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CO-HOPFIAN AND BOUNDEDLY ENDO-RIGID
MIXED ABELIAN GROUPS

MOHSEN ASGHARZADEH, MOHAMMAD GOLSHANI AND SAHARON SHELAH

For a given cardinal λ and a torsion abelian group K of cardinality less
than λ, we present, under some mild conditions (for example, λ = λℵ0),
boundedly endo-rigid abelian group G of cardinality λ with tor(G) = K.
Essentially, we give a complete characterization of such pairs (K, λ). Among
other things, we use a twofold version of the black box. We present an
application of the construction of boundedly endo-rigid abelian groups.
Namely, we turn to the existence problem of co-Hopfian abelian groups of
a given size, and present some new classes of them, mainly in the case of
mixed abelian groups. In particular, we give useful criteria to detect when a
boundedly endo-rigid abelian group is co-Hopfian and completely determine
cardinals λ > 2ℵ0 for which there is a co-Hopfian abelian group of size λ.
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1. Introduction

By a torsion (resp. torsion-free) group we mean an abelian group such that all its
nonzero elements are of finite (resp. infinite) order. A mixed group G contains
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both nonzero elements of finite order and elements of infinite order, and these are
connected via the celebrated short exact sequence

(∗) 0 → tor(G) → G →
G

tor(G)
→ 0.

Despite the importance of (∗), there are series of questions concerning how to glue
the issues from torsion and torsion-free parts and put them together to check the
desired properties for mixed groups.

Reinhold Baer [2; 3] was interested to find an interplay between abelian groups
and rings. In this regard, he raised the following general problem:

Problem 1.1. Which ring can be the endomorphism ring of a given abelian group G?

There are a lot of interesting research papers and books that study this problem,
see, for example, [11; 16]. According to Fuchs [15], for mixed groups, only very
little can be said. As an achievement, we cite the works of Corner and Göbel [8]
and Franzen and Goldsmith [12].

For any group G, by E f (G) we mean the ideal of End(G) consisting of all
elements of End(G) whose image is finitely generated. Corner [7] has constructed
an abelian group G := (M, +), for some ring R and an R-module M , such that
any of its endomorphisms is of the form multiplication by some r ∈ R plus a
distinguished function from E f (G). One can allow such a distinguished function
ranges over other classes such as finite-range, countable-range, inessential range
or even small homomorphism, and there are a lot of work trying to clarify such
situations. As a short list, we may mention Corner and Göbel [8], Dugas and
Göbel [10], Corner [7], Thomé [30] and Pierce [21].

Here, by a bounded group, we mean a group G such that nG = 0 for some fixed
0 < n ∈ N. By a theorem of Baer and Prüfer, a bounded group is a direct sum
of cyclic groups. The converse is not true. However, there is a partial converse
for countable p-groups. For more details, see Fuchs [15]. A homomorphism
h ∈ G1 → G2 of abelian groups is called bounded if Rang(h) is bounded.

Definition 1.2. An abelian group G is boundedly rigid when every endomorphism
of it has the form µn + h, where µn is multiplication by n ∈ Z and h has bounded
range. By Eb(G) we mean the ideal of End(G) consisting of all elements of End(G)

whose image is bounded.

Let us explain some motivation. The concept of a rigid system of torsion-free
groups has a natural analogue for the class of separable p-primary groups: a family
{Gi : i ∈ I } of separable p-primary groups is called rigid-like if for all i ̸= j ∈ I
every homomorphism Gi → G j is small, and also for all i ∈ I , every endomorphism
of Gi is the sum of a small endomorphism and multiplication by a p-adic integer.
Shelah [23] confirmed a conjecture of Pierce [21] by showing that if µ is an
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uncountable strong limit cardinal, then there is a rigid-like system {Gi : i ∈ I } of
separable p-primary groups such that |Gi | = µ and |I | = 2µ, see also [25] for more
results in this direction.

Let us now state our main results. Section 2 contains the preliminaries, basic
definitions and notations that we need. The reader may skip it, and come back to it
when needed later. In Section 3, and as a main result, we prove the following.

Theorem 1.3. Given a cardinal λ such that λ = λℵ0 > 2ℵ0 and a torsion group K of
cardinality less than λ, there is a boundedly rigid abelian group G of cardinality λ

with tor(G) = K.

To prove this, we introduce a series of definitions and present several claims.
The first one is the rigidity context, denoted by k, see Definition 3.1. Also, the
main technical tool is a variation of “Shelah’s black box”, and we refer to it as
twofold black box. For its definition (resp. its existence), see Definition 3.13 (resp.
Lemma 3.15). It may be worth to mention that the black boxes were introduced
by Shelah in [26], where he showed that they follow from ZFC (here, ZFC means
the Zermelo–Fraenkel set theory with the axiom of choice). We can consider black
boxes as general methods to generate a class of diamond-like principles provable
in ZFC. Then, we continue by introducing the approximation blocks, denoted by AP,
see Definition 3.18 for more precise definition. There is a distinguished object c
in AP that we call it full. The twofold black box helps us to find such distinguished
objects, see Lemma 3.30. Here, one may define the group G := Gc. Let h ∈ End(G).
In order to show that h is boundedly rigid, we apply a couple of reductions (see
Lemmas 3.35–3.43), to reduce to the case that h factors throughout G → tor(G).
Finally, in Lemma 3.31 we handle this case, by showing that any map G → tor(G)

is indeed boundedly rigid.
In the course of the proof of Theorem 1.3, we develop a general method which

allows us to prove that 0 → Z → End(G) →
End(G)
Eb(G)

→ 0 is exact, and also enables
us to present a connection to Problem 1.1. In order to display the connection, let R
be a ring coming from the rigidity context. For the propose of the introduction, we
may assume that (R, +) is cotorsion-free, see Definition 2.8 (with the convenience
that the argument becomes easier if we work with R := Z, or even (R, +) is ℵ1-free).
Following our construction, every endomorphism of G has the form µr + h, where
µr is a multiplication by r ∈ R and h has bounded range, i.e., the sequence

0 → R → End(G) →
End(G)

Eb(G)
→ 0

is exact.

Definition 1.4. A group G is called Hopfian (resp. co-Hopfian) if its surjective
(resp. injective) endomorphisms are automorphisms.
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Essentially, we give complete characterization of the pairs (K , λ) by relating our
work with the recent works of Paolini and Shelah, see [19; 20]. To this end, first
we recall the following folklore problem:

Problem 1.5. Construct co-Hopfian groups of a given size.

Baer [4] was the first to investigate Problem 1.5 for abelian groups. A torsion-free
abelian group is co-Hopfian if and only if it is divisible of finite rank, and hence the
problem naturally reduces to the torsion and mixed cases. Beaumont and Pierce [5]
proved that if G is co-Hopfian, then tor(G) is of size at most continuum, and further
that G cannot be a p-groups of size ℵ0. This naturally left open the problem of the
existence of co-Hopfian p-groups of uncountable size ≤ 2ℵ0 , which was later solved
by Crawley [9] who proved that there exist co-Hopfian p-groups of size 2ℵ0 . Braun
and Strüngmann [6] showed that the existence of three types of infinite abelian
p-groups of size ℵ0 < |G| < 2ℵ0 are independent of ZFC:

(a) Both Hopfian and co-Hopfian.

(b) Hopfian but not co-Hopfian.

(c) Co-Hopfian but not Hopfian.

Also, they proved that the above three types of groups of size 2ℵ0 exist in ZFC. So,
in light of Theorem 1.3, the remaining part is 2ℵ0 < λ < λℵ0 . Very recently, and
among other things, Paolini and Shelah [19] proved that there is no co-Hopfian
group of size λ for such a λ. As an application, in Section 4, we determine cardinals
λ > 2ℵ0 for which there is a co-Hopfian group of size λ. For the precise statement,
see Corollary 4.13.

Let us recall a connection between the concepts boundedly endo-rigid groups
and (co-)Hopfian groups. First, recall from the seminal paper [22], for any λ less
than the first beautiful cardinal, Shelah proved that there is an endo-rigid torsion-
free group of cardinality λ. By definition, for any f ∈ End(G) there is m f ∈ Z

such that f (x) = m f x . So, f is onto if and only if m f = ±1. In other words, G
is Hopfian. This naturally motives us to detect co-Hopfian property by the help
of some boundedly endo-rigid groups. This is what we want to do in Section 4.
Namely, our first result on co-Hopfian groups is stated as follows.

Construction 1.6. Let K := ⊕
{

Z
pnZ

: p ∈ P and 1 ≤ n < m
}
, where m < ω, and P

is the set of prime numbers. Let G be a boundedly endo-rigid abelian group such
that tor(G) = K. Then G is co-Hopfian.

We may recall from Theorem 1.3 that such a group exists for any λ = λℵ0 > 2ℵ0 .
In fact, the size of G is λ.

Let h be a natural number. One of the tools that we use is the h-power torsion
subgroup of G:

0h(G) := {g ∈ G : ∃n ∈ N such that hng = 0}.
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The assignment G 7→ 0h(G) defines a functor from the category of abelian groups
to itself. It may be worth to mention that, in the style of Grothendieck, this is called
section functor and some authors use Torh(−) to denote it.

In our study of the co-Hopfian property of G, the following subset of prime
numbers appears:

SG := {p ∈ P : G/0p(G) is not p-divisible}.

The set SG helps us to present a useful criterion to detect when a boundedly endo-
rigid abelian group is co-Hopfian:

Proposition 1.7. Assume λ > 2ℵ0 and G is a boundedly endo-rigid abelian group
of size λ. Then G is co-Hopfian if and only if :

(a) SG is a nonempty set of primes.

(b) (b1) 0p(G) ̸= G.
(b2) If p ∈ SG , then 0p(G) is not bounded.
(b3) If 0p(G) is bounded, then it is finite.

Let G be an abelian group. In order to show that G is (not) co-Hopfian, and also
to see a connection to bounded morphisms, we introduce a useful set NQr(m,n)(G)

consisting of those bounded h ∈ End(0n(G)) such that

(1) h′
:= m · id0n(G) +h ∈ End(0n(G)) is 1-to-1,

(2) h′ is not onto or m > 1 and G/0n(G) is not m-divisible.

In a series of nontrivial cases we check NQr(m,n)(G) and its negation. This enables
us to present some new classes of co-Hopfian and non-co-Hopfian groups (see
below, items 4.4–4.11).

See Eklof and Mekler [11] and Göbel and Trlifaj [16] for all unexplained defini-
tions from set theoretic algebra. Also, for unexplained definitions from the group
theory, see the books of Fuchs [13; 14; 15].

2. Preliminaries

In this paper all groups are abelian, otherwise specialized. In this section we recall
some basic definitions and facts that will be used in the later sections of the paper.

Definition 2.1. An abelian group G is called ℵ1-free if every countable subgroup
of G is free. More generally, an abelian group G is called λ-free if every subgroup
of G of cardinality < λ is free.

Definition 2.2. Let κ be a regular cardinal. An abelian group G is said to be
strongly κ-free if there is a set S of < κ-generated free subgroups of G containing 0
such that for any subset S of G of cardinality < κ and any N ∈ S, there is an L ∈ S
such that S ∪ N ⊂ L and L/N is free.
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A group G is pure in an abelian group H if G ⊆ H and nG = nH ∩ G for every
n ∈ Z. The common notation for this notion is G ⊆∗ H .

Fact 2.3. Suppose G is a torsion-free group. Then the intersection of pure subgroups
of G is again pure. In particular, for every S ⊂ G, there exists a minimal pure
subgroup of G containing S. The common notation for this subgroup is ⟨S⟩

∗

G .

Fact 2.4 (see [17, Theorem 7]). Let G be an abelian group and H a pure and
bounded subgroup of G. Then H is a direct summand of G.

The notation tor(G) stands for the full torsion subgroup of G. There is a natural
connection with the functor TorZ

1 (−, ∼):

tor(G) = TorZ
1 (Q/Z, G).

Fact 2.5 (see [17, Theorem 8]). Let G be an abelian group and T ⊆∗ tor(G). If T
is the direct sum of a divisible group and a group of bounded exponent, then T is a
direct summand of G. The same result holds if T ⊆∗ G.

Fact 2.6 (see [5]). (i) Let G be a countable p-group. Then G is co-Hopfian if and
only if G is finite.

(ii) If a group G is co-Hopfian, then tor(G) is of size at most continuum, and further
that G cannot be a p-groups of size ℵ0.

Fact 2.7 (see [13, Theorem 17.2]). If G is a p-group of bounded exponent, then G
is a direct sum of (finitely many, up to isomorphism) finite cyclic groups.

Definition 2.8. (i) An abelian group G is called cotorsion if Ext(J, G) = 0 for
all torsion-free abelian groups J .

(ii) An abelian group G is called cotorsion-free if it has no nonzero co-torsion
subgroup.

In other words, G is cotorsion provided that it is a direct summand of every
abelian group H containing G with the property that H/G is torsion-free. Here,
we recall a useful source to produce a cotorsion-free group:

Fact 2.9 (see [11, Corollary 2.10(ii)]). Any ℵ1-free group is cotorsion-free.

The p-torsion parts of a group G are important sources to produce pure subgroups.

Notation 2.10. Let P denote the set of all prime numbers.

(i) Let p ∈ P. The p-power torsion subgroup of G is

0p(G) := {g ∈ G : ∃n ∈ N such that png = 0}.

(ii) For each 1 ≤ m < ω, we let 0m(G) :=
⊕

{0p(G) : p | m}.
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Recall that the assignment G 7→ 0h(G) defines a functor from the category of
abelian groups to itself, which is also called section functor. It has the following
important property. Suppose f : G → H is a homomorphism of abelian groups.
Then the following diagram of natural short exact sequences is commutative:

0 // 0h(H)
⊆
// H // H/0h(H) // 0

0 // 0h(G)

f ↾

OO

⊆
// G

f

OO

// G/0h(H) //

f̄

OO

0

where f̄ (g + 0h(G)) := f (g) + 0h(H).
The connection from p-power torsion functors and the classical torsion functor

is read as
TorZ

1 (Q/Z, G) = tor(G) =

⊕
p∈P

0p(G).

Notation 2.11. In this paper, by End(−) we mean EndZ(−) where (−) is at least
an abelian group, otherwise we specify it.

The following notion of boundedness plays an important role in establishing the
main theorems.

Definition 2.12. Let G be an abelian group of size λ. We say G is boundedly endo-
rigid when for every f ∈ End(G) there is m ∈ Z such that the map x 7→ f (x)−mx
has bounded range.

The next fact follows from the definition.

Fact 2.13. An abelian group G is boundedly endo-rigid if and only if for every
f ∈ End(G) there is m ∈ Z and bounded h ∈ End(G) such that f (x) = mx + h(x).

Fact 2.14. Let K be a bounded torsion abelian group and let G ⊆∗ H. There is
h ∈ Hom(H, K ) extending g if g ∈ Hom(G, K ). This property is conveniently
summarized by the subjoined diagram:

0 // G
⊆∗
//

g
��

H

∃h~~

K

Fact 2.15. Let G be abelian group and suppose that G is not bounded, then the
bounded endomorphisms of G (i.e., those f ∈ End(G) with bounded range) form
an ideal of the ring End(G), we denote this ideal by Eb(G). With respect to this ter-
minology, G is boundedly rigid if and only if the quotient ring End(G)/ Eb(G) ∼= Z.
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Remark 2.16. Recall that torsion subgroups are pure. Let f be a bounded endo-
morphism of tor(G). By Fact 2.14, we have

0 // tor(G)
⊆∗
//

f
��

G

∃h||

tor(G)

Let f̂ : G h
−→ tor(G)

⊆
−→ G. In sum, f extends to an endomorphisms f̂ of G with

the same range:

tor(G)

⊆

��

f
// tor(G)

⊆

��

G
f̂

// G

Hence, the notion of boundedly rigid is really the right notion of endo-rigidity for
mixed groups (for G torsion-free abelian group, we say that G is endo-rigid when
End(G) ∼= Z). For instance, we look at

K =

⊕{
Z

pℓ+1 Z
: ℓ < m

}
for some m < ω, and recall that this has many bounded endomorphisms. The same
will happen for any G extending it.

In what follows we will use the concept of reduced group several times. Let us
recall its definition.

Definition 2.17. Let G be an abelian group.

(a) G is called reduced if it contains no divisible subgroup other than 0.

(b) G is called injective if for any inclusion G1 ⊆ G2 of abelian groups, any
morphism f : G1 → G can be extended into G2:

0 // G1
⊆
//

f
��

G2

∃h
}}

G

Fact 2.18 (see [15]). An abelian group G is divisible if and only if it is injective.

Here, we recall a connection between reduced and co-torsion-free abelian groups.

Fact 2.19 (see [11, Theorem V.2.9]). An abelian group G is cotorsion-free if and
only if it is reduced and torsion-free and does not contain a subgroup isomorphic
to Ẑp for any prime p.
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Recall that Ẑp means completion of Z in the p-adic topology. Here, we collect
more basic facts about injective groups that we need:

Discussion 2.20. Let p ∈ P be a prime number.

(i) (See [11, page 11].) By the structure theorem for an injective abelian group I ,
we mean the following decomposition:

I =

⊕
p∈P

Z(p∞)⊕x p ⊕ Q⊕x ,

where x p and x are index sets.

(ii) (See [18, Theorem 3.7].) Let p, q ∈ P0 := P ∪ {0} and set Z(0∞) := Q. Then

Hom(Z(p∞), Z(q∞)) =

{
Ẑp if p = q,

0, otherwise,

with the convenience that Ẑ0 = Q.

(iii) Combining (i) and (ii) we get the following well-known formula:

End(I ) =

∏
p∈P0

Ẑ
⊕x p
p ,

where x0 := x .

3. The ZFC construction of boundedly rigid mixed groups

In this section we show that for any cardinal λ = λℵ0 > 2ℵ0 and any torsion abelian
group K of size less than λ, there exists a boundedly rigid abelian group G with
tor(G) = K , see Theorem 3.11.

To this end, we define the notion of rigidity context k which in particular codes
a torsion group K , and assign to it a collection of objects m, which among other
things have a group G with tor(G) = K. We show that under the above assumptions
on λ and K , we can always find such an m that the associated group G is boundedly
rigid.

Definition 3.1. (1) We say a tuple k is a rigidity context when

k = (Kk, Rk, φ
k
r , 9k

r,s, 9
k
(r,s), Sk)r,s∈Rk = (K , R, φr , 9r,s, 9(r,s), S)r,s∈R,

where:

(a) K is a reduced torsion abelian group.

(b) R is a ring.

(c) S is a set of prime numbers, S⊥

k =P\S is its complement, and R is S⊥

k -divisible.
This means that R is divisible for any p ∈ S⊥

k .

(d) For r ∈ R, the map φr ∈ End(K ) has bounded range.
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(e) If r, s ∈ R, then 9r,s = φr + φs − φr+s ∈ End(K ).

(f) If r, s ∈ R, then 9(r,s) ∈ End(K ) has bounded range and, letting t = rs, for
x ∈ K we have

9(r,s)(x) = φr (φs(x)) − φt(x).

(2) We say k is nontrivial when for some prime p ∈ Sk the p-torsion 0p(K ) is
infinite, or the set

{p ∈ Sk : 0p(K ) ̸= 0}

is infinite.

(3) By Zk we mean the subring of Q generated by {1} ∪
{ 1

p : p ∈ S⊥

k
}
.

Observation 3.2. Suppose (Rk, +) is cotorsion-free as an abelian group. Then
Sk ̸= ∅.

Proof. Suppose on the way of contradiction that Sk = ∅. In other words, S⊥

k is
the set of prime numbers. By Definition 3.1(1)(c), R is S⊥

k -divisible. This means
that Q ⊆ Rk. It turns out from Fact 2.19 that (Rk, +) is not cotorsion-free, a
contradiction. □

Definition 3.3. Let k be a rigidity context. By Mk we mean the family of all tuples:

m = (km, Gm, F m
r , F m

r,s, F m
(r,s))r,s∈Rkm = (k, G, Fr , Fr,s, F(r,s))r,s∈Rk ,

where:

(a) G is an abelian group.

(b) tor(G) = Kk.

(c) For r ∈ Rk, Fr is an endomorphism of G extending φk
r :

K

⊆

��

φr
// K

⊆

��

G
Fr

// G

(d) For r, s ∈ Rk, Fr,s ∈ End(G) extends 9r, s:

K

⊆

��

9r,s
// K

⊆

��

G
Fr,s

// G

and they have the same range Fr,s[G] = 9r,s[K ].
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(e) For r, s ∈ Rk, F(r,s) ∈ End(G) extends 9k
(r,s):

K

⊆

��

9(r,s)
// K

⊆

��

G
F(r,s)

// G

and thereby they have the same range F(r,s)[G] = 9(r,s)[K ].

(f) If r, s, t ∈ R and t = r + s, then for x ∈ G,

Fr,s(x) = Fr (x) + Fs(x) − Ft(x),

(g) If r, s, t ∈ R and t = rs, then for x ∈ G,

F(r,s)(x) = Fr (Fs(x)) − Ft(x).

Definition 3.4. Adopt the previous notation, and let

M =

⋃
{Mk : k is a rigidity context}.

(1) We define ≤M as the partial order on M. Namely, m ≤M n if and only if
(a) m, n ∈ M,
(b) km = kn,
(c) Gm ⊆ Gn,
(d) F m

r ⊆ Fn
r .

(2) By ≤Mk we mean ≤M ↾Mk.

Notation 3.5. Let r ∈ R and x ∈ Gm. By r x we mean r x := F m
r (x) ∈ Gm.

Definition 3.6. Suppose k is a rigidity context and m ∈ Mk.

(1) We say m is boundedly rigid when for every f ∈ End(Gm) there are r ∈ R
and h ∈ Endb(Gm)1 and

x ∈ Gm =⇒ f (x) = r x + h(x).

(2) We say m is free when it has a base B which means that the set {x +Kk : x ∈ B}

is a free base of the abelian group Gm/K.

(3) We say m is λ-free when Gm/K is.

(4) We say m is strongly λ-free when Gm/K is.

(5) Let Mm be the R-module obtained by expanding Gm/K such that for x, y ∈ Gm
and r ∈ R

r x + K = y + K ⇐⇒ F m
r (x) = y.

The next easy lemma shows that Mm as defined above is well defined.

1so, h has a bounded range.
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Lemma 3.7. Suppose k is a rigidity context and m ∈ Mk. Then Mm can be turn to
an R-module structure.

Proof. Since Mm is an expansion of Gm/K , it is an abelian group. Let r ∈ R and
m := g + K ∈ Mm where g ∈ G. The assignment

(r, m) 7→ rm := F m
r (g) + K ∈ Gm/K = Mm

defines the desired module structure on Mm. □

Lemma 3.8. Suppose k is a rigidity context and m ∈ Mk. Then:

(1) Suppose Rk = Z (so, S⊥

k = ∅). Then m is boundedly rigid if and only if Gm is
boundedly rigid.

(2) Let Rk = Zk (see Definition 3.1(3)). Then m is boundedly rigid if and only if
Gm is boundedly rigid.

(3) If φk
r is zero for every r ∈ R, then Gm is an R-module.

Proof. (1) and (2) are trivial and follow from the definitions.

(3) For each x ∈ Gm and r ∈ R, we set r x := F m
r (x). It is straightforward to furnish

the following three properties.

• The identity r(x + y) = r x + r y follows from Definition 3.1(1)(c).

• The equality (r + s)x = r x + sx follows from Definition 3.1(1)(d).

• The equality r(sm) = (rs)m follows from (e) and (f) of Definition 3.1(1).

From these, Gm is equipped with an R-module structure. □

In what follows, the notation lg(−) stands for the length function.

Definition 3.9. Let α ∈ Ord.

(1) By 3ω[α] we mean{
η : lg(η)=ω and η(n)= (η(n,1), η(n,2)) for η(n,1)≤η(n,2)<η(n+1,1)<α

}
.

(2) For each η ∈ 3ω[α], we let j(η) =
⋃

{η(n, 1) : n < ω}.

(3) 3<ω[α] := {⟨ ⟩} ∪
⋃

k<ω3k[α], where 3k[α] is the set of all η furnished with
the properties:

(a) lg(η) = k + 1.

(b) η(k) < α.

(c) For any ℓ < k we suppose η(ℓ) is furnished with a pairing property in the
sense that:

(i) η(ℓ) = (η(ℓ, 1), η(ℓ, 2)), where η(ℓ, 1) ≤ η(ℓ, 2) < α.
(ii) Additionally, let ℓ+1< k, we may and do assume that η(ℓ, 2)<η(ℓ+1, 1).
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(d) If ℓ < k, then η(ℓ, 1) = η(ℓ, 2) ⇔ ℓ = 0.

(4) 3[α] := 3ω[α] ∪3<ω[α].

(5) For any η ∈ 3[α] and k + 1 < lg(η), we set

(a) η ↾L k := ⟨(η(ℓ, 1), η(ℓ, 2)) : ℓ < k⟩
⌢
⟨η(k, 1)⟩ and

(b) η ↾R k := ⟨(η(ℓ, 1), η(ℓ, 2)) : ℓ < k⟩
⌢
⟨η(k, 2)⟩.

Note that η ↾L k and η ↾R k belong to 3k+1[α].

(6) We say 3 ⊆ 3[α] is downward closed while for each η ∈ 3 and k + 1 < lg(η)

we have η ↾L k, η ↾R k ∈ 3.

We next define when a subset of 3ω[α] is free.

Definition 3.10. Suppose α ∈ Ord and 3 ⊆ 3ω[α].

(1) We say 3 is free whenever there is a function h : λ → ω such that the sequence

⟨{η↾Ln, η↾R n : h(η) ≤ n < ω} : η ∈ 3⟩

is a sequence of pairwise disjoint sets.

(2) We say 3 is µ-free when every 3′
⊆ 3 of cardinality < µ is free.

We can now state the main result of this section.

Theorem 3.11. Let λ = λℵ0 > 2ℵ0 . Let k be a nontrivial rigidity context such that
K := Kk and R := Rk are of cardinality ≤ λ. Then there exists an abelian group G
such that tor(G) = K and G is boundedly rigid. In particular, the sequence

0 → R → End(G) →
End(G)

Eb(G)
→ 0

is exact.

The rest of this section is devoted to the proof of the above theorem.

Definition 3.12. For any ordinal γ , a sequence η ∈ 3[λ] and a family 3 ⊆ 3[λ],
we define:

(1) Sγ is the closure of ω ∪ γ under finite subsets, so including finite sequences.

(2) γ (η) = η(0, 1).

(3) 3γ = {η ∈ 3 : γ (η) < γ }.

(4) We set 3<ω = 3 ∩ 3<ω[α] and 3ω = 3 ∩ 3ω[α].

In order to prove Theorem 3.11, we need a twofold version of the black box,
that we now introduce. On simple black boxes, see [24; 27; 28]. The presentation
here is a special case of the n-fold λ-black box from [29], when n = 2.

Definition 3.13. We say b is a twofold λ-black box when it consists of:

(1) ḡ = ⟨gη : η ∈ 3ω[λ]⟩, where gη is a function from ω into Sλ.
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(2) Suppose g : 3<ω[λ] → Sλ is a function and f : 3<ω[λ] → γ where γ < λ.
Then, for some η ∈ 3ω[λ],
(a) γ (η) > γ ,
(b) gη(0) = g(⟨ ⟩),
(c) gη(n + 1) =

(
g(η ↾L n), g(η ↾R n)

)
,

(d) η(n, 1) < η(n, 2) and f (η ↾L n) = f (η ↾R n) for all 1 ≤ n < ω.

Hypothesis 3.14. For the rest of this section we adopt the following hypotheses,
otherwise specializes:

• λ = λℵ0 > 2ℵ0 .

• k is a rigidity context as in Definition 3.1.

• K = Kk and R = Rk are of cardinality < λ. Without loss of generality, we
may assume that the set of elements of K and R are subsets of λ.

• (R, +) is cotorsion-free.

• b is a twofold λ-black box.

The following result was proved in [29, Lemma 1.14], with a setting more general
than here. As this plays a crucial ingredient, we sketch its proof.

Lemma 3.15. There exists a twofold λ-black box.

Proof. For notational simplicity, we set S := Sλ, and look at the fixed partition of λ

into λ-many sets, each of cardinality λ:

⟨Ws1,s2 : s1, s2 ∈ S⟩.

For each η ∈ 3ω[λ], we define gη(n) ∈ S, by induction on n < ω.
To start, set

(∗1) gη(0) = s ⇐⇒ η(0, 1) = η(0, 2) ∈ Ws,s .

Now suppose that n <ω and gη ↾ (n+1) is defined. We are going to define gη(n+1).
It is enough to note that

(∗2) gη(n + 1) = (s1, s2) ⇐⇒ η(n + 1, 1) ∈ Ws1,s2 .

We show that ḡ =⟨gη : η ∈3ω[λ]⟩ is as required. Suppose that g :3<ω[λ]→ Sλ is a
function and f : 3<ω[λ] → γ where γ < λ. We define η ∈ 3ω[λ], by defining η(n),
by induction on n.

Let η(0) := ⟨η(0, 1), η(0, 2)⟩, where

(∗3) γ < η(0, 1) = η(0, 2) ∈ Wg(⟨ ⟩),g(⟨ ⟩).

Now, suppose that n < ω and we have defined η ↾ n + 1. We define

η(n + 1) = ⟨η(n + 1, 1), η(n + 1, 2)⟩.
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Set

(a) s1 := g(η ↾L n),

(b) s2 := g(η ↾R n), and

(c) cn : Ws1,s2 → γ is defined via the assignment

(+) cn(α) := f
(
(η ↾ n + 1)⌢⟨α⟩

)
.

As γ < λ and Ws1,s2 has size λ, we can find an unbounded subset Wn of Ws1,s2 such
that cn ↾ Wn is constant. Let η(n + 1, 1) < η(n + 1, 2) be such that

(∗4) η(n, 2) < η(n + 1, 1), η(n + 1, 2) ∈ Wn ⊆ Wg(η↾L n),g(η↾Rn).

We claim that the η we constructed as above, satisfies the required conditions of
Definition 3.13(2). Indeed, thanks to our construction, γ (η) = η(0, 1) > γ . We
also have

gη(0) = g(⟨ ⟩) ⇐⇒ η(0, 1) = η(0, 2) ∈ Wg(⟨ ⟩),g(⟨ ⟩),

which is true by (∗3). We also have

gη(n + 1) =
(
g(η ↾L n), g(η ↾R n)

)
⇐⇒ η(n + 1, 1) ∈ Wg(η↾L n),g(η↾Rn),

which is again true by (∗4). Finally note that, clearly f (η ↾L 1) = f (η ↾R 1), and
for all n,

f (η ↾L n + 2) = f (η ↾ n + 1⌢
⟨η(n + 1, 1)⟩)

(+)
= cn(η(n + 1, 1))

(∗4)
= cn(η(n + 1, 2))

(+)
= f (η ↾ n + 1⌢

⟨η(n + 1, 2)⟩) = f (η ↾R n + 2).

The lemma follows. □

Assuming hypotheses beyond ZFC, we can get stronger versions of twofold
λ-black box (see again [29]).

Observation 3.16. Assume λ = cf(λ) ≥ ℵ1. Let

S ⊆ {α < λ : cf(α) = ℵ0}

be a stationary and nonreflecting subset of λ such that the principle ♢S holds. Then
there is a λ-free twofold λ-black box b such that 3b = {ηδ : δ ∈ S} and j(ηδ) = δ

for every δ ∈ S.

Recall that Jensen’s diamond principle ♢S is a kind of prediction principle whose
truth is independent of ZFC. The point in the above proof is that if 3b = {ηδ : δ ∈ S}

and j(ηδ) = δ for every δ ∈ S, then as S does not reflect, the set 3b is λ-free.
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Remark 3.17. Recall from [6] that a (co-)Hopfian group of size λ = 2ℵ0 exists
in ZFC. We can also deal with the case of λ = 2ℵ0 , but all is known in this case, so
we just concentrate on the case λ = λℵ0 > 2ℵ0 .

Definition 3.18. Let AP := APk,λ be the set of all quintuples

c = (3c, mc, 0c, X c, ⟨ac
η,n : η ∈ 3c, n < ω⟩)

such that:

(a) 3c ⊆ 3[λ] is downward closed.

(b) mc ∈ Mk. We may write Gc, Mc instead of Gmc, Mmc respectively, etc.

(c) X c is the set

{r xν : r ∈ R, ν ∈ 3c,<ω} ∪ {r yη,n : r ∈ R, η ∈ 3c,ω, n < ω}.

(d) Gc is generated, as an abelian group, by the sets K and X c. The relations
presented in (f), see below.

(e) For any ordinal α, let Gc,α be the subgroup of Gc generated by the set K and

{r xν : r ∈ R, ν ∈ 3c,<ω ∩ 3[α]} ∪ {r yρ,n : r ∈ R, ρ ∈ 3c,ω ∩ 3[α], n < ω}.

(f) Mc, as an R-module, is generated by X c∪K , freely except the following set 0c
of equations:

yη,n = ac
η,n + (n!) yη,n+1 + (xη↾L n − xη↾R n),

where ac
η,n ∈ Gc,η(0,1).

The following is clear:

Lemma 3.19. Suppose c ∈ APk,λ. Then Gc is of size λℵ0 .

Definition 3.20. For any c ∈ APk,λ, we define:

(1) γc := min{γ ≤ λ : 3c ⊆ 3[γ ]}.

(2) Let �c := 3c,<ω ∪ (3c,ω ×ω) and define ⟨xρ : ρ ∈ �c⟩ by the following rules:
(a) If ρ ∈ 3c,<ω, then xρ is defined as in Definition 3.18(c).
(b) If ρ = (η, n) ∈ 3c,ω × ω, we define xρ := yη,n .

(3) For b ∈ Gc choose the sequence

⟨rb,ℓ, ηb,ℓ, mb,ℓ : ℓ < nb⟩

such that
b −

∑
ℓ<nb

rb,ℓ yηb,ℓ,mb,ℓ
∈

∑
ρ∈3c,<ω

Rxρ + K ,

where rb,ℓ ∈ R \ {0} and (ηb,ℓ, mb,ℓ) ∈ 3c,ω × ω.

(4) By supp◦(b) we mean {ηb,ℓ : ℓ < nb}.
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Definition 3.21. Suppose c ∈ APk,λ and let a ∈ Gc.

(a) There is a finite set 3a ⊆3c, a sequence S := ⟨rρ :ρ ∈3a⟩ of nonzero elements
of R, an n(a) < ω and da ∈ K such that

a =

∑
η∈3a,<ω

rη xη +

∑
ν∈3a,ω

rν yν,n(a) + da,

where 3a,<ω = 3a ∩ 3c,<ω and 3a,ω = 3a ∩ 3c,ω.

(b) Let suppc(a)= supp(a) be the minimal set 3⊆3c with respect to the following
two properties:
(i) 3a ⊆ 3.

(ii) If ν ∈ 3a ∩ 3c,ω and n < ω, then 3ac
ν,n

⊂ 3 and η↾Ln, η↾R n ∈ 3.

Remark 3.22. Adopt the previous notation, and a ∈ Gc. Then suppc(a) is the
minimal set 3 ⊆ 3c such that

a ∈ ⟨{xη, yν,n : η ∈ 3(L , R), ν ∈ 3, n < ω} ∪ K ⟩
∗

Gc
.

Remark 3.23. Adopt the previous notation.

(1) The set suppc(a) is countable.

(2) If a = xν for some ν ∈ 3c, then

supp(a) \ Sη(ν,1) = {ν} ∪ {ν↾L , n, ν↾R, n : n < ω}.

Definition 3.24. Let ≤AP be the following partial order on AP = APk,λ. For any
c, d ∈ AP we say c ≤AP d when:

(a) 3c ⊆ 3d .

(b) mc ≤M md , and hence Gc ⊆ Gd , etc.

(c) ac
η,ℓ = ad

η,ℓ for η ∈ 3c, ℓ < ω.

(d) x c
η = x d

η for η ∈ 3c,<ω.

(e) yc
η,ℓ = yd

η,ℓ for η ∈ 3c,ω and ℓ < ω.

Lemma 3.25. (1) ≤AP is indeed a partial order,

(2) If c̄ = ⟨cα : α < δ⟩ is ≤AP-increasing, then there exists cδ =
⋃

α<δ cα in AP
which is the ≤AP-least upper bound of the sequence c̄.

Proof. Clause (1) is clear. For (2), let

cδ := (3, m, 0, X, ⟨aη,n : η ∈ 3, n < ω⟩),

where 3 :=
⋃

α<δ3cα
, m =: (G, Fr , Fr,s, F(r,s)), with

G :=

⋃
α<δ

Gcα
, Fr :=

⋃
α<δ

F cα
r , Fr,s :=

⋃
α<δ

F cα
r,s , F(r,s) :=

⋃
α<δ

F cα

(r,s),
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0 :=
⋃

α<δ 0cα
, X :=

⋃
α<δ X cα

, and for η ∈ 3ω and n < ω, we have aη,n = acα
η,n ,

for some and hence any α < δ such that η ∈ 3cα,ω.
It is easily seen that cδ is as required. □

An R-module M is called ℵ1-free if every countably generated submodule of M
is contained in a free submodule of M . Similarly, µ-free can be defined. For more
details, see [11, Chapter IV, Definition 1.1].

Lemma 3.26. Let c ∈ AP.

(1) tor(Gc) = K.

(2) The group
Gc/⟨K ∪ {r xν : r ∈ R, ν ∈ 3c,<ω}⟩

is divisible and torsion-free. Also, the parallel result holds for the R-module:

Mc/⟨K ∪ {r xν : r ∈ R, ν ∈ 3c,<ω}⟩.

(3) The following three properties are satisfied:

(a) 3c is ℵ1-free.

(b) If 3c is µ-free, then Mc is µ-free.

(c) If 3c is µ-free and (R, +) is µ-free, then Gc/K is a µ-free abelian group.

(4) If γ ≤ γc and 3 ⊆ 3c, then there exists a unique d ∈ AP such that

3d = 3 ∩ 3[γ ] and Gd ⊆ Gc.

Such a unique object is denoted by d := c ↾ (γ, 3).

(5) Assume η ∈ 3ω[λ] \ 3c, ℓ < ω and aℓ ∈ Gc are such that aℓ ∈ Gc,η(0,1) for
each ℓ. Then there is d ∈ AP equipped with the following three properties:

(a) 3d = 3c ∪ {η} ∪ {η↾Ln, η↾R n : n < ω}.

(b) c ≤AP d and so Gc ⊆ Gd .

(c) ad
η,ℓ = aℓ for ℓ < ω.

(6) The group Gc is of size λ.

Proof. (1)–(2) These are easy.

(3)(a) Let 3 ⊆ 3c,ω be countable, and let {ηn : n < ω} be an enumeration of it.
Define the maps h1 and h2 from 3 to ω as

h1(ηn) := min
{
k : ∀ j < n, ∀ℓ, r ∈ {L , R} we have ηj ↾ℓ k ̸= ηn ↾r k

}
,

h2(ηn) := min{k : ηn↾Lk ̸= ηn ↾R k}.

Finally, we set
h(ηm) := max{h1(ηn), h2(ηn)} + 1.
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Having Definition 3.10 in mind, we are going to show h is as required. Let j < i <ω

and let
h(η j ) ≤ n j < ω and h(ηi ) ≤ ni < ω.

We will show that ηj ↾ℓ ni ̸= ηi ↾r n j , where ℓ, r ∈ {L , R}. To see this, we note that
there is nothing to prove if ni ̸= n j . So, we may and do assume that n := ni = n j .
Thus, h(η j ), h(ηi ) ≤ n. We look at m := h1(ηi ). According to the definition of h1,
we know that ηj ↾ℓ m ̸= ηi ↾r m. As m ≤ n one has

ηi ↾ℓ n ̸= ηj ↾r n.

Also given any i < ω, if n ≥ h(ηi ), then by the definition of h2 and as n ≥ h2(ηi ),
we have

ηi↾Ln ̸= ηi ↾R n.

It follows that the sequence

⟨{η↾Ln, η↾R n : h(η) ≤ n < ω} : η ∈ 3⟩

is a sequence of pairwise disjoint sets. By definition, 3c is ℵ1-free.

(3)(b) For simplicity, we present the proof when µ := ℵ1. Let X ⊆ Mc be countable.
We are going to show that it is included into a countably generated free R-submodule
of Mc. As X countable, we have

∃3 ⊆ 3c,ω countable, ∃3∗ ⊆ 3c,<ω countable

such that

X ⊆

∑
{Ryη,n : η ∈ 3 and n < ω} +

∑
{Rxρ : ρ ∈ 3∗}.

As 3c is ℵ1-free and 3 is countable, there is a function h : 3 → ω such that

⟨{η↾Ln, η↾R n : h(η) ≤ n < ω} : η ∈ 3⟩

is a sequence of pairwise disjoint sets. Now, we note the following two properties:

(b1) The R-module M3 := ⟨xη↾L n, xη↾R n, yη,n : η ∈ 3 : h(η) ≤ n < ω⟩ is free.

(b2) Set M3∪3∗
:= ⟨M3 ∪{xν : ν ∈ 3∗}⟩. Then the R-module M3∪3∗

/M3∗
is free.

In view of (b2) the short exact sequence

0 → M3 → M3∪3∗
→ M3∪3∗

/M3 → 0,

splits. Combining this along with (b1), we observe that M3∪3∗
is free. Since it

includes X , we get the desired claim.

(3)(c) Now, suppose (R, +) is µ-free. Let H be a subset of (Gc/K , +) of size < µ.
There is a free R-module F such that H ⊂ F . There is a subset S of R of size < µ

such that any element of H can be written from a linear combination from F with
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coefficients taken from S. As (R, +) is µ-free, there is a free subgroup (T, +) of it
containing S. In other words, we have

H ⊆ T ∗ F :=

〈∑
{ti fi : ti ∈ T, fi ∈ F}

〉
.

Since (T ∗ F, +) is free as an abelian group, we get the desired claim.

(4) Let d be such that:

(i) 3d = 3 ∩ 3[γ ].

(ii) Xd is defined using 3d naturally.

(iii) For ν ∈ 3d,ω and n < ω, ad
ν,n = ac

ν,n .

(iv) 0d is defined naturally as the set of equations in (1), but only for η ∈ 3d,ω.

This is straightforward to check that d is as required.

(5) Let d be defined in the natural way, so that:

(i) 3d = 3c ∪ {η} ∪ {η↾Ln, η↾R n : n < ω}.

(ii) Xd = X c ∪ {xη↾L n, xη↾Rn : n < ω} ∪ {yη,n : n < ω}.

(iii) For ν ∈ 3c,ω and n < ω, ad
ν,n = ac

ν,n .

(iv) ad
η,n = an for n < ω.

(v) In addition to the equations displayed in 0c, 0d contains equations of the
forms

yη,n = an + (n!) yη,n+1 + (xη↾L n − xη↾R n),

where n < ω.

The assertion is now obvious by the above definition of d.

(6) In view of Lemma 3.19, the group Gc is of size λℵ0 . Recall from Hypothesis 3.14
that λℵ0 = λ. So, the desired claim is clear. □

Lemma 3.27. Let c ∈ AP. Then the abelian group Gc/K is reduced.

Proof. Suppose on the way of contradiction that Gc/K is not reduced. Then it
has a divisible direct summand, say I . By Fact 2.18, I is injective. We apply the
structure theorem for injective abelian groups (see Discussion 2.20(i)) to find the
decomposition

I =

⊕
p∈P

Z(p∞)⊕x p ⊕ Q⊕x ,

where x p and x are index sets. Since Gc/K is torsion-free, I is torsion-free. So,
I has no p-torsion part. This shows that x p = ∅ for all p ∈ P. In other words,
I = Q⊕x . Since I is nonzero, x ̸=∅. This yields that (Q, +) is a directed summand
of Gc/K. Thanks to Lemma 3.26(3)(a), 3c is ℵ1-free. We combine this with
Lemma 3.26(3)(b) to deduce that Mc is ℵ1-free as an R-module.
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We have two possibilities: (1) k is trivial and (2) k is nontrivial.

(1) k is trivial. Then R := Z. Recall that Mc = Gc/K is ℵ1-free. Since (Q, +) is
countable, it should be free, a contradiction.

(2) k is nontrivial. Recall that R is S⊥

k -divisible. Since the context is nontrivial,
there is p ∈ S⊥

k such that {1/pn
: n ≫ 0} ⊆ R. For simplicity, we assume that

{1/pn
: n > 0} ⊆ R. Since Mc is ℵ1-free and that {1/pn

: n > 0} ⊆ Q ⊆ Mc, there
is a free R-module F ⊆ Mc such that {1/pn

: n > 0} ⊆ F . Let F =
⊕

R. So, the
desired contraction follows by

{r/pn
: n > 0, r ∈ R} =

⋂
ℓ>0

pℓ
{r/pn

: n > 0, r ∈ R}

⊆

⋂
ℓ>0

pℓF =

⊕(⋂
ℓ>0

pℓ R
)

⊆

⊕(⋂
ℓ>0

ℓR
)

= 0,

where the last equality comes from the fact that (R, +) is cotorsion-free. In fact,
by Fact 2.19, the abelian group (R, +) is reduced, and so

⋂
ℓ>0 ℓR = 0. The proof

is now complete. □

Lemma 3.28. Let c ∈ APk,λ. Then

yc
η,0 =

n∑
i=0

(∏
j<i

j !
)

ac
η,i +

( n∏
i=1

i !
)

yc
η,n+1 +

n∑
i=0

(∏
j<i

j !
)

(x c
η↾L i − x c

η↾R i )

is valid for any n < ω.

Proof. We proceed by induction on n. The desired claim is clearly holds for n = 0.
Suppose inductively that it holds for n. We are going to show the claim for n + 1.
To this end, we apply the induction assumption along with the relation

yc
η,n+1 = ac

η,n+1 + (n + 1)! yc
η,n+2 + (x c

η↾L n+1 − x c
η↾Rn+1)

to deduce

yc
η,0 =

n∑
i=0

(∏
j<i

j !
)

ac
η,i +

( n∏
i=1

i !
)

yc
η,n+1 +

n+1∑
i=0

(x c
η↾L i − x c

η↾R i )

=

n∑
i=0

(∏
j<i

j !
)

ac
η,i +

( n∏
i=0

i !
)

ac
η,n+1 +

( n∏
i=1

i !
)

(n + 1)! yc
η,n+2

+

( n∏
i=0

i !
)

(x c
η↾L n+1 − x c

η↾Rn+1) +

n∑
i=0

(∏
j<i

j !
)

(x c
η↾L i − x c

η↾R i )

=

n+1∑
i=0

(∏
j<i

j !
)

ac
η,i +

(n+1∏
i=1

i !) yc
η,n+2 +

n+1∑
i=0

(∏
j<i

j !
)

(x c
η↾L i − x c

η↾R i ).

Thus the claim holds for n + 1 as well. □
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There are some distinguished and useful objects in APk,λ.

Definition 3.29. We say c ∈ APk,λ is full when:

(a) 3c ⊇ 3<ω[λ].

(b) If an ∈ Gc for n < ω and f : 3<ω[λ] → γ , where γ < λ, then for some η ∈ 3c
and all n < ω we have ac

η,n = an and f (η ↾L n) = f (η ↾R n).

Now, we study the existence problem for fullness in AP.

Lemma 3.30. Adopt the notation from Hypothesis 3.14. Then there are some full
c ∈ APk,λ.

Proof. Let b be a twofold λ-black box, which exists by Lemma 3.15. We look at

� := 3<ω[λ] ∪ (3ω[λ] ×ω),

and for each ordinal α < λ we set

�α := 3<ω[α] ∪ (3ω[α] ×ω).

Fix a bijection map
h : Sλ

∼=
−→ (⊕ρ∈� Rxρ) ⊕ K

such that for each ordinal α < λ one has

(∗) h′′
[Sα] ⊆ (⊕ρ∈�α

Rxρ) ⊕ K .

This is possible, as for each α,

|Sα| ≤ ℵ0 + |α| ≤ |(⊕ρ∈�α
Rxρ) ⊕ K | < λ.

Let c be defined by:

(1) 3c = 3ω[λ] ∪3<ω[λ].

(2) X c is the set

{r xν : r ∈ R, ν ∈ 3c,<ω} ∪ {r yη,n : r ∈ R, η ∈ 3c,ω, n < ω}.

(3) ac
η,n = h(gb

η(n + 1)), where gb
η is given by the twofold λ-black box.

(4) Gc is generated, as an abelian group, freely by the sets K and X c except the
set of relations

yη,n = ac
η,n + (n!) yη,n+1 + (xη↾L n − xη↾R n),

with the convenience that ac
η,n is regarded as an element of Gc via the quotient map(⊕

ρ∈�

Rxρ

)
⊕ K ↠ Gc.

From this identification and (∗), we have ac
η,n ∈ Gc,η(0,1).

(5) 0c is defined naturally as in Definition 3.18.
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Let us show that c is as required. It clearly satisfies (a) of Definition 3.29. To show
that (b) of Definition 3.29 is satisfied, let ⟨an : n < ω⟩ ∈

ωGc and f : 3<ω[λ] → γ ,
where γ < λ. Let g : 3<ω[λ] → Sλ be defined such that for all ν ∈ 3<ω[λ] \ {⟨ ⟩},

(+) h(g(ν)) = alg(ν)−1.

We are going to apply the twofold λ-black box b. According to its properties, there
is an η ∈ 3ω[λ] such that:

(6) γ (η) > γ ,

(7) gb
η(0) = g(⟨ ⟩),

(8) gb
η(n + 1) = g(η ↾L n),2

(9) η(n, 1) < η(n, 2) and f (η ↾L n) = f (η ↾R n) for all 1 ≤ n < ω.

Applying h to the both sides of (8), one has

ac
η,n

(3)
= h(gb

η(n + 1)) = h(g(η↾Ln))
(+)
= an,

thereby completing the proof. □

Lemma 3.31. Assume c ∈ AP is full and let h ∈ Hom(Gc, K ) be unbounded. Then
there is a sequence

⟨an : n < ω⟩ ∈
ωRang(h)

such that the following set of equations 0 has no solution, not only in Gc, but in
any Gd with c ≤ d ∈ AP, where

0 := {zn = an + n! zn+1 : n < ω}.

Proof. We have two possibilities. First, suppose for some prime number p, the
group 0p(Rang(h)) is infinite, and let p be the first such prime number. Also, let
pn = p for all n < ω. Otherwise, we let

pn ∈ {p : 0p(Rang(h)) ̸= 0}

be a strictly increasing sequence of prime numbers. We refer this as a second
possibility.

In the first part of the proof, we argue for both possibilities at the same time.
Then, we consider each scenario separately.

Since h is not bounded, we can find by induction on n, the pair (Hn, an) such
that:

(+) (a) H0 = Rang(h).
(b) Hn = an Z ⊕ Hn+1.

2Here we are using a modified version of the twofold λ-black box b, which can be easily obtained
from the original one.
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(c) an has order pln
n .

(d) For n = m + 1 we have

(dn) : ln > lm +

(n+1∏
i=0

i !
)

.

To see this, let H0 := Rang(h) and let a0 ∈ 0p0[Rang(h)] be any nonzero element.
Now, suppose inductively that n > 0 and we have defined ⟨Hi : i ≤ n⟩ and ⟨ai : i < n⟩

satisfying the above items. We shall now define an and Hn+1. By our induction
assumption, we have

Rang(h) =

(⊕
i<n

ai Z

)
⊕ Hn.

In particular, Hn is torsion. Using Fact 2.5 (and also Fact 2.7 in the second possibility
case), we can find for some ℓn and an element an such that an has order pln

n and an Z

is a direct summand of Hn . We may further suppose that

ln > lm +

(n+1∏
i=0

i !
)

.

Since (an) is a direct summand of Hn , there is an abelian group Hn+1 so that
Hn = an Z ⊕ Hn+1.

To prove that the sequence ⟨an : n < ω⟩ is as required, assume towards a con-
tradiction that there is c ≤ d ∈ AP such that ⟨cn : n < ω⟩ is a solution of 0 in Gd .
So

(∗) Gd |H

∧
n<ω

(cn = an + n! cn+1).

Since for each n, an ∈ K , it follows that

Gd/K |H

∧
n<ω

(cn + K = n! cn+1 + K ).

By Lemma 3.27, Gc/K is reduced, and hence necessarily,∧
n<ω

(cn + K = 0 + K ).

In other words, cn ∈ K for all n < ω.
We now show that for each n,

(∗∗)
(∏

i<n

i !
)

cn ∈ Hn
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This is true for n =0, because c0 ∈ K = H0. Suppose it holds for n. Then multiplying
both sides of (∗) into

∏
i<n i ! we get(∏

i<n

i !
)

cn =

(∏
i<n

i !
)

an +

( ∏
i<n+1

i !
)

cn+1.

Using the induction hypothesis and (+)(b) we get( ∏
i<n+1

i !
)

cn+1 ∈ Hn+1,

as requested.
By an easy induction, for each n we have

(∗ ∗ ∗n) c0 = a0 +

∑
ℓ≤n

( ℓ∏
i=1

i !
)

aℓ +

( n∏
i=1

i !
)

cn+1.

Indeed this is true for n = 0, as c0 = a0 + c1. Suppose it holds for n, then using (∗)

and the induction hypothesis, we get

c0 = a0 +

∑
ℓ≤n

( ℓ∏
i=1

i !
)

aℓ +

( n∏
i=1

i !
)

cn+1

= a0 +

∑
ℓ≤n

( ℓ∏
i=1

i !
)

aℓ +

( n∏
i=1

i !
)(

an+1 + (n + 1)! cn+2
)

= a0 +

∑
ℓ≤n+1

( ℓ∏
i=1

i !
)

aℓ +

(n+1∏
i=1

i !
)

cn+2.

We are now ready to complete the proof. Let m(∗) be the order of c0.
Now, we consider each case separately.

