈ q , we have

N−1
φ(x,y) = {g ∈ G | M |H φ(g−1a, b)}

= {g ∈ G | M |H φ(a, gb)} = Nφ(y,x) ∈ Nq̄ = Nq .

On the other hand, the condition q ∗ q = q is equivalent to the following: for any φ
and finite A and B there is C ⊂ M and formulas ψ(xA, zC), ψ

′(zC , yB) ∈ q such
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that modulo T we have

(1) pM(x)∪ pM(y)∪ pM(z)∪ {ψ(xA, zC)∧ψ
′(zC , yB)} ⊢ φ(xA, yB).

Let N = Nψ(xA,yC )∧ψ(xC ,yB). Given h, g ∈ N we have M |Hψ(g A,C)∧ψ ′(hC, B).
The formulas are of course h-invariant, and hence M |H ψ(hg A, hC). Likewise,
hg A |H pA and hC |H pC and thus by (1) we conclude that M |H φ(hg A, B) and
therefore hg ∈ Nφ . This settles part (1). Part (2) follows easily from the fact that ι(g)
is a complete type for g ∈ G and is left to the reader. As for (3), the implication
from left to right is trivial. Assume now M is countable and ω-saturated and we are
given p, q such that p ≰ q. Then there exists some φ(xa, ya) ∈ q for a ∈ [M]

<ω

such that p ̸∈ [φ].
Consider the type r(x) ∈ S|a|(a) given by

r(x)= tpx(a)∪ {¬φ(x, a)} ∪ {ψ(x, a) | ψ(x, y) ∈ p}.

It follows from the discussion above that r(x) is consistent and thus, by our assump-
tion on M, realized by some a′

∈ M<ω. Since M is homogeneous, there is g ∈ G
such that a′

= ga. Since M |Hψ(ga, a), for each ψ(x, y)∈ p but M |H ¬φ(ga, a)
we conclude that g ∈ Nψ \ Nφ for any ψ ∈ p and thus that τp ⊉ τq . □

Remark 4.3. The element 1G ∈ G seen as an element in Rpa is an invariant
idempotent. The associated topology τ1G is just the standard topology. It can be
checked by inspection that all topologies on automorphism groups that feature
in this paper are of the form τq for some invariant idempotent q. In particular,
any topology of the form τ X

st for some Aut(M)-invariant set X is of the form τp,
where p is the type generated by all formulas of the form xa = ya , a ∈ X .

The following question arises naturally.

Question 3. Let M be a countable w-categorical (homogeneous) structure. Is
it true that any group topology on Aut(M) is of the form τq for some invariant
idempotent q ∈ Rpa?

4A. Nonminimality in the trivial acl case. To conclude in this final subsection
we show minimality fails for the automorphism groups of certain Fraïssé limits.
Fix some structure M in a finite relational language in which acl is trivial, i.e.,
acl(A)= A for any finite A ⊂ M . Consider the type qinf ∈ Rpa(M) generated by
all the formulas of the form φ(xA, yB), where φ ∈ tp(A, B), for finite A, B ⊆ M
with A ∩ B = ∅. Notice that qinf is clearly invariant under the action of Aut(M)

on xM and yM .

Definition 4.4. We say that M has the separation property if for any two disjoint
finite tuples a, b ∈ [M]

<ω there exists c ∈ [M]
<ω disjoint from both a and b such

that tpx,z(a, c)∪ tpz,y(c, b) ⊢ tpx,y(a, b).



GROUP TOPOLOGIES ON AUTOMORPHISM GROUPS 103

Lemma 4.5. Assuming acl is trivial in M, the type qinf is an invariant idempotent
in Rpa(M) if and only if M has the separation property. If in addition to this M
is countable and ω-saturated, then qinf ≰ 1G and thus τqinf is strictly coarser than
τst = τ1G .

Proof. Properties (1), (2) and (4) of Definition 4.1 are immediate from the definition
of qinf. For property (3) all we need to check is that q ∗ q ⩽ q, as remarked after
Definition 4.1, but this is precisely the content of the separation property, as in its def-
inition, tpx,z(a, c)∪ tpz,y(c, b)⊢ tpx,y(a, b), we have tpx,y(a, c)∪ tpx,y(c, b)⊆ qinf

and thus tpx,y(a, b) ⊆ qinf ∗ qinf for the arbitrary fragment tpx,y(a, b) ⊆ qinf we
started with.

If qinf = 1G , then for any b ∈ M there must be some finite A ⊆ M \ {b} such that
tpxA,yb(A, b) ⊢ yb = xb, which can only be the case if b ∈ dcl(A). The final claim
then follows from last point of Lemma 4.2. Namely, from (3) of Lemma 4.2, if
1G ⩽ qinf then τ1G = τst ⊇ τqinf . Using the second part of (3), if τst = τqinf then q ⩽ 1G ,
which contradicts the fact that qinf ≰ 1G . □

Distal theories are a particular class of NIP theories introduced in [Simon 2013].
One main feature is the following fact [Chernikov and Simon 2015, Theorem 21]:

Fact 4.6. Let T be distal. Then for any formula φ(x, y) there is a formula θ(x, z)
such that for any tpφ(a/C) over a finite set of parameters C there is a tuple
d ⊂ C such that θ(a, d) holds, and θ(x, d) ⊢ tpφ(a/C), i.e., θ(x, y)∪ tpy(d,C) ⊢

tpφ(x/C), where |y| = |d|.

Lemma 4.7. Let M be any distal Fraïssé limit in a finite relational language with
trivial algebraic closure. Then M has the separation property.

Proof. Consider any two disjoint finite tuples a, b ∈ M . Since M has quantifier
elimination, there exists some formula φ(x, y) such that for any C ⊂ M the full
type tp(a/C) is equivalent to the φ-type tpφ(a/C) (|a| = |x |). Let θ(x, z) be the
formula provided by Fact 4.6 and let s =|z|. Take a sequence b−s, b−s+1, . . . , b0 =b,
b1, . . . , bs of instances of tp(b/a) indiscernible over a, where bi and b j are disjoint
for i ̸= j . Let C = b−sb−s+1 · · · bs , and let d be the tuple obtained from applying
Fact 4.6 to tp(a/C). Let J be the set of indices j ∈ {−s,−s + 1, . . . , s} such
that d ∩ b j ̸= ∅. Now, there must be some j0 ∈ {−s,−s + 1, . . . , s} \ J and
some order-preserving bijection φ : J ∪ { j0} → J ′

⊆ Z sending j0 to 0. Since
(bi )i is indiscernible, the fact that tp(a/bl)l∈J isolates tp(a/bl)

s
l=−s implies that

tp(a/bl)l∈J ′\{0} isolates tp(a/bl)l∈J ′ , so that the tuple C = (bl)l∈J ′\{0} witnesses the
separation property for the pair (a, b). □

Corollary C. Let M be any distal Fraïssé limit in a finite relational language
with trivial algebraic closure. Then the type qinf defines a group topology on
G = Aut(M) strictly coarser than τst.
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Many Fraïssé structures, such as nontrivial reducts of (Q,⩽) and ω-categorical
finitely ramified ordered trees, satisfy the assumptions of Corollary C.
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PRIME SPECTRUM AND DYNAMICS
FOR NILPOTENT CANTOR ACTIONS

STEVEN HURDER AND OLGA LUKINA

A minimal equicontinuous action by homeomorphisms of a discrete group 0

on a Cantor set X is locally quasianalytic if each homeomorphism has a
unique extension from small open sets to open sets of uniform diameter on X.
A minimal action is stable if the action on X of the closure of 0 in the group
of homeomorphisms of X is locally quasianalytic.

When 0 is virtually nilpotent, we say that 8 : 0 ×X → X is a nilpotent
Cantor action. We show that a nilpotent Cantor action with finite prime
spectrum must be stable. We also prove there exist uncountably many
distinct Cantor actions of the Heisenberg group, necessarily with infinite
prime spectrum, which are not stable.

1. Introduction

A minimal equicontinuous action 8 : 0 ×X→ X of a countable group 0 on a
Cantor space X is called a generalized odometer [9; 14]. When 0 = Z, this is just
the abstract form of a traditional odometer action of the integers. For 0 = Zn with
n ≥ 2, one obtains a more complex class of actions, whose classification becomes
increasingly intractable as n increases [27], even while the dynamical properties of
minimal equicontinuous Cantor actions by Zn are well behaved. For 0 in general,
we simply refer to these as Cantor actions, which will always be assumed minimal
and equicontinuous.

It is a classical result that a Z-odometer is classified by its Steinitz order, which
is calculated using a representation of the action as an inverse limit of actions on
finite cyclic groups. One can also associate to a Cantor action by Zn its Steinitz
order and also a collection of types, called its typeset, which consists of equivalence
classes of Steinitz orders of individual elements of Zn . As discussed by Thomas
[28, Section 4], the additional data of the typeset is still not sufficient to reduce
the classification problem for Cantor actions by Zn to a standard Borel equivalence
relation.
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In the authors’ work [20], we associate the type and typeset invariants to a Cantor
action (X, 0,8) for an arbitrary countable group 0. The type τ [X, 0,8] is the
asymptotic equivalence class of the Steinitz order ξ(X, 0,8) of a presentation of
the action as an inverse limit of actions of 0 on finite sets.

Associated to the type τ [X, 0,8] is an even more basic invariant, the prime
spectrum π [X, 0,8], which consists of the set of primes which appear in a Steinitz
order ξ(X, 0,8) representing the type τ [X, 0,8]; see Definition 2.14. The prime
spectrum decomposes into two parts,

π [X, 0,8] = π∞[X, 0,8] ∪π f [X, 0,8],

where the infinite prime spectrum π∞[X, 0,8] consists of the primes that occur
with infinite multiplicity in ξ(X, 0,8) and the finite prime spectrum π f [X, 0,8]

consists of the primes that occur with finite multiplicity. The prime spectrum and the
finite prime spectrum are only well defined modulo finite subsets of π f [X, 0,8].

Definition 1.1. A Cantor action (X, 0,8) has finite spectrum if the prime spectrum
π [X, 0,8] is a finite set and is said to have infinite spectrum otherwise.

The classification of Cantor actions for 0 is, in general, intractable and one seeks
invariants for Cantor actions which at least distinguish between particular classes
of actions. The authors’ works [15; 16; 17; 18] study dynamical properties which
yield invariants of Cantor actions. In particular, one of the most basic invariants is
the property that the action is either stable or wild. The purpose of this note is to
give a relation between the prime spectrum of a Cantor action and the wild property.

As explained in detail in Section 2E below, the property that the action (X, 0,8)

is stable is a property of the action of the completion G(8)=8(0)⊂ Homeo(X),
which is a profinite group naturally acting on X. The property that the action
(X, 0,8) is locally quasianalytic is defined in Definition 2.10, and (X, 0,8) is
stable if the action of G(8) on X is also locally quasianalytic. If (X, 0,8) is stable,
then (X, 0,8) is locally quasianalytic. The converse need not hold even for actions
of nilpotent groups, as we show later.

A Cantor action (X, 0,8) is said to be nilpotent if 0 contains a finitely generated
nilpotent subgroup with finite index. This class of group actions is particularly
interesting, as it has the natural next level of complexity after the abelian Cantor
actions. We show the following three results for nilpotent Cantor actions.

Theorem 1.2. Let (X, 0,8) be a nilpotent Cantor action. If the prime spectrum
π [X, 0,8] is finite, then the action is stable.

Theorem 1.2 does not have a converse. We show that every collection of primes,
finite or infinite, can be realized as the prime spectrum of a stable nilpotent Cantor
action.
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Theorem 1.3. Let π f and π∞ be two distinct sets of primes, where π f is a finite
set and π∞ is a nonempty finite or infinite set. Then there exists a stable nilpotent
Cantor action (X, 0,8) such that π∞[X, 0,8] = π∞ and π f [X, 0,8] = π f .

Let (X, 0,8) be an abelian Cantor action. If the action is effective, then it
is free, and the action of the closure G(8) is also free, which implies that the
action is stable. An effective nilpotent Cantor action need not be free and may
even have elements which fix every point in a clopen subset of the Cantor set X.
The authors showed in their work [16] that nilpotent Cantor actions are locally
quasianalytic, which means that such subsets of fixed points cannot be arbitrarily
small, as their diameter has lower bound which is uniform over the Cantor set X.
It is then surprising to discover that if one allows G(8) to have infinite prime
spectrum then one can construct wild nilpotent actions, for which the action of the
closure G(8) is not locally quasianalytic, as shown in Theorem 1.4. In addition,
Theorem 1.4 is a realization result, which shows that every infinite set of primes
can be realized as the prime spectrum of a wild nilpotent Cantor action.

Theorem 1.4. Given any two distinct sets π f and π∞ of primes, where π f is
infinite and π∞ is any (possibly empty) set, there is a minimal equicontinuous action
(X, 0,8) of the Heisenberg group such that π f [X, 0,8] = π f and π∞[X, 0,8] =

π∞.
Moreover, there exists an uncountable number of nilpotent Cantor actions

(X, 0,8) of the Heisenberg group 0 with infinite prime spectra such that

(1) each (X, 0,8) is topologically free,

(2) each (X, 0,8) is wild,

(3) the prime spectra of such actions are pairwise distinct.

The notion of return equivalence for Cantor actions and its relationship with
conjugacy of action is explained in Section 2D. The result of Corollary 1.5 below
follows from the result that the prime spectrum of the action is an invariant of its
return equivalence class; see Theorem 2.16.

Corollary 1.5. There exists an uncountable number of nilpotent Cantor actions
(X, 0,8) of the Heisenberg group 0 which are not return equivalent and therefore
not conjugate.

The conclusion of Theorem 1.4 is used in [19] for the calculation of the mapping
class groups of solenoidal manifolds whose base is a nil-manifold.

We note that for more general groups 0, an analog of Theorem 1.2 need not
hold. For example, a weakly branch group, as studied in [3; 5; 6; 25], acts on the
boundary of a d-regular rooted tree, and so has finite prime spectrum {d}, but the
dynamics of the action on the Cantor boundary are wild.
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Question 1.6. Let (X, 0,8) be a Cantor action. For which classes of groups 0

does the finiteness of the prime spectrum of the action imply that the action is
stable?

The paper is organized as follows. In Section 2A we recall basic properties of
minimal equicontinuous group actions on Cantor sets. In particular, the definition of
the prime spectrum of a minimal equicontinuous action is given in Definition 2.14.
We prove Theorem 1.2 in Section 3, and give basic examples of nilpotent Cantor
actions in Section 4. In Section 5 we construct examples of stable and wild actions
of the Heisenberg group with prescribed prime spectrum, proving Theorems 1.3
and 1.4, from which we deduce Corollary 1.5.

2. Cantor actions

We recall some of the basic properties of Cantor actions, as required for the proofs
of Theorems 1.2 and 1.4. More complete discussions of the properties of equicon-
tinuous Cantor actions are given in the text by Auslander [1], the papers by Cortez
and Petite [9], Cortez and Medynets [8], and the authors’ works, in particular
[10; 11; 17, Section 3].

2A. Basic concepts. Let (X, 0,8) denote an action 8 :0×X→X. We write g ·x
for 8(g)(x) when appropriate. The orbit of x ∈X is the subset O(x)={g ·x | g ∈0}.
The action is minimal if for all x ∈ X, its orbit O(x) is dense in X.

An action (X, 0,8) is equicontinuous with respect to a metric dX on X if for
all ε > 0 there exists δ > 0 such that for all x, y ∈ X and g ∈ 0 we have that
dX(x, y) < δ implies dX(g · x, g · y) < ε. The property of being equicontinuous is
independent of the choice of the metric on X which is compatible with the topology
of X.

Now assume that X is a Cantor space. Let CO(X) denote the collection of all
clopen (closed and open) subsets of X, which forms a basis for the topology of X.
For φ ∈ Homeo(X) and U ∈ CO(X), the image φ(U ) belongs to CO(X). The next
result is folklore, and a proof is given in [16, Proposition 3.1].

Proposition 2.1. For X a Cantor space, a minimal action 8 : 0 × X → X is
equicontinuous if and only if the 0-orbit of every U ∈ CO(X) is finite for the
induced action 8∗ : 0×CO(X)→ CO(X).

Definition 2.2. We say that U ⊂ X is adapted to the action (X, 0,8) if U is a
nonempty clopen subset, and for any g ∈ 0, g ·U ∩U ̸=∅ implies g ·U =U .

The proof of [16, Proposition 3.1] shows that given x ∈X and clopen set x ∈W ,
there is an adapted clopen set U with x ∈U ⊂W .

For an adapted set U , the set of “return times” to U ,

(1) 0U = {g ∈ 0 | g ·U ∩U ̸=∅},
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is a subgroup of 0, called the stabilizer of U . Then for g, g′∈0 with g·U∩g′·U ̸=∅
we have g−1 g′ ·U =U , and hence g−1 g′ ∈ 0U . Thus, the translates {g ·U | g ∈ 0}

form a finite clopen partition of X and are in one-to-one correspondence with the
quotient space XU = 0/0U . Then 0 acts by permutations of the finite set XU and
so the stabilizer group 0U ⊂G has finite index. Note that this implies that if V ⊂U
is a proper inclusion of adapted sets, then the inclusion 0V ⊂ 0U is also proper.

Definition 2.3. Let (X, 0,8) be a Cantor action. A properly descending chain of
clopen sets U = {Uℓ ⊂ X | ℓ ≥ 0} is said to be an adapted neighborhood basis at
x ∈ X for the action 8 if x ∈ Uℓ+1 ⊂ Uℓ is a proper inclusion for all ℓ > 0, with
U0 = X,

⋂
ℓ>0 Uℓ = {x}, and each Uℓ is adapted to the action 8.

Given x ∈ X and ε > 0, Proposition 2.1 implies there exists an adapted clopen
set U ∈ CO(X) with x ∈U and diam(U ) < ε. Thus, one can choose a descending
chain U of adapted sets in CO(X) whose intersection is x , from which the next
result follows:

Proposition 2.4. Let (X, 0,8) be a Cantor action. Given x ∈ X, there exists an
adapted neighborhood basis U at x for the action 8.

Combining the above remarks, we have:

Corollary 2.5. Let (X, 0,8) be a Cantor action and U be an adapted neighborhood
basis. Set 0ℓ = 0Uℓ

, with 00 = 0. Then there is a nested chain of finite index
subgroups GU = {00 ⊃ 01 ⊃ · · · }.

2B. Profinite completion. Let 8(0) ⊂ Homeo(X) denote the image subgroup
for an action (X, 0,8). When the action is equicontinuous, the closure 8(0) ⊂

Homeo(X) in the uniform topology of maps is a separable profinite group. We adopt
the notation G(8)≡8(0).

Let 8̂ :G(8)×X→X denote the induced action of G(8) on X. For ĝ ∈G(8),
we write its action on X by ĝ · x = 8̂(ĝ)(x). Since the action (X, 0,8) is minimal,
the action of 8̂ on X is transitive; that is, for all x ∈X, the orbit {ĝ·x | ĝ∈G(8)}=X.
Given x ∈ X, introduce the isotropy group

D(8, x)= {ĝ ∈G(8) | ĝ · x = x} ⊂ Homeo(X),(2)

which is a closed subgroup of G(8), and thus is either finite or is an infinite profinite
group. As the action 8̂ :G(8)×X→X is transitive, the conjugacy class of D(8, x)

in G(8) is independent of the choice of x , and by abuse of notation we omit the
subscript x . The group D(8) is called the discriminant of the action (X, 0,8) in
[11; 15; 17] and is called a parabolic subgroup (of the profinite completion of a
countable group) in the works by Bartholdi and Grigorchuk [4; 5].
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2C. Algebraic Cantor actions. We next describe the algebraic construction of
Cantor actions, starting with a group chain in a given group 0, and then deriving the
Cantor action from this data. This is often the most versatile method of constructing
examples of Cantor actions with specific properties.

Let G = {0 = 00 ⊃ 01 ⊃ 02 ⊃ · · · } be a properly descending chain of finite
index subgroups. Let Xℓ = 0/0ℓ and note that 0 acts transitively on the left on
the finite set Xℓ. The inclusion 0ℓ+1 ⊂ 0ℓ induces a natural 0-invariant quotient
map pℓ+1 : Xℓ+1→ Xℓ. Introduce the inverse limit

(3) X∞ ≡ lim
←−
{pℓ+1 : Xℓ+1→ Xℓ | ℓ≥ 0}

= {(x0, x1, . . .) ∈ X∞ | pℓ+1(xℓ+1)= xℓ for all ℓ≥ 0} ⊂
∏
ℓ≥0

Xℓ.

Then X∞ is a Cantor space with the Tychonoff topology, where the actions of 0 on
the factors Xℓ induce a minimal equicontinuous action 8∞ :0×X∞→ X∞. There
is a natural basepoint x∞ ∈ X∞ given by the cosets of the identity element e ∈ 0,
so x∞ = (e0ℓ). An adapted neighborhood basis of x∞ is given by the clopen sets

(4) Vℓ = {x = (xi ) ∈ X∞ | xi = e0i ∈ X i , 0≤ i ≤ ℓ} ⊂ X∞.

There is a tautological identity 0ℓ = 0Vℓ
where 0Vℓ

is the isotropy group as defined
by Corollary 2.5.

Given a minimal equicontinuous Cantor action 8 : 0×X→ X and an adapted
neighborhood basis U = {Uℓ ⊂ X | ℓ ≥ 0} at x ∈ X, Corollary 2.5 yields a group
chain GU = {00⊃01⊃ · · · }. We can then associate to this group chain an algebraic
action 8∞ : 0× X∞→ X∞ as above.

For each ℓ ≥ 0, we have the “partition coding map” 2ℓ : X→ Xℓ which is 0-
equivariant. The maps {2ℓ} are compatible with the map on quotients in (3), and so
they induce a limit map 2x :X→ X∞. The fact that the diameters of the clopen sets
{Vℓ} tend to zero implies that 2x is a homeomorphism. Also, 2x(x)= x∞ ∈ X∞.
The following is folklore:

Theorem 2.6 [10, Appendix A]. The map 2x : X→ X∞ induces an isomorphism
of the Cantor actions (X, 0,8) and (X∞, 0,8∞).

The action (X∞, 0,8∞) is called the odometer model centered at x for the action
(X, 0,8). The dependence of the model on the choices of a base point x ∈ X and
adapted neighborhood basis U is discussed in detail in the works [10; 12; 15; 17].

Next, we develop the algebraic model for the profinite action 8̂ :G(8)×X→X

of the completion G(8)≡8(0)⊂ Homeo(X). Choose a group chain {0ℓ | ℓ≥ 0}
as above, which provides an algebraic model for the action (X, 0,8).
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For each ℓ≥1, let Cℓ⊂0ℓ denote the core of 0ℓ, i.e., the largest normal subgroup
of 0ℓ in 0. So

(5) Cℓ = Core(0ℓ)=
⋂

g∈0
g0ℓg−1

⊂ 0ℓ.

As 0ℓ has finite index in 0, the same holds for Cℓ. Observe that for all ℓ≥ 0, we
have Cℓ+1 ⊂ Cℓ.

Introduce the quotient group Qℓ=0/Cℓ with identity element eℓ ∈Qℓ. There are
natural quotient maps qℓ+1 : Qℓ+1→ Qℓ, and we can form the inverse limit group

0̂∞ ≡ lim
←−
{qℓ+1 : Qℓ+1→ Qℓ | ℓ≥ 0}(6)

= {(gℓ)= (g0, g1, . . .) | gℓ ∈ Qℓ, qℓ+1(gℓ+1)= gℓ for all ℓ≥ 0} ⊂
∏
ℓ≥0

0ℓ,(7)

which is a Cantor space with the Tychonoff topology. The left actions of 0 on the
spaces Xℓ = 0/0ℓ induce a minimal equicontinuous action of 0̂∞ on X∞, again
denoted by 8̂ : 0̂∞ × X∞→ X∞. Note that the isotropy group of the action of
Qℓ = 0ℓ/Cℓ at the identity coset in Xℓ = 0/0ℓ is the subgroup Dℓ = 0ℓ/Cℓ.

Denote the points in 0̂∞ by ĝ = (gℓ) ∈ 0̂∞ where gℓ ∈ Qℓ. There is a natural
basepoint ê∞ ∈ 0̂∞ given by the cosets of the identity element e ∈ 0, so ê∞ = (eℓ)

where eℓ = eCℓ ∈ Qℓ is the identity element in Qℓ.
For each ℓ≥ 0, let 5ℓ : 0̂∞→ Qℓ denote the projection onto the ℓ-th factor in (6),

so in the coordinates of (7), we have 5ℓ(ĝ)= gℓ ∈ Qℓ. The maps 5ℓ are continuous
for the profinite topology on 0̂∞, so the preimages of points in Qℓ are clopen
subsets. In particular, the fiber of 5ℓ : 0̂∞→ Qℓ over eℓ is the normal subgroup

(8) Ĉℓ =5−1
ℓ (eℓ)= {(gi ) ∈ 0̂∞ | gi ∈ Ci , 0≤ i ≤ ℓ}.

The collection {Ĉℓ | ℓ≥ 1} forms a basis of clopen neighborhoods of ê∞ ∈ 0̂∞.
That is, for each clopen set Û ⊂ 0̂∞ with ê∞ ∈ Û , there exists ℓ0 > 0 such that
Ĉℓ ⊂ Û for all ℓ≥ ℓ0.