Case 1. pn = p for all n.
Let t be an integer such that

m(∗) = tpℓ(∗) > 1,

where ℓ(∗) ≥ 0s and (p, t) = 1, i.e., p does not divide t . Let k be the least natural
number such that lk > ℓ(∗). By multiplying both sides of (∗ ∗ ∗)k+1 into tplk , we
get to

tplk c0 = tplk a0 + tplk
∑

ℓ≤k+1

( ℓ∏
i=1

i !
)

aℓ + tplk

(k+1∏
i=1

i !
)

ck+2.
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Since the sequence ⟨lℓ : ℓ ≤ k⟩ is increasing, we have plk aℓ = 0 for all ℓ ≤ k.
Consequently,

(†) 0 = tplk

(k+1∏
i=1

i !
)

ak+1 + tplk

(k+1∏
i=1

i !
)

ck+2

According to (+)(b), we know ak+1 Z∩ Hk+2 = 0, and by using (∗∗) along with (†)

we get that

tplk

(k+1∏
i=1

i !
)

ak+1 = 0.

Recall that the order of ak+1 is a power of p. We apply this along with the equality
(p, t) = 1 to get that

plk

(k+1∏
i=1

i !
)

ak+1 = 0.

Moreover,

plk+1 = ord(ak+1) ≤ plk

(k+1∏
i=1

i !
)

≤ plk+(
∏k+1

i=1 i !).

Taking logp(−) from both sides, we have lk+1 ≤ lk +
(∏k+1

i=1 i !
)
. But, this contra-

dicts (dlk+1). The result follows.
Thereby, without loss of generality we deal with:

Case 2. Otherwise.
The sequence ⟨pn : n < ω⟩ is strictly increasing. If k is the least integer, then

(††) pk+1 > m(∗) ×

(k+1∏
i=1

i !
)

.

By multiplying both sides of (∗ ∗ ∗)k+1 into m(∗) ×
(∏k

i=1 pli
i

)
we get

0 = m(∗) ×

( k∏
i=1

pli
i

)
c0

= m(∗) ×

( k∏
i=1

pli
i

)
a0 + m(∗) ×

( k∏
i=1

pli
i

) ∑
ℓ≤k+1

( ℓ∏
i=1

i !
)

aℓ

+ m(∗) ×

( k∏
i=1

pli
i

)(k+1∏
i=1

i !
)

ck+2.

We have that m(∗) ×
(∏k

i=1 pli
i

)
a0 = 0 and

m(∗) ×

( k∏
i=1

pli
i

)( ℓ∏
i=1

i !
)

aℓ = 0 for all ℓ ≤ k.
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Thus

0 = m(∗) ×

( k∏
i=1

pli
i

)(k+1∏
i=1

i !
)

ak+1 + m(∗) ×

( k∏
i=1

pli
i

)(k+1∏
i=1

i !
)

ck+2.

Again, according to (+)(b), we know ak+1 Z ∩ Hk+2 = 0, and by using (∗∗) along
with the previous formula, we lead to the following vanishing formula:

m(∗) ×

( k∏
i=1

pli
i

)(k+1∏
i=1

i !
)

ak+1 = 0.

As the order of ak+1 is a power of pk+1 and it is different from all pℓ’s, for ℓ ≤ k,
we have

m(∗) ×

(k+1∏
i=1

i !
)

ak+1 = 0.

So,

pk+1 < plk+1
k+1 = ord(ak+1) ≤ m(∗) ×

(k+1∏
i=1

i !
)

.

But this contradicts (††). The result follows. □

To prove the endo-rigidity property, we first deal with the following special case,
and then we reduce things to this situation.

Lemma 3.32. Let c ∈ AP be full. Then every h ∈ Hom(Gc, K ) is bounded.

Proof. Towards a contradiction assume h ∈ Hom(Gc, K ) is not bounded. In view
of Lemma 3.31, this implies that there is a sequence

⟨an : n < ω⟩ ∈
ωRang(h)

such that the set of equations

0 := {zn = an + n! zn+1 : n < ω}

has no solutions in Gc. Let γ = |K |, and define f : 3<ω[λ] → γ such that

(∗) f (η) = f (ν) ⇐⇒ h(xη) = h(xν)

Since an ∈ Rang(h) there is bn such that

(+) ∀n < ω, an = h(bn)

As c is full, we can find some η such that

f (η↾Ln) = f (η↾R n) and ac
η,n = bn for each n.

Let us combining (∗) and (1). This yields that

(†) ∀n < ω, h(xη↾L n) = h(xη↾R n).
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Moreover, by applying h to the both sides of the equation

yη,n = ac
η,n + (n!) yη,n+1 + (xη↾L n − xη↾R n),

we lead to the following equation:

h(yη,n) = h(ac
η,n) + n! h(yη,n+1) +

(
h(xη↾L n) − h(xη↾R n)

)
(2)
= h(bn) + n! h(yη,n+1) +

(
h(xη↾L n) − h(xη↾R n)

)
(†)
= h(bn) + (n!) h(yη,n+1)

(+)
= an + (n!) h(yη,n+1).

In other words, h(yη,n) is a solution for

0 = {zn = an + n! zn+1 : n < ω}.

This is a contradiction with the choice of the sequence ⟨an : n < ω⟩. □

Notation 3.33. Suppose c ∈ AP. For each n < ω, we define

Gn :=
Gc

K +
(∏n

i=1 i !
)

Gc
.

Also, the notation πn stands for the natural projection Gc ↠ Gn .

Fact 3.34. Adopt the above notation, let n < ω and g ∈ Gc.

(a) The abelian group Gn is a torsion abelian group with the following minimal
generating set

{xρ : ρ ∈ 3c,<ω} ∪ {yη,k : η ∈ 3c,ω and k ≥ n + 2}.

(b) Similar to Definition 3.20, we can define supp◦(πn(g)) with respect to generat-
ing set presented in (a).

(c) According to its definition, it is easy to see that supp◦(πn(g)) ⊆ supp◦(g).

(d) Recall from Lemma 3.27 that Gc/K is reduced. This in turns gives us an
integer mn > n such that supp◦(g) ⊆ supp◦(πmn (g)).

Proof. This is straightforward. □

Lemma 3.35. Suppose c ∈ AP is full and h ∈ End(Gc). Then for some countable
3h ⊆ �c we have

r ∈ R, ν ∈ �c \ 3h =⇒ supp◦(h(r xν)) ⊆ {ν} ∪3h .

Proof. Towards contradiction assume h ∈ End(Gc) but there is no 3h as promised.
We define a sequence

⟨(ηi , Yi , νi , ri ) : i < ω1⟩,

by induction on i < ω1, such that
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(∗) (a) ηi ∈ �c and ri ∈ R \ {0},
(b) Yi =

⋃
{supp◦(h(rj xηj )) : j < i} ∪ {ηj : j < i},

(c) νi ∈ supp◦(h(ri xηi )) but νi ̸= ηi , νi /∈ Yi .

To this end, suppose that i < ω1 and we have defined ⟨(ηj , Yj , νj , rj ) : j < i⟩. Set

Yi =

⋃
{supp◦(h(rj xηj )) : j < i} ∪ {ηj : j < i}.

Following its definition, we know Yi is at most countable. Thus, due to our assump-
tion, we can find some ηi ∈ �c \ Yi and ri ∈ R \ {0} such that

supp◦(h(ri xηi )) ⊈ ({ηi } ∪ Yi ).

This allows us to define νi , namely, it is enough to take νi be any element of
supp◦(h(ri xηi )) \ ({ηi } ∪ Yi ). This completes the definition of (ηi , Yi , νi , ri ).

Combining the facts νi ∈ supp◦(h(ri xηi )) and νi /∈ (Yi ∪ {ηi }) along with the
finiteness of supp◦(h(xηi )) we are able to find a subset W ⊆ ω1 of cardinality ω1

such that νj /∈ supp◦(h(ri xηi )) when i ̸= j ∈ W .
Without loss of generality we may and do assume that W = ω1. Let ai = ri xηi .

We can find
f : 3c,<ω → |R| +ℵ0 < λ

such that if b ∈ Gc,3 then from f (b) we can compute

⟨nb, {(ℓ, mb,ℓ, rb,ℓ) : ℓ < nb}⟩.

Recall that c is full, and that Rang( f ) has size less than λ. From these, there is
some η ∈ 3c,ω furnished with two properties:

(1) f (η ↾L n) = f (η ↾R n) for n < ω,

(2) ac
η,n = an for all n < ω.

Now, we bring a claim.

Claim. νi ∈ supp0(h(yη0)) for all i < ω.

Note that this will give us the desired contradiction, as supp0(h(yη0)) is finite.

Proof of Claim. By Lemma 3.28 we first observe that

yη,0 =

n∑
i=0

(∏
j<i

j !
)

ri xηi +

( n∏
i=1

i !
)

yη,n+1 +

n∑
i=0

(∏
j<i

j !
)

(xη↾L i − xη↾R i ).

Let ℓ be any integer. We are going to use the notation presented in Notation 3.33
for n = mℓ. Applying πn h(−) to it yields that

3Recall that we have chosen b −
∑

ℓ<nb
rb,ℓ yηb,ℓ,mb,ℓ ∈

∑
ρ∈3c,<ω

Rxρ + K .
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(3) πn(h(yη,0)) =

n∑
i=0

(∏
j<i

j !
)

πn h(ri xηi ) +

( n∏
i=1

i !
)

πn h(yη,n+1)

+

n∑
i=0

(∏
j<i

j !
)

πn h(xη↾L i − xη↾R i )

=

n∑
i=0

(∏
j<i

j !
)

πn h(ri xηi ) +

n∑
i=0

(∏
j<i

j !
)

πn h(xη↾L i − xη↾R i ),

where the last equality follows by Notation 3.33. Now, we recall from the construc-
tion (∗) that

νi ∈ supp◦(h(ri xηi )), νi ̸= ηi , νi /∈ Yi .

Thanks to Fact 3.34(d) we have

(4) νi ∈ supp◦(πnh(ri xηi )).

By clause (1) above, supp◦(h(xη↾L i − xη↾R i )) = ∅. In view of Fact 3.34(c), we
deduce that

(5) supp◦

(
πn(h(xη↾L i − xη↾R i ))

)
= ∅.

First, we plug items (4) and (5) in the clause (3), then we use (∗). These enable us
to observe that

νi ∈ supp◦

( n∑
i=0

(∏
j<i

j !
)

πn h(ri xηi ) +

n∑
i=0

(∏
j<i

j !
)

πn h(xη↾L i − xη↾R i )

)
= supp◦(πn h(yη,0)).

Another use of Fact 3.34(c), shows that νi ∈ supp◦(h(yη,0)). This completes the
proof of the claim. □

The lemma follows. □

Lemma 3.36. Let c ∈ AP be full and h ∈ End(Gc). Let Y0 ⊆ �c be the downward
closure of 3h , where 3h is as in Lemma 3.35 and set

K +
:= K +

∑
ρ∈Y0∩3c,<ω

Rxρ +

∑
ρ∈Y0∩3c,ωn<ω

Ryρ,n.

If b ∈ Gc, then there are choices

• r̄b := ⟨r2
b,ρ : ρ ∈ 3b⟩, and

• 3b ⊆ 3c,<ω \ Y0 finite

such that
b −

∑
ρ∈3b

r2
b,ρ xρ ∈ K +.
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Proof. This is straightforward. □

Hypothesis 3.37. For the rest of this section, we fix a well-ordering ≺ of the large
enough part of the universe, and for each:

• c ∈ AP which is full,

• h ∈ End(Gc), and

• b ∈ Gc,

we let r̄b := ⟨r2
b,ρ : ρ ∈ 3b⟩ be the ≺-least sequence satisfying the conclusions of

Lemma 3.36.

Notation 3.38. Suppose c ∈ AP and 3 ⊆ 3c. By Gc,3 we mean

Gc,3 := G3 := ⟨{r xν, r yη,n : r ∈ R, ν ∈ 3<ω, η ∈ 3ω and n < ω}⟩.

We have the following observation, but as we do not use it, we leave its proof.

Observation 3.39. Suppose 3 ⊆ 3[λ] is downward closed. Then Gc,3 is a pure
subgroup of Gc.

Lemma 3.40. Let c ∈ AP be full, and h ∈ End(Gc). Then for some countable
3h ⊆ 3[λ] we have

r ∈ R, ν ∈ �c \ 3h =⇒ h(r xν) ∈ Gc,3h∪{ν} + K .

Proof. Suppose on the way of contradiction that the lemma fails. Let Y0 be as
Lemma 3.36. We define a sequence

⟨(Yi , νi , ρi , ri ) : i < ω1⟩,

by induction on i < ω1, such that

(♮) (a) ri ∈ R \ {0},
(b) Yi =

⋃
{supp(h(rj xνj )) : j < i} ∪ {ρj : j < i} ∪ Y0,

(c) νi ∈ �c \ Yi ,
(d) h(riνi ) /∈ Gc,Yi ∪{νi } + K ,
(e) let bi := h(riνi ), and let r̄bi := ⟨r2

bi ,ρ
: ρ ∈ 3i ⟩ be as Lemma 3.36 applied

to bi . Then ρi ∈ 3i \ (Yi ∪ {νi }), and even

r2
bi ,ρi

xρi /∈ Gc,Yi ∪{νi } + K .

To construct this, suppose i < ω and we have constructed the sequence up to i .
Now, (♮)(b) gives the definition of Yi . Since we assume that the lemma fails, there
is an ri ∈ R and νi ∈ �c \ Yi such that h(ri xνi ) /∈ Gc,3h∪{ν} + K. Now, we define
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bi := h(riνi ). Thanks to Lemma 3.36, there is a finite set 3i ⊆ 3c,<ω \ Yi and a
sequence ⟨r2

bi ,ρ
: ρ ∈ 3i ⟩ such that

bi −

∑
ρ∈3i

r2
bi ,ρ

xρ ∈ K +.

As bi /∈ Gc,Yi ∪{νi } + K and due to the following containment

bi −

∑
ρ∈3i

r2
bi ,ρ

xρ ∈ K +
⊆ Gc,Yi ∪{νi } + K ,

there is ρi ∈ 3i such that ρi /∈ (Yi ∪ {νi }), and indeed

r2
bi ,ρi

xρi /∈ Gc,Yi ∪{νi } + K .

This completes the proof of construction. By shrinking the sequence, we may and
do assume in addition that ρj /∈ 3i for all i ̸= j < ω1.

Let an := rn xνn and define

f : 3c,<ω → |R| + |K | +ℵ0 < λ

be such that for any ρ ∈ 3c,<ω, f (ρ) codes

• ⟨r2
b,ρ : ρ ∈ 3b⟩, and

• b −
∑

ν∈3i
r2

b,ν xν ,

where b := h(xρ). To see such a function f exists, first we define:

• f1 : R<ω
× K +

→ |R| + |K | +ℵ0 is a bijection, and

• f2 : 3c,<ω → R<ω
× K + is defined as

f2(b) =

(
⟨r2

b,ρ : ρ ∈ 3b⟩, b −

∑
ν∈3i

r2
b,ν xν

)
.

Then, we set f := f1 ◦ f2. Suppose ρ1, ρ2 ∈ 3c,<ω are such that f (ρ1) = f (ρ2).
We claim that h(xρ1) = h(xρ2). To see this, it is enough to apply f (ρ1) = f (ρ2),
and conclude that

(1) ⟨r2
b1,ν

: ν ∈ 3b1⟩ = ⟨r2
b2,ν

: ν ∈ 3b2⟩

(2) b1 −
∑

ν∈3b1
r2

b,ν xν = b2 −
∑

ν∈3b2
r2

b,ν xν ,

where bi = h(xρi ). But, then we have

b1 = b1 −

∑
ν∈3b1

r2
b,ν xν +

( ∑
ν∈3b1

r2
b,ν xν

)
(2)
= b2 −

∑
ν∈3b2

r2
b,ν xν +

( ∑
ν∈3b2

r2
b,ν xν

)
= b2,

i.e., h(xρ1) = h(xρ2).
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Since c is full, and in light of Definition 3.29(b), we are able to find an η ∈ 3c,ω
such that

(3) an = ac
η,n , and

(4) f (η↾Ln) = f (η↾R n),

for all n < ω. Thanks to the previous paragraph and clause (4) we deduce

(♯) h(xη↾L n) = h(xη↾R n)

By applying h to the both sides of the equation

yη,0 =

n∑
i=0

(∏
j<i

j !
)

ri xνi +

( n∏
i=1

i !
)

yη,n+1 +

n∑
i=0

(∏
j<i

j !
)

(xη↾L i − xη↾R i ),

we get

(+) h(yη,0) =

n∑
i=0

(∏
j<i

j !
)

h(ri xνi ) +

( n∏
i=1

i !
)

h(yη,n+1)

+

(∏
j<i

j !
)(

h(xη↾L n) − h(xη↾R n)
)

(♯)
=

n∑
i=0

(∏
j<i

j !
)

h(ri xνi ) +

( n∏
i=1

i !
)

h(yη,n+1).

For each i < ω1, let bi = h(ri xνi ). Let also b = h(yη,0) and let 3b be as in
Lemma 3.36. As 3b is finite, for some large enough n, we have

{ρi : i < n} \3b ̸= ∅.

Let i < n be such that ρi /∈ 3b. Here, we apply the arguments presented in items
(3)–(4) in the proof of Lemma 3.35 to the displayed formula (+). So, on the one
hand, it turns out that

ρi ∈ 3i ⊆ 3b.

On the other hand by the choice of i , ρi /∈ 3b. This is a contraction that we searched
for it. □

Lemma 3.41. Let c ∈ AP be full, and h ∈ End(Gc). Then for some m∗ ∈ R and
some countable 3h = cl(3h) ⊆ 3[λ] we have

r ∈ R, ν ∈ �c \ 3h =⇒ h(r xν) − m∗xν ∈ G3h + K .

Proof. In view of Lemma 3.40, there is some countable downward closed subset 3

of 3c such that for every r ∈ R and η ∈ �c\3, we have h(r xη) ∈ G3∪{ν}+ K. Thus,
for such r and η, there are mr

η ∈ R and br
η satisfying the following two properties:

h(r xη) = mr
η xη + br

η and br
η ∈ G3 + K .
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Suppose on the way of contradiction that the desired conclusion fails. By induction
on i < ω1 we define a sequence

⟨Yi , ri,1, ri,2, ηi,1, ηi,2 : i < ω1⟩

such that:

(†) (a) Yi = 3 ∪ {η j,ℓ : j < i, ℓ ∈ {1, 2}},
(b) ri,1, ri,2 ∈ R \ {0},
(c) ηi,ℓ ∈ �c \ Yi for ℓ ∈ {1, 2},
(d) mri,1

ηi,1 ̸= mri,2
ηi,2 .

The construction is easy, but we elaborate. Let us start with the case i = 0. We set
Y0 = 3 and then choose r0,1, r0,2 ∈ R \ {0} and η0,1, η0,2 ∈ 3<ω[λ] \ 3h such that
mr0,1

η0,1 ̸= mr0,2
η0,2 . Now suppose i < ω1 and we have define the sequence for all j < i .

Define Yi as in clause (†)(a). By our assumption, we can find

(i) ri,1, ri,2 ∈ R \ {0} and

(ii) ηi,1, ηi,2 ∈ �c \ Yi ,

so that mri,1
ηi,1 ̸= mri,2

ηi,2 . This completes the induction construction.
Let

f : 3c,<ω → |R| + |K | +ℵ0 < λ

be such that if r ∈ R and η ∈ �c, then f (r xη) is defined in a way that one can
compute mr

η and br
η. Again we can define f as

f = f1 ◦ f2 ◦ f3,

where

• f1 : R × (G3 + K ) →| R | + | K | +ℵ0 is a bijection,

• f2 : R × 3c,<ω → R × (G3 + K ) is defined as f2(r, η) = (mr
η, br

η),

• f3 : 3c,<ω → R × 3c,<ω is a bijection.

For each n < ω, we set

an := rn,1 xηn,1 − rn,2 xηn,2 .

Applying h to it yields

(+) h(an) = mrn,1
ηn,1 xηn,1 − mrn,2

ηn,2 xηn,2 + bn,

where bn := brn,1
ηn,1 − brn,1

ηn,1 . Since c is full, there is an η ∈ 3c,ω such that

(1) an = ac
η,n , and

(2) f (η↾Ln) = f (η↾R n)

for all n < ω. By clause (2) we deduce:

(3) supp◦(h(xη↾L n − xη↾R n)) = ∅ for all n < ω.
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Applying h to

yη,0 =

n∑
i=0

ai +

( n∏
i=1

i !
)

yη,n+1 +

n∑
i=0

(∏
j<i

j !
)

(xη↾L i − xη↾R i ),

yields that

(♮) h(yη,0) =

n∑
i=0

h(ai ) +

( n∏
i=1

i !
)

h(yη,n+1) +

(∏
j<i

j !
)(

h(xη↾L n) − h(xη↾R n)
)

(3)
=

n∑
i=0

h(ai ) +

( n∏
i=1

i !
)

h(yη,n+1)

(+)
=

n∑
i=0

(mrn,1
ηn,1 xηn,1 − mrn,2

ηn,2 xηn,2 + bn) +

( n∏
i=1

i !
)

h(yη,n+1).

Let n < ω be large enough. Here, we are going to apply the arguments taken from
items (3)–(4) in the proof of Lemma 3.35 to the displayed formula (♮). Then,

(4) supp◦(h(yη,0)) ⊇ supp◦(h(an)), and

(5) supp◦(h(an)) ∩ {ηn,1, ηn,2} ̸= ∅.

Without loss of generality, assume that for each n < ω, ηn,1 ∈ supp◦((h(an)). So,

{ηn,1 : n < ω} ⊆ supp◦(h(yη,0)),

which is infinite. This is a contraction. □

Lemma 3.42. Assume 3 = cl(3) ⊆ 3c is countable and h ∈ Hom(Gc, G3 + K ).
Then h is bounded.

Proof. Towards a contradiction we assume that h is unbounded. It follows from
Lemma 3.32 that Rang(h) ⊈ K. Let b∗ ∈ Rang(h) \ K. Then, for some d∗ ∈ K , a
finite set 3∗ and two sequences ⟨rη ∈ R \ {0} : η ∈ 3∗⟩ and ⟨mη ∈ ω : η ∈ 3∗⟩, we
can represent b∗ as

b∗ =

∑
{rη xη : η ∈ 3∗ ∩ 3<ω} +

∑
{rη yη,m(η) : η ∈ 3∗ ∩ 3ω} + d∗.

Let

(1) J0 = G3 + K ,

(2) J1 = J0/K , which is torsion free.

So, b∗ ∈ J0. Let π : J0 → J1 be the natural map defined by the assignment
b 7→ π(b) := b + K. Since b∗ ∈ Rang(h) \ K , we have π(b∗) ̸= 0.

Suppose on the way of contradiction that for any sequence ⟨en : n < ω⟩ ∈
ωZ the

following system of equations

0 := {yn = n! yn+1 + en b∗ : n < ω}

is solvable in J1. Say, for example, {yn : n < ω} is such a solution.
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Thanks to Lemma 3.26(3)(a) we find that 3c is ℵ1-free. We combine this with
Lemma 3.26(3)(b) to deduce that Mc is ℵ1-free as an R-module. Now, since J1 is
countably generated, we can find a solution to

0 = {yn = n! yn+1 + en b̄∗ : n < ω}

in R. Since R is cotorsion-free, a such system of equations has no solution the ring.
So, there is a sequence ⟨en : n < ω⟩ ∈

ωZ the following equations:

0 = {yn = n! yn+1 + en b∗ : n < ω}

is not solvable in J1.
Let a∗ ∈ Gc be such that b∗ = h(a∗). Let also f : 3c,<ω → ω be such that for

all ν, ρ ∈ 3c,<ω,

f (ν) = f (ρ) ⇐⇒ π ◦ h(xν) = π ◦ h(xρ).

As c is full, there is some η ∈ 3c,ω such that:

(3) ac
η,n = en a∗, for all n < ω, and

(4) f (η ↾L n) = f (η ↾R n), for n < ω.

Thanks to (4), one has

(+) ∀n < ω, π ◦ h(xη↾L n) = π ◦ h(xη↾Rn)

By applying π ◦ h into the equation

yη,n = ac
η,n + n! yη,n+1 + (xη↾L n − xη↾Rn),

and using clause (3) and (+) we get

π ◦ h(yη,n) = en π(b∗) + n! π ◦ h(yη,n+1).

This clearly gives a contradiction, as then

J1 |H yn = n! yn+1 + en b′′

∗
,

where yn = π ◦ h(yη,n). □

Lemma 3.43. Let c be full and h ∈ End(Gc). Then Rang(h) is bounded.

Proof. Suppose not, it follows that for some countable 3 = cl(3) ⊆ 3c,

h ↾ G ∈ Hom(G, G3 + K )

is unbounded, where G is the subgroup of Gc generated by h−1
[G3 + K ]. This

contradicts Lemma 3.42. □

Now, we are ready to prove:
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Theorem 3.44. Adopt the notation from Hypothesis 3.14. Then there is some c
such that the abelian group Gc is boundedly rigid. In particular, there is an abelian
group G equipped with the following properties:

(1) tor(G) = K .

(2) G is of size λ.

(3) The sequence

0 → Rc → End(G) →
End(G)

Eb(G)
→ 0

is exact.

Proof. According to Lemma 3.30, there is a full c ∈ AP. This allows us to apply
Lemma 3.43, and deduce that G := Gc is boundedly rigid. By definition, this
completes the proof. □

4. Co-Hopfian and boundedly endo-rigid abelian groups

As stated in [15], it is difficult to construct an infinite Hopfian–co-Hopfian p-group.
What about mixed groups? In this section, we answer this question. We start by
recalling that a group G is called:

(i) Hopfian if its surjective endomorphisms are automorphisms.

(ii) co-Hopfian if its injective endomorphisms are automorphisms.

In what follows we will use the following two items.

Fact 4.1. (i) Any direct summand of a co-Hopfian abelian group is again co-
Hopfian.

(ii) Suppose 2ℵ0 < λ < λℵ0 . Then there is no co-Hopfian abelian group of size λ

(see [19, Theorem 1.2]).

Here, we introduce a useful criterion.

Definition 4.2. Let G be an abelian group of size λ and m, n ≥ 1 be such that m | n.

(1) NQr(m,n)(G) means that there is an (m, n)-antiwitness h such that
(a) h ∈ End(0n(G)),
(b) Rang(h) is a bounded group,
(c) h′

:= m · id0n(G) +h ∈ End(0n(G)) is 1-to-1,
(d) h′ is not onto or m > 1 and G/0n(G) is not m-divisible.

(2) NQrm(G) means NQr(m,n)(G) for some n ≥ 1.

(3) NQr(G) means NQrm(G) for some m ≥ 1.

Definition 4.3. Adopt the previous notation.

(1) Qr(G) means the negation of NQr(G).
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(2) Qr∗(G) means Qr(G) and in addition that 0p(G) is unbounded, for at least one
p ∈ P.

In items 4.4–4.11 we check NQr(m,n)(G) and its negation. This enables us to
present some new classes of co-Hopfian and non-co-Hopfian groups.

Lemma 4.4. Let G be an abelian group such that the property NQr(G) holds. Then
G is not co-Hopfian. Furthermore, let h ∈ Hom(G, 0n(G)) be such that h ↾ 0n(G)

is an (m, n)-antiwitness. Then m · idG +h witnesses that G is not co-Hopfian.

Proof. Suppose that G admits an (m, n)-antiwitness h0 ∈ End(0n(G)) as in
Definition 4.2. As h0 is bounded, by Fact 2.14 we extend h0 to h1 ∈Hom(G, 0n(G)).
So, the following diagram commutes:

0 // 0n(G)
⊆∗

//

h0
��

G

∃h1||

0n(G)

We claim that f = m · idG + h1 ∈ End(G) is 1-to-1 but not onto.

(∗1) f is one-to-one.

To see this, suppose x ∈ G in nonzero and we want to show that f (x) ̸= 0. Suppose
first we deal with the case x ∈ 0n(G) \ {0}. According to Definition 4.2(1)(c), we
have

f (x) = mx + h1(x) = m · id0n(G)(x) + h0(x) ⇒ f (x) ̸= 0.

Now, suppose that x ∈ G \ 0n(G). Recall from Definition 4.2 that m divides n. As
m | n, we have mx ∈ G \ 0n(G). If f (x) = 0, we have mx + h1(x) = 0, thus

h1(x) = −mx ∈ G \ 0n(G).

But, Rang(h1) ⊆ 0n(G), which is impossible. Thus f is 1-to-1, as wanted.

(∗2) f is not onto.

For this, we consider two cases.

Case 1. h0 is not onto.
By the case assumption, there is

y ∈ 0n(G) \ Rang
(
id0n(G) + (h0 ↾ 0n(G))

)
and it is easy to see that such a y is also a witness for f to be not onto.

Case 2. h0 is onto.
By Definition 4.2(1)(d), we must have m > 1 and G/0n(G) is not m-divisible.

Let z ∈ G be such that z + 0n(G) is not divisible by m in G/0m(G). Clearly, z
does not belong to Rang( f ).
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The lemma follows. □

Lemma 4.5. Let K be an abelian p-group. The following claims are valid: If
NQr(K ) holds, then K is infinite.

Proof. By definition, there are m and n such that m | n and that NQr(m,n)(K ) holds.
Thanks to Definition 4.2(1), there is h ∈ End(0n(G)) satisfying the following
properties:

(a) Rang(h) is a bounded group.

(b) h′
:= m · (id0n(K)) + h ∈ End(0n(K)) is 1-to-1.

(c) h′ is not onto or m > 1 and K/0n(K ) is not m-divisible.

We have two possibilities: (1) p ∤ n and (2) p | n.

(1) Suppose first that p ∤ n. As K is a p-group, 0n(K ) = {0}. This means that h is
constantly zero and is onto, as well as h′. Thanks to clause (c) it follows that m > 1
and K is not m-divisible. Since m | n we deduce that p ∤ m. Now, we consider the
map m · idK : K → K. Since K is not m-divisible, this map is not surjective. Let
us show that it is 1-to-1. To this end, let x ∈ K be such that mx = 0. Let ℓ be the
order of x so that pℓx = 0. As (pℓ, m) = 1, we can find r, s such that r pℓ

+ sm = 1.
By multiplying both sides with x , we obtain

x = r pℓx + smx = 0 + 0 = 0.

It follows that m · idK : K → K is 1-to-1 and not onto, hence K is infinite.

(2) Suppose p | n. As K is a p-group, this implies that 0n(K ) = K. Therefore, in
the above item (c), the case “K/0n(K ) is not m-divisible” does not occur. This is
in turn implies that h′ is not onto K. We proved that the map h′

∈ End(K ) is 1-to-1
and not onto. Hence K is infinite. □

Discussion 4.6. Keep the notation of Fact 2.5. One cannot replace “divisible” with
“reduced” and drives a similar result, as some easy examples suggest this. Here, we
consider this as an application of the construct of co-Hopfian groups.

(1) Suppose on the way of contradiction that the replacement is valid.

(2) Let G be a co-Hopfian group such that its reduced part is unbounded (recall
from the introduction that a such group exists, see [9]).

(3) Here, we drive a contradiction by showing from that G is not co-Hopfian.
Indeed, let K2 be the maximal divisible subgroup of K. Recall from Fact 2.18 that
K2 is injective. Since it is injective, we know K2 is a directed summand. Let us
write K as K = K1 ⊕ K2. Due to the maximality of K2 one may know that K1 is
reduced. We show that K1 is not co-Hopfian, and hence by Fact 4.1(i), K is not
co-Hopfian. Thus by replacing K by K1 if necessary, we may assume without loss
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of generality that K is reduced and unbounded. For ℓ < ω, we choose by induction
Hℓ, yℓ and zℓ such that:

(a) H0 = K.

(b) If ℓ = k + 1, then Hk = Hℓ ⊕ Zzℓ.

(c) For zℓ ∈ (Zyℓ)∗, recall that (Zyℓ)∗ denotes the pure closure of Zyℓ.

(d) yℓ+1 ∈ Hℓ.

(e) The order of zi is ≥ pℓ.

[Why? For ℓ = 0, we set H0 = K and let y0 ∈ K be arbitrary. Then (Zy0)∗ is a
pure subgroup of K of bounded exponent. Thanks to Fact 2.5, we know that (Zy0)∗

is a direct summand of K. In view of Fact 2.7 we can find z0 such that Zz0 is a
direct summand of (Zy0)∗. In other words, Zz0 is a direct summand of H0 = K
as well. Consequently, we have H0 = H1 ⊕ Zz0 for some H1. Having defined
inductively {Hℓ, yℓ, zℓ}, let yℓ+1 ∈ Hℓ. Let χ be a regular cardinal, large enough,
so that Hℓ ∈ H (χ). The notation B stands for (H (χ), ∈). Let Bℓ be countable
such that Hℓ ∈ Bℓ. Now, we look at

Lℓ := Bℓ ∩ Hℓ.

We find easily that Lℓ is an unbounded countable abelian p-group. Hence it is of
the form ⊕i Zzℓ,i where zℓ,i is of order pm(ℓ,i). As Lℓ is unbounded, we may and
do assume that m(ℓ, i) > ℓ. This implies that Zzℓ,i is a pure subgroup of Lℓ, and
hence Hℓ. Consequently, Zzℓ,i is a direct summand of Hℓ as well. By definition,
we have Hℓ = Hℓ+1 ⊕ Zzℓ+1 for some abelian subgroup Hℓ+1 of Hℓ.]

For each i < ω, we let ℓ(i) > 1 be such that zi is of order pℓ(i). Following (e),
clearly we can find some infinite u ⊆ ω such that the sequence ⟨ℓ(i) : i ∈ u⟩

is increasing. For any j < ω, we clearly have
⊕

i∈u∩ j Zzi ⊆∗ K , and hence⊕
i∈u Zzi ⊆∗ K. In light of part (i),

⊕
i∈u Zzi is a direct summand of K. Thus there

is some K3 such that K =
⊕

i∈u Zzi ⊕ K3. Assume that ⟨ j (k) : k < ω⟩ lists u in an
increasing order, and define h ∈ End(K ) such that

• h↾K3 = idK3 ,

• h(z j (k)) = pℓ(k+1)−1 z j (ℓ+1).

It is easy to check that h is a well-defined endomorphism of K and it satisfies

• h is injective,

• h is not surjective.

In sum, h witnesses that K is not co-Hopfian, a contradiction we searched for.

Corollary 4.7. Let G be a p-group such that its reduced part is unbounded and its
countable pure subgroups are directed summand. Then G is not co-Hopfian.
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Lemma 4.8. Let G be an abelian group of size λ and m ≥ 1. Suppose there is a
bounded h ∈ End(G) such that f := m · idG +h ∈ End(G) is 1-to-1 not onto.4 Then
for some n ≥ 1 we have:

(i) NQr(m,n)(G).

(ii) Letting h0 = h ↾ 0n(G), h0 is an (m, n)-antiwitness for 0n(G).

Proof. Let f and h be as above. As Rang(h) is bounded, for some n ≥ 1 we
have Rang(h) ≤ 0n(G) and without loss of generality m | n. Possibly, replacing n
with nm, which is possible as n1 | n2 implies that 0n1(G) ≤ 0n2(G). Notice that:

(∗1) (a) f maps 0n(G) into itself.
(b) If x ∈ G \ 0n(G), then f (x) /∈ 0n(G).

Clause (a) clearly holds as by the choice of n we have Rang(h) ≤ 0n(G). For (b),
we suppose by contradiction that f (x) = mx + h(x) ∈ 0n(G). It follows that
mx = f (x) − h(x) ∈ 0n(G), and hence as m | n, x ∈ 0n(G), a contradiction.

Now let h0 = h ↾ 0n(G). Then we have:

(∗2) (a) h0 ∈ End(0n(G)).
(b) h0 is bounded.
(c) Since f is 1-to-1, so is f0 = m · id0n(G) +h0 ∈ End(0n(G)).

We are left to show that h0 is an (m, n)-antiwitness. By (∗2) it suffices show that
f0 is not onto or G/0n(G) is not m-divisible. Suppose on the contrary that f0 is
onto and G/0n(G) is m-divisible. We are going to show that f is onto, which
contradicts our assumption. To this end, let x ∈ G. Since G/0n(G) is m-divisible,
we can find some y ∈ G such that

x − my ∈ 0n(G).

We look at
w := x − my − h0(y) ∈ 0n(G).

As f0 is onto, we can find some z ∈ 0n(G) such that f0(z) = w. So,

x − my − h0(y) = w = f0(z) = mz + h0(z).

Using this equation, and the additivity of h0, we observe that

x = m(y + z) + h0(y + z) = f (y + z).

In other words, f is onto. This is a contradiction. □

Notation 4.9. Let κ and µ be infinite cardinals. The infinitary language Lµ,κ(τ )

is defined so as its vocabulary is the same as τ , it has the same terms and atomic
formulas as in τ , but we also allow conjunction and disjunction of length less than µ,

4Thus f witnesses non-co-Hopfianity of G.
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i.e., if φj , for j < β < µ are formulas, then so are
∨

j<β φj and
∧

j<β φj . Also,
quantification over less than κ many variables.

Lemma 4.10. Let G be a reduced abelian group of size λ such that

(1) λ > 2ℵ0 ,

(2) G is co-Hopfian.

Then the property Qr∗(G) is valid.

Proof. Thanks to Lemma 4.4 we know Qr(G) is satisfied, so it is enough to show
that 0p(G) is not bounded for some prime p. Towards a contradiction, we suppose
that 0p(G) is bounded for every prime p ∈ P.

Here, we are going to show that the pure subgroup 0p(G) is finite. Suppose on
the way of contradiction that 0p(G) is infinite. Recall that p-torsion subgroups are
pure. According to Fact 2.4, 0p(G) is a direct summand of G, as we assumed that
it is bounded. Also, following Fact 2.7 we know that 0p(G) is a direct summand of
cyclic groups. In sum, we observed that 0p(G) has a direct summand K which is a
countably infinite p-group. In view of Fact 2.6(i), we may and do assume that K is
not co-Hopfian. Recall that any direct summand of co-Hopfian, is co-Hopfian. This
means that G is not co-Hopfian as well, which contradicts our assumption. Thus,
it follows that for every p ∈ P, the group 0p(G) is finite and therefore a direct
summand of G, and hence there is a projection h p from G onto 0p(G). Recall that
p ∈ P and also h p ↾ 0p(G) ∈ End(0p(G)) is essentially equal to the identity map,
so is one-to-one, and hence onto, as 0p(G) is finite. Since Qr(G) is satisfied, it
follows from Definition 4.2(1)(d) that G/0p(G) is p-divisible.

Now, we take χ be a regular cardinal, large enough, such that G ∈ H (χ) and let

M ≺Lℵ1,ℵ1
(H (χ), ∈)

be such that

• M has cardinality 2ℵ0 ,

• G, tor(G) ∈ M ,

• 2ℵ0 + 1 ⊆ M .

In light of Fact 2.6(ii), we may and do assume that |tor(G)| = µ ≤ 2ℵ0 . Recall that
2ℵ0 +1 ⊆ M and tor(G) ∈ M . These imply that tor(G) ⊆ M . Now, as G/0p(G) is
p-divisible, then so is

G/0p(G)

(G ∩ M)/0p(G)
,

which by the third isomorphism theorem, is canonically isomorphic to G/G ∩ M .
As tor(G) ⊆ M , G/(G ∩ M) is torsion-free, it is divisible. Let x ∈ G \ M and
define the sequence (xn : n < ω) such that
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• x0 = x ,

• if n = m + 1 then

G/(G ∩ M) |Hn! xn + (G ∩ M) = xm + (G ∩ M)′′.

So, letting a0 = 0 and for n = m + 1 < ω,

an = n! xn − xm ∈ G ∩ M,

we have that (an : n < ω) ∈ Mω
⊆ M and so, as

M ≺Lℵ1,ℵ1
(H (χ), ∈),

we can find
ȳ = (yn : n < ω) ∈ (G ∩ M)ω

such that an = n! yn − ym , but then for every m < ω we have

G |H m!(xm+1 − ym+1) = xm − y′′

m .

Hence, ⋃
{Z(xm − ym) : m < ω}

is a nontrivial divisible subgroup of G, contradicting the assumption that G is
reduced. So we have proved the desired claim. □

Proposition 4.11. Let G ∈ be a boundedly endo-rigid abelian group. The following
assertions are valid:

(1) G is co-Hopfian if and only if Qr(G).

(2) If |G| > 2ℵ0 , then G is co-Hopfian if and only if Qr∗(G).

Proof. (1) If G is co-Hopfian, then by Lemma 4.4, Qr(G) holds. For the other
direction, suppose that G is boundedly rigid and Qr(G) holds. Let f ∈ End(G)

be 1-to-1, we want to show that f is onto. As G is boundedly rigid we have m, h
and L such that

(a) m ∈ Z, h ∈ End(G),

(b) f (x) = mx + h(x),

(c) L = Rang(h) is a bounded subgroup of G (and so of tor(G)).

If f is not onto, then by Lemma 4.8, there is n ≥ 1 such that NQr(m,n)(G) holds,
which is not possible (as we are assuming Qr(G)). Thus f is onto as required.

(2) It follows from clause (1) and Lemma 4.10. □
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Construction 4.12. Let K := ⊕
{

Z
pnZ

: p ∈ P and 1 ≤ n < m
}
, where m < ω, and P

is the set of prime numbers. Let G be a boundedly endo-rigid abelian group such
that tor(G) = K.5 Then G is co-Hopfian.

Proof. For any p1 ∈ P and n1 < m, let us define

(x(p1,n1))(p,n) =

{
1 + pn Z if (p, n) = (p1, n1),

0, otherwise.

For simplicity, we abbreviate it by x(p1,n1). Assume towards a contradiction that
there exists f ∈ End(G) such that f is 1-to-1 and not onto. As G is boundedly
endo-rigid, there are m ∈ Z and h ∈ Eb(G) such that f = m · idG +h. As f is 1-to-1
and K has no infinite bounded subgroup, we can conclude that m ̸= 0.

(∗1) m ∈ {1, −1}.

To see (∗1), suppose on the contrary that there is p ∈ P such that p | m and let m1

be such that m = m1 p. Now, as Rang(h) is bounded, there is k ≥ 1 such that

pk(Rang(h)) ∩ 0p(G) = {0}.

Let n ≥ k + 1, then

f (pn−1x(p,n)) = mpn−1x(p,n) + h(pn−1x(p,n))

= m1 ppn−1x(p,n) + pkh(pn−1−k x(p,n)) = 0,

which contradicts the fact that f is 1-to-1. This completes the argument of
m ∈ {1, −1} and without loss of generality we may assume that m = 1. Thus
f = idG +h.

(∗2) f maps G \ tor(G) into itself.

This is because f is 1-to-1. Indeed let x ∈ G \ tor(G). If f (x) ∈ tor(G), then
f (kx) = k f (x) = 0 for some k, thus kx = 0, i.e., x ∈ tor(G) which contradicts
x ∈ G \ tor(G).

(∗3) f ↾ tor(G) ∈ End(tor(G)) is 1-to-1 not onto.

Clearly f ↾ tor(G) ∈ End(tor(G)), and since f is 1-to-1, f ↾ tor(G) is 1-to-1 as
well. Now, suppose by contradiction that f ↾ tor(G) is onto. Then

(1) tor(G) ⊆ Rang( f ),

(2) x ∈ G ⇒ f (x) = x + h(x) ∈ tor(G).

Recall that h(x)∈ tor(G). Apply this along with (1), we deduce that h(x)∈Rang( f ).
Also, recall that Rang( f ) is a group. Let x ∈ G. Thanks to (2), we observe that

x = f (x) − h(x) ∈ Rang( f ).

5In light of our main result, such a group exists for any λ = λℵ0 > 2ℵ0 and the size of G should
be λ.
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In other words, f is onto, a contradiction. So, f ↾ tor(G) is not onto.

(∗4) (a) For every p ∈ P, f maps 0p(G) into itself and so f ↾ 0p(G) is 1-to-1.
(b) For some p ∈ P, f ↾ 0p(G) is not onto.

Item (a) above is simply because f is 1-to-1. To see (b) holds, note that if f ↾0p(G)

is onto for all prime number p, then so is f ↾ tor(G), which contradicts (∗3).
Thus, let us fix some prime p ∈ P such that f ↾ 0p(G) is not onto and let

h p = h ↾ 0p(G). Then by the above observations, it equipped with the following
properties:

(∗5) (a) h p ∈ End(0p(G)).
(b) Rang(h p) is bounded.
(c) h′

p = m · id0p(G) +h p = id0p(G) +h p is 1-to-1.
(d) h′

p is not onto.

In light of Definition 4.2 and (∗5) we observe that

(∗6) h p is a (1, p)-antiwitness for 0p(G) and so NQr(0p(G)).

Thanks to Lemma 4.5, 0p(G) is infinite. But,

0p(G) = 0p(K ) =

⊕{
Z

pnZ
: 1 ≤ n < m

}
,

which is finite. Thus we get a contradiction, and hence f is onto. It follows that G
is co-Hopfian and the lemma follows. □

Corollary 4.13. For any cardinals λ > 2ℵ0 , there is a co-Hopfian abelian group G
of size λ if and only if λ = λℵ0 .

Proof. Let λ>2ℵ0 be given. Suppose first that λ<λℵ0 . In other words, 2ℵ0 <λ<λℵ0 .
According to Fact 4.1(ii), there is no co-Hopfian abelian group of size λ. Now,
assume that λ = λℵ0 . Let

K := ⊕

{
Z

pnZ
: p ∈ P and 1 ≤ n < m

}
,

where m < ω. In light of Theorem 3.11, there exists a boundedly endo-rigid abelian
group G with tor(G) = K. By Construction 4.12, G is co-Hopfian. □

Lemma 4.14. Let G = G1 ⊕ G2 be a boundedly endo-rigid abelian group. Then
G1 is boundedly endo-rigid.

Proof. Let f1 ∈ End(G1). Then f1 ⊕ idG2 ∈ End(G). Since G is boundedly endo-
rigid there is m ∈ Z such that the map x 7→ f (x)−mx has bounded range. In other
words,

( f1 − m · idG1) ⊕ 0 ⊆ ( f1 − m · idG1) ⊕ (idG2 −m · idG2) = ( f − m · idG)

has bounded range. By definition, G1 is boundedly endo-rigid. □
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Notation 4.15 (Harrison). For each group G, we set

S := SG := {p ∈ P : G/0p(G) is not p-divisible}.

Now, we are ready to present the following promised criteria:

Proposition 4.16. Let λ > 2ℵ0 , and suppose G is a boundedly endo-rigid abelian
group of size λ. Then G is co-Hopfian if and only if :

(a) SG is a nonempty set of primes.

(b) (b1) tor(G) ̸= G.
(b2) If p ∈ S, then 0p(G) is not bounded.
(b3) If 0p(G) is bounded, then it is finite (and p /∈ SG).

Proof. Let K := tor(G), and for each prime number p, we set Kp := 0p(G).
First, we assume that G is co-Hopfian, and we are going to show items (a) and (b)

are valid. As G is co-Hopfian, and recall from the introduction that Beaumont and
Pierce (see [5]) proved that for the co-Hopfian group G, we know tor(G) is of size
at most continuum. In other words, |tor(G)| ≤ 2ℵ0 . We combine this along with our
assumption |G| = λ > 2ℵ0 , and conclude that K = tor(G) ̸= G, as claimed by (b1).

To prove (b2), let p ∈ S and suppose by contradiction that Kp is bounded. As
Kp is pure in G, and following Fact 2.4, the boundedness property guarantees that
Kp is a direct summand of G. By definition, there is Gp such that G = Kp ⊕ Gp.
Now, we look at idKp +p · idGp ∈ End(G). Let

(k, g) ∈ Ker(idKp +p · idGp).

Following definition, we have

(0, 0) = (idKp +p · idGp)(k, g) = (k, pg).

In other words, k = 0 and as Gp is p-torsion-free, g = 0. This means that

Ker(idKp +p · idGp) = 0,

and hence idKp +p · idGp is 1-to-1. Since p ∈ S, Gp := G/0p(G) is not p-divisible,
thus there is g in Gp such that g /∈ Rang(p · idGp). Consequently, idKp +p · idGp is
1-to-1 not onto. This is in contradiction with the co-Hopfian assumption, so Kp is
not bounded and (b2) follows.

In order to check (b3), suppose Kp = 0p(G) is bounded. Then it is a direct
summand of G, say G = Kp ⊕ Gp. Since G is co-Hopfian, and in view of Fact 4.1,
we observe that Kp is co-Hopfian. Thanks to Fact 2.6 Kp is finite.

Lastly, we check clause (a). Suppose on the way of contradiction that S is empty.
Let G1 ≺Lℵ1,ℵ1

G be of cardinality 2ℵ0 containing tor(G), recalling |tor(G)| ≤ 2ℵ0 ,
so G/G1 is divisible of cardinality λ.
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As G1 ̸= G, there is x0 ∈ G \ G1, and note that x /∈ tor(G). Now as G/ tor(G) is
divisible, we can choose the sequence ⟨xn : n ≥ 1⟩ of elements of G, by induction
on n, such that x0 = x and for each n,

G/ tor(G) |H n! xn+1 + tor(G) = xn + tor(G)′′.

Set
an := n! xn+1 − xn ∈ tor(G).

Note that ⟨an : n < ω⟩ ∈ G1, thus as G1 ≺Lℵ1,ℵ1
G, we can find elements yn ∈ G1

for n < ω such that
n! yn+1 = yn + an.

Subtracting the last two displayed formulas, shows that the group

L =

⋃
{Z(xn − yn) : n < ω}

is a nonzero divisible subgroup of G. Recall from Fact 2.18 that L is injective.
Since it is injective, we know L is a directed summand of its extensions. In sum,
the sequence

0 → L g
−→ G → coker(g) → 0,

splits. Recall from Discussion 2.20 that

End(I ) =

∏
p∈P0

Ẑ
⊕x p
p ,

where P0 := P ∪ {0} and x p are some index sets. This turns out that I is not
boundedly endo-rigid, provided it is nonzero. Recall from Lemma 4.14 that the
property of boundedly endo-rigid behaves well with respect to direct summand, it
obviously implies G is not boundedly endo-rigid. This contradiction implies that S
is not empty. So clause (a) holds. All together, we are done proving the left-right
implication.

For the right-left implication, assume items (a) and (b) hold, and we show that
G is co-Hopfian. Suppose on the way of contradiction that there exists f ∈ End(G)

such that f is 1-to-1 and not onto. As G is boundedly endo-rigid, there are m ∈ Z

and h ∈ Eb(G) such that f = m · idG +h.

(∗1) m ̸= 0.

To see (∗1), suppose m = 0. Then f = h, and since Rang(h) is bounded and
f is 1-to-1, we can conclude that G is bounded and therefor G = tor(G). This
contradicts clause (b1).

(∗2) If 0p(G) is infinite, then p ∤ m.

In order to see (∗2), first note that tor(G) is unbounded, as otherwise 0p(G) is also
bounded, and hence by (b3) it is finite, contradicting our assumption. Suppose on
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the way of contradiction that p | m. Then there is m1 such that m = m1 p. Now, as
Rang(h) is bounded, there exists k ≥ 1 such that

pk(Rang(h)↾0p(G)
)
= {0}.

Recall that Kp is unbounded. This gives us an element x ∈ 0p(G) of order pn for
some n ≥ k + 1. But then

f (pn−1x) = mpn−1x + h(pn−1x) = m1 ppn−1x + pkh(pn−1−k x) = 0,

which contradicts the fact that f is 1-to-1.
As before, we have the following properties:

(∗3) f maps G \ tor(G) into itself.

(∗4) f ↾ tor(G) ∈ End(tor(G)) is 1-to-1 not onto.

(∗5) (a) For every p ∈ P, f maps 0p(G) into itself and so f ↾ 0p(G) is 1-to-1.
(b) For some p ∈ P, f ↾ 0p(G) is not onto.

Fix p ∈ P such that f ↾ 0p(G) is not onto. Then h p := h ↾ 0p(G) is equipped
with the following properties:

(∗6) (a) h p ∈ End(0p(G)).
(b) Rang(h p) is bounded.
(c) h′

p = m · id0p(G) +h p = id0p(G) +h p is 1-to-1.
(d) h′

p is not onto.

In light of its definition, h p is a (1, p)-antiwitness and so NQr(0p(G)) holds.
Thanks to Lemma 4.5:

(∗7) 0p(G) is infinite.

This is in contradiction with (∗2). □

In [1] we studied absolutely co-Hopfian abelian groups. Recall that an abelian
group is absolutely co-Hopfian if it is co-Hopfian in any further generic extension of
the universe. Also, see [20] for the existence of absolutely Hopfian abelian groups
of any given size. Similarly, one may define absolutely endo-rigid groups. Despite
its simple statement, one of the most frustrating problems in the theory infinite
abelian groups is as follows:

Problem 4.17. Are there absolutely endo-rigid abelian groups of arbitrary large
cardinality?
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THE FUNDAMENTAL SOLUTION TO □b
ON QUADRIC MANIFOLDS WITH

NONZERO EIGENVALUES AND NULL VARIABLES

ALBERT BOGGESS AND ANDREW RAICH

We prove sharp pointwise bounds on the complex Green operator and its
derivatives on a class of embedded quadric manifolds of high codimension.
In particular, we start with the class of quadrics that we previously ana-
lyzed (Trans. Amer. Math. Soc. Ser. B 10 (2023), 507–541) — ones whose
directional Levi forms are nondegenerate, and add in null variables. The
null variables do not substantially affect the estimates or analysis at the
form levels for which □b is solvable and hypoelliptic. In the nonhypoelliptic
degrees, however, the estimates and analysis are substantially different. In
the earlier paper, when hypoellipticity of □b failed, so did solvability. Here,
however, we show that if there is at least one null variable, □b is always
solvable, and the estimates are qualitatively different than in the other cases.
Namely, the complex Green operator has blow-ups off of the diagonal. We
also characterize when a quadric M whose Levi form vanishes on a complex
subspace admits a □b-invariant change of coordinates so that M presents
with a null variable.