Theorem 2.7 [10, Theorem 4.4]. There is an isomorphism τ̂ : G(8) → 0̂∞

such that τ̂ conjugates the profinite action (X,G(8), 8̂) with the profinite action
(X∞, 0̂∞, 8̂∞). In particular, τ̂ identifies the isotropy group D(8) with the inverse
limit subgroup

(9) D∞ = lim
←−−
{qℓ+1 : 0ℓ+1/Cℓ+1→ 0ℓ/Cℓ | ℓ≥ 0} ⊂ 0̂∞.

The maps qℓ+1 in the formula (9) need not be surjections, and thus the calculation
of the inverse limit D∞ can involve some subtleties. For example, it is possible that
each group Qℓ is nontrivial for ℓ > 0, and yet D∞ is the trivial group.
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2D. Equivalence of Cantor actions. We next recall the notions of equivalence
of Cantor actions. The first and strongest is that of isomorphism, which is a
generalization of the notion of conjugacy of topological actions. For 0 = Z,
isomorphism corresponds to the notion of “flip conjugacy” introduced in the work of
Boyle and Tomiyama [7]. The definition below also appears in the papers [8; 15; 23].

Definition 2.8. Cantor actions (X1, 01, 81) and (X2, 02, 82) are said to be iso-
morphic if there is a homeomorphism h : X1 → X2 and a group isomorphism
2 : 01→ 02 such that

(10) 81(g)= h−1
◦82(2(g)) ◦ h ∈ Homeo(X1) for all g ∈ 01.

The notion of return equivalence for Cantor actions is weaker than isomorphism
and is natural when considering the dynamical properties of Cantor systems which
should be independent of the restriction of the action to a clopen cross-section.

Given a minimal equicontinuous Cantor action (X, 0,8) and an adapted set
U ⊂X, recall that 0U denotes the isotropy group for U , as in (1). By a small abuse
of notation, we use 8U to denote both the restricted action 8U : 0U ×U →U and
the induced quotient action 8U : HU ×U → U for HU = 8(0U ) ⊂ Homeo(U ).
Then (U,HU , 8U ) is called the holonomy action for 8.

Definition 2.9. Two minimal equicontinuous Cantor actions (X1, 01, 81) and
(X2, 02, 82) are return equivalent if there exists an adapted set U1 ⊂ X1 for the
action 81 and an adapted set U2 ⊂ X2 for the action 82, such that the holonomy
actions (U1,H1,U1, 81,U1) and (U2,H2,U2, 82,U2) are isomorphic.

If the actions 81 and 82 are isomorphic in the sense of Definition 2.8, then they
are return equivalent with U1 = X1 and U2 = X2. However, the notion of return
equivalence is weaker even for this case, as the conjugacy is between the holonomy
groups H1,X1 and H2,X2 , and not the groups 01 and 02.

2E. Locally quasianalytic. The quasianalytic property for Cantor actions was
introduced by Álvarez López and Candel in [24, Definition 9.4] as a generalization of
the notion of a quasianalytic action studied by Haefliger for actions of pseudogroups
of real-analytic diffeomorphisms. The authors introduced a local form of the
quasianalytic property in [11; 15]:

Definition 2.10 [15, Definition 2.1]. A topological action (X, 0,8) on a metric
Cantor space X is locally quasianalytic (LQA) if there exists ε > 0 such that for any
nonempty open set U ⊂ X with diam(U ) < ε, and for any nonempty open subset
V ⊂U , and elements g1, g2 ∈ 0,

(11) if 8(g1)|V =8(g2)|V, then 8(g1)|U =8(g2)|U.

The action is said to be quasianalytic if (11) holds for U = X.
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In other words, (X, 0,8) is locally quasianalytic if for every g ∈ 0, the homeo-
morphism 8(g) has unique extensions on the sets of diameter ε > 0 in X, with ε

uniform over X. We note that for a countable group 0, an effective action (X, 0,8)

is topologically free if and only if it is quasianalytic.
Recall that a group 0 is Noetherian [2] if every increasing chain of subgroups

has a maximal element. Equivalently, a group is Noetherian if every subgroup of 0

is finitely generated. A group is topologically Noetherian if every increasing chain
of closed subgroups has a maximal element; see Section 3 for details.

Theorem 2.11 [16, Theorem 1.6]. Let 0 be a Noetherian group. Then a minimal
equicontinuous Cantor action (X, 0,8) is locally quasianalytic.

A finitely generated nilpotent group is Noetherian, so as a corollary we obtain that
all Cantor actions by finitely generated nilpotent groups are locally quasianalytic.

The notion of a locally quasianalytic Cantor action extends to the case of a
profinite group action 8̂ :G×X→ X.

Definition 2.12. Let (X, 0,8) be a Cantor action and 8̂ :G×X→X the induced
profinite action. We say that the action is stable if the induced profinite action
(X,G(8), 8̂) is locally quasianalytic, and we say it is wild otherwise.

A profinite completion G of a Noetherian group 0 need not be Noetherian, as
can be seen for the example of 0= Z, where G is the full profinite completion of Z.
More generally, a finitely generated nilpotent group 0 is always Noetherian, while
Proposition 3.4 gives an “if and only if” condition for a profinite completion G of
0 to be topologically Noetherian.

2F. Type and typeset for Cantor actions. A Steinitz number ξ can be written
uniquely as the formal product over the set of primes 5:

(12) ξ =
∏

p∈5
pχξ (p),

where the characteristic function χξ :5→ {0, 1, . . . ,∞} counts the multiplicity
with which a prime p appears in the infinite product ξ .

Definition 2.13. Two Steinitz numbers ξ and ξ ′ are said to be asymptotically
equivalent if there exists finite integers m, m′ ≥ 1 such that m · ξ = m′ · ξ ′, and we
then write ξ

a
∼ ξ ′.

A type is an asymptotic equivalence class of Steinitz numbers. The type associated
to a Steinitz number ξ is denoted by τ [ξ ].

In terms of their characteristic functions χ1, χ2, we have ξ
a
∼ ξ ′ if and only if

the following conditions are satisfied:

• χ1(p)= χ2(p) for all but finitely many primes p ∈5.
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• χ1(p)=∞ if and only if χ1(p)=∞ for all primes p ∈5.

Given two types, τ and τ ′, we write τ ≤ τ ′ if there exists representatives ξ ∈ τ

and ξ ′ ∈ τ ′ such that their characteristic functions satisfy χξ (p) ≤ χξ ′(p) for all
primes p ∈5.

Definition 2.14. Let π denote the set of primes. Given ξ =
∏

p∈π pχξ (p), define

• π(ξ)= {p ∈ π | χξ (p) > 0}, the prime spectrum of ξ ,

• π f (ξ)= {p ∈ π | 0 < χξ (p) <∞}, the finite prime spectrum of ξ ,

• π∞(ξ)= {p ∈ π | χξ (p)=∞}, the infinite prime spectrum of ξ .

Note that if ξ
a
∼ ξ ′, then π∞(ξ)= π∞(ξ ′). The property that π f (ξ) is an infinite

set is also preserved by asymptotic equivalence of Steinitz numbers.
Next, we define the type of a Cantor action (X∞, 0,8∞) defined by a chain of

finite index subgroups, G = {0 = 00 ⊃ 01 ⊃ · · · }. Let Cℓ ⊂ 0ℓ denote the normal
core of 0ℓ.

Definition 2.15. Let (X∞, 0,8) be a minimal equicontinuous Cantor action defined
by a group chain G. The type τ [X∞, 0,8∞] of the action is the equivalence class
of the Steinitz order

(13) ξ(X∞, 0,8∞)= lcm{#Xℓ = #(0/0ℓ) | ℓ > 0}.

Finally, we note the following result:

Theorem 2.16 [20, Theorem 1.9]. Let (X, 0,8) be a Cantor action. The Steinitz or-
der ξ(X, 0,8) is defined as the Steinitz order for an algebraic model (X∞, 0,8∞)

of the action, which does not depend upon the choice of an algebraic model. The
type τ [X, 0,8] depends only on the return equivalence class of the action.

2G. Type for profinite groups. The Steinitz order 5[G] of a profinite group G is
defined by the supernatural number associated to a presentation of G as an inverse
limit of finite groups (see [26, Chapter 2.3; 29, Chapter 2]). The Steinitz order
appears in the study of analytic representations of profinite groups associated to
groups acting on rooted trees; see, for example, [22].

Recall that for a profinite group G, an open subgroup U⊂G has finite index [26,
Lemma 2.1.2].

Definition 2.17. Let (X, 0,8) be a minimal equicontinuous Cantor action, with
choice of a basepoint x ∈ X. The Steinitz orders of the action are defined as

(1) ξ(G(8))= lcm{#G(8)/N |N⊂G(8) open normal subgroup},

(2) ξ(D(8))= lcm{#D(8)/(N∩D(8)) |N⊂G(8) open normal subgroup},

(3) ξ(G(8) :D(8))= lcm{#G(8)/(N·D(8)) |N⊂G(8) open normal subgroup}.
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The Steinitz orders satisfy the Lagrange identity, where the multiplication is
taken in the sense of supernatural numbers,

(14) ξ(G(8))= ξ(G(8) :D(8)) · ξ(D(8)).

Thus, we always have τ [D(8)] ≤ τ [G(8)]. The following is a direct consequence
of the definitions:

Theorem 2.18. Let (X, 0,8) be a Cantor action. Then there is equality of Steinitz
orders, ξ(X, 0,8)= ξ(G(8) :D(8)).

3. Nilpotent actions

We apply the notion of the Steinitz order of a nilpotent Cantor action to the study of
its dynamical properties. The proof of Theorem 1.2 is based on the special properties
of the profinite completions of nilpotent groups, in particular the uniqueness of
their Sylow p-subgroups, and on the relation of this algebraic property with the
dynamics of the action.

3A. Noetherian groups. A countable group 0 is said to be Noetherian [2] if every
increasing chain of subgroups {Hi | i ≥ 1} of 0 has a maximal element Hi0 . The
group Z is Noetherian; a finite product of Noetherian groups is Noetherian; and a
subgroup and quotient group of a Noetherian group is Noetherian. Thus, a finitely
generated nilpotent group is Noetherian.

The notion of a Noetherian group has a generalization which is useful for the
study of actions of profinite groups.

Definition 3.1 [29, page 153]. A profinite group G is said to be topologically
Noetherian if every increasing chain of closed subgroups {Hi | i ≥ 1} of G has a
maximal element Hi0 .

We illustrate this concept with two canonical examples of profinite completions
of Z.

Example 3.2. Let Ẑp denote the p-adic integers, for p a prime. That is, Ẑp is the
completion of Z with respect to the chain of subgroups G = {0ℓ = pℓZ | ℓ ≥ 1}.
The closed subgroups of Ẑp are given by pi

· Ẑp for some fixed i > 0, and hence
satisfy the ascending chain property in Definition 3.1.

Example 3.3. Let π̂ ={pi | i ≥ 1} be an infinite collection of distinct primes. Define
an increasing chain of subgroups of Z as Gπ̂ = {0ℓ = p1 p2 · · · pℓZ | ℓ≥ 1}. Let Ẑπ̂

be the completion of Z with respect to the chain Gπ̂ . Then we have a topological
isomorphism

(15) Ẑπ̂
∼=

∏
i≥1

Z/pi Z.
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Let Hℓ = Z/p1Z⊕ · · · ⊕ Z/pℓZ be the direct sum of the first ℓ factors. Then
{Hℓ | ℓ≥ 1} is an increasing chain of subgroups of Ẑπ̂ which does not stabilize, so
Ẑπ̂ is not topologically Noetherian.

These two examples illustrate the idea behind the proof of the following result.

Proposition 3.4. Let 0 be a finitely generated nilpotent group, and let 0̂ be a
profinite completion of 0. Then 0̂ is topologically Noetherian if and only if the
prime spectrum π(ξ(0̂)) is finite.

Proof. First, recall some basic facts about profinite groups. (See, for example, [29,
Chapter 2].) For a prime p, a finite group H is a p-group if every element of H
has order a power of p. A profinite group H is a pro-p-group if H is the inverse
limit of finite p-groups. A Sylow p-subgroup H⊂G is a maximal pro-p-subgroup
[29, Definition 2.2.1].

A profinite group G is pro-nilpotent if it is the inverse limit of finite nilpotent
groups. For example, if G is a profinite completion of a nilpotent group 0, then G

is pro-nilpotent.
The group G is topologically finitely generated if it contains a dense subgroup

0 ⊂G where 0 is finitely generated. The completion G(8) associated to a Cantor
action (X, 0,8) with 0 finitely generated is topologically finitely generated.

Assume that G is pro-nilpotent. Then for each prime p, there is a unique Sylow
p-subgroup of G, which is normal in G (see [29, Proposition 2.4.3]). Denote
this group by G(p). Also, G(p) is nontrivial if and only if p ∈ π(ξ(G)). We
use the following result for pro-nilpotent groups, which is a consequence of [29,
Proposition 2.4.3].

Proposition 3.5. Let G be a profinite completion of a finitely generated nilpotent
group 0. Then there is a topological isomorphism

(16) G∼=
∏

p∈π(ξ(G))

G(p).

From the isomorphism (16) it follows immediately that if the prime spectrum
π(ξ(G)) is infinite, then G is not topologically Noetherian. To see this, list
π(ξ(G)) = {pi | i = 1, 2, . . .}. Then we obtain an infinite strictly increasing
chain of closed subgroups

Hℓ =

ℓ∏
i=1

G(pi ).

If the prime spectrum π(ξ(G)) is finite, then the isomorphism (16) reduces the proof
that G is topologically Noetherian to the case of showing that if G is topologically
finitely generated, then each of its Sylow p-subgroups is Noetherian. The group
G(p) is nilpotent and topologically finitely generated, so we can use the lower
central series for G(p) and induction to reduce to the case where H is a topologically
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finitely generated abelian pro-p-group, and so is isomorphic to a finite product of
p-completions of Z, which are topologically Noetherian.

Observe that a profinite completion G of a finitely generated nilpotent group
0 is a topologically finitely generated nilpotent group, and we apply the above
remarks. □

Corollary 3.6. Let 0 be a virtually nilpotent group; that is, there exists a finitely
generated nilpotent subgroup 00 ⊂ 0 of finite index. Then a profinite completion G

of 0 is topologically Noetherian if and only if its prime spectrum π(ξ(G)) is finite.

Proof. We can assume that 00 is a normal subgroup of 0. Thus, its closure
G0 ⊂G satisfies the hypotheses of Proposition 3.4, and the Steinitz orders satisfy
ξ(G0)

a
∼ ξ(G). As G0 is topologically Noetherian if and only if G is topologically

Noetherian, the claim follows. □

3B. Dynamics of Noetherian groups. We relate the topologically Noetherian prop-
erty of a profinite group with the dynamics of a Cantor action of the group to obtain
the proof of Theorem 1.2. We first give the profinite analog of [16, Theorem 1.6].
We follow the outline of its proof in [16].

Proposition 3.7. Let G be a topologically Noetherian group. Then a minimal
equicontinuous action (X,G, 8̂) on a Cantor space X is locally quasianalytic.

Proof. The closure G(8) is contained in Homeo(X), so the action 8̂ of G(8) is
effective. Suppose that the action 8̂ is not locally quasianalytic. Then there exists
an infinite properly decreasing chain of clopen subsets of X, {U1 ⊃ U2 ⊃ · · · },
which satisfy, for all ℓ≥ 1, the properties

• Uℓ is adapted to the action 8̂ with isotropy subgroup GUℓ
⊂G;

• there is a closed subgroup Kℓ⊂GUℓ+1 whose restricted action to Uℓ+1 is trivial,
but the restricted action of Kℓ to Uℓ is effective.

Hence, we obtain a properly increasing chain of closed subgroups {K1 ⊂ K2 ⊂ · · · }

in G, which contradicts the assumption that G is topologically Noetherian. □

Proof of Theorem 1.2. Let (X, 0,8) be a nilpotent Cantor action, and we are
given that the prime spectrum π(ξ(G(8))) is finite. Then there exists a finitely
generated nilpotent subgroup 00 ⊂ 0 of finite index, and we can assume without
loss of generality that 00 is normal. Let G(8)0 be the closure of 00 in G(8). The
group G(8) has finite prime spectrum implies that the group G(8)0 has finite
prime spectrum, and thus by Proposition 3.4 the group G(8)0 is topologically
Noetherian. Let x ∈ X. Then it suffices to show that the action of 00 on the orbit
X0 =G(8)0 · x is stable. This reduces the proof to showing the claim when 0 is
nilpotent. Then the profinite closure G(8) is also nilpotent, and we have a profinite
action (X,G(8), 8̂).
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Suppose that the action 8̂ is not locally quasianalytic. Then there exists an
increasing chain of closed subgroups Kℓ ⊂ D(8) where Kℓ acts trivially on the
clopen subset Uℓ ⊂ X. As D(8) is a closed subgroup of G(8), the increasing
chain {Kℓ | ℓ > 0} consists of closed subgroups of G(8). This contradicts the
fact that G(8) is topologically Noetherian. Hence, the action 8̂ must be locally
quasianalytic. That is, the action (X, 0,8) is stable. □

4. Basic examples

We construct two basic examples of nilpotent Cantor actions. These examples
illustrate the principles behind the subsequent more complex constructions in
Section 5, which are used to prove Theorems 1.3 and 1.4.

The integer Heisenberg group is the simplest nonabelian nilpotent group, and it
can be represented as the upper triangular matrices in GL(3, Z). That is,

(17) 0 =


1 a c

0 1 b
0 0 1

 | a, b, c ∈ Z

 .

We denote a 3×3 matrix in 0 by the coordinates as (a, b, c).

Example 4.1. A renormalizable Cantor action, as defined in [21], can be con-
structed from the group chain defined by a proper self-embedding of a group 0 into
itself.

For a prime p ≥ 2, define the self-embedding ϕp : 0 → 0 by ϕ(a, b, c) =
(pa, pb, p2c). Then define a group chain in 0 by setting

0ℓ = ϕℓ
p(0)= {(pℓa, pℓb, p2ℓc) | a, b, c ∈ Z},

⋂
ℓ>0

0ℓ = {e}.

For ℓ > 0, the normal core for 0ℓ is given by

Cℓ = core(0ℓ)= {(p2ℓa, p2ℓb, p2ℓc) | a, b, c ∈ Z},

and so the quotient group is given by Qℓ = 0/Cℓ
∼= {(ā, b̄, c̄) | ā, b̄, c̄ ∈ Z/p2ℓZ}.

The profinite group 0̂∞ is the inverse limit of the quotient groups Qℓ so we have
0̂∞ = {(â, b̂, ĉ) | â, b̂, ĉ ∈ Ẑp2}. Thus, ξ(0̂) = {p∞}. Even though the quotient
groups 0ℓ/Cℓ are all nontrivial, for this action the inverse limit D∞ is the trivial
group. This follows from the fact that there are inclusions

02ℓ = {(p2ℓa, p2ℓb, p4ℓc) | a, b, c ∈ Z} ⊂ Cℓ = {(p2ℓa, p2ℓb, p2ℓc) | a, b, c ∈ Z}.

The triviality of D∞ implies that there is an equivalent group chain for the action
[10] which can be chosen so that every subgroup in the chain is normal in 0.
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Example 4.2. For distinct primes p, q ≥ 2, define the self-embedding ϕp,q :0→0

by ϕ(a, b, c)= (pa, qb, pqc). Then define a group chain in 0 by setting

0ℓ = ϕℓ
p,q(0)= {(pℓa, qℓb, (pq)ℓc) | a, b, c ∈ Z},

⋂
ℓ>0

0ℓ = {e}.

For ℓ > 0, the normal core for 0ℓ is given by

Cℓ = core(0ℓ)= {((pq)ℓa, (pq)ℓb, (pq)ℓc) | a, b, c ∈ Z},

and so the quotient group is given by Qℓ=0/Cℓ
∼= {(ā, b̄, c̄) | ā, b̄, c̄ ∈Z/(pq)ℓZ}.

The profinite group 0̂∞ is the inverse limit of the quotient groups Qℓ, so we have
0̂∞ = {(â, b̂, ĉ) | â, b̂, ĉ ∈ Ẑpq}. Thus, ξ(0̂∞)= {p∞, q∞}, and D∞ is the inverse
limit of the finite groups 0ℓ/Cℓ by (9), so D∞ ∼= Ẑq × Ẑp.

5. Nilpotent actions with prescribed spectrum

We construct stable actions of the discrete Heisenberg group with prescribed prime
spectrum, proving Theorem 1.3. Then we construct examples of wild nilpotent
Cantor actions, proving Theorem 1.4, from which we deduce Corollary 1.5. For
simplicity, our examples all use the Heisenberg group represented by 3×3 matrices.
Of course, these examples can be generalized to the integer upper triangular matrices
in all dimensions, where there is much more freedom in the choices made in the
construction. The calculations become correspondingly more tedious, but yield
analogous results. It seems reasonable to expect that similar constructions can be
made for any finitely generated torsion-free nilpotent (nonabelian) group 0. That
is, there are always group chains in 0 which yield wild nilpotent Cantor actions.

Let 0 ⊂ GL(3, Z) denote the discrete Heisenberg group, given by formula (17).
The basis for the constructions below is the structure theory for nilpotent group
completions in Proposition 3.5, in particular the formula (16). Given sets of primes
π f and π∞, we embed an infinite product of finite actions, as in Section 5A,
into a profinite completion 0̂∞ of 0, and thus obtain a nilpotent Cantor action
(X∞, 0,8∞) on the quotient space X∞ = 0̂∞/D∞.

5A. Basic components of the construction. Fix a prime p ≥ 2.
For n ≥ 1 and 0≤ k < n, we have the finite groups

G p,n=


1 ā c̄

0 1 b̄
0 0 1

 | ā, b̄, c̄ ∈ Z/pnZ

 , Hp,n,k=


1 pk ā 0

0 1 0
0 0 1

 | ā ∈ Z/pnZ


Note that #[G p,n] = p3n and #[Hp,n,k] = pn−k .

Let x̄ = (1, 0, 0), ȳ = (0, 1, 0), z̄ = (0, 0, 1) ∈ G p,n . Then x̄ · ȳ · x̄−1
= ȳ z̄ and

x̄ · z̄ · x̄−1
= z̄. That is, the adjoint action of x̄ on the “plane” in the (ȳ, z̄)-coordinates
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is a “shear” action along the z̄-axis, and the adjoint action of x̄ on the z̄-axis fixes
all points on the z̄-axis.

Set X p,n,k = G p,n/Hp,n,k . Then the isotropy group of the action of G p,n on
X p,n,k at the coset Hp,n,k of the identity element is Hp,n,k . The core subgroup
C p,n,k ⊂ Hp,n,k contains elements in Hp,n,k which fix every point in X p,n,k . The
action of x̄ ∈ Hp,n,k on the coset space X p,n,k satisfies

(18) 8∞(x̄)(ȳ Hp,n,k)= ȳ z̄ Hp,n,k,

so the identity is the only element in G p,n which acts trivially on every coset in
X p,n,k , so C p,n,k is the trivial group. Then Dp,n,k = Hp,n,k/C p,n,k = Hp,n,k , and
for each g ∈ Hp,n,k its action fixes the cosets of the multiples of z̄.

5B. Stable nilpotent actions with finite or infinite prime spectrum. We now prove
Theorem 1.3 by constructing a family of stable examples with prescribed prime
spectra.

Let π f and π∞ be two disjoint collections of primes, with π f a finite set and
π∞ a nonempty set.

Enumerate π f = {q1, q2, . . . , qm}, and then choose integers 1 ≤ ri ≤ ni for
1≤ i ≤ m.

Enumerate π∞ = {p1, p2, . . .} with the convention (for notational convenience)
that if ℓ is greater than the number of primes in π∞ then we set pℓ = 1. For each
ℓ≥ 1, define the integers

Mℓ = qr1
1 qr2

2 · · · q
rm
m · p

ℓ
1 pℓ

2 · · · p
ℓ
ℓ,(19)

Nℓ = qn1
1 qn2

2 · · · q
nm
m · p

ℓ
1 pℓ

2 · · · p
ℓ
ℓ.(20)

For all ℓ≥ 1, observe that Mℓ divides Nℓ.
Define a subgroup of the Heisenberg group 0, in the coordinates in (17),

0ℓ = {(aMℓ, bNℓ, cNℓ) | a, b, c ∈ Z}.

Its core subgroup is given by Cℓ = {(aNℓ, bNℓ, cNℓ) | a, b, c ∈ Z}. Observe that

Z/NℓZ∼= Z/qn1
1 Z⊕ · · ·⊕Z/qnm

m Z⊕Z/pℓ
1Z⊕ · · ·⊕Z/pℓ

ℓZ.

By Proposition 3.5, and in the notation of Section 5A, we have for ki = ni − ri that

0̂∞ = lim
←−
{0/Cℓ→ 0/Cℓ−1 | ℓ≥ 1} ∼=

m∏
i=1

Gqi ,ni ·

∞∏
j=1

0̂(p j ),(21)

D∞ = lim
←−
{0ℓ/Cℓ→ 0ℓ−1/Cℓ−1 | ℓ≥ 1} ∼=

m∏
i=1

Hqi ,ni ,ki .(22)
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Then the Cantor space X∞ = 0̂∞/D∞ associated to the group chain {0ℓ | ℓ≥ 1} is
given by

(23) X∞ ∼=
m∏

i=1
Xqi ,ni ,ki ×

∞∏
j=1

0̂(p j ).