1. Introduction

A quadric submanifold of Cn
× Cm is a CR manifold that can be written as a graph

of a scalar- or vector-valued Hermitian symmetric quadratic form, φ, i.e.,

M = {(z, w) ∈ Cn
× Cm

: Im w = φ(z, z)}.

For a hypersurface (m = 1), the analysis of the Kohn Laplacian, □b, and the complex
Green operator (the relative inverse of □b) is well understood and has a long history.
The motivating example is the Heisenberg group where φ(z, z) = |z|2. Its group
structure can be exploited to construct explicit convolution kernels to invert the
sub-Laplacian as well as the Kohn Laplacian in degree (0, q), 1 ≤ q ≤ n − 1, the
cases where □b is invertible [Folland and Stein 1974a; 1974b; Hulanicki 1976;
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Gaveau 1977; Beals et al. 2000; Boggess and Raich 2009]. Estimates of these
kernels then show that the Green operator as well as some of its derivatives are
continuous operators on L p(M) as well as in other normed topologies.

For higher codimension quadrics, i.e., m ≥ 2, much less is understood about
the behavior of the Green operator. Part of the difficulty has to do with the fact
that the Levi form, φ, is vector valued instead of scalar valued as is the case for a
hypersurface. Thus, one must consider the directional Levi form for each normal
direction (see (2) for a precise definition). A breakthrough result came when
Peloso and Ricci [2003] characterized the solvability and hypoellipticity for the □b-
equation on quadrics based on the inertias of the directional Levi forms. This result
provided the impetus for much of our research. In [Boggess and Raich 2023], we
analyzed the pointwise estimates and L p regularity of the complex Green operator
on (0, q)-forms under the assumption that the eigenvalues of each directional Levi
form are nonvanishing. In particular, we showed that the complex Green operator
in this setting possesses all the same regularity properties as that of the Heisenberg
group. On the other hand, there are simple examples of quadrics (see [Boggess and
Raich 2021]) where some of the directional Levi forms are degenerate (i.e., have
vanishing eigenvalues) and for which the estimates on the complex Green operator
have no known parallel with that of any quadric hypersurface. The goal of this
paper is to introduce degeneracy into the Levi form in a controlled manner. We do
this by adding what we call null variables and catalog the effect on the solvability
of the □b-equation as well as providing sharp estimates for the complex Green
operator. As an added dividend, our techniques yield a new result on estimates for
the complex Green operator for a hypersurface with null directions in its Levi form.

Analyzing the □b-operator on quadrics is a problem that mathematicians have
been working on for the past 50 years. Hans Lewy [1957] discovered his famous
counterexample of the Cauchy–Kowalevsky theorem in the C∞ category while
investigating the associated ∂̄b-operator on the Heisenberg group. Regardless of the
hypotheses on the Levi form, □b is neither elliptic nor constant coefficient and this
makes the function theory difficult. The additional tools provided by the Lie group
structure of quadrics permits analysis that is currently unavailable in the general
case, especially in the higher codimension setting. For additional background on
the ∂̄b- and □b-operators, please see [Boggess 1991; Chen and Shaw 2001; Biard
and Straube 2017]. For detailed analysis of the □b-operator on quadric manifolds,
please see [Boggess 1991; Peloso and Ricci 2003; Boggess and Raich 2011; 2013;
2020; 2022b] and especially [Boggess and Raich 2023].

As mentioned above, in [Boggess and Raich 2023] we analyzed the estimates
on the Green operator for a quadric in Cn

× Cm where the codimension, m, is at
least 2 and where all the directional Levi forms are nondegenerate. As detailed
below, this assumption implies that n must be even. In this paper, we add null
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directions. Therefore, our setting is as follows: let n′
≥ 1, n′′

≥ 0, and n = 2n′
+n′′.

Let φ0 : C2n′

× C2n′

→ Cm be a Hermitian symmetric quadratic form; define
φ : C2n′

+n′′

× C2n′
+n′′

by

φ((z′, z′′), (z̃′, z̃′′)) = φ0(z′, z̃′).

Here, z′′ is a null variable whereby we mean that φ is independent of z′′. We let
z = (z′, z′′) so that z′

k = zk for 1 ≤ k ≤ 2n′ and z′′

j = z j for j = 2n′
+1, . . . , 2n′

+n′′.
Our main focus is on quadric submanifolds of the form

(1) Mφ = M = {(z′, z′′, w) ∈ C2n′

× Cn′′

× Cm
: Im w = φ(z′, z′)}.

For each unit vector ν ∈ Sm−1
⊂ Rm , we define the directional Levi form φν

:

C2n′
+n′′

× C2n′
+n′′

→ C by

(2) φν(z, z̃) = φ(z, z̃) · ν = (z̃′)∗ Aνz′,

where Aν is a Hermitian symmetric matrix, depending linearly on the parameter
ν ∈ Sm−1. We define the eigenvalues and eigenvectors of the directional Levi
forms to be the eigenvalues and eigenvectors of Aν , and let n±(ν) be the number of
positive/negative eigenvalues of Aν . When M is a hypersurface, there are directional
Levi forms in only two directions: ν = 1 and ν = −1 since S0 has two points.
In codimension m ≥ 2, ν belongs to the unit sphere Sm−1, a connected set. As
shown in [Boggess and Raich 2023], the connectivity of Sm−1, m ≥ 2, implies that
n+(ν) = n−(ν) = n′ whereas this is not necessarily true for the hypersurface case
(m = 1).

Peloso and Ricci [2003] found that □b is solvable (resp. hypoelliptic) on (0, q)-
forms on Mφ if and only if there does not exist ν ∈ Rm

\{0} so that n+(ν) = q (resp.
n+(ν)≤q) and n−(ν)= 2n′

+n′′
−q (resp. n−(ν)≤ 2n′

+n′′
−q). For the m ≥ 2 and

n′′
= 0 case studied in [Boggess and Raich 2023], n+(ν) = n′

= n−(ν), and hence
□b is solvable and hypoelliptic for all q ̸= n′ and neither solvable nor hypoelliptic
when q = n′. The lack of solvability is related to the fact that ker□b ̸= {0} when
q = n′. After subtracting the orthogonal projection onto ker□b in the case q = n′,
the complex Green operator satisfies estimates analogous to those for the Heisenberg
group, that is, estimates that are completely governed by the control metric for
M . We know, however, that when the eigenvalues of the directional Levi forms
are not bounded away from zero, the control distance does not always suffice to
control estimates on N0,q . This occurs both for hypersurfaces as well as higher
codimension quadrics [Machedon 1988; Nagel and Stein 2006; Boggess and Raich
2021].

As mentioned above, z′′ are null variables, and we henceforth assume that n′′
≥ 1.

Given this assumption and the fact that for all ν ∈ Rm
\ {0}, n+(ν) = n−(ν) = n′,

it follows that □b is solvable on Mφ for all 0 ≤ q ≤ 2n′
+ n′′. Additionally,
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□b fails to be hypoelliptic if q satisfies n′
≤ q and n′

≤ 2n′
+ n′′

− q, that is,
n′

≤ q ≤ n′
+ n′′. Interestingly, adding in null variables improves the solvability of

□b while leaving alone the number of hypoelliptic degrees. The estimate for N0,q in
the nonhypoelliptic cases is qualitatively worse than in the hypoelliptic cases. The
sharp bound is no longer controlled solely by the control distance and the integral
kernel has singularities off of the diagonal. Detailed results are stated in Section 2.

In contrast, the class of hypersurfaces we study are of the form

M = {(z′, z′′, w) ∈ Cn′

× Cn′′

× C : Im w = φ(z′, z′)},

where φ : Cn′

× Cn′

→ C is a Hermitian symmetric, scalar-valued, quadratic form.
We write φ(z′, z′) = (z′)∗ Az′, where A is a nondegenerate, Hermitian symmetric
matrix. Suppose that A has n+ positive eigenvalues and n− negative eigenvalues.
Here, we are not assuming n+

= n−. Solvability always holds because solvability
fails if and only if there is a direction for which the sum of the positive eigenvalues
and negative eigenvalues is n. However, this never happens with A or −A as
this sum equals n′ < n. Additionally, hypoellipticity fails if n+

≤ q ≤ n − n− or
n−

≤ q ≤ n − n+ and holds otherwise. Since n′
= n+

+ n−, hypoellipticity fails if
and only if n+

≤ q ≤ n+
+ n′′ or n − n+

− n′′
≤ q ≤ n − n+. Detailed estimates on

the Green operator for a hypersurface with null variables are stated in Section 2.
As with many past researchers (e.g., Folland and Stein [1974a], Nagel et al.

[2001], and Nagel and Stein [2006]), our approach to computing a working formula
for the Green operator, for m ≥ 1, involves the integral of the fundamental solution
to the heat equation associated to □b in the time variable. However, in the case of
a one-dimensional null space (n′′

= 1), the heat kernel is not integrable in the time
variable, and we therefore develop a new technique to obtain the Green operator in
this case. The resulting kernel and its estimates are stated in Section 2. Proofs of
the theorems stated in Section 2 are given in Sections 3, 4, and 5. In Section 6, we
show that the estimates given in our theorems are sharp.

2. Notation and main results

Notation for null variables. Define the projection π : C2n′
+n′′

×Cm
→ C2n′

+n′′

×Rm

by π(z, t+is)= (z, t). Given a quadric M ⊂ C2n′
+n′′

×Cm , the projection π induces
CR and Lie group structures on C2n′

+n′′

× Rm , and we call this Lie group G. Since
the projection is a CR isomorphism, we primarily work on G but use the same
notation interchangeably for objects on M and their pushfowards/pullbacks on G.

The group structure for G is

(3) (z, t) ∗ (ζ, u) = (z + ζ, t + u − 2 Im φ(z, ζ )) for (z, t), (ζ, u) ∈ G,

and this group operation can easily be lifted to M .
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Denote the set of increasing q-tuples by

Iq = {K = (k1, . . . , kq) ∈ Nq
: 1 ≤ k1 < k2 < · · · < kq ≤ 2n′

+ n′′
}.

Definition 2.1. Given an index K ∈Iq , we say a current NK =
∑

L∈Iq
ÑK ,L(z, t)dz̄L

is a fundamental solution to □b on forms spanned by dz̄K if □b NK = δ0(z, t) dz̄K .
A fundamental solution N0,q to □b acting on (0, q)-forms is then given by

N0,q f =

∑
K∈Iq

NK { fK dz̄K }.

In higher codimension (m ≥ 2) a fundamental solution to □b on forms spanned
by dz̄K usually involves terms spanned by dz̄L for L ̸= K in addition to L = K .

NK acts on smooth forms with compact support by componentwise convolution
with respect to the group structure on G, that is, if f = f0 dz̄K , then NK ∗ f =∑

L∈Iq
ÑK ,L ∗ f0 dz̄L . Thus

ÑK ,L ∗ f0(z, t) =

∫
(ζ,u)∈G

NK ,L((z, t) ∗ (ζ, u)−1) f0(ζ, u) dv(z) dt,

where dv(z) dt is the usual volume form for G, and (using (3))

(z, t) ∗ (ζ, u)−1
= (z − ζ, t − u + 2 Im φ(z, ζ )).

Recall that δ0 ∗ f = f . Therefore, if NK is a fundamental solution to □b and
f = f d z̄K is a smooth form with compact support, then □b{NK ∗ f } = f . As
mentioned in the introduction, Peloso and Ricci [2003] showed that solvability
in our context is possible in all degrees, i.e., 0 ≤ q ≤ n = 2n′

+ n′′. They also
showed that solvability is equivalent to the triviality of the L2 null space of □b. We
therefore conclude that if n′′ > 0, then any two fundamental solutions to □b must
differ by a non-L2 current.

For a multiindex I = (I1, I2, I3) ∈ N4n′
+2n′′

+m
0 , the multiindex I1 ∈ N4n′

0 records
the differentiation in the z′ and z̄′ variables, I2 ∈ N2n′′

0 records the differentiation
in the z′′ and z̄′′ variables, and I3 ∈ Nm

0 records the t-derivatives. Given such a
multiindex I , define the weighted order of I by ⟨I ⟩ = |I1| + |I2| + 2|I3| and the
order of I by |I | = |I1| + |I2| + |I3|.

As a consequence of the discussion in Section 1, we assume the following when
the codimension, m, is at least 2:

• For each ν ∈ Sm−1, there are n′ positive eigenvalues µν
j for j in some index

set Pν of cardinality n from the set {1, 2, . . . , 2n′
} and n′ negative eigenvalues

µν
k for k ∈ (Pν)c, the complement of Pν in {1, 2, . . . , 2n′

}.
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Remark 2.2. Given that our nonzero eigenvalues stay bounded away from 0 inde-
pendently of ν ∈ Sm−1, we may arrange the indices so that Pν

= P is independent
of ν.

Recall the set of increasing q-tuples is denoted by

Iq = {K = (k1, . . . , kq) ∈ Nq
: 1 ≤ k1 < k2 < · · · < kq ≤ 2n′

+ n′′
}.

Also set

I ′

q ′ = {K ′
= (k1, . . . , kq ′) ∈ Nq ′

: 1 ≤ k1 < k2 < · · · < kq ′ ≤ 2n′
},

I ′′

q ′′ = {K ′′
= (k1, . . . , kq ′′) ∈ Nq ′′

: 2n′
+ 1 ≤ k1 < k2 < · · · < kq ′′ ≤ 2n′

+ n′′
}.

Given K ∈ Iq , we can always decompose K = (K ′, K ′′) where K ′
∈ I ′

q ′ and
K ′′

∈ I ′′

q ′′ for some q ′, q ′′ with q ′
+ q ′′

= q. Our notation follows [Boggess and
Raich 2022b]. For λ ∈ Rm

\ {0}, set ν = λ/|λ| ∈ Sm−1. We write z′
∈ Cn′

in terms
of the unit eigenvectors of φλ which means that (z′)λj = (z′)νj is given by

(z′)ν := Z(ν, z′) := U (ν)∗ · z′,

where U (ν) is the matrix whose columns are the eigenvectors vν
k , 1 ≤ k ≤ 2n′, of the

directional Levi form φν , and · represents matrix multiplication with z′ written as a
column vector. Note that the corresponding orthonormal basis of (0, 1)-covectors
for this basis is

d Z̄ j (ν, z′), 1 ≤ j ≤ 2n′,

where d Z̄(ν, z′) = U (ν)T
· dz̄′, dz̄′ is written as a column vector of (0, 1)-forms,

and the superscript T stands for transpose. Note that (z′)ν = Z(ν, z′) depends
smoothly on z′

∈ Cn′

but only is locally integrable as a function of ν ∈ Sm−1 [Rainer
2011]. The coordinates for the remaining n′′ variables, z′′

= (z2n′+1, . . . , zn), do
not depend on ν. Denote by In′′ the n′′

×n′′ identity matrix. We write

zν
= (z′, z′′)ν = (zν, z′′) = Z(ν, z) = (Z(ν, z′), z′′) = (U (ν)∗ ⊕ In′′)(z′, z′′),

where (A ⊕ B)(z′, z′′) := (A(z′), B(z′′)) for any n′
×n′ matrix, A, and any n′′

×n′′

matrix, B. Also,

d Z̄(ν, z) = (d Z̄(ν, z′), dz̄′′) = (U (ν)T
⊕ In′′) · (dz̄′, dz̄′′).

We will need to express dz̄K in terms of d Z̄(ν, z)L for L ∈ Iq . We have

(4) dz̄K = dz̄′

K ′ ∧ dz̄′′

K ′′ =

∑
L ′∈I ′

q′

det(Ū (ν)K ′,L ′) d Z̄(ν, z′)L ′ ∧ dz̄′′

K ′′,

where Ū (ν)K ′,L ′ is the q ′
×q ′ minor of Ū (ν) comprised of elements in the rows K ′

and columns L ′. Note that if q = 2n′
+ n′′, then the above sum only has one term
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and det Ū (ν)K ,K = 1. In addition, when q = 0, I0 = ∅ and the sum (4) does not
appear. Similarly,

(5) d Z̄(ν, z′)L =

∑
J∈I ′

q′

det(U (ν)T
L ′,J ) dz̄′

J ∧ dz̄′′

L ′′ .

Throughout the paper, we use the function

A(r, ν, z) = A(r, ν, z′, z′′) =
2

|log r |
|z′′

|
2
+

2n′∑
j=1

|µν
j |

(
1 + r |µν

j |

1 − r |µν
j |

)
|zν

j |
2,

where µν
j are the nonzero eigenvalues for Aν and the dimensional constant is

K2n′+n′′,m =
42n′

+n′′

(2n′
+ n′′

+ m − 2)!

2(2π)2n′+n′′+m .

Main results for codimension ≥ 2. Our first theorem provides a formula for the
fundamental solution to □b in the case where the null variable dimension satisfies
n′′

≥ 2.

Theorem 2.3. Let M ⊂ C2n′
+n′′

×Cm , with m ≥ 2, n′
≥ 1, and n′′

≥ 2, be a quadric
submanifold defined by (1) with associated projection G, and assume that there
exists a Hermitian symmetric quadratic form φ0 : Cn′

× Cn′

→ Cm such that

(1) φ(z, z̃) = φ0(z′, z̃′) for all z ∈ C2n′
+n′′

and

(2) the eigenvalues of the directional Levi forms of φ0 are nonzero.

For any 0 ≤ q ≤ 2n′
+ n′′, there is a fundamental solution N = N0,q to □b on

(0, q)-forms given by convolution with the kernel

(6) NK (z, t) = K2n′+n′′,m

∑
L∈Iq

∫
ν∈Sm−1

det(Ū (ν)K ,L) d Z̄(ν, z)L

×

∫ 1

r=0

1
|log r |n

′′

( ∏
j∈Lc

∩P
j∈L∩Pc

r |µν
j ||µν

j |

1 − r |µν
j |

∏
k∈L∩P

k∈Lc∩Pc

|µν
k |

1 − r |µν
k |

)

×
1

(A(r, ν, z′, z′′) − iν · t)2n+m−1

dr dν

r
,

where dν is surface measure on the unit sphere Sm−1.

This theorem follows directly from Theorem 2.3 in [Boggess and Raich 2022b],
and the formula is similar to the corresponding one in the same work, where n′′

= 0
(no log r term appears). The formula for N is the s-integral over 0 ≤ s < ∞ of
the partial Fourier transform of the □b heat kernel H̃K (s, z, λ̂); see (16) (where s
represents time). For this derivation, we require that this heat kernel is integrable in
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s over 0 ≤ s < ∞, which, as we shall see below, holds whenever □b is hypoelliptic
or n′′

≥ 2. However, when n′′
= 1 in the nonhypoelliptic case, this heat kernel fails

to be integrable in s and, consequently, the factor 1/(r |log r |
n′′

) appearing in (6)
is not integrable in r near r = 0 when n′′

= 1. The numerator is nonvanishing at
r = 0 when L = P . In Theorem 2.4, below, we derive a fundamental solution for
□b when n′′

= 1 and L = P by modifying our earlier construction to ensure greater
decay in the time variable s without disturbing the approximation of the identity
behavior as s → 0. This kernel requires a genuinely new idea that is not anticipated
in [Boggess and Raich 2022b].

Theorem 2.4. Let M ⊂ Cn
× Cm be a quadric submanifold as in Theorem 2.5

but with n′′
= 1 (and n = 2n′

+ 1). Let K ∈ Iq where q = n′ or q = n′
+ 1 and

K ′
∈ I ′

n′ . Then H̃K (s, z, λ̂) is not integrable on (0, n′)- or (0, n′
+ 1)-forms, and a

fundamental solution to □b on forms spanned by dz̄K is given by

(7) NK (z, t)

= K2n′+1,m

∑
L∈I′

q′

L ̸=P

∫
ν∈Sm−1

det(Ū (ν)K ′,L) d Z̄(ν, z′)L ∧ dz̄′′

K ′′

×

∫ 1

r=0

( ∏
j∈(L′)c∩P
j∈L′∩Pc

r |µν
j ||µν

j |

1 − r |µν
j |

∏
k∈L′

∩P
k∈(L′)c∩Pc

|µν
k |

1 − r |µν
k |

)

×
1

(A(r, ν, z) − iν · t)2n′+m

dr dν

|log r |r

+

∫
ν∈Sm−1

det(Ū (ν)K ′,P) d Z̄(ν, z′)P ∧ dz̄′′

K ′′ |det Aν |

×

∫ 1
2

r=0

[( 2n′∏
j=1

1

1 − r |µν
j |

)
1

(A(r, ν, z) − iν · t)2n′+m

−
1

(A(0, ν, z′, 0) − iν · t)2n′+m

]
dr dν

|log r |r

+

∫
ν∈Sm−1

det(Ū (ν)K ′,P) d Z̄(ν, z′)P ∧ dz̄′′

K ′′ |det Aν |

×

∫ 1

r=
1
2

( 2n′∏
j=1

1

1 − r |µν
j |

)
1

(A(r, ν, z) − iν · t)2n′+m

dr dν

|log r |r
.

When L = P in the above formula for N , the term inside the large brackets, [ · ],
in the integrand of (7) vanishes sufficiently quickly at r = 0, and thus this term is
integrable in r over 0 ≤ r ≤

1
2 .
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Our main theorem regarding pointwise bounds on the kernel for the fundamental
solution of □b is the following:

Theorem 2.5. Let M ⊂ C2n′
+n′′

× Cm , with m ≥ 2 and n′, n′′
≥ 1, be a quadric

submanifold defined by (1) with associated projection G, and assume that there
exists a Hermitian symmetric quadratic form φ0 : Cn′

× Cn′

→ Cm so that

(1) φ(z, z̃) = φ0(z′, z̃′) for all z ∈ C2n′
+n′′

and

(2) the eigenvalues of the directional Levi forms of φ0 are nonzero.

Let N = N0,q .

• Suppose that 0 ≤ q < n′ or q > n′
+n′′. For any multiindex I ∈ N4n′

+2n′′
+m

0 , there
exists a constant C I > 0 so that

(8) |D I N (z, t)| ≤
C I

(|z|2 + |t |)2n′+n′′+m−1+
1
2 ⟨I ⟩

.

• Suppose that n′
≤ q ≤ n′

+ n′′ and n′′
≥ 2. Then there exists a constant C I > 0 so

that

(9) |D I N (z, t)| ≤
C I

(|z|2 + |t |)n′′−1+
1
2 |I2|(|z′|2 + |t |)2n′+m+

1
2 |I1|+|I3|

.

• Finally, suppose that n′
≤ q ≤ n′

+ n′′ and n′′
= 1. Then there exists a constant

C I > 0 so that

(10) |D I N (z, t)| ≤ C I


log
(
1 +

|zn′+1|
2

|z′|2+|t |

)
(|z′|2 + |t |)2n′+m if I = 0,

1

(|z|2 + |t |)
1
2 |I2|(|z′|2 + |t |)2n′+m+

1
2 |I1|+|I3|

if I ̸= 0.

These estimates are sharp.

In this paper, we only provide the proof for the case I = 0. The proof in the I ̸= 0
case provides no additional insights, though we do discuss later how derivatives
affect the estimates. Keeping track of higher derivatives requires some bookkeeping,
which is thoroughly explained and carried out in [Boggess and Raich 2023].

In the case where 0 ≤ q < n′ or q > n′
+ n′′, the estimate in (8) implies that

Nq is locally integrable in G and more can be said about the regularity of Nq as
an operator using the theory of homogeneous groups. Let W k,p(M) denote the
Sobolev space of forms on M with z-, z̄- and t-derivatives of order k in L p(M).
Following the approach of [Boggess and Raich 2022a, Section 7.3], we can view G
(and hence M) as a homogeneous group with norm function ρ(z, t) = |z| + |t |1/2.
From (8), it follows that the integration kernel of N0,q and its derivatives have the
appropriate pointwise decay (analogous to that in the case of nonzero eigenvalues
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handled in [Boggess and Raich 2023]). A second consequence of (8) is that N0,q is
a tempered distribution, and combining this fact with the natural dilation structure
and that D I N0,q is a convolution operator shows that D I N0,q is uniformly bounded
on normalized bump functions. This is exactly what is required to establish the L p

boundedness, 1 < p < ∞. The convolution operator D I N0,q extends to a bounded
operator on W k,p(Cn

× Rm), and we state this as a corollary to Theorem 2.5.

Corollary 2.6. Let M ⊂ C2n′
+n′′

× Cm be a quadric submanifold satisfying the
hypothesis of Theorem 2.5. Assume 0 ≤ q < n′ or q > n′

+ n′′. Given a multiindex
I ∈ N4n+m

0 such that ⟨I ⟩ = 2, the operator D I N0,q is exactly regular on W k,p(M)

for all k ≥ 0 and all 1 < p < ∞. In other words, D I N0,q extends to a bounded
operator on W k,p(M). In particular, D I N0,q is a hypoelliptic operator.

The regularity properties of N(0,q) are not yet known for n′
≤ q ≤ n′

+ n′′.

Results for hypersurfaces. Even though our focus is mostly on the higher codi-
mension case, our technique provides a new result in the hypersurface case as well.
When M is a hypersurface, M is of the form

(11) M = {(z′, z′′, w) ∈ Cn′

× Cn′′

× C : Im w = φ0(z′, z′)},

where φ0(z′, z′) = (z′)∗ Az′ and A is a nondegenerate Hermitian matrix. Since A is
Hermitian, we can choose coordinates in which A is diagonal. In these coordinates
(which we still call (z′, z′′)),

φ(z, z) =

n′∑
j=1

µ j |z j |
2,

where µ1, . . . , µn′ are the nonzero eigenvalues of A. In the hypersurface case,
there is not a requirement that n′ is even or n+

= n−. Also, □b acts diagonally in
these coordinates. This means if f =

∑
J∈Iq

f J dz̄ J , then □b f =
∑

J∈Iq
□J f J dz̄ J .

Consequently, to invert □b, we need only to invert the □J -operators which is simpler
than the higher codimension cases handled in the previous subsection. We continue
to let P denote the indices of the positive eigenvalues of A. For the theorems in
this section, we need the following notation. Let

A(r, z) =
2

|log r |
|z′′

|
2
+

n′∑
j=1

1 + r |µ j |

1 − r |µ j |
|µ j ||z j |

2

and

ε j,L =

{
sgn(µ j ), j ∈ L ,

−sgn(µ j ), j ̸∈ L .

The proof of Theorem 2.4 is easily adapted to prove the following result.
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Theorem 2.7. Let M ⊂ Cn′

×Cn′′

×C be a quadric hypersurface described by (11).
Fix 0 ≤ q ≤ n, where n = n′

+ n′′, and let L ∈ Iq .

(1) If n′′
≥ 2 or n′′

= 1 and L ′ is neither P nor Pc, then the fundamental solution
to the □L -equation given by the inverse Fourier transform in t of

∫
∞

0 e−s□L ds is

NL(z, t) =
22n−1(n−1)!

(2π)n+1 |det A|

(∫ 1

0

n′∏
j=1

r
1
2 (1−ε j,L )|µ j |

1−r |µ j |

1
(A(r, z)−i t)n

dr
r |log r |n

′′

+

∫ 1

0

n′∏
j=1

r
1
2 (1+ε j,L )|µ j |

1−r |µ j |

1
(A(r, z)+i t)n

dr
r |log r |n

′′

)

(2) If n′′
= 1 and L ′

= P , then there is a fundamental solution to the □L -equation
given by

NL(z, t) =
22n−1(n−1)!

(2π)n+1 |det A|(∫ 1

0

n′∏
j=1

r |µ j |

1−r |µ j |

1
(A(r, z)+i t)n

dr
r |logr |

+

∫ 1

1
2

n′∏
j=1

1
1−r |µ j |

1
(A(r, z)−i t)n

dr
r |logr |

+

∫ 1
2

0

( n′∏
j=1

1
1−r |µ j |

1
(A(r, z)−i t)n

−
1

(A(0, z)−i t)n

)
dr

r |logr |

)
.

(3) If n′′
= 1 and L ′

= Pc, then

NP(z, −t) = NP(z, t)

is a fundamental solution to the □L -equation.

The form of the solutions from Theorem 2.7 are simpler versions than in
Theorem 2.4 in the n′′

= 1 case and (20) in the n′′
≥ 2 case. The analysis in

the higher codimension case shows that the size comes from the r -integral and there
is no cancellation in the ν-integral. Consequently, the proof of Theorem 2.5 proves
the following theorem as well.

Theorem 2.8. Let M ⊂ Cn′

×Cn′′

×C be a quadric hypersurface described by (11).
Fix 0 ≤ q ≤ n, where n = n′

+ n′′, and L ∈ Iq . For any multiindex I ∈ N2n+1
0 , there

exists a constant C I > 0 so that the following hold.

• If L ′ is neither P nor P ′, then

|D I N (z, t)| ≤
C I

(|z|2 + |t |)n+
1
2 ⟨I ⟩

.

This case includes the q for which □b is hypoelliptic.
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• If n′′
≥ 2 and L ′

= P or L ′
= Pc, then

(12) |D I N (z, t)| ≤
C I

(|z|2 + |t |)n′′−1+
1
2 |I2|(|z′|2 + |t |)n′+1+

1
2 |I1|+|I3|

.

• Finally, suppose that n′′
= 1 and L ′

= P or L ′
= Pc. Then

(13) |D I N (z, t)| ≤ C I


log
(
1 +

|zn |
2

|z′|2+|t |

)
(|z′|2 + |t |)n′+1 if I = 0,

1

(|z|2 + |t |)
1
2 |I2|(|z′|2 + |t |)n′+1+

1
2 |I1|+|I3|

if I ̸= 0.

These estimates are sharp.

Corollary 2.9. Suppose M is a quadric hypersurface in Cn satisfying the hypotheses
of Theorem 2.8. Fix 0 ≤ q ≤ n, where n = n′

+ n′′ and L ∈ Iq . If L ′ is neither P
nor P ′, then for any multiindex I ∈ N4n+m

0 with ⟨I ⟩ = 2, the operator D I NL extends
to a bounded operator on W k,p(M). In particular, D I NL is a hypoelliptic operator.

Remark 2.10. The estimates in (9), (10), (12), and (13) suggest that we investigate
N from the point of view of flag kernels, à la Nagel, Ricci, and Stein [2001]. N is
the wrong degree to be a flag kernel as it inverts second-order differential operators,
just as the Newtonian potential is the wrong degree to be a Calderón–Zygmand
operator. The are four types of second-order derivatives (two derivatives in z′

variables, two derivatives in z′′ variables, one derivative each in z′ and z′′ variables,
and one derivative in a t variable), and only applying two derivatives in z′′ variables
to N produces a kernel with the correct order of decay. Even in this case, it is
currently unclear if the kernel is a flag kernel. It would be an interesting project to
understand the complete mapping properties of N and its second-order derivatives.

Vanishing variables. Our above assumption is that z′′ is a null variable. There is a
more general concept that we call a vanishing variable which is defined as follows:
z′′ is a vanishing variable for φ if φ(z, z) = 0 whenever z = (0, z′′), z′′

∈ Cn′′

. A
null variable is also a vanishing variable but the converse is not true, as illustrated by
the example below. We briefly discuss vanishing variables since the techniques in
this paper only apply to null variables. We expect that the analysis of estimates for
fundamental solutions in the case of vanishing variables will be more complicated.

Here is an example in C3 where z3 is a vanishing variable but not a null variable:

(14)

φ1(z, z) = |z1|
2
− |z2|

2,

φ2(z, z) =
√

2 Re(z3 z̄1 + z3 z̄2),

φ3(z, z) =
√

2 Re(i z3 z̄1 − i z3 z̄2).
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Note that z3 is a vanishing variable but not a null variable for φ due to φ’s
dependence on z3. There is no □b-invariant change of coordinates that will make z3 a
null variable for φ. Here, a □b-invariant change of coordinates between two quadrics
M and M ′ in Cn

×Cm is a nonsingular, complex linear map T : Cn
×Cm

→ Cn
×Cm

with T (M)= M ′ and T ∗(□b f )=□b(T ∗( f )) for all (0, q)-forms on M ′. As shown
in [Boggess and Raich 2020], a □b-invariant change of variables requires a unitary
change of coordinates in the z variables, i.e., ẑ = U (z) where U is a unitary
matrix. However, in order to preserve the independence of z3 for φ1, U must
map the copy of C2 spanned by the z1 and z2 axes to itself. Since U is unitary,
the orthogonal complement of this set (namely the z3 axis) must remain invariant
under U . Therefore U has the form

U =

(
U2 0
0 1

)
,

where U2 is a 2×2 unitary matrix. A change of variables involving this U cannot
remove the dependence of φ2 or φ3 on z3.

This example illustrates the following point: if z′′ is a null variable, then φ only
depends on the variable z′, which is the coordinate for the orthogonal complement
of the space spanned by the null variables. This observation and the analysis in the
previous paragraph leads to the following theorem.

Theorem 2.11. Suppose L is a complex subspace of C-dimension n′′ in Cn (n′′
≤ n),

and suppose φ(z, z) = 0 for all z ∈ L. Then there exists a □b-invariant change of
variables so that z′′

∈ Cn′′

is a null variable for φ if and only if for each 1 ≤ j ≤ n,
the map z ∈ Cn

→ A j z preserves L⊥ (the orthogonal complement of L in Cn),
where A j are the Hermitian matrices corresponding to the directional Levi forms of
the standard basis vectors, E j , 1 ≤ j ≤ m, in Rm , that is, φ j (z, z) = z∗ A j z.

Proof. The proof is clear — if there is a unitary change of variables mapping L to a
space spanned by the null variable z′′, then the matrices A j , 1 ≤ j ≤ n, in the new
variables must preserve the directions spanned by the z′ variables. Since U is unitary,
in the original coordinates, A j must map L⊥ to itself. The converse is similar. □

From a practical point of view, finding a null variable or vanishing variable
for a given φ can proceed as follows. First, establish whether all the A j have a
common kernel. If the common kernel is trivial, then there are no vanishing or
null variables. If there is a nontrivial common kernel, then diagonalize the matrix
representing one of the coordinate functions, say A1. At least one of the variables,
say zn , is a vanishing variable (representing an eigenvector corresponding to the
zero eigenvalue of A1). Next, see if the other component functions are independent
of zn . If so, then zn is also a null variable. If not, then zn is a vanishing variable
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but not a null variable. There may be additional vanishing and/or null variables
depending on the dimension of the common kernel.

3. The □b-heat equation and the proof of Theorem 2.4

□b and the partial Fourier transform. The operator □b is translation invariant in t ,
and so we introduce the partial Fourier transform of a function f (z, t) by

f (z, λ̂) =
1

(2π)m/2

∫
Rm

f (t)e−iλ·t dt

with ˆ appearing over the transform variables. As is shown in [Peloso and Ricci
2003], for a fixed λ ∈ Rm (with ν = λ/|λ|), the coordinates Z(ν, z′) that diagonalize
Aν also diagonalize □̂b. On the transform side, we treat λ as a parameter and write
the transformed operator as □̂λ

b . Fix K ∈ Iq . Note that if f (z, t) = fK dz̄K and
q ′

= |K ′
|, then

f (z, λ̂) = fK (z, λ̂) dz̄′

K ′∧dz̄′′

K ′′ =

∑
L∈I ′

q′

fK (z, λ̂) det(Ū (ν)K ′,L) d Z̄(ν, z′)L ∧dz̄′′

K ′′ .

One of the reasons for using the Z(ν, z′) coordinates is that □̂λ
b acts diagonally in

these coordinates (see [Boggess and Raich 2022b]). Specifically,

(□b f )(z, λ̂) = □̂λ
b{ f (z, λ̂)} =

∑
L∈I ′

q′

□̂λ
L{ fK (z, λ̂) det(Ū (ν)K ′,L)} d Z̄(ν, z′)L ∧dz̄′′

K ′′

where

□̂λ
L = −

1
41z + 2i

n∑
k=1

µλ
k Im{zν

k∂zν
k
} +

n∑
k=1

(µλ
k )

2
|zν

k |
2
−

(∑
k∈L

µλ
k −

∑
k ̸∈L

µλ
k

)
and 1z is the ordinary Laplacian in the indicated variables. Our approach to solving
the □b-equation is via the □b-heat equation. Given the diagonalization of □̂b, it is
enough to solve the □̂λ

L equations

(15)

(
∂

∂s
+ □̂λ

L

)
{H̃L(s, z, λ̂)} = 0 for s > 0,

H̃L(s = 0, z, λ̂) = (2π)−m/2δ0(z) ⊗ 1λ,

where δ0(z) is the Dirac-delta function centered at the origin in the z variables and
1λ is the function which is identically 1 for all λ ∈ Rm . The function H̃L(s, z, λ̂) is
called the heat kernel and is given by (see [Boggess and Raich 2011])

(16) H̃L(s, z, λ̂) =
2n

(2π)m/2+n

e−|z′′
|
2/s

sn′′

2n′∏
j=1

esεν
j,L |µλ

j ||µλ
j |

sinh(s|µλ
j |)

e−|µλ
j | coth(s|µλ

j |)|Z j (ν,z′)|2
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where

εα
j,L =

{
sgn(µλ

j ) if j ∈ L ,

−sgn(µλ
j ) if j ̸∈ L .

Integrability in s over 0 ≤ s < ∞ holds when n′′
≥ 2 or when L ̸= P . However,

integrability fails when L = P and n′′
= 1 since

H̃P(s, z, λ̂) =
2n

(2π)m/2+n

e−|z′′
|
2/s

s

2n′∏
j=1

es|µλ
j ||µλ

j |

sinh(s|µλ
j |)

e−|µλ
j | coth(s|µλ

j |)|Z j (ν,z′)|2

and so H̃P(s, z, λ̂) decays like 1
s as s → ∞. Consequently, the harmonic projection

onto ker □̂λ
L is 0 yet the “formula"

(□̂λ
P)−1

=

∫
∞

0
e−s□̂λ

P ds

fails to hold because the integral on the right-hand side diverges.

Proof of Theorem 2.4. Set δL ,P = 1 if L = P and δL ,P = 0 otherwise. Define

S̃L ,P(z′, λ̂) = lim
s→∞

2n

(2π)m/2+n

2n′∏
j=1

es|µλ
j ||µλ

j |

sinh(s|µλ
j |)

e−|µλ
j | coth(s|µλ

j |)|Z j (ν,z′)|2
δL ,P

=
2n+2n′

(2π)m/2+n |det Aλ|

2n′∏
j=1

e−|µλ
j ||Z j (ν,z′)|2

δL ,P .

Let χ be an indicator function on the ray [b, ∞) where b > 0 is to be determined
later. Set

(17) ÑL(z, λ̂) =

∫
∞

0
H̃L(s, z, λ̂) −

χ(s|λ|)

s
S̃L ,P(z′, λ̂) ds.

The integral defining ÑL converges because

es|µλ
j |

sinh(s|µλ
j |)

e−|µλ
j | coth(s|µλ

j |)|Z j (ν,z′)|2
− 2e−|µλ

j ||Z j (ν,z′)|2

decays exponentially in s (and the integral kernel is ∂ H̃L/∂s near 0). Not coinciden-
tally, S̃P(z′, λ̂) is the integral kernel of the harmonic projection onto ker{□̂λ,M0

P } on
the quadric M0. Since □̂λ

P = −△z′′ + □̂λ,M0
P , it follows that □̂λ

L S̃L ,P = 0 for all L .
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Consequently,

□̂λ
L ÑL(z, λ̂) =

∫
∞

0
□̂λ

L H̃L(s, z, λ̂) −
χ(s|λ|)

s
□̂λ

L S̃L ,P(z′, λ̂) ds

= −

∫
∞

0

∂ H̃L(s, z, λ̂)

∂s
ds = δ0(z) ⊗ 1λ by (15),

as desired. The latter integral converges as s → ∞ because ∂ H̃L(s, z, λ̂)/∂s decays
at least as fast as s−2. We can now construct a solution to invert □b using the
modified ÑL(z, λ̂) functions. Following the argument of [Boggess and Raich
2022b, Proposition 3.2], we have the following solution. In the following statement
F−1

λ denotes the inverse partial Fourier transform in λ.

Proposition 3.1. For given indices K ∈ Iq and L ∈ I ′

q ′ , define

(18) NK ,L(z, λ̂) = det(Ū (ν)K ′,L)ÑL((z′, z′′), λ̂) d Z̄(z′, ν)L ∧ dz̄K ′′,

where ÑL(z′, z′′, λ̂) is defined by (17). Then there is a fundamental solution to □b

on M applied to a form spanned by dz̄K given by

(19) NK (z, t) = F−1
λ

{∑
L∈I ′

q′

NK ,L(z, λ̂)

}
(t).

We now continue with the proof of Theorem 2.4. If L ̸= P , then S̃L ,P(z′, λ̂) = 0
in (17). Recalling that n′′

= 1, the calculation in Section 4 of [Boggess and Raich
2022b] shows

(20) F−1
λ {NK ,L(z, λ̂)}(t)

= Kn,m

∫
ν∈Sm−1

det(Ū (ν)K ′,L) d Z̄(ν, z′)L ∧ dz̄′′

K ′′

×

∫ 1

r=0

( ∏
j∈(L′)c∩P
j∈L′∩Pc

r |µν
j ||µν

j |

1−r |µν
j |

∏
k∈L′

∩P
k∈(L′)c∩Pc

|µν
k |

1−r |µν
k |

)

×
1

(A(r, ν, z)−iν ·t)2n′+m
dr dν

|log r |r
.

This establishes the terms in (7) where L ̸= P .
When L = P , the SP,P term is present in ÑP (see (17)) and we compute the

inverse Fourier transform in λ by switching to polar coordinates, λ = τν, τ ≥ 0,
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ν ∈ Sm−1. We have

(21) F−1
λ {NK ,P(z, λ̂)}(t)

=
1

(2π)m/2

∫
λ∈Rm

eiλ·t
{det(Ū (ν)K ′,P)ÑP(z, λ̂) d Z̄(z, ν)P ∧ dz̄′′

K ′′} dλ

=
1

(2π)m/2

∫
ν∈Sm−1

det(Ū (ν)K ′,P) d Z̄(z, ν)P ∧ dz̄′′

K ′′

×

∫
∞

τ=0
eiτν·t

∫
∞

s=0

(
H̃P(s, z, τ̂ ν) −

χ(sτ)

s
SP,P(z′, τ̂ ν)

)
τm−1 ds dτ dν,

where dν is surface measure on the unit sphere Sm−1. Now we insert the heat
kernel, H̃P , from (16) and focus on the above s, τ -integral in (21), denoted by Iν .
Note that

µλ
j = τµν

j and det Aλ = τ 2n′

det Aν .

We scale in s by replacing sτ by s and then integrate we in τ . With Cm,n =

2n/(2π)m/2+n , we have

Iν = Cm,n|det Aν |

∫
∞

s=0

∫
∞

τ=0

(
e−τ |z′′

|
2/s

2n′∏
j=1

es|µν
j |

sinh(s|µν
j |)

e−|µν
j | coth(s|µν

j |)τ |zν
j |

2

−22n′

χ(s)
2n′∏
j=1

e−|µν
j |τ |zν

j |
2

)
ei t ·ντ τ 2n′

+m−2 dτ
ds
s

=Cm,n|det Aν |

∫
∞

s=0

∫
∞

τ=0

(
2n′∏
j=1

es|µν
j |

sinh(s|µν
j |)

e−τ
(
|z′′

|
2/s+

∑2n′

j=1 |µν
j | coth(s|µν

j |)|z
ν
j |

2
−iν·t

)

−22n′

χ(s)e−τ
(∑2n′

j=1 |µν
j ||z

ν
j |

2
−i t ·ν

))
τ 2n′

+m−1 dτ
ds
s

= (2n′
+m−1)! Cm,n|det Aν |

×

∫
∞

s=0

(( 2n′∏
j=1

es|µν
j |

sinh(s|µν
j |)

)
1(

|z′′|2

s +
∑2n′

j=1 |µν
j | coth(s|µν

j |)|z
ν
j |

2−iν ·t
)2n′+m

−22n′

χ(s)
1(∑2n′

j=1 |µν
j ||z

ν
j |

2−i t ·ν
)2n′+m

)
ds
s

,

where the last equality uses the formula∫
∞

0
τ pe−ατ dτ =

p!

α p+1 for Re α > 0.
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We use the substitution r = e−2s in the remaining s-integral (and so ds/s =

−dr/(r |log r |) and the oriented r -limits of integration become 1 to 0) to obtain

Iν = Km,n|det Aν |

∫ 1

r=0

(( 2n′∏
j=1

1

1 − r |µν
j |

)
1

(A(r, ν, z′, z′′) − iν · t)2n′+m

− χ
( 1

2 |log r |
) 1
(A(0, ν, z′, 0) − iν · t)2n′+m

)
dr

r |log r |
.

We choose b =
1
2 log 2 so that χ(1

2 |log r |) is the characteristic function of
[
0, 1

2

]
.

From (21), observe that

F−1
λ {NK ,P(z, λ̂)}(t) =

∫
ν∈Sm−1

Iν det(Ū (ν)K ′,P) d Z̄(z, ν)P ∧ dz̄′′

K ′′ dν,

which equals the term in (7) with L = P . Therefore, the proof of Theorem 2.4 is
complete.

4. Proof of Theorem 2.5, |t| ≥ |z|2

In [Boggess and Raich 2023], the case when |t | ≥ |z|2 is the most delicate for the
proof of the estimates. In our current manuscript, when n′′

≥ 2, the case |t | ≥ |z|2 is
handled by adapting the argument from the corresponding argument in [Boggess and
Raich 2023]. Here we only sketch this argument with details on the modifications
needed to handle the null variables (z′′). We then provide complete details when
n′′

= 1 since new ideas are involved.
The primary new term is (2 |z′′

|
2)/|log r | that appears in A(r, ν, z′, z′′). However,

the series expansion for 1/|log r | around r = 1 has leading term 1/(1 − r), so the
effect of the null directions on the estimates near r = 1 is the same as for the nonnull
directions. Some bookkeeping is required but the estimates in our context here are
very similar to the estimates presented in detail in [Boggess and Raich 2023].

The first step of the analysis is to factor out |t |2n′
+n′′

+m−1 from the denominator
and rotate in ν via an orthogonal matrix Mt chosen so that Mt(t/|t |) is the unit
vector in the ν1 direction (so in the new coordinates, ν · t = ν1|t |). We also set
νt

= M−1
t ν,

p = (p′, p′′) =
z

|t |1/2 ∈ C2n′
+n′′

,

Q(νt , p) =
Z(νt , z)
|t |1/2 =

(Z(νt , z′), z′′)

|t |1/2 =
(U (νt)∗ · z′, z′′)

|t |1/2 .

Note that |Q(νt , p)|2 = |p|
2 since Uνt is unitary.
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We obtain
NK (z, t) = |t |−(2n′

+n′′
+m−1)

∑
L ′∈I ′

q′

NK L ′(p)

where

(22) NK ,L ′(p)

=

∫
νt∈Sm−1

∫ 1

r=0

det(Ū (νt)K ′,L ′)BL ′(r, νt) d Z̄(νt , z′)L ′ ∧ dz̄′′

K ′′

(A(r, νt , p) − iν1)2n′+n′′+m−1

dν dr
r |log r |n

′′

if L ′
̸= P or n′′

≥ 2 and where

BL ′(r, ν) =

∏
j∈(L′)c∩P
j∈L′∩Pc

r |µν
j ||µν

j |

1 − r |µν
j |

∏
k∈L′

∩P
k∈(L′)c∩Pc

|µν
k |

1 − r |µν
k |

,(23)

A(r, ν, p) =
2

|log r |
|p′′

|
2
+

2n′∑
j=1

|µν
j |

(
1 + r |µν

j |

1 − r |µν
j |

)
|Q j (ν, p′)|2.(24)

If L ′
= P and n′′

= 1, then

NK ,P(p) =

∫
νt∈Sm−1

det(Ū (νt)K ′,P) d Z̄(νt , z′)P ∧ dz̄′′

K ′′ |det Aνt |

×

∫ 1
2

r=0

(( n−1∏
j=1

1

1 − r |µνt
j |

)
1

(A(r, νt , p) − iν1)2n′+m

−
1

(A(0, νt , p′, 0) − iν1)2n′+m

)
dr dνt

|log r |r

+

∫
νt∈Sm−1

det(Ū (νt)K ′,P) d Z̄(νt , z′)P ∧ dz̄′′

K ′′ |det Aνt |

×

∫ 1

r=
1
2

( n−1∏
j=1

1

1 − r |µνt
j |

)
1

(A(r, νt , p) − iν1)2n′+m

dr dν

|log r |r
.

To prove Theorem 2.5 in the case that |t | ≥ |z|2 and 0 ≤ q ≤ 2n′
+ n′′, it suffices

to prove the following theorem.

Theorem 4.1. There is a uniform constant C > 0 so that |NK ,L(p)| ≤ C for all
p ∈ C2n′

+n′′

with |p| ≤ 1 and all K , L ∈ Iq with 0 ≤ q ≤ 2n′
+ n′′.

We first sketch the estimate of the kernel near r = 1 using the ideas from [Boggess
and Raich 2023].

Subcase: |t| ≥ |z|2 and 1
2 < r < 1. We prove Theorem 4.1. We start with a key

result — Lemma 5.2 in [Boggess and Raich 2023], which we restate here.
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Lemma 4.2. Let

(25) B(r, ν) = B∅(r, ν) =

∏
j∈P

r |µν
j ||µν

j |

1 − r |µν
j |

∏
k∈Pc

|µν
k |

1 − r |µν
k |

.

Then

(26)
∑

L ′∈I ′

q′

det(Ū (ν)K ′,L ′) d Z̄(ν, z′)L ′ BL ′(r, ν) =

∑
J ′∈I ′

q′

det([r− Āν ]K ′,J ′)B(r, ν) dz̄ J ′

is real analytic in ν ∈ Sm−1 and 0 < r < 1.

Remark 4.3. The real content of this lemma is the real analyticity in ν of the
expression in (26), especially in view of the fact that the eigenvalues µν

j are not
necessarily real analytic or even smooth in the parameter ν. As shown in [Boggess
and Raich 2023], the expression B(r, ν) is real analytic in ν due to the fact that the
positive eigenvalues are bounded away from the negative eigenvalues. In addition,
r− Āν is real analytic in ν since Aν depends linearly on ν.

Using Lemma 4.2, a typical term for NK ,L(p) in (22) — with 1
2 ≤ r < 1 for the

domain of integration — is

(27) N u
K ,J (p) =

∫
ν∈Sm−1

∫ 1

r=
1
2

det([r− Āν ]K ′,J ′)B(r, ν)

(A(r, νt , p) − iν1)2n′+n′′+m−1

dν dr
r |log r |n

′′
.

The superscript u refers to the fact that the integral is over the “upper” piece of the
r -interval. Our goal in this section is to establish the following lemma.

Lemma 4.4. There is a uniform constant C such that

|N u
K ,J (p)| ≤ C

for all p ∈ C2n′
+n′′

with |p| ≤ 1.

As in [Boggess and Raich 2023], we use the change of variable

(28) r = r(s) =
s − 1
s + 1

or equivalently s =
r + 1
1 − r

with
dr
r

=
2 ds

s2 − 1

and observe that 1
2 ≤ r < 1 transforms to s ≥ 3. We obtain

(29) N u
K ,J (p)

= 2
∫

ν∈Sm−1

∫
∞

s=3

det[r(s)− Āν ]K ′,J ′

(A(r(s), νt , p)−iν1)2n′+n′′+m−1
B(r(s), ν)r ′(s)

r(s)
ds dν

|log r(s)|n′′ .

We then expand the various components of the integrand defining N u
K ,J (p) on the

last line of (29) about s = ∞. We briefly outline the main steps in Sections 5, 6,
and 7 in [Boggess and Raich 2023] and point out the differences needed to deal
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with the factor of |log r(s)|n
′′

in the denominator. From Proposition 5.4 in [Boggess
and Raich 2023], we have

B(r(s), ν)r ′(s)
r(s)

=
2

22n′
(
1 −

1
s2

)( 2n′
−1∑

ℓ=0

Pℓ(ν)s2n′
−ℓ−2

+
O(s, ν)

s2

)
,(30)

a typical monomial in Pℓ(ν) = νℓ−e, where e is even with 0 ≤ e ≤ ℓ.(31)

Here, Pℓ(ν) is a polynomial in ν = (ν1, . . . νm) ∈ Sm−1 of total degree ℓ. By an
abuse of notation, the term νℓ−e in (31) stands for a monomial in the coordinates
of ν of total degree ℓ − e. Also note that the term (1 − s−2)−1 on the right-hand
side of (30) only has even powers of 1/s in its expansion about s = ∞.

Next, we use the second part of Proposition 5.4 in [Boggess and Raich 2023] to
expand det[r(s)− Āν ]K ,J around s = ∞. The result is a sum of terms of the form

(32)
νℓ′

−e′

sℓ′
,

where ℓ′
≥ 1, e′ is an even integer with 0 ≤ e′

≤ ℓ′, and νℓ′
−e′

is a monomial of
degree ℓ′

− e′ in the coordinates of ν ∈ Sm−1.
Now, we expand |log r(s)|−n′′

about s = ∞ and obtain

(33)
1

|log r(s)|n′′
=

sn′′

2n′′
+

∞∑
k=1

ck,n′′sn′′
−2k .

Finally, we have the following expansion of the terms involving A(r(s), νt , p)

from equation (36) in [Boggess and Raich 2023] (with I1, I2, I3 = ∅):

(34)

1
(A(r(s), νt , p) − iν1)2n′+n′′+m−1

=
1

(s|p|2 − iν1)2n′+n′′+m−1

(
1 +

∞∑
j=1

α j
(∑

∞

k=1
p∗

·

(
p2k(Aνt )⊕

1
2 ck,1In′′

)
·p

s2k−1

) j

(s|p|2 − iν1) j

)
.

Now we assemble a typical term in the expansion of the integrand in (29) by
multiplying the typical terms from (31), (32), (33), and (34). We summarize a
typical term from each of the components that comprise (29) in the following chart:

term typical term notes

det[r(s)− Āν ]K ,J
νℓ′−e1

sℓ′

ℓ′
≥ 1, e1 is even,

and 0 ≤ e1 ≤ ℓ′

B(r(s),ν)r ′(s)
r(s) νℓ−e2s2n′

−ℓ−e3−2 e2 and e3 are even,
0 ≤ e2 ≤ ℓ

1
|log r(s)|n′′ sn′′

−e4 e4 is even

(34) 1
(s|p|2−iν1)2n′+n′′+m−1+ j

ν j (2k−e5)

s j (2k−1)

j, k ≥ 1, e5 is even,
and 0 ≤ e5 ≤ k
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The typical terms of (29) that require the most care are those involving powers
of s which are greater than −2. The remaining terms comprise the “remainder term”
and will be handled later. From the above chart, we see that a typical term from the
integrand of (29) is of the form

(35) C(p, p̄)2 j s N j −2−ℓ j −2k j νℓ j −e j

(s|p|2−iν1)
N j +m−1 ,

where the integers N j , ℓ j , e j , k j satisfy

(36) N j = 2n′
+ n′′

+ j, e j > 0 is even, 0 < e j ≤ ℓ j , and k j ≥ 0.

What is relevant for the proof of Lemma 4.5 below is that a typical term in the
expansion satisfies

(37) exponent(denominator) − exponent(s) − exponent(ν) = m + 1 + E,

where E is an even, nonnegative integer.
In view of Lemma 4.2, the remainder term is analytic in ν ∈ Sm−1 and s > 3. In

addition, the typical term is

(38) O(pα′

)O(ν, s)
(s|p|2−iν1)αsβ

,

where O(ν, s) is real analytic in ν ∈ Sm−1 and s ≥ 3, bounded in s, and β ≥ 2.

Analysis of typical term in (35). We will now show that the integral (over ν ∈ Sm−1

and s ≥ 1) of the typical term in (35) is bounded in p. We will also show the same
for the remainder term in (38).

As to the first task, let r̂ = |p|
2 > 0 and define

HN ,ℓ,m,e,k(r̂ , s, ν) =
s N−2−ℓ−2kνℓ−e

(sr̂ −iν1)N+m−1 .

To establish Lemma 4.4 over the region 1
2 ≤ r < 1, we need to show that for

each ℓ ≥ 0, there is a uniform constant C such that

(39)
∣∣∣∫

ν∈Sm−1

∫ ∞

s=3
HN ,ℓ,m,e,I3,k(r̂ , s, ν) ds dν

∣∣∣≤ C

for all r̂ > 0 near zero.
As discussed at the end of Section 7 in [Boggess and Raich 2023], we can assume

the monomial νℓ−e depends on ν1 only (by writing ν = (ν1, ν
′) and noting that

integrals of odd powers of monomials in ν ′ over ν ′
∈ Sm−2 are zero). We let x = ν1,

and then the surface measure on the unit sphere in Sm−1 can be written as

dν = (1 − x2)(m−3)/2 dx dν ′

where dν ′ is the surface measure on Sm−2.
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The desired estimate in (39) will follow from the next lemma.

Lemma 4.5. For any nonnegative integers N , m and ℓ with m ≥ 2 and any even
integer E with 0 ≤ E ≤ |ℓ|, let

Aℓ,E
N ,m,k(r̂) =

∫ 1

x=−1

∫
∞

s=3

(1 − x2)(m−3)/2s N−2−ℓ−2k xℓ−E ds dx
(sr̂ − i x)N+m−1 .

Then Aℓ,E
N ,m,k(r̂) is a smooth function of r̂ > 0 up to r̂ = 0.

This lemma is almost identical to Lemma 8.1 in [Boggess and Raich 2023] (the
difference is in the exponent of s). Below, we give a short argument to reduce our
lemma to Lemma 8.1 in [Boggess and Raich 2023].

Proof of Lemma 4.5. First write

Aℓ,E
N ,m,k(r̂) = CN ,ℓDN−(2+ℓ+2k)

r̂ {Bℓ,E
m (r̂)},

where CN ,ℓ is a constant and

Bℓ,E,2k
m (r̂) =

∫ 1

x=−1

∫
∞

s=3

(1 − x2)(m−3)/2xℓ−E ds dx
(sr̂ − i x)m+ℓ+2k+1 .

Here, D j
r̂ indicates the j-th derivative with respect to r̂ . The index j is allowed

to be negative in which case this means the | j |-th antiderivative with respect to r̂
(with a particular initial condition specified at a fixed value of r̂ = r̂0 > 0).

Note, Bℓ,E,2k
m (r̂) is identical to the corresponding expression in the proof of

[Boggess and Raich 2023, Lemma 8.1] except that the exponent in the denominator
differs by the even integer 2k ≥ 0. The rest of the proof proceeds exactly as the
proof of Lemma 8.1 to show that Bℓ,E,2k

m (r̂) is smooth for r̂ > 0 up to r̂ = 0. □

Analysis of Remainder Term in (38). The remainder term in (38) is

O(ν, s)
(s|p|2 − iν1)αsβ

with β ≥ 2 and α ≥ 2.

As above, we set x = ν1. Since s−β is integrable over {s ≥ 3} and since O(ν ′, ν1, x)

is real analytic (and hence uniformly bounded) in ν ′
∈

√
1 − x2Sm−2 ((m−2)-

dimensional sphere of radius
√

1 − x2), the following lemma will finish the proof
of Theorem 4.1 for the integral over the region 1

2 ≤ r < 1 (and in the case |t | ≥ |z|2

and 0 ≤ q ≤ 2n′
+ n′′).

Lemma 4.6. For m ≥ 2, let

R(s, r̂ , ν ′) =

∫ 1

x=−1

(1 − x2)(m−3)/2O(ν ′, x, s) dx
(sr̂ − i x)α

.

Then R(s, r̂ , ν ′) is uniformly bounded for s ≥ 3, r̂ ≥ 0, and ν ′
∈

√
1 − x2Sm−2.
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This lemma is identical to Lemma 9.1 in [Boggess and Raich 2023]. The basic
idea is to use Cauchy’s theorem to deform the contour of integration into the upper
half plane and away from x = 0.

Subcase: |t| ≥ |z|2 and 0 < r < 1
2 . We first assume that n′′

≥ 2 or n′′
= 1 and

J ′
̸= P . We start with the lower r version of (27). In this case, however, we stick

with the r variable, 0 ≤ r ≤
1
2 (instead of changing to s). We rewrite this term here:

N ℓ
K ,J (p) =

∫
ν∈Sm−1

∫ 1
2

r=0

det([r− Āν ]K ′,J ′)B(r, ν)

(A(r, νt , p) − iν1)2n+m−1

dν dr
r |log r |n

′′
.(40)

The ℓ superscript indicates that we are working on the lower half of the r -interval.
N ℓ

K ,J (p) is the coefficient of the dz̄ J ′ component of

(41)
∫

νt∈Sm−1

∫ 1
2

r=0

det(Ū (νt)K ′,J ′) d Z̄(νt , z)L ′ ∧ dz̄′′

K ′′ BL ′(r, νt)

(A(r, νt , p) − iν1)2n+m−1

dν dr
r |log r |n

′′

Our goal is to prove the following:

Lemma 4.7. We have

(42) |N ℓ
K ,J (p)| ≤ C for all p =

z
|t |1/2 ∈ C2n′

+n′′

,

where C is a uniform constant.

Proof. The proof is nearly identical to the proof of Lemma 10.1 in [Boggess and
Raich 2023] with the only difference being the presence of the log-terms. We give a
quick outline. We are in a case where at least one of L ∩ Pc or Lc

∩ P is nonempty.
In view of (23), there must be a positive power of r in the numerator of BL ′(r, ν).
Therefore

(43)
|BL ′(r, ν)|

r |log r |n
′′

≤
Cr c0

r |log r |n
′′
,

where C and c0 are uniform positive constants. Having a positive power of r in
the numerator turns out to be one of the most useful terms for offsetting enough of
the blow-up of 1/r as r → 0 to guarantee integrability in r near 0. We repeatedly
use this fact in both the |t | large and |z| large cases. In fact, as soon as there is a
factor of r c0 for some c0 > 0 in the numerator, we can use a straightforward size
argument to bound the integrand.

For |t | ≥ |z|2, the presence of a positive power of r allows for the following.
First, the integrand of N ℓ

K ,J is integrable over the interval 0 < r < 1
2 . Therefore,

the integral on the right-hand side of (41) over the set
{
0 ≤ r ≤

1
2

}
×
{
|ν1| ≥

1
2

}
is

uniformly bounded for p ∈ C2n′
+n′′

. Thus, we turn our attention to the integral over{
0 ≤ r ≤

1
2

}
×
{
|ν1| ≤

1
2

}
.
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The idea is to integrate by parts in ν1 over the integral in (40) over the interval{
|ν1| ≤

1
2

}
to reduce the power of (A(r, νt , p) − iν1) in the denominator where

A(r, νt , p) is defined in (24). As shown in Section 10 in [Boggess and Raich 2023],
A(r, νt , p) is analytic in ν ∈ Sm−1.

Let

X (r, ν, p) :=

(
∂

∂ν1
{A(r, νt , p)} − i

)−1

and note that

X (r, ν, p)Dν1

{
−i(2n′

+ n′′
− 2)−1

(A(r, νt , p) − iν1)2n′+n′′−2

}
=

1
(A(r, νt , p) − iν1)2n′+n′′−1 .

When integrating by parts with X (r, ν, p)Dν1 over
{
|ν1| ≤

1
2

}
, there will be terms

involving the ν1-derivatives of X (r, ν, p), r− Āν

and B(r, ν) that occur in the inte-
grand of (40). These derivatives produce additional powers of |log r | which do not
affect the integrability in r over 0 ≤ r ≤

1
2 . In addition, there are boundary terms at

|ν1| =
1
2 and these terms are uniformly integrable on

{
0 ≤ r ≤

1
2

}
×
{
|ν1| =

1
2

}
.

This process of integration by parts with X (r, ν, p)Dν1 can be repeated until the
integrand in (40) involves only log(A(r, νt , p)− iν1) (using the principle branch
of log since the A term is positive). This log-term is uniformly integrable on{
0 ≤ r ≤

1
2

}
×
{
|ν1| ≤

1
2

}
, and thus Lemma 4.7 is proved. For more details, see

Section 10 of [Boggess and Raich 2023] (where z-, z̄-, and t-derivatives are also
handled in full generality).

The remaining case is n′′
= 1 and J ′

= P where the relevant term to estimate
is given by (7) with the r-interval of integration restricted to 0 ≤ r ≤

1
2 . We first

recall [Boggess and Raich 2023, Lemma 12.3].

Lemma 4.8. The following functions are analytic as a function of ν ∈ Sm−1:

• ν → |det Aν |.

• ν → A(0, ν, p) =
∑2n′

j=1 |µν
j ||pν

j |
2.

• ν → det(Ū (ν)K ,P) d Z̄(p, ν)P
=
∑

J∈In
det(Ū (ν)K ,P) det[U (ν)P,J ]

T dz̄ J .

Therefore, the functions to estimate in (7) with the r-interval of integration
restricted to 0 ≤ r ≤

1
2 are of the form

N ℓ
K ,J (p) =

∫
νt∈Sm−1

det(Ū (ν)K ,P) det[U (ν)P,J ]
T
|det Aνt |

×

∫ 1
2

r=0

(( 2n′∏
j=1

1

1 − r |µνt
j |

)
1

(A(r, νt , p) − iν1)2n′+m

−
1

(A(0, νt , p′, 0) − iν1)2n′+m

)
dr dνt

|log r |r
.
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By writing

(44)
1

1 − r |µνt
j |

= 1 +
r |µνt

j |

1 − r |µνt
j |

and
1 + r |µνt

j |

1 − r |µνt
j |

= 1 +
2r |µνt

j |

1 − r |µνt
j |

,

we can write

(45) N ℓ
K ,J (p) =

∫
νt∈Sm−1

det(Ū (ν)K ,P) det[U (ν)P,J ]
T
|det Aνt |

×

∫ 1
2

r=0

(
1( 2

|log r |
|q ′′|2 + A(0, νt , p) − iν1

)2n′+m

−
1

(A(0, νt , p′, 0) − iν1)2n′+m

)
dr dνt

|log r |r
+ OK,

where the OK term is comprised of terms with r c0 in the numerator for values
c0 > 0 and the discussion after (43) applies. Focusing on the integral in r , we let
s = −2/log r so that ds/s = dr/(|log r |r) so that∫ 1

2

r=0

(
1( 2

|log r |
|p′′|2+ A(0, νt , p′, 0)−iν1

)2n′+m −
1

(A(0, νt , p′, 0)−iν1)2n′+m

)
dr

r |log r |

=

∫ 2
log 2

s=0

(
1

(s|p′′|2+ A(0, νt , p′, 0)−iν1)2n′+m −
1

(A(0, νt , p′, 0)−iν1)2n′+m

)
ds
s

.

By Lemma A.1, with a = |p′′
|
2, b = A(0, νt , p′, 0) − iν1, and γ = 2/log 2,

(46)
∫ 2

log2

s=0

(
1

(s|p′′|2+A(0,νt , p′,0)−iν1)2n′+m −
1

(A(0,νt , p′,0)−iν1)2n′+m

)
ds
s

=
1

(A(0,νt , p′,0)−iν1)2n′+m log
(

1+
2

log2
|z′′

|
2

A(0,νt , z′,0)−iν1|t |

)
+E2n′+m(|p′′

|
2, A(0, p′,0)−iα1).

To complete the proof of Lemma 4.7, we use Lemma 4.8 and shift the contour in
ν1 to avoid ν1 = 0. By doing this,

|A(0, νt , p′, 0) − iν1| ∼ |p′
|
2
+ 1

on the new contour and basic size estimates now suffice. □

5. Proof of Theorem 2.5, |z|2 ≥ |t|

Subcase: |z|2 ≥ |t| and 0 < r < 1
2 . Analogous to the case when |t | ≥ |z|2, we

investigate the terms in (41) but with the term |t |2n′
+n′′

+m−1 inserted back into the
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denominator of the integrand. Using (5) we are led to estimate the term

(47) N ℓ
K ,L ,J (z, t) =

∫
ν∈Sm−1

det(Ū (ν)K ′,L) det(U (ν)L ,J ′)|det Aν |

×

∫ 1
2

r=0

( ∏
j∈(L′)c∩P
j∈L′∩Pc

r |µν
j |

1 − r |µν
j |

∏
k∈L′

∩P
k∈(L′)c∩Pc

1
1 − r |µν

k |

)

×
1

(A(r, ν, z) − iν · t)2n′+n′′+m−1

dr dν

|log r |n
′′r

,

when n′′
≥ 2 or L ′

̸= P , and

(48) N ℓ
K ,P,J (z, t) =

∫
νt∈Sm−1

det(Ū (ν)K ,P) det[U (ν)P,J ]
T
|det Aνt |

×

∫ 1
2

r=0

(( 2n′∏
j=1

1

1 − r |µνt
j |

)
1

(A(r, νt , z) − iν · t)2n′+m

−
1

(A(0, νt , z′, 0) − iν · t)2n′+m

)
dr dνt

|log r |r
,

when n′′
= 1 and L ′

= P .
We start with the case n′′

= 1 and L ′
= P because the analysis of (48) is virtually

identical to that of (45). The same reductions and equalities hold, and factoring
|t | back into (46) is the calculation that we need. The size estimates are more
straightforward than the |t | large case because we do not have to shift the contour.

We now focus on (47). We first assume |z′
|
2
≥ |z′′

|
2. The upper bound estimates

in this case will follow directly from size estimates. Since |A(r, ν, z)−iν ·t |≥ c |z′
|
2

and either 1/(r |log r |
n′′

) is integrable near r = 0 (n′′
≥ 2) or there is an r c0 term in

the numerator (n′′
= 1 and J ′

̸= P), we use size estimates to establish

|N ℓ
K ,L ,J (z, t)| ≤

C
|z′|2(2n′+n′′+m−1)

.

The |z′′
| ≥ |z′

| estimate requires more care. In the case that there is a factor of r c0

in the numerator, the estimate is straightforward with size estimates, as bounding
(1 + rµ)/(1 − rµ) by |log r | shows that

r c0

|A(r, ν, z) − iν · t |2n′+n′′+m−1|log r |n
′′r

≤
r c0(

|z|2
|log r |

)2n′+n′′+m−1
|log r |n

′′r

=
1

|z|2(2n′+n′′+m−1)
r c0−1

|log r |
2n′

+m−1
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is integrable at 0, and the estimate

(49) |N ℓ
K ,L ,J (z, t)| ≤ C |z|−2(2n′

+n′′
+m−1)

holds. A factor r c0 will always be present whenever N is hypoelliptic, that is,
when 0 ≤ q < n′ or n′

+ n′′ < q ≤ n. Additionally, it will also be present when
n′

≤ q ≤ n′
+ n′′ as long as L ̸= P and (49) holds, a better estimate than (9).

It remains to analyze

N ℓ
K ,P,J (z, t) =

∫
ν∈Sm−1

det(Ū (ν)K ′,P) det(U (ν)P,J ′)|det Aν |

×

∫ 1
2

r=0

2n′∏
k=1

1
1 − r |µν

k |

1
(A(r, ν, z) − iν · t)2n′+n′′+m−1

dr dν

|log r |n
′′r

,

when n′′
≥ 2. As we have seen, once we have a positive power of r in the numerator,

we can use size estimates to obtain the estimates in (8). This is relevant for the
error estimates when |z′

|
2
≥ |t | in two ways. First, we can apply (44) to replace∏2n′

k=1 1/(1 − r |µν
k |) by 1 and an OK term. Second, since

A(r, ν, z) =
2

|log r |
|z′′

|
2
+

2n′∑
j=1

|µν
j ||z

ν
j |

2
+

2n′∑
j=1

2r |µν
j |

1 − r |µν
j |
|zν

j |
2,

we can write
1

(A(r, ν, z) − iν · t)2n′+n′′+m−1

=
1

(A0(r, ν, z) + iν · t)2n′+n′′+m−1 +
O(r c0)

(A0(r, ν, z) + iν · t)2n′+n′′+m−1

+
O(r c0 |z′

|
2)

(A0(r, ν, z) + iν · t)2n′+n′′+m ,

where

A0(r, ν, z) =
2

|log r |
|z′′

|
2
+

2n′∑
j=1

|µν
j ||z

ν
j |

2

and c0 > 0. The first error term arises from estimating BP(r, ν) by |det(Aν)|. The
second error term uses the expansion

1
(V + ζ )2n′+n′′+m−1 =

1
V 2n′+n′′+m−1 +

∞∑
j=1

α j
ζ j

V 2n′+n′′+m−1+ j

and therefore has A0(r, ν, z) raised to one higher power than in the main term.
When integrated, however, the estimate from the extra degree in the denominator is
offset by the additional factor of |z|2 in the numerator.
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This means that the remaining term to analyze is∫
ν∈Sm−1

det(U (ν)K ′,P) det(U (ν)T
P,J ′)|det Aν |

×

∫ 1
2

0

1
(A0(r, ν, z) − iν · t)2n′+n′′+m−1

dr dν

r |log r |n
′′
.

We factor out 2|z′′
|
2 from the denominator and let

a =

2n′∑
j=1

|µν
j |

|zν
j |

2

|z′′|2
− iν ·

t
|z′′|2

.

Note that 1/log 2 + a = O(1). By (53), we compute∫ 1
2

0

1
(A0(r, ν, z) − iν · t)2n′+n′′+m−1

dr dν

r |log r |n
′′

=
1

|z′′|2(2n′+n′′+m−1)

∫ 1
log 2

0

sn′′
−2

(s + a)2n′+n′′+m−1 ds

=
1

|z′′|2(2n′+n′′+m−1)

n′′
−2∑

ℓ=0

(
n′′

−2
ℓ

)
(−1)n′′

−ℓ

2n′ + n′′ + m − 1 − ℓ − 1

(
1

a2n′+m + O(1)

)

=
C

|z′′|2(n′′−1)

1(∑2n′

j=1 |µν
j ||z

ν
j |

2 − iν · t
)2n′+m + O(|z′′

|
−2(2n′

+n′′
+m−1)).

If |z′
|
2

≥ |t |, then
∑2n′

j=1 |µν
j ||z

ν
j |

2
− iν · t = O(|z′

|
2), and size estimates produce

O(|z|−2(n′′
−1)

|z′
|
−2(2n′

+m)), the desired estimate. If, on the other hand, |t | ≥ |z′
|
2,

then we treat the integral similarly to the large |t | case, rotating in ν and factoring
out |t | to produce the integral

C
|z′′|2(n′′−1)|t |2n′+m

∫
ν∈Sm−1

det(U (ν)K ′,P) det(U (ν)T
P,J ′)

|det Aν |(∑2n′

j=1 |µν
j ||q

ν
j |

2 − iν1
)2n′+m

dν

where qν
j = zν

j/|t |
1/2. The integrand in the above integral is O(1) when |ν1| ≥

1
2 . In

the case |ν1| ≤
1
2 , we handled this exact type of integral in [Boggess and Raich 2023,

(68)] and showed that the above integral is bounded by C/(|z′′
|
2(n′′

−1)
|t |2n′

+m) (in
fact, this bound is sharp).

Subcase: |z|2 ≥ |t| and 1
2 < r < 1. We are finally in a position to finish the proof

of the estimates in Theorem 2.5. As with the previous subsection, we include the
term |t |−(2n′

+n′′
+m−1) in the integrand. Define N u

K ,J (z, t) analogously to N u
K ,J (p)

in (27), with the r-integral over
[ 1

2 , 1
]

and including the term |t |−(2n′
+n′′

+m−1) in
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the integrand. We follow the analysis of the |t | large case through (35) to obtain

N u
K ,J (z, t) :=

∫
∞

s=3

∫
ν∈Sm−1

typical term in NK ,J (p)

|t |2n′+n′′+m−1 dν ds

=

∫
∞

s=3

∫
ν∈Sm−1

C(z, z̄)2 j s N j −2−ℓ j −K j νℓ j −e j

(s|z|2 − iν1|t |)N j +m−1 dν ds,

where N j = 2n′
+ n′′

+ j and ℓ j , K j ≥ 0, m ≥ 2. Since |z|2 ≥ |t | and |ν| = 1, we
use size estimates and drop the t-term in the denominator to obtain

|N u
K ,J (z, t)| ≤

∫
∞

s=3

∫
ν∈Sm−1

C |z|2 j s N j −1−ℓ j −K j

(s|z|2)N j +m−1 dν ds

≤

∫
∞

s=3

∫
ν∈Sm−1

C
|z|2(2n′+n′′+m−1)

·
1
s3 dν ds

after taking into account the constraints on ℓ j , K j , m. Therefore

(50) |N u
K ,J (z, t)| ≤

C
|z|2(2n′+n′′+m−1)

,

and we have established the estimates in Theorem 2.5.

Higher derivatives. As mentioned in the introduction, we will refer the reader to
[Boggess and Raich 2023] for details on how to handle the estimates for higher
derivatives. Here is the basic idea on how to obtain the estimates for derivatives.
Note that z and z̄ appear quadratically in A(r, ν, z) and t only appears in the ν · t
term. Thus, differentiating (20) once with a z′ or z̄′ derivative adds one more
factor of A(r, ν, z) − iν · t to the denominator along with a linear z′ or z̄′ term in
the numerator. The overall estimate in (8) changes by a factor of (|z|2 + |t |)−1/2.
By contrast, a t-derivative of (20) also adds a factor of A(r, ν, z) − iν · t to the
denominator but with no compensating factor of z′, z̄′ or t in the numerator. Thus
the overall estimate in (8) changes by a factor of (|z|2 + |t |)−1. The z′′- and z̄′′-
derivatives behave similarly. This is the basic idea behind why there is a 1

2 in front
of the exponents |I1| and |I2|, which represent z- or z̄-derivatives, and not in front
of |I3|, which represents t-derivatives.

6. Conclusion of the proof Theorem 2.5 — sharpness of the estimates

We will show the dominant term in (9) is nonzero for the index K = P provided
the eigenvectors of Aν depend continuously on ν.

We focus on the dz̄′

P component of NP (here, the value of n′′ is not important
because we are focusing on the integral in ν). Ignoring the power of |z′

| out front,
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this term is

NP =

∫
ν∈Sm−1

|det U (ν)P,P |
2 |det Aν |( 2

|log r |
|z′′|2 +

∑2n′

j=1 |µν
j ||z

ν
j |

2 − iν · t
)2n′+m dν.

Consider the case when |t | is smaller than |z′
|
2 < |z′′

|
2. We factor out |z′

|
2(2n′

+m)

from the denominator and obtain NP = |z′
|
−2(2n′

+m) ÑP where

ÑP =

∫
ν∈Sm−1

|det U (ν)P,P |
2 |det Aν |( 2

|log r |
|q ′′|2 +

∑2n′

j=1 |µν
j ||q

ν
j |

2 − iν · qt
)2n′+m dν

with q ′′
= z′′/|z′

|, qν
j = |zν

j |
2/|z′

|
2 and qt = t/|z′

|
2.

Now take a limit as qt → 0 and we obtain

(51) lim
qt→0

ÑP =

∫
ν∈Sm−1

|det U (ν)P,P |
2 |det Aν |( 2

|log r |
|q ′′|2 +

∑2n′

j=1 |µν
j ||q

ν
j |

2
)2n′+m dν.

Now µν
j ̸=0 for j =1, . . . , 2n′; and

∑2n′

j=1 qν
j =1; and det Aν ̸=0 for all ν ∈ Sm−1.

So if the integral on the right-hand side of (51) vanishes, then we conclude that
det U (ν)P,P = 0 for all ν ∈ Sm−1 except for a set of zero measure in ν. Thus, to
conclude the proof of Theorem 2.5, we have only to show

(52)
∫

ν∈Sm−1
|det U (ν)[P,P]|

2 dν > 0,

where U (ν) is the unitary matrix which diagonalizes Aν and where P is the set of
indices corresponding to the positive eigenvalues of Aν and U (ν)[P,P] is the P×P
minor matrix of U (ν). We may assume P ={1, 2, . . . , n′

} and Pc
={n′

+1, . . . , 2n′
}

where here, the eigenvalues are counted with multiplicity. We also let N = 2n′.
Define

• N0 = essential sup{the number of distinct eigenvalues of Aν : ν ∈ Sm−1
},

• S0 = {ν ∈ Sm−1
: the number of distinct eigenvalues of Aν = N0},

• λ j (ν), 1 ≤ j ≤ N0, are the distinct eigenvalues of Aν for ν ∈ S0,

• E j (ν) equals the eigenspace of λ j (ν) in CN for ν ∈ S0.

Note that N0 is an even number between 1 and N = 2n′. The set S0 has positive
measure by the definition of essential sup. Since there are only a finite number of
choices for dimC{E j (ν)}, we can shrink S0, but still with positive measure, so that
dimC{E j (ν)} is constant in ν ∈ S0 for each 1 ≤ j ≤ N0.

Although we are not assuming the eigenvalues are continuous in ν ∈ Sm−1, the
λ j ( · ) are measurable functions that are locally integrable on Sm−1. Using the
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usual row and column operations together with Gram–Schmidt, we can find an
orthonormal set of eigenvectors for the eigenspace E j (ν) of the form

U k
j (ν), 1 ≤ j ≤ N0, 1 ≤ k ≤ dimC{E j (ν)},

where these C N -valued functions are measurable and integrable in ν ∈ Sm−1. Now
let U (ν) be the unitary matrix with column vectors U k

j (ν).
By removing a set of measure zero from S0, we can assume that every point in

S0 lies in the Lebesgue set of each λ j ( · ) and U k
j ( · ) as well as all n-fold products

of the component entries of U k
j ( · ). Now fix any ν0 ∈ S0 and choose coordinates

for CN which diagonalize Aν0 where the first n diagonal entries correspond to the
positive eigenvalues of Aν0 . Note that in these coordinates, U[P,P](ν0) is the identity
matrix.

Now, for ε > 0, define

B(ν0, ε) = {ν ∈ Sm−1
: |ν − ν0| < ε}.

From the Lebesgue differentiation theorem,

lim
ε→0

1
|B(ν0, ε)|

∫
ν∈B(ν0,ε)

|det U[P,P](ν)|2 dν → |det U[P,P](ν0)|
2
= 1,

where |B(ν0, ε)| is the Lebesgue measure of B(ν0, ε) relative to Sm−1. We conclude
that, for small enough ε > 0,∫

ν∈B(ν0,ε)

|det U[P,P](ν)|2 dν > 0,

and this implies (52).

Appendix: Calculus computations

Lemma A.1. Suppose that a, γ > 0, b ̸= 0, and k ∈ N. Then∫ γ

0

1
s(as + b)k −

1
sbk ds =

1
bk log

(
1 + γ

a
b

)
+ E(a, b),

where Ek(a, b, γ ) is comprised of a sum of terms of the form

Ek(a, b, γ ) =

k∑
ℓ=0

cℓ

bℓ(aγ + b)k−ℓ

for some constants cℓ.

Proof. The proof is a computation using a partial fraction decomposition, recogniz-
ing that the 1/s terms cancel (so that the integral converges). □
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In that vein, we also have the following. We compute∫ 1
log 2

0

sk−2

(s + a)ℓ
ds =

∫ 1
log 2

0

(s + a − a)k−2

(s + a)ℓ
ds

=

k−2∑
i=0

(
k−2

i

)
(−1)k−2−i

∫ 1
log 2

0

ak−2−i

(s + a)ℓ−i+2 ds

=

k−2∑
i=0

(
k−2

i

)
(−1)k−1−i

(−ℓ + i + 1)

(
1

aℓ−k+1 −
ak−2−i( 1

log 2 + a
)ℓ−i−1

)
.(53)
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OPTIMAL POLYNOMIAL APPROXIMANTS

IN HARDY SPACES
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We study optimal polynomial approximants (OPAs) in the classical Hardy
spaces on the unit disk, H p (1 < p < ∞). For fixed f ∈ H p and n ∈ N,
the OPA of degree n associated to f is the polynomial which minimizes the
quantity ∥q f − 1∥ p over all complex polynomials q of degree less than or
equal to n. We begin with some examples which illustrate, when p ̸= 2,
how the Banach space geometry makes the above minimization problem
interesting. We then weave through various results concerning limits and
roots of these polynomials, including results which show that OPAs can be
witnessed as solutions of certain fixed-point problems. Finally, using duality
arguments, we provide several bounds concerning the error incurred in the
OPA approximation.
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1. Introduction

This paper concerns a minimization problem in classical Hardy spaces on the unit
disk D,

H p
:=

{
f ∈ Hol(D) : sup

0≤r<1

∫ 2π

0
| f (reiθ )|p dθ <∞

}
,

where Hol(D) denotes the collection of holomorphic functions on D. As is standard,
for 1 ≤ p <∞, we define the norm of f ∈ H p as

∥ f ∥p :=

(
sup

0≤r<1

∫ 2π

0
| f (reiθ )|p dθ

)1/p
.
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When p = ∞, we have the set of bounded analytic functions

H∞
:= { f ∈ Hol(D) : sup

z∈D

| f (z)|<∞},

with corresponding norm
∥ f ∥∞ := sup

z∈D

| f (z)|.

We will frequently view these spaces as subspaces of the Lebesgue spaces L p
:=

L p(T, dm), where dm is normalized Lebesgue measure on the unit circle T.
Our main objects of study are optimal polynomial approximants (OPAs) in Hardy

spaces; these are solutions to the minimization problem

inf
q∈Pn

∥q f − 1∥p,

where f ∈ H p and Pn is the set of complex polynomials of degree less than or
equal to n. We point out that the infimum above is actually a minimum. In our
context, this means the problem of finding a degree n OPA can be restated as finding
the solution to

inf
h∈ f Pn

∥h − 1∥p,

which is given by the metric projection of 1 on the subspace f Pn . A priori, the
minimizing argument may not be unique. However, when 1 < p <∞, it is well
known that there is, in fact, a unique minimizing polynomial due to the uniform
convexity of the space; for in a such a space, any closed subspace enjoys a unique
nearest-point property. When p ̸= 2, the projection is nonlinear, which starkly
contrasts with the Hilbert space setting.

For p ̸= 2, this problem was originally studied by Centner [10], and considered
again in an additional paper by Centner and the authors [11]. We will give some
background now, but point the reader to [10; 11] for more thorough exposition,
and to [5; 6; 7; 8; 9; 10; 15; 17; 18] for relevant work on OPAs in various Hilbert
spaces.

When p = 2, this problem was first studied by engineers in work related to digital
filter design. The problem reemerged later as a potential way to study cyclic vectors
for the forward shift (see [4] for historical discussion). This renewed interest is
evidenced by many papers over the last decade (again, see [4], as well as [1; 3] for
recent results in the weighted and noncommutative settings, respectively). Other
than the work in [14], these results concern only Hilbert spaces, where the geometry
makes computation of OPAs an explicit (but nontrivial!) linear algebra exercise. For
example, in H 2, the coefficients (say, a0, . . . , an) of the OPA of degree n associated
to a function f ∈ H 2 can be found via the linear system

(1.0.1) (⟨S j f, Sk f ⟩H2)0≤ j,k≤n(a0, . . . , an)
T

= ( f (0), 0, . . . , 0)T ,
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where S is the forward shift operator, given by f (z) 7→ z f (z) (see, e.g., [15,
Theorem 2.1]).

In the Banach space setting (for example, H p, p ̸= 2), there is not a direct
analogue of this exercise, and the nonlinearity of the metric projection makes
explicit calculation of OPAs a highly nontrivial task. In the next section, we will
state precisely the definition of optimal polynomial approximant. Before moving
there, let us give an outline of the paper:

• Section 2 will formally introduce the OPA problem, give some background
information concerning the geometry of Banach spaces, and provide some examples
illustrating how this geometry differs from that of Hilbert spaces.

• The results of Section 3 are broken into three parts:

– convergence of OPAs under variance of the parameters of the OPA problem
(e.g., n, p, and f ),

– the location of roots of OPAs,

– constant and linear OPAs as solutions to a fixed-point problem.

• Using duality, Section 4 establishes various bounds for the error ∥q f − 1∥p.

2. Preliminaries and geometric oddities

We begin here by providing some background material concerning the geometry of
Banach spaces, followed by several examples in H p which illustrate some oddities
that arise when p ̸= 2.

Let x and y be vectors belonging to a normed linear space X . We say that x is
orthogonal to y in the Birkhoff–James sense [2; 16] if

(2.0.1) ∥x +β y∥X ⩾ ∥x∥X

for all scalars β. In this situation we write x ⊥X y. In the case X = L p, let us
write ⊥p instead of ⊥L p , and similarly for X = H p.

For 1< p <∞, there is also a function-theoretic test for p-orthogonality, which
we note now.

Theorem 2.0.2 (James [16]). Suppose 1 < p <∞. Then for f and g belonging
to L p, we have

(2.0.3) f ⊥p g ⇐⇒

∫
T
| f |

p−2 f̄ g dm = 0,

where any occurrence of “|0|
p−20” in the integrand is interpreted as zero.

In light of (2.0.3) we define, for a measurable function f and any s > 0,

(2.0.4) f ⟨s⟩
:= | f |

s−1 f̄ .
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If f ∈ L p, then f ⟨p−1⟩
∈ Lq , where q is the classical Hölder conjugate to p,

satisfying 1
p +

1
q = 1. For g ∈ L p and f ∈ Lq , we use the standard notation for the

dual pairing

⟨ f, g⟩ =

∫
T

f ḡ dm,

and from (2.0.3), we have

(2.0.5) f ⊥p g ⇐⇒ ⟨g, f ⟨p−1⟩
⟩ = 0.

Consequently, the relation ⊥p is linear in its second argument when 1< p <∞,
and it then makes sense to speak of a vector being orthogonal to a subspace. We
use this now to formally define OPAs.

Definition 2.0.6 (OPA). Let 1< p <∞ and let f ∈ H p
\ {0}. Given a nonnegative

integer n, the n-th optimal polynomial approximant to 1/ f in H p is the polynomial
solving the minimization problem

min
q∈Pn

∥q f − 1∥p,

where Pn is the set of complex polynomials of degree less than or equal to n. This
polynomial exists, is unique, and will be denoted by

qn,p[ f ].

Given f, n and p, we refer to the problem of finding the corresponding OPA as
the OPA problem.

Considering previous discussion on the metric projection, it is immediate that

1 − qn,p[ f ] f ⊥p

∨
{ f, z f, z2 f, . . . , zn f }.

We will use the notation zk f and Sk f interchangeably if there is no risk of confusion.
We will also use the notation [ f ]p to denote the closure of

∨
{ f, z f, z2 f, z3 f, . . . }

in H p, i.e.,

[ f ]p :=

∨
{ f, z f, z2 f, z3 f, . . . }

H p

.

In order to avoid trivialities, we will also often ask that f (0) ̸= 0; in the case that
f (0)= 0, this is equivalent to 1 ⊥p f , and so the metric projection of 1 onto f Pn

is identically zero.
In connection with Birkhoff–James orthogonality, there is a version of the

Pythagorean theorem for L p. This theorem takes the form of a family of inequalities
relating the lengths of orthogonal vectors with that of their sum [12, Corollary 3.4].
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Theorem 2.0.7. Suppose that x ⊥p y in L p. If p ∈ (1, 2], then

∥x + y∥
p
p ⩽ ∥x∥

p
p +

1
2p−1 − 1

∥y∥
p
p,

∥x + y∥
2
p ⩾ ∥x∥

2
p + (p − 1)∥y∥

2
p.

If p ∈ [2,∞), then

∥x + y∥
p
p ⩾ ∥x∥

p
p +

1
2p−1 − 1

∥y∥
p
p,

∥x + y∥
2
p ⩽ ∥x∥

2
p + (p − 1)∥y∥

2
p.

These Pythagorean inequalities enable us to obtain bounds and estimates when
p ̸= 2, in lieu of exact calculations possible in the Hilbert space case.

The following examples illustrate some of the ways the geometry of H p (p ̸= 2)
can run counterintuitive to experience in Hilbert space. Although these examples
may not be immediately surprising to the Banach space enthusiast, we relay them for
the general functional analyst, especially working in linear approximation problems,
as interesting observations related to natural geometric questions.

Example 2.0.8. In a Hilbert space, an orthogonal projection is always a contraction.
However, when p ̸= 2, the norm of the metric projection of a vector can exceed the
length of the vector itself.

Consider the linear OPA for f (z)= 1 + 0.5z in H 4. Numerically, we find that
Q(z) := q1,4[ f ] ≈ 0.9771018 − 0.4339644z, and thus

∥Q f ∥
4
4 ≈ 1.10294> 1.

Example 2.0.9. In H 2, it is simple to verify that if F(0)= 0, then, for c ∈ C, the
quantity

∥c + F∥2

is minimized when c = 0. However, this is not the case when p ̸= 2.
For example, let p = 4 and F(z)= z+2z2. Note that since F has real coefficients,

the value of c which minimizes ∥c + F∥p must also be real, or else uniqueness of
nearest points is violated. In turn, we have

∥c + F∥
4
4 = 33 + 8c + 20c2

+ c4.

Numerically, this is minimized when c ≈ −0.199209. In particular, the value of the
minimizing argument can be nonzero when p ̸= 2.

Example 2.0.10. Notice for f ∈ H 2 and any n > 0, we have

1 − qn,2[ f ] f ⊥2 z f and 1 ⊥2 z f.
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Using linearity, we have

qn,2[ f ] f = 1 − (1 − qn,2[ f ] f )⊥2 z f.

It is natural to ask if this is true when p ̸= 2, that is, is it true in general that

qn,p[ f ] f ⊥p z f ?

Let us take p = 4, n = 1, and f (z)= 1+2z + z8. Numerically, one can find that∫
T

(q1,p[ f ] f )⟨p−1⟩z f dm ≈ 0.00355837,

which is nonzero, and so orthogonality fails. This illustrates that for p ̸= 2, the
relation ⊥p fails to be linear in its first argument, and so qn,p[ f ] f is not necessarily
orthogonal to z f .

Example 2.0.11. For f, g ∈ H 2, an exercise shows that if ∥ f ∥2 ⩽ ∥g∥2, then
∥1 + z f ∥2 ⩽ ∥1 + zg∥2. Might a similar statement hold for p ̸= 2? The following
example shows that the answer is no.

Let p = 4 and choose

f (z)= 0.9(1 + z + z2),

g(z)= −1 − z − z2.

It is immediate that ∥ f ∥4 < ∥g∥4. However, numerically, we find

∥1 + z f ∥
4
4 ≈ 31.9339,

∥1 + zg∥
4
4 ≈ 20.0000.

With these examples in hand, it may now be reasonable to suspect that OPAs
have a dependence on p which is highly nonlinear. In general, this is true. Let
us demonstrate this with what we describe as the OPA “error” — the quantity
∥qn,p[ f ] f − 1∥p. We use this as motivation in Section 3, where we study the
p-dependence of OPAs.

Example 2.0.12. For m a positive integer, consider f (z)= 1 + 2zm . Let us show

∥q0,2[ f ] f − 1∥2 ̸= ∥q0,4[ f ] f − 1∥4.

For p = 2 and any scalar a ∈ R, we have

∥a f − 1∥
2
2 =

∫ 2π

0
([a − 1]

2
+ 2aeimθ )([a − 1]

2
+ 2ae−imθ )

dθ
2π

= (a − 1)2 + 4a2.
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Notice that the result of the integration is the extraction of the constant OPA (again,
this constant must be real, as the coefficients of f are real). Minimizing this
expression (by differentiating with respect to a), we find

a =
1
5 .

This yields

∥a f − 1∥2 =

√( 1
5 − 1

)2
+ 4

( 1
5

)2
=

√
4
5 ≈ 0.894427.

For p = 4, we have

∥a f − 1∥
4
4 =

∫ 2π

0
(a + 2aeimθ

− 1)2(a + 2ae−imθ
− 1)2

dθ
2π
,

and one may extract the constant term as

(a − 1)4 + 16a2(a − 1)2 + 16a4.

Next, one may numerically find that a ≈ 0.121991 minimizes the above expression.
Finally, this yields

∥q0,4[ f ] f − 1∥4 ≈
4
√

0.781388 ≈ 0.940192.

In addition to the error, one may also notice that the OPAs themselves vary
with p. For example, letting f (z)= 1 + 2z + z8, one may numerically find that

q0,4[ f ] ≈ 0.0970262,

q0,6[ f ] ≈ 0.0674066.

However, this is not always the case(!). The following example is a generalization
of [10, Example 6.1], which showed that the constant OPAs for f (z)= 1 − z do
not vary with p.

Example 2.0.13. Let 1 < p <∞ and let f ∈ H p. Let λ ∈ C and let h = 1 + f .
Suppose that | f (ei t)|=1 a.e. on T and f (e−i t)= f (ei t) (i.e., the Fourier coefficients
of f are real).

Putting a = q0,p[h], we observe

∥a(1+ f (ei t))−1∥p = ∥a f (ei t)+a−1∥p

= ∥a+ f (ei t)(a−1)∥p (multiply by f̄ , inner)

= ∥a+ f (e−i t)(a−1)∥p (real coefficients)

= ∥a+ f (ei t)(a−1)∥p (t 7→ −t)

= ∥−a+1−1− f (ei t)(a−1)∥p (multiply by −1 and add 0)

= ∥(1−a)(1+ f (ei t))−1∥p.
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This tells us that a =
1
2 , which is independent of p. Note that if f is any Blaschke

product with real zeros, the hypotheses above are satisfied.

3. Limits and continuity

In this section, we provide results which relate to varying the parameters in the
OPA problem (i.e., the degree n, the value of p, and the function f ). We first
deal with this directly. Then, as a corollary, the first subsection below discusses
the possible set of roots for OPAs. In the final subsection, we show that OPAs (in
certain cases) are solutions to a fixed-point problem. All of these results enable us
to make estimates concerning OPAs, knowing that exact computation is difficult
when p ̸= 2.

We begin by recording, without proof, a known result about metric projections
(see, e.g., [13, Proposition 4.8.3]).

Proposition 3.0.1. Let 1 < p < ∞. Let f ∈ H p with f (0) ̸= 0 and let h be the
metric projection of 1 onto [ f ]p. Then, in norm,

qn,p[ f ] f → h as n → ∞.

In the following proposition, for 1 < p <∞ and f ∈ H p, we write Q∞ f for
the metric projection of 1 onto [ f ]p, understanding that Q∞ need not be a bona
fide H p function. The next result tells us something about the error incurred by
approximating qn,p[ f ] using the Taylor polynomials of Q∞, when the (rather strict)
assumption of norm convergence holds.

Proposition 3.0.2. Let 1< p <∞, and f ∈ H p. Suppose that the representation

Q∞(z) f (z)=

∞∑
k=0

αkzk f (z)

converges in norm. Then there exist a positive constant C and an index N such that

∥qn,p[ f ] f − Q(n) f ∥
r
p ⩽ C ∥Q∞ f − Q(n) f ∥p

for all n ⩾ N , where Q(n)(z) =
∑n

k=0 αkzk , and r and K are the applicable
Pythagorean parameters.

Proof. From the orthogonality relation

1 − qn,p[ f ] f ⊥p qn,p[ f ] f − Q(n) f,

the Pythagorean inequality gives

∥1 − qn,p[ f ] f ∥
r
p + K ∥qn,p[ f ] f − Q(n) f ∥

r
p ⩽ ∥1 − Q(n) f ∥

r
p.
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Rearrange and estimate to get

K ∥qn,p[ f ] f − Q(n) f ∥
r
p ⩽ ∥1 − Q(n) f ∥

r
p − ∥1 − qn,p[ f ] f ∥

r
p

⩽ ∥1 − Q(n) f ∥
r
p − ∥1 − Q∞ f ∥

r
p

⩽ r ∥1 − Q(n) f ∥
r−1
p (∥1 − Q(n) f ∥p − ∥1 − Q∞ f ∥p)

⩽ r ∥1 − Q(n) f ∥
r−1
p ∥Q∞ f − Q(n) f ∥p

⩽ 2r ∥1 − Q∞ f ∥
r−1
p ∥Q∞ f − Q(n) f ∥p,

for n sufficiently large. In the third step we applied the elementary inequality

ar
− br ⩽ rar−1(a − b),

for 0< b < a and r > 1.
This verifies the claim, with C = 2r ∥1 − Q∞ f ∥

r−1
p /K . □

The previous proposition can be applied when f is any polynomial; we record
that result now.

Proposition 3.0.3. Suppose that 1< p <∞. Let z1, z2, . . . , zN be a sequence of
nonzero points of D, and define

f (z) :=

(
1 −

z
z1

)(
1 −

z
z2

)
· · ·

(
1 −

z
zN

)
.

Set r = 2 if 1< p ⩽ 2, and set r = p if 2< p<∞. Then the metric projection h of
the unit constant function 1 onto the subspace [ f ]p of H p has a norm convergent
representation

h(z)=

∞∑
k=0

bkzk f (z),

and there exists a positive constant C such that

(3.0.4)
∥∥∥∥qn,p[ f ] f −

n∑
k=0

bkzk f
∥∥∥∥r

p
⩽ C

∥∥∥∥ ∞∑
k=n+1

bkzk f
∥∥∥∥

p

for all positive integers n.

We omit the proof here, but note that the metric projection h must vanish at the
zeros of f ; in turn, boundedness of the difference-quotient operator, given by

(Bw f )(z)=
f (z)− f (w)

z −w
, z, w ∈ D,

(applied where f (w)= 0) then ensures the norm convergent representation.
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3.1. Continuity. As discussed earlier, OPAs generally vary with p. We discuss
this variance here, first showing that when f is a bounded function, qn,p[ f ] varies
continuously with respect to p.

Lemma 3.1.1. Let f ∈ H∞ with f (0) ̸= 0 and let d ∈ N. If (pk)k ⊆ (1,∞) with
pk → p ∈ (1,∞), then qd,pk [ f ] converges to qd,p[ f ] uniformly as k → ∞.

Proof. Let us write

f (z)=

∞∑
j=0

f j z j ,

qd,p[ f ](z)= a0 + a1z + a2z2
+ · · · + ad zd ,

qd,pk [ f ](z)= a(k)0 + a(k)1 z + a(k)2 z2
+ · · · + a(k)d zd .

Since f ∈ H∞, Hölder yields∣∣∣∣∫
T

f z− j dm
∣∣∣∣ ⩽ ∥ f ∥∞

for all j ≥ 0. Hence, all of the coefficients fk are bounded by ∥ f ∥∞.
Letting p′

k be the dual exponent of pk , we observe

|a(k)0 f0 − 1| =

∣∣∣∣∫
T

(qd,pk [ f ] f − 1) dm
∣∣∣∣ ⩽ ∥qd,pk [ f ] f − 1∥pk ∥1∥p′

k
⩽ 1,

and so the sequence {a(k)0 } is bounded.
Further, since

|a(k)0 f j + a(k)1 f j−1 + · · · + a(k)j f0| ⩽

∣∣∣∣∫
T

(qd,pk [ f ] f − 1)z− j dm
∣∣∣∣ ⩽ 1,

it follows

|a(k)j | ⩽
|a(k)0 f j + a(k)1 f j−1 + · · · + a(k)j−1 f1| + 1

| f0|
,

for all k ∈ N and 1 ⩽ j ⩽ d. That is, {a(k)j }
∞

k=1 is also a bounded sequence for
1 ⩽ j ⩽ d. By passing to a subsequence and relabeling, we can assume that
{qn,pk [ f ]}

∞

k=1 is a uniformly convergent sequence of polynomials, which converges
to some polynomial, say, A(z)= a0 + a1z + · · · + ad zd

∈ Pd .
Now, for 0 ⩽ j ⩽ d , recall the orthogonality equations∫

T

[qd,pk [ f ] f − 1]
⟨pk−1⟩z j f dm = 0.
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Taking k → ∞ and invoking uniform convergence, we find that∫
T

[A f − 1]
⟨pk−1⟩z j f dm = 0,

for 0⩽ j ⩽d (the taking of ⟨pk −1⟩ powers also being well behaved). By uniqueness
of the optimal polynomial, it must be that

A(z)= qd,p[ f ](z).

Since every subsequence of the originally given sequence {qd,pk [ f ]}
∞

k=1 has a
further subsequence that converges to the same limit qd,p[ f ], it must be that

qd,pk [ f ] → qd,p[ f ]

uniformly. □

We now present another continuity result — continuity in f . In particular, if
fk → f in H p, then qn,p[ fk] → qn,p[ f ]. Before establishing this result, we need a
couple of lemmas.

Lemma 3.1.2. Let 1< p<∞ and 1
p +

1
q =1. If ϕk →ϕ in L p, then ϕ⟨p−1⟩

k →ϕ⟨p−1⟩

in Lq .

Proof. First, we check that∫
T

|ϕ⟨p−1⟩
|
q dm =

∫
T

|ϕ|
(p−1)q dm =

∫
T

|ϕ|
p dm,

and so ϕ⟨p−1⟩
∈ Lq ; similarly ϕ⟨p−1⟩

k ∈ Lq .
Next, we apply the generalized dominated convergence theorem, using the

sequential bound

|ϕ
⟨p−1⟩

k −ϕ⟨p−1⟩
|
q ⩽ 2q−1(|ϕk |

p
+ |ϕ|

p) a.e.-dm,

with the Carleson–Hunt theorem supplying pointwise convergence almost every-
where. The conclusion is∫

T

|ϕ
⟨p−1⟩

k −ϕ⟨p−1⟩
|
q dm → 0,

as claimed. □

Below, we use the standard notation f̂ (n) to denote the n-th Fourier coefficient
of a function f ∈ L p.

Lemma 3.1.3. Let 1< p <∞. If ϕ ∈ H p, then

∥ϕ∥
r
p ⩾ |ϕ̂(0)|r + K |ϕ̂(1)|r + K 2

|ϕ̂(2)|r + · · · ,

where r and K are the lower Pythagorean parameters.
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Proof. This follows immediately from the orthogonality relations

zk
⊥p zm H p for all m > k ⩾ 0,

and repeated application of the lower Pythagorean inequality. □

We are now prepared to prove the aforementioned result.

Theorem 3.1.4. Suppose that 1< p <∞ and n ∈ N. Let fk ∈ H p and let Qk :=

qn,p[ fk] for each k ∈ N. If fk → f in H p, and f (0) ̸= 0, then Qk → Q := qn,p[ f ].

Proof. Let us first handle the case n = 1, and write Qk(z)= ak + bkz for q1,p[ f ].
Since fk(0)→ f (0), and f (0) ̸= 0, there is no harm in assuming that there exists

c > 0 such that | fk(0)| ⩾ c for all k.
From the relation

1 ⊥p zH p

we see that

1 ⩾ ∥1 − Qk fk∥
r
p ⩾ |1 − ak fk(0)|r + K ∥Qk fk − ak fk(0)∥r

p,

where r and K are the lower Pythagorean parameters. It follows that

1 ⩾ |1 − ak fk(0)|,

implying that

|ak | ⩽
2
c

for all k. Thus {ak} is a bounded complex sequence, from which we can extract a
convergent subsequence, which for now we relabel as the original sequence.

Next, subharmonicity and the triangle inequality yield

c |bk | ⩽ |bk fk(0)| ⩽ ∥bkz fk∥p ⩽ ∥1 − (ak + bkz) fk∥p + ∥1 − ak fk∥p.