In particular, as the first factor in (23) is a finite product of finite sets, the second
factor defines an open neighborhood

U =
m∏

i=1
{xi }×

∞∏
j=1

0̂(p j ),

where xi ∈ Xqi ,ni ,ki is the basepoint given by the coset of the identity element. That
is, U is a clopen neighborhood of the basepoint in X∞. The isotropy group of U is
given by

(24) 0̂∞|U =
m∏

i=1
Hqi ,ni ,ki ×

∞∏
j=1

0̂(p j ).

The restriction of 0̂∞|U to U is isomorphic to the subgroup

(25) K |U =
m∏

i=1
{ēi }×

∞∏
j=1

0̂(p j ) ⊂ Homeo(U ),

where ēi ∈Gqi ,ni is the identity element. The group K |U acts freely on U , and thus
the action of 0̂∞ on X∞ is locally quasianalytic. The prime spectrum of the action
of 0 on X∞ is the union π̂ =π f ∪π∞=π(ξ(0̂∞)). If π∞ is infinite, then the prime
spectrum of the action is infinite. Note that the group 0 embeds into 0̂∞, since the
integers Mℓ and Nℓ tend to infinity with ℓ. This completes the proof of Theorem 1.3.

5C. Wild nilpotent actions with infinite prime spectrum. We prove Theorem 1.4.
We must show that every infinite set of primes can be realized as the prime spectrum
of a wild action of the Heisenberg group 0, as defined by (17). Let π f and π∞ be
disjoint collections of primes, with π f an infinite set and π∞ arbitrary, possibly
empty.

Enumerate π f = {q1, q2, . . .} and choose integers 1≤ ri < ni for 1≤ i <∞.
Enumerate π∞ = {p1, p2, . . .}, again with the convention that if ℓ is greater than

the number of primes in π∞ then we set pℓ = 1.
As in Section 5B, for each ℓ≥ 1, define the integers

Mℓ = qr1
1 qr2

2 · · · q
rℓ

ℓ · p
ℓ
1 pℓ

2 · · · p
ℓ
ℓ, Nℓ = qn1

1 qn2
2 · · · q

nℓ

ℓ · p
ℓ
1 pℓ

2 · · · p
ℓ
ℓ.

For ℓ ≥ 1, define a subgroup of the Heisenberg group 0, in the coordinates in
(17),

(26) 0ℓ = {(aMℓ, bNℓ, cNℓ) | a, b, c ∈ Z}.
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Its core subgroup is given by Cℓ = {(aNℓ, bNℓ, cNℓ) | a, b, c ∈ Z}. For ki = ni −ri

we then have

(27) 0̂∞ ∼=
∞∏

i=1
Gqi ,ni ·

∞∏
j=1

0̂(p j ), D∞ ∼=
∞∏

i=1
Hqi ,ni ,ki .

The Cantor space X∞= 0̂∞/D∞ associated to the group chain {0ℓ | ℓ≥ 1} is given
by

(28) X∞ ∼=
∞∏

i=1
Xqi ,ni ,ki ×

∞∏
j=1

0̂(p j ).

The first factor in (23) is an infinite product of finite sets, so fixing the first ℓ

coordinates in this product determines a clopen subset of X∞. Let xi ∈ Xqi ,ni ,ki

denote the coset of the identity element, which is the basepoint in Xqi ,ni ,ki . Then
for each ℓ≥ 1, we define a clopen set in X∞ by

(29) Uℓ =

ℓ∏
i=1
{xi }×

∞∏
i=ℓ+1

Xqi ,ni ,ki ×

∞∏
j=1

0̂(p j ).

By calculations in Section 5A, the subgroup Hqi ,ni ,ki is the isotropy group of the base-
point xi ∈ Xqi ,ni ,ki . Thus, the isotropy subgroup of Uℓ for the 0̂∞-action is given by

(30) 0̂∞|Uℓ
=

ℓ∏
i=1

Hqi ,ni ,ki ×

∞∏
i=ℓ+1

Gqi ,ni ×

∞∏
j=1

0̂(p j ).

For j ̸= i , the subgroup Hqi ,ni ,ki acts as the identity on the factors Xq j ,n j ,k j in (28).
Thus, the image of 0̂∞|Uℓ

in Homeo(Uℓ) is isomorphic to the subgroup

(31) Zℓ = 0̂∞|Uℓ =

ℓ∏
i=1
{ēi }×

∞∏
i=ℓ+1

Gqi ,ni ×

∞∏
j=1

0̂(p j ) ⊂ Homeo(Uℓ),

where ēi ∈ Gqi ,ni is the identity element.
We next show that this action is not stable; that is, for any ℓ > 0 there exists a

clopen subset V ⊂ Uℓ and nontrivial ĝ ∈ Zℓ so that the action of 0̂∞ restricts to
the identity map on V .

We can assume without loss of generality that V =Uℓ′ for some ℓ′> ℓ. Consider
the restriction map for the isotropy subgroup of Zℓ to Uℓ′ which is given by

ρℓ,ℓ′ : Zℓ|Uℓ′
→ Zℓ′ ⊂ Homeo(Uℓ′).

We must show that there exists ℓ′ > ℓ such that this map has a nontrivial kernel.
Calculate this map in terms of the product representations above:

(32) Zℓ|Uℓ′
=

ℓ∏
i=1
{ēi }×

ℓ′∏
i=ℓ+1

Hqi ,ni ,ki ×

∞∏
i=ℓ′+1

Gqi ,ni ×

∞∏
j=1

0̂(p j ).
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For ℓ < i ≤ ℓ′, the group Hqi ,ni ,ki fixes the point
∏ℓ′

i=1{xi }, and acts trivially on∏
∞

i=ℓ′+1 Xqi ,ni ,ki . Thus, the kernel of the restriction map contains the second factor
in (32):

(33)
ℓ′∏

i=ℓ+1
Hqi ,ni ,ki ⊂ ker{ρℓ,ℓ′ : Zℓ|Uℓ′

→ Homeo(Uℓ′)}.

As this group is nontrivial for all ℓ′ > ℓ, the action of 0̂∞ on X∞ is not locally
quasianalytic, and hence the action of 0 on X∞ is wild. Also, the prime spectrum
of the action of 0 on X∞ equals the union π̂ = π f ∪π∞.

We now prove the second part of Theorem 1.4, showing that choices in the con-
struction above can be made in such a way that the action of 0 on a Cantor set is topo-
logically free while the action of 0̂∞ is wild, and the prime spectrum is prescribed.

Choose an infinite set of distinct primes π f = {q1, q2, . . .}, and let π∞ be empty.
Choose the constants as in Section 5A, with ni = 2 and ki = 1 for all i ≥ 1.
Define the Cantor space X∞ by (28), where the second factor is trivial; that is, a

point. The action of 0̂∞ is wild by the calculations in formulas (30) to (33).
We claim that the action of 0 on X∞ is topologically free. If not, then there

exists an open set U ⊂ X∞ and g ∈ 0 such that the action of 8∞(g) is nontrivial
on X∞ but leaves the set U invariant and restricts to the identity action on U .
The action of 0 on X∞ is minimal, so there exists h ∈ 0 with h · x∞ ∈ U . Then
8∞(h−1gh)(x∞)= x∞ and the action 8∞(h−1gh) fixes an open neighborhood of
x∞. Replacing g with h−1gh we can assume that 8∞(g)(x∞) = x∞ ∈ U . From
the definition (29), the clopen sets

(34) Uℓ =

ℓ∏
i=1
{xi }×

∞∏
i=ℓ+1

Xqi ,2,1

form a neighborhood basis at x∞, and thus there exists ℓ > 0 such that Uℓ ⊂U .
The group 0 embeds into 0̂∞ along the diagonal in the product (16). That is,

we can write g = (g, g, . . .) ∈
∏
∞

i=1 Gqi ,2. The action of 8∞(g) is factorwise,
and 8∞(g)(x∞) = x∞ implies that g ∈ D∞ ∼=

∏
∞

i=1 Hqi ,ni ,ki . The assumption
that 8∞(g) fixes the points in U implies that it acts trivially on each factor Xqi ,2,1

for i > ℓ. As each factor Hqi ,2,1 acts effectively on Xqi ,2,1 this implies that the
projection of g to the i-th factor group Hqi ,2,1 is the identity for i > ℓ. This implies
that every entry above the diagonal in the matrix representation of g in (17) is
divisible by an infinite number of distinct primes {qi | i ≥ ℓ}, so by the prime
factorization theorem the matrix g is the identity.

Alternatively, observe that we have g ∈
∏ℓ

i=1 Hqi ,2,1. This is a finite product
of finite groups, which implies that g ∈ 0 is a torsion element. However, the
Heisenberg group 0 is torsion-free, and hence g must be the identity. Thus, the
action of 0 on X∞ must be topologically free.
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Finally, the above construction allows the choice of any infinite subset π f of
distinct primes, and there are an uncountable number such choices which are distinct.
Thus, by Theorem 1.9 in [20] there are an uncountable number of topologically
free, wild nilpotent Cantor actions with distinct prime spectrum. This completes
the proof of Theorem 1.4.

5D. Proof of Corollary 1.5. Consider the family of wild topologically free actions
on the Heisenberg group 0 with infinite distinct prime spectrum, as constructed at
the end of Section 5C. We show that the uncountable number of infinite choices of
π f in this family can be made so that the actions have pairwise disjoint types.

By Definition 2.13, for two Steinitz numbers ξ and ξ ′ we have that their types are
equal, τ(ξ)= τ(ξ ′), if and only if there exist integers m, m′ such that m ·ξ =m′ ·ξ ′.
Thus two actions with prime spectra π f and π ′f have distinct types if and only if π f

and π ′f differ by an infinite number of entries. This happens, for instance, if π f and
π ′f are almost disjoint infinite sets, i.e., they are infinite sets with finite intersection.

The set of prime numbers is countable, so the family of infinite almost disjoint
subsets of prime numbers is uncountable if and only if the family of infinite almost
disjoint subsets of natural numbers is uncountable. The family of almost disjoint
subsets of natural numbers is uncountable by [13, Corollary 2.3]. Since the set of
finite subsets of natural numbers is countable, the set of almost disjoint infinite
subsets of natural numbers is uncountable.

It follows that the prime spectra of the uncountable family of actions of the
Heisenberg group in Theorem 1.4 can be chosen so that they form a family of almost
disjoint infinite sets. Then their types are pairwise distinct, and by Theorem 2.16
these actions of the Heisenberg group are pairwise not return equivalent. Therefore,
they are pairwise not conjugate.
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A NOTE ON THE DISTINCT DISTANCES PROBLEM
IN THE HYPERBOLIC PLANE

ZHIPENG LU AND XIANCHANG MENG

We provide a proof of a Guth–Katz-type lower bound for the distinct dis-
tances problem in the hyperbolic plane. Our construction follows the frame-
work of Guth and Katz to deal with PSL2(R) and the corresponding incidence
structure in projective geometry. In addition, we deduce a new sum-product
estimate in the form of a hyperbolic metric formula based on this lower
bound.

1. Introduction

The distinct distances problem was first proposed by Erdős [3] in the Euclidean
plane. He conjectured the lower bound ≳ N/

√

log N for the number of distinct
distances between pairs of points among N points in the plane. (Here A ≳ B means
A ≥ cB for some absolute constant c > 0.) After a half-century of progression
with partial results, there came the major breakthrough by Guth and Katz [4] who
proved the nearly optimal bound ≳ N/ log N . Foremostly they invented the tool of
polynomial partitioning and promoted profound applications in incidence geometry
and other areas, later developed by themselves and many other authors; for instances,
see [1; 6].

In this paper, we deal with the distinct distances problem in the hyperbolic
plane H2 and prove the nearly optimal bound in equivalent strength with [4].
Following an idea of Tao’s blog [11], Rudnev and Selig [9] described a proof
using the Klein quadric in Plüker coordinates without exploiting symmetries in the
hyperbolic plane. By contrast, following the framework of Elekes and Sharir, as
in [4], we give an independent proof by carefully studying isometries of H2 in a
more Guth–Katz ethnic language. More specifically, we prove:

Theorem 1.1. For any set P ⊂ H2 of N points, we have

|{dH2(p, q), p, q ∈ P}| ≳ N/ log N ,

where |A| denotes the cardinality of a set A and dH2 denotes the hyperbolic metric
on H2.
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In the case of the Euclidean plane, Guth and Katz [4] used the framework of
Elekes and Sharir [2] to reduce the distinct distances problem to an incidence
problems of lines, then derived the lower bound resorting to ruled surface theory
and polynomial partitioning. Elekes and Sharir’s framework serves as a realization
of the Erlangen program (see [7] for historical background) for the distinct distances
problem in the Euclidean plane. However, this framework cannot apply directly
to the case of the hyperbolic plane. For the hyperbolic plane H2, we consider its
isometry group PSL2(R). Distinguished from Guth and Katz’s coordinate of lines,
our lines lie in P3 rather than R3. We need further linearizations to reduce our
coordinate of lines to R3. Subsequently we need to overcome the difficulty of
constructing vector fields in order to use ruled surface theory. See Section 2 for
details.

In addition, we deduce a new sum-product-type result using Theorem 1.1. For
any finite sets A ⊂ R\{0}, B ⊂ R, define P = {b + i |a| : a ∈ A, b ∈ B}, and
P ′

= {−b + i |a| : a ∈ A, b ∈ B}. Note that explicitly we have the hyperbolic
distance formula

2 cosh dH2(x1 + iy1, x2 + iy2) =
(x1 − x2)

2
+ y2

1 + y2
2

y1 y2

and |{|x | : x ∈ E}| ≥
1
2 |E | for any finite set E ⊂ R. By applying Theorem 1.1 to P

and P ′, we get:

Theorem 1.2. Let A ⊂ R\{0}, B ⊂ R be finite sets. Then we have∣∣∣∣{a2
1 + a2

2 + (b1 − b2)
2

a1a2
: a1, a2 ∈ A, b1, b2 ∈ B

}∣∣∣∣ ≳ |A| |B|

log(|A|) + log(|B|)
,

and ∣∣∣∣{a2
1 + a2

2 + (b1 + b2)
2

a1a2
: a1, a2 ∈ A, b1, b2 ∈ B

}∣∣∣∣ ≳ |A| |B|

log(|A|) + log(|B|)
.

By adding or subtracting 2 on the elements in the above sets, the factor a2
1 + a2

2 can
be replaced by (a1 + a2)

2 or (a1 − a2)
2.

Remark 1. In particular, if |A| and |B| are all about the size ≍ N , the above lower
bounds become ≳ N 2/log N .

A variant of the distinct distances problem has been previously used by Roche-
Newton and Rudnev [8] to study sum-product-type estimates. See also the work of
Jones [5] for estimates of other sum-product-types using incidence geometry. Very
recently, Sheffer and Zahl [10] derived a sum-product-type estimate for complex
numbers.
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2. Proof of Theorem 1.1

We use Elekes and Sharir’s framework to reduce the counting of distinct distances
to an incidence problem of lines in the real projective space P3. To overcome the
difficulty of linearizing projective lines in P3, we turn the incidence of lines in P3

into that of lines in R3 by certain conjugation. Then fulfilling the requirements
for our lines in R3 as Guth and Katz in Proposition 2.8 of [4] amounts to a more
concrete proof of the lower bound ≳ N/ log N of distinct distances among N points
in H2.

Framework. Let H2 be the hyperbolic plane and G = PSL2(R) be its isometry
group which acts on H2 by Möbius transformation:

z 7→ γ · z =
az + b
cz + d

for γ =

(
a b
c d

)
∈ PSL2(R), z ∈ H2.

Let P ⊂ H2 be a set of N points and define the set of distance quadruples

(1) Q(P) := {(p1, p2, p3, p4) ∈ P4
: d(p1, p2) = d(p3, p4) ̸= 0},

where d( · , · ) denotes the hyperbolic metric. Denote the distance set by

d(P) := {d(p1, p2) : p1 ̸= p2 ∈ P}.

Then we have a close relation between d(P) and Q(P) as follows. Suppose
d(P) = {di : 1 ≤ i ≤ m} and ni is the number of pairs of points in P with distance di .
So |Q(P)| =

∑m
i=1 n2

i . Since
∑m

i=1 ni = 2
(N

2

)
= N 2

− N , by Cauchy–Schwarz
inequality we get

(N 2
− N )2

=

( m∑
i=1

ni

)2

≤

( m∑
i=1

n2
i

)
m = |Q(P)| |d(P)|.

Rearranging the inequality gives

(2) |d(P)| ≥
N 4

− 2N 3

|Q(P)|
.

Any quadruple (p1, p2, p3, p4) ∈ Q(P) uniquely determines an isometry g ∈ G
such that g(p1) = p3, g(p2) = p4. Suppose p1 = x + iy, p3 = x ′

+ iy′
∈ H2

(y, y′ > 0) and there is some A =
(a

c
b
d

)
∈ G such that

A · (x + iy) =
a(x + iy) + b
c(x + iy) + d

= x ′
+ iy′,

for i =
√

−1. Rearranging terms we get

ax + b + iay = cxx ′
+ dx ′

− cyy′
+ i(cxy′

+ dy′
+ cx ′y),
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or equivalently the system of linear equations

(3)
xa + b + (yy′

− xx ′)c − x ′d = 0,

ya − (xy′
+ x ′y)c − y′d = 0.

Its solution set in R4 is the intersection of two distinct hyperplanes, which turns out
to be a two-dimensional plane passing through the origin. If, in addition, A · p2 = p4,
the point (a, b, c, d) also lies in another distinct two-dimensional plane intersecting
the above plane at a line since p1 ̸= p2, p3 ̸= p4 as follows.

Lemma 2.1. The equations of (3) determine a unique dimension-2 hyperplane in R4

for each distinct pair of points in H2. In particular, any quadruple (p1, p2, p3, p4)∈

Q(P) determines a unique isometry.

Proof. A fairly complicated elementary computation on 4×4 matrices derived from
(3) allows us to see this, but here we prove it by geometric arguments.

First, a nonidentity real Möbius transformation can have at most one fixed point
in H2, since az+b

cz+d = z implies cz2
+ (d − a)z − b = 0 which has 1 or no roots in

H2 for real coefficients. If two isometries γ1, γ2 ∈ PSL2(R) satisfy γi · p1 = p3 and
γi · p2 = p4, then γ −1

1 γ2 fixes both p1 and p2, a contradiction (p1 ̸= p2). This is
to say a quadruple in Q(P) determines at most one isometry, or equivalently, two
systems of equations for two pairs of points as in (3) define different planes that
intersect on at most one line.

Then we verify the existence of solution. Since PSL2(R) acts on H2 transitively
(which can also be seen from (3)), let γ j · i = p j , j = 1, . . . , 4. Then

γ · p1 = p3, γ · p2 = p4 ⇐⇒ γ −1
3 γ γ1 · i = i, γ −1

4 γ γ2 · i = i.

For i = (0, 1), (3) simply becomes

b + c = 0,

a − d = 0.

Let its solution plane be π ; then the desired solution set of γ is γ3πγ −1
1 ∩γ4πγ −1

2 =

γ3(π ∩ γ −1
3 γ4πγ −1

2 γ1)γ
−1
1 . Note that d(i, γ −1

2 γ1 · i)= d(γ2 ·i, γ1 ·i)= d(p2, p1)=

d(p4, p3) = d(γ4 · i, γ3 · i) = d(i, γ −1
4 γ3 · i). Hence there exists a rotation γ ∈ π

about i that transfers γ −1
2 γ1 · i to γ −1

4 γ3 · i , that is, γ γ −1
2 γ1 · i = γ −1

4 γ3 · i , or
γ −1

3 γ4γ γ −1
2 γ1 · i = i . This is to say

γ ∈ π ∩ γ −1
3 γ4πγ −1

2 γ1,

so that γ −1
3 γ4πγ −1

2 γ1 ̸= ∅ and then the desired solution set γ3πγ −1
1 ∩ γ4πγ −1

2 is
not empty. □
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Thus all (a, b, c, d) lying in the intersection line of two planes defined by (3) in
R4 project to a single point as [a : b : c : d] ∈ P3. This gives a map E : Q(P) → G.
Define, for any p, q ∈ H2,

Spq := {g ∈ G : g(p) = q},

which are one-dimensional curves in G. Similar to [4, Lemmas 2.4 and 2.6], we have

(i) if |P ∩ g P| = k, then |E−1(g)| = 2
(k

2

)
;

(ii) and |P ∩ g P| ≥ k if and only if g lies in at least k of the curves {Spq}p,q∈P .

Thus we derive that

(4) |Q(P)| =

N∑
k=2

2
(k

2

)
|{g : |P ∩ g P| = k}| ≲

N∑
k=2

k |Gk(P)|,

where Gk(P) ⊂ G consists of g ∈ G with |P ∩ g P| ≥ k. Henceforth we focus on
estimating |Gk(P)| for k = 2 and k ≥ 3 as in Sections 3 and 4 of [4].

Incidence of projective lines in P3. For any g ∈ G, we have d(gp, gq) = d(p, q)

so that shifting P to g P does not affect counting of distinct distances. Now for a
quadruple (p1, p2, p3, p4)∈ Q(P), suppose E((p1, p2, p3, p4))=h, i.e., hp1 = p3,
hp3 = p4. After shifting we get

E((gp1, gp2, gp3, gp4)) = ghg−1.

In the matrix form of G, we manage to reshape the distance quadruples as follows.

Proposition 2.2. For any finite set of points P ⊂ H2, there is an isometry g ∈

PSL2(R) such that all matrices in E(Q(g P)) have nonvanishing upper-left corners.

Proof. We use translations Tx =
( 1

0
x
1

)
with x ∈ R. For any h =

(a
c

b
d

)
∈ GL2(R) we

calculate that

Tx hT −1
x =

(
1 x
0 1

) (
a b
c d

) (
1 −x
0 1

)
=

(
a+cx −cx2

+(d−a)x+b
c d−cx

)
.

Suppose E(Q(P)) consists of
(ai

ci

bi
di

)
∈ PSL2(R), 1 ≤ i ≤ K . Note that ai and ci

cannot be both zero, we choose nonzero x such that ai +ci x ̸= 0 for all i = 1, . . . , K .
For such x we have E(Q(Tx P)) = Tx E(Q(P))T −1

x consisting of matrices with
nonvanishing upper-left corners. □

Remark 2. For any finite set of points in the upper-half plane, we may also dilate
points by hyperbolic isometries so that they all have sufficiently large absolute
values. Note that a Möbius transformation

( 0
c

b
d

)
· z =

b
cz+d basically inverts the

absolute value of z, so that it cannot map z with large absolute values to points with
large absolute values. Thus after dilation, Möbius transformations with vanishing
upper-left corners do not occur as isometries in consideration.
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Hence without loss of generality, we assume px , py , qx , qy ≫ 1 for points
p = px + i py , q = qx + qy in consideration, that is, far away in the first quadrant.
We have the following observation through (3). First, each Spq is a projective line
in P3

⊃ G = PSL2(R). We use the natural manifold atlas

P3
= R3

1 ∪ R3
2 ∪ R3

3 ∪ R3
4,

with R3
1 = {[1 : b : c : d] | b, c, d ∈ R} ≃ R3 and R3

i ≃ R3, i = 2, 3, 4, similarly
defined with i-th entry equal to 1 in the projective coordinate. Analogously we use

G =

4⋃
i=1

Gi , Gi = PSL2(R) ∩ R3
i .

In particular, G1 consists of matrices with nonvanishing upper-left corners. Then
the restriction Spq ∩ Gi becomes a real line in R3

i , and by Proposition 2.2, there
exists g ∈ G such that Gk(g P) ⊂ G1 for each k ≥ 2. Abusing notation, we always
denote by L pq the real line S(gp)(gq)∩R3

1 in the manifold atlas of P3. The incidences
among curves Spq are now equivalent to that of lines L pq in R3 (R3

1). Explicitly
L pq has the following linear parametrization.

Proposition 2.3. For any p = px + i py , q = qx + iqy ∈ H2, the line L pq can be
parametrized as

(5)
(

−
qy(p2

x + p2
y) + py(q2

x + q2
y)

pxqy + qx py
,

py + qy

pxqy + qx py
, 0

)
+ t

( py(q2
x + q2

y)

pxqy + qx py
, −

qy

pxqy + qx py
, 1

)
,

for t ∈ R.

Proof. For any
(a

c
b
d

)
· p = q with a = 1 and t = d +1 as parameter, we get from (3),

(6)
b = −

qy(p2
x + p2

y) + py(q2
x + q2

y)

pxqy + qx py
+

py(q2
x + q2

y)

pxqy + qx py
t,

c =
py + qy

pxqy + qx py
−

qy

pxqy + qx py
t,

which gives us the parametrization of points (b, c, t) ∈ L pq . □

Remark 3. There are other parametrizations of L pq , say for b = t as the parameter.
Here the roles of p and q are symmetric in that the intersection of L pq and Lqp is
on the plane t = 0.

Since there are nonlinear terms in our parametrization, which is not a problem for
Guth and Katz [4], we have to consider different families of lines that rule surfaces
and the vector fields on reguli to get the following.
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Proposition 2.4. For any set of N points P ⊂ H2
>0 := {x + iy : x, y > 0} and

L = {L pq : p, q ∈ P}, no more than N lines of L lie in a common plane and no
more than O(N ) lines of L lie in a common regulus.