The last expression on the right side is uniformly bounded as k varies through N,
and hence {bk} is a bounded sequence. Once again we may draw a convergent
subsequence, and relabel it so that

Qk = ak + bkz

converges uniformly to some R(z)= a + bz.
It needs to be shown that R = Q := q1,p[ f ]. For this we rely on the elemen-

tary result that if vk → v in a Banach space and λk → λ in its dual space, then
λk(vk)→ λ(v).
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We apply this, identifying

vk = fk,

v = f,

λk( · )=

∫
T

(1 − [ak + bkz] fk)
⟨p−1⟩ ( · ) dm,

λ( · )=

∫
T

(1 − [a + bz] f )⟨p−1⟩ ( · ) dm.

Then Lemma 3.1.2 ensures that λk → λ, as needed.
The conclusion is that λ(v)= limk→∞ λk(vk)= limk→∞ 0 = 0, or

1 − (a + bz) f ⊥p f.

Repeat this argument with the choices

vk = z fk and v = z f

to see that

1 − (a + bz) f ⊥p z f

as well. This forces R(z)= Q(z)= a + bz = q1,p[ f ](z), as claimed.
So far, we only know that there is a subsequence that satisfies the claim. However,

we see that every subsequence of the original sequence { fk} has a further subse-
quence for which the linear OPAs tend to the same limit a+bz, the linear OPA from f
being unique. This proves that in fact the full sequence {ak+bkz} converges to a+bz.

This verifies the claim when n = 1.
More generally, for arbitrary n ∈ N, let

Qk(z)= qn,p[ f ](z)= a(k)0 + a(k)1 z + · · · + a(k)n zn.

From Lemma 3.1.3, we get

1 ⩾ ∥1 − Qk fk∥
r
p

⩾ |1 − a(k)0 f0|
r
+

∞∑
m=1

K m
|a(k)0 fm + a(k)1 fm−1 + · · · + a(k)m f0|

r ,

which implies
1

K m/r ⩾ |a(k)0 fm + a(k)1 fm−1 + · · · + a(k)m f0|

for all m.
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We know that a(k)0 is bounded in k. It is also easy to see that | f j | ⩽ ∥ f ∥p for
all j . If a(k)0 , a(k)1 , . . . , a(k)j are also bounded in k, then the relation

|a(k)j+1| ⩽
1

K m/r | f0|
+

∣∣∣∣a(k)0 f j+1

f0
+

a(k)1 f j

f0
+ · · · +

a(k)j f1

f0

∣∣∣∣
ensures that a(k)j+1 is bounded as well. This proves that all of the coefficients of Qk

are uniformly bounded in k.
Arguing as before, we may find a subsequence from {Qk} that converges uni-

formly, and the limit must be qn,p[ f ]. In fact, this must be the limit of the original
sequence. □

3.2. Roots of OPAs. As a corollary to the last continuity theorem, we begin this
subsection with two results concerning the set of possible OPA roots. Let us first
establish some notation.

Definition 3.2.1. For 1< p <∞ and n ≥ 0, we define the set of possible roots of
OPAs of degree n in H p as

�n,p := {w ∈ C : there exists f ∈ H p such that f (0) ̸= 0 with qn,p[ f ](w)= 0},

and let
�p :=

⋃
n≥0

�n,p.

Note that �0,p = ∅ for all p ∈ (1,∞). We have an immediate proposition
concerning these sets.

Proposition 3.2.2. For 1 < p < ∞ and each n ≥ 1, we have �n,p ⊆ �1,p, and
therefore

�p =�1,p.

Proof. Suppose w ∈�n,p with qn,p[ f ](w)= 0. Put qn,p[ f ] = (z −w)q̃ . Then, by
optimality, we have

∥q1,p[q̃ f ]q̃ f − 1∥p ≤ ∥(z −w)q̃ f − 1∥p

= ∥qn,p[ f ] f − 1∥p

≤ ∥q1,p[q̃ f ]q̃ f − 1∥p,

and we deduce that q1,p[q̃ f ] = qn,p[ f ]/q̃ = z−w, which implies that w ∈�1,p. □

Presently, we see that the set of OPA roots must contain the set C \ D.

Proposition 3.2.3. Let 1 < p <∞. If w ∈ C \ D, then there exists f ∈ H p such
that q1,p[ f ] has the root w, and so

C \ D ⊆�p.
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Proof. Let w ∈ C \ D and let

f (z) :=
1

z −w
,

which belongs to H p for all p ∈ (1,∞). Further,

∥1 − Q f ∥p = 0
when

Q(z)= z −w.

Therefore, it must be that qn,p[ f ](z)= z −w for all n ⩾ 1. Hence, w ∈�p. □

We now show that this set is connected and symmetric under rotation.

Proposition 3.2.4. For 1 < p < ∞, the set �p is rotationally symmetric and
connected.

Proof. We begin by establishing rotational symmetry. Let f ∈ H p, and suppose
q1,p[ f ] = a(z −w) (by Proposition 3.2.2, it suffices to take the linear OPA). Then,
for any γ with |γ | = 1,

∥1 − a(z −w)∥p
p =

∫ 2π

0
|1 − a(z −w) f (z)|p dm(z)

=

∫ 2π

0
|1 − a(γ ζ −w) f (γ ζ )|p

|γ |
p dm(ζ )

=

∫ 2π

0
|1 − a(γ ζ −w) f (γ ζ )|p dm(ζ )

=

∫ 2π

0
|1 − (aγ )(ζ − γ̄ w) f (γ ζ )|p dm(ζ ).

It must be that (aγ )(z−γ̄ w) is the linear OPA for f (γ z), for otherwise, by reversing
these steps from

∥1 − q1,p[ f (γ z)] f (γ z)∥p
p

we obtain a contradiction.
This shows that if w is an OPA root, then so is γ̄ w for all γ , |γ | = 1. That is,

the set �p is rotationally symmetric.
Next, suppose that f and g belong to H p, with real coefficients, and with

f (0) > 0 and g(0) > 0. Let their linear OPA roots be r and R, respectively, where
0 < r < R. By the continuity of the map F 7→ q1,p[F], we see that the set of
linear OPA roots of the collection of functions t f + (1 − t)g, 0 ⩽ t ⩽ 1, must be an
interval containing [r, R]; this is because the collection of functions is connected,
and continuous maps preserve connectivity. Note that t f (0)+ (1 − t)g(0) > 0 for
all t , as required for the linear OPA to be nontrivial. Consequently, �p is path
connected, and hence connected. □
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3.3. Fixed-point approach. Again, we mention that computing OPAs when p ̸= 2
is a challenging task. Here, we explore the idea of OPAs being fixed points of
an iterative process. We begin with the degree-zero case and then move to the
degree-one case.

Theorem 3.3.1. Let 2< p <∞, and let f ∈ H p be a nonconstant function. Then
the degree-zero OPA q0,p[ f ] is the unique solution to the fixed-point equation

ζ =8(ζ),

where 8 : C 7→ C is given by

8(ζ) :=

( ∫
T

|1 − ζ f |
p−2 f̄ dm

)( ∫
T

|1 − ζ f |
p−2

| f |
2 dm

)−1

.

For any λ1 ∈ C, the sequence {λk} given by λk+1 =8(λk) converges to q0,p[ f ].

Proof. Since p > 2, and

1 =
2
p

+
p − 2

p
,

the parameters p
2 and p

p−2 are Hölder conjugates of each other. Hence Hölder’s
inequality gives∫

T

|1 − ζ f |
p−2

| f |
2 dm

⩽

( ∫
T

|1 − ζ f |
(p−2)p/(p−2) dm

)(p−2)/p( ∫
T

| f |
2(p/2) dm

)2/p

<∞.

Furthermore, since f is nonconstant, the integral in the denominator of8 is nonzero
for any value of ζ .

When ζ ̸= 0, we have

|ζ |

∫
T

|1 − ζ f |
p−2

| f | dm ⩽
∫

T

|1 − ζ f |
p−2 (|1 − ζ f | + 1) dm

=

∫
T

|1 − ζ f |
p−1 dm +

∫
T

|1 − ζ f |
p−2 dm

<∞;

and, when ζ = 0,∫
T

|1 − ζ f |
p−2

| f | dm =

∫
T

|1 − 0 · f |
p−2

| f | dm =

∫
T

| f | dm <∞.

This verifies that 8 is well defined for all ζ ∈ C.
In fact, 8 is continuous and bounded. Continuity of the numerator and denomi-

nator of 8 at any point ζ0 can be established by a dominated convergence argument,
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with respective dominating functions

2p−2(1 + C | f |
p−2)| f | and 2p−2(1 + C | f |

p−2)| f |
2,

where C > |ζ0|
p−2. Continuity at infinity is established by

lim
ζ→∞

∫
T

|1 − ζ f |
p−2 f̄ dm∫

T
|1 − ζ f |p−2 | f |2 dm

= lim
ζ→∞

∫
T

|1/ζ − f |
p−2 f̄ dm∫

T
|1/ζ − f |p−2 | f |2 dm

= lim
ζ→∞

∫
T

| f |
p−2 f̄ dm∫

T
| f |p dm

.

Consequently, 8 is a bounded function. For any choice of λ1 ∈ C, define
λk+1 = 8(λk) for all k = 1, 2, 3, . . . . The resulting sequence {λk} is a bounded
sequence, and must contain a convergent subsequence, {λnk }, with λk → λ ∈ C.
Continuity ensures that

λ=8(λ),

which is to say that

λ

∫
T

|1 − λ f |
p−2 f f̄ dm =

∫
T

|1 − λ f |
p−2 f̄ dm

0 =

∫
T

|1 − λ f |
p−2(1 − λ f ) f̄ dm,

or 1 − λ f ⊥p f . This shows that λ= q0,p[ f ].
But any subsequence of {λk} must have a further subsequence that converges to

the same limit. Thus the sequence {λk} itself must converge to λ= q0,p[ f ]. □

We now discuss the linear case, first recording some notation.
Let a linear polynomial Q1(z)= a1 + b1z be given and, for k ⩾ 1, let

(3.3.2)
[

ak+1

bk+1

]
=

[
Ck Dk

Dk Ck

]−1 [
Ak

Bk

]
=

1
|Ck |

2 + |Dk |
2

[
Ck −Dk

−Dk Ck

] [
Ak

Bk

]
=

1
|Ck |

2 + |Dk |
2

[
cAkCk−Bk Dk

BkCk−Ak Dk

]
,

where

(3.3.3)
Ak =

∫
T

|1 − Qk f |
p−2 f̄ dm, Bk =

∫
T

|1 − Qk f |
p−2 z f dm,

Ck =

∫
T

|1 − Qk f |
p−2

| f |
2 dm, Dk =

∫
T

|1 − Qk f |
p−2 z̄ | f |

2 dm,

and Qk(z)= ak + bkz. This determines a sequence of linear polynomials.
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Theorem 3.3.4. Let 2 < p < ∞, and suppose that f ∈ H p is a nonconstant
polynomial with f (0) ̸= 0. If Qk(z) = ak + bkz, k ⩾ 0, is the sequence of linear
polynomials arising from (3.3.2), then Qk converges to q1,p[ f ].

Proof. If Q1 is identically zero, then by inspection we see that Q2 is not the zero
polynomial. Thus, by relabeling if necessary, let us assume Q1 is not identically
zero.

By the hypotheses on f , the expression w− Q f is a nonconstant polynomial
for any complex number w and linear polynomial Q; hence |w− Q f |

p−2 will be
integrable on the unit circle.

Consider the expression, with integrals being taken over the circle,

8(Q) :=

∣∣∣∣∣∣∣
∫
|Q f |

p−2 f̄ dm
∫

|Q f |
p−2

| f |
2 dm

−
∫
|Q f |

p−2 z f dm
∫
|Q f |

p−2 z̄ | f |
2 dm∣∣∫ |Q f |p−2 | f |2 dm

∣∣2
+

∣∣∫ |Q f |p−2 z̄ | f |2 dm
∣∣2

∣∣∣∣∣∣∣ ,
as Q varies over set

Q := {a + bz ∈ P1 : max{|a|, |b|} = 1}.

Under the assumptions on f , the denominator is bounded away from zero. Thus
8(Q) is a continuous function on a compact set, and achieves its maximum. In
fact, the value of 8(Q) is indifferent to rescaling Q, except for multiplying it by
zero.

From this we can further deduce that the values of

9(Q, w) :=

∣∣∣∣∣∣∣
∫
|w−Q f |

p−2 f̄ dm
∫
|w−Q f |

p−2
| f |

2 dm
−

∫
|w−Q f |

p−2 z f dm
∫
|w−Q f |

p−2 z̄ | f |
2 dm∣∣∫ |w−Q f |p−2 | f |2 dm

∣∣2
+

∣∣∫ |w−Q f |p−2 z̄ | f |2 dm
∣∣2

∣∣∣∣∣∣∣
are uniformly bounded for Q ∈ Q and |w| ⩽ 1.

Next, notice that for any nonzero linear polynomial Q(z)= a + bz we have∫
T

|1 − Q f |
p−2 f̄ dm =

∫
T

|1 − (a + bz) f |
p−2 f̄ dm

= |c|p−2
∫

T

∣∣∣∣1
c

−

(
a
c

+

[
b
c

]
z
)

f
∣∣∣∣p−2

f̄ dm,

where c := max{|a|, |b|}. This is to say that the value of Ak in (3.3.3) scales in a
simple way with c, with the result that f is multiplied by a member of Q, and the
1 inside the integrand is replaced by 1

c . Similar remarks apply to the formulas for
Bk , Ck , and Dk .

Consequently, when Ak , Bk , Ck and Dk are assembled together to yield ak+1

and bk+1, the scaling factors |c|p−2 attached to each integral cancel.
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Let us write ck := max{|ak |, |bk |}. The above observations establish that |ck+1|

is uniformly bounded as k varies over such indices that |ck | ⩾ 1.
For the other values of k, for which |ck |< 1, the corresponding expressions for

|1 − Qk f |
p−2 are again uniformly bounded in the obvious way, implying that the

resulting ck+1 are also uniformly bounded.
This shows that {Qk} is a bounded sequence of linear polynomials, which must

therefore have a convergent subsequence. The limit is a linear polynomial Q∞,
which satisfies the orthogonality conditions for q1,p[ f ], and hence must be the
OPA. Uniqueness of the OPA ensures that, in fact, every subsequence of {Qk} has
a further subsequence that converges to q1,p[ f ]. In conclusion, we have

lim
k→∞

Qk = q1,p[ f ]. □

We end this section by noting that Theorems 3.3.1 and 3.3.4 are only established
for 2< p <∞, and, in the degree-one case, only for polynomials. It is currently
unclear if these results extend to 1 < p < 2, or if analogous results hold for
higher-degree OPAs.

4. Error bounds and duality arguments

The present section is concerned with estimating (both above and below) the quantity
∥qn,p[ f ] f −1∥p, i.e., the “error” in the optimal polynomial approximation algorithm.
We begin by employing some duality methods, first recalling a fundamental result
from classical functional analysis, tailored to our setting.

Lemma 4.0.1. Let 1< p <∞ and f ∈ H p. For any n ∈ N, we have

∥qn,p[ f ] f − 1∥p =
[

inf
ψ∈Lq

{∥ψ∥Lq : ψ0 = 1, ⟨zk f, ψ⟩ = 0 for all 0 ⩽ k ⩽ n}
]−1
.

Proof. By an elementary duality theorem of functional analysis, with respect to the
pairing

⟨ f, g⟩ =

∫ 2π

0
f (eiθ )g(eiθ )

dθ
2π
,

we have

∥qn,p[ f ] f − 1∥p

= inf{∥Q f − 1∥p : Q ∈ Pn}

= distH p(1,Pn f )

= distL p(1,Pn f )

= ∥1∥[(Pn f )⊥]∗

= sup
{

|⟨ψ, 1⟩|

∥ψ∥Lq
: ψ ∈ (Pn f )⊥ \ {0}

}
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= sup
{

|ψ0|

∥ψ∥Lq
: ψ ∈ (Pn f )⊥ \ {0}

}
=

[
inf{∥ψ/ψ0∥Lq : ψ ∈ (Pn f )⊥ \ {0}}

]−1

=
[
inf{∥ψ∥Lq : ψ ∈ (Pn f )⊥, ψ0 = 1}

]−1

=
[
inf{∥ψ∥Lq : ψ ∈ Lq , ψ0 = 1, ⟨zk f, ψ⟩ = 0 for all 0 ⩽ k ⩽ n}

]−1
. □

Remark 4.0.2. The reason to move to L p in the third equality is that the dual of L p

is Lq . If we stick with the norm in H p, then (caution!) the relevant dual space is the
quotient space Lq/Hq , rather than Hq . These spaces are isometrically isomorphic
only when p = 2.

In the fourth equality, we mean “the norm of the unit constant function, viewed
as a bounded linear functional on the annihilator of the subspace spanned by f Pn”.

We first apply this duality to provide a lower bound for the OPA error in the case
that we are approximating a polynomial with zeros in the disk.

Proposition 4.0.3. Suppose f is a polynomial

(4.0.4) f (z)= (z −w1)(z −w2) · · · (z −wd),

with the roots being distinct, nonzero, and contained inside D. Then, for 1< p<∞

and λ := q0,p[ f ], we have

(4.0.5) ∥1 − λ f ∥p ⩾ 1 − |w1w2 · · ·wd |.

Proof. The space of functions in Lq which annihilate f contains functions of the
form

c13w1 + c23w2 + · · · + cd3wd ,

where 3w j denotes the point evaluation functional (or Szegö kernel) at the point
w j ∈ D. Thus, by the Lemma 4.0.1, we have

∥1 − λ f ∥p = [inf ∥ψ∥q ]
−1,

where the infimum is over ψ ∈ Lq satisfying ⟨ f, ψ⟩ = 0 and ψ0 = 1.
Let

B(z)= a
d∏

k=1

wk − z
1 −wkz

,

a constant multiple of the Blaschke product with the same zeros as f . Its numerator
has leading term ±azd , while the denominator has leading term ±w1w2 · · ·wd zd

(with matching signs). Thus long division followed by partial fractions expansion
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results in an expression of the form

B(z)=
a

w1w2 · · ·wd
+ c13w1(z)+ c23w2(z)+ · · · + cd3wd (z).

Evaluating this equation at z = 0 tells us that

aw1w2 · · ·wd =
a

w1w2 · · ·wd
+ c1 + c2 + · · · + cd .

This suggests making the specific choice of

ψ(z)= c13w1(z)+ c23w2(z)+ · · · + cd3wd (c)

with the coefficients determined above. The requirement of ψ(0)= 1 therefore gives

aw1w2 · · ·wd =
a

w1w2 · · ·wd
+ 1,

which will furnish the value of a, namely,

a =

[
w1w2 · · ·wd −

1
w1w2 · · ·wd

]−1

.

Finally, an application of the triangle inequality yields

∥1 − λ f ∥p ⩾ ∥ψ∥
−1
q ⩾

∥∥∥∥B −
a

w1w2 · · ·wd

∥∥∥∥−1

q

⩾

[
∥B∥q +

∥∥∥∥ a
w1w2 · · ·wd

∥∥∥∥
q

]−1

=

[
|a| +

∣∣∣∣ a
w1w2 · · ·wd

∣∣∣∣]−1

=
1 − | f (0)|2

1 + | f (0)|
= 1 − | f (0)| = 1 − |w1w2 · · ·wd |. □

Remark 4.0.6. The above result holds for any function f vanishing at the points
w1, . . . , wd . Further, by Theorem 3.1.4, the result also extends to any infinite
Blaschke product.

Let us now use duality to further investigate OPA errors for more general func-
tions.

Proposition 4.0.7. Let 1< p <∞, 1
p +

1
q = 1, n ∈ N, and f ∈ H p with f (0)= 1.

Then

∥qn−1,p[ f ] f − 1∥p ⩾
1

∥1 +ψ1z +ψ2z2 + · · · +ψnzn∥q
,
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where the coefficients ψk , 1 ⩽ k ⩽ n, satisfy the matrix equation
f1 f2 f3 · · · fn

f0 f1 f2 · · · fn−1

0 f0 f1 · · · fn−2
...

...
...
. . .

...

0 0 0 · · · f1




ψ1

ψ2

ψ3
...

ψn

 =


−1

0
0
...

0

.
Proof. It suffices to check that the function

ψ(z)= 1 +ψ1z +ψ2z2
+ · · · +ψnzn

satisfies the hypotheses of Lemma 4.0.1. That is, for 0 ≤ k ≤ n, that

⟨zk f, ψ⟩ = 0.

This is ensured precisely by the linear system in the statement of the proposition. □

With further calculation, the approach in the previous proposition can be used to
show the following:

Proposition 4.0.8. Let 1< p <∞, 1
p +

1
q = 1, n ∈ N, and f ∈ H p with f (0)= 1.

Let
1

f (z)
= 1 + g1z + g2z2

+ · · ·

be the power series of 1
f about the origin. Then

∥qn−1,p[ f ] f − 1∥p ⩾
|gn|

∥1 + g1z + g2z2 + · · · + gnzn∥q
.

Proof. Let us begin with, from Proposition 4.0.7, the matrix equation
f1 f2 f3 · · · fn

f0 f1 f2 · · · fn−1

0 f0 f1 · · · fn−2
...

... · · ·
. . .

...

0 0 0 · · · f1




ψ1

ψ2

ψ3
...

ψn

 =


−1

0
0
...

0

.
There is no harm in multiplying both sides of the equation on the left by the
elementary permutation matrix 

0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0
...
...
...
. . .

...

0 0 0 · · · 0


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(the next to last entry of the bottom row is 1), which has the effect of changing the
equation to 

f0 f1 f2 · · · fn−1

0 f0 f1 · · · fn−2

0 0 f0 · · · fn−3
...

...
...
. . .

...

0 0 0 · · · f1

f1 f2 f3 · · · fn





ψ1

ψ2

ψ3

ψ4
...

ψn


=



0
0
0
0
...

−1


.

By successively subtracting multiples of the other rows, the bottom row can be
placed in the form [

0 0 0 · · · C
]

for some constant C , which could be zero. In fact, recalling that f0 = 1, we see
that C must be given by

C = det


f1 f2 f3 · · · fn

f0 f1 f2 · · · fn−1

0 f0 f1 · · · fn−2
...

...
...
. . .

...

0 0 0 · · · f1

.

Furthermore, the sequence of row operations to diagonalize the matrix leaves
the right side unchanged as [

0 0 0 · · · −1
]T
.

Assuming that C ̸= 0, and again recalling that f0 = 1, our matrix equation can
be written as 

f0 f1 f2 · · · fn−1

0 f0 f1 · · · fn−2

0 0 f0 · · · fn−3
...

...
...
. . .

...

0 0 0 · · · f0




ψ1

ψ2

ψ3
...

ψn

 =


0
0
0
...

−1/C

.

The inverse of the transposed (Toeplitz) matrix on the left is simply
g0 g1 g2 · · · gn−1

0 g0 g1 · · · gn−2

0 0 g0 · · · gn−3
...

...
...
. . .

...

0 0 0 · · · g0

,



290 RAYMOND CHENG AND CHRISTOPHER FELDER

where g(0)= 1 and g(z)= g0 +g1z +g2z2
+· · · is the Taylor expansion of 1/ f (z),

valid for some disk centered at the origin. The conclusion is that

ψk = −
gn−k

C
for all 0 ⩽ k ⩽ n − 1.

Our next challenge is to find an analytical meaning for the constant C . But notice
that the row operations needed to clear entries from the bottom row of

(4.0.9)



f0 f1 f2 · · · fn−1

0 f0 f1 · · · fn−2

0 0 f0 · · · fn−3
...

...
...
. . .

...

0 0 0 · · · f1

f1 f2 f3 · · · fn


would (suitably modified) similarly clear the second through the last entries from
the top row. Performing all of these (suitably modified) row operations on the
identity matrix would have to result in

1 g1 g2 · · · gn−1

0 1 0 · · · 0
0 0 1 · · · 0
...
...

...
. . .

...

0 0 0 · · · 1


Then following carefully what operations are correspondingly performed on the
last column in (4.0.9), we conclude that

C = fn + g1 fn−1 + g2 fn−2 + · · · + gn−1 f1 = −gn.

Finally, note that∥∥∥∥1+
gn−1

gn
z+

gn−2

gn
z2

+· · ·+
1
gn

zn
∥∥∥∥

q
=

1
|gn|

∥gn +gn−1z+gn−2z2
+· · ·+zn

∥q

=
1

|gn|
∥z−n(gn +gn−1z+gn−2z2

+· · ·+zn)∥q

=
1

|gn|
∥1+g1z−1

+g2z−2
+· · ·+gnz−n

∥q

=
1

|gn|
∥1+g1z+g2z2

+· · ·+gnzn
∥q ,

where in the last step, the change of variable θ 7→ −θ , for z = eiθ , leaves the norm
integral unchanged. □
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We will provide an improvement to the above proposition, but we must first
consider the problem of finding G ∈ zH p such that

∥G + F∥p

is minimized. Duality tells us that (as we continue to mark extremal functions with *)

∥G∗ + F∥p = sup
{

|⟨F, ψ⟩|

∥ψ∥q
: ψ ∈ Hq

}
=

|⟨F, ψ∗
⟩|

∥ψ∗∥q

=
|⟨F, ψ∗

⟩|

inf{∥ψ∗ + K∥q : K ∈ zHq}
.

Once again, we are up against the dual of H p being isomorphic to Hq , but not
isometrically.

Nonetheless, we must consider the metric projection of F onto the subspace
zH p. Notice that (G∗ + F)⟨p−1⟩ annihilates any negative frequencies. Therefore,
there exists h ∈ Hq such that

(G∗ + F)⟨p−1⟩
= h,

and thus, taking a ⟨q − 1⟩ power, we have

|h|
q−2h = G∗ + F.

In turn, we see that finding G∗ amounts to solving the above highly unpleasant
functional equation.

Let us record this in the following result, where we write P+ for the Riesz
projection, given by

∞∑
k=−∞

ckzk
7→

∞∑
k=0

ckzk,

which is bounded from L p
→ H p.

Proposition 4.0.10. Let 1< p <∞ and 1
p +

1
q = 1. Suppose h ∈ Hq , and define

F := P+h⟨q−1⟩. Then
inf{∥F + G∥p : G ∈ zH p

}

is attained by taking F + G = h⟨q−1⟩. In this case, the value of the infimum is given
by

inf{∥F + G∥p : G ∈ zH p
} = ∥h∥

q−1
q .

This warrants the following observation:

Proposition 4.0.11. For 1< p<∞, the set of images P+ (Hq)⟨q−1⟩ is dense in H p.
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Proof. Suppose g ∈ Hq has the property that

⟨P+ h⟨q−1⟩, g⟩ = 0

for all h ∈ Hq . Then

0 = ⟨P+ h⟨q−1⟩, g⟩ =

∫
T

P+ h⟨q−1⟩ḡ dm =

∫
T

h⟨q−1⟩ḡ dm.

We are able to drop the projection in the last line since integration against ḡ will
annihilate the negative frequencies of h⟨q−1⟩. In particular, this must hold for h = g,
and hence 0 = ∥g∥

q
q . This forces g to be identically zero. □

In turn, we can make the following improvement to Proposition 4.0.8.

Proposition 4.0.12. Let 1< p <∞, 1
p +

1
q = 1, n ∈ N, and f ∈ H p with f (0)= 1.

Let
1

f (z)
= 1 + g1z + g2z2

+ · · ·

be the power series of 1
f about the origin. If gn ̸= 0, then

∥qn−1,p[ f ] f − 1∥p ⩾
1

∥h⟨p−1⟩∥q
,

where h ∈ H p satisfies

P+ h⟨p−1⟩ = 1 +
gn−1

gn
z +

gn−2

gn
z2

+ · · · +
g0

gn
zn.

Let us now consider the case where n → ∞. Then, by writing f = J G for J
inner and G outer, we see, for all k ≥ 0, that ψ ∈ Lq satisfies

0 = ⟨zk f, ψ⟩ = ⟨zk J G, ψ⟩ = ⟨zk G, Jψ⟩.

As {zk G : k ≥ 0} is dense in H p, we have, for any n ≥ 0,

0 = ⟨zn, Jψ⟩ =

∫ 2π

0
J (eiθ )ψ(eiθ )einθ dθ

2π
.

From this, it follows that K (z) := J (z)ψ(z)/z is an element of Hq . We further
divine that ψ must be determined by

ψ(z)= J (z)zK (z), z ∈ T,

for some K ∈ Hq . The condition ψ(0)= 1 takes the form

1 = J1K0 + J2K1 + J3K2 + · · · .
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We now must minimize ∥J zK∥q subject to K ∈ Hq satisfying the above con-
straint. It is tempting to try K = J , but this will not work, since

0 = J1 J0 + J2 J1 + J3 J2 + · · · .

Instead, take K (z)= c[J (z)− J (0)]/z, where c−1
= |J1|

2
+ |J2|

2
+ |J3|

2
+ · · · .

Then

J1K0 + J2K1 + J3K2 + · · · = c(|J1|
2
+ |J2|

2
+ |J3|

2
+ · · · )= 1,

as needed. Using this choice of K to compute ψ , we obtain

ψ(z)= J (z)zK (z)= cJ (z)z̄
J (z)− J (0)

z̄
= c(1 − J (z)J (0)).

Since ∥qn,p[ f ] f − 1∥p ⩾ 1/∥ψ∥q , this furnishes the following bound.

Proposition 4.0.13. Let 1< p <∞, 1
p +

1
q = 1, n ∈ N, and f ∈ H p with f (0)= 1.

Then

∥qn,p[ f ] f − 1∥p ⩾
|J1|

2
+ |J2|

2
+ |J3|

2
+ · · ·

∥1 − J (0)J (z)∥q
,

where J is the inner part of f .

Incidentally, c−1
= (|J1|

2
+|J2|

2
+|J3|

2
+· · · )= ∥J∥

2
2 −|J (0)|2 = 1 −|J (0)|2,

so the lower bound above could be written equivalently as

1 − |J (0)|2

∥(1 − |J (0)|2)− J (0)(J1z + J2z2 + · · · )∥q
,

which is obviously no greater than 1, as needed.
We now step away from duality. Our final results concern OPA errors, but are

proven with H 2 methods. The following proposition should be compared with
Proposition 4.0.3; although the result below provides a better bound, it holds only
for p > 2.

Proposition 4.0.14. Let 2 < p < ∞, and suppose f ∈ H p has a factorization
f = J G, where J is inner and G is outer. If f (0) ̸= 0, then, for any n ∈ N,

∥qn,p[ f ] f − 1∥p ⩾
√

1 − |J (0)|2.

Proof. Let P be the collection of all polynomials. Then

∥qn,p[ f ] f − 1∥p ⩾ inf
Q∈P

∥Q f − 1∥p ⩾ inf
Q∈P

∥Q f − 1∥2

= inf
Q∈P

∥Q J G − 1∥2 = inf
Q∈P

∥QG − J∥2 = ∥J (0)− J∥2,
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with the last equality following from the fact that since G is outer, {QG : Q ∈ P}

is dense in H 2. Now use

1 = ∥J∥
2
2 = |J (0)|2 + ∥J − J (0)∥2

2. □

Note further that if J = B is a Blaschke product, then this implies that

∥qn,p[ f ] f − 1∥p ⩾ ∥J (0)− J∥2 =

√
1 − |B(0)|2 =

√
1 − |w1w2w3 · · · |2,

where w1, w2, w3, . . . are the zeros of B.
We end by providing a related result when 1< p < 2.

Proposition 4.0.15. Let 1< p < 2 and suppose f (0) ̸= 0. Then, for any n ∈ N,

∥qn,p[ f ] f − 1∥p ⩽
√

1 − (qn,2[ f ] f )(0).

Proof. Routine bounds yield

∥qn,p[ f ] f − 1∥p ⩽ ∥qn,2[ f ] f − 1∥p ⩽ ∥qn,2[ f ] f − 1∥2 =
√

1 − (qn,2[ f ] f )(0),

where the last equality is a consequence of the linear system described in (1.0.1). □

Noting that ∥qn,2[ f ] f −1∥2 ⩽ ∥q0,2[ f ] f −1∥2, we can also establish the simple
bound

∥qn,p[ f ] f − 1∥p ⩽

(
1 −

| f (0)|2

∥ f ∥
2
2

)1/2

.
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THE GRIFFITHS DOUBLE CONE GROUP
IS ISOMORPHIC TO THE TRIPLE

SAMUEL M. CORSON

It is shown that the fundamental group of the Griffiths double cone space
is isomorphic to that of the triple cone. More generally if κ is a cardinal
such that 2 ≤ κ ≤ 2ℵ0 then the κ-fold cone has the same fundamental group
as the double cone. The isomorphisms produced are nonconstructive, and
no isomorphism between the fundamental group of the 2- and of the κ-fold
cones, with 2 < κ , can be realized via continuous mappings.

1. Introduction

The Griffiths double cone over the Hawaiian earring, which we denote GS2, was
introduced by H. B. Griffiths [1954] and has long stood as an interesting example
in topology (Figure 1). Although GS2 is a path connected, locally path connected
compact metric space (a Peano continuum) which embeds as a subspace of R3, it
has some subtle properties. Despite being a wedge of two contractible spaces, GS2

is not itself contractible, and more surprisingly the fundamental group of GS2 is
uncountable. The fundamental group is freely indecomposable and includes a copy
of the additive group of the rationals and of the fundamental group of the Hawaiian
earring. This group has found use in defining cotorsion-free groups in the nonabelian
setting [Eda and Fischer 2016] and continues to serve as a counterexample [Zastrow
1994] and as a test model for notions of infinitary abelianization [Brazas and
Gillespie 2022].

It is easy to see that analogous behavior is exhibited when one uses more cones in
the wedge, as in the triple wedge GS3 of cones over the Hawaiian earring or more
generally in the κ-fold wedge GSκ (the one-point union of cones, indexed by κ ,
with the natural metric topology). A natural question is whether the isomorphism
type of the fundamental group changes with this change in subscript. In light of the
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Figure 1. The Griffiths double cone GS2.

intuitive fact that no spatial isomorphism can be defined the following answer is
surprising.

Theorem A. If κ is a cardinal such that 2 ≤ κ ≤ 2ℵ0 then π1(GS2)≃ π1(GSκ).

The bounds on κ in the statement of Theorem A are the best possible. The
spaces GS0 and GS1 both strongly deformation retract to a point and therefore have
trivial fundamental group, and when κ > 2ℵ0 one has |π1(GSκ)|> 2ℵ0 = |π1(GS2)|

(Theorem 2.11). Using techniques of [Eda and Fischer 2016] or [Herfort and Hojka
2017] one can compute the abelianizations of π1(GS2) and π1(GS3) and see that
these abelianizations are isomorphic.

A notable point of comparison is that the wedge of 2, 3, etc. Hawaiian earrings
(without cones) is again homeomorphic to the Hawaiian earring, and so these
spaces have isomorphic fundamental groups. However the fundamental group of
a wedge of ℵ0 Hawaiian earrings, under the topology that we are considering,
will not have isomorphic fundamental group. This follows since the ℵ0-wedge of
Hawaiian earrings retracts to a subspace which is the ℵ0-wedge of circles each
having diameter 1, and this shows that the fundamental group of the ℵ0-wedge
homomorphically surjects onto an infinite rank free group, which the fundamental
group of the Hawaiian earring cannot do [Higman 1952].

The isomorphism given in Theorem A is produced combinatorially by a back-
and-forth argument, using the axiom of choice. It is intuitively clear that there is no
continuous function from GS2 to GS3 or vice versa which can yield an isomorphism
of fundamental groups. A comparable situation in the setting of topological groups
is that R and R2 are isomorphic as abstract groups, since by picking a Hamel
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basis over Q one sees that both are isomorphic to
⊕

2ℵ0 Q. There is no continuous,
or even Baire measurable, isomorphism between these topological groups. By
contrast Theorem A does not seem to follow by producing isomorphisms to an
easily understood third group like

⊕
2ℵ0 Q.

Another curiosity worth mentioning is that despite the necessary constraints on
the cardinality of κ in Theorem A, the first-order logical theory of π1(GS2) and
π1(GSκ) are the same whenever κ ≥ 2.

Theorem B. If 2 ≤ γ ≤ κ then π1(GSγ ) elementarily embeds in π1(GSκ). Thus
for κ ≥ 2 the groups π1(GS2) and π1(GSκ) are elementarily equivalent.

Of course when κ is 0 or 1 the fundamental group π1(GSκ) is trivial and therefore
not elementarily equivalent to π1(GS2). The proof of Theorem B utilizes Theorem A
and the action of the automorphism group, and no previous knowledge of first-order
logic is required to understand the proof.

The ideas used in proving Theorem A seem to have very broad applications, and
we state two now. Another space that is often mentioned along with the Griffiths
space is the harmonic archipelago HA of Bogley and Sieradski [2000]. The spaces
GS2 and HA share many common properties. Each embeds as a subspace of R3,
both contain a distinguished point at which every loop can be homotoped to have
arbitrarily small image, and both have uncountable fundamental group. Cannon
and Conner have conjectured that the two spaces share a further property, namely
that they have isomorphic fundamental group [Conner 2011], and in a forthcoming
paper we will show that this is indeed the case (the reader can see a proof of this fact
in [Corson 2021, Theorem D]). By further reworking these ideas one can produce a
correct proof of the main theorem of [Conner et al. 2015] (some errors have been
pointed out by K. Eda) as well as answer many of the questions of that paper in the
affirmative (see [Corson 2023]).

We describe the layout of this paper. In Section 2 we give the formal definition of
the Griffiths space and its κ-fold analogues. We also present some combinatorially
defined groups Cκ and show them to be isomorphic to the fundamental groups
π1(GSκ). In Section 3 we prove Theorems A and B.

2. The cone groups

We give a construction of GS2 and more generally of the κ-fold Griffiths space
GSκ for any cardinal κ . We consider each cardinal number κ as being the set of all
ordinals below it in the standard way. Thus 0 =∅, n ={0, . . . , n−1} for each n ∈ω,
ω+ 2 = {0, 1, . . . , ω, ω+ 1}, etc. Let 2ℵ0 denote the cardinal of the continuum.
Given a point p ∈ R2 and r ∈ [0,∞) we let C(p, r) denote the circle centered
at p of radius r (in case r = 0 we obtain the degenerate circle consisting only of
the point p). The Hawaiian earring is the subspace E =

⋃
n∈ω C

((
0, 1

n+3

)
, 1

n+3

)
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of R2. Let GS1 ⊆ R3 be the subspace
⋃

r∈[0,1]

(⋃
n∈ω C

((
0, 1−r

n+3

)
, r

n+3

)
×{r}

)
. The

space GS1 may also be viewed as the space obtained by first taking the Hawaiian
earring sitting in the xy-plane E ×{0} and joining each point of E ×{0} to the point
(0, 0, 1) by a geodesic line segment. A third, topological way of viewing GS1 is
by simply taking the topological cone over the Hawaiian earring. In other words,
GS1 is homeomorphic to the quotient space obtained by beginning with E ×[0, 1]

and identifying all points which have 1 in the last coordinate.
We define GS0 to be the metric space consisting of the single point ◦0. Let

κ ≥ 1 be a cardinal. We take GSκ to be the set obtained by taking κ-many disjoint
isometric copies

⊔
α<κ Xα of GS1 and identifying all copies of (0, 0, 0) to a single

point ◦κ . Thus we consider ◦κ ∈ Xα for all α < κ . Metrize GSκ by letting Dα be
the metric on Xα (making Xα an isometric copy of GS1) and

D(x, y)=

{
Dα(x, y) if x, y ∈ Xα,

Dα(x, ◦κ)+ dα′(◦κ , y) if x ∈ Xα \ {◦κ} and y ∈ Xα′ \ {◦κ}, α ̸= α′.

We note that this definition yields an isometric copy of GS1 when κ = 1 and so
the definition is consistent. When κ is finite, the space GSκ is a Peano continuum
and GSκ is homeomorphic to the topological wedge of κ-many copies of GS1 with
the copies of the point (0, 0, 0) identified. When κ ≥ ℵ0 the space GSκ is neither
compact nor homeomorphic to the quotient space obtained by identifying all copies
of (0, 0, 0) in the topological disjoint union of κ-many copies of GS1.

Next we give a description of what we call the cone group Cκ for each cardinal κ .
The description involves infinitary word combinatorics. Fix a cardinal κ . We start
with a set Aκ ={a±1

α,n}α<κ,n<ω equipped with formal inverses. We call the elements of
Aκ letters and a letter is positive if it has superscript 1. For convenience we shall usu-
ally leave off the superscript 1 on positive letters. A letter which is not positive is neg-
ative. Let proj0 and proj1 be the functions defined on Aκ which project respectively
the first and second subscript of a letter. Thus proj0(a

−1
α,n)= α and proj1(a

−1
α,n)= n.

A word in Aκ is a function W : W →Aκ such that W is a totally ordered set and
for each N ∈ ω the set {i ∈ W | proj1(W (i))≤ N } is finite. The domain of a word
is necessarily countable. We write W0 ≡ W1 if there exists an order isomorphism
ι : W0 → W1 such that W1(ι(i))= W0(i) for all i ∈ W0, and write ι : W0 ≡ W1 in
this case. Let E denote the word with empty domain.

Let Wκ denote the set of all ≡ classes of words in Aκ . For W ∈ Wκ we let
d(W ) = min{proj1(W (i)) | i ∈ W } and d(E) = ∞. There is a natural associative
binary operation on Wκ given by word concatenation, defined by letting W0W1 be
the word W such that W = W0 ⊔ W1 has the ordering that extends the orders of W0

and W1, placing elements in W0 below those of W1, and

W (i)=

{
W0(i) if i ∈ W0,

W1(i) if i ∈ W1.
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There is similarly a notion of infinite concatenation. If 3 is a totally ordered set
and {Wλ}λ∈3 is a collection of words such that for every N ∈ ω the set {λ ∈ 3 :

d(Wλ) ≤ N } is finite then we can take a concatenation
∏
λ∈3 Wλ whose domain

is the disjoint union
⊔
λ∈3 Wλ ordered in the natural way and whose outputs are

given by
(∏

λ∈3 Wλ

)
(i)= Wλ(i) where i ∈ Wλ. We also use this notation for the

concatenation of ordered sets. If {3λ}λ∈3 is a collection of ordered sets and 3 is
itself ordered we let

∏
λ∈33λ be the ordered set obtained by taking the disjoint

union of the 3λ and ordering the elements in the obvious way. To further abuse
notation we write 3≡2 if 3 is order isomorphic to 2.

We also have an inversion operation on words given by letting W −1 have domain
W under the reverse order and letting W −1(i) = (W (i))−1. For each N ∈ ω and
word W we let pN (W ) be the restriction W ↾ {i ∈ W | proj1(W (i)) ≤ N }. Thus
pN (W ) is a finite word in the alphabet Aκ . We write W0 ∼ W1 if for every N ∈ ω

the words pN (W0) and pN (W1) are equal when considered as elements in the free
group on positive elements of Aκ . As an example, the word W ≡a0,0a−1

0,0a0,1a−1
0,1 · · ·

satisfies W ∼ E since pN (W ) ≡ a0,0a−1
0,0a0,1a−1

0,1 · · · a0,N a−1
0,N is freely equal to E

for each N ∈ ω. Let [W ] denote the ∼ equivalence class of W . We obtain a group
structure on Wκ/∼ by letting [W0][W1] = [W0W1], from which one gets inverses
defined by [W ]

−1
= [W −1

] and [E] as the identity element. Let Hκ denote this
group. Define a word W to be α-pure if proj0 ◦W (i) = α for all i ∈ W . More
generally a word is pure if it is α-pure for some α. The empty word E is α-pure
for every α. Define the group Cκ to be the quotient of Hκ by the smallest normal
subgroup including the set of ∼ equivalence classes of pure words.

We work towards the proof that Cκ ≃ π1(GSκ , ◦κ). Recall that the Hawaiian
earring E ×{0} is a subspace of GS1. Each copy Xα of GS1 which appears in the
wedge GSκ therefore has such a copy of the Hawaiian earring, which we denote
Eα , at its “base”. Let Eκ denote the union of all of these copies Eα of the Hawaiian
earring.

In [Cannon and Conner 2000] is a description of an isomorphism of H1 with
the fundamental group of the Hawaiian earring π1(E1, ◦1), which we give and
generalize here. Let I denote the set of maximal open intervals in the closed
interval [0, 1] minus the Cantor ternary set. The natural ordering on I is order
isomorphic to that of the rationals, and so every countable order type embeds in I.
For each n ∈ ω let Ln be a loop based at ◦1 which passes exactly once around the
circle C

((
0, 1

n+3

)
, 1

n+3

)
and is injective except at 0 and 1. Given a word W ∈ W1

we let ι : W → I be an order embedding. Let Rι(W ) : [0, 1] → E1 be the loop given
by

Rι(W )(t)=


Ln

( t−inf I
sup I−inf I

)
if W (i)= a0,n and t ∈ I = ι(i),

L−1
n

( t−inf I
sup I−inf I

)
if W (i)= a−1

0,n and t ∈ I = ι(i),

◦1 otherwise.
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If ι0 : W → I is a distinct order embedding, then Rι(W ) and Rι0(W ) are
homotopic via a straightforward homotopy whose image lies inside the com-
mon image Rι(W )([0, 1]) = Rι0(W )([0, 1]). Thus we have a well-defined map
R : W → π1(E1, ◦1). Less obvious is the fact that W ∼ U implies R(W )= R(U ),
so that R descends to a map, which we also name R, from H1 to π1(E1, ◦1) which is
in fact an isomorphism. Each loop at ◦1, moreover, can be homotoped in its image
to a loop which is precisely Rι(W ) for some ι and W .

We’ll use these facts to produce such a map R for larger values of κ . To simplify
the work we introduce the notion of reduced words. As is the case with finitary
words, there is a notion of reducedness for words in Wκ . We say W ∈Wκ is reduced
if W ≡ W0W1W2 and W1 ∼ E implies W1 ≡ E . We state the following, whose
proof would follow in precisely the same way as that of [Eda 1992, Theorem 1.4,
Corollary 1.7].

Lemma 2.1. Given W ∈ Wκ there exists a reduced word W0 ∈ Wκ such that
[W ] = [W0] and this W0 is unique up to ≡. Moreover, letting W and U be reduced,
there exist unique words W0,W1,U0,U1 such that:

(1) W ≡ W0W1.

(2) U ≡ U0U1.

(3) W1 ≡ U−1
0 .

(4) W0U1 is reduced.

Let Redκ denote the set of reduced words in Wκ and for each W ∈ Wκ let
Red(W ) be the reduced word such that W ∼ Red(W ). The proof of the following
is straightforward.

Lemma 2.2. We have Red(WU ) ≡ Red(Red(W )Red(U )) given W ∈ Wκ and
U ∈ Wκ . Similarly, given W0,W1,W2 ∈ Wκ we have

Red(W0W1W2)≡ Red(W0 Red(W1W2))≡ Red(Red(W0W1)W2).

Lemma 2.2 implies the group Hκ is isomorphic to the set Redκ under the group
operation W ∗ U = Red(WU ). We give the following definition (see [Cannon and
Conner 2000, Definition 3.4]):

Definition 2.3. Given a word W ∈Wκ we say S ⊆ W ×W is a cancellation provided
the following:

(1) For ⟨i0, i1⟩ ∈ S, we have i0 < i1.

(2) If ⟨i0, i1⟩ ∈ S and ⟨i0, i2⟩ ∈ S, then i2 = i1.

(3) If ⟨i0, i1⟩ ∈ S and ⟨i2, i1⟩ ∈ S, then i2 = i0.

(4) If ⟨i0, i1⟩ ∈ S and i2 ∈ (i0, i1) ⊆ W , there exists i3 ∈ (i0, i1) such that either
⟨i2, i3⟩ ∈ S or ⟨i3, i2⟩ ∈ S.
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(5) If ⟨i0, i1⟩ ∈ S, then W (i0)= (W (i1))
−1.

The ⟨ · , · ⟩ notation for ordered pairs is used here in order to avoid confusion
with parenthetical notation ( · , · ) which can be interpreted as an open interval. We
shall use ⟨ · ⟩ to denote a generated subgroup, and the lack of a comma makes this
use unambiguous.

A cancellation may be understood as a transfinite strategy for freely reducing a
word. Conditions (2) and (3) imply that a cancellation is a pairing of elements in a
subset of elements of W . Condition (5) says that the pairing requires the associated
letters in W to be inverses of each other. Condition (4) requires the pairing to be
complete in the sense that each element between paired elements must also be
paired by S. Condition (4) also requires that the pairing is noncrossing in the sense
that if an element i lies between two paired elements i0 and i1, then the element
with which i is paired must also be between i0 and i1.

Zorn’s lemma implies that each cancellation S in a word W is included in
a maximal cancellation S ′; that is, S ⊆ S ′ and S ′ is not a proper subset of a
cancellation in W . It turns out that a maximal cancellation reveals the reduced word
representative, as happens with freely reducing a finitary word until free reductions
are no longer possible. We omit the proof of the following, but it follows in precisely
the same manner as [Cannon and Conner 2000, Theorem 3.9]:

Lemma 2.4. If S is a maximal cancellation for W ∈ Wκ then

W ↾ {i ∈ W | (¬∃i ′) (⟨i, i ′
⟩ ∈ S or ⟨i ′, i⟩ ∈ S)} ≡ Red(W ).

Thus a word has only trivial cancellation if and only if that word is reduced. As a
consequence, if W ∈Wκ with W ≡

∏
λ∈3 Wλ then Red(W )≡ Red

(∏
λ∈3 Red(Wλ)

)
.

Now we define our homomorphism from Redκ to π1(Eκ , ◦κ). For each α < κ
and n < ω we let Lα,n be a loop based at ◦κ which goes exactly once around the
n-th circle of Eα and is injective except at 0, 1. One can use an isometry between
E1 and Eα to define Lα,n from Ln if wished. Given a reduced word W ∈ Redκ and
an order embedding ι : W → I we get a loop Rι(W ) defined by

Rι(W )(t)=


Lα,n

( t−inf I
sup I−inf I

)
if W (i)= a0,n and t ∈ I = ι(i),

L−1
α,n

( t−inf I
sup I−inf I

)
if W (i)= a−1

0,n and t ∈ I = ι(i),

◦κ otherwise.

The check that this function on [0, 1] is continuous is straightforward. Given some
other order embedding ι0 : W →I we obtain a different loop Rι0 which is homotopic
to Rι via a homotopy which is a reparametrization.

In particular we have a well-defined map R : Redκ → π1(Eκ , ◦κ). To see that
this is a homomorphism, we let W,U ∈ Redκ and let W0,W1,U0,U1 be as in
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Lemma 2.1. The loop R(W1) is readily seen to be the inverse of R(U0). The word
W0U1 is reduced and therefore we have

R(W ∗ U )= R(Red(WU ))

= R(W0U1)

≃ R(W0)R(U0)
−1 R(U0)R(U1)

= R(W0)R(W1)R(U0)R(U1)

= R(W0W1)R(U0U1)

= R(W )R(U ).

Suppose now that W ∈ Redκ is in the kernel of R. Suppose for contradiction
that W ̸≡ E . We’ll construct a cancellation S of W to obtain a contradiction. Fix
an order embedding ι : W → I. Let H : [0, 1] × [0, 1] → Eκ be a nullhomotopy
of Rι(W ). That is, H(t, 0) = Rι(W )(t) and H(0, s) = H(1, s) = H(t, 1) for all
t, s ∈[0, 1]. For each I ∈I we let m(I ) signify the midpoint m(I )= 1

2(sup I +inf I ).
Consider the set of points M = {(m(ι(i)), 0)}i∈W ⊆ [0, 1]× [0, 1]. For each point
p ∈ M we consider its path component Pp in [0, 1] × [0, 1] \ H−1(◦κ). Each
p ∈ M is associated with a unique interval ι(ip) and therefore with a unique element
ip ∈ W , and each i ∈ W is in turn associated with a unique point p ∈ M . Moreover,
the natural order on points in M is isomorphic with the elements of W in this
association.

Fixing p ∈ M the set Pp ∩ M is necessarily finite, because each element of
Pp ∩ M corresponds to exactly one occurrence of a loop Lα,n or of its inverse,
for a fixed α and n, and there are only finitely many such occurrences since there
are finitely many occurrences of a±1

α,n in W . Write Pp ∩ M = {p0, p1, . . . , pj }

listing elements in the natural order. By modifying H to have output ◦κ outside
of Pp, we see that H witnesses a nullhomotopy of the loop Ri (W ↾ {ip0, . . . , ipj }),
which lies entirely in the n-th circle of Eα. Then there are exactly as many ipk

for which W (ipk )= aα,n as there are for which W (ipk )= a−1
α,n . Select neighboring

points pk, pk+1 which are of opposite parity and let ⟨ipk , ipk+1⟩ ∈ S. Among the
remaining points Pp ∩ M \ {pk, pk+1} select two which are neighboring under the
new order and add this ordered pair to S. Continue in this way until all elements of
Pp ∩ M are used. Perform this procedure on all path components Pp for p ∈ M .
It is straightforward to check that S satisfies the rules of a cancellation. We have
obtained our contradiction. Thus R is an injection.

We check that R is a surjection. Let L : [0, 1] → Eκ be a loop at ◦κ . Let J be
the set of maximal open intervals in [0, 1] \ L−1(◦κ). This set is countable and has
a natural ordering. For each restriction L ↾ J , where J ∈ J , there is a homotopy
HJ : J × [0, 1] → L(J ) to a loop L J : J → L(J ) which is either constant, or
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Lα,n
( t−inf J

sup J−inf J

)
or L−1

α,n
( t−inf J

sup J−inf J

)
. By gluing these homotopies together we get a

homotopy of L to a loop whose restriction to each nonconstant interval J is of the
form Lα,n

( t−inf J
sup J−inf J

)
or L−1

α,n
( t−inf J

sup J−inf J

)
.