Proof. We consider the families Lq := {L pq}p∈H2
>0

of lines targeting at q. First,
for any p′

̸= p, the line L p′q does not intersect L pq . Note that L pq ⊂ Spq , and
suppose L pq ∩ L p′q ̸=∅. Then there would be some g ∈ G such that gp′

= gp = q ,
a contradiction. Moreover by (5), the directions of L pq and L p′q are different:( py(q2

x + q2
y)

pxqy + qx py
, −

qy

pxqy + qx py
, 1

)
= (ξ1, ξ2, 1)

has a unique solution for fixed q and ξ1, ξ2. Thus different Lq’s have no lines in
common and belong to different rulings of a ruled surface if any. Note that ξ1, ξ2

cannot be zero since px , py , qx , qy > 0. Indeed, equivalently we have(
−ξ1qy q2

x +q2
y−qxξ1

ξ2qy ξ2qx

) (
px

py

)
=

(
0

−qy

)
,

whose associate matrix has determinant −(q2
x + q2

y)ξ2qy ̸= 0. Hence lines of Lq

are pairwise skew and no two of its lines lie in a common plane. Therefore any
plane intersects each Lq at most one line and intersects L at most N lines.

To prove the second part, we construct a vector field V = (V1, V2, V3) on R3

tangent to lines of Lq for any fixed q = qx + iqy ∈ H2
>0. By (3) we locate p such

that L pq passes through any given x = (x1, x2, x3) ∈ R3 as follows (a = 1, x1 = b,
x2 = c, x3 = d):

px + x1 + (pyqy − pxqx)x2 − qx x3 = 0,

py − (pxqy + qx py)x2 − qy x3 = 0,

or equivalently,

(1 − qx x2)px + (qy x2)py = qx x3 − x1,

(−qy x2)px + (1 − qx x2)py = qy x3,

which has solution(
px

py

)
=

1
(1 − qx x2)2 + q2

y x2
2

(
qx x1x2−(q2

x +q2
y)x2x3−x1+qx x3

−qy x1x2+qy x3

)
.

By (5), we set the direction of L pq as

((q2
x + q2

y)py, −qy, qy px + qx py) =
1

(1 − qx x2)2 + q2
y x2

2
(V1, V2, V3),
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where
V1 = −qy(q2

x + q2
y)(x1x2 − x3),

V2 = −qy[(1 − qx x2)
2
+ q2

y x2
2 ],

V3 = −qy(q2
x + q2

y)x2x3 − qy x1 + 2 qxqy x3.

Let V = (V1, V2, V3); then V has degree 2. Note that p ∈ H2
>0, the vector field is

defined over the open subset

Uq := {(x1, x2, x3) ∈ R3
| qx x1x2−(q2

x +q2
y)x2x3−x1+qx x3 > 0, −qy x1x2+qy x3 > 0},

and we always consider the pieces of reguli restricted in Uq .
Now suppose a line L pq lies in a regulus R defined by a degree-2 irreducible

polynomial f in R3. Then at any point x ∈ L pq we have the Taylor expansion

f (x + tV (x)) = f (x) + ∇( f ) · V (x)t +
1
2 V T H( f )V t2,

where ∇( f ) is the gradient of f and H( f ) is the Hessian matrix of f .
By Bezout’s lemma (Lemma 3.1 of [4]), if more than 9 lines of Lq are contained

in R, f would have a common factor with both ∇( f ) · V and V T H( f )V , which
have degree 3 and 4, respectively. By irreducibility, f must be the common factor
so that f vanishes on each line of Lq with direction V (x) for any x ∈ R by the
Taylor expansion above, that is, Lq is a ruling of R. Since a regulus has only two
rulings, R can only contain at most 8 lines from N − 2 families Lq which are not
rulings of R and 2N lines of Lq1, Lq2 if they are rulings of R. In total, there are at
most 2N + 8(N − 1) = 10N − 8 lines of L lying in R. □

Now we already reduced the problem to incidence geometry in the Euclidean
space. Applying ruled surface theory and polynomial partitioning to reproduce
Guth and Katz’s Theorem 2.10 and 2.11 of [4], we get the following lower bound
for the distinct distances problem in the hyperbolic plane. It has the same strength
as the result of Guth and Katz for the Euclidean plane.

Theorem 2.5. For P ⊂ H2 any set of N points and L = {L pq | p, q ∈ P}, let Gk be
the set of points where at least k lines of L meet for 2 ≤ k ≤ N. Then

|Gk | ≲ N 3k−2.

Consequently, by (4), |Q(P)| ≲ N 3 log N , and by (2), we have |d(p)| ≳ N/ log N.
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[3] P. Erdős, “On sets of distances of n points”, Amer. Math. Monthly 53:5 (1946), 248–250. Zbl
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THE ALGEBRAIC TOPOLOGY
OF 4-MANIFOLD MULTISECTIONS

DELPHINE MOUSSARD AND TRENTON SCHIRMER

A multisection of a 4-manifold is a decomposition into 1-handlebodies
intersecting pairwise along 3-dimensional handlebodies or along a central
closed surface; this generalizes the Gay–Kirby trisections. We show how to
compute the twisted absolute and relative homology, the torsion and the
equivariant intersection form of a 4-manifold from a multisection diagram.
The homology and torsion are given by a complex of free modules defined
by the diagram and the intersection form is expressed in terms of the inter-
section form on the central surface. We give efficient proofs, with very few
computations, thanks to a retraction of the (possibly punctured) 4-manifold
onto a CW-complex determined by the multisection diagram. Further, a
multisection induces an open book decomposition on the boundary of the
4-manifold; we describe the action of the monodromy on the homology of
the page from the multisection diagram.

1. Introduction and main results

A trisection is a type of combinatorial structure on 4-manifolds which was discovered
by Gay and Kirby [2016] via Morse 2-functions. They proved that any smooth
4-manifold, possibly with boundary, can be decomposed as the union of three
4-dimensional 1-handlebodies, with 3-dimensional 1-handlebodies as pairwise
intersections and a compact surface as global intersection. Such a trisection can
be described by a diagram, namely the central surface with collections of curves
that define the 3-dimensional pieces. A trisection diagram determines a smooth
4-manifold up to diffeomorphism, so that one should be able to read topological
invariants of the manifold on the diagram. In the setting of closed 4-manifolds,
Feller, Klug, Schirmer and Zemke [Feller et al. 2018] provided a computation of
the homology and intersection form of the manifold from a trisection diagram, and
Florens and Moussard [2022] derived the twisted homology and torsion, and the
equivariant intersection form. Following these papers, Tanimoto [2023] computed
the homology of 4-manifolds with connected boundary. Here we recover and
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generalize these results, computing from a diagram the twisted absolute and relative
homology and torsion and the equivariant intersection form for any trisected 4-
manifold with boundary. Moreover, we work with “multisections” in the sense of
Islambouli and Naylor [2024], namely a cyclic decomposition of the manifold into
any number of 4-dimensional 1-handlebodies, where successive pieces meet along
3-dimensional 1-handlebodies while nonsuccessive ones meet along the central
surface. We propose a more efficient approach. While Feller, Klug, Schirmer
and Zemke worked with a handle decomposition of the manifold underlying the
trisection, Florens and Moussard directly used the datum of the trisection. This
last method reduced the homological computations, but the computation of torsion
was quite intricate. Here we consider a deformation-retraction of the (possibly
punctured) manifold onto a CW-complex associated with the multisection diagram.
This simplifies the computations and provides the torsion “for free”. This retraction
could be useful for further computations of homological or homotopical invariants.

A multisection of a 4-manifold X with boundary induces an open book decom-
position on the boundary. The monodromy of this open book has been described
algorithmically by Castro, Gay and Pinzón-Caicedo [Castro et al. 2018a] from a
diagram. Here we derive the action of the monodromy on the homology of the page
from which can be derived a computation of the homology of ∂ X as well as the
Alexander module of the binding determined by the monodromy.

For 4-manifolds with boundary, the handlebodies of a multisection inherit (hyper)
compression bodies structures related to the way they intersect the boundary of the
manifold.

Definition 1.1. A compression body C is a cobordism from a compact orientable
surface ∂−C to a connected compact orientable surface ∂+C which is constructed
using only 1-handles. Likewise a hyper compression body V is a cobordism
from a compact orientable 3-manifold ∂−V to a connected compact orientable
3-manifold ∂+V constructed using only 1-handles. A lensed (hyper) compression
body is then obtained by collapsing the vertical boundary of the cobordism so that
the boundary of ∂+C (∂+V ) becomes identified with the boundary of ∂−C (∂−V ).

In the case that ∂−C = ∅, it is understood at C is built using only 1-handles
attached to a single 0-handle. A (lensed) compression body is trivial if ∂−C ∼= ∂+C .
This means it is just a thickened surface S × I , or if lensed, it is obtained from S × I
by collapsing the I -fibers of ∂S × I .

Definition 1.2. A multisection of a compact orientable 4-manifold X is a decompo-
sition X = X1 ∪ · · · ∪ Xn into 4-dimensional 1-handlebodies X i with the following
properties (all arithmetic involving indices is mod n):

(1) Each X i has a lensed hyper compression body structure such that ∂−X i =

X i ∩∂ X , and if ∂ X ̸=∅, there is a fixed surface 6∂ such that, for all 1 ≤ i ≤ n,
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∂−X i is diffeomorphic to the trivial lensed compression body obtained by
pinching the vertical boundary of 6∂ × I .

(2) 6 =
⋂n

i=1 X i is a compact connected orientable surface.

(3) Ci = X i ∩ X i+1 is a 3-dimensional 1-handlebody with a lensed compression
body structure satisfying ∂+Ci = 6 and ∂−Ci = Ci ∩ ∂ X ∼= 6∂ for all i .

(4) X i ∩ X j = 6 when |i − j | > 1.

A multisection is called a trisection when n = 3.

The condition that the Ci are 1-handlebodies implies that 6 is closed if and
only if 6∂ is closed. We shall consider the case when 6∂ contains no closed
components, and within this context 6 will be closed if and only if X itself is
closed. This is the framework of most of the literature on trisections and within
this framework a unified calculation of the algebraic topology is possible. The
specific case where more general compression bodies are allowed, i.e., the case in
which 6∂ has closed components, was considered in the original paper of Gay and
Kirby [2016]; however, the calculations become more delicate and require special
treatment. Moreover in the case that 6∂ contains components that are spheres,
diagrams no longer determine a unique 4-manifolds up to diffeomorphism. We
postpone the homology computations in this case to a forthcoming publication in
order to avoid the extra complications here.

In the case that ∂ X ̸= ∅, it is also to be understood that for all i mod n, ∂−X i is
parametrized as 6∂×I/∼ in such a way that ∂−Ci−1 =6∂×{0} and ∂−Ci =6∂×{1}.
Thus, the multisection induces an open book decomposition on ∂ X with page 6∂ .

We fix once and for all a multisected manifold X =
⋃

1≤i≤n X i , and set Ci =

X i ∩ X i+1 and 6 =
⋂

i X i .

Definition 1.3. Let C be a compression body. A defining collection of disks for C
is a collection D of disks properly embedded in C such that C \η(D) is a thickening
of ∂−C (for instance the cocore disks of the 1-handles in the definition). The
boundary ∂D ⊂ ∂+C is a defining collection of curves for C .

C1

X1

C2

X2

C3

X3

C4

X4

C5

X5

C6

X6

•
6

Figure 1. Schematic of a multisection.
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Definition 1.4. A diagram of the multisection X=
⋃

1≤i≤n X i is a tuple (6;c1,...,cn)

where ci is a defining collection of curves for Ci .

A multisection diagram determines a unique smooth 4-manifold [Castro et al.
2018b]. The structure of the X i gives some constraints on the curves of a multi-
section diagram. For each i , X i is obtained from a thickened ∂−X i by attaching 1-
handles, so that ∂+X i ∼= (S2

× S1)♯k #
(
#∂−X i

)
, where k is the number of 1-handles

in excess of the minimum required to connect ∂−X i , and #∂−X i is the connected
sum of all components of ∂−X i . Now Definition 1.2 implies that Ci−1 ∪6 Ci is a
sutured Heegaard splitting of ∂+X i , so that the Heegaard diagram (6; ci−1, ci ) is
always handleslide-diffeomorphic to a standard diagram as represented in Figure 2.

Fix a homomorphism ϕ : Z[π1(X)] → R, where R is a commutative ring. We
shall express the absolute and relative homology of X , twisted by ϕ, in terms of
the multisection diagram. Fix a point ∗ ∈ Int(6) and let Lϕ

i be the submodule
of Hϕ

1 (6, ∗) generated by the homology classes of the curves in ci . In Section 3,
we obtain the following result (Theorem 3.8, Remark 3.9 and Lemma 3.11).

Theorem 1.5. The homology of X is given by the chain complex of free R-modules

(C) 0 →

n⊕
i=1

(Lϕ

i−1 ∩ Lϕ
i )

∂2
−→

n⊕
i=1

Lϕ
i

∂1
−→ Hϕ

1 (6, ∗)
∂0

−→ Hϕ

0 (∗),

where

∂2((xi )1≤i≤n) = (xi − xi+1)1≤i≤n and ∂1((xi )1≤i≤n) =

n∑
i=1

xi .

Moreover, if R is a field, an explicit complex basis of (C) can be given such that
τϕ(X; h) = τ(C; b, h).

Let 6′ be the surface 6 with a small open disk removed, such that the point ∗

lies on the boundary of the removed disk. For 1 ≤ i ≤ n, let J ϕ
i be the orthogonal

complement in Hϕ

1 (6′, ∂6) of Lϕ
i with respect to the equivariant intersection pairing

on Hϕ

1 (6, ∗) × Hϕ

1 (6′, ∂6). We prove the following in Section 4 (Theorem 4.9,
Lemma 4.6 and Remark 4.10).

Theorem 1.6. If ∂ X ̸= ∅, the twisted homology of (X, ∂ X) is given by the chain
complex of free R-modules

(C∂ ) Hϕ

2 (6, 6′)
∂3

−→

⊕
i

(J ϕ

i−1 ∩J ϕ
i )

∂2
−→

⊕
i

J ϕ
i

∂1
−→ Hϕ

1 (6′, ∂6) → 0,

where

∂3([6])=[∂(6\6′)], ∂2((xi )1≤i≤n)=((xi−xi+1)1≤i≤n), ∂1((xi )1≤i≤n)=
n∑

i=1
xi .

Moreover, if R is a field, an explicit complex basis of (C∂ ) can be given such that
τϕ(X, ∂ X; h) = τ(C∂; b, h).
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When 6 is closed, we define the Lϕ
i in Hϕ

1 (6′, ∗). In this closed case, these
are lagrangians, namely they are their own orthogonal complement with respect
to the intersection form. The next result is obtained in Section 6 (Theorem 6.4,
Remark 6.5 and Lemma 6.2).

Theorem 1.7. If X is closed, the twisted homology of X is given by the chain
complex of free R-modules

(C) Hϕ

2 (6, 6′)
∂3

−→

⊕
i

(Lϕ

i−1 ∩ Lϕ
i )

∂2
−→

⊕
i

Lϕ
i

∂1
−→ Hϕ

1 (6′, ∗) → Hϕ

0 (∗),

where

∂3([6]) = [∂6′
], ∂2((xi )1≤i≤n) = ((xi − xi+1)1≤i≤n), ∂1((xi )1≤i≤n) =

n∑
i=1

xi .

Moreover, if R is a field, an explicit complex basis of (C) can be given such that
τϕ(X; h) = τ(C; b, h).

These three theorems allow us to represent homology classes by mainly explicit
chains in the multisected manifold which meet transversely along copies of the
central surface 6. This provides a simple description of the intersection form on X
(Theorems 5.1 and 6.6).

Theorem 1.8. Suppose h1 = [(xi )1≤i≤n] and h2 = [(yi )1≤i≤n] in Hϕ

2 (X), where
(xi )1≤i≤n, (yi )1≤i≤n ∈

⊕
i Lϕ

i . Then

⟨h1, h2⟩
ϕ
X =

∑
1≤i< j≤n

⟨xi , y j ⟩
ϕ
6,

where ⟨ · , · ⟩
ϕ
X and ⟨ · , · ⟩

ϕ
6 are the equivariant intersection forms on Hϕ

2 (X) and
Hϕ

1 (6, ∗) respectively (Hϕ

1 (6′, ∗) if X is closed).

The intersection pairing on Hϕ

2 (X)×Hϕ

2 (X, ∂ X) is similar (Theorem 5.3). In odd
dimensions, the intersection pairings are especially simple (Theorems 5.4 and 6.6).

Theorem 1.9. Suppose that either h1 ∈ Hϕ

1 (X) corresponds to the element a ∈

Hϕ

1 (6, ∗) and h2 ∈ Hϕ

3 (X, ∂ X) corresponds to the element b ∈
⋂

i J
ϕ
i , or h1 ∈

Hϕ

1 (X, ∂ X) corresponds to the element a ∈ Hϕ

1 (6′, ∂6) and h2 ∈ Hϕ

3 (X) corre-
sponds to the element b ∈

⋂
i Lϕ

i (a ∈ Hϕ

1 (6′, ∂6) and b ∈
⋂

i Lϕ
i if X is closed).

Then
⟨h1, h2⟩

ϕ
X = ⟨a, b⟩

ϕ
6.

Plan of the paper. In Section 2, we recall the definitions of twisted homology,
torsion and equivariant intersection pairing. Our discussion is somewhat discursive
to help readers build intuition. Sections 3 and 4 are devoted to the twisted homology
and torsion of a 4-manifold with nonempty boundary, respectively absolute and
relative. In Section 5, we describe the intersection forms. Section 6 treats the case
of a closed 4-manifold. Section 7 deals with the boundary: action in homology
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Figure 2. Heegaard diagram for Ci−1 ∪ Ci . In this example,
Ci−1 and Ci are constructed with eight 1-handles and X i with
six 1-handles. The manifold X has four boundary components.
The components of the page 6∂ have a pair (genus, number of
boundary components) equal to (1, 2), (2, 1), (1, 1) and (0, 2).

of the monodromy of the open book and homology of the boundary. Finally, in
Section 8, we treat some examples.

Conventions. The notation we set above is assumed to be fixed for the remainder
of the paper. That is, X is always multisected by n hyper compression bodies X i

which meet in compression bodies Ci , all of which are attached radially about the
central fiber 6. Additionally, Y = C1 ∪ · · · ∪ Cn shall be referred to as the spine of
the multisection. Also, ϕ : Z[π1(X)] → R is a homomorphism to a commutative
ring R. Throughout the paper, if Z is a subset of a manifold M , η(Z) denotes a
regular neighborhood of Z in M .

2. Algebraic preliminaries

2A. Twisted homology. Let π = π1(X) and let R be a ring. A group homomor-
phism ϕ : π → R∗ induces a ring homomorphism Z[π ] → R. Throughout, both of
these homomorphisms shall be denoted by ϕ and called the “twisting map.”

Let X̃ denote the universal cover of X , and for any Z ⊂ X , let Z̃ denote the
inverse image of Z under the covering map X̃ → X (Z̃ will usually not be the
universal cover of Z ). Then π acts on both X̃ and Z̃ by deck transformations, which
induces a left Z[π ]-module structure on C∗(X̃ , Z̃). This allows us to define a chain
complex of R-modules

Cϕ
i (X, Z) = R ⊗ϕ Ci (X̃ , Z̃).
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The usual boundary maps on C∗(X̃ , Z̃) induce Z[π ]-module morphisms, and the
boundary maps of Cϕ

∗ (X, Z) are then obtained by tensoring with the identity map
on R. The resulting homology groups are denoted by Hϕ

∗ (X, Z).
To understand the structure of the twisted chain groups, observe first that by

definition, for any g ∈ π1(X) and choice of lift ẽ of an i-cell e of X , 1⊗ (g · [ẽ]) =

ϕ(g) ⊗ [ẽ]. It follows from the transitivity of the π action on X̃ that a choice of
lift for every i-cell in X determines an R-basis of Cϕ

i (X, Z), and thus Cϕ
i (X, Z) is

always a freely generated R-module of the same rank as the Z-rank of Ci (X, Z),
for any twisting map.

The effect of the twisting map is to be found in how the boundary maps are
changed, and thereby also the resulting homology groups. Intuitively, one thinks
of R as something like a tangent space to each point of X , and multiplication by ϕ(g)

corresponds to the monodromy action of g. For example, if a 1-chain e corresponds
to the element g ∈π with its endpoints on the 0-chain v, then in untwisted homology
we would have ∂e =v−v = 0, but with twisted homology we have ∂e =ϕ(g)v−v =

(ϕ(g) − 1)v. The choice of lift does not affect the homology because different
choices of lift amount to scalar multiplication of a basis element by a unit in R.

For example, if ϕ is the trivial map π → R∗, so that ϕ(g) = 1 for every g ∈ π ,
then in this case for all lifts ẽ1, ẽ2 of a given cell e of X , we have

1 ⊗ [ẽ1] = 1 ⊗ (g · [ẽ2]) = ϕ(g) ⊗ [ẽ2] = 1 ⊗ [ẽ2].

In other words, all the lifts of e determine the same chain in Cϕ
i (X, Z), and the

projection map X̃ → X thus induces a chain isomorphism Cϕ
∗ (X, Z)→C∗(X, Z; R),

where C∗(X, Z; R) is the usual chain complex for the (untwisted) homology with R
coefficients.

On the other extreme, if ϕ is the inclusion π ↪→ Z[π ]
∗, then all distinct lifts of a

cell e to X̃ determine chains which differ by multiplication by a unit in π ⊂ Z[π ].
This example where ϕ = ι : π → Z[π ]

∗ is in a sense universal. For if one can
compute matrices which describe the boundary maps of C ι

∗
(X, Z) in terms of some

fixed cellular basis, then for any other map ϕ : π → R∗, one simply substitutes ϕ(g)

for every g in the matrices of C ι
∗
(X, Z) to obtain matrices of the boundary maps

for Cϕ
∗ (X, Z) with respect to the same basis.

As a simple but instructive example, if X = S1 and Z =∅, then we may identify π

with the cyclic group generated by t , and

C ι
0(S1) ∼= C ι

1(S1) ∼= Z[t, t−1
].

All other chain groups are trivial as with the untwisted case, and the one nontrivial
boundary map is multiplication by tn(t − 1) (where n depends only on the choices
of lifts). Therefore H ι

1(S1) ∼= 0 and H ι
0(S1) is Z, considered as a Z[t, t−1

]-module
whose action is given by P(t) ·a = P(1)a. More generally, given a homomorphism
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ϕ : π → R∗, where R is a ring,

Cϕ

0 (S1) ∼= Cϕ

1 (S1) ∼= R,

and the boundary map is multiplication by ϕ(t)n(ϕ(t)−1). If ϕ(t)=1 (the untwisted
case), then

Hϕ

0 (S1) ∼= Hϕ

1 (S1) = R,

but if (ϕ(t) − 1) is a unit then the entire twisted homology becomes trivial.
Returning to generalities, if we let X̂ denote the cover of X associated with

a normal subgroup N ⊂ ker(ϕ), then ϕ factors through a map π1(X)/N → R,
which we also call ϕ. If Ẑ is the inverse image of Z under the covering map
X̂ → X , then the chain complex C∗(X̂ , Ẑ) becomes a Z[π ]-module and if we
define the chain groups R ⊗ϕ C∗(X̂ , Ẑ), the resulting homology will be the same
as Hϕ

∗ (X, Z) through an isomorphism induced by the subcovering X̃ → X̂ , similar
to how twisted homology reduces to ordinary homology when ϕ is the trivial map.
This observation is important for making geometric sense of long exact sequences
in the twisted context. Consider, for example, the long exact sequence associated
to the pair (X, Z), which looks like this:

· · · → Hϕ
i (X) → Hϕ

i (X, Z)
f

−→ Hϕ◦ι

i−1(Z)
g

−→ Hϕ

i−1(X) → · · · .

Considering Hϕ◦ι

i−1(Z) in isolation, observe the twisting map is ϕ ◦ ι, where
ι : π1(Z) → π1(X) is induced by inclusion. If the map ι is a surjection, then the
inverse image p−1(Z) of Z under the universal cover p : X̃ → X will be a subcover
of the universal cover Z̃ → Z . We cannot easily give a geometric interpretation of f
if we use the universal cover of Z to define its twisted homology, but if we instead
use the cover p−1(Z) of Z to recover Hϕ◦ι

i−1(Z), then f will be induced on the chain
level by taking the boundary of a relative i-cycle in R ⊗ϕ Ci (X̃ , Ẑ), and g will
be induced by inclusion as usual. More generally, p−1(Z) may correspond to a
disjoint union of copies of the subcover Ẑ → Z associated with ker(ϕ ◦ ι). In this
case, f first takes the boundary of a relative i-cycle in (X̃ , p−1(Z)) and these, after
multiplication by an appropriate element of Z[π ], will all be identified with cells in
one preferred component of p−1(Z), which we identify with Ẑ .

For the reader who would like to build intuition with twisted coefficients, we
strongly recommend working out the geometric details of the long exact sequence
of the pairs (S1, v), where v is a point in S1, and (T 2, G), where T 2 is the 2-torus
and G is its standard 1-skeleton with two edges and one vertex. It is similar to
working with integral homology; the only complication is that one must understand
the topology of appropriate covers to carry out calculations.

2B. Torsion. We recall the algebraic setup; see [Milnor 1966] and [Turaev 2001]
for further details. Let K be a field. If V is a finite-dimensional K-vector space
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and b and c are two bases of V , we denote by [b/c] the determinant of the matrix
expressing the basis change from b to c. The bases b and c are equivalent if [b/c]=1.
Let C be a finite complex of finite-dimensional K-vector spaces:

C = (Cm
∂m
−→ Cm−1 −→ · · ·

∂1
−→ C0).

A complex basis of C is a family c = (cm, . . . , c0) where ci is a basis of Ci for all i ∈

{0, . . . , m}. A homology basis of C is a family h = (hm, . . . , h0) where hi is a basis
of the homology group Hi (C) for all i ∈ {0, . . . , m}. If we have chosen a basis b j of
the space of j -dimensional boundaries B j (C) = Im ∂ j+1 for all j ∈ {0, . . . , m − 1},
and a homology basis h of C, this induces a class of bases (bi hi )b̄i−1 which consists
of the elements of bi , a choice of representatives for hi , and the image b̄i−1 of bi−1

under some section of ∂i . Neither the choice of hi -representatives nor the choice
of section used to define b̄i−1 affects the equivalence class of the resulting basis
of Ci , because they differ from one another by linear combinations of bi .

The torsion of the K-complex C, equipped with a complex basis c and a homology
basis h, is the scalar

τ(C; c, h) =

m∏
i=0

[(bi hi )b̄i−1/ci ]
(−1)i+1

∈ K∗,

where [(bi hi )b̄i−1/ci ] denotes the determinant of the change of basis matrix from ci

to (bi hi )b̄i−1.
This definition does not depend even on the choice of b0, . . . , bm , because of

the alternating exponent. The value depends only on the choice of c and h. Of
course, by making appropriate choices of c and h, we can make the torsion equal
to whatever we want (indeed, just multiply one element of c or h by a scalar and
you will multiply or divide the entire torsion by that scalar). In practice, C will be
the twisted cellular chain complex associated with the CW-space X , and ci will be
a geometric base of the chain groups R ⊗ϕ Cϕ

i (X̃) that is represented by the cells
in a lift of the i-skeleton of X to X̃ . Different choices of lift can change the final
value of the torsion by an element of ±ϕ(π), so we mod out by this ambiguity and
obtain a torsion function τ : H(X) → K∗/(±ϕ(π)), where H(X) is the set of all
homology bases of the associated (twisted) cellular chain complex of X .

Specifically, assume R is a field, and (X, Z) is a CW-pair. Let c̃ be a basis of
the complex of free Z[π1(X)]-modules C(X̃ , Z̃) obtained by lifting each relative
cell of (X, Z) to X̃ . Then c = c̃ ⊗ 1 is a geometric basis of Cϕ(X, Z). We need
such bases to define the torsion.

Definition 2.1. Given a homology basis h of Hϕ(X, Z) and a geometric basis c
of Cϕ(X, Z), the torsion of (X, Z; ϕ) is

τϕ(X, Z; h) = τ(Cϕ(X, Z); c, h) ∈ R/ ± ϕ(π1(X)).
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The remarkable fact is that τϕ is a topological invariant when Z = ∅: any two
choices of CW-decomposition for X will result in the same torsion. In the case of a
true pair (Z ̸= ∅) the torsion remains invariant under CW-subdivision.

Our results below will describe how to pick out geometric bases given the
curves on a multisection diagram. In particular, we will describe the curves on the
central surface 6 that explicitly correspond to 1-, 2- and 3-cells in the multisected
4-manifold.

2C. The equivariant intersection form. Let W be a compact oriented m-manifold,
R be a commutative ring and ϕ : Z[π1(W )] → R be a morphism. Let A and B be
disjoint subsets of ∂W . For q ∈ {0, . . . , m}, the equivariant intersection pairing
of W relative to A and B with coefficient in R, introduced by Reidemeister [1939],
is the sesquilinear map

⟨ · , · ⟩
ϕ
W : Hϕ

q (W, A) × Hϕ
m−q(W, B) → R

defined by

⟨[x ⊗ r ], [x ′
⊗ r ′

]⟩
ϕ
W =

∑
h∈H1(W )/ker(ϕ)

⟨x, h.x ′
⟩W ϕ(h)rr ′,

where we are abusing notation slightly by letting ϕ denote the group homomor-
phism from H1(W ) into R∗, W ↠ W is the covering associated with ker ϕ

and ⟨ · , · ⟩W stands for the algebraic intersection in W . By Blanchfield’s dual-
ity theorem [1957, Theorem 2.6], if W is smooth, ϕ(H1(W )) is a free multi-
plicative subgroup of R, and ∂W = A ⊔ B, this pairing is nondegenerate on
(Hϕ

q (W, A)/Tor)×(Hϕ
m−q(W, B)/Tor). The standard (i.e., nonequivariant) intersec-

tion pairing is recovered with a trivial twisting map (i.e., R =Z and ϕ(π1(W ))={1}).
When A = B = ∅ and q = m − q, the equivariant intersection pairing defines

a nondegenerate equivariant intersection form on Hϕ
q (W )/Tor. (In general, if the

modules H and K are identified by a canonical isomorphism, a pairing on the
product H × K defines a form on H ∼= K . A pairing may be considered up to
isomorphism of either H or K , while for a form, one may restrict to applying the
same isomorphism on both factors. Therefore a form carries more information.)

For a 4-manifold X , the intersection form is standardly defined as a bilinear form
on H 2(X, ∂ X) × H 2(X, ∂ X) by applying the cup product of two cochains to the
fundamental form [X ] ∈ H4(X, ∂ X). Via Poincaré duality, this form can be defined
on H2(X) × H2(X) and, as such, it coincides with the above intersection form for
a trivial twisting map.

3. The twisted absolute homology groups and torsion

In this section we derive chain complexes for the twisted homology groups Hϕ
∗ (X),

assuming that ∂ X ̸= ∅. Recall that, in this case, ∂6 ̸= ∅.
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Definition 3.1. Let V be a hyper compression body. A defining collection of balls
for V is a collection B of 3-balls properly embedded in V such that V \ η(B) is a
thickening of ∂−V .

We assume for the remainder of this section that a fixed choice of defining
collections Di and Bi of disks and balls has been made for all 1 ≤ i ≤ n.

The following lemmas provide a 3-complex onto which X deformation retracts.
Our calculations hinge on a careful understanding of how the cells of this complex
are mirrored by simple closed curves on 6. Recall that Y = C1 ∪ · · · ∪ Cn denotes
the spine of the multisection.

Lemma 3.2. The manifold X retracts onto 6 ∪
⋃n

i=1(Di ∪Bi ). Further, the quad
(X, Y, 6, ∗) deformation retracts on a CW-complex (Z3, Z2, Z1, Z0), where Z0 =∗,
Z1 is a bouquet of loops defining a basis of H1(6), Z2 = Z1 ∪D, and Z3 = Z2 ∪B.

Proof. By definition, X i \η(Bi ) ∼= ∂−X i × I , so each X i retracts onto ∂+X i ∪Bi , and
hence X retracts onto Y ∪

⋃
i Bi . Likewise each Ci retracts onto ∂+Ci ∪Di =6∪Di ,

so that Y further retracts down to 6 ∪
⋃

i Di . This gives the first assertion. For
the second assertion, we get Z1 = 6 and Z2 = 6 ∪D and we conclude by further
retracting 6. □

Corollary 3.3. The twisted homology of X is the homology of the following complex:

(C′) 0 → Hϕ

3 (X, Y ) → Hϕ

2 (Y, 6) → Hϕ

1 (6, ∗) → Hϕ

0 (∗).

Proof. Lemma 3.2 shows that the complex above is isomorphic to the cellular
homology complex

0 → Hϕ

3 (Z3, Z2) → Hϕ

2 (Z2, Z1) → Hϕ

1 (Z1, Z0) → Hϕ

0 (Z0)

via the map induced by the inclusion Z3 ↪→ X , which is a simple homotopy. □

Definition 3.4. Let Lϕ
i denote the submodule of Hϕ

1 (6, ∗) generated by the twisted
homology classes of the components of ci .

Following the approach of [Florens and Moussard 2022], we shall express the
complex (C′) in terms of these submodules. They have the following homological
interpretation.

Lemma 3.5. The module Lϕ
i naturally identifies with the kernel of the inclusion

map ι∗ : Hϕ

1 (6) → Hϕ

1 (Ci ).

Proof. Since the components of ci bound disks in Ci , it is clear that Lϕ
i ⊂ ker(ι∗);

since these disks cut Ci into a thickened ∂−Ci , the reverse inclusion follows. □

Lemma 3.6. Hϕ

2 (Ci , 6) ∼= Lϕ
i for all i .

Proof. Hϕ

1 (Ci , 6) = 0 because Ci deformation-retracts onto 6 ∪Di , and thus the
exact sequence of the pair (Ci , 6) gives Hϕ

2 (Ci , 6) ∼= ker(Hϕ

1 (6) → Hϕ

1 (Ci )). □
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Lemma 3.7. Hϕ

3 (X i , Ci−1 ∪ Ci ) ∼= Lϕ

i−1 ∩ Lϕ
i for all i .

Proof. Since X i is a 4-dimensional 1-handlebody, its order 2 and 3 homology is
trivial, and the exact sequence of the pair (X i , Ci−1∪Ci ) gives Hϕ

3 (X i , Ci−1∪Ci )∼=

Hϕ

2 (Ci−1 ∪ Ci ). Now the exact sequence of the pair (Ci−1 ∪ Ci , 6) gives

0 → Hϕ

2 (Ci−1 ∪ Ci )
ι

−→ Hϕ

2 (Ci−1, 6)⊕ Hϕ

2 (Ci , 6)
π

−→ Hϕ

1 (6),

where the identification Hϕ

2 (Ci−1 ∪ Ci , 6) ∼= Hϕ

2 (Ci−1, 6) ⊕ Hϕ

2 (Ci , 6) follows
from the Mayer–Vietoris sequence associated to the decomposition of the pair
(Ci−1 ∪ Ci , 6) into (Ci−1, 6) and (Ci , 6). Now, the map π is the difference
of the maps Hϕ

2 (Ci−1, 6) → Hϕ

1 (6) and Hϕ

2 (Ci , 6) → Hϕ

1 (6) given by the
exact sequences of the pairs (Ci−1, 6) and (Ci , 6), which give the identifications
Hϕ

2 (Ci−1, 6)∼= Lϕ

i−1 and Hϕ

2 (Ci , 6)∼= Lϕ
i of Lemma 3.6. It follows that the kernel

of π , and thus the image of ι, identifies with the intersection Lϕ

i−1 ∩ Lϕ
i . □

Theorem 3.8. The homology of X is given by the chain complex

(C) 0 →

n⊕
i=1

(Lϕ

i−1 ∩ Lϕ
i )

∂2
−→

n⊕
i=1

Lϕ
i

∂1
−→ Hϕ

1 (6, ∗)
∂0

−→ Hϕ

0 (∗),

where ∂2((xi )1≤i≤n) = (xi − xi+1)1≤i≤n and ∂1((xi )1≤i≤n) =
∑n

i=1 xi . Moreover,
if R is a field, the complex basis b of (C) described in Remark 3.9 forms a geometric
basis for the torsion of X , meaning that τϕ(X; h) = τ(C; b, h).

Proof. Since Hϕ

2 (Y, 6) ∼=
⊕

i Hϕ

2 (Ci , 6) and Hϕ

3 (X, Y ) ∼=
⊕

i Hϕ

3 (X i , Ci−1 ∪Ci ),
we can conclude with Corollary 3.3 and Lemmas 3.6 and 3.7. See Remark 3.9 for
the explication of the geometric bases. □

Remark 3.9. The geometric bases of C′ are images of cellular bases under the
map induced by inclusion Z3 ↪→ X . The maps described in Lemmas 3.6 and 3.7
then define an isomorphism from C′ to C, and the geometric bases of C are then the
images of geometric bases of C′ under this map. This yields the following more
concrete description of what the geometric bases b look like for C:

• b0 is given by the basepoint ∗ ,

• b1 is defined by any set of loops on which 6 retracts,

• b2 is any basis corresponding to a tuple of defining curves (ci )1≤i≤n ,

• b3 is any basis corresponding to a tuple of “double curves” for the pairs
(ci−1, ci ).

By a “double curve” for a pair (ci−1, ci ), we mean any curve on 6 which simul-
taneously bounds disks in Ci−1 and Ci . The constraints on multisection diagrams
imply that Lϕ

i−1 ∩ Lϕ
i admits bases represented by double curves; see Figure 2.
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It might not be easy to find a system of double curves from a diagram, since it
implies some possibly unobvious handleslides. It is not necessary in this algebraic
computation; see Remark 3.12.

Corollary 3.10. We have the expressions

Hϕ

1 (X) ∼= Hϕ

1 (6)/
(⊕

i

Lϕ
i

)
, Hϕ

3 (X) ∼=

⋂
i

Lϕ
i ,

where we slightly abuse notation by viewing Lϕ
i ⊂ Hϕ

1 (6) ⊂ Hϕ

1 (6, ∗).

Proof. For H1, the pair (6, ∗) gives Hϕ

1 (6) ∼= ker(Hϕ

1 (6, ∗) → Hϕ

0 (∗)). □

A satisfying point in Theorem 3.8 is that the modules of the complex (C) are
free.

Lemma 3.11. The modules Hϕ

1 (6, ∗) and Lϕ
i are free R-modules of respective

ranks 2g + b − 1 and p, where g is the genus of 6, b is its number of boundary
components and p is the number of curves in each collection ci . The modules
Lϕ

i−1 ∩ Lϕ
i are also free, and their rank does not depend on R and ϕ.

Proof. Since ∂6 ̸= ∅, 6 deformation retracts onto a bouquet of 2g + b − 1 loops
with central vertex ∗ . Hence Cϕ

1 (6, ∗) ∼= R2g+b−1 is the only nontrivial twisted
chain module of (6, ∗) and Hϕ

1 (6, ∗) ∼= R2g+b−1. The retraction can be chosen so
that the components of ci are loops of the bouquet, and hence Lϕ

i is a free submodule
of Hϕ

1 (6, ∗) with basis given by the classes of these components. Moreover, up to
handleslide, we can assume the components of ci−1 and ci are in standard position
(see Figure 2), so that a basis of Lϕ

i−1 ∩ Lϕ
i is given by the parallel curves in these

collections. □

Remark 3.12. We can now explain how to simplify the computation of torsion,
avoiding the explicit exhibition of systems of double curves. Consider the subring
R0 =ϕ(Z[π1(X)]) of the field R; note that R0 =Z[ϕ(π1(X))] and R∗

0 =±ϕ(π1(X)).
To avoid confusion, we denote by L R0

i the module associated to the map ϕ viewed
with values in R0. The natural map from Hϕ

1 (6, ∗; R0) to Hϕ

1 (6, ∗; R) sends L R0
i

onto Lϕ
i . The submodules of Hϕ

1 (6, ∗; R) that appear in the complex (C) of
Theorem 3.8 are free and are images of the similar submodules of Hϕ

1 (6, ∗; R0),
which have the same rank. An R0-basis of such a submodule of Hϕ

1 (6, ∗; R) is a
basis that is the image of a basis of the corresponding submodule of Hϕ

1 (6, ∗; R0).
A tuple of double curves defines such an R0-basis. Any other R0-basis can be
used to compute the torsion. Actually, changing the basis of a homology module
in the computation of the torsion multiplies the torsion by the determinant of the
change of basis. For R0-bases, this determinant is the same as the determinant of the
corresponding change of basis of the corresponding submodule of Hϕ

1 (6, ∗; R0),
so that it is an element of R∗

0 = ±ϕ(π1(X)).
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4. The twisted relative homology groups and torsion

In this section, we compute the twisted relative homology and torsion of X . The
computation of the homology of (X, ∂ X) ends up being formally similar to that
of X : it involves a retraction onto a 3-complex in X . However, in order to make
the relative cellular structure clearly apparent, we leave ∂ X fixed throughout the
retraction. To carry out such a retraction, X has to be punctured, but once the
homology of the punctured version of X is computed rel ∂ X , it is easy to recover
the homology of X itself rel ∂ X .

Definition 4.1. Let C be a lensed compression body. An r-defining collection of
disks for C is a disjoint union Dr of disks, with boundary in ∂+C or made of an
arc in ∂+C and an arc in ∂−C , such that C \ η(Dr ) is a 3-ball. The intersection
with ∂+C of an r -defining collection of disks for C is a complete collection of arcs
and curves for C .

Likewise if V is a hyper compression body then an r-defining collection of balls
for V is a union of 3-balls Br such that V \ η(Br ) is a 4-ball.

Remark 4.2. The r in these definitions stands for “relative”. Note that an r -defining
collection of disks can be chosen to contain a defining collection of disks, and
similarly for collections of balls.

Such r-defining collections of disks do exist. First take a subcollection of a
defining collection of disks for C , dropping those that do not carry homology relative
to boundary. Then add the products with the interval in ∂−C × I of arcs that cut ∂−C
into a disjoint union of disks. A similar argument shows existence of r-defining
collections of balls for the hyper compression bodies under consideration here.

Fix r -defining collections Dr
i and Br

i of disks and balls for Ci and X i respectively.
Set Dr

=
⋃n

i=1D
r
i and Br

=
⋃n

i=1 B
r
i . For all Z ⊂ X , let Z ′

= Z \ η(∗).

Lemma 4.3. The manifold X ′ deformation retracts onto 6′
∪Dr

∪Br
∪∂ X. Further,

the quad (X ′, Y ′
∪∂ X, 6′

∪∂ X, ∂ X) deformation retracts rel ∂ X onto a CW-complex
(Z ∂

3 ∪ ∂ X, Z ∂
2 ∪ ∂ X, Z ∂

1 ∪ ∂ X, ∂ X), where Z ∂
1 is made of arcs and loops on 6′,

Z ∂
2 = Z ∂

1 ∪Dr , Z ∂
3 = Z ∂

2 ∪Br .

Proof. The proof is similar to that of Lemma 3.2, but instead of retracting from
the boundary, we retract “inside out” from the puncture ∗ . Because X i \ η(Br

i )

is a ball and meets η(∗) in a small 4-ball that has been “scooped out” of the
boundary, we obtain a retraction of X ′

i onto (∂ X i )
′
∪Br

i . Carrying this retraction
out for each i yields a retraction of X ′ onto Y ′

∪ Br
∪ ∂ X — recall that ∂ X i =

(X i ∩ X i−1)∪ (X i ∩ X i+1)∪ (X i ∩ ∂ X). Since each Ci \η(Dr
i ) is also a ball which

intersects η(∗) along a scooped out 3-ball, Y ′ can further be retracted onto 6′
∪Dr .

This gives the first assertion, and the second one follows. □
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Corollary 4.4. The homology of (X, ∂ X) is given by the chain complex

(C′

∂ ) Hϕ

4 (X, X ′) → Hϕ

3 (X ′, Y ′
∪ ∂ X) → Hϕ

2 (Y ′, 6′
∪ ∂Y ) → Hϕ

1 (6′, ∂6) → 0.

Proof. Lemma 4.3 immediately gives the following cellular chain complex for
(X ′, ∂ X):

0 → Hϕ

3 (X ′, Y ′
∪ ∂ X) → Hϕ

2 (Y ′
∪ ∂ X, 6′

∪ ∂ X) → Hϕ

1 (6′
∪ ∂ X, ∂ X) → 0,

or equivalently,

0 → Hϕ

3 (X ′, Y ′
∪ ∂ X) → Hϕ

2 (Y ′, 6′
∪ ∂Y ) → Hϕ

1 (6′, ∂6) → 0.

Now, the long exact sequence of the triple (X, X ′, ∂ X) shows that Hϕ
k (X, ∂ X) ∼=

Hϕ
k (X ′, ∂ X ′) for k = 1, 2 and Hϕ

3 (X, ∂ X)∼= Hϕ

3 (X ′, ∂ X)/Im(Hϕ

4 (X, X ′)). Finally,
the long exact sequence of the triple (X, Y ′

∪ ∂ X, ∂ X) identifies Hϕ

4 (X, ∂ X) with
Hϕ

4 (X, Y ′
∪∂ X) and the long exact sequence of the triple (X, X ′, Y ′

∪∂ X) identifies
Hϕ

4 (X, Y ′
∪ ∂ X) with the kernel of Hϕ

4 (X, X ′) → Hϕ

3 (X ′, Y ′
∪ ∂ X). □

Definition 4.5. Let J ϕ
i denote the subgroup of Hϕ

1 (6′, ∂6) generated by any
complete collection of arcs and curves for Ci on 6′.

Lemma 4.6 gives an alternative interpretation of J ϕ
i . Identifying Hϕ

1 (6, ∗) with
H1(6

′, ∂η(∗)) via the excision equivalence, and using the decomposition ∂6′
=

∂6 ∪ ∂η(∗), we have an equivariant intersection form on Hϕ

1 (6, ∗)× Hϕ

1 (6′, ∂6).

Lemma 4.6. The modules Hϕ

1 (6′, ∂6) and J ϕ
i are free R-modules of respective

ranks 2g+b−1 and 2g+b−1−n. The modules J ϕ

i−1∩J ϕ
i are also free. Moreover,

J ϕ
i is the orthogonal complement of Lϕ

i with respect to the equivariant intersection
pairing on Hϕ

1 (6, ∗) × Hϕ

1 (6′, ∂6).

Proof. Let Z ∂
1 be any collection of 2g + b − 1 arcs properly embedded in 6′

which are pairwise disjoint and cut 6′ into a disk. Then 6′ retracts onto Z ∂
1 ∪ ∂6,

showing that Hϕ

1 (6′, ∂6) ∼= R2g+b−1. The 1-complex Z ∂
1 can be chosen so that

2g − p + b − 1 of the arcs form a complete collection of arcs and curves for Ci

(start with a complete collection of arcs and curves, replace closed curves by arcs,
and add as many arcs as needed) whose twisted homology classes generate J ϕ

i . A
basis of J ϕ

i−1 ∩J ϕ
i is provided by a subcollection of these.

Now, a curve c0
i in the family ci bounds a disk in Ci , while an arc γ in a complete

collection of arcs and curves for Ci cobounds a disk in Ci with an arc in ∂−Ci .
Assuming transversality of the two disks, it follows that the intersection of c0

i and γ

is the boundary of a union of embedded intervals and hence contains as many
positive as negative intersection points. Hence J ϕ

i is contained in the orthogonal
complement of Lϕ

i , and the equality follows by a dimension argument, using the
nondegeneracy of the intersection form. □
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Lemma 4.7. Hϕ

2 (C ′

i , (∂Ci )
′) ∼= J ϕ

i for all i .

Proof. The long exact sequence of the triple (C ′

i , (∂Ci )
′, ∂−Ci ), together with the

excision equivalence ((∂Ci )
′, ∂−Ci ) ∼ (6′, ∂6) give the short exact sequence

0 → H2(C ′

i , (∂Ci )
′) → H1(6

′, ∂6)
ζ

−→ H1(C ′

i , ∂−Ci ).

Now C ′

i is obtained from a thickened ∂−Ci by adding only 1-handles, so that
the kernel of ζ contains the homology classes of curves in 6′ that have trivial
algebraic intersection with the cocores of these 1-handles, cocores whose boundaries
generate Lϕ

i . We conclude that H2(C ′

i , (∂Ci )
′) ∼= ker(ζ ) ∼= J ϕ

i . □

Lemma 4.8. Hϕ

3 (X ′

i , (∂ X i )
′) ∼= J ϕ

i−1 ∩J ϕ
i for all i .

Proof. Since X ′

i is obtained from a thickened ∂−X i by adding 1-handles, the exact
sequence of the triple (X ′

i , (∂ X i )
′, ∂−X i ) gives an isomorphism Hϕ

3 (X ′

i , (∂ X i )
′) ∼=

Hϕ

2 ((∂ X i )
′, ∂−X i ); this last module is isomorphic to H2(C ′

i−1∪C ′

i , ∂−Ci−1∪∂−Ci ).
The long exact sequence of the triple

(
C ′

i−1∪C ′

i , (∂Ci−1)
′
∪(∂Ci )

′, ∂−Ci−1∪∂−Ci
)

and the excision equivalence
(
(∂Ci−1)

′
∪ (∂Ci )

′, ∂−Ci−1 ∪ ∂−Ci
)
∼ (6′, ∂6) give

0 → Hϕ

2 (C ′

i−1 ∪ C ′

i , ∂−Ci−1 ∪ ∂−Ci )
ι

−→ Hϕ

2 (C ′

i−1, (∂Ci−1)
′) ⊕ Hϕ

2 (C ′

i , (∂Ci )
′)

π
−→ Hϕ

1 (6′, ∂6).

The conclusion follows from Lemma 4.7 with an argument analogous to that of
Lemma 3.7. □

Theorem 4.9. If ∂ X ̸= ∅, the twisted homology of (X, ∂ X) is given by the chain
complex

(C∂ ) Hϕ

2 (6, 6′)
∂3

−→

⊕
i

(J ϕ

i−1 ∩J ϕ
i )

∂2
−→

⊕
i

J ϕ
i

∂1
−→ Hϕ

1 (6′, ∂6) → 0,

where ∂3([6])=[∂(6\6′)], ∂2((xi )1≤i≤n)=((xi −xi+1)1≤i≤n) and ∂1((xi )1≤i≤n)=∑n
i=1 xi . Moreover, if R is a field, the complex basis b of (C∂ ) described in

Remark 4.10 forms a geometric basis for the relative torsion of X , meaning that
τϕ(X, ∂ X; h) = τ(C∂; b, h).