Thus assuming L is of this form, we define a word W : J → Aκ by letting
W (J )= a±1

α,n where the α, n and superscript are determined in the straightforward
way. That the mapping W is indeed a word (no n in the subscript occurs infinitely
often) follows from the fact that L is continuous. Let S be a maximal cancellation
on W . This S can be used to homotope L so that the new associated word is Red(W ).
More explicitly, we define H : [0, 1] × [0, 1] → Eκ by having H(t, s) = L(t)
if t does not lie inside an interval (inf J0, sup J1) where ⟨J0, J1⟩ ∈ S. If a point
(t, s) ∈ [0, 1]× [0, 1] lies on the semicircle determined by points (t0, 0) and (t1, 0)
which is perpendicular to [0, 1] × {0} where t0 ∈ J0, t1 ∈ J1 and ⟨J0, J1⟩ ∈ S with
L(t0)= L(t1), we let H(t, s)= L(t0)= L(t1). Give H output ◦κ everywhere else.
That H is continuous and produces a loop H(t, 1) as described is intuitive but
tedious to check. Thus we may now assume that the associated word W is reduced.
By reparametrizing L we may make it so that all the intervals in J are elements in I,
which immediately gives an order embedding ι of W to I for which L = Rι(W ).
We have shown surjectivity and finished the proof of the following:

Lemma 2.5. The function R : Redκ → π1(Eκ , ◦κ) is an isomorphism.

We now approach the isomorphism Cκ ≃ π1(GSκ , ◦κ). For finite values of κ
this can be done by a straightforward argument in which van Kampen’s Theorem is
iterated finitely many times, as is done in [Eda and Fischer 2016, Section 4]. We
present an argument which works for every cardinal κ .

Lemma 2.6. Given ϵ > 0 and a loop L : [0, 1] → GSκ based at ◦κ , there is a loop
homotopic to L whose image is of diameter at most ϵ.

Proof. Let J be the set of maximal open intervals in [0, 1] \ L−1(◦κ). There are
only finitely many intervals J ∈J for which the diameter of the image diam(L ↾ J )
is at least 1

2ϵ. But for every J ∈ J the loop L ↾ J lies entirely in a contractible
space, a homeomorph of GS1. In particular each restriction L ↾ J is nullhomotopic.
Thus letting J ′

⊆ J be the set of those intervals whose images are of diameter at
least 1

2ϵ we have L homotopic to the loop L ′
: [0, 1] → GSκ given by

L ′(t)=

{
L(t) if t /∈

⋃
J ′,

◦κ if t ∈
⋃

J ′,

which has diameter at most ϵ. □

Let each copy of (0, 0, 1) in the copies of GS1 whose wedge forms GSκ be
called a “cone tip”. Let GS′

κ denote the space GSκ minus the set of cone tips. The
following is easy to see.
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Lemma 2.7. The space GS′
κ strongly deformation retracts to Eκ .

Now we let U ⊆ GSκ be the open set which is the union over all α < κ of
images Eα ×

[
0, 2

3

)
in the cone over Eα . For each α < κ we let Vα be the image of

Eα ×
( 1

3 , 1
]

in the cone over Eα. An application of van Kampen’s theorem gives
the following.

Theorem 2.8. The isomorphism R :Redκ →π1(Eκ , ◦κ) descends to an isomorphism
RCκ : Cκ → π1(GSκ , ◦κ).

We immediately obtain the following (cf. [Bogopolski and Zastrow 2012, Theo-
rem 8.1]):

Corollary 2.9. A reduced word W is in the kernel of the map Redκ → Cκ if and only
if there exist finitely many intervals I0, . . . , Ip such that W ↾ Ij is pure for each j
and Red

(
W ↾

(
W \

⋃p
j=0 Ij

))
= E.

Lemma 2.10. Suppose that we have a word V ≡
∏

n∈ω Vn with V ∈ Redκ , and that
the following properties are verified:

(1) Any interval I ⊆ V such that V ↾ I is pure is a subinterval of
∏m

n=0 Vn for some
m ∈ ω.

(2) For each n ∈ ω there exists jn ∈ ω such that
∣∣{i ∈ Vn | proj1(Vn(i)) = jn}

∣∣ >∑
m ̸=n

∣∣{i ∈ Vm | proj1(Vm(i))= jn}
∣∣.

Then [[V ]] ̸= [[E]] in Cκ .

Proof. Suppose for contradiction that [[V ]] = [[E]], so by Corollary 2.9 we obtain
a finite collection of intervals I0, . . . , Ip in V such that V ↾ Ik is pure for each
0 ≤ k ≤ p and Red

(
V ↾

(
V \

⋃p
k=0 Ik

))
= E . Let S be a maximal cancellation of

V ↾
(
V \

⋃p
k=0 Ik

)
. We know by (1) that

⋃p
k=0 Ik ⊆

∏m
n=0 Vn for some m ∈ ω. All

elements of Z = {i ∈ Vm+1 | proj1(Vm+1(i)) = jm+1} must participate in S since
Red

(
V ↾

(
V \

⋃p
k=0 Ik

))
= E , but since Vm+1 is reduced we know that the elements

of Z are paired with elements of V \
(
Vm+1 ∪

⋃p
k=0 Ik

)
, but this is impossible by

condition (2). □

For a reduced word W we let [[W ]] denote the equivalence class of W in Cκ and
if [[W ]] = [[U ]] we write W ≈ U .

Theorem 2.11. For each cardinal κ we have

|Cκ | =

{
1 if κ = 0,
κℵ0 if κ ≥ 1.

Proof. We have already seen that the formula holds in case κ = 0, 1. Suppose κ ≥ 2.
Notice that the space GSκ has 2ℵ0 · κ = max{2ℵ0, κ} points in it. Every continuous
function from [0, 1] to the metric space GSκ is totally determined by the restriction
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to [0, 1] ∩ Q. Thus there are at most (max{2ℵ0, κ})ℵ0 = κℵ0 loops in the space, so
in particular |Cκ | ≤ κℵ0 . We must show |Cκ | ≥ κℵ0 .

If 2 ≤ κ ≤ 2ℵ0 then let 6 be a collection of infinite subsets of ω such that for
distinct X, Y ∈6 we have X ∩Y finite and such that |6| = 2ℵ0 . Such a construction
is straightforward, see for example [Kunen 1980, Chapter II, Theorem 1.3]. For
each X ∈6 let X = {n0,X , n1,X , . . .} be the enumeration of X in the natural order.
Let

WX ≡ a0,n0,X a1,n1,X a0,n2,X a1,n3,X · · · .

Since WX uses only positive letters it is clear that WX and also any deletion of
finitely many letters of WX is a reduced word. By the conditions on 6 it is clear
that [[WX ]] ̸= [[WY ]] if X ̸= Y . Then κℵ0 ≤ |Cκ |.

Suppose that 2ℵ0 <κ and that κℵ0 = κ . Let f : κ×ω→ κ be an injection and for
each α < κ we define Wα ≡ a f (α,0),0 a f (α,1),1 · · · . It is clear that [[Wα]] ̸= [[Wβ]]

for distinct α, β < κ .
Suppose finally that 2ℵ0 < κ and that κℵ0 > κ . Let X be the set of all functions

from ω to κ and consider two functions σ0, σ1 ∈ X to be equivalent if they are
eventually identical: for some m ∈ ω we have σ0(m + n) = σ1(m + n) for all
n ∈ ω. Each equivalence class is of cardinality κ , so there are exactly κℵ0 distinct
equivalence classes. Letting Y ⊂ X be a selection from each equivalence class we
define a map Y → Cκ by letting σ 7→ Wσ where Wσ ≡ a f (σ (0),0),0 a f (σ (1),1),1 · · ·

and again f : κ ×ω→ κ is an injection. It is easy to see that for distinct elements
of Y the assigned words are not equivalent in Cκ . □

An interval I in a totally ordered set 3 is initial if it is a union of intervals
of the form (−∞, i] and is terminal if a union of intervals of form [i,∞) (an
initial or terminal interval may be empty). Given a nonempty word W ∈ Redκ
there exists a unique maximal initial interval I0 of W for which there exists a
terminal interval I1 ⊆ W such that W ↾ I0 ≡ (W ↾ I1)

−1. By the proof of [Eda 1992,
Corollary 1.6] the maximal such initial interval I0 and the accompanying I1 are
disjoint and W \(I0∪ I1) is nonempty, and this set is clearly an interval, say I2. Thus
W ≡ (W ↾ I0)(W ↾ I2)(W ↾ I0)

−1 and we call the word W ↾ I2 the cyclic reduction
of W . Clearly if U is the cyclic reduction of W then the cyclic reduction of U
is again U , so cyclic reduction is an idempotent operation. A word whose cyclic
reduction is itself is called cyclically reduced. It is clear from Lemma 2.4 that a
word U is cyclically reduced if and only if the word U n is reduced for all n ≥ 1,
thus if and only if U 2 is reduced.

3. Theorem A

We begin with a description of the overall strategy and then describe the structure
of this section. An isomorphism between two cone groups Cκ0 and Cκ1 will be
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constructed by induction on specially defined subgroups. We cannot expect that such
an isomorphism will be imposed by a homomorphism Redκ0 → Redκ1 . However,
the idea is that establishing careful correspondences between certain words in Redκ0

and certain words in Redκ1 will allow us to ultimately produce homomorphisms
φ0 : Redκ0 → Cκ1 and φ1 : Redκ1 → Cκ0 which will descend to isomorphisms
80 : Cκ0 → Cκ1 and 81 : Cκ1 → Cκ0 with 81 =8−1

0 .
What sort of correspondences between words should be produced? They should

not be so rigid as to produce a homomorphism Redκ0 → Redκ1 . Rather, they should
be forgiving enough to produce the homomorphisms φ0 and φ1 described above.
The correspondences should also agree with each other so that the φ0 and φ1 are
well defined.

Each word in Redκ0 and Redκ1 may be decomposed in a natural way as a concate-
nation of maximal pure subwords (the index over which concatenation is written is
unique up to order isomorphism and is called the p-index). Taking concatenations
over subintervals of the p-index gives us words which are recognizable pieces of the
original word (which we will call p-chunks). There is a natural way of comparing
certain words W ∈ Redκ0 with other words U ∈ Redκ1 via an order isomorphism
between a subset of the p-index of W and that of U . These subsets will be large
enough to “capture” any interval of the p-index, up to deletion of finitely many
elements, and there will be a correspondence between the p-chunks of W and
those of U . The bijections between the subsets of the p-indices will honor word
concatenation (up to finite deletion of pure subwords) and will allow us to define
isomorphisms between the subgroups of Cκ0 and Cκ1 which are generated by the
p-chunks of the words on which we have defined such bijections.

In order to have the isomorphisms be well defined, it is essential that the imposed
correspondences between p-chunks are in agreement with each other. That is,
suppose that W0,W1 ∈ Redκ0 and U0,U1 ∈ Redκ1 and Wi is made to correspond
to Ui for i = 0, 1. If W ∈ Redκ0 is a p-chunk of each of W0 and W1 then we
should be able to make W correspond to a word U ∈ Redκ0 in a way that honors
the correspondences Wi ↔ Ui , so any choice of such a U should be independent of
whether we are considering W as a p-chunk of W0 or of W1, up to the equivalence ≈.

It will be necessary to be able to define many such correspondences between
words, so as to make the isomorphism between subgroups of Cκ0 and Cκ1 have larger
and larger domain and range. Keeping such new correspondences in agreement
with the previously defined ones requires us to consider concatenations of words
on which such bijections have already been defined, concatenations of order type
ω and of order type Q are of particular concern. If we can continue to do this
for sufficiently many steps (2ℵ0 steps will suffice) then we can succeed in the
construction.

This section is organized into subsections for the sake of clarity. We introduce
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and prove some basic properties of p-chunks in Section 3A. In Section 3B we
will make precise the concept of a “sufficiently large” subset of an ordered set.
In Section 3C we define what it means for bijections between sufficiently large
subsets of p-indices to honor word concatenation (up to deletion of finitely many
pure subwords). In Section 3D we give some baby steps towards defining such
bijections on more words, and in Sections 3E and 3F we show how to extend such
notions for ω- and Q-type concatenations, respectively. Finally in Section 3G we
combine all the previous ideas to prove Theorems A and B.

3A. P-chunks. Let κ be a cardinal. For each word W ∈ Redκ we have a decom-
position of the domain W ≡

∏
λ∈33λ such that each 3λ is a nonempty maximal

interval with W ↾3λ pure. We’ll call this decomposition the pure decomposition
of the domain of W . Write W ≡p

∏
λ∈3 Wλ to express that W ≡

∏
λ∈3 Wλ is

the p-decomposition of the domain of W , and call this writing W ≡p
∏
λ∈3 Wλ

the p-decomposition of W and 3 the p-index, denoted p*(W ). By definition we
therefore have E ≡p

∏
λ∈3 Wλ with 3 = ∅. If W ≡p

∏
λ∈p*(W ) Wλ and I is an

interval in p*(W ) then let W ↾p I denote the word
∏
λ∈I Wλ. Call a word W ′ a

p-chunk of W if for some interval I ⊆ p*(W ) we have W ′
≡ W ↾p I . For a given

W ∈ Redκ we let p-chunk(W ) denote the set of p-chunks of W . A pure p-chunk of
a word W ≡p

∏
λ∈3 Wλ will, of course, either be empty or one of the Wλ. Notice

as well that an equivalence W ≡ U immediately gives an order isomorphism from
p*(W ) to p*(U ).

Lemma 3.1. Suppose that W ≡p
∏
λ∈3 Wλ and U ≡p

∏
λ′∈3′ Uλ′ . Then there exists

a (possibly empty) initial interval I ⊆3 and a (possibly empty) terminal interval
I ′

⊆3′ such that either:

(i) Red(WU )≡p
∏
λ∈I Wλ

∏
λ′∈I ′ Uλ′ ; or

(ii) there exist λ0 ∈3 which is the least element strictly above all elements in I ,
λ1 ∈3′ which is the greatest element strictly below all elements of I ′ and

Red(WU )≡p

( ∏
λ∈I

Wλ

)
V

( ∏
λ′∈I ′

Uλ′

)
where V ≡ Red(Wλ0Uλ1) ̸≡ E is pure.

Proof. Since both W and U are reduced we have reduced words W0, W1, U0, U1

such that W ≡ W0W1, U ≡ U0U1, W1 ≡ U−1
0 and W0U1 is reduced, by Lemma 2.1.

Select I0 ⊆ 3 to be a maximal initial interval for which
⋃
λ∈I0

Wλ ⊆ W0. Select
I ′

1 ⊆3′ to be a maximal terminal interval such that
⋃
λ′∈I ′

1
Uλ′ ⊆ U1.

Suppose
∏
λ∈I0

Wλ ≡ W0 and
∏
λ′∈I ′

1
Uλ′ ≡ U1. If I0 has a maximal element λ0

and I ′

1 has a minimal element λ1 such that the words Wλ0 and Uλ1 are both α-pure
for some α, then we let I = I0 \ {λ0} and I ′

= I ′

1 \ {λ1} and V ≡ Wλ0Uλ1 and
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obviously condition (ii) holds. If there are no such maximal and minimal elements
then condition (i) holds.

Suppose that
∏
λ∈I0

Wλ ̸≡ W0. Then there exists some λ0 which is the least
element strictly above all elements in I0 and nonempty words Wλ0,0 and Wλ0,1 such
that

Wλ0 ≡ Wλ0,0Wλ0,1; W0 ≡p

( ∏
λ∈I0

Wλ

)
Wλ0,0; W1 ≡p Wλ0,1

( ∏
λ∈3\(I0∪{λ0})

Wλ

)
.

If in addition
∏
λ′∈I1

Uλ′ ≡U1 then3′
\ I1 has a maximum element λ1 which satisfies

Uλ1 ≡ W −1
λ0,1. Thus we let I = I0 \ {λ0} and I ′

= I1 and V ≡ Wλ0,0 ≡ Red(Wλ0Uλ1)

and we have condition (ii). On the other hand, if in addition we have
∏
λ′∈I1

Uλ′ ̸≡U1

then 3′
\ I1 has a maximum element λ1 and there exist nonempty words Uλ1,0 and

Uλ1,1 for which

Uλ1 ≡ Uλ1,0Uλ1,1; U0 ≡p

( ∏
λ′∈3′\I1

Uλ′

)
Uλ1,0; U1 ≡p Uλ1,1

( ∏
λ′∈I1

Uλ′

)
.

Then we let V ≡ Wλ0,0Vλ1,1 ≡ Red(Wλ0Uλ1) and I = I0 and I ′
= I1 and condition

(ii) holds.
The case where

∏
λ∈I0

Wλ ≡ W0 and
∏
λ′∈I ′

1
Uλ′ ̸≡ U1 follows from dualizing the

proof of an earlier case. □

Lemma 3.2. Suppose that X ⊆ Redκ . For each nonempty element W of the sub-
group

〈⋃
U∈X p-chunk(U )

〉
≤ Redκ , if W ≡p

∏
λ∈3 Wλ, then there exist nonempty

intervals I0, . . . , In in 3 such that:

(i) 3≡
∏n

i=0 Ii .

(ii) For each 0 ≤ i ≤ n, at least one of the following holds:
(a) Ii is a singleton {λ} such that Wλ is the reduction of a finite concatenation

of pure p-chunks of elements in X±1.
(b)

∏
λ∈Ii

Wλ is a p-chunk of some element in X±1.

Proof. The elements of
〈⋃

U∈X p-chunk(U )
〉

are of form Red(U0 · · · Ul) where each
Ui is a p-chunk of an element of X±1. The claim will follow by an induction on
the number l. If l = 0 or l = 1 then we are already done. Supposing that the
claim holds for l, we suppose W ≡ Red(U0 · · · Ul+1)≡ Red(Red(U0 · · · Ul)Ul+1)

and let W ′
≡ Red(U0 · · · Ul) and U ≡ Ul+1. Let W ′

≡ W0W1 and U ≡ U0U1 as
in Lemma 2.1 for performing the reduction Red(W ′U ). Let W ′

≡p
∏
λ∈3 Wλ and

U ≡p
∏
λ′∈3′ Uλ. By induction we have for the word W ′ a decomposition I0, . . . , In′

as in the conclusion of this lemma. We can select an initial interval I ⊆ 3 and
a terminal interval I ′

⊆3′ as in the conclusion of Lemma 3.1. Consider the two
possible cases in Lemma 3.1 for the word W ≡ Red(W ′U ). If case (i) of Lemma 3.1
holds then we can decompose the p-chunk total order for W into at most n′

+ 1
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intervals as in (i) and (ii) of the statement of the lemma that we are proving. If case
(ii) of Lemma 3.1 holds then we can decompose the p-chunk total order for W into
at most n′

+ 2 intervals, at least one of which will be a singleton. □

We say a subgroup G of Redκ is p-fine if each p-chunk U of each W ∈ G is also
in G (cf. [Eda 1999, page 600]).

Lemma 3.3. If X ⊆ Redκ then the subgroup
〈⋃

U∈X p-chunk(U )
〉
≤ Redκ is p-fine.

This is the smallest p-fine subgroup including the set X.

Proof. This follows immediately from the characterization in Lemma 3.2. □

Given a set X ⊆ Redκ we’ll denote the subgroup〈 ⋃
U∈X

p-chunk(U )
〉
≤ Redκ

by Pfine(X).

Lemma 3.4. If X ⊆ Redκ then there are at most (|X | + 1) · ℵ0 pure p-chunks of
elements in Pfine(X).

Proof. If X is empty then Pfine(X) has only the empty word and so there is one
pure p-chunk of elements in Pfine(X) and the claim is true. If X is not empty then
there are there are at most |X | · ℵ0 pure p-chunks of elements in X (since a p-index
is at most countable), and therefore we have at most |X | · ℵ0 · ℵ0 = |X | · ℵ0 finite
products of p-chunks, or their inverses, of elements in X . By Lemma 3.2 we know
all pure p-chunks of elements in Pfine(X) arise in this way and so we are also done
in this case. □

3B. Close subsets. We take a diversion through a concept which will be useful in
later subsections.

Definition 3.5. Let 3 be a totally ordered set. We say 30 ⊆ 3 is close in 3,
and write Close(30,3), if every infinite interval in 3 has nonempty intersection
with 30.

The idea of a close subset 30 in 3 is that there are no infinite gaps in 3 which
miss elements in 30. We give some elementary examples. If 30 is cofinite in 3
then Close(30,3). Any infinite subset of the ordered set ω of natural numbers is
close. A subset of Z is close precisely when it contains numbers of arbitrarily large
positive numbers and arbitrarily large negative numbers. A subset of Q is close
when it is dense.

Lemma 3.6. The following hold:

(i) If Close(30,3) then for any infinite interval I ⊆3 the set I ∩30 is infinite.

(ii) If 32 ⊆31 ⊆30 with Close(3i+1,3i ) for i = 0, 1, then Close(32,30).
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(iii) If we have that 3 ≡
∏
θ∈23θ , Close(3θ,0,3θ ) for each θ ∈ 2, and also

Close({θ ∈2 |3θ,0 ̸= ∅},2), then Close
(⋃

θ∈23θ,0,3
)
.

(iv) If I0 is an interval in 3 and Close(30,3), then Close(30 ∩ I0, I0).

Proof. (i) If instead I ∩30 = {λ0, λ1, . . . , λn} with λi < λi+1 then at least one of
the intervals I ∩ (−∞, λ0), (λ0, λ1), . . . , (λn−1, λn), I ∩ (λn,∞) in 3 is infinite,
but each has empty intersection with 30 and this is a contradiction.

(ii) Let I ⊆30 be an infinite interval. Notice that I ∩31 is infinite by (i) and so
I ∩31 is an infinite interval in 31, so I ∩32 = (I ∩31)∩32 ̸= ∅.

(iii) Let I ⊆ 3 be an infinite interval. The set I = {θ ∈ 2 | I ∩3θ ̸= ∅} is an
interval in 2. If I is finite then as I =

⊔
θ∈I (I ∩3θ ) there is some θ0 ∈ I for which

|I ∩3θ0 | = ∞, and as I ∩3θ0 is an infinite interval in3θ0 we see that I ∩3θ0,0 ̸=∅,
so I ∩

⋃
θ∈23θ,0 ̸= ∅. If I is infinite then I ∩ {θ ∈ 2 | 3θ,0 ̸= ∅} is infinite

by (i), as we are assuming Close({θ ∈2 |3θ,0 ̸= ∅},2). Then there exists some
θ0 ∈ I ∩ {θ ∈2 |3θ,0 ̸= ∅} for which I ⊇3θ0 . Thus I ∩3θ0,0 ̸= ∅.

(iv) This is obvious. □

If Close(30,3) then for each interval I ⊆3 we let ∝(I,30) denote the small-
est interval in 3 which includes the set I ∩ 30. In other words ∝(I,30) =⋃
λ0,λ1∈I∩30,λ0≤λ1

[λ0, λ1] where the intervals [λ0, λ1] are being considered in 3.

Lemma 3.7. Let Close(30,3) and I ⊆3 be an interval.

(i) The inclusion I ⊇ ∝(I,30) holds and ∝(I,30)= ∝(∝(I,30),30).

(ii) The set I \∝(I,30) is the disjoint union of an initial and terminal subinterval
I0, I1 ⊆ I (either subinterval could be empty) with |I0|, |I1|<∞.

Proof. (i) The claimed inclusion is obvious. For the claimed equality it is therefore
sufficient to prove that ∝(I,30)⊆∝(∝(I,30),30). We let λ∈∝(I,30) be given.
Select λ0, λ1 ∈ I ∩30 such that λ0 ≤ λ ≤ λ1. Then λ0, λ1 ∈ ∝(I,30)∩30 and
λ0 ≤ λ≤ λ1, so λ ∈ ∝(∝(I,30),30).

(ii) If I ∩30 = ∅ then I is finite (since Close(λ0,3)) and we can let I0 = ∅
and I1 = I . If I ∩30 ̸= ∅ then we let I0 = {λ ∈ I | (∀λ0 ∈ I ∩30) λ < λ0} and
I1 = {λ ∈ I | (∀λ0 ∈ I ∩30) λ > λ0}. Clearly I ≡ I0 ∝(I,30)I1. Each of I0 and I1

is a subinterval of I and therefore a subinterval of 3 as well. If, say, I0 is infinite
then I0 ∩30 ̸= ∅ but this is an obvious contradiction. □

We will say that two totally ordered sets 3 and 2 are close-isomorphic if
there exist 30 ⊆ 3 and 20 ⊆ 2 with Close(30,3), Close(20,2) and 30 order
isomorphic to 20; and if ι is an order isomorphism between such a 30 and 20 then
we will call ι a close order isomorphism from 3 to 2. It is obvious that the inverse
of a close order isomorphism from 3 to 2 is a close order isomorphism from 2

to 3.
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From a close order isomorphism (abbreviated coi) between totally ordered sets
one obtains a reasonable way of identifying intervals in one totally ordered set
with intervals in the other, which we now describe. Given coi ι between 3 and 2,
with 30 and 20 being the respective domain and range of ι, and an interval I ⊆3

we let ∝(I, ι) denote the smallest interval in 2 which includes the set ι(I ∩30).
Thus ∝(I, ι) =

⋃
θ0,θ1∈ι(I∩30),θ0≤θ1

[θ0, θ1], where each interval [θ0, θ1] is being
considered in 2.

Lemma 3.8. If ι : 30 → 20 is a coi between 3 and 2 and I ⊆ 3 is an interval
then ∝(∝(I, ι), ι−1)= ∝(I,30). □

We point out that a coi ι between3 and2 also induces a coi between the reversed
orders 3−1 and 2−1 in the obvious way.

Lemma 3.9. Let 3≡ I0 · · · In and ι :30 →20 a coi from3 to 2. Then there exist
(possibly empty) finite subintervals I ′

0, . . . , I ′

n+1 of ∝(3, ι) such that

∝(3, ι)≡ I ′

0 ∝(I0, ι)I ′

1 ∝(I1, ι)I ′

2 · · ·∝(In, ι)I ′

n+1.

Proof. Assume the hypotheses. Clearly each ∝(Ij , ι) is a subinterval of ∝(3, ι),
and it is easy to see that all elements of ∝(Ij , ι) are strictly below all elements of
∝(Ij+1, ι) for 0 ≤ j < n. Thus we may indeed write

∝(3, ι)≡ I ′

0 ∝(I0, ι)I ′

1 ∝(I1, ι)I ′

2 · · ·∝(In, ι)I ′

n+1

and we conclude by pointing out that I ′

l ∩20 = I ′

l ∩ι(30)= I ′

l ∩
(⋃n

j=0 ι(Ij ∩30)
)
⊆⋃n

j=0(I
′

l ∩∝(Ij , ι))= ∅ for each 0 ≤ l ≤ n + 1, and since Close(20,2) we have
I ′

l finite. □

Lemma 3.10. Let ι :30 →20 be a coi from3 to30. If I ⊆3 is finite then ∝(I, ι)
is finite.

Proof. Since I is finite, we know I ∩30 is finite. Clearly we have ∝(I, ι)∩20 =

ι(I ∩30), so ∝(I, ι) is an interval in 2 having finite intersection with 20. Thus
∝(I, ι) is finite by Lemma 3.6 (i). □

3C. Coherent coi triples. Suppose that κ0 and κ1 are cardinal numbers greater
than or equal to 2. For words W ∈ Redκ0 and U ∈ Redκ1 we’ll write coi(W, ι,U )
to denote that ι is a coi between p*(W ) and p*(U ) and say that coi(W, ι,U ) is a
coi triple from Redκ0 to Redκ1 . We will often abuse language and say that ι is a coi
from W to U when really ι is a coi from p*(W ) to p*(U ).

Definition 3.11. A collection {coi(Wx , ιx ,Ux)}x∈X of coi triples from Redκ0 to
Redκ1 is coherent if for any choice of x0, x1 ∈ X , intervals I0 ⊆ p*(Wx0) and
I1 ⊆ p*(Wx1) and i ∈ {−1, 1} such that Wx0 ↾p I0 ≡ (Wx1 ↾p I1)

i we get

[[Ux0 ↾p ∝(I0, ιx0)]] = [[(Ux1 ↾p ∝(I1, ιx1))
i
]],
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and similarly for any choice of x2, x3 ∈ X , intervals I2 ⊆ p-chunk(Ux2) and I3 ⊆

p-chunk(Ux3) and j ∈ {−1, 1} such that Ux2 ↾p I2 ≡ (Ux3 ↾p I3)
j we get

[[Wx2 ↾p ∝(I2, ι
−1
x2
)]] = [[(Wx3 ↾p ∝(I3, ι

−1
x3
)) j

]].

It is clear from the symmetric nature of this definition that if the collection of
coi triples {coi(Wx , ιx ,Ux)}x∈X from Redκ0 to Redκ1 is coherent then so is the
collection of coi triples {coi(Ux , ι

−1
x Wx)}x∈X from Redκ1 to Redκ0 . We emphasize

that a word can appear multiple times in a coherent collection. For example, if
each element of {Wx}x∈X is pure then the collection {(Wx , ιx , E)}x∈X is obviously
coherent (each ιx is the empty function).

Lemma 3.12. Suppose that2 is a totally ordered set and that {Tθ }θ∈2 is a collection
of coherent collections of coi triples from Redκ0 to Redκ1 such that θ ≤ θ ′ implies
Tθ ⊆ Tθ ′ . Then

⋃
θ∈2 Tθ is coherent.

Proof. Supposing that coi(Wx0, ιx0,Ux0), coi(Wx1, ιx1,Ux1)∈
⋃
θ∈2 Tθ and intervals

I0 ⊆ p*(Wx0) and I1 ⊆ p*(Wx1) and i ∈ {−1, 1} are such that Wx0 ↾p I0 ≡ (Wx1 ↾p I1)
i ,

we select θ ∈ 2 such that coi(Wx0, ιx0,Ux0), coi(Wx1, ιx1,Ux1) ∈ Tθ . As Tθ is
coherent we get

[[Ux0 ↾p ∝(I0, ιx0)]] = [[(Ux1 ↾p ∝(I1, ιx1))
i
]].

The comparable check for words Ux2,Ux3 ∈ Redκ1 is analogous. □

Lemma 3.13. Suppose {coi(Wx , ιx ,Ux)}x∈X is coherent, x ∈ X , I ⊆ p*(Wx) is an
interval, I ≡ I0 I1 · · · In . Suppose also that for each 0 ≤ j ≤ n we have an x j ∈ X ,
an interval I ′

j in p*(Wx j ) and i j ∈ {−1, 1} such that Wx ↾p Ij ≡ (Wx j ↾p I ′

j )
i j . Then

[[Ux ↾p ∝(I, ιx)]] =

n∏
j=0

[[(Ux j ↾p ∝(I ′

j , ιx j ))
i j ]].

Furthermore, if L = {0 ≤ j ≤ n | |Ij |> 1} we have

[[Ux ↾p ∝(I, ιx)]] =

∏
j∈L

[[(Ux j ↾p ∝(I ′

j , ιx j ))
i j ]].

Proof. For each 0 ≤ j ≤ n we have Wx ↾p Ij ≡ (Wx j ↾p I ′

j )
i j , so that by the fact that

{coi(Wx , ιx ,Ux)}x∈X is coherent we see that

[[Ux ↾p ∝(Ij , ιx)]] = [[(Ux j ↾p ∝(I ′

j , ιx j ))
i j ]]

for all 0 ≤ j ≤ n. In particular we have
n∏

j=0

[[Ux ↾p ∝(I ′

j , ιx)]] =

n∏
j=0

[[(Ux j ↾p ∝(I ′

j , ιx j ))
i j ]]
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and so we will be done with the first claim if we show that [[Ux ↾p ∝(I, ιx)]] =∏n
j=0[[Ux ↾p ∝(Ij , ιx)]]. But this is true since by Lemma 3.9 the (possibly unre-

duced) word
∏n

j=0 Ux ↾p ∝(Ij , ιx) is obtained from Ux ↾p ∝(I, ιx) by deleting
finitely many pure subwords.

Next we let L be as in the statement of the lemma. Notice that for each 0 ≤

j ≤ n with j /∈ L we have |Ij | = |I ′

j | ≤ 1 and so ∝(I ′

j , ιx j ) is a finite interval, by
Lemma 3.10. Thus for each such j we have [[(Ux j ↾p ∝(I ′

j , ιx j ))
i j ]] = [[E]] since

Ux j ↾p ∝(I ′

j , ιx j ) is a finite concatenation of pure words. Thus removing all such
j from the multiplication expression

∏n
j=0[[(Ux j ↾p ∝(I ′

j , ιx j ))
i j ]] will not change

the value in the group, and so we are done with the second claim. □

What follows is a rather technical result that will allow us to conclude that certain
natural maps are well defined despite certain choices that are made.

Lemma 3.14. Let the collection {coi(Wx , ιx ,Ux)}x∈X be coherent and let W be in
Pfine({Wx}x∈X ). Let I0, . . . , In be a finite set of subintervals of p*(W ) as in the
conclusion of Lemma 3.2 and let J = {0 ≤ j ≤ n | |Ij |> 1}. For each j ∈ J select
x j ∈ X , i j ∈ {−1, 1}, and an interval3j ⊆ p*(Wx j ) such that W ↾p Ij ≡ (Wx j ↾p3j )

i j .
Again, let I ′

0, . . . , I ′

n′ be a finite set of subintervals of p*(W ) as in the conclusion
of Lemma 3.2 and let J ′

= {0 ≤ j ′
≤ n′

| |I ′

j ′ |> 1}. For each j ′
∈ J ′ select yj ′ ∈ X ,

m j ′ ∈ {−1, 1}, and an interval 3′

j ′ ⊆ p*(Wyj ′
) such that W ↾p I ′

j ′ ≡ (Wyj ′
↾p3′

j ′)
m j ′ .

Then ∏
j∈J

[[(Ux j ↾p ∝(3j , ιx j ))
i j ]] =

∏
j ′∈J ′

[[(Uyj ′
↾p ∝(3′

j ′, ιyj ′
))m j ′ ]].

Proof. Assume the hypotheses. Take I to be the set of nonempty intervals ob-
tained by intersecting an Ij with an I ′

j ′ . For each 0 ≤ j ≤ n we can write
Ij ≡ I( j,0) I( j,1) · · · I( j,n j ) where each I( j,q) is an element of I. Similarly for each
0 ≤ j ′

≤ n′ we write I ′

j ′ ≡ I ′

( j ′,0) · · · I ′

( j ′,n′
j ′ )

where each I ′

( j ′,r) is an element of I.
We have I = {I( j,q)}0≤ j≤n,0≤q≤n j = {I ′

( j ′,r)}0≤ j ′≤n′,0≤r≤n′

j ′
. Let F : I → {( j, q) |

0 ≤ j ≤ n, 0 ≤ q ≤ n j } be the unique order isomorphism between the domain and
codomain where the codomain is given the lexicographic order, comparing the
leftmost coordinate first and define F ′

: I→{( j ′, r) |0≤ j ′
≤n′, 0≤r ≤n′

j ′} similarly.
Let h : {( j, q) | 0 ≤ j ≤ n, 0 ≤ q ≤ n j } → {0, . . . , n} denote projection to the first
coordinate, and similarly define h′

: {( j ′, r) | 0 ≤ j ′
≤ n′, 0 ≤ r ≤ n′

j ′} → {0, . . . , n′
}.

Let J ⊆ I denote the set of intervals in I which are of cardinality at least 2; that is,

J = {I( j,q) | 0 ≤ j ≤ n, 0 ≤ q ≤ n j , |I( j,q)| ≥ 2}.

For each j ∈ J and each I( j,q) ∈ J we know that W ↾p I( j,q) ∈ p-chunk(W i j
x j ), so

select an interval 3( j,q) ⊆ p*(Wx j ) such that W ↾p I( j,q) ≡ (Wx j ↾p3( j,q))
i j . Now
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we have that∏
j∈J

[[(Ux j ↾p ∝(3j , ιx j ))
i j ]]

=

∏
j∈J

∏
0≤q≤n j
I( j,q)∈J

[[(Ux j ↾p ∝(3( j,q), ιx j ))
i j ]]

=

∏
I∈J

[[(Uxh◦F(I ) ↾p ∝(3F(I ), ιxh ◦F(I )))
ih ◦F(I )]]

=

∏
j ′∈J ′

∏
0≤r≤n′

j ′

I( j ′,r)∈J

[[(Uxh ◦F◦(F ′)−1( j ′,r))
↾p ∝(3F◦(F ′)−1( j ′,r), ιxh ◦F◦(F ′)−1( j ′,r)

))
ih ◦F◦(F ′)−1( j ′,r)]]

=

∏
j ′∈J ′

[[(Uyj ′
↾p ∝(3′

j ′, ιyj ′
))m j ′ ]]

where the first equality holds by Lemma 3.13, the second and third equalities
are simply a rewriting of the order index, and the last equality holds by another
application of Lemma 3.13. This completes the proof. □

Now we may conclude that a coherent collection of cois produces well-defined
homomorphisms. For each i ∈ {0, 1} we let ℶκi : Redκi → Cκi denote the surjection
given by W 7→ [[W ]].

Proposition 3.15. Let {coi(Wx , ιx ,Ux)}x∈X be coherent. By selecting for each
W ∈ Pfine({Wx}x∈X ) a finite set of subintervals I0, . . . , In of p*(W ) as in the
conclusion of Lemma 3.2, letting J = {0 ≤ j ≤ n | |Ij | > 1}, selecting for each
j ∈ J an element x j ∈ X , i j ∈ {−1, 1}, and an interval 3j ⊆ p*(Wx j ) such that
W ↾p Ij ≡ (Wx j ↾p3j )

i j we obtain a homomorphism

φ0 : Pfine({Wx}x∈X )→ ℶκ1(Pfine({Ux}x∈X ))

given by φ0(W ) =
∏

j∈J [[(Ux j ↾p ∝(3j , ιx j ))
i j ]], whose definition is independent

of the choices made of the set of subintervals I0, . . . , In , elements x j ∈ X and
i j ∈ {−1, 1}, and intervals 3j ⊆ p*(Wx j ). The comparable map

φ1 : Pfine({Ux}x∈X )→ ℶκ0(Pfine({Wx}x∈X ))

similarly is a homomorphism whose definition is independent of the various selec-
tions made.

Proof. From Lemma 3.14 we see that the described function φ0 is well defined
and independent of the numerous choices made. We must check that φ0 is a
homomorphism.

We note first that if W ∈ Pfine({Wx}x∈X ) and p*(W ) has a first or last element,
say λ= max(p*(W )), then φ0(W )= φ0(W ↾p p*(W ) \ {λ}). This is easily seen by
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selecting the set of intervals I0, . . . , In for W to be such that In = {λ}. The fact
that |In| = 1 and therefore In /∈ J completes the argument.

Suppose that W ∈ Pfine({Wx}x∈X ) and W ≡ W0W1 where also both W0,W1 ∈

Pfine({Wx}x∈X ). Choose subintervals I0, . . . , In in p*(W0) as in Lemma 3.2, let
J = {0 ≤ j ≤ n | |Ij |> 1}, select x j ∈ X and i j ∈ {−1, 1} and intervals3j ⊆ p*(Wx j )

with W ↾p Ij ≡ (Wx j ↾p3j )
i j . Similarly choose intervals I ′

0, . . . , I ′

n′ in p*(W1) and
define J ′ and choose yj ′ ∈ X , m j ′ ∈ {−1, 1} and 3′

j ′ ⊆ p*(Wyj ′
) for each j ′

∈ J ′.
Notice that p*(W ) ≡ I0 · · · In I ′

0 · · · I ′

n′ is a decomposition as in Lemma 3.2 and
J ∪ J ′ is precisely the set of indices whose accompanying interval is of cardinality
at least two. Then

φ0(W )=

( ∏
j∈J

[[(Ux j ↾p ∝(3j , ιx j ))
i j ]]

)( ∏
j ′∈J ′

[[(Uyj ′
↾p ∝(3j ′, ιx j ))

m j ]]

)
= φ0(W0)φ0(W1).

Next we suppose that W ∈ Pfine({Wx}x∈X ) and let subintervals I0, . . . , In in
p*(W0) be as in Lemma 3.2, let J = {0 ≤ j ≤ n | |Ij | > 1}, select x j ∈ X and
i j ∈ {−1, 1} and intervals 3j ⊆ p*(Wx j ) with W ↾p Ij ≡ (Wx j ↾p3j )

i j . Notice that
p*(W −1) may be written as p*(W −1) ≡ I ′

n · · · I ′

0 as in Lemma 3.2, where I ′

j is
order isomorphic to the ordered set (Ij )

−1, and W ↾p Ij ≡ (W −1 ↾p I ′

j )
−1. Also,

{0 ≤ j ≤ n | |I ′

j |> 1} is equal to the set J . Then

φ0(W )=

∏
j∈J

[[(Ux j ↾p ∝(3j , ιx j ))
i j ]] =

( ∏
j∈J−1

[[(Ux j ↾p ∝(3j , ιx j ))
−i j ]]

)−1

= (φ0(W −1))−1,

where J−1 denotes the set J under the reverse order. Thus φ0(W −1)= (φ0(W ))−1.
Finally we let W0,W1 ∈ Pfine({Wx}x∈X ) be given. As in Lemma 2.1 we write

W0 ≡ W00W01 and W1 ≡ W10W11 with W01 ≡ W −1
10 and the word W00W11 reduced.

We will give the argument in the most difficult case and sketch how the argument
goes in the less difficult ones. Suppose that W00 ends with a nonempty α-pure word
and W11 begins with a nonempty α-pure word, and also that W01 begins with a
nonempty α-pure word. From this last assumption we know that W10 ends with a
nonempty α-pure word.

We have W00W11 ≡ W ′

00WaW ′

11 where we denote λ0 = max(p*(W00)), λ1 =

min(p*(W11)) and

W ′

00 ≡ W00 ↾p {λ ∈ p*(W00) | λ < λ0}, W ′

11 ≡ W1 ↾p {λ ∈ p*(W11) | λ > λ1},

Wa ≡ (W00 ↾p {λ0})(W11 ↾p {λ1}).

Note that W ′

00,Wa,W ′

11 ∈ Pfine({Wx}x∈X ) since the concatenation W00W11 is in
Pfine({Wx}x∈X ) and each of W ′

00, Wa , and W ′

11 are p-chunks of this word, whereas
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for example W00 ↾p {λ0} might not be in Pfine({Wx}x∈X ). Furthermore suppose
λ2 = min(p*(W01)) and λ3 = max(p*(W10)) and define

W ′

01 ≡ W01 ↾p (p*(W01) \ {λ2}), Wb ≡ (W00 ↾p {λ0})(W01 ↾p {λ2}),

W ′

10 ≡ W10 ↾p (p*(W10) \ {λ3}), Wc ≡ (W10 ↾p {λ3})(W11 ↾p {λ1}).

Notice that W ′

01 ≡ (W ′

10)
−1 and that each of the words W ′

01,Wb,W ′

10,Wc is in
Pfine({Wx}x∈X ).

By our work so far we get

φ0(W00W11)= φ0(W ′

00WaW ′

11)

= φ0(W ′

00)φ0(Wa)φ0(W ′

11)

= φ0(W ′

00)φ0(W ′

11)

= φ0(W ′

00)φ0(W ′

01)φ0(W ′

10)φ0(W ′

11)

= φ0(W ′

00)φ0(Wb)φ0(W ′

01)φ0(W ′

10)φ0(Wc)φ0(W ′

11)

= φ0(W0)φ0(W1).

In the simpler case where W01 does not begin with an α-pure word (hence W10

does not end with an α-pure word) we let W ′

01 = W01, W ′

10 = W10 and both Wb and
Wc be the empty word and the equalities above will all hold. In the case there does
not exist α < κ0 such that both W00 ends with a nonempty α-pure word and W11

begins with an α-pure word we let W ′

00 ≡ W00, W ′

11 ≡ W11 and Wa ≡ E . It may
still be the case that W00 ends with a nonempty β-pure word and W01 begins with
a nonempty β-pure word, β < κ0, and for this we define

W ′

01 ≡ W01 ↾p (p*(W01) \ {λ2}), Wb ≡ (W00 ↾p {λ0})(W01 ↾p {λ2}),

W ′

10 ≡ W10 ↾p (p*(W10) \ {λ3}),

and let Wc be given by
(W10 ↾p {λ3})(W11 ↾p {λ1}) in case W11 begins with a nonempty

β-pure word and λ3 = min p*(W11);

W10 ↾p {λ3} otherwise.

The case where W11 and W10 respectively begin and end with a β-pure word,
for some β < κ0, is analogous. If none of these cases holds then we simply let
W ′

00 ≡ W00, W ′

01 ≡ W01, W ′

10 ≡ W10, W ′

11 ≡ W11 and Wa ≡ Wb ≡ Wc ≡ E . This
exhausts all possibilities and the proof is complete (the arguments for φ1 are made
in the analogous way). □

Proposition 3.16. The homomorphisms φ0 and φ1 descend respectively to isomor-
phisms

80 : ℶ0(Pfine({Wx}x∈X ))→ ℶ1(Pfine({Ux}x∈X )),

81 : ℶ1(Pfine({Ux}x∈X ))→ ℶ0(Pfine({Wx}x∈X )),
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with 80 =8−1
1 .

Proof. If W ∈ Pfine({Wx}x∈X ) is a pure word the set p*(W ) is a singleton and for
any decomposition of p*(W ) by Lemma 3.2 the accompanying set J will necessarily
be empty. Thus all pure words in Pfine({Wx}x∈X ) are in ker(φ0) and so we get the
induced 80, and similarly we obtain an induced 80.

By Lemma 3.2 each element of the group ℶ0(Pfine({Wx}x∈X )) may be written
as a product [[W0]][[W1]] · · · [[Wn]] where each Wi is in

(⋃
x∈X p-chunk(Wx)

)±1.
For each 0 ≤ j ≤ n we select x j and i j and an interval 3j ⊆ p*(Wx j ) such that
Wj ≡ (Wx j ↾p3j )

i j . Now

81 ◦80([[W0]] · · · [[Wn]])=

n∏
j=0

81[[(Ux j ↾p ∝(3j , ιx j ))
i j ]]

=

n∏
j=0

(81([[Ux j ↾p ∝(3j , ιx j )]]))
i j

=

n∏
j=0

[[Wx j ↾p ∝(∝(3j , ιx j ), ι
−1
x j
)]]i j

=

n∏
j=0

[[Wx j ↾p3j ]]
i j

=

n∏
j=0

[[Wj ]],

where the fourth equality holds by Lemma 3.8 — the word Wx j ↾p ∝(∝(3j , ιx j ), ι
−1
x j
)

is obtained from the word Wx j ↾p3j by deleting finitely many pure subwords, namely
those associated with the set 3j \∝(∝(3j , ιx j ), ι

−1
x j
). Thus 81 ◦80 is the identity

map, and that 80 ◦81 is also the identity map follows from the same reasoning. □

3D. Extensions of coherent collections. By Proposition 3.16, the problem of
finding an isomorphism between cone groups is reduced to that of finding a coherent
collection of coi triples {coi(Wx ,Ux , ιx)}x∈X such that ℶ0(Pfine({Wx}x∈X ))= Cκ0

and ℶ1(Pfine({Ux}x∈X )) = Cκ1 . Thus, in this and all remaining subsections we
approach the problem of extending collections of coi triples. We still assume that
κ0, κ1 ≥ 2 and that the coi collections are from Redκ0 to Redκ1 .

Lemma 3.17. Let {coi(Wx , ιx ,Ux)}x∈X be coherent. If W is in Pfine({Wx}x∈X )

then there exists U ∈Redκ1 and a coi ι from W to U such that {coi(Wx , ιx ,Ux)}x∈X ∪

{(W, ι,U )} is coherent. Moreover if W is nonempty the domain (and range) of ι
can be made to be nonempty.

Proof. If W is empty then we let U and ι be empty. Else we choose subintervals
I0, . . . , In in p*(W ) as in Lemma 3.2, let J ={0 ≤ j ≤ n | |Ij |>1}, select x j ∈ X and
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i j ∈ {−1, 1} and intervals 3j ⊆ p*(Wx j ) with W ↾p Ij ≡ (Wx j ↾p3j )
i j . Let J ′

⊆ J
be given by

J ′
= { j ∈ J | (Ux j ↾p ∝(3j , ιx j ))

i j ̸≡ E}.

For each j ∈ J ′ let U ′

j ≡ (Ux j ↾p ∝(3j , ιx j ))
i j . For every 0 ≤ j ≤ n with j /∈ J ′ we

let U ′

j ≡ a0,0.
The word

∏n
j=0 U ′

j is probably not reduced, and so we will make slight modifica-
tions in order to obtain a reduced word. We know that each subword U ′

j is reduced
and nonempty. Let Un ≡ U ′

n . Let 0 ≤ j < n be given. There are a few possibilities:

• p*(U ′

j ) has a maximal element and p*(U ′

j+1) has a minimal element and both
U ′

j ↾p {max p*(U ′

j )} and U ′

j+1 ↾p {min p*(U ′

j+1)} are α-pure for some α < κ1.

• p*(U ′

j ) has a maximal element and p*(U ′

j+1) has a minimal element and both
U ′

j ↾p {max p*(U ′

j )} and U ′

j+1 ↾p {min p*(U ′

j+1)} are not α-pure for some α<κ1.

• p*(U ′

j ) does not have a maximal element or p*(U ′

j+1) does not have a minimal
element.

In the middle case we let Uj ≡ U ′

j . In the first or last case we choose α′

j < κ1 such
that U ′

j does not end with an α′

j -pure word (here we are using the fact that κ1 ≥ 2)
and let Uj ≡ U ′

j aα′,0. The word UjU ′

j+1 is reduced, and so the word UjUj+1 is
reduced (since Uj+1 is nonempty), and so the word U ≡

∏n
j=0 Uj is reduced.

We now define the coi ι from W to U in a very natural way. If j ∈ J ′ then
we let the domain of ιx j be 3′

j , and so Close(3′

j , p*(Wx j )). Let 3′′

j ⊆ Ij be the
image of 3′

j ∩3j under the order isomorphism given by W ↾p Ij ≡ (Wx j ↾p3j )
i j .

Similarly we let 2′′

j ⊆ p*(U ′

j ) ⊆ p*(Uj ) be the image of ιx j (3j ∩3′

j ) under the
order isomorphism given by U ′

j ≡ (Ux j ↾p ∝(3j , ιx j ))
i j . Define ιj :3′′

j →2′′

j to be
the order isomorphism given by the restriction to3′′

j of the composition of the order
isomorphism given by W ↾p Ij ≡ (Wx j ↾p3j )

i j with ιx j with the order isomorphism
given by (Ux j ↾p ∝(3j , ιx j ))

i j ≡ U ′

j . It is easy to check that Close(3′′

j , Ij ) and
Close(2′′

j , p*(Uj )), since for 0 ≤ j ≤ n either Uj ≡ U ′

j or Uj is obtained from U ′

j
by appending a word of length one on the right.

If 0 ≤ j ≤ n and j /∈ J ′ then Ij is finite and nonempty, as is p*(Uj ), and we
simply select elements λ ∈ Ij and λ′

∈ p*(Uj ) and let 3′′

j = {λ}, 2′′

j = {λ′

j } and
ιj :3′′

j →2′′

j be the unique function. Clearly Close(3′′

j , Ij ) and Close(2′′

j , p*(Uj )).
Let 3′′

=
⋃n

j=03
′′

j and 2′′
=

⋃n
j=02

′′

j , and note that Close(3′′, p*(W )) and
Close(2′′, p*(U )) by Lemma 3.6 (iii). Let ι :3′′

→2′′ be the unique extension of
the ιj . Now coi(W, ι,U ).

We check that {coi(Wx , ιx ,Ux)}x∈X ∪ {coi(W, ι,U )} is coherent. Suppose that
y ∈ X and intervals I ⊆ p-chunk(W ) and I ′

⊆ p-chunk(Wy) and i ∈ {−1, 1} are
such that W ↾p I ≡ (Wy ↾p I ′)i . Let L ⊆{0, . . . , n} denote the set of those j such that
Ij ∩ I ̸=∅. For each j ∈ L ∩ J we have W ↾p (Ij ∩ I )≡ (Wx j ↾p3

∗

j )
i j for the obvious
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choice of interval 3∗

j ⊆ 3j ⊆ p-chunk(Wx j ). Thus (Wx j ↾p3
∗

j )
i ·i j ≡ Wy ↾p I ′

j for
the obvious choice of interval I ′

j ⊆ I ′. By the coherence of {coi(Wx , ιx ,Ux)}x∈X

we therefore have

[[U ↾p ∝(I, ι)]] =

∏
j∈L

[[U ↾p ∝(Ij ∩ I, ι)]]

=

∏
j∈L∩J ′

[[U ↾p ∝(Ij ∩ I, ι)]]

=

∏
j∈L∩J ′

[[Ux j ↾p ∝(3∗

j , ιx j )]]
i j

=

∏
j∈(L∩J ′)i

[[Uy ↾p ∝(I ′

j , ιy)]]
i

= [[(Uy ↾p ∝(I ′, ιy))
i
]].

If we select intervals I, I ′
⊆ p*(W ) and i ∈ {−1, 1} such that W ↾p I ≡ (W ↾p I ′)i

then a similar strategy of finitely decomposing I and I ′ is employed to show
[[U ↾ ∝(I, ι)]] = [[(U ↾p ∝(I ′, ι))i ]].

With slight modifications, we check in a similar way that if U ↾p Q ≡ (Uz ↾p Q′)i ,
with z ∈ X , then the appropriate elements of Cκ0 are equal. Suppose z ∈ X , i ∈{−1, 1},
and intervals Q ⊆ p*(U ) and Q′

⊆ p*(Uz) are such that U ↾p Q ≡ (Uz ↾p Q′)i . By
construction we know that p*(U ′

j ) is an initial interval in p*(Uj ), with p*(Uj )\p*(U ′

j )

being of cardinality at most 1. Also, p*(U )≡ p*(U0) · · · p*(Un). Let T ⊆{0, . . . , n}

be the set of those j such that p*(Uj ) ∩ Q ̸= ∅. For each j ∈ T ∩ J ′ we have
U ↾p p*(U ′

j )∩ Q ≡ (Ux j ↾p2
∗

j )
i j for the obvious interval 2∗

j ⊆ p-chunk(Ux j ), and
(Ux j ↾p2

∗

j )
i ·i j ≡ Uz ↾p Q′

j for an appropriate Q′

j ⊆ p*(Uz). We see that

[[W ↾p ∝(Q, ι−1)]] =

∏
j∈T

[[W ↾p ∝(p*(Uj )∩ Q, ι−1)]]

=

∏
j∈L∩J ′

[[W ↾p ∝(p*(U ′

j )∩ Q, ι)]]

=

∏
j∈L∩J ′

[[Wx j ↾p ∝(2∗

j , (ιx j )
−1)]]i j

=

∏
j∈(L∩J ′)i

[[Wz ↾p ∝(Q′

j , ιy)]]
i

= [[(Wz ↾p ∝(Q′, ιy))
i
]].

Similar modifications are enacted if Q, Q′
⊆ p*(U ), and the proof is complete. □

We introduce some extra notation for convenience. For a not necessarily reduced
word W we let

∥W∥ = sup
{ 1

n+1
∣∣ n = proj1(W (i)) for some i ∈ W

}
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where the supremum is considered in the set of nonnegative reals. As examples we
have ∥E∥ = 0 and ∥a−1

α,5aα′,10∥ =
1
6 . By comparison to earlier notation, we have

d(W )= 1/∥W∥ − 1.

Lemma 3.18. Suppose that κ0 and κ1 are cardinal numbers greater than or equal
to 2. Suppose that {coi(Wx , ιx ,Ux)}x∈X is coherent, z ∈ X and that ϵ > 0 is a real
number. Then there exists U ∈ Redκ1 with ∥U∥< ϵ and a coi ι from Wz to U such
that {coi(Wx , ιx ,Ux)}x∈X ∪ {coi(Wz, ι,U )} is coherent. Moreover the domain (and
codomain) of ι may be chosen to be nonempty provided ιz satisfies this property.

Proof. If Wz is empty then let U be empty and ι = ∅. Otherwise let Uz ≡p∏
λ∈p*(Uz)

Uλ and J = {λ ∈ p*(Uz) | ∥Uλ∥ ≥ ϵ}. Since Uz is a word, we know that
J is finite. Let N ∈ ω be large enough that 1

N+1 < ϵ. For each λ ∈ p*(Uz) we let

U ′

λ ≡

{
Uλ if λ /∈ J,

aα,N if λ ∈ J and Uλ is α-pure.

We let U ≡
∏
λ∈p*(Ux )

U ′

λ. It is easy to see that U is reduced (a cancellation
in U would necessarily include the pairing of a letter aα,N ≡ Uλ, with λ ∈ J ,
with a letter in U ′

λ′ where λ′ is the immediate successor or immediate predecessor
of λ in p*(Ux), and thus U ′

λ and U ′

λ′ are both α-pure, so Uλ and Uλ′ are as well,
a contradiction). Moreover U ≡p

∏
λ∈p*(Ux )

U ′

λ and clearly ∥U∥ < ϵ. Letting
ι = ιz it is immediate that ι is a coi from Wz to U . The rather intuitive fact that
{coi(Wx , ιx ,Ux)}x∈X ∪ {coi(Wz, ι,U )} is coherent is proved along similar lines
used in earlier proofs. □

Lemma 3.19. Suppose that κ1 ≥ 2 and that |X |< 2ℵ0 . Given N ∈ ω \ {0} and an
ordinal α<κ1 there exists an α-pure word U ∈Redκ1 using only positive letters such
that ∥U∥ =

1
N , and U (max(U ))= aα,N−1 = U (min(U )), and U /∈ Pfine({Ux}x∈X ).

Proof. Assume the hypotheses. We will let U = [0, 1] ∩ Q. It is easy to see that the
set of all functions f : ([0, 1]∩Q)→ {aα,n}n≥N−1 such that f (0)= f (1)= aα,N−1

and the restriction f ↾ (0, 1)∩ Q is injective is of cardinality 2ℵ0 , and each such
function is an element of Redκ1 since there are no inverse letters with which to
perform a cancellation. On the other hand we have by Lemma 3.4 that there are less
than 2ℵ0 pure elements in Pfine({Ux}x∈X ). The lemma follows immediately. □

3E. ω-type concatenations. In this subsection we prove the following:

Proposition 3.20. Suppose that κ0 and κ1 are cardinal numbers greater than or
equal to 2. Suppose that {coi(Wx , ιx ,Ux)}x∈X is coherent, that W is reduced,
that p*(W ) ≡

∏
n∈ω In with each In ̸= ∅, W ↾p In ∈ Pfine({Wx}x∈X ), and W /∈

Pfine({Wx}x∈X ). Suppose also that |X |< 2ℵ0 . Then there exists U ∈ Redκ1 and a
coi ι from W to U such that {coi(Wx , ιx ,Ux)}x∈X ∪ {coi(W, ι,U )} is coherent.



THE GRIFFITHS DOUBLE CONE GROUP IS ISOMORPHIC TO THE TRIPLE 323

Proof. For each n ∈ ω write Wn ≡ W ↾p In . As W0 ∈ Pfine({Wx}x∈X ) is nontrivial
we select a word U0 ∈ Redκ1 and coi ι0 from W0 to U0 such that the domain of
ι0 is nonempty and such that {coi(Wx , ιx ,Ux)}x∈X ∪ {coi(W0, ι0,U0)} is coher-
ent, by Lemma 3.17. Assuming that the elements of {coi(Wi , ιj ,Uj )}j≤m have
already been chosen such that ∥Uj∥ <

1
2∥Uj−1∥, each ιj has nonempty domain

and also that the union of collections {coi(Wx , ιx ,Ux)}x∈X ∪ {coi(Wi , ιj ,Uj )}j≤m

is coherent, we use Lemmas 3.17 and 3.18 to select Um+1 ∈ Redκ1 and coi ιm+1

from Wm+1 to Um+1 so that ιm+1 has nonempty domain, ∥Um+1∥ <
1
2∥Um∥ and

{coi(Wx , ιx ,Ux)}x∈X ∪ {coi(Wi , ιj ,Uj )}j≤m+1 is coherent.

By Lemma 3.12, the collection {coi(Wx , ιx ,Ux)}x∈X ∪ {coi(Wi , ιj ,Uj )}j∈ω is
coherent. For each j ∈ω we will construct a word Vj ∈ Redκ1 with 1 ≤ |p*(Vj )| ≤ 2.
Select αj < κ1 such that the word Uj does not end with an αj -pure subword.
This is possible since κ1 ≥ 2 and Uj can end in at most one pure subword
(and might possibly not end in a pure subword). By Lemma 3.19 we select
an αj -pure word V ′

j ∈ Redκ1 \ Pfine({Ux}x∈X ∪ {Ui }i∈ω) which uses only pos-
itive letters such that ∥V ′

j ∥ = ∥Uj∥ and V ′

j has maximum and minimum ele-
ments and V ′

j (max(V ′

j )) = aαj ,d(Uj )+1 = V ′

j (min(V ′

j )). If Uj+1 begins with an
αj -pure subword, then select α′′

j ∈ κ1 \ {αj }, and again by Lemma 3.19, select
V ′′

j ∈ Redκ1 \ Pfine({Ux}x∈X ∪ {Ui }i∈ω) which uses only positive letters such that
∥V ′′

j ∥ = ∥Uj∥ and V ′′

j has maximum and minimum elements and V ′′

j (max(V ′′

j ))=

aα′′

j ,d(Uj )−1 = V ′′

j (min(V ′′

j )) and V ′′

j is α′′

j -pure. If Uj+1 does not begin with an
αj -pure subword then let V ′′

j = E . Let Vj = V ′

j V ′′

j .

We know for each n ∈ ω that Un , V ′
n and V ′′

n are each reduced. By how V ′
n was

selected, we know that UnV ′
n is reduced since any cancellation would need to pair

letters in V ′
n with those in Un , and Un does not end in an αj -pure word. Similarly,

UnV ′
nV ′′

n ≡ UnVn is reduced.

As ∥UnVn∥ ≤
1
2n we know the expression

∏
n∈ω UnVn ≡ U0V0U1V1 · · · is a word.

By construction each of the words
∏m

n=0 UnVn is reduced, and therefore the word
U ≡

∏
n∈ω UnVn is reduced. We note as well that by how V ′

n and V ′′
n were chosen

we can write p*(U ) ≡
∏

n∈ω p*(Un) p*(Vn), and 1 ≤ |p*(Vn)| ≤ 2. Let ι be the
function ι=

⋃
j∈ω ιj . By Lemma 3.6 (iii) the domain of ι is close in p*(W ) and the

range of ι is close in U , and thus we may write coi(W, ι,U ). We will show that
{coi(Wx , ιx ,Ux)}x∈X ∪{coi(Wi , ιj ,Uj )}j∈ω∪{coi(W, ι,U )} is coherent, from which
it will immediately follow that {coi(Wx , ιx ,Ux)}x∈X ∪ {coi(W, ι,U )} is coherent.

Suppose that y ∈ X ∪ ω, 30 ⊆ p*(W ) and 31 ⊆ p*(Wy) are intervals and
i ∈{−1, 1} are such that W ↾p30 ≡ (Wy ↾p31)

i . If the set {n ∈ω | In∩30 ̸=∅} is infi-
nite, then by the fact that30 is an interval there exist m ∈ω and intervals I ′

m, I ′′
m ⊆ Im ,

with I ′
m possibly empty, such that Im ≡ I ′

m I ′′
m and 30 ≡ I ′′

m
∏

∞

n=m+1 In . Certainly
(Wy ↾p31)

i
∈Pfine({Wx}x∈X ∪{Wn}n∈ω), and since Wn ∈Pfine({Wx}x∈X ) for each n
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we have in fact that Pfine({Wx}x∈X ∪ {Wn}n∈ω) = Pfine({Wx}x∈X ). Therefore we
have W ↾p30 ≡ (Wy ↾p31)

i
∈ Pfine({Wx}x∈X ). But also

(∏m−1
n=0 Wn

)
W ↾p I ′

m ∈

Pfine({Wx}x∈X ). Thus W ≡
((∏m−1

n=0 Wn
)
W ↾p I ′

m
)
(W ↾p30) ∈ Pfine({Wx}x∈X ),

contrary to the assumptions of our lemma.
Thus we suppose that y ∈ X ∪ω, 30 ⊆ p*(W ) and 31 ⊆ p*(Wy) are intervals

and i ∈ {−1, 1} are such that W ↾p30 ≡ (Wy ↾p31)
i and know from this that the

set K = {n ∈ ω | In ∩ 30 ̸= ∅} is finite. If K = ∅ then 30 = ∅ = 31 and
[[U ↾p ∝(30, ι)]] = [[E]] = [[(Uy ↾p ∝(31, ιy))

i
]]. If K has cardinality 1 then we

let K = {m} and we can write Im ≡ I ′
m30 I ′′

m where either or both of I ′
m and I ′′

m may
be empty. Since {coi(Wx , ιx ,Ux)}x∈X ∪ {coi(Wj , ιj ,Uj )}j∈ω is coherent, we have

[[U ↾p ∝(30, ι)]] = [[Um ↾p ∝(3, ιm)]] = [[(Uy ↾p ∝(31, ιy))
i
]].

If K is of cardinality at least 2 then we let ma and mb be respectively the minimal and
maximal elements and write Ima ≡ I ′

ma
I ′′
ma

, Imb ≡ I ′
mb

I ′′
mb

(where either or both of I ′
ma

and I ′′
mb

may be empty) and30 ≡ I ′′
ma

Ima+1 · · · Imb−1 I ′
mb

. As W ↾p30 ≡ (Wy ↾p31)
i ,

there exist subintervals J0, . . . , Jmb−ma of 31 such that W ↾p Ij ≡ (Wy ↾p Jj − ma)
i

for ma < j <mb and W ↾p I ′′
ma

≡ (Wy ↾p J0)
i and W ↾p I ′

mb
≡ (Wy ↾p Jmb−ma )

i . Since
{coi(Wx , ιx ,Ux)}x∈X ∪ {coi(Wj , ιj ,Uj )}j∈ω is coherent, we have

[[U ↾p ∝(30, ι)]] = [[Uma ↾p ∝(I ′′

ma
, ιma )]][[Uma+1 ↾p ∝(Ima+1, ιma+1)]]

· · · [[Umb−1 ↾p ∝(Imb−1, ιmb−1)]][[U ↾p ∝(I ′

mb
, ιmb)]]

=

∏
j∈{0,...,mb−ma}i

[[(Uy ↾p ∝(Jj , ιy))
i
]]

= [[(Uy ∝(31, ιy))
i
]].

Suppose now that 30,31 ⊆ p*(W ) are intervals and i ∈ {−1, 1} are such that
W ↾p30 ≡ (W ↾p31)

i . Let K0 ={n ∈ω | In∩30 ̸=∅} and K1 ={n ∈ω | In∩31 ̸=∅}.

Case 1. K0 is infinite. In this case, if K1 is finite then W ↾p30 ∈ Pfine({Wx}x∈X ),
and we have already seen that this implies W ∈ Pfine({Wx}x∈X ) since K0 is infinite,
and this is a contradiction. Thus K1 must be infinite in this case. If i = −1 then
W ↾p30 ≡ (W ↾p31)

−1. As 30 and 31 are terminal intervals in p*(W ), let without
loss of generality 30 ⊆ 31 and set Q ≡ W ↾p30. Then W ↾p31 ≡ Q−1

≡ P Q
for nonempty Q and some possibly empty P . Then Q ≡ Q−1 P−1

≡ P Q P−1,
so P ≡ E , forcing 30 = 31. Then W ≡ AQ ≡ AQ−1 for a possibly empty A.
Write Q ≡ BCB−1 for nonempty cyclically reduced C . Then W W −1 has nonempty
reduced representative ABCCB−1 A−1, contradiction.

Therefore i = 1 and W ↾p30 ≡ W ↾p31, and both30 and31 are infinite terminal
intervals in p*(W ). If without loss of generality 31 is a proper subinterval of 30,
then since W ↾p30 ≡ W ↾p31 we can select a proper terminal subinterval 32 ⊆31

such that W ↾p31 ≡ W ↾p32, and inductively we select proper terminal subintervals



THE GRIFFITHS DOUBLE CONE GROUP IS ISOMORPHIC TO THE TRIPLE 325

3i+1 ⊆ 3i with W ↾p3i ≡ W ↾p3i+1. Thus, letting λ ∈ 30 \31 we see that the
nonempty W ↾p {λ} occurs infinitely often as a subword of W , so that W is not a
word, a contradiction. Thus 30 =31 and [[U ↾p ∝(30, ι)]] = [[(U ↾p ∝(31, ι)

i )]].

Case 2. K0 is finite. In this case we know that K1 is also finite (by applying the ar-
gument in Case 1, since W ↾p31 ≡ (W ↾p30)

i ). Thus W ↾p30 ∈ Pfine({Wn}n∈ω). If
K0 =∅ then so also K1 =∅=30 =31 and it is easy to see that [[U ↾p ∝(30, ι)]]=

[[E]] = [[(U ↾p ∝(31, ι))
i
]]. In case K0 ̸=∅, from the correspondence W ↾p30 ≡

(W ↾p31)
i we decompose 30 ≡ 2021 · · ·2m and 31 ≡ 2′

02
′

1 · · ·2′
m so that

W ↾p2j ≡ (W ↾p2′

f ( j))
i where

f ( j)=

{
j if i = 1,

m − j if i = −1,

and each2j is a subinterval of one of Imin(K0), . . . , Imax(K0) and each2′

j is a subinter-
val of one of Imin(K1), . . . , Imax(K1). Let f0 : {0, . . . ,m}→{min(K0), . . . ,max(K0)}

be the nondecreasing surjective function given by 2j ⊆ I f0( j), and also let f1 :

{0, . . . ,m} → {min(K1), . . . ,max(K1)} be given by 2′

j ⊆ I f1( j). We have

[[U ↾p ∝(30, ι)]] =

m∏
j=0

[[U f0( j) ↾p ∝(2j , ι f0( j))]]

=

m∏
j=0

[[(U f1( f ( j)) ↾p ∝(2 f ( j), ι f1( f ( j))))
i
]]

= [[(U ↾p ∝(31, ι))
i
]]

where the first and third equalities hold by performing a deletion of finitely many
pure words in Redκ1 (Lemma 3.13) and the second equality holds by the coherence
of the collection {coi(Wn, ιn,Un)}n∈ω. This completes case 2 and this part of the
argument.

Suppose y ∈ X∪ω, 30 ⊆p*(U ) and31 ⊆p*(Uy) are intervals and i ∈{−1, 1} are
such that U ↾p30 ≡ (Uy ↾p31)

i . Recalling that U ≡
∏

n∈ω(UnVn) and none of the
nonempty p-chunks of Vn are in Pfine({Ux}x∈X ∪{Un}n∈ω) we see that30 ⊆ p*(Un)

for some n ∈ω. From the coherence of {coi(Wn, ιn,Un)}n∈ω∪{coi(Wx , ιx ,Ux)}x∈X

it is easy to see that [[W ↾p ∝(30, ι
−1)] = [[(Wy ↾p ∝(31, ι

−1
y ))i ]].

Finally suppose intervals30,31 ⊆p*(U ) and i ∈{−1, 1} are such that U ↾p30 ≡

(U ↾p31)
i . Recall that U ≡

∏
n∈ω UnVn with

p*(U )≡

∏
n∈ω

p*(Un) p*(Vn)

and for all n ∈ω we have ∥Un∥ = ∥Vn∥ ≥ 2∥Un+1∥ and Vn uses only positive letters,
satisfies 1 ≤ |p*(Vn)| ≤ 2 and every nonempty p-chunk of Vn is not an element of
Pfine({Ux}x∈X ∪ {Un}n∈ω).
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If there exists λ ∈30 and n ∈ ω such that λ ∈ p*(Vn) then i = 1 since every pure
p-chunk of U which is not in Pfine({Ux}x∈X {Un}n∈ω) is a p-chunk in some Vm and
therefore has positive letters only. Furthermore the order isomorphism h :30 →31

induced by the word equivalence U ↾p30 ≡ U ↾p31 must have h(λ) = λ, for if
U ↾p {λ} is, say, α-pure, then U ↾p {λ} is the unique α-pure p-chunk of U which
has value ∥U ↾p {λ}∥ under the function ∥ · ∥. But this implies that h is the identity
function since if, say, λ′ <λ and h(λ′) < λ′, then λ′ < h−1(λ′) < h−2(λ′) < · · ·<λ

and so the word U ↾p30 has infinitely many disjoint occurrences of subwords
equivalent to U ↾p {λ′

}, which contradicts the fact that U is a word. Thus 30 =31

and obviously [[W ↾p ∝(30, ι
−1)]] = [[W ↾p ∝(31, ι

−1)]].
On the other hand if 30 ∩ p*(Vn)= ∅ for all n ∈ ω then 30 ⊆ p*(Um) for some

m ∈ω. Thus U ↾p30 ∈ Pfine({Ux}x∈X ∪{Un}n∈ω), so31 ∩p*(Vn)=∅ for all n ∈ω

as well. Thus 31 ⊆ p*(Um′) for some m′
∈ ω. Then

[[W ↾p ∝(30, ι
−1)]] = [[Wm ↾p ∝(30, ι

−1
m )]]

= [[(Wm′ ↾p ∝(31, ι
−1
m′ ))

i
]]

= [[(W ↾p ∝(31, ι
−1))i ]]

since Um ↾p30 ≡ Um′ ↾p31 and {coi(Wn, ιn,Un)}n∈ω is coherent. □

3F. Q-type concatenations. In this subsection we will devote our attention to
proving the following:

Proposition 3.21. Suppose that κ0 and κ1 are cardinal numbers greater than or
equal to 2. Suppose that {coi(Wx , ιx ,Ux)}x∈X is coherent, that p*(W )≡

∏
q∈Q Iq

with each Iq ̸= ∅, W ↾p Iq ∈ Pfine({Wx}x∈X ) for each q ∈ Q, and W ↾p
⋃
3 /∈

Pfine({Wx}x∈X ) for each interval 3⊆ Q with more than one point. Suppose also
that |X | < 2ℵ0 . Then there exists U ∈ Redκ1 and a coi ι from W to U such that
{coi(Wx , ιx ,Ux)}x∈X ∪ {coi(W, ι,U )} is coherent.

Proof. Let {Wn}n∈ω be a list such that for each q ∈ Q we have some n ∈ω for which
either W ↾p Iq ≡ Wn or W ↾p Iq ≡ W −1

n , and n ̸=n′ implies Wn ̸≡ Wn′ ̸≡ W −1
n . Notice

that indeed such a list must be infinite, for otherwise there is some q ′
∈ Q such that

{q ∈ Q | W ↾p Iq ≡ W ↾p Iq ′} is infinite, which contradicts the fact that W is a word.
By assumption, {Wn}n∈ω ⊆ Pfine({Wx}x∈X ). Select P0 ∈ Redκ1 and a coi ι0 from
W0 to P0 with nonempty domain such that {coi(Wx , ιx ,Ux)}x∈X ∪{coi(W0, ι0, P0)}

is coherent by Lemma 3.17. Assuming we have chosen Pn and ιn we select Pn+1 ∈

Redκ1 and a coi ιn+1 from Wn+1 to Pn+1 such that ∥Pn+1∥ ≤
1
2∥Pn∥, the domain of

ιn+1 is nonempty, and {coi(Wx , ιx ,Ux)}x∈X ∪ {coi(Wj , ιj , Pj )}
n+1
j=0 is coherent by

Lemmas 3.17 and 3.18. The collection {coi(Wx , ιx ,Ux)}x∈X ∪{coi(Wn, ιn, Pn)}n∈ω

is coherent by Lemma 3.12.
For each m ∈ ω select ordinals αm,b, αm,c < κ1 such that Pm does not begin

with an initial subword which is αm,b-pure and Pm does not end with a terminal
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subword which is αm,c-pure. By Lemma 3.19 we select an αm,b-pure word Vm,b

which uses only positive letters such that ∥Vm,b∥ = ∥Pm∥, and Vm,b(max(Vm,b))=

aαm,b,d(Pm)+1 = Vm,b(min(Vm,b)) and Vm,b /∈ Pfine({Ux∈X }x∈X ∪ {Pn}n∈ω). Sim-
ilarly select an αm,c-pure word Vm,c which uses only positive letters such that
∥Vm,c∥ = ∥Pm∥, and Vm,c(max(Vm,c)) = aαm,c,d(Pm)+1 = Vm,c(min(Vm,c)) and
Vm,c /∈ Pfine({Ux∈X }x∈X ∪ {Pn}n∈ω).

Define functions f0 : Q → ω and f1 : Q → {±1} by W ↾p Iq ≡ W f1(q)
f0(q) . For each

m ∈ ω the preimage f −1
0 (m) is nonempty (by how the list {Wn}n∈ω was chosen)

and finite (since W is a word). For each q ∈ Q let Uq ≡ (Vf0(q),b Pf0(q)Vf0(q),c)
f1(q)

and U ≡
∏

q∈Q Uq . Notice that this is a word since for each real number ϵ > 0 the
set {q ∈ Q | ∥Uq∥ ≥ ϵ} is finite. It is easy to see that each Uq is reduced and that
moreover p*(P

f1(q)
f0(q) ) is a subinterval of p*(Uq) and |p*(Uq) \ p*(P

f1(q)
f0(q) )| = 2.

Lemma 3.22. U is reduced.

Proof. For each n ∈ ω we let Jn =
{
q ∈ Q | ∥Uq∥ =

1
n+1

}
. We see that each Jn is

finite since U is a word. For any cancellation S on U we define Ln(S) to be the set
of those q ∈ Jn for which there exists i ∈ Uq which occurs in some ordered pair
in S. Define L ′

n(S)⊆ Ln(S) to be the set of all q ∈ Ln(S) for which there exists
a unique q ′

∈ Ln(S) such that S pairs each element in Uq with an element in Uq ′

and each element in Uq ′ with an element in Uq . Our strategy will be to assume for
contradiction that a nonempty cancellation over U exists and then to inductively
modify the cancellation into a cancellation which witnesses a cancellation over W ,
contradicting the reducedness of W .

Suppose that S0 is a nonempty cancellation over U and let n0 be minimal such
that Ln0(S) ̸= ∅. If Ln0(S0)= L ′

n0
(S0) then we write S1 = S0 and move on to the

next step of our induction. If Ln0(S0) ̸= L ′
n0
(S0) then we write Ln0(S0)\ L ′

n0
(S0)=

{q0, . . . , qk} with qr < qr+1 under the ordering on Q. Define a relation E on
Ln0(S0) \ L ′

n0
(S0) by writing E(qr0, qr1), where qr0, qr1 ∈ Ln0(S0) \ L ′

n0
(S0), if

there exist i0 ∈ Uqr0
and i1 ∈ Uqr1

such that ⟨i0, i1⟩ ∈ S0. Since each Uq is reduced
we see that E(qr , qr ) is false for all 0 ≤ r ≤ k. Also, E(qr0, qr1) implies that
qr0 < qr1 since ⟨i0, i1⟩ ∈ S0 implies i0 < i1 in U . By how each Uq is defined,
we see that Uq(min(Uq)) = Uq(max(Uq)) ∈ {a±1

αn0 ,n0
} for each q ∈ Ln0(S0). For

q ′
∈

⋃
n>n0

Ln(S0) we have ∥Uq ′∥ < 1/(n0 + 1). Since Uq is reduced for each
q ∈ Ln0(S0), we see that for each q ∈ Ln0(S0) at least one of max(Uq) or min(Uq)

must appear in some element of S0. Moreover, by how L ′
n(S0) is defined, for each

q ∈ Ln0(S0) \ L ′
n0
(S0) at least one of max(Uq) or min(Uq) must appear in S0 and

be paired with some element in Uq ′ for some q ′
∈ Ln0(S0) \ (L ′

n0
(S0)∪ {q}).

Thus we see that each q ∈ Ln0(S0) \ L ′
n1
(S0) must appear as a first or second

coordinate in the relation E . Notice as well that if E(qr0, qr1) and E(qr2, qr3) where
qr0 < qr2 ≤ qr1 then qr0 < qr2 < qr3 ≤ qr1 by property (4) of cancellations (see
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Definition 2.3). Similarly if E(qr0, qr1) and E(qr2, qr3) hold and qr0 ≤ qr3 < qr1 then
we have qr0 ≤ qr2 < qr3 < qr1 . Since the set Ln0(S0)\ L ′

n1
(S0) is finite, we therefore

have some 0 ≤ r < k such that E(qr , qr+1). Again, since Uqr and Uqr+1 are each
reduced we must have ⟨max(Uqr ),min(Uqr+1)⟩ ∈ S0. Thus Uqr ≡ (Uqr+1)

−1 and we
let f : Uqr → Uqr+1 be an order reversing bijection with Uqr+1( f (i))= (Uqr (i))

−1

witnessing this equivalence.
We let S(1)0 be given by

S(1)0 = {⟨i0, i1⟩ ∈ S0 | i0, i1 /∈ Uqr ∪ Uqr+1}

∪ {⟨i0, f (i0)⟩ | i0 ∈ Uqr }

∪ {⟨i0, i1⟩ ∈ U × U | (∃i2 ∈ Uqr ) ⟨i0, i2⟩, ⟨ f (i2), i1⟩ ∈ S0}

∪ {⟨i0, i1⟩ ∈ U × U | (∃i2 ∈ Uqr ) ⟨i1, i2⟩, ⟨i0, f (i2)⟩ ∈ S0}

∪ {⟨i0, i1⟩ ∈ U × U | (∃i2 ∈ Uqr ) ⟨i2, i1⟩, ⟨ f (i2), i0⟩ ∈ S0}.

It is straightforward to see that S(1)0 is a cancellation and Ln(S(1)0 ) ⊆ Ln(S0) for
all n ∈ ω. But also L ′

n0
(S(1)0 ) = L ′

n0
(S0) ⊔ {qr , qr+1}. Iterating the argument

to produce S(2)0 , S(3)0 , etc. so as to make L ′
n0
(S( j+1)

0 ) strictly include L ′
n0
(S( j)

0 )

and have Ln0(S
( j+1)
0 )⊆ Ln0(S

( j)
0 ), we see, since Ln0(S0) is finite, that eventually

L ′
n0
(S( j)

0 )= Ln0(S
( j)
0 ). Set S1 = S( j)

0 for sufficiently large j .
Notice that S1 does not pair any element of Uq with Uq ′ when q ∈ Ln0(S1)

and q ′ /∈ Ln0(S1). Letting n1 ∈ ω be minimal such that n1 > n0 and Ln1(S1) ̸= ∅
(an n > n0 with Ln(S1) ̸= ∅ must exist since Q is order dense), we may thus
repeat the arguments as before to create S2 such that Ln1(S2)= L ′

n1
(S2) and also

S2 agrees with S1 on Ln0(S1) = Ln0(S2). Select n2 > n1 which is minimal such
that Ln2(S2) ̸= ∅, produce S3, and continue this process inductively. Let S∞ equal{
⟨i0, i1⟩ | (∃p ∈ ω) i0, i1 ∈

⋃
q∈Lnp

Uq and ⟨i0, i1⟩ ∈ Sp+1
}

and we have that S∞ is
a cancellation such that Ln(S∞)= L ′

n(S∞) for all n ∈ ω and S∞ ̸= ∅.
But now let S ′

= {⟨q0, q1⟩ | ∃(i0 ∈ Uq0, i1 ∈ Uq1) ⟨i0, i1⟩ ∈ S∞} and notice that
S ′ is a pairing of a subset of elements in Q that satisfies the comparable properties
(1)–(4) of Definition 2.3, and ⟨q0, q1⟩ ∈ S ′ implies that Uq0 ≡ (Uq1)

−1. Then
Wq0 ≡ (Wq1)

−1 for ⟨q0, q1⟩ ∈ S ′ and it is easy to use S ′ to define a nonempty
cancellation S on W , and we have a contradiction. □

Now that we know that U is reduced, it is easy to see that

p*(U )≡

∏
q∈Q

p*(Uq)≡

∏
q∈Q

(p*(Vf0(q),b) p*(Pf0(q)) p*(Vf0(q),c))
f1(q).

Using the collection {coi(Wn, ιn, Pn)}n∈ω we define the coi ι from W to U in the
natural way. Namely, let Tq denote the subword W ↾p Iq , and recall that W f1(q)

f0(q) ≡ Tq

and Uq ≡ (Vf0(q)Pf0(q)Vf0(q))
f1(q). Let g : p*(P

f1(q)
f0(q) ) → p*(Uq) denote the order

embedding given by this last equivalence, and ιq be the function whose domain
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dom(ιq) is the image of dom(ι f0(q)) under the order isomorphism f : p*(W
f1(q)

f0(q) )→

p*(Wq), whose image lies in p*(Uq) and such that ιq(i)= g ◦ ι f0(q) ◦ f −1(i).
Notice that ιq is an order isomorphism between its domain and image since ι f0(q)

is order preserving and exactly one of the following holds:

• f is an order isomorphism between p*(Tq) and p*(W f0(q)) and g is an order
embedding from p*(Pf0(q)) to p*(Uq).

• f gives an order reversing bijection between p*(Tq) and p*(W f0(q)) and g gives
an order reversing embedding from p*(Pf0(q)) to p*(Uq).

Since Close(dom(ιn), p*(Wn)), the relation Close(dom(ιq), p*(Tq)) is easily
seen to hold. Also, since |p*(Vf0(q),b)| = 1 = |p*(Vf0(q),c)|, we easily see that
Close(im(ιq), p*(Uq)). Let ι be the order isomorphism given by ι=

⋃
q∈Q ιq . By

Lemma 3.6 (iii) we have Close(dom(ι), p*(W )) and Close(im(ι), p*(Uq)), so ι is a
coi from W to U . We check the coherence of

{coi(Wx , ιx ,Ux)}x∈X ∪ {coi(Wn, ιn, Pn)}n∈ω ∪ {coi(W, ι,U )},

which will imply the coherence of {coi(Wx , ιx ,Ux)}x∈X ∪ {coi(W, ι,U )}.
Suppose that x0 ∈ X ∪ ω, 30 ⊆ p*(W ) and 31 ⊆ p*(Wx0) are intervals, and

i ∈ {−1, 1} are such that W ↾p30 ≡ (Wx0 ↾p31)
i . Notice that30 must be a subinter-

val of some p*(Tq) since Q is order dense, W ↾p3 /∈Pfine({Wx}x∈X ) for each interval
3⊆ Q with more than one point and (Wx0 ↾p31)

i
∈ Pfine({Wx}x∈X ∪ {Wn}n∈ω)=

Pfine({Wx}x∈X ). But letting f : p*(W
f1(q)

f0(q) )→ p*(Tq) be the natural order isomor-
phism and 3′

0 ⊆ p*(W
f1(q)

f0(q) ) be the interval given by f −1(30), it is easy to see
that

[[U ↾p ∝(30, ι)]] = [[(Pf0(q) ↾p ∝(3′

0, ι f0(q)))
f1(q)]] = [[(Ux0 ↾p ∝(31, ιx0))

i
]]

by how the function ιq was defined (for the first equality) and the coherence of
{coi(Wx , ιx ,Ux)}x∈X ∪ {coi(Wn, ιn, Pn)}n∈ω (for the second equality).

Next, suppose that 30,31 ⊆ p*(W ) are intervals and i ∈ {−1, 1} are such that
W ↾p30 ≡ (W ↾p31)

i . Let J0 = {q ∈ Q | p*(Tq) ∩30 ̸= ∅} and J1 = {q ∈ Q |

p*(Tq)∩31 ̸=∅}. Clearly each of J0 and J1 are intervals in Q. If, say, J0 is empty
or a singleton then W ↾p30 ∈ Pfine({Wx}x∈X ), and so J1 is not infinite (since we
are assuming W ↾p3 /∈ Pfine({Wx}x∈X ) for each interval 3 ⊆ Q with more than
one point). Similarly if J1 is empty or a singleton then J0 is finite (hence a singleton
or empty). In case J0 is finite we can argue as before, using the coherence of the
collection {coi(Wn, ιn, Pn)}n∈ω to obtain [[U ↾p ∝(30, ι)]] = [[(U ↾p ∝(31, ι))

i
]].

Suppose now that J0 (and therefore also J1) is infinite. Since J0 is order dense
and W ↾p3 /∈ Pfine({Wx}x∈X ) for each interval 3⊆ Q with more than one point,
we notice that J0 has a minimum if and only if the word W ↾p30 has a nonempty
initial subword which is an element of Pfine({Wx}x∈X ). Also, if J0 has minimum q
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then W ↾p (p*(Wq)∩30) is the maximal initial subword of W ↾p30 which is an
element in Pfine({Wx}x∈X ). Similarly J0 has a maximum if and only if the word
W ↾p30 has a nonempty terminal subword which is an element of Pfine({Wx}x∈X ),
and if J0 has maximum q then W ↾p (p*(Wq)∩30) is the maximal terminal subword
of W ↾p30 which is an element in Pfine({Wx}x∈X ). Let J ′

0 ⊆ J0 be the subinterval
which consists of J0 minus any maximum or minimum that J0 might have. By
similar reasoning, we see that for each q ∈ J ′

0 the subword Tq is a maximal subword
of W ↾p30 which is an element of Pfine({Wx}x∈X ).

The comparable claims hold for J1; for example J1 has a minimum if and
only if the word W ↾p31 has a nonempty initial subword which is an element of
Pfine({Wx}x∈X ), and if q ∈ J1 is minimal then W ↾p (p*(Tq)∩31) is the maximal
initial subword of W ↾p31 which is an element in Pfine({Wx}x∈X ). Define the
interval J ′

1 ⊆ J1 similarly. As W ↾p30 ≡ (W ↾p31)
i , we see that if i = 1:

• J0 has a minimum if and only if J1 has one.

• J0 has a maximum if and only if J1 has one.

• If q0 = min(J0) and q1 = min(J1), W ↾p (30 ∩p*(Tq0))≡ W ↾p (31 ∩p*(Tq1)).

• If q0 = max(J0) and q1 = max(J1), W ↾p (30 ∩p*(Tq0))≡ W ↾p (31 ∩p*(Tq1)).

• There is an order isomorphism h : J ′

0 → J ′

1 such that Wh(q) ≡ Wg.

Now if i = −1:

• J0 has a minimum if and only if J1 has a maximum.

• J0 has a maximum if and only if J1 has a minimum.

• If q0 =min(J0) and q1 =max(J1), W ↾p(30∩p*(Tq0))≡
(
W ↾p(31∩p*(Tq1))

)−1.

• If q0 =max(J0) and q1 =min(J1), W ↾p(30∩p*(Tq0))≡
(
W ↾p(31∩p*(Tq1))

)−1.

• There is an order reversing bijection h : J ′

0 → J ′

1 such that Th(q) ≡ (Tq)
−1.

From this and how the ιq were defined it is clear that

U ↾p ∝

( ⋃
q∈J ′

0

p*(Tq), ι

)
≡

(
U ↾p ∝

( ⋃
q∈J ′

1

p*(Tq), ι

))i

.

Now suppose, for example, i = −1 and J0 has maximum and minimum. Let
K ≡ U ↾p ∝

(⋃
q∈J ′

0
p*(Tq), ι

)
. By Lemma 3.13 we have that [[U ↾p ∝(30, ι)]] is

equal to

[[U ↾p ∝(30 ∩ p*(Tmin(J0)), ι)]][[K ]][[U ↾p ∝(30 ∩ p*(Tmax(J0)), ι)]]

and that [[(U ↾p ∝(31, ι))
−1

]] is equal to

[[(U ↾p (31 ∩ p*(Tmax(J1)), ι))
−1

]][[K ]][[(U ↾p ∝(31 ∩ p*(Tmin(J1)), ι))
−1

]].
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Since the coi collection {coi(Wn, ιn, Pn)}n∈ω is coherent we also have the equalities

[[U ↾p ∝(30 ∩ p*(Tmin(J0)), ι)]] = [[(U ↾p ∝(31 ∩ p*(Tmax(J1)), ι))
−1

]]

and

[[U ↾p ∝(30 ∩ p*(Tmax(J0)), ι)]] = [[(U ↾p ∝(31 ∩ p*(Tmin(J1)), ι))
−1

]].

Thus [[U ↾p ∝(30, ι)]] = [[(U ↾p ∝(31, ι))
−1

]] by direct substitution. All other
possibilities can be similarly argued.

Suppose that x0 ∈ X and30 ⊆ p*(U ), 31 ⊆ p*(Ux0) are intervals and i ∈ {−1, 1}

are such that U ↾p30 ≡ (Ux0 ↾p31)
i . As (Ux0 ↾p31)

i
∈ Pfine({Ux}x∈X ∪ {Pn}n∈ω),

and Vm,b, Vm,c /∈ Pfine({Ux}x∈X ∪ {Pn}n∈ω) for all m ∈ ω we see that 30 must be
a subinterval of some p*(Uq), and more particularly a subinterval of p*(P

f1(q)
f0(q) ).

By how ιq was defined, and since {coi(Wx , ιx ,Ux)}x∈X ∪ {coi(Wn, ιn, Pn)}n∈ω is
coherent it follows that

[[W ↾p ∝(30, ι
−1)]] = [[(Wx0 ↾p ∝(31, ι

−1
x0
))i ]].

If n0 ∈ ω and 30 ⊆ p*(U ), 31 ⊆ p*(Pn0) are intervals and i ∈ {−1, 1} are such
that U ↾p30 ≡ (Pn0 ↾p31)

i then the same argument shows that

[[W ↾p ∝(30, ι
−1)]] = [[(Wn0 ↾p ∝(31, ι

−1
n0
))i ]].

Finally, suppose that intervals 30,31 ⊆ p*(U ) and i ∈ {−1, 1} are such that
U ↾p30 ≡ (U ↾p31)

i . As before we define

J0 = {q ∈ Q | p*(Uq)∩30 ̸= ∅}, J1 = {q ∈ Q | p*(Uq)∩31 ̸= ∅}.

Once again, the cases where J0, hence also J1, is empty or a singleton are treated
the same. We therefore assume that both J0 and J1 are infinite. One sees that
J0 has a minimum if and only if U ↾p30 has a nonempty initial subword which
is a pure p-chunk (i.e., a word V ±1

m,b or V ±1
m,c for some m ∈ ω) or which is in

Pfine({Ux}x∈X ∪ {Pn}n∈ω), and not both since the words Vm,b and Vm,c were not in
Pfine({Ux}x∈X ∪ {Pn}n∈ω). In either case, J0 has a minimum if and only if there is
an element λ∈30 for which U ↾p {λ} /∈ Pfine({Ux}x∈X ∪{Pn}n∈ω) which is minimal.
Similar such statements for maxima and J1 apply. Thus we see that when i = 1,
J0 has a minimum if and only if J1 has one, and J0 has a maximum if and only if
J1 has one. When i = −1 the comparable dual statements hold. Let J ′

0 be the set
J0 minus any maximal or minimal element and define J ′

1 analogously. For each
q ∈ J ′

0 (or q ∈ J ′

1) we have that U f1(q)
f0(q) is a maximal subword of U which is in

Pfine({Ux}x∈X ∪ {Pn}n∈ω), and each of V f1(q)
f0(q),b and V f1(q)

f0(q),c is a maximal p-chunk
of U all of whose nonempty p-chunks are not in Pfine({Ux}x∈X ∪ {Pn}n∈ω).

In particular, U ↾p
⋃

q∈J ′

0
p*(Uq) is the word obtained from U by removing an

initial pure p-chunk (if it exists) and then removing an initial nonempty p-chunk
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which is an element of Pfine({Ux}x∈X ∪ {Pn}n∈ω) (if it exists) and then removing
an initial pure p-chunk (if step two applies) and doing the similar three-step process
to the terminal part of the word U . Hence it is clear that U ↾p

⋃
q∈J ′

0
p*(Uq) ≡

(U ↾p
⋃

q∈J ′

1
p*(Uq))

i . Moreover this word equality will pair maximal intervals
3⊆

⋃
q∈J ′

0
p*(Uq) for which U ↾p3∈Pfine({Ux}x∈X ∪{Pn}n∈ω)with such intervals

in
⋃

q∈J ′

1
p*(Uq), and for such a 3 we’ll have U ↾p3≡ P±1

n for some n ∈ ω. As
Pn ̸≡ Pn′ ̸≡ P−1

n when n ̸= n′ we have a bijection h : J ′

0 → J ′

1 which is an
order isomorphism in case i = 1, or an order reversal in case i = −1, such that
Uh(q) ≡ (Uq)

i once again. Thus we get

W ↾p ∝

( ⋃
q∈J ′

0

p*(Uq), ι
−1

)
≡

(
W ↾p ∝

( ⋃
q∈J ′

1

p*(Uq), ι
−1

))i

.

Thus for example, if i = −1 and J0 has maximum and minimum then we let
K ≡ W ↾p ∝

(⋃
q∈J ′

0
p*(Uq), ι

−1
)
. Then [[W ↾p ∝(30, ι

−1)]] is equal to the product

[[W ↾p ∝(30 ∩ p*(Umin(J0)), ι
−1)]][[K ]][[W ↾p ∝(30 ∩ p*(Umax(J0)), ι

−1)]]

by Lemma 3.13. By the same reasoning we have that [[(W ↾p ∝(31, ι
−1))−1

]] is
equal to

[[(W ↾p ∝(31∩p*(Umax(J1)), ι
−1))−1

]][[K ]][[(W ↾p ∝(31∩p*(Umin(J1)), ι
−1))−1

]].

By coherence we get that

[[W ↾p ∝(30 ∩ p*(Umin(J0)), ι
−1)]] = [[(W ↾p ∝(31 ∩ p*(Umax(J1)), ι

−1))−1
]],

and similarly

[[W ↾p ∝(30 ∩ p*(Umax(J0)), ι
−1)]] = [[(W ↾p ∝(31 ∩ p*(Umin(J1)), ι

−1))−1
]],

and so the equality [[W ↾p ∝(30, ι
−1)]]= [[(W ↾p ∝(31, ι

−1))−1
]] is immediate. □

3G. Arbitrary extensions. In this subsection we will prove the following proposi-
tion and then complete the proof of Theorem A as well as prove Theorem B.

Proposition 3.23. Suppose that κ0 and κ1 are cardinal numbers greater than or
equal to 2. Suppose that {coi(Wx , ιx ,Ux)}x∈X is coherent and that |X | < 2ℵ0 .
Then given W ∈ Redκ0 there exists U ∈ Redκ1 and a coi ι from W to U such that
{coi(Wx , ιx ,Ux)}x∈X ∪ {coi(W, ι,U )} is coherent.

Proof. Assume the hypotheses. If W is the empty word E then we let U ≡ E
and ι be the empty function. This clearly satisfies the conclusion of the proposition.
Thus we may now assume that W is not E and so p*(W ) is nonempty. For each
λ ∈ p*(W ) we let ιλ be the empty function, so ιλ is a coi from W ↾p {λ} to E . It
is quite trivial to see that T0 = {coi(Wx , ιx ,Ux)}x∈X ∪{coi(W ↾p {λ}, ιλ, E)}λ∈p*(W )
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is coherent. Let ≺ be a well-order on the set p*(W ) and if T is a collection of
cois then we let h(T ) denote the set of first words listed in the ordered triples (for
example h(T0)= {Wx}x∈X ∪ {W ↾p {λ}}λ∈p*(W )).

Step 1. Define a function f0 from an initial subset of the set ℵ1 of countable
ordinals to p*(W ), as well as a function f1 with the same domain as f0 and with
codomain the set of two letters {L , R} and f2 a function with the same domain
as f0 and with codomain the set of intervals in p*(W ). We shall also extend the
coi collection. If each λ ∈ p*(W ) is contained in a maximal interval I ⊆ p*(W )

such that W ↾p I ∈ h(Tζ ) then we cease our construction of step 1 and proceed to
step 2. If it is not the case that each λ ∈ p*(W ) is contained in a maximal interval
I ⊆ p*(W ) such that W ↾p I ∈ h(Tζ ) then we select a minimal such λ under the
well-ordering ≺ and let f0(ζ )= λ. Note that it is possible that each singleton {λ} is
already maximal such that W ↾p {λ} ∈ h(T0). At least one of two possibilities holds:

Case i. If there is a sequence {Im}m∈ω such that λ = min(Im) and Im is strictly
included in Im+1 for all m ∈ ω with W ↾p Im ∈ Pfine(h(Tζ )) but W ↾p

⋃
m∈ω Im /∈

Pfine(h(Tζ )), then we let f1(ζ )= L (for Left endpoint) and f2(ζ )=
⋃

m∈ω Im . By
Proposition 3.20 we select Uζ ∈ Redκ1 and a coi ιζ from W ↾p f2(ζ ) to Uζ such that
Tζ+1 = Tζ ∪ {coi(W ↾p f2(ζ ), ιζ ,Uζ )} is coherent.

Case ii. If such a sequence as in case i does not exist then there exists a sequence
{Im}m∈ω such that λ = max(Im) and Im is strictly included in Im+1 for all m ∈ ω

with W ↾p Im ∈ Pfine(h(Tζ )), but W ↾p
⋃

m∈ω Im /∈ Pfine(h(Tζ )). In this case we let
f1(ζ )= R (for Right endpoint) and f2(ζ )=

⋃
m∈ω Im . By Proposition 3.20 applied

to the word W −1 we select Uζ ∈ Redκ1 and a coi ιζ from W ↾p f2(ζ ) to Uζ such
that Tζ+1 = Tζ ∪ {coi(W ↾p f2(ζ ), ιζ ,Uζ )} is coherent.

Iterating this recursion and letting Tζ =
⋃
ζ0<ζ

Tζ0 when ζ is a limit ordinal, we
define the functions f0, f1, f2 over an increasingly large initial segment of ℵ1. We
claim, however, that this recursion must terminate at some stage, and thus move
us into step 2. If, otherwise, the recursion does not terminate, then the functions
f0, f1, f2 are defined on all of ℵ1. Since the codomains, p*(W ) and {L , R}, of
f0 and f1 are countable, there exists some λ ∈ p*(W ) and, say, R ∈ {L , R}, and
uncountable J ⊆ℵ1 such that f0(J )={λ} and f1(J )={R}. Suppose that ζ0, ζ1 ∈ J
are such that ζ0<ζ1. Then by construction, at step ζ1 we see that f2(ζ1) is an interval
in p*(W ) with right endpoint λ which is larger than any interval I in p*(W ) with
λ= max(I ) and W ↾p I ∈ Pfine(h(Tζ1)). As W ↾p f2(ζ0)∈ Pfine(Tζ0+1)⊆ Pfine(Tζ1)

we get that f2(ζ0) is strictly included into f2(ζ1). But as J is well ordered under
the restriction of the order on ℵ1 we let s(ζ ) denote the successor of ζ ∈ J in J
and select λζ ∈ f2(s(ζ )) \ f2(ζ ), giving us an injection from the uncountable set J
to the countable set p*(W ), contradiction.

Step 2. From step 1 we obtain a coherent collection Tζ of cois, with |Tζ | < 2ℵ0 ,
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and each λ ∈ p*(W ) includes into a maximal interval Iλ ⊆ p*(W ) with respect
to the property that W ↾p Iλ ∈ Pfine(h(Tζ )). Note that it is possible that Iλ = {λ}

for each λ ∈ p*(W ). The collection 3 of all such maximal intervals has a natural
induced ordering and is necessarily order dense, for if there existed distinct Iλ and
Iλ′ between which there are no elements in 3 then the word W ↾p Iλ ∪ Iλ′ would
be in Pfine(h(Tζ )), contradicting maximality. As W is not the empty word we
know that 3 ̸= ∅. If 3 is a singleton then 3= {p*(W )}, so W ∈ Pfine(Tζ ), so by
Lemma 3.17 select U ∈ Redκ1 and ι such that Tζ ∪ {coi(W, ι,U )} is coherent.

If 3 is not a singleton let 3′ be the interval in 3 which excludes min(3) and
max(3) if either or both exist. If 3′ is not empty then it is order isomorphic to Q,
and in either case by Proposition 3.21 we may add, if necessary, a single coi triple
to Tζ to obtain a coherent collection T ′

ζ such that W ↾p
(⋃

3′
)
∈ Pfine(h(T ′

ζ )). Next,
since W ↾p min(3),W ↾p max(3) ∈ Pfine(h(T ′

ζ )) if either of min(3) or max(3)
exists, we have that W ∈ Pfine(h(T ′

ζ )) as W is the concatenation of one or two or
three words in Pfine(h(T ′

ζ )). By Lemma 3.17 we select U ∈ Redκ1 and a coi ι such
that T ′

ζ ∪{coi(W, ι,U )} is coherent. Then {coi(Wx , ιx ,Ux)}x∈X ∪{coi(W, ι,U )} is
coherent and our proposition is proved. □

Proof of Theorem A. Let κ be a cardinal such that 2 ≤ κ ≤ 2ℵ0 . It is easy to see
from Theorem 2.11 that |Red2| = |Redκ | = 2ℵ0 . Thus we let ≺ well-order Red2

in such a way that each element has fewer than 2ℵ0 predecessors. Similarly let ≺
′

well-order Redκ in such a way that each element has fewer than 2ℵ0 predecessors.
We inductively define a coherent collection {coi(Wζ , ιζ ,Uζ )}ζ<2ℵ0 of coi triples
from Red2 to Redκ .

Recall that each ordinal ζ may be written uniquely as an ordinal sum ζ = β+ m
where β is either 0 or a limit ordinal and m ∈ ω, and so ζ can be considered even
or odd depending on the parity of m. Select a word W0 ∈ Red2 minimal under ≺

and by Proposition 3.23 select U0 ∈ Redκ and a coi ι0 such that {coi(W0, ι0,U0)}

is coherent. Suppose that we have defined coherent {coi(Wζ , ιζ ,Uζ )}ζ<µ for all
µ < ν < 2ℵ0 . By Lemma 3.12 we know {coi(Wζ , ιζ ,Uζ )}ζ<ν is coherent. If ν
is even then by Lemma 3.19 we select a word Wν /∈ Pfine({Wζ }ζ<ν) which is
minimal under ≺ and by Proposition 3.23 select Uν ∈ Redκ and a coi ιν such
that {coi(Wζ , ιζ ,Uζ )}ζ<ν+1 is coherent (using κ0 = 2 and κ1 = κ). Similarly if
ν is odd then by Lemma 3.19 we select a word Uν /∈ Pfine({Uζ }ζ<ν) which is
minimal under ≺

′ and by Proposition 3.23 select Wν ∈ Redκ and a coi ιν such that
{coi(Wζ , ιζ ,Uζ )}ζ<ν+1 is coherent (using κ0 = κ and κ1 = 2).

Notice that Pfine({Wζ }ζ<2ℵ0 ) = Red2 and Pfine({Uζ }ζ<2ℵ0 ) = Redκ . Thus by
Proposition 3.16 we have an isomorphism 8 : C2 → Cκ . □

We will derive Theorem B as a consequence of Theorem A. Instead of defining
the notions of elementary equivalence and elementary subsumption, we will trust
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the reader to know these concepts or to look them up. We will rely on the following
classical result.

Lemma 3.24. Suppose U0 is a submodel of U1 such that for every a0, . . . , an−1 ∈U0

and a ∈ U1 there exists an automorphism φ : U1 → U1 such that φ(ai )= ai for all
i < n and φ(a) ∈ U0. Then U0 is an elementary submodel of U1.