Proof. Start with the complex (C′

∂ ) of Corollary 4.4. For the order 2 and 3
terms, use Mayer–Vietoris sequences to get the identifications Hϕ

2 (Y ′, 6′
∪ ∂Y ) ∼=⊕

i Hϕ

2 (C ′

i , (∂Ci )
′) and Hϕ

3 (X ′, Y ′
∪∂ X) ∼=

⊕
i Hϕ

3 (X ′

i , (∂ X i )
′) and conclude with

Lemmas 4.7 and 4.8. A generator of Hϕ

4 (X, X ′) is sent onto the class of ∂η(∗) in
Hϕ

3 (X ′, Y ′
∪∂ X). Following the isomorphisms in Lemma 4.8, we see that this class

corresponds to the class in
⊕

i J
ϕ

i−1 ∩J ϕ
i of the curve ∂η(∗), where the neighbor-

hood is now understood in 6, which is the boundary of a generator of H2(6, 6′). □

Remark 4.10. As with the absolute case, we can obtain a concrete description of
what the geometric bases b look like for C∂ :
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• b1 = {[e1], [e2], . . . , [en]}, where each ei is an edge of Z ∂
1 (i.e., any set of arcs

which cut 6 into a disk),

• b2 = any basis corresponding to a tuple of complete collections of arcs and
curves for Ci ,

• b3 = any basis corresponding to a tuple of “double arcs and curves” for the pairs
(Ci−1, Ci ), or any other R0-basis with R0 = ϕ(Z[π1(X)]) (see Remark 3.12),

• b4 = the fundamental class of H2(6, 6′).

Corollary 4.11. We have the following expressions for the twisted homology of
(X, ∂ X):

Hϕ

1 (X, ∂ X) ∼= Hϕ

1 (6′, ∂6)/
⊕

i

J ϕ
i , Hϕ

3 (X, ∂ X) ∼=

⋂
i

J ϕ
i ,

where J ϕ
i denotes the image of J ϕ

i under the inclusion map Hϕ

1 (6′, ∂6) →

Hϕ

1 (6, ∂6).

Proof. For H3, the long exact sequence of the triple (6, 6′, ∂6) gives the exact
sequence

Hϕ

2 (6, 6′)
ζ

−→ Hϕ

1 (6′, ∂6) → Hϕ

1 (6, ∂6) → 0,

and we have Hϕ

3 (X, ∂ X) ∼=
(⋂

i J
ϕ
i

)
/Im(ζ ). □

5. Intersection forms

We keep in this section the assumption that ∂ X ̸= ∅. The intersection forms are
formally identical to the closed case treated in [Florens and Moussard 2022]. The
upshot is that the intersections between various cycles in X can all be made to
coincide with intersections in 6. Below we assume that 6′

= 6 \η(∗), so that there
is a natural isomorphism Hϕ

1 (6, ∗) ∼= Hϕ

1 (6′, ∂η(∗)), and we identify each Lϕ
i

with its image under this map below. Note that, in the nontwisted case, H1(6, ∗)

naturally identifies with H1(6).

Theorem 5.1. Suppose h1 = [(xi )1≤i≤n] and h2 = [(yi )1≤i≤n] in Hϕ

2 (X), where
(xi )1≤i≤n, (yi )1≤i≤n ∈

⊕
i Lϕ

i . Then

⟨h1, h2⟩
ϕ
X =

∑
1≤i< j≤n

⟨xi , y j ⟩
ϕ
6,

where ⟨ · , · ⟩
ϕ
X and ⟨ · , · ⟩

ϕ
6 are the equivariant intersection forms on Hϕ

2 (X) and
Hϕ

1 (6, ∗) respectively.

Proof. It suffices to show that the analogous claim holds true in the untwisted
integral homology groups of X , which denotes the cover of X associated to ker(ϕ).
For any Z ⊂ X let Z denote the inverse image of Z under the cover X → X .
Because π1(6), π1(Ci ), and π1(X i ) all surject onto π1(X) via the inclusion map,
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C1

C2

C3 C4

C5

C6 C1

C2

C3 C4

C5

C6

Figure 3. Pushing the relative 2-skeleton. The 2-skeleton appears
in black, while the pushed relative 2-skeleton appears in green. At
each intersection of the black lines and the green lines lies a copy
of 6.

6, C i , and X i are connected as well. In the finite case these lifts combine to
form a multisection of X , and in the case of an infinite-sheeted cover they form
what is essentially a multisection, except the pieces involved have infinite genus.
In particular, just as in the finite case, η(6) is a trivial disk bundle and the lifted
compression bodies C i meet each disk in the bundle along rays which are disjoint
except at the center point.

There is a cellular structure on X obtained by lifting the cell structures of X
and (X, ∂ X) described in Lemmas 3.2 and 4.3 to X . If Z2 is the 2-skeleton of X
described in Lemma 3.2, then Z2 is a 2-skeleton for X which lies in

⋃
i Ci . As

observed in [Florens and Moussard 2022], we may push each Z2∩C i slightly into its
collar so that it is pushed into

⋃
1≤ j≤i X j . This being done, the intersections between

2-chains in Z2 and 2-chains in the pushed Z2 will coincide with intersections
between the boundaries of the subchains lying just in Z2 ∩ Ci , and these intersections
occur on diverse copies of 6; see the left-hand side of Figure 3. □

Remark 5.2. Different expressions can be given for the intersection form by
diversely pushing the relative 2-skeleton. The right-hand side of Figure 3 suggests
another possibility with fewer terms.

Similarly one can compute the intersection pairings on Hϕ
k (X) × Hϕ

4−k(X, ∂ X).
For k = 2, the expression is analogous to that of Theorem 5.1.

Theorem 5.3. If h1 = [(xi )1≤i≤n] ∈ Hϕ

2 (X) and h2 = [(yi )1≤i≤n] ∈ Hϕ

2 (X, ∂ X),
where (xi )1≤i≤n ∈

⊕
i Lϕ

i , and (yi )1≤i≤n ∈
⊕

i J
ϕ
i , then

⟨h1, h2⟩
ϕ
X =

∑
1≤i< j≤n

⟨xi , y j ⟩
ϕ
6,

where ⟨ · , · ⟩
ϕ
X and ⟨ · , · ⟩

ϕ
6 are the equivariant intersection pairings on Hϕ

2 (X) ×

Hϕ

2 (X, ∂ X) and Hϕ

1 (6, ∗) × Hϕ

1 (6′, ∂6) respectively.
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Proof. The proof of Theorem 5.1 applies with the following adaptation: we consider
the relative 2-skeleton Z ∂

2 of Lemma 4.3 and we look at intersections between
2-chains in Z2 and 2-chains in the pushed Z ∂

2 . □

The intersection pairings on the odd-dimensional homology groups are described
even more simply.

Theorem 5.4. Suppose that either h1 ∈ Hϕ

1 (X) corresponds to the element a ∈

Hϕ

1 (6, ∗) and h2 ∈ Hϕ

3 (X, ∂ X) corresponds to the element b ∈
⋂

i J
ϕ
i , or h1 ∈

Hϕ

1 (X, ∂ X) corresponds to the element a ∈ Hϕ

1 (6′, ∂6) and h2 ∈ Hϕ

3 (X) corre-
sponds to the element b ∈

⋂
i Lϕ

i . Then

⟨h1, h2⟩
ϕ
X = ⟨a, b⟩

ϕ
6.

Proof. The proof is similar in structure to the proof of Theorem 5.1, except that now
we observe that every chain in H1(X) or H1(X , ∂ X) is geometrically represented by
linear combinations of curves c ⊂ 6 ⊂ X , and the chains in H1(X , ∂ X) or H3(X)

can be geometrically represented by linear combinations of balls which meet 6

only in linear combinations of double curves. Thus no isotopy is needed, the
intersections between the 1-chains and the 3-chains already correspond exactly to
the intersections of their representatives in H1(6). □

6. The case of closed 4-manifolds

In this section, we compute the twisted homology, torsion and intersection forms
when X is closed. It mainly follows the lines of the computation of relative
homology, since we need again to puncture X . However, it mixes some features
of the absolute and relative cases. For instance, when X is closed, r-defining
collections of disks and balls are the same as ordinary defining collections. Since
there is no additive difficulty with regards to the nonclosed case, we skip the details.

We fix ⋆ ∈ 6; for Z ⊂ X , we set Z ′
= Z \ η(⋆) and we fix ∗ ∈ ∂6′. Let D

and B be unions of defining collections of disks and balls for the Ci and the X i

respectively. Lemma 4.3 still holds, and provides the following corollary.

Lemma 6.1. The quad (X ′, Y ′, 6′, ∗) deformation retracts onto a CW-complex
(Z3, Z2, Z1, Z0), where Z0 = ∗, Z1 is made of loops on 6′, Z2 = Z ∂

1 ∪D, Z3 =

Z2 ∪B. Subsequently, the homology of X is given by the chain complex

(C′) Hϕ

4 (X, X ′) → Hϕ

3 (X ′, Y ′) → Hϕ

2 (Y ′, 6′) → Hϕ

1 (6′, ∗) → Hϕ

0 (∗).

Now, Lϕ
i denotes the submodule of Hϕ

1 (6′, ∗) generated by the homology classes
of the curves in ci .

Lemma 6.2. The modules Hϕ

1 (6′, ∗) and Lϕ
i are free R-modules of ranks 2g and g

respectively. The modules Lϕ

i−1 ∩ Lϕ
i are also free. Moreover, Lϕ

i is a lagrangian
for the equivariant intersection form on Hϕ

1 (6′, ∗).
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Lemma 6.3. Hϕ

2 (C ′

i , (∂Ci )
′) ∼= Lϕ

i and Hϕ

3 (X ′

i , (∂ X i )
′) ∼= Lϕ

i−1 ∩ Lϕ
i for all i .

Theorem 6.4. If X is closed, the twisted homology of X is given by the chain
complex

(C) Hϕ

2 (6, 6′)
∂3

−→

⊕
i

(Lϕ

i−1 ∩ Lϕ
i )

∂2
−→

⊕
i

Lϕ
i

∂1
−→ Hϕ

1 (6′, ∗) → Hϕ

0 (∗),

where

∂3([6]) = [∂6′
], ∂2((xi )1≤i≤n) = ((xi − xi+1)1≤i≤n), ∂1((xi )1≤i≤n) =

n∑
i=1

xi .

Moreover, if R is a field, the complex basis b of (C) described in Remark 6.5 forms
a geometric basis for the torsion of X , meaning that τϕ(X; h) = τ(C; b, h).

Remark 6.5. Once again, we can describe geometric torsion bases b for C:

• b0 = [∗],

• b1 = any set of loops based at ∗ which cut 6 into a disk,

• b2 = any basis corresponding to a tuple of defining collections of curves for Ci ,

• b3 = any basis corresponding to a tuple of “double curves” for the pairs
(Ci−1, Ci ), or any other R0-basis with R0 = ϕ(Z[π1(X)]) (see Remark 3.12),

• b4 = the fundamental class of H2(6, 6′).

Expressions for the intersection forms on Hϕ

2 (X) and on Hϕ

1 (X) × Hϕ

3 (X) are
again obtained in terms of the intersection form on Hϕ

1 (6′, ∗). Strictly speaking, this
intersection form is defined on Hϕ

1 (6′, ∗1)× Hϕ

1 (6′, ∗2) for two distinct basepoints
∗1 and ∗2 on ∂6′. Again, in the nontwisted case, H1(6

′, ∗) identifies with H1(6).

Theorem 6.6. Suppose that h1 = [(xi )1≤i≤n] and h2 = [(yi )1≤i≤n] ∈ Hϕ

2 (X), where
(xi )1≤i≤n, (yi )1≤i≤n ∈

⊕
i Lϕ

i . Then

⟨h1, h2⟩
ϕ
X =

∑
1≤i< j≤n

⟨xi , y j ⟩
ϕ
6,

where ⟨ · , · ⟩
ϕ
X and ⟨ · , · ⟩

ϕ
6 are the equivariant intersection forms on Hϕ

2 (X) and
Hϕ

1 (6′, ∗).
Suppose that h1 ∈ Hϕ

1 (X) corresponds to the element a ∈ Hϕ

1 (6′, ∗) and that
h2 ∈ Hϕ

3 (X) corresponds to the element b ∈
⋂

i Lϕ
i . Then ⟨h1, h2⟩

ϕ
X = ⟨a, b⟩

ϕ
6 .

7. The boundary: monodromy and homology

In this section, we assume ∂ X ̸= ∅ and we compute the action of the monodromy
of the open book induced on ∂ X on the homology of the page 6∂ ; we then deduce
the homology of ∂ X . All homology groups are considered with coefficients in Z.
We denote by 6i the result of compressing 6 along ci , which is a copy of 6∂ .
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Given a compact surface S with no closed component, a cut system for S is a family
of arcs on S that cuts each component of S into a disk.

Our main tool is the algorithm of Castro, Gay and Pinzón-Caicedo which de-
scribes the monodromy of the open book from a trisection diagram [Castro et al.
2018a]. Although they work with trisections in the case of a connected page,
their result extends directly to the setting of multisections with multiple boundary
components.

Proposition 7.1 (Castro, Gay and Pinzón-Caicedo). Let e be any choice of arcs in 6,
disjoint from c1, that forms a cut system for 61. The monodromy φ : 61 → 61 which
defines the open book decomposition of ∂ X is encoded by its action on e, which
in turn is described by the following algorithm. For i running from 1 to n, slide
the curves ci+1 over one another and slide the arcs e over the curves ci , until e is
disjoint from the curves ci+1. The family c′

1 ∪e′ which results from these n steps will
generally be distinct from the original family c1 ∪ e. Perform one final sequence of
handleslides of the arcs and curves c′

1 ∪ e′ which sends c′

1 to c1. The resulting cut
system e′ for 61 is φ(e).

It is necessary to explicitly index the arcs e and keep track of this index throughout
the algorithm, but the simple closed curves ci need not be indexed.

We denote by L i the subgroup of H1(6) generated by the homology classes of
the curves in ci , and we let Ji denote its orthogonal in H1(6, ∂6) with respect to
the intersection pairing on H1(6) × H1(6, ∂6) (see Section 2C). Similarly, we
denote by Li the subgroup of H1(6, ∂6) generated by the homology classes of the
curves in ci , and we let Ji denote its orthogonal in H1(6).

Lemma 7.2. The groups L i , Ji , Li and Ji are free abelian groups of ranks p,
g + h + b − 1, g − h and 2g + b − p − 1 respectively, where g is the genus of 6,
h the genus of 6∂ and b the number of boundary components of both. Moreover,
L i and Li are primitive subgroups of Ji and Ji respectively, so that the quotients
Ji/L i and Ji/Li both are free abelian groups of rank g + h + b − p − 1.

Proof. Up to diffeomorphism and handleslides, the curves of the collection ci can
be put in standard position; see Figure 2. From this standard position, one can draw
curves providing bases for the different groups under study; see Figure 4.

The group L i is generated by the homology classes of the curves in ci , which
are p homologically independent curves on 6, and thus rk L i = p. The group Li is
generated by the same curves, but some of them are trivial in H1(6, ∂6). There are
g−h nontrivial ones, which are p homologically independent, so that rkLi = g−h.
Bases for Ji and Ji can be obtained by completing the given bases for L i and Li

respectively, giving the remainder of the statement. Note that the ranks of Ji and Ji

can be recovered from the fact that these groups are orthogonal complements
of Li and L i respectively. □
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Figure 4. Curves on 6 for the compression body Ci . The curves
of ci are in red; their homology classes in H1(6) form a basis
of L i and the five leftmost ones provide a basis of Li ⊂ H1(6, ∂6).
The homology classes of the blue and violet curves form bases
of Ji and Ji respectively.

Lemma 7.3. There are natural identifications H1(6i , ∂6) ∼= Ji/Li and H1(6i ) ∼=

Ji/L i .

Proof. Recall Ci is a lensed compression body, so that we can write its boundary as
∂Ci = 6∪∂6 6i . In particular, we have excision equivalences (∂Ci , 6i ) ∼ (6, ∂6)

and (∂Ci , 6) ∼ (6i , ∂6).
We first view Ci as a thickened 6i with 1-handles attached on the positive

boundary whose cocores are the curves in ci . This shows that H2(Ci , 6i ) = 0 and
H1(Ci , 6i ) is generated by the classes of the cores of the 1-handles. Hence the
long exact sequence of the triple (Ci , ∂Ci , 6i ) gives

0 → H2(Ci , ∂Ci ) → H1(6, ∂6) → H1(Ci , 6i ) → 0.

Now the image of an element of H1(6, ∂6) is determined by its algebraic intersec-
tion with the curves in ci , and thus H2(Ci , ∂Ci ) ∼= Ji .

Likewise, viewing the compression body Ci as a thickened 6 with 2-handles
glued along the curves in ci on the negative boundary shows that H1(Ci , 6) = 0
and H2(Ci , 6) is generated by the classes of the cores of the 2-handles. Now the
long exact sequence of the triple (Ci , ∂Ci , 6) gives

H2(Ci , 6) → H2(Ci , ∂Ci ) → H1(6i , ∂6) → 0.

Since the 2-handles are glued along the curves in ci , the image of H2(Ci , 6)

corresponds to Li in the above identification of H2(Ci , ∂Ci ) with the subgroup Ji

of H1(6, ∂6). This gives the identification H1(6i , ∂6) ∼= Ji/Li .
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We now repeat the whole argument replacing ∂Ci by 6⊔6i , where 6i is obtained
from 6i by removing an open collar neighborhood of its boundary. The first step
gives

0 → H2(Ci , 6 ⊔ 6i ) → H1(6) → H1(Ci , 6i )

and H2(Ci , 6⊔6i )∼= Ji , and the second step gives H2(Ci , 6)→ H2(Ci , 6⊔6i )→

H1(6i ) → 0 and H2(Ci , 6) ∼= L i in H2(Ci , 6 ⊔ 6i ) ∼= Ji . □

Let e be a family of arcs in 6, disjoint from c1, that forms a cut system for 61;
note that it defines a basis of H1(61, ∂6). Let ai be a family of simple closed
curves on 6 that defines a basis of Li/(Li ∩ Li+1) or L i/(L i ∩ L i+1) (in the
sequel, we may consider their homology classes in H1(6) or H1(6, ∂6)). For
µ = (µi )1≤i≤s and µ′

= (µ′

i )1≤i≤t families of H1(6, ∂6) and H1(6), define the
matrix µ · µ′

= (⟨µi , µ
′

j ⟩6)1≤i≤s,1≤ j≤t .

Proposition 7.4. Let φ : 61 → 61 be the monodromy which defines the open book
on ∂ X. Define matrices Ri and families ei in H1(6, ∂6) recursively as follows:

• R0 = 0 and e1 = e,

• Ri = −(ei · ai+1)(ai · ai+1)
−1 and ei+1 = ei + Ri ai .

Fix a basis of the free Z-module J1 which admits e as a subfamily and write the
families e and en+1 in this basis. Then the action of the monodromy of the open
book of ∂ X on H1(61, ∂6) ∼= J1/(L1) is given in the basis e by the matrix of
R = et en+1, where et is the transpose of e.

Proof. Following the algorithm of Proposition 7.1, we define families of arcs
and curves ei on 6, disjoint from ci , that define bases of H1(6i , ∂6), by e1 = e
and ei+1 = ei + ri ai , where the ri are matrices to compute. Since ei is disjoint
from ci , we have 0 = ei+1 · ai+1 = ei · ai+1 + ri (ai · ai+1), so that ri = Ri . Now
en+1 expresses φ(e) in the fixed basis of J1. Multiply by et to get it in the basis e
of H1(61, ∂6). □

The following lemma gives the homology of a 3-manifold from an open book
decomposition. A similar computation can be found in [Etnyre and Ozbagci 2008,
Section 2.1].

Lemma 7.5. Let M be a 3-manifold with an open book (S, φ). The homology of M
is the homology of the complex

0 → Zs 0
−→ H1(S, ∂S)

ξ
−→ H1(S)

0
−→ Zs

→ 0,

where ξ([µ]) = [−µ ∪ φ(µ)] and s is the number of components of S.

Proof. First note that S and M necessarily have the same number of connected
components, so that s is also the number of components of M .
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Consider the triple
(
S×[0, 1], ∂(S×[0, 1]), S×{0}

)
. Since S×[0, 1] deformation

retracts on S × {0}, the homology of the corresponding pair is trivial. Also, the
open book structure gives a map φ : S × [0, 1] → M , injective on the interior,
such that the St = φ(S × {t}) are the pages, with S0 = S1 = S. The map φ

induces an isomorphism in homology: H∗

(
S × [0, 1], ∂(S × [0, 1])

)
∼= H∗(M, S).

Further, the inclusion of S as S × {1} in ∂(S × [0, 1]) induces an isomorphism
H∗

(
∂(S ×[0, 1]), S ×{0}

)
∼= H∗(S, ∂S). Finally H∗(M, S) ∼= H∗−1(S, ∂S). Hence

the long exact sequence of the pair (M, S) gives

0 → H2(M) → H1(S, ∂S)
ξ

−→ H1(S) → H1(M) → 0.

Finally, given an arc a properly embedded in (S, ∂S), a ×[0, 1] is a relative 2-cycle
for the pair (

S × [0, 1], ∂(S × [0, 1])
)
∼ (M, S),

whose boundary is −a ∪ φ(a). □

To compute the homology of ∂ X , we need to understand the homology classes
φ(µ)−µ in H1(61). We keep the notations defined before and in Proposition 7.4.

Proposition 7.6. Define families εi in H1(6) as follows: ε1 =0 and εi+1 =εi +Ri ai .
Fix a basis bL of L1 ∼= L1 and complete it into a basis (bL , b) of J1. Write e in the
basis (bL , e) of J1 and εn+1 in the basis (bL , b) of J1. The homology of ∂ X is the
homology of the complex

0 → Zs 0
−→

J1

L1

ξ
−→

J1

L1

0
−→ Zs

→ 0,

where s is the number of components of 6 and ξ is given in the bases e and b by
the matrix S = etεn+1.

Proof. The εi represent the homology classes in H1(6) of the ei − e. Throughout
the algorithm of Proposition 7.1, they are added curves as in Proposition 7.4, but
we now view the result in H1(6) at each step. □

8. Sample calculations

Example 1. The trisection diagram (6; α, β, γ ) in Figure 5 is a diagram for a disk
bundle X over S2 with Euler number −2 obtained by Castro, Gay and Pinzón-
Caicedo in [Castro et al. 2018a, Section 5.1]. In this example, all homology groups
have coefficients in Z. We first compute the (relative) homology and intersection
form of X from this diagram.

In H1(6) = ⟨α1, β1, α2, β2, γ1⟩, we have Lα = ⟨α1, α2⟩, Lβ = ⟨β1, β2⟩, Lγ =

⟨γ1, α2 − 2β1 +β2⟩. All pairwise intersections of these subgroups are trivial. The
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α2
β2

α1 β1
γ1

γ2

e

Figure 5. A trisection diagram of a disk bundle over S2 with Euler
number −2.

homology of X is the homology of the complex

0 → Lα ⊕ Lβ ⊕ Lγ → H1(6)
0

−→ Z,

giving H1(X) = 0, H2(X) ∼= Z and H3(X) = 0. Note that the rightmost differential
in always zero when working with coefficients in Z.

In H1(6, ∂6) = ⟨α1, β1, α2, β2, e⟩, we have Jα = ⟨α1, α2, e⟩, Jβ = ⟨β1, β2, e⟩,
Jγ = ⟨α1 − β1, α2 − 2β1 + β2, e − β2⟩; for Jγ , we obtain these expressions by
considering a complete collection of arcs and curves for Cγ made of γ1, γ2 and an
arc joining the two boundary components avoiding the γi . Pairwise intersections
are Jα ∩Jβ = ⟨e⟩, Jβ ∩Jγ = ⟨e − β2⟩, Jγ ∩Jα = ⟨2α1 − α2 − e⟩. The relative
homology of X is the homology of the complex

Z
0

−→

⊕
ν ̸=ν′

Jν ∩Jν′ →

⊕
ν

Jν → H1(6, ∂6) → 0,

where ν, ν ′
∈{α, β, γ }, giving H1(X, ∂ X)=0, H2(X, ∂ X)∼=Z and H3(X, ∂ X)=0.

Note that the leftmost differential in always zero when working with coefficients
in Z.

A generator of H2(X) is given by (α2, β2 − 2β1, −γ2) ∈ Lα ⊕ Lβ ⊕ Lγ . Using
this generator, we can compute the intersection form of X :

⟨α2, β2 − 2β1⟩6 + ⟨α2, −γ2⟩6 + ⟨β2 − 2β1, −γ2⟩6 = 2.

We now consider the monodromy of the open book on ∂ X . We set a1 = (α1, α2),
a2 = (β1, β2) and a3 = (γ1, γ2). Starting with R0 = 0 and e1 = e, we compute
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α x

β

y
γ

e′

e

Figure 6. A trisection diagram.

R1 = (0 0), so that e2 = e, then R2 = (0 −1) and e3 = e − β2, and finally
R3 = (−2 1) and e4 = e−2α1 +α2. Utilizing the basis (α1, α2, e) of Jα , this gives
R = (1) and shows that the action of the monodromy on H1(61, ∂61) is trivial.
Now starting with ε1 = 0, we get ε2 = 0, ε3 = −β2 and ε4 = α2 − 2α1 − 2ζ , where
ζ = γ1 + β1 − α1 is a generator of Jα/Lα that we use as basis. Hence S = (−2).
Finally, the homology of ∂ X is the homology of the complex

0 → Z
0

−→ ⟨e⟩ −2
−→ ⟨ζ ⟩

0
−→ Z → 0,

giving H1(∂ X) = Z/2Z and H2(∂ X) = 0.

Example 2. Let X be the 4-manifold defined by the trisection diagram (6; α, β, γ )

in Figure 6.
In H1(6) = ⟨α, β, x, y⟩, we have Lα = ⟨α⟩, Lβ = ⟨β⟩, Lγ = ⟨−α + β + y⟩.

Pairwise intersections are trivial and we get H1(X; Z) = ⟨x⟩ ∼= Z, H2(X; Z) = 0
and H3(X; Z) = 0.

In H1(6, ∂6) = ⟨α, β, e, e′
⟩, we have Jα = ⟨α, e, e′

⟩, Jβ = ⟨β, e, e′
⟩, Jγ =

⟨β − α, α + e, e′
⟩. This gives H1(X, ∂ X) = 0, H2(X, ∂ X) = 0 and H3(X, ∂ X) =

Jα ∩Jβ ∩Jγ
∼= Z.

We define ϕ : Z[π1(X, ∗)] → Z[t±1
] by ϕ(x) = t . Let us compute the associated

twisted homology and torsion. Fix a lift ∗̃ of the basepoint ∗ . For ζ ∈ π1(6, ∗), we
denote by ζ̃ the lift of ζ starting at ∗̃. Since γ = α−1xyx−1αβα−1 in π1(6, ∗), we
have γ̃ = −α̃ + β̃ + t ỹ in Hϕ

1 (6, ∗). Hence, in Hϕ

1 (6, ∗) = ⟨α̃, β̃, x̃, ỹ⟩, we have
Lϕ

α = ⟨α̃⟩, Lϕ
β = ⟨β̃⟩, Lϕ

γ = ⟨−α̃ + β̃ + t ỹ⟩. From the complex

0 → Lϕ
α ⊕ Lϕ

β ⊕ Lϕ
γ → Hϕ

1 (6, ∗) → Hϕ

0 (∗) → 0,

we get Hϕ

0 (X; Z[t±1
]) ∼= Z[t±1

]/(t − 1) ∼= Z and Hϕ
i (X; Z[t±1

]) = 0 for i > 0.
This implies that the homology of X with coefficients in Q(t) is trivial, so that the
torsion won’t depend on the choice of a homology basis. Set c2 = (α̃, β̃, γ̃ ),
c1 = (α̃, β̃, x̃, ỹ) and c0 = (∗̃) as complex bases for the above complex and
b1 = (α̃, β̃, γ̃ ) and b0 = ((t − 1)∗̃) as bases of the images of the boundary map.
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Then the torsion is given by

τϕ(X) =

[
b1

c2

]−1[b1b0

c1

][
b0

c0

]−1

= −t (t − 1)−1
∈ Q(t)/Z[t±1

].

Finally, we consider the monodromy of the open book on ∂ X . We set a1 = α,
a2 = β and a3 = γ ; note that a3 = e′

− α +β in H1(6, ∂6). Starting with R0 = 0
and e1 =

( e
e′

)
, we get R1 =

( 0
0

)
and e2 = e1, then R2 =

( 1
0

)
and e3 =

( e+β
e′

)
, and

finally R3 =
(

−1
0

)
and e4 =

(
e−e′

+α
e′

)
. Utilizing the basis (e, e′, α) of J1, we obtain

et e4 =

(
1 0 0
0 1 0

)  1 0
−1 1

1 0

 =

(
1 0

−1 1

)
as the matrix giving the action of the monodromy in the basis (e, e′) of H1(61, ∂6).

To get the homology of ∂ X , we start with ε1 = (0, 0) and the computation gives
ε2 = (0, 0), ε3 = (β, 0), ε4 = (α − y, 0). It follows that the homology of ∂ X is the
homology of the complex

0 → Z
0

−→ ⟨e, e′
⟩

ξ
−→ ⟨x, y⟩

0
−→ Z → 0,

where ξ(e) = −y and ξ(e′) = 0. Thus H1(∂ X) ∼= H2(∂ X) ∼= Z.

Example 3. The quadrisection diagram (6; (ci )1≤i≤4) represents the manifolds
S2

×S2 (see for instance [Islambouli and Naylor 2024], or decompose each factor S2

into two disks and recover this quadrisection). We shall use it to recover the
homology with coefficients in Z and the intersection form of S2

× S2.
In H1(6) = ⟨c1, c2⟩, we have L1 = L3 = ⟨c1⟩ and L2 = L4 = ⟨c2⟩. All pairwise

intersections are trivial. The homology of S2
× S2 is the homology of the complex

Z → 0 →

⊕
1≤i≤4

L i → H1(6)
0

−→ Z,

giving H1(X) = 0, H2(X) ∼= Z2 and H3(X) = 0.
A basis of H2(S2

×S2) is given by (c1,0,−c1,0) and (0,c2,0,−c2) in
⊕

1≤i≤4 L i .
In this basis, we obtain the intersection form as

( 0
1

1
0

)
.

c3c1

c2

c4

Figure 7. A quadrisection diagram of S2
× S2.
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APPROXIMATION OF REGULAR SASAKIAN MANIFOLDS

GIOVANNI PLACINI

We investigate the problem of approximating a regular Sasakian structure
by CR immersions in a standard sphere. Namely, we show that this is
always possible for compact Sasakian manifolds. We prove an approximation
result for noncompact η-Einstein manifolds via immersions in the infinite-
dimensional sphere and complement this with several examples.

1. Introduction and statements of the main results

Sasakian geometry is often considered the odd-dimensional analogue of Kähler
geometry. This is due to the fact that a Sasakian manifold sits in a so-called “Kähler
sandwich”. Namely, a (2n+1)-dimensional Sasakian manifold comes with a Kähler
(2n+2)-dimensional cone and a transverse Kähler geometry of dimension 2n. This
interplay translates to the fact that the solution of some problems in Sasakian
geometry is equivalent to that of others in its older even-dimensional analogue. The
problem considered in this paper falls into this case. Namely, we ask whether a given
regular Sasakian structure can be approximated by CR immersions in a standard
sphere. In analogy with a celebrated result of Tian, Ruan and Zelditch [14; 15; 16],
it was proven in [9] that any compact Sasakian manifold is approximated by CR
embeddings in a weighted sphere. Here we investigate two related questions. Firstly,
when the Sasakian structure is regular, it is natural to ask whether one can get a simi-
lar result to [9, Theorem 1] under the requirement that the model space is a standard
Sasakian sphere. Our first result shows that one can trade the injectivity of the embed-
dings for regularity in order to obtain immersions into the standard Sasakian sphere.

Theorem 1. Let (M, η, g) be a compact regular Sasakian manifold. Then there
exist a sequence of CR immersions ϕk : M → S2N+1 into standard Sasakian spheres
such that suitable transverse homotheties of the induced structures converge to
(η, g) in the C∞-norm.
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The solution to this problem is related to Kähler geometry in the following way.
In the regular case the Kähler cone of a Sasakian manifold M is the total space of a
line bundle L over a Kähler manifold X (without the zero section). It turns out that
one can construct such immersions by means of an orthonormal basis for the space
of sections of L with respect to a certain scalar product. Finding such a basis is a
classical problem in Kähler geometry deeply connected with the computation of
Bergman kernels, special metrics and approximation of metrics; see, for instance,
[6; 7; 8; 12; 15]. Notice that one cannot avoid transverse homotheties because
the transverse Kähler metric induced by an immersion in the standard sphere is an
integral basic class while this is not necessarily true for the Sasakian structures we
want to approximate.

Theorem 1 above heavily relies on the compactness of the Sasakian manifold M .
Our second question asks which conditions are sufficient for the existence of such
approximation results in the noncompact case. This is clearly a very broad question
so we focus on the case of η-Einstein manifolds. In the compact case Cappelletti-
Montano and Loi [5] studied immersions of compact regular η-Einstein manifolds
into spheres with codimension 2. Here we prove an approximation result for
(possibly noncompact) regular complete η-Einstein manifolds.

Theorem 2. Let M be a complete regular η-Einstein manifold. Then the Sasakian
structure on M can be approximated by suitable D-homotheties of a sequence of
Sasakian structures induced by CR embeddings in S∞.

Also in this case, the immersions are constructed from a basis of the space of
sections of a certain line bundle L over a Kähler manifold X . The main difference
with Theorem 1 is the fact that X is not compact so that the space of sections of L
could be infinite-dimensional.

As a particular case, all homogeneous Sasakian manifolds can be endowed
with homogeneous η-Einstein metrics. One should compare our result with [11,
Theorem 1.5] where the authors classify homogeneous Sasakian manifolds which
admit an immersion in S∞. In fact, the approximation in Theorem 2 is constant for
those homogeneous Sasakian manifolds which can be immersed in S∞. In the last
section of the paper we exhibit two examples of genuine approximations. Namely,
we consider a Sasakian structure on C∗

× S1 and D∗
× S1 where C∗ and D∗ are the

punctured plane and disc, respectively. We provide a sequence of embeddings of
C∗

× S1 and D∗
× S1 into S∞ which approximate the given structures. In terms of

Kähler geometry, we compute the orthonormal basis of the space of sections of the
trivial bundle over C∗ and D∗.

Structure of the paper. The paper is organized as follows. In Section 2 we review
the basics of Sasakian geometry with particular focus on Sasakian immersions
and regular Sasakian structures. The remainder of the paper is divided into three
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sections. Namely, in Sections 3 and 4 we prove Theorems 1 and 2, respectively.
Finally, Section 5 contains the computation of some explicit CR immersions of
noncompact η-Einstein manifolds into S∞ approximating the given structure.

2. Sasakian manifolds

Sasakian geometry can be understood in terms of contact metric geometry and via
the associated Kähler cone (see the monograph of Boyer and Galicki [4]). We will
present both formulations for the reader’s convenience, but we will focus mostly
on the regular case for it is central in this paper. In the following all manifolds and
orbifolds are assumed to be connected.

A K-contact structure (η,8, R, g) on a manifold M consists of a contact form η

and an endomorphism 8 of the tangent bundle TM , satisfying the properties

• 82
= −Id +R ⊗ η where R is the Reeb vector field of η,

• 8|D is an almost complex structure compatible with the symplectic form dη
on D = ker η,

• the Reeb vector field R is Killing with respect to the metric

g( · , · )=
1
2 dη( · ,8( · ))+ η( · )η( · ).

Given such a structure one can consider the almost complex structure I on the
Riemannian cone (M × R+, t2g + dt2) given by

• I =8 on D = ker η, and

• R = I (t∂t)|{t=1}
.

A Sasakian structure is a K -contact structure (η,8, R, g) such that the associated
almost complex structure J is integrable, and therefore (M × R+, t2g + dt2, J ) is
Kähler. A Sasakian manifold is a manifold M , equipped with a Sasakian structure
(η,8, R, g).

Equivalently, one can define Sasakian manifolds in terms of Kähler cones.
Namely, a Sasakian structure on a smooth manifold M is defined to be a Kähler
cone structure on M × R+

= Y , that is, a Kähler structure (gY , J ) on Y of the
form gY = t2g + dt2 where t is the coordinate on R+ and g a metric on M . Then
(Y, gY , J ) is called the Kähler cone of M which, in turn, is identified with the
submanifold {t = 1}. The Kähler form on Y is then given by

�Y =
i
2
∂∂t2.

The Reeb vector field on Y is defined as

R = J (t∂t).
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This defines a holomorphic Killing vector field with metric dual 1-form

η =
gY (R, · )

t2 = dc log t = i(∂ − ∂) log t,

where dc
= i(∂ − ∂). Notice that J induces an endomorphism 8 of TM by setting

• 8= J on D = ker η|TM , and

• 8(R)= 0.

Equivalently, the endomorphism 8 is determined by g and η by setting

g(X, Z)=
1
2 dη(X,8Z) for X, Z ∈ D.

It is easy to see that, when restricted to M = {t = 1}, (η,8, R, g) is a Sasakian
structure in the contact metric sense whose Kähler cone is (Y, gY , J ) itself. When
this does not lead to confusion, we will use R and η to indicate both the objects on
Y and on M .

Since g and η are invariant for R, the Reeb foliation is transversally Kähler in
the sense that the distribution D admits a Kähler structure (gT , ωT , J T ) which is
invariant under R. Explicitly, we have

ωT
=

1
2 dη, J T

=8|D and gT (X, Z)=
1
2 dη(X, J T Z)= g|D .

In particular, one can see that

(1) ωT
=

1
2 dη =

i
2

d(∂ − ∂) log t = i∂∂ log t.

The Reeb vector field defines a foliation on M , called the Reeb foliation. A very
important dichotomy of Sasakian structures is given by the regularity of the leaves
of the Reeb foliation. Namely, if there exist foliated charts such that each leaf
intersects a chart finitely many times, the Sasakian structure is called quasiregular.
Other wise it is called irregular. If every leaf intersects every chart only once, the
Sasakian structure is said to be regular. Compact regular and quasiregular Sasakian
manifold are fairly well understood due to the following result.

Theorem 3 [4]. Let (M, η,8, R, g) be a quasiregular compact Sasakian manifold.
Then the space of leaves of the Reeb foliation (X, ω, gω) is a compact Kähler cyclic
orbifold with integral Kähler form 1

2πω so that the projection π : (M, g)→ (X, gω)
is a Riemannian submersion. Also, X is a smooth manifold if and only if the
Sasakian structure on M is regular.

Any principal S1-orbibundle M with Euler class −
1

2π [ω] ∈ H 2
orb(X,Z) over a

compact Kähler cyclic orbifold (X, ω) admits a Sasakian structure.

This result allows us to reformulate the geometry of a compact regular Sasakian
manifold M in terms of the algebraic geometry of the Kähler manifold X . We will
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illustrate in detail this correspondence for its importance in the remainder of the
paper. Let us first introduce the concept of a D-homothetic transformation of a
Sasakian structure.

Definition 4 (D-homothety or a transverse homothety). Let (M, η,8, R, g) be a
(not necessarily compact) Sasakian manifold and a ∈ R a positive number. One can
define the Sasakian structure (ηa,8a, Ra, ga) from (η,8, R, g) as

ηa = aη, 8a =8, Ra =
R
a
, ga = ag + (a2

− a)η⊗ η = agT
+ ηa ⊗ ηa.

Equivalently, we can define the same structure on M by setting a new coordinate
on the Kähler cone as t̃ = ta . It is clear from the formulation above that this induces
on M = {t̃ = 1} = {t = 1} the same Sasakian structure (ηa,8a, Ra, ga). We will
call this structure the Da-homothety of (η,8, R, g).

Now let the compact regular Sasakian manifold (M, η,8, R, g) be given and
consider the projection π : (M, g) → (X, ω) given above. Notice that π locally
identifies the contact distribution D with the tangent space of X . Therefore, up to
D-homothety, we have that π∗(ω) =

1
2 dη. The endomorphism 8 determines the

complex structure on X and g induces the Kähler metric gω, i.e., gT
= π∗gω.

In this case the class 1
2π [ω] ∈ H 2(X,Z) defines an ample line bundle L over X .

The cone Y = M × R+ is identified with the complement of the zero section in
L−1

= L∗ in the following way. Let h be a Hermitian metric on L such that

ω = −i∂∂ log h.

Then its dual h−1 on L−1 defines the second coordinate of (p, t) ∈ M × R+
=

L−1
\ {0} by

(2)
t : L−1

\ {0} → R+,

(p, v) 7→ |v|h−1
p
,

where v is a vector of L−1 in the fiber over p. With this notation the Kähler form
on the Kähler cone (M × R+, t2g + dt2, I ) is given by

(3) �=
i
2
∂∂t2.

The Sasakian structure can be read from this data as

(4) ωT
= −i∂∂ log h, η = i(∂ − ∂) log t.

Therefore, the choice of a Hermitian metric h on an ample line bundle L over
a compact Kähler manifold X completely determines a Sasakian structure on the
U (1)-orbibundle associated to L−1. The Sasakian manifold (M, η, R, g,8) so
obtained is called a Boothby–Wang bundle over (X, ω). Observe that, although the
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differentiable manifold is uniquely determined by 1
2π [ω], the Sasakian structure

does depend on, and is in fact determined by, the choice of h.
The most basic example is the standard Sasakian structure on S2n+1, that is,

the Boothby–Wang bundle determined by the Fubini–Study metric h = hFS on
O(1) over CPn . We give the details of this construction to further illustrate the
formulation above.

Example 5 (standard Sasakian sphere). Let h = hFS be the Fubini–Study Hermitian
metric on the holomorphic line bundle O(1) over CPn . Recall that its dual metric
h−1 on O(−1) \ {0} = Cn+1

\ {0} is given by the Euclidean norm. This defines a
coordinate t on the Kähler cone O(−1) \ {0} = Cn+1

\ {0} = S2n+1
× R+. Namely,

for coordinates z = (z0, z1, . . . , zn) on Cn+1 we have

t : Cn+1
→ R+,

z 7→ |z| =

√
n∑

j=0

z j z̄ j .

Now the Kähler metric on the cone is nothing but the flat metric

�flat =
i
2
∂∂t2

=
i
2

∑
dz j ∧ dz̄ j .

The Reeb vector field R0 and the contact form η0 read

R0 = J (t∂t)= i
∑

z j∂z j − z̄ j∂z̄ j , η0 = i(∂ − ∂) log t =
i

2t2

∑
z j dz̄ j − z̄ j dz j .

It is clear that, when restricted to S2n+1, η0 and R0, together with the round metric g0

and the restriction 80 of J to ker η0, give a Sasakian structure on S2n+1. This
corresponds exactly to the Hopf bundle S2n+1

→ CPn . We have

π∗ωFS = ωT
=

1
2 dη0 =

i
2 |z|4

∑
j

|z j |
2dz j ∧ dz̄ j −

∑
j,k

z̄ j zkdz j ∧ dz̄k,

where π : Cn+1
\ {0} → CPn is the standard projection.

Analogously, one can define the standard Sasakian structure on the infinite
dimensional sphere S∞

=
{
(zo, z1, . . .) ∈ ℓ2(C) :

∑
|z|2 = 1

}
(all sums are now

infinite). In this case the Kähler cone S∞
× R+ is the complex space ℓ2(C) \ {0}

with the flat Kähler metric and the space of Reeb leaves is CP∞.

In general the space of leaves of the Reeb foliations X is not even an orbifold.
Nevertheless, when the Sasakian structure is regular and complete, X is a Kähler
manifold; see, for example, [13].

We now switch our attention back to not necessarily compact Sasakian manifolds
and recall another well known class of deformations of Sasakian structures, the so-
called transverse Kähler transformations. Namely, given a Kähler cone Y = M ×R+,
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we consider all Kähler metrics on (Y, J ) that are compatible with the Reeb field R.
In other terms, these are potentials t̃ 2 such that t∂t = t̃∂t̃ . This means that the
corresponding Kähler and contact forms satisfy

�̃=�+ i∂∂e2 f , η̃ = η+ dc f

for a function f invariant under ∂t and R. Such functions are called basic functions.
We still need to identify the manifolds {t̃ = 1} and {t = 1}. This is done by means
of the diffeomorphism

F : Y → Y,

(p, t) 7→ (p, te− f (p)),

which maps {t = 1} to {t = e− f (p)
} = {t̃ = 1}. It is elementary to check that η, R

and dc f are invariant under F so that η̃ = η+ dc f holds on M . Furthermore, the
transverse Kähler forms are related by ω̃T

= ωT
+ i∂∂ f . Notice that when the

Sasaki structure is quasiregular, basic functions correspond to functions on the
base orbifold X . Thus, if t comes from a Hermitian metric h−1 on L−1, such a
transformation is given by replacing h−1 with e f h−1 for a function f : X → C such
that ω+ i∂∂ f > 0. This is equivalent to picking a different Kähler form ω̃ in the
same class as ω. We summarize the above discussion in the following definition.

Definition 6 (transverse Kähler deformations). Let (M, η, R, g,8) be a Sasakian
manifold with Kähler cone (Y, J ) and Kähler potential t2. A transverse Kähler
transformation is given by replacing t with t̃ = e f t for a basic function f and
leaving (Y, J, R) unchanged. When the Sasaki structure is quasiregular and given
as in (4), a transverse Kähler transformation is given by replacing h−1 with e f h−1.

We are mostly interested with immersions and embeddings of Sasakian manifolds.
We recall the relevant definitions. Two Sasakian manifolds (M1, η1, R1, g1, φ1) and
(M2, η2, R2, g2, φ2) are equivalent if there exists a diffeomorphism ϕ : M1 → M2

such that

ϕ∗η2 = η1 and ϕ∗g2 = g1.

If this holds, then ϕ also satisfies ϕ∗ ◦φ1 = φ2 ◦ϕ∗ and ϕ∗ R1 = R2. As implicitly
intended in the definitions above, a Sasakian equivalence from a Sasakian manifold
(M, η, R, g, φ) to itself is often called a Sasakian transformation of (M, η, R, g, φ).

One can relax the condition on Sasakian equivalences to define Sasakian em-
bedding and immersions. Namely, one does not request the map between Sasakian
manifolds to be a diffeomorphism while requiring that it preserves the Sasakian
structures. In particular, given two Sasakian manifolds (M1, η1, R1, g1, φ1) and
(M2, η2, R2, g2, φ2), a Sasakian immersion (resp. embedding) of M1 in M2 is an
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immersion (resp. embedding) ϕ : M1 → M2 such that

ϕ∗η2 = η1, ϕ∗g2 = g1, ϕ∗ R1 = R2 and ϕ∗ ◦φ1 = φ2 ◦ϕ∗.

We can rephrase this definition in terms of the Kähler cone of the Sasakian manifolds
M1 and M2. Namely, the map ϕ satisfying the conditions above clearly extends to
a map

ϕ̃ : M1 × R → M2 × R,

(p, t) 7→ (ϕ(p), t).

It is clear that if ϕ is a Sasakian immersion (resp. embedding), then ϕ̃ is a Kähler
immersion (resp. embedding).

If, conversely, Y1 and Y2 are the Kähler cones of M1 and M2 with coordinates t1
and t2, then a Kähler immersion (resp. embedding) ϕ̃ : Y1 → Y2 such that ϕ̃∗(t2)= t1
restricts to a Sasakian immersion (resp. embedding) ϕ : M1 → M2. Since it is often
more useful to our purposes, we give the following definition.

Definition 7 (Sasakian immersion and embedding). Let M1 and M2 be two Sasakian
manifolds with Kähler cones Y1 and Y2 and coordinates t1 and t2 respectively. A
Sasakian immersion (resp. embedding) of M1 in M2 is a Kähler immersion (resp.
embedding) ϕ : Y1 → Y2 such that ϕ∗(t2)= t1.

Remark 8. Given the equivalence between a Sasakian immersion M1 → M2 and
a Kähler immersion of the Kähler cones, with an abuse of notation, we will often
denote both maps with the same letter.

A special class among Sasakian structures is that of η-Einstein structures. These
are the Sasakian analogues of Kähler–Einstein metrics. Namely, using the canonical
splitting T M = D⊕ TF where D = ker η and TF denotes the tangent bundle to the
Reeb foliation F , write the metric as

(5) g = gT
+ η⊗ η.

With an abuse of notation we write gT for both the transverse metric and the
metric on X in the quasiregular case. It follows from (5) that the Riemannian
properties of M can be expressed in terms of those of the transverse Kähler geometry
and of the contact form η. For instance, the Ricci tensor of g is given by

(6) Ricg = RicgT − 2g.

A Sasakian manifold (M, η, φ, R, g) is said to be η-Einstein if the Ricci tensor
satisfies

(7) Ricg = λg + νη⊗ η
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for some constants λ, ν ∈ R. It follows from (6) and (7) that a Sasakian manifold is
η-Einstein with constants (λ, ν) if and only if, its transverse geometry is Kähler–
Einstein with Einstein constant λ+ 2 (see, e.g., [4] for details).

2.1. CR immersions of regular and complete Sasakian manifolds into spheres.
We recall now some facts about CR immersions of Sasakian manifolds into finite-
and infinite-dimensional standard spheres. We only set the notation and report some
useful results for us; the interested reader can refer to [11, Section 5]

Let M be a compact regular Sasakian manifold. By Theorem 3, M is a U (1)-
principal bundle π : M → X over a compact Kähler manifold (X, ω)with 2π∗ω=dη.
Furthermore, M is the unitary bundle associated to the line bundle L−1 where
c1(L)= [ω]. This last condition implies that L is ample. In other terms, (X, L) is a
polarized Kähler manifold. Therefore, for k ∈ N large enough, the bundle L⊗k

= Lk

is very ample, and we can define the Kodaira embedding ψk : X → CPNk where
dim(H 0(L)) = Nk + 1. Then there exists a CR embedding ϕk : M → S2Nk+1 of
M into the standard sphere covering the Kodaira embedding ψk or, equivalently, a
holomorphic embedding of ϕk : Y → CNk+1

\ {0} of the Kähler cone Y = M × R+

into the Kähler cone S2Nk+1
× R+. In fact we have:

Proposition 9 [11, Proposition 5.1]. Let M be the compact regular Sasakian
manifold determined by the Hermitian bundle (L , h) over a compact projective
manifold X. For every integer k ≫ 0 there exists a holomorphic embedding
ϕk : M × R+

→ S2Nk+1
× R+ such that ϕ∗

k (τ ) = Bk tk where Bk is the Bergman
kernel of Lk , τ and t are the coordinates on the second factor of S2Nk+1

× R+ and
M × R+, respectively.

The same construction can be performed when the Sasakian manifold M is the
unitary bundle associated to the positive Hermitian bundle (L , h) on a noncompact
Kähler manifold (X, ω) with ω = −i∂∂ log h. In this case we cannot immerse M
into a finite-dimensional sphere because the space of sections H 0(L) is replaced by
the Hilbert space Hk,h of integrable sections; see [11] for details. Nevertheless one
gets the following noncompact analogue.

Proposition 10. Let M be the regular Sasakian manifold determined by the Hermit-
ian bundle (L , h) over a noncompact Kähler manifold X and assume the space Hk,h

is nontrivial. Then there exists a holomorphic immersion ϕk : M × R+
→ S∞

× R+

such that ϕ∗

k (τ )=εk tk where εk is the ε-function of Hk,h , τ and t are the coordinates
on the second factor of S∞

× R+ and M × R+, respectively.

Remark 11. Although ϕ∗

k (h
−1
FS ) is not a Hermitian metric on the line bundle L−1

(it does not scale correctly under the C∗-action), it defines a change of coordinate
(p, t) 7→ (p, Bk tk) (or (p, t) 7→ (p, εk tk) in the noncompact case) on M × R+
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corresponding to the composition of the Dk-homothetic transformation (t 7→ tk)
with a transverse Kähler deformation (tk

7→ Bk tk).

3. Approximation of compact regular structures via immersions into spheres

Proof of Theorem 1. Assume (M, η, R, g,8) to be a compact regular Sasakian
manifold. Suppose we have performed a D-homothetic transformation so that M
is the unit bundle π : M → X associated to a holomorphic line bundle L−1 over a
projective manifold (X, ω) with π∗ω =

1
2 dη.

We can then apply Proposition 9 to get a sequence of holomorphic immersions
ϕk : M × R+

→ S2Nk+1
× R+ such that ϕ∗

k (τ ) = Bk tk where Bk is the Bergman
kernel of Lk , τ and t are the coordinates on the second factor of S2Nk+1

× R+ and
M × R+, respectively. Notice that τ is the coordinate induced by the flat metric on
CNk+1

\{0} = S2Nk+1
×R+ or, equivalently, by the Hermitian metric hFS on O(−1)

whose curvature is −ωFS.
Now the 1

k -transverse homothety of the structure induced on M by the immersion
into S2Nk+1 is a transverse Kähler deformation of the original Sasakian structure
determined by the Bergman kernel Bk , (compare Definition 6 and Remark 11). By
[16, Corollary 2] the first coefficient of the asymptotic expansion of the Bergman
kernel Bk smoothly converges to 1 when k goes to infinity. Therefore, the D1/k-
homotheties of the structures determined by pullback coordinates ϕ∗

k (τ ) = Bk tk

converge smoothly to (η, R, g,8).
We can resume the maps involved in the proof, with the notation of Section 2.1,

in the diagram

(M, ηk, gk)

(Mk, η̄k, ḡk) (S2Nk+1, η0, g0)

(X, ωk)
(
CPNk , ωFS

)

pk

π

ϕk

ψ̃k

πk πFS

ψk

where (Mk, η̄k, ḡk) is the unit bundle associated to L−k endowed with the Sasakian
structure pulled back via ψk and (M, ηk, gk) is the Sasakian structure determined
by the coordinate ϕ∗

k (τ )= Bk tk . □

Remark 12. Notice that we used a D-homothety as the first step of the proof to get
an actual Boothby–Wang bundle π : M → X . To avoid this and obtain the conver-
gence to the original Sasakian metric, one can compose the D1/k-homothety in our
proof with the inverse of the homothetic transformation considered in the beginning.
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4. Approximation of η-Einstein regular structures

Proof of Theorem 2. We cannot deduce that M is an S1-bundle over a Kähler
manifold because M is not necessarily compact. Nevertheless, the Reeb foliation
still defines a fibration π : M → X over a Kähler manifold (X, ω) because M is
regular and complete; see [13]. Now the fiber of this fibration is either R or S1.

Let us deal first with the case where the fiber is S1. Regardless of whether or
not M is compact, since the Sasakian structure on M is regular and the fiber is S1,
it is the unit bundle of a line bundle L−1 over X such that c1(L)= [ω]. Choose a
Hermitian metric h on L whose Ricci curvature form is ω. Notice that (X, ω) is
Kähler–Einstein because M is η-Einstein.

We now invoke a result of Ma and Marinescu on the Bergman kernel of non-
compact manifolds. Namely, we apply [12, Theorem 6.1.1] to the line bundle L
over X . The hypotheses of this theorem are satisfied as (X, ω) is a Kähler–Einstein
manifold so that there exists a positive constant C such that iRic(ω) > Cω. In our
case this implies that the space of sections Hk,h is nontrivial so that Proposition 10
provides a sequence of holomorphic immersions ϕk : M × R+

→ S∞
× R+ such

that ϕ∗

k (τ )= εk tk where εk is the ε-function of Hk,h , τ and t are the coordinates on
the second factor of S∞

× R+ and M × R+, respectively.
Again by [12, Theorem 6.1.1] (see also [1]) the ε-function εk admits an asymptotic

expansion whose first coefficient is 1. Therefore, taking the 1
k -homothety of the

Sasakian structure on M defined by the pullback coordinate ϕ∗

k (τ )= εk tk we get a
sequence of structures which converge to the given η-Einstein one for k → ∞.

Now the argument when the fiber is R easily follows from the previous one.
Namely, in this case the fibration is trivial, i.e., M ∼= X ×R. Since Z acts on X ×R

by Sasakian isometries via the flow of the Reeb vector field, the quotient is the
η-Einstein manifold N = X × S1 and the Z-covering map π̃ : M → N is a Sasakian
immersion. Now N is an η-Einstein manifold fibering over a Kähler–Einstein
manifold X with fiber S1. By the previous case, there exists a sequence of CR
immersions ϕk : N → S∞ such that suitable D-homotheties of the induced structures
converge on N to the original η-Einstein structure. Therefore, the pullback to M of
such structures under π̃ converge to the η-Einstein structure we began with. Notice
that these structures are transverse homotheties of the ones induced via the CR
immersions π̃ ◦ϕk : M → S∞. That is, we can perform the transverse homotheties
on N or on M interchangeably. This concludes the proof. □

5. Explicit examples of approximations of η-Einstein structures

We exploit the equivalence between polarizations (L , h) of a Kähler manifold X
and Sasakian structures on a Boothby–Wang bundle over X to describe explicitly
some embeddings of noncompact inhomogeneous η-Einstein manifolds into S∞.
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Namely, we compute an orthonormal basis for the Hilbert space Hk,h of sections of
a line bundle L over a noncompact inhomogeneous Kähler manifold. This provides
instances of approximations of inhomogeneous η-Einstein metrics which cannot be
isometrically CR immersed in a sphere.

Example 13 (fibring on the punctured plane). Consider the punctured plane C∗
=

C\{0} endowed with the complete Calabi–Yau metric g∗

0 induced by the Kähler form

(8) ω∗

0 =
i
2

dz ∧ dz̄
|z|2

,

where z is the coordinate on C∗. Since this Kähler form admits a global potential
F =

1
2 log2

|z|2, it is exact. Therefore, we can endow C∗
× S1, i.e., the unit bundle

of the trivial bundle L = C∗
× C, with an η-Einstein structure. Namely, denoting

the standard volume form on S1 by α, the contact form η on C∗
× S1 is given by

η=α+i(∂−∂) log F . The Sasakian metric is g =g∗

0+η⊗η and the endomorphism φ

is given by the lift of the complex structure of C∗ to the contact distribution. We
want to give an explicit expression of the embeddings of the η-Einstein manifolds
C∗

× S1 just described into S∞.
The Kähler space (C∗, ω∗

0) and its polarizations were studied by Loi and Zuddas
in [10]. We report here the essential points which are relevant to our discussion.
For any positive integer k

(9) hk( f (z), f (z))= e
−k
2 log2

|z|2
| f (z)|2

is a Hermitian metric on Lk whose curvature is kω∗

0 . By the discussion in the
previous section, it is enough to compute an orthonormal basis of Hk,h to get the
components of the embedding ϕk of L−k

\ {0} into ℓ2(C); see also [11, Section 5].
Namely, we need sections s j such that

(10) ⟨s j , s j ⟩k =

∫
C∗

hk(s j (z), s j (z))ω∗

0 =

∫
C∗

e
−k
2 log2

|z|2
|s j (z)|2

i
2

dz ∧ dz̄
|z|2

= 1

and such that ⟨s j , sl⟩k = 0 for j ̸= l. It is easy to check that the functions z j for
j ∈ Z are orthogonal and they form a basis of Hk,h for all k since holomorphic
functions are determined by their Laurent series. A simple computation shows that

(11) ⟨z j , z j
⟩k =

∫
C∗

e
−k
2 log2

|z|2
|z|2 j i

2
dz ∧ dz̄

|z|2
=

√
2
k
π

3
2 e

j2
2k .

Hence an orthonormal basis for the Hilbert space Hk,h consists of the sections

sk, j =

(√
ke

− j2
2k

√
2π

3
2

)1
2

z j
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for j ∈ Z. In other words, the sections sk, j are the components of a holomorphic im-
mersion ϕk of C∗

×C∗ into ℓ2(C) and the potential of the induced transverse metric is

Fk := ϕ∗

k (| · |
2)=

∑
j∈Z

√
ke

− j2
2k

√
2π

3
2

|z|2 j

so that the induced Hermitian metric on L−k is

ϕ∗

k (h
−1
FS )( f (z), f (z))= eFk | f (z)|2.

One can check that the k-th root of this Hermitian metric converges to (a multiple of)
the metric h = eF

| · |
2 without invoking [12, Theorem 6.1.1]; see [10, Theorem 3.6]

for a direct proof.

Example 14 (fibring on the punctured disc). As in the previous example we
will construct noncompact Sasakian manifolds fibring over a noncompact inho-
mogeneous Kähler manifold X with a global Kähler potential. Here we take
X = D∗

={z ∈ C : 0< |z|2<1} equipped with the hyperbolic Kähler–Einstein metric

(12) ω∗

hyp =
i
2

dz ∧ dz̄

|z|2 log2(|z|2)

whose potential is F =−log(−log |z|2). By Theorem 2, in analogy with the previous
example, we can endow D∗

× S1 with an η-Einstein structure with contact structure
η= α+ i(∂− ∂) log F . By Theorem 2 this Sasakian structure can be approximated
by (suitable transverse homotheties) of structures induced by immersions of C∗

×S1

into S∞. We want to give here the explicit expression of these immersions.
The Kähler space (C∗, ω∗

hyp) was studied in [2; 3] in relation to Bergman kernels
of punctured surfaces. The polarization we are interested in is the k-th powers of
the trivial line bundle endowed with the Hermitian metric

(13) hk( f (z), f (z))= ek log(−log |z|2)
| f (z)|2.

We compute an orthonormal basis of Hk,h to get the components of the embedding
ϕk of L−k

\ {0} into ℓ2(C); see also [11, Section 5]. Namely, we need sections s j

such that

⟨s j , s j ⟩k =

∫
D∗

hk(s j (z), s j (z))ω∗

hyp =

∫
D∗

ek log(−log |z|2)
|s j (z)|2

i
2

dz ∧ dz̄

|z|2 log2
|z|2

= 1

and such that ⟨s j , sl⟩k = 0 for j ̸= l. It is easy to check that if a holomorphic
function on D∗ has finite norm, then its Laurent expansion involves only the terms
z j for positive j ∈ Z. The functions z j for j > 0 are orthogonal and they form a
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basis of Hk,h for all k. We can then compute

⟨z j , z j
⟩k =

∫
D∗

ek log(−log |z|2)
|z|2 j i

2
dz ∧ dz̄

|z|2 log2
|z|2

=
i
2

∫
D∗

(−log |z|2)k−2
|z|2 j−2 dz ∧ dz̄

= 2π
∫ 1

0
(−log ρ2)k−2ρ2 j−1 dρ,

where the last equality is obtained passing to polar coordinates. Substituting ex
=ρ2

first and − j x = w one gets

⟨z j , z j
⟩k = 2π

∫ 1

0
(−log ρ2)k−2ρ2 j−1 dρ

= π

∫ 0

−∞

(−x)k−2e j x dx

=
π

j k−1

∫
∞

0
wk−2e−w dw =

π(k − 2)!
j k−1 .

Hence an orthonormal basis for the Hilbert space Hk,h consists of the sections

sk, j =

(
j k−1

π(k − 2)!

)1
2

z j

for j > 0 and these are the components of the holomorphic immersion ϕk of D∗
×C∗

into ℓ2(C). In particular the potential of the induced transverse metric is

Fk := ϕ∗

k (| · |
2)=

∑
j>0

j k−1
|z|2 j

π(k − 2)!

so that the induced Hermitian metric on L−k is

ϕ∗

k (h
−1
FS ) ( f (z), f (z))= eFk | f (z)|2.

The k-th root of this Hermitian metric converges to (a multiple of) the metric
h = eF

| · |
2 by [12, Theorem 6.1.1].

Remark 15. Notice that we can lift the η-Einstein structure of C∗
× S1 (resp.

D∗
× S1) to C∗

× R (resp. D∗
× R). As in the proof of Theorem 2, by composing

with the covering map, we can lift the immersions into S∞ too.
Observe that none of these Sasakian manifolds are homogeneous Sasakian so that

we provided explicit Sasakian immersions ϕk of regular inhomogeneous η-Einstein
manifolds into S∞ (when considered with the induced structure). This should be
compared with [11, Theorem 1.5] where it is proven that a homogeneous Sasakian
manifold can be immersed into S∞ if and only if its fundamental group is cyclic.
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Our examples show that, if the manifold is not assumed to be homogeneous, there
is no such restriction on the fundamental group.

References

[1] C. Arezzo, A. Loi, and F. Zuddas, “Szegö kernel, regular quantizations and spherical CR-
structures”, Math. Z. 275:3-4 (2013), 1207–1216. MR Zbl

[2] H. Auvray, X. Ma, and G. Marinescu, “Bergman kernels on punctured Riemann surfaces”, Math.
Ann. 379:3-4 (2021), 951–1002. MR Zbl

[3] H. Auvray, X. Ma, and G. Marinescu, “Quotient of Bergman kernels on punctured Riemann
surfaces”, Math. Z. 301:3 (2022), 2339–2367. MR Zbl

[4] C. P. Boyer and K. Galicki, Sasakian geometry, Oxford University Press, 2008. MR Zbl

[5] B. Cappelletti-Montano and A. Loi, “Einstein and η-Einstein Sasakian submanifolds in spheres”,
Ann. Mat. Pura Appl. (4) 198:6 (2019), 2195–2205. MR Zbl

[6] S. K. Donaldson, “Scalar curvature and projective embeddings, I”, J. Differential Geom. 59:3
(2001), 479–522. MR Zbl

[7] S. K. Donaldson, “Scalar curvature and projective embeddings, II”, Q. J. Math. 56:3 (2005),
345–356. MR Zbl

[8] A. Loi and R. Mossa, “Uniqueness of balanced metrics on holomorphic vector bundles”, J.
Geom. Phys. 61:1 (2011), 312–316. MR Zbl

[9] A. Loi and G. Placini, “Any Sasakian structure is approximated by embeddings into spheres”,
preprint, 2022. arXiv 2210.00790

[10] A. Loi and D. Zuddas, “Some remarks on Bergmann metrics”, Riv. Mat. Univ. Parma (6) 4
(2001), 71–86. MR Zbl

[11] A. Loi, G. Placini, and M. Zedda, “Immersions into Sasakian space forms”, preprint, 2023.
arXiv 2305.05509

[12] X. Ma and G. Marinescu, Holomorphic Morse inequalities and Bergman kernels, Progress in
Mathematics 254, Birkhäuser, Basel, 2007. MR Zbl

[13] B. L. Reinhart, “Foliated manifolds with bundle-like metrics”, Ann. of Math. (2) 69 (1959),
119–132. MR Zbl

[14] W.-D. Ruan, “Canonical coordinates and Bergmann metrics”, Comm. Anal. Geom. 6:3 (1998),
589–631. MR Zbl

[15] G. Tian, “On a set of polarized Kähler metrics on algebraic manifolds”, J. Differential Geom.
32:1 (1990), 99–130. MR Zbl

[16] S. Zelditch, “Szegö kernels and a theorem of Tian”, Internat. Math. Res. Notices 6 (1998),
317–331. MR Zbl

Received May 10, 2023. Revised December 20, 2023.

GIOVANNI PLACINI

DIPARTIMENTO DI MATEMATICA E INFORMATICA

UNIVERSITÀ DEGLI STUDI DI CAGLIARI

CAGLIARI

ITALY

giovanni.placini@unica.it

http://dx.doi.org/10.1007/s00209-013-1178-1
http://dx.doi.org/10.1007/s00209-013-1178-1
http://msp.org/idx/mr/3127055
http://msp.org/idx/zbl/1290.53070
http://dx.doi.org/10.1007/s00208-020-01957-y
http://msp.org/idx/mr/4238257
http://msp.org/idx/zbl/1480.30034
http://dx.doi.org/10.1007/s00209-022-02977-x
http://dx.doi.org/10.1007/s00209-022-02977-x
http://msp.org/idx/mr/4437325
http://msp.org/idx/zbl/1496.32023
http://msp.org/idx/mr/2382957
http://msp.org/idx/zbl/1155.53002
http://dx.doi.org/10.1007/s10231-019-00862-9
http://msp.org/idx/mr/4031847
http://msp.org/idx/zbl/1427.53053
http://projecteuclid.org/euclid.jdg/1090349449
http://msp.org/idx/mr/1916953
http://msp.org/idx/zbl/1052.32017
http://dx.doi.org/10.1093/qmath/hah044
http://msp.org/idx/mr/2161248
http://msp.org/idx/zbl/1159.32012
http://dx.doi.org/10.1016/j.geomphys.2010.10.005
http://msp.org/idx/mr/2747002
http://msp.org/idx/zbl/1206.53078
http://msp.org/idx/arx/2210.00790
http://msp.org/idx/mr/1878012
http://msp.org/idx/zbl/1013.35060
http://msp.org/idx/arx/2305.05509
http://dx.doi.org/10.1007/978-3-7643-8115-8
http://msp.org/idx/mr/2339952
http://msp.org/idx/zbl/1135.32001
http://dx.doi.org/10.2307/1970097
http://msp.org/idx/mr/107279
http://msp.org/idx/zbl/0122.16604
http://dx.doi.org/10.4310/CAG.1998.v6.n3.a5
http://msp.org/idx/mr/1638878
http://msp.org/idx/zbl/0917.53026
http://projecteuclid.org/euclid.jdg/1214445039
http://msp.org/idx/mr/1064867
http://msp.org/idx/zbl/0706.53036
http://dx.doi.org/10.1155/S107379289800021X
http://msp.org/idx/mr/1616718
http://msp.org/idx/zbl/0922.58082
mailto:giovanni.placini@unica.it




Guidelines for Authors

Authors may submit articles at msp.org/pjm/about/journal/submissions.html and choose an
editor at that time. Exceptionally, a paper may be submitted in hard copy to one of the
editors; authors should keep a copy.

By submitting a manuscript you assert that it is original and is not under consideration
for publication elsewhere. Instructions on manuscript preparation are provided below. For
further information, visit the web address above or write to pacific@math.berkeley.edu or
to Pacific Journal of Mathematics, University of California, Los Angeles, CA 90095–1555.
Correspondence by email is requested for convenience and speed.

Manuscripts must be in English, French or German. A brief abstract of about 150 words or
less in English must be included. The abstract should be self-contained and not make any
reference to the bibliography. Also required are keywords and subject classification for the
article, and, for each author, postal address, affiliation (if appropriate) and email address if
available. A home-page URL is optional.

Authors are encouraged to use LATEX, but papers in other varieties of TEX, and exceptionally
in other formats, are acceptable. At submission time only a PDF file is required; follow
the instructions at the web address above. Carefully preserve all relevant files, such as
LATEX sources and individual files for each figure; you will be asked to submit them upon
acceptance of the paper.

Bibliographical references should be listed alphabetically at the end of the paper. All ref-
erences in the bibliography should be cited in the text. Use of BibTEX is preferred but not
required. Any bibliographical citation style may be used but tags will be converted to the
house format (see a current issue for examples).

Figures, whether prepared electronically or hand-drawn, must be of publication quality.
Figures prepared electronically should be submitted in Encapsulated PostScript (EPS) or
in a form that can be converted to EPS, such as GnuPlot, Maple or Mathematica. Many
drawing tools such as Adobe Illustrator and Aldus FreeHand can produce EPS output.
Figures containing bitmaps should be generated at the highest possible resolution. If there
is doubt whether a particular figure is in an acceptable format, the authors should check
with production by sending an email to pacific@math.berkeley.edu.

Each figure should be captioned and numbered, so that it can float. Small figures occupying
no more than three lines of vertical space can be kept in the text (“the curve looks like
this:”). It is acceptable to submit a manuscript will all figures at the end, if their placement
is specified in the text by means of comments such as “Place Figure 1 here”. The same
considerations apply to tables, which should be used sparingly.

Forced line breaks or page breaks should not be inserted in the document. There is no point
in your trying to optimize line and page breaks in the original manuscript. The manuscript
will be reformatted to use the journal’s preferred fonts and layout.

Page proofs will be made available to authors (or to the designated corresponding author)
at a website in PDF format. Failure to acknowledge the receipt of proofs or to return
corrections within the requested deadline may cause publication to be postponed.

http://msp.org/pjm/about/journal/submissions.html
mailto:pacific@math.berkeley.edu
mailto:pacific@math.berkeley.edu


PACIFIC JOURNAL OF MATHEMATICS

Volume 327 No. 1 November 2023

1The homology of the partition algebras
RACHAEL BOYD, RICHARD HEPWORTH and PETER PATZT

29Remarks on eigenspectra of isolated singularities
BEN CASTOR, HAOHUA DENG, MATT KERR and GREGORY
PEARLSTEIN

55Fourier bases of a class of planar self-affine measures
MING-LIANG CHEN, JING-CHENG LIU and ZHI-YONG WANG

83Group topologies on automorphism groups of homogeneous structures
ZANIAR GHADERNEZHAD and JAVIER DE LA NUEZ GONZÁLEZ

107Prime spectrum and dynamics for nilpotent Cantor actions
STEVEN HURDER and OLGA LUKINA

129A note on the distinct distances problem in the hyperbolic plane
ZHIPENG LU and XIANCHANG MENG

139The algebraic topology of 4-manifold multisections
DELPHINE MOUSSARD and TRENTON SCHIRMER

167Approximation of regular Sasakian manifolds
GIOVANNI PLACINI

Pacific
JournalofM

athem
atics

2023
Vol.327,N

o.1


	 vol. 327, no. 1, 2023
	Masthead and Copyright
	01
	1. Introduction
	1A. Outline, and comparison to previous work

	2. Partition algebras
	3. The principle of inductive resolutions
	4. Inductive resolutions
	4A. Reducing to AX,x and BX,x
	4B. Resolving AX,x
	4C. Resolving BX,x

	5. Replacing Shapiro's lemma
	6. High connectivity
	7. Proof of @0=atheorem.31=Theorem B
	Acknowledgements
	References

	02
	Introduction
	1. G-spectra and eigenspectra
	2. Quasihomogeneous singularities with automorphism
	3. Bounding nodes on Calabi–Yau hypersurfaces
	4. Cyclic covers of P1
	5. Hyperplane configurations and Dolgachev's conjecture
	Acknowledgements
	References

	03
	1. Introduction
	2. Preliminaries
	3. Proofs of Theorems 1.5 and 1.6
	4. Proofs of Theorems 1.3 and 1.4
	Acknowledgement
	References

	04
	1. Introduction
	2. A relative minimality criterion
	3. Minimality and independence
	3A. Independence
	3B. Review of Fraïssé construction
	3C. Small, one-based simple theories
	3D. An example that shows total minimality is not preserved under taking open finite-index subgroups
	3E. Simple nonmodular predimension Hrushovski construction

	4. Topologies and types
	4A. Nonminimality in the trivial acl case

	Acknowledgements
	References

	05
	1. Introduction
	2. Cantor actions
	2A. Basic concepts
	2B. Profinite completion
	2C. Algebraic Cantor actions
	2D. Equivalence of Cantor actions
	2E. Locally quasianalytic
	2F. Type and typeset for Cantor actions
	2G. Type for profinite groups

	3. Nilpotent actions
	3A. Noetherian groups
	3B. Dynamics of Noetherian groups

	4. Basic examples
	5. Nilpotent actions with prescribed spectrum
	5A. Basic components of the construction.
	5B. Stable nilpotent actions with finite or infinite prime spectrum
	5C. Wild nilpotent actions with infinite prime spectrum
	5D. Proof of Corollary 1.5

	References

	06
	1. Introduction
	2. Proof of Theorem 1.1
	Framework
	Incidence of projective lines in P3

	Acknowledgements
	References

	07
	1. Introduction and main results
	2. Algebraic preliminaries
	2A. Twisted homology
	2B. Torsion
	2C. The equivariant intersection form

	3. The twisted absolute homology groups and torsion
	4. The twisted relative homology groups and torsion
	5. Intersection forms
	6. The case of closed 4-manifolds
	7. The boundary: monodromy and homology
	8. Sample calculations
	Acknowledgements
	References

	08
	1. Introduction and statements of the main results
	2. Sasakian manifolds
	2.1. CR immersions of regular and complete Sasakian manifolds into spheres

	3. Approximation of compact regular structures via immersions into spheres
	4. Approximation of -Einstein regular structures
	5. Explicit examples of approximations of -Einstein structures
	References

	Guidelines for Authors
	Table of Contents