Proof of Theorem B. Certainly if γ = κ or if 2 ≤ γ ≤ κ ≤ 2ℵ0 then we have Cγ ≃ Cκ
(using Theorem A in the second case) and the isomorphism is an elementary
embedding. We may therefore assume that 2ℵ0 ≤ γ < κ , for the result will follow
for 2 ≤ γ < 2ℵ0 < κ as well by the fact that Cγ ≃ C2ℵ0 in this case.

The map ψγ,κ : Cγ → Cκ given by [[W ]] 7→ [[W ]] is easily seen to be an injection
and we consider Cγ as the substructure of Cκ consisting of those [[W ]] which have
a representative utilizing only letters with first coordinate less than γ . Any bijection
f : κ → κ induces a bijection Ff :Aκ →Aκ given by a±1

α,n 7→ a±1
f (α),n which induces

a bijection F f : Wκ → Wκ given by W 7→
∏

i∈W Ff (W (i)). This F f induces an
automorphism θ f : Redκ → Redκ given by W 7→ F f (W ) which descends to an
automorphism θ f : Cκ → Cκ .

Lemma 3.25. Suppose γ ≤ κ with γ uncountable. If X ⊆ Cγ and Y ⊆ Cκ with
|X |, |Y | < γ there exists a bijection f : κ → κ such that θ f (x) = x for all x ∈ X
and θ f (Y )⊆ Cγ .

Proof. Assume the hypotheses. For each x ∈ X fix a representative Wx ∈ x such that
proj0(W )⊆ γ . For each y ∈ Y fix a representative Wy . Since each set proj0(Wx)

is at most countable, the set
⋃

x∈X proj0(Wx) is of cardinality at most ℵ0 · |X |.
Similarly the set

⋃
y∈Y proj0(Wy) is of cardinality at most ℵ0 · |Y |.

Since γ is uncountable,
⋃

x∈X proj0(Wx)⊆ γ is of cardinality less than γ and⋃
y∈Y proj0(Wy) ⊆ κ is also of cardinality less than γ , we can easily select a

bijection f : κ → κ which fixes the elements in
⋃

x∈X proj0(Wx) and such that
f
(⋃

y∈Y proj0(Wy)
)
⊆ γ . The automorphism θ f satisfies the desired properties. □

The proof of Theorem B is now complete by appealing to Lemma 3.24. □

Note that the map f 7→ θ f gives a homomorphic injection from the full symmetric
group on the set κ , Sκ , to the automorphism group Aut(π1(GSκ)). Since π1(GS2)≃

π1(GS2ℵ0 ) we immediately get the following, which is not obvious a priori:

Corollary 3.26. The group Aut(π1(GS2)) includes a subgroup isomorphic to the
full symmetric group S2ℵ0 on a set of size continuum.
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ARITHMETIC MODULAR LINKS

TALI PINSKY, JESSICA S. PURCELL AND

JOSÉ ANDRÉS RODRÍGUEZ-MIGUELES

We construct a sequence of geodesics on the modular surface such that the
complements of the canonical lifts to the unit tangent bundle are arithmetic
3-manifolds.

1. Introduction

The modular group PSL(2, Z) is one of the simplest examples of an arithmetic
group. The quotient of the upper half plane by the modular group is called the
modular surface 6Mod; it is an arithmetic hyperbolic 2-dimensional orbifold.

One dimension higher, arithmetic hyperbolic 3-manifolds and 3-orbifolds form
families of manifolds with very rich structure. They are also quite special. For
example, among knot complements, only the figure-8 knot is arithmetic [22], and
there exist closed orientable 3-manifolds that do not contain a simple closed curve
with arithmetic complement [2]. However, every closed orientable 3-manifold
contains an arithmetic link [15].

Associated with each oriented closed geodesic γ on the modular surface is a
3-manifold. This is obtained by lifting the geodesic γ into the unit tangent bundle
over the modular surface UT(6Mod) to obtain a corresponding periodic orbit of the
geodesic flow γ̂ called the canonical lift. The 3-manifold is the complement of γ̂

in the unit tangent bundle.
By Thurston’s hyperbolisation theorem, the complement of a canonical lift of a

closed modular geodesic will always be hyperbolic; see Foulon and Hasselblatt [12].
What is unknown in general is whether it will be arithmetic for some cases, and
if so, what topological, geometric, and algebraic properties of the geodesic yield
arithmeticity.

In this paper, we find an explicit family of canonical lift complements that are
arithmetic.

Theorem 1.1. There exists a sequence {γn}n∈N of distinct closed geodesics on the
modular surface such that for each n, the union of the first n canonical lifts

⋃n
j=1 γ̂ j
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has complement in the unit tangent bundle UT(6Mod) that is an arithmetic hyper-
bolic 3-manifold UT(6Mod)∖

⋃n
j=1 γ̂ j , obtained by gluing regular ideal octahedra.

Note that for n > 1, the manifolds of Theorem 1.1 are complements of more than
one geodesic. When n = 1, the theorem produces a 3-manifold homeomorphic to
the Whitehead link complement, which is well known to be arithmetic [18, § 4.5].
This corresponds to UT(6Mod)∖γ̂0 for γ0 the shortest geodesic on the modular
surface. It is an open question as to whether this is the only arithmetic canonical
lift complement of a single geodesic on the modular surface.

The theorem is proved by considering canonical lifts of geodesics on a once-
punctured torus, which is a six-fold cover of the modular surface. In Theorem 4.2
below, we build an explicit family of geodesics on the punctured torus and we prove
that their canonical lifts are built of regular ideal octahedra. Such manifolds are
always arithmetic, and the main theorem follows as arithmeticity is invariant under
finite covers.

Because of the explicit nature of the construction, we are further able to obtain
geometric information on these manifolds. For example, their volumes are given
explicitly, and can be related to the lengths of the geodesics.

Corollary 1.2. There exists a sequence {γk}k∈N of closed geodesics on the modular
surface with length ℓ(γk) ↗ ∞ such that, for 0n :=

⋃n
k=1 γk ,

(1) UT(6Mod)∖0̂n is arithmetic,

(2) Vol(UT(6Mod)∖0̂n) = nvoct/2, and

(3) Vol(UT(6Mod)∖0̂n) ≍

√

ℓ(0n).

Here voct is the volume of a regular ideal octahedron.

In Corollary 1.2, ≍ means coarsely equivalent: there are constants A, B, C , and
D such that

A
√

ℓ(0n) + B ≤ Vol(UT(6Mod)∖0̂n) ≤ C
√

ℓ(0n) + D.

Note that others have related volume to length of geodesics. Bergeron, Pinsky,
and Silberman showed that the volume is bounded by a constant times the length [5].
Rodríguez-Migueles showed that there is a sequence of geodesics such that the
volume grows linearly in the length of the geodesics up to a logarithmic factor [23].
Upper and lower bounds were extended by Cremaschi and Rodríguez-Migueles [8].
Cremaschi, Rodríguez-Migueles and Yarmola related volumes of the canonical lifts
of a pair of simple closed curves to the Weil–Petersson distance in Teichmüller
space [9].

More generally, by taking finite covers, we obtain:

Corollary 1.3. Let 6g,r be an orientable punctured surface with any hyperbolic
metric. Then there exists a sequence {0k}k∈N of filling finite sets of closed geodesics
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on 6g,r with lengths ℓ(0k) ↗ ∞, such that UT(6g,r )∖0̂k is arithmetic for each
k ∈ N and

Vol(UT(6g,r )∖0̂k) ≍
√

ℓ(0k).

2. Surfaces and unit tangent bundles

Let 6 be a hyperbolic surface or orbifold. The unit tangent bundle UT(6) consists
of points of the form (x, v), where x lies on 6, and v is a unit vector tangent to 6

at x . Given a smooth oriented curve γ on 6, any point x ∈ γ determines a point
(x, v) in the unit tangent vector, by letting v be the unit vector at x pointing in the
direction of γ . Then γ lifts to a embedded closed curve γ̂ in UT(6).

The modular surface. The modular surface is the quotient of H2 by the modular
group PSL(2, Z). Background on the modular group can be found in many places,
for example in the work of Series [26]; see also the work of Brandts, Pinsky, and
Silberman [7]. We review a few relevant facts here.

Consider the upper half plane H2 with its hyperbolic metric. Let U be a rotation
of π about the point i and let V be a rotation of 2π/3 about the point 1

2 + i
√

3
2 , per-

muting points ∞, 1, 0. These two rotations generate the modular group PSL(2, Z).
As elements of PSL(2, Z), U and V have the form

U = ±

(
0 −1
1 0

)
, V = ±

(
0 −1
1 −1

)
.

The rotation V fixes the hyperbolic ideal triangle in H2 with vertices 0, 1, ∞, while
U maps it to an adjacent ideal triangle. Thus the orbit of this ideal triangle under
PSL(2, Z) is an invariant tessellation of H2 by ideal triangles called the Farey
tessellation. It has an ideal vertex at each point of Q ∪ ∞ on ∂H2.

The quotient of H2 by the modular group PSL(2, Z) is an orbifold that is a sphere
with a cusp, a cone point of order three, and a cone point of order two. This is
called the modular surface and denoted by 6Mod. A fundamental domain for 6Mod

is given by one third of the 0, 1, ∞ ideal triangle.
Elements of finite order in PSL(2, Z) are exactly the conjugates of 1, U, V, V 2.

Every element of infinite order is a finite word in U , V and V −1
= V 2, involving

both letters. Conjugating, one may always obtain a word beginning with V or V 2

and ending with U . Thus, up to conjugation, any infinite-order element can be
written in positive powers of L = V 2U and R = V U [13], where

(2.1) L = ±

(
1 1
0 1

)
and R = ±

(
1 0
1 1

)
.

A closed geodesic on the modular surface 6Mod is called a modular geodesic.
Modular geodesics are in one-to-one correspondence with conjugacy classes of
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R L

Figure 1. The branched surface inside the complement of the
trefoil, with the direction of the semiflow indicated, pointing down-
wards from the branchline.

hyperbolic elements in PSL(2, Z), i.e., those with trace more than two. Note that
R and L are parabolic elements, with trace two, but any word in positive powers in
R and L involving both letters is hyperbolic.

A modular geodesic lifts to H2, tiled by the Farey tessellation. Series observed
that such lifts cut out a sequence of triangles [26]. Within a given triangle an
oriented geodesic enters through one side and then either exits through the side on
its left (cutting off a single ideal vertex on its left side) or exits to its right. The
sequence of rights and lefts determines a word in positive powers of R and L up
to cyclic order called the cutting sequence. This agrees with the matrix product
corresponding to the geodesic.

Now consider the unit tangent bundle of the modular surface, UT(6Mod). This is
a Seifert fibred space whose base orbifold is 6Mod, with cone points of orders two
and three and a cusp. In [19], Milnor proves that UT(6Mod) is homeomorphic to the
complement of the trefoil in S3, which proof he credits to Quillen. A neighbourhood
of the cusp point of 6Mod lifts to give a neighbourhood of the trefoil. By the work
of Ghys [13], for any finite collection of closed geodesics on the modular surface,
their canonical lifts can be jointly isotoped in UT(6Mod) to lie on the branched
surface shown in Figure 1. These are called modular links.

A modular link follows two lobes of the branched surface, one on the right
and one on the left, and it is determined up to cyclic permutation by the word
in the letters L and R. Thus the complement of a modular link corresponding to
an n-component geodesic on the modular surface will be homeomorphic to the
complement of a link in S3 with n + 1 components, with the additional component
corresponding to the trefoil. Examples are shown at the end of Section 6.

The once-punctured torus. Begin with the closed torus with no punctures, which
we will denote by 61,0: the surface of genus one with zero punctures. Once we
fix a choice of generators 1

0 and 0
1 for π1(61,0), any simple closed curve on the
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torus is determined by an element of Q ∪
{1

0

}
. A geodesic representative of p/q

has constant tangent vector; the curve lifts to a line of constant slope p/q in the
universal cover R2.

The unit tangent bundle UT(61,0) in this case is homeomorphic to 61,0 × S1.
For ease of notation, we will write a point ei t in S1 simply as t ; in this form, two
points in S1 are equivalent if they differ by addition of an integer multiple of 2π .
Then the canonical lift of a curve γ of slope p/q is a curve γ ×{arctan(p/q)} when
oriented with tangent vector pointing towards ei arctan(p/q) in C. The curve has two
orientations; when oriented in the opposite direction the canonical lift becomes
γ × {arctan(p/q) + π}. Note that in either case, it has constant second coordinate.
(This discussion needs to be modified for p/q =

1
0 ; we leave that to the reader.)

Now consider the once-punctured torus, which we denote by 61,1: the genus
one surface with one puncture. Consider the abelian cover of the punctured torus;
for now we view this as the plane R2 with integer lattice points removed. The
line y = 0 in R2 projects to an arc µ on 61,1 with both endpoints on the puncture.
Similarly, the line x = 0 projects to an arc λ.

Consider those simple closed curves on the punctured torus that are parallel to
lines in R2 of rational slope p/q, but disjoint from points on the integer lattice.
These lines of rational slope project to closed curves in 61,1 meeting µ a total of
|p| times, and meeting λ a total of |q| times. We let p/q denote the closed curve.
In particular, a closed curve parallel to µ is 0

1 , and one parallel to λ is 1
0 . Note these

are not all the closed curves in 61,1; we are omitting curves that wrap around the
puncture in more complicated ways. However, these are the closed curves we will
encounter in this paper.

Now consider the canonical lifts of such curves. The unit tangent bundle of the
punctured torus is homeomorphic to the product 61,1 × S1. Just as for the closed
torus, up to homeomorphism, the canonical lift of a curve of slope p/q in UT(61,1)

has the form γ ×{arctan(p/q)} oriented in one direction, or γ ×{arctan(p/q)+π}

oriented in the other direction. That is, in either case we may isotope p/q in 61,1

to have constant tangent vector.
In addition to the unit tangent bundle one may consider the projective tangent

bundle PT(61,1), where one quotients out by the action of ±1 on S1, i.e., antipodal
points are identified. The unit tangent bundle is a degree-two cover of the projective
tangent bundle. The two lifts of any fixed geodesic are identified in the quotient,
and hence an unoriented closed geodesic has a unique lift to the projective tangent
bundle. Its complement in the projective tangent bundle is covered via a degree-two
covering map by the complement of both its lifts in the unit tangent bundle.

Lemma 2.2. The punctured torus forms a 6-fold cover of the modular surface. The
group of covering transformations is generated by a rotation of order three and a
rotation of order two.



342 TALI PINSKY, JESSICA S. PURCELL AND JOSÉ ANDRÉS RODRÍGUEZ-MIGUELES

λ

µ

Figure 2. Taking the quotient of R2∖3 by translations gives 61,1.
Quotient further by 2π/3 rotations about centres of triangles and
π rotations about centres of edges to obtain 6Mod.

Similarly, the unit tangent bundle of the punctured torus forms a 6-fold cover of
the unit tangent bundle of the modular surface. The group of covering transforma-
tions is generated by two glide rotations of orders three and two.

Proof. We will study the cover 61,1 → 6Mod by considering first the abelian cover
R2∖3 → 61,1, where 3 is a lattice, and showing that 6Mod is obtained as a further
quotient of this space.

Triangulate 61,1 by adding the edges λ parallel to 1
0 and µ parallel to 0

1 as above,
and an arc parallel to the slope 1

1 . This subdivides 61,1 into two triangles, which
we view as equilateral triangles. The abelian cover of 61,1 can then be viewed as
obtained by tiling R2 by these equilateral triangles, and removing all vertices to
form the lattice 3. We obtain 61,1 by taking the quotient of R2∖3 by covering
transformations that translate in the direction of µ and λ.

To obtain 6Mod, we quotient further, first by a rotation by 2π/3, fixing the centre
of one of the equilateral triangles and rotating its three vertices (the second triangle
will also be rotated around its centre as a result), and then by a rotation by π ,
fixing the centre of an edge of an equilateral triangle and rotating that edge back
to itself, swapping its endpoints and swapping the two triangles (note this will
rotate simultaneously the other two edges about their centres). These two rotations
generate a group of order 6, and the quotient is 6Mod. See Figure 2.

Now consider the unit tangent bundles. The unit tangent bundle UT(61,1) is a
trivial product, so it is covered by (R2∖3)× R. We obtain UT(61,1) by taking the
quotient by translations on R2 in the directions of µ and λ, and by a translation
(x, y, 0) 7→ (x, y, 2π) in the R direction.

To obtain UT(6Mod), further quotient by a covering transformation of order three,
and one of order two. The first is the glide rotation V that rotates an equilateral
triangle in R2 by 2π/3 about its centre, and translates it in the R direction by 2π/3.
Then V has order three in 61,1 ×S1

= UT(61,1). The second is the glide rotation U
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that rotates R2 by π in the centre of an edge of an equilateral triangle, and shifts
in the R direction by π . This has order two in UT(61,1). Observe it takes the
canonical lift of an oriented curve in 61,1 to the canonical lift of the oppositely
oriented curve.

We claim that the quotient of UT(61,1) by U and V is UT(6Mod). To see this,
note that the quotient is Seifert fibred, with base orbifold a sphere with one cusp, one
cone point of order two, and one cone point of order three. This is homeomorphic
to UT(6Mod). □

Remark 2.3. More generally, any orientable hyperbolic surface with at least one
puncture can be tiled by ideal triangles. There is then a hyperbolic structure that
allows us to identify its fundamental domain with a finite portion of the Farey
tessellation of H2. Since the modular group PSL2(R) is the full symmetry group
of the tessellation, this yields a representation of the surface’s fundamental group
as a subgroup of the modular group of finite index, and the surface is therefore a
branched cover of 6Mod. Thus one can consider lifts of modular geodesics to any
such surface and, as the unit tangent bundle is always trivial in this case, if the lift
is simple the situation will be similar.

Curves on the once-punctured torus and the Farey tessellation. Isotopy classes
of simple closed curves on the punctured torus are organised by the same Farey
tessellation. Recall that the Farey complex can be considered as H2 with boundary
R ∪

{ 1
0

}
. Isotopy classes of simple closed curves on 61,1 correspond to points in

Q ∪
{ 1

0

}
. The geometric intersection number of curves a/b and c/d is given by

|ad − bc|. When a/b and c/d intersect exactly once, they correspond to an edge in
the Farey complex: a hyperbolic geodesic running from a/b in Q ∪

{1
0

}
to c/d in

Q ∪
{ 1

0

}
. We say such curves are Farey neighbours. The matrix

(a
b

c
d

)
in PSL(2, Z)

takes the edge between 1
0 and 0

1 to the edge between a/b and c/d in H2.

Definition 2.4. We say an ordered collection of simple closed curves α1, . . . , αn

in 61,1 are Farey neighbours if each α j and α j+1 are connected by an edge of the
Farey triangulation, for j = 1, . . . , n − 1, and if αn and α1 are also connected by
an edge of the Farey triangulation.

3. Arithmetic Kleinian groups

Let K be a link in a compact 3-manifold with torus boundary. Suppose that the
interior of the complement has a complete hyperbolic structure, meaning it is
isometric to H3/G, where H3 is the hyperbolic 3-space and G is a torsion-free,
noncocompact Kleinian group of finite covolume. The following definition of
arithmeticity is a consequence of [18, Theorem 9.2.2].



344 TALI PINSKY, JESSICA S. PURCELL AND JOSÉ ANDRÉS RODRÍGUEZ-MIGUELES

Definition 3.1. A noncocompact Kleinian group is arithmetic if it is conjugate
in PSL(2, C) to a group commensurable with PSL2(Od), where Od is the ring of
integers in the imaginary quadratic number field Q(

√
−d), with d a positive integer.

Such a group PSL(2, Od) is called a Bianchi group. We say that a hyperbolic 3-
manifold is arithmetic if the corresponding Kleinian group is arithmetic. Similarly,
a knot or link with arithmetic complement is said to be arithmetic.

An example of an Bianchi group is the group PSL(2, Z[i]), called the Picard
group. The Picard group is generated by face pairings of a fundamental region

F =
{
(x, y, t) ∈ H3

| x2
+ y2

+ t2
≥ 1, −

1
2 ≤ x ≤

1
2 , 0 ≤ y ≤

1
2

}
;

see [18, § 1.4.1]. This is a quotient of a regular ideal octahedron. In fact, analogous
to the two-dimensional case, H3 is tessellated by regular ideal octahedra, with ideal
vertices at all points of Q[i]. The Picard group PSL(2, Z[i]) is a subgroup of index
two of the full symmetry group of this tessellation. Thus we have the following
well-known result; see [1; 18, § 9.4; 20].

Lemma 3.2. Any finite-volume hyperbolic 3-manifold obtained by gluing regular
ideal octahedra is arithmetic.

Note that arithmeticity is preserved by taking finite covers or quotients; any
space that is finitely covered by such a space is also arithmetic.

4. Regular octahedra for neighbouring slopes

We now return to curves on the punctured torus 61,1, and build arithmetic links in
UT(61,1).

Lemma 4.1. Suppose α and β are two simple closed curves on the punctured
torus 61,1 that share an edge in the Farey triangulation. Let Nα,β denote the space
obtained from 61,1 × [0, 1] by removing α from 61,1 × {0} and removing β from
61,1 ×{1}. Then Nα,β admits a complete hyperbolic structure obtained by gluing in
pairs the eight faces of a regular ideal octahedron.

Proof. When α =
1
0 and β =

0
1 , this is well known and is illustrated in Figure 3; see,

for example, [16, Lemma 2.4]. On the left of that figure, 61,1 × [0, 1] is obtained
by gluing the front face to the back, and the left face to the right.

On the right of the figure, observe that this gluing now identifies the front and
back triangles opposite each other across the ideal vertex at the top of the octahedron,
and the left and right triangles opposite each other across the ideal vertex at the
bottom of the octahedron. If we give the ideal octahedron the hyperbolic geometry
of a regular ideal octahedron, then each edge is identified to two edges of the ideal
octahedron. The remaining unglued top and bottom faces become totally geodesic
once-punctured annuli.



ARITHMETIC MODULAR LINKS 345

Figure 3. Starting on the left with 61,1 ×[0, 1] with α =
1
0 drilled

from 61,1 × {0} and β =
0
1 drilled from 61,1 × {1}, we obtain a

regular ideal octahedron on the right.

For general α = p/q and β = r/s, α and β are Farey neighbours if |ps −qr | = 1.
In this case there exists a homeomorphism from N0,∞=1/0 to Nα,β induced by the
action of the linear automorphism

( p
q

r
s

)
taking 61,1 ×{t} to 61,1 ×{t} for all t , and

taking (61,1×{0})∖
{ 1

0

}
to (61,1×{0})∖α and (61,1×{1})∖

{0
1

}
to (61,1×{1})∖β.

This can be realised by a hyperbolic isometry. □

Theorem 4.2. Let α1, . . . , αn be simple closed curves in 61,1 that are Farey neigh-
bours. Drill 61,1 × S1 by removing α j from 61,1 ×{ j/n}. The resulting manifold
has a complete hyperbolic structure obtained by gluing n regular ideal octahedra.

Proof. Cut the drilled manifold along each surface 61,1×{ j/n}. Obtain blocks of the
form Nα j ,α j+1 . By Lemma 4.1, each of these can be given the hyperbolic structure of
a regular ideal octahedron, with two top faces unglued and two bottom faces unglued.

Glue the top faces of Nα j ,α j+1 to the bottom faces of Nα j+1,α j+2 for j = 1, . . . , n
modulo n. The gluing will be by the identity, along totally geodesic once-punctured
annuli. These have a unique hyperbolic structure, hence the gluing is by isometry.

We claim this gives a complete hyperbolic structure on the original drilled
manifold. The proof is by the Poincaré polyhedron theorem; see the work of
Epstein and Petronio [11] for a careful exposition. The gluing identifies blocks
Nα j ,α j+1 top to bottom, yielding a manifold homeomorphic to the desired manifold.
Under the gluing, each edge is 4-valent. Thus when edges are glued, the monodromy
around any edge is the identity: formed by gluing four right-dihedral angles. This
is sufficient to ensure that the manifold has a (possibly incomplete) hyperbolic
structure. For completeness, notice that in the boundary of a horoball neighbourhood
of any cusp, we identify a sequence of truncated neighbourhoods of the ideal vertices;
these are squares. The squares are glued to obtain a tiling of the horospherical
torus. Thus the regular ideal octahedra induce a Euclidean structure on each cusp.
It follows that the hyperbolic metric obtained from the octahedra is a complete
metric on the drilled manifold; see also [21, Theorem 4.10]. □

We wish to apply Theorem 4.2 to a result about canonical lifts of Farey neighbours
in the unit tangent bundle UT(61,1). However, we need to take some care in
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orienting the curves. As noted above, each curve γ = p/q has two orientations.
For one orientation, the canonical lift γ̂ will lie in 61,1 × {arctan(p/q)} and the
other will lie in 61,1 × {arctan(p/q) + π}. The canonical lift γ̃ to the projective
tangent bundle PT 61,1 (which is the same trivial bundle 61,1 × S1) is well defined.

Theorem 4.3. Let 0 := {γ j = a j/b j }
n
j=1 be a collection of simple closed geodesics

on the punctured torus made of Farey neighbours, with each γ j oriented in the
direction of exp(i arctan(a j/b j )). Let 0 := {γ j }

n
j=1 be the same collection, with

each curve oriented in the opposite direction. Then:

(1) UT(61,1)∖0̂ ∼= UT(61,1)∖0̂ ∼= PT(61,1)∖0̃ is arithmetic, obtained by gluing
n regular ideal octahedra.

(2) UT(61,1)∖(0̂ ∪ 0̂) is arithmetic, obtained by gluing 2n regular ideal octahe-
dra.

Proof. Each γ j = a j/b j corresponds to a distinct slope in Q∪
{1

0

}
. We may assume

the b j are nonnegative integers. By our orientation convention, each curve γ̂ j will
be drilled from 61,1 × {arctan(a j/b j )} ⊂ 61,1 × S1. Because 0 is a collection of
Farey neighbours, there is some minimal slope in Q, which we may relabel to be
γ1 =a1/b1, and then up to relabelling, the slopes satisfy a1/b1 <a2/b2 < · · ·<an/bn .
Then when we drill, the curves are drilled in cyclic order γ1, γ2, up to γn in the
S1 factor of 61,1 × S1. The drilling is therefore homeomorphic to the drilling of
Theorem 4.2. Then the fact that M0̂ is obtained by gluing n regular ideal octahedra
follows from Theorem 4.2, and the fact that it is arithmetic follows from Lemma 3.2.
An identical argument holds for 0.

For the union of 0̂ and 0̂, the arithmeticity follows from the fact it is a double
cover of PT(61,1)∖0̂. Furthermore, the first n canonical lifts will be at heights
arctan(a1/b1) < · · · < arctan(an/bn), and the next n at arctan(a1/b1) + π through
arctan(an/bn) + π . Thus again we drill the Farey neighbours in an order homeo-
morphic to that of Theorem 4.2, and so that theorem implies that the complement
is built of 2n regular ideal octahedra. □

5. Projecting and lifting on the modular surface

Lemma 5.1. Let γ be an oriented geodesic on the modular surface 6Mod, obtained
by projecting the simple closed curve p/q ⊂61,1 via the covering map of Lemma 2.2.
Then under the covering map, γ has six lifts in 61,1. These are p/q , q/(q − p),
(p − q)/p, and each of these three curves oriented in the opposite direction: p/q,
q/(q − p), and (p − q)/p.

Proof. We consider the images of p/q under the rotations of order two and three of
Lemma 2.2. As in the proof of that lemma, we will view 61,1 as a quotient of the
tiling of R2 by equilateral triangles with vertices removed.
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λ

µ

Figure 4. A rotation by 2π/3 about the centre of each equilateral
triangle takes the curve p/q to the curve (p − q)/p, and a further
rotation takes it to q/(q − p). Shown is the case q > p > 0. Similar
pictures give other cases.

Recall that the rotation of order three rotates an ideal triangle, permuting its
vertices. Consider its effect on the curve p/q. We may assume without loss of
generality that q ≥ 0. If p ≥ 0, then the curve p/q meets the side µ of an equilateral
triangle in the fundamental domain for 61,1 a total of p times. It meets λ a total of
q times, and meets the diagonal |q − p| times. See Figure 4, which shows the case
q > p > 0.

Rotating by 2π/3 takes the curve to one meeting µ a total of |q − p| times,
meeting λ a total of |p| times, and meeting the diagonal q times. In case q > p > 0,
as shown in Figure 4, the resulting slope is negative, of value (p − q)/p, and a
further rotation gives the curve of slope q/(q − p). Our convention is to take an
overline if the curve crosses lambda from right to left; we will see that in all cases
we obtain each curve in both directions so this convention will not matter.

If p > q > 0, the result of the rotation is positive, of slope (p − q)/p, and a
further rotation results in a curve of slope q/(q − p).

If p < 0 then the curve p/q meets µ a total of |p| times, meets λ a total of q
times, and meets the diagonal |p| + q = q − p times. The resulting slopes after
rotating are (q − p)/p and (p − q)/p.

Finally if one of p or q is zero, or p = q = 1, the three slopes up to rotation are
0
1 , 1

0 , and 1
1 , and the lemma holds for these.

Now consider the rotation of order two, with fixed point on an edge of the triangle.
This takes the p/q curve back to itself, but it gives it the opposite orientation. This
will give us the curve p/q. Similarly it gives the other two curves with opposite
orientations. Thus in all cases we obtain the set of both orientations of each of the
slopes {p/q, q/(q − p), (p − q)/p}, as required. □

The following lemma shows that in lieu of rotating the closed geodesics and then
considering the resulting slopes as above, one may instead directly rotate the slopes
along the circle at infinity.

Lemma 5.2. For any p/q ∈ Q ∪
{1

0

}
, V (p/q) = q/(q − p) and V 2(p/q) =

(p − q)/p.
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1
2
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3
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Figure 5. The Farey graph of rational slopes.

Proof. Recall that V has the form ±
( 0

1
−1
−1

)
. Then V (p/q) = q/(q − p), and

V 2(p/q) = (p − q)/p. □

Observe that the first rotation shown in Figure 4 is V 2.
We will now turn a sequence of geodesics in the punctured torus into a sequence

of geodesics on the modular surface. We start with an example, shown in Figure 5.
Consider the 3

2 curve. There is a shortest path from the Farey triangle with vertices( 1
1 , 0

1 , 1
0

)
to a Farey triangle with vertex 3

2 . The path meets three Farey triangles,
with vertices

( 1
1 , 0

1 , 1
0

)
,
( 1

1 , 2
1 , 1

0

)
, and

( 1
1 , 2

1 , 3
2

)
. Form a collection of curves 0 by

adding all the distinct slopes in all these triangles to 0.
Thus 0 consists of 0

1 , 1
0 , 1

1 , 2
1 , and 3

2 . Note these are Farey neighbours, so
Theorem 4.3 implies that the complement of their canonical lifts (oriented both
ways) is an arithmetic manifold.

We wish to apply the covering projection from UT(61,1) to UT(6Mod). However,
note that the canonical lift of 0 does not cover any link complement in the unit
tangent bundle of the modular surface, because 0 does not contain all the preimages
of its projections to the modular surface. Thus we extend 0, by including all images
of 0 under the rotations V and V 2. Thus in the example of Figure 5, we would
add −

1
1 = V

( 2
1

)
, 1

2 = V 2
( 2

1

)
, −

2
1 = V

( 3
2

)
and 1

3 = V 2
( 3

2

)
. The result is a again a

collection of Farey neighbours, and now the complement of all canonical lifts is a
cover of the complement of a modular link. We generalise this example.

Theorem 5.3. Any modular geodesic that lifts to a simple closed curve α on the
once-punctured torus is part of an arithmetic link in UT(6Mod) with all components
being modular geodesics. Suppose the shortest path in the Farey triangulation
between the triangle (0, 1, ∞) and any triangle with vertex α passes through x
Farey triangles. Then the complement of the lift can be decomposed into x regular
ideal octahedra.
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Proof. Given any slope p/q , there is a shortest path in the Farey triangulation from
the centre of the triangle with vertices

( 0
1 , 1

1 , 1
0

)
to a triangle with a vertex p/q . This

will pass through some number of Farey triangles. Build a collection of curves 0

by adding all the slopes corresponding to all the vertices of the Farey triangles
in the path. Thus 0 will contain 0

1 , 1
1 , 1

0 and p/q, as well as additional curves at
vertices of Farey triangles. At this step, 0 will contain a total of 2 + x slopes: three
corresponding to the first triangle

( 0
1 , 1

1 , 1
0

)
, and x − 1 additional slopes, one for

each new triangle in the path.
Next, expand 0 by adding all images of 0 under the rotations V and V 2 of

Lemma 5.2. Note this adds 2(x − 1) additional slopes to 0, so that in total, 0 now
contains 3x slopes.

Observe that the collection 0 can now be ordered in Q ∪
{1

0

}
to give a set

of Farey neighbours, invariant under the action of V . Theorem 4.3 then implies
UT(61,1)∖(0̂∪ 0̂) is arithmetic, obtained by gluing 6x regular ideal octahedra. By
Lemma 5.1, the drilled curves are exactly the canonical lifts of all curves projecting
to a collection of x simple closed curves on the modular surface.

Now consider the action of the covering transformations of Lemma 2.2 from
UT(61,1) to UT(6Mod). By construction, the order-two transformation will take
the canonical lift of p/q to that of p/q. The order-three transformation will take
the canonical lift of p/q to V (p/q) and V 2(p/q). Thus UT(61,1)∖(0̂ ∪ 0̂) is a
six-fold cover of the complement of a collection of canonical lifts in UT(6Mod).

Finally, observe that each of the covering transformations maps a regular ideal oc-
tahedron to a distinct regular ideal octahedron. By the construction of Theorem 4.2,
the regular ideal octahedra lie between canonical lifts that share an edge in the Farey
triangulation. The covering transformation of degree three takes the octahedron
between a/b and c/d to that between V (a/b) and V (c/d), and then again to that
between V 2(a/b) and V 2(c/d); these are all distinct edges of the Farey triangulation.
The covering transformation of degree two takes the octahedron between a/b and
c/d to that between a/b and c/d; this octahedron differs from the original by a
rotation by π in the S1 factor of UT(61,1) ∼= 61,1 × S1.

Then when we take the quotient by covering transformations, we obtain an
arithmetic canonical link complement in UT(6Mod), with the link containing the
original curve, and built from 6x/6 = x regular ideal octahedra. □

Theorem 1.1 from the introduction is an immediate consequence.

Corollary 5.4. There are infinitely many arithmetic modular links. □

6. Cutting sequences

As explained in Section 2, canonical lifts of geodesics in UT(6Mod) can be viewed
as links in S3∖K where K is the trefoil knot. In the previous section, we found
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infinitely many arithmetic canonical link complements. We wish to identify these
links as the complement of links in the 3-sphere. To do so, we will find cutting
sequences for the links, enabling us to identify them in the branched surface of
Figure 1 following [13]. That is the main goal of this section.

Definition 6.1. Let α be a closed geodesic in the modular surface 6Mod. The L R-
cutting sequence of α is the bi-infinite sequence of instances of L and R obtained
as follows. Recall that a fundamental domain for 6Mod is the quotient of an ideal
triangle by an order-three and an order-two rotation. As in the proof of Lemma 2.2,
we take a cover of 6Mod that tiles R2 by equilateral triangles, and remove the
lattice 3 consisting of the vertices of these triangles. Lift α to this cover. Consider
a point of intersection of α with an edge of a triangle. Then in the adjacent triangle,
α either runs next to the edge to the left or to the right. If it runs to the left, take the
letter L . If it runs right, take the letter R. Now repeat for the next triangle, and so
on. Because α is a closed geodesic, eventually α returns to an edge identified with
the original edge of intersection, and the sequence will repeat.

Remark 6.2. Since different lifts of the geodesic α differ by an element of PSL(2, Z)

which preserves the Farey tessellation by ideal triangles, the cutting sequence
remains the same up to cyclic order no matter which lift of α we start with. By
reversing the orientation of α if necessary we may always assume its cutting
sequence begins with an L . We may always assume it enters the 0, 1, ∞ triangle
through the imaginary axis (oriented to the right) by using the rotation about i given
by U above.

We can similarly define a cutting sequence for simple closed curves in 61,1. Take
a curve p/q with p/q positive, and lift to the abelian cover of 61,1 that we build
by tiling R2 with equilateral triangles, again as in the proof of Lemma 2.2. Lift
p/q to this cover. The lift will intersect lifts of the arcs µ and λ. If it intersects µ,
assign an instance of A. If it intersects λ, assign an instance of B. This gives an
AB-cutting sequence for geodesics on 61,1.

The following algorithm, from Series [25] and Davis [10, Algorithm 7.6], gives
the AB-cutting sequence in terms of the continued fraction expansion of p/q .

Algorithm 6.3. (1) Start with an infinite string consisting of incidences of the
letter A. This corresponds to a lift of a geodesic of slope 0. If p/q ̸= 0, take a
continued fraction expansion of the slope p/q of the form [a1, a2, . . . , ak] where
all the a j are positive.

(2) Insert ak instances of the letter B between each pair of letters A. The corre-
sponding trajectory now has slope ak . If p/q = ak we are done.

(3) Else swap every A to B and vice-versa. The corresponding trajectory now has
slope 1/ak . If p/q = 1/ak we are done.
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A
A

B

B

R

L

R

L
A

A

B

B

Figure 6. On the left is the general rule for determining the cutting
sequence of a positive slope, on the right is the cutting sequence
L R(RL)6 corresponding to the projection of the geodesic of
slope 1

7 .

(4) Else insert ak−1 instances of the letter B between each pair of letters A. The
corresponding trajectory now has slope ak−1 + 1/ak . If we have reached p/q we
are done.

(5) Else reverse B and A. The corresponding trajectory now has slope

1

ak−1 +
1
ak

.

If we have reached p/q we are done.

(6) Else continue this process, ending by inserting a1 instances of the letter B
between each pair of letters A. This yields the AB-cutting sequence corresponding
to the fractional slope [a1, a2, . . . , ak].

We wish to find the L R-cutting sequence corresponding to a modular geodesic,
and the AB-cutting sequence of Algorithm 6.3 for its lift to the once-punctured
torus. By Remark 6.2 the lift we choose does not change the L R-cutting sequence
and thus we may choose the lift to be a curve of slope p/q on 61,1 where p and
q are nonnegative. We can obtain the L R-cutting sequence corresponding to its
projection as follows.

Algorithm 6.4. Let p/q be a slope, where p and q are both positive. Then for
j = 1, . . . , n − 1:

(1) If the j-th letter is A and the next letter is B, add L .

(2) If the j-th letter is B followed by A, add R.

(3) If the j-th letter is A followed by A, add RL .

(4) If the j-th letter is B followed by B, add L R.

If the slope is 0
1 or 1

0 (these are both lifts of the same modular geodesic) the cutting
sequence is L R.

See Figure 6.
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Example 6.5. Given a straight line of slope 1/n, its AB-cutting sequence is the
bi-infinite sequence given by concatenating copies of B An . Its L R-cutting sequence
is the bi-infinite sequence given by concatenating L R(RL)n−1.

Modular links. Now return to the arithmetic modular links of Theorem 5.3. We
will construct examples of such links in the trefoil complement in the 3-sphere.

From the proof of that theorem, the links are obtained by adding curves from
the Farey triangulation that are invariant under the rotation W that rotates 0

1 to 1
1 , 1

1
to 1

0 , and 1
0 to 0

1 . The smallest collection of curves comes from the initial triangle
0
1 , 1

1 , and 1
0 . All three curves at the vertices of this triangle are identified when

we project to 6Mod. Hence we may use any of the three curves to determine the
modular link. We take p/q =

1
1 .

Then observe that the AB-cutting sequence in this case is simply obtained
by concatenating copies of B A. By Algorithm 6.4, the L R-cutting sequence is
then obtained by concatenating copies of L R (or equivalently RL). Therefore the
modular geodesic corresponds to RL . In Figure 7, shown are the three distinct lifts
of this geodesic in the parallelogram that is a fundamental domain for 61,1. There
are six lifts in total. As discussed above, the other three lifts traverse these curves
in opposite directions. Note all six curves determine a cutting sequence RL or L R,
which gives the same bi-infinite sequence.

Thus we have proved:

Lemma 6.6. The modular geodesic RL is arithmetic. □

The corresponding curve in the trefoil complement is obtained by drawing a
closed curve on the branched surface of Figure 1. The cutting sequence L R instructs
us that this curve must first run over the L lobe of the branched surface, then the
R lobe, then close. This is shown on the left of Figure 8. Note that Lemma 6.6
is easily proved directly by the fact that its complement is homeomorphic to the
Whitehead link complement as shown by the deformations of Figure 8.

Now consider the next simplest arithmetic modular link arising from the con-
struction in the proof of Theorem 5.3. This is obtained by adding a single additional
curve, coming from a new vertex of a Farey triangle of distance one from that with
vertices 1

0 , 1
1 , and 0

1 , and then taking the image of this curve under the degree-three

λ

µ RL

Figure 7. A fundamental domain for the two-dimensional torus,
and three different lifts corresponding to the modular geodesic RL .
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Figure 8. The homeomorphism between the complement of the
RL geodesic and the Whitehead link complement.

rotation. We see from Figure 5 that the only possibility is to next include 2
1 , −

2
1 ,

and 1
2 , which are all identified in 6Mod.

In particular, the curve 1
2 has AB-cutting sequence B AA, and L R-cutting se-

quence obtained by concatenating copies of L R RL , which is equivalent to L2 R2.
Thus in the trefoil complement, it runs twice over the L lobe of the branched surface,
then twice over the R lobe, before closing up.

The link given by the union of L R and L2 R2 is also arithmetic, by Theorem 5.3.
It is shown on the left of Figure 9. This is a three-component link in S3. As
mentioned, any finite union of modular geodesics has an embedding as orbits on
the template. We remark this embedding is unique, and can be found in general
using an algorithm, for example, as in Birman and Williams [6, Algorithm 2.4.3];
see also Hui and Rodríguez-Migueles [17].

There are two possibilities for a four-component link in S3 that arises from
Theorem 5.3. One choice is to add slopes 3

2 , −
2
1 , and 1

3 , which are identified to a
modular curve with L R-cutting sequence with repeating portion L RL2 R2. Thus
the four-component arithmetic link in S3 consists of the trefoil and the geodesics
L R, L2 R2, and L RL2 R2. This link is shown in the middle of Figure 9.

The other option is to add slopes 3
1 , −

1
2 , and 2

3 , which are identified to a modular
curve with L R-cutting sequence with repeating portion L R2L2 R. Thus another
four-component arithmetic link in S3 consists of the trefoil, the link L R, L2 R2, and
L R2L2 R.

Figure 9. After the Whitehead link, the next three simplest arith-
metic links from Theorem 5.3 are shown (note that in our conven-
tions the symbol R corresponds to the left side of the figure).
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Note that the five-component link consisting of the trefoil and the geodesics
L R, L2 R2, L R2L2 R and L RL2 R2 is also arithmetic by Theorem 5.3. This link is
shown on the right of Figure 9.

7. Volume versus hyperbolic length

Our goal is to make explicit the relationship between volume of the canonical lift
complement and geometric length of the original geodesic, for some sequence of
geodesics in some surfaces.

Remark 7.1. Recall that for A ∈ PSL(2, R) a hyperbolic element of trace t , the
eigenvalues of A are (−t ±

√
t2 − 4)/2. Let λA be the eigenvalue satisfying |λA|> 1.

Then the length of the closed geodesic determined by A is 2 ln |λA|.

Lemma 7.2. Let γn be the unique closed geodesic on the modular surface lifting to
the geodesic 1/n on 61,1. For 0n := {γi }

n
i=1, the length ℓ(0n) satisfies

ℓ(0n) ≍ n2.

Proof. The matrix representative corresponding to 1/n is An := L R(RL)n−1; see
Example 6.5. Let(

an bn

cn dn

)
:= (RL)n−1, so

(
an+1 bn+1

cn+1 dn+1

)
=

(
an+cn bn+dn

an+2cn bn+2dn

)
,

and

An+1 =

(
3an+4cn 3bn+4dn

2an+3cn 2bn+3dn

)
.

Then 3
2 Trace An−1 ≤ Trace An ≤ 4 Trace An−1. As Trace A1 = 3, by induction( 3

2

)n
≤ Trace An ≤ 4n.

The eigenvalue λn of An with |λn| > 1 is bounded by

1
2 |λn| ≤

1
2 Trace An ≤ |λn|.

Thus the length of γn satisfies

n ln 3
2 ≤ ℓ(γn) ≤ 2n ln 4,

and thus
n2 ln 3

2 ≤ ℓ(0n) ≤ 2n2 ln 4. □

Corollary 7.3. Let 0k := {γ1,n = 1/n, γ2,n = n/(n − 1), γ3,n = (1 − n)/1}
k
n=1 be

a collection of oriented simple closed geodesics on the once-punctured torus with a
hyperbolic metric ρ. Then, for 0̂k , the canonical lifts of 0k ,

(1) UT(61,1)∖0̂k is arithmetic,
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(2) Vol(UT(61,1)∖0̂k) = 3kvoct, and

(3) Vol(UT(61,1)∖0̂k) ≍

√

ℓρ(0k).

Proof. Notice that 0k are Farey neighbours, so by Theorem 4.3, UT(61,1)∖0̂k is
arithmetic and

Vol(UT(61,1)∖0̂k) = 3kvoct.

Observe that the geodesics 1/n, n/(n −1), (1−n)/1 project under the 6-fold cover
of the modular surface to L R(RL)n−1; see Example 6.5. Then by Lemma 7.2, the
length of the projection of 0k to 6Mod is coarsely equivalent to k2. Thus in the
6-fold cover 61,1, the lengths satisfy

ℓρ1,1(0k) ≍ 6k2,

where ρ1,1 is the pullback metric induced on 61,1 by the metric on the modular
surface 6Mod. Then

Vol(UT(61,1)∖0̂k) ≍ voct
√

3/2
√

ℓρ1,1(0k).

The proof of this result for any hyperbolic metric on the once-punctured torus
follows from the fact that any pair of hyperbolic metrics on a hyperbolic surface
are bilipschitz; see, for example, [5, Lemma 4.1]. □

By projecting the geodesics in Corollary 7.3 under the 6-fold cover to the modular
surface we obtain the following result from the introduction.

Corollary 1.2. There exists a sequence {γk}k∈N of closed geodesics on the modular
surface with length ℓ(γk) ↗ ∞ such that, for 0n :=

⋃n
k=1 γk ,

(1) UT(6Mod)∖0̂n is arithmetic,

(2) Vol(UT(6Mod)∖0̂n) = nvoct/2, and

(3) Vol(UT(6Mod)∖0̂n) ≍

√

ℓ(0n).

Here voct is the volume of a regular ideal octahedron.

Corollary 1.3. Let 6g,r be an orientable punctured surface with any hyperbolic
metric. Then there exists a sequence {0k}k∈N of filling finite sets of closed geodesics
on 6g,r with lengths ℓ(0k) ↗ ∞, such that UT(6g,r )∖0̂k is arithmetic for each
k ∈ N and

Vol(UT(6g,r )∖0̂k) ≍
√

ℓ(0k).

Proof. By Remark 2.3 we can construct a finite (branched) covering map p from
any orientable punctured hyperbolic surface 6g,r of genus g with r punctures to
the modular surface 6Mod.
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Let 0̃k be the finite set of closed geodesics on 6 obtained as the preimage under
p of the closed geodesics {γn}

k
n=1 of Lemma 7.2. By Lemma 3.2, UT(6g,r )∖0̂k is

arithmetic. A similar estimation of the volume and lengths as in Corollary 7.3 gives

Vol(UT(6g,r )∖0̂k) ≍
√

ℓρ(0k),

where the length ℓρ(0k) is measured in the pullback metric 6g,r induced by the
metric on 6Mod. Again the proof of this result for any hyperbolic metric on 6g,r

follows from the fact that any pair of hyperbolic metrics on a hyperbolic surface
are bilipschitz; see, for example, [5, Lemma 4.1]. □

8. Further questions

There is only one arithmetic knot complement in the 3-sphere, namely the figure-8
knot, due to Reid [22]. Is the modular geodesic L R the only modular geodesic with
arithmetic complement of its canonical lift? Notice that the question has a negative
answer in the general context of any knot in the complement of the trefoil. Hatcher
found an example of an arithmetic two-component link, where one component is
the trefoil knot, and the trace field is Q(

√
−2); see Figure 17 in [14]. However,

the unknotted component in Hatcher’s example is not a canonical lift of a closed
geodesic in the modular surface.

All arithmetic modular links produced in this paper are conjugate in PSL(2, C) to
a group commensurable with PSL(2, Z(

√
−1)). Are there examples of arithmetic

modular links conjugate to groups commensurable with PSL(2, Od) for Od a ring
of integers in a different quadratic number field Q(

√
−d)? More generally, is some

classification possible? For example, in the 3-sphere, there are infinitely many
arithmetic links. However, Baker and Reid showed that there are only finitely many
principal congruence link complements in the 3-sphere [3], where a noncompact
finite-volume hyperbolic 3-manifold is principal congruence if it is isometric to
H3/0(I ) where 0(I ) = ker{PSL(2, Od) → PSL(2, Od/I )} for some ideal I in Od .
Baker, Goerner, and Reid have now enumerated all principal congruence link
complements in the 3-sphere [4]. Is a similar classification possible for modular
links?

Any closed geodesic on the modular surface naturally corresponds to a real
quadratic extension of Q [24]. Does the arithmeticity of the complement of the
corresponding canonical lift relate to this? For the examples in this paper, the
quadratic field corresponding to the L R geodesic is Q(

√
5). The geodesic L2 R2

has quadratic field Q(
√

2). The geodesics L R2L2L and L RL2 R2 have the same
length, and both correspond to the same quadratic field Q(

√
221). In general,

geodesics corresponding to different maximal ideals in the same quadratic field will
have the same length.
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TENSOR TRIANGULATED CATEGORY STRUCTURES
IN THE DERIVED CATEGORY OF A VARIETY

WITH BIG (ANTI)CANONICAL BUNDLE

ANGEL TOLEDO

Let X be a smooth projective variety over C with big (anti)canonical bundle.
It is known that for such X the Balmer spectrum of the tensor triangulated
category of perfect complexes Perf(X), equipped with the derived tensor
product ⊗L

X , recovers the space X . We study the possible tensor triangulated
category structures one can put on Perf(X). As an application, we prove a
monoidal version of the well-known Bondal–Orlov reconstruction theorem.

1. Introduction

Bondal and Orlov [2001] showed that if X is a smooth projective variety over C with
ample (anti)canonical bundle then its bounded derived category Db(X) completely
recovers the space. More precisely, they showed that:

Theorem 1.1 [Bondal and Orlov 2001, Theorem 2.5]. Let X be an irreducible
smooth projective variety with ample (anti)canonical bundle. If Db(X)≃ Db(Y )
for some other smooth algebraic variety Y , then X ∼= Y .

This theorem came in contrast with the discovery by Mukai [1987] that for an
abelian variety A, there exists an equivalence Db(A) ≃ Db( Â), as triangulated
categories, between the bounded derived category of A and the bounded derived
category of its dual Â.

This observation sparked the study of what are now called Fourier–Mukai partners
of a given variety X , that is, those varieties which are triangulated equivalent to the
bounded derived category of X .

Bondal and Orlov’s reconstruction pointed out that a (birational) geometric
condition on the variety can introduce some control on these derived equivalences,
and with this in mind, Kawamata generalized this theorem for varieties with big
(anti)canonical bundle, clarifying from a geometric point of view the role of this
condition on the possible equivalence of derived categories. Namely he showed:
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Theorem 1.2 [Kawamata 2002, Theorem 1.4]. Let X, Y be smooth projective
varieties such that there is an equivalence

F : Db(X) ≃
−→ Db(Y ),

as triangulated categories. Then:

(1) dim X = dim Y .

(2) If the canonical divisor K X is nef , so is KY and there is an equality in the
numerical Kodaira dimensions ν(X) and ν(Y ).

(3) If X is of general type, then X and Y are birational, and furthermore, there is a
smooth projective variety p : Z → X , q : Z → Y such that p∗K X ≃ q∗KY .

This theorem should be understood as a strong indication of a relationship
between the birational geometry of a variety and its derived category.

On the other hand, Balmer showed [Balmer 2002; Bondal and Orlov 2001] that
when equipped with the derived tensor product ⊗

L
X , the derived category of perfect

complexes Perf(X) of any coherent scheme X can recover the space X by what is
now known as the Balmer spectrum Spc(Perf(X),⊗L

X ). The Balmer spectrum can be
constructed for a general tensor triangulated category, that is, a triangulated category
equipped with a compatible monoidal structure, and produce a locally ringed space.

The existence of nonisomorphic Fourier–Mukai partners Y for a smooth variety X
implies, using the Balmer spectrum construction, that the bounded derived category
Db(X) can be equipped with at least as many tensor triangulated category structures
as nonisomorphic Fourier–Mukai partners, up to monoidal equivalence.

In other words, if FM(X) is the set of isomorphism classes of Fourier–Mukai
partners of X and TTS(X) is the set of equivalence classes of tensor triangulated
category structures on the bounded derived category Db(X), there exists an injection

FM(X)→ TTS(X), Y 7→ (⊗L
Y ,OY ),

where the pair (⊗L
Y ,OY ) denotes the tensor triangulated category structure given

by the derived tensor product ⊗
L
Y with unit OY .

Our main interest in this work is the study of this function, its surjectivity and the
properties that one can deduce about possible tensor triangulated category structures
outside of the image of this injection, all under the condition that the (anti)canonical
bundle of X is big.

In Section 2 we give a brief general overview of the results we will need about
general derived categories of quasicoherent sheaves on a smooth projective variety,
together with a reminder of the Balmer spectrum construction through Thomason’s
classification theorem.

In Section 3, given a tensor triangulated category structure (Db(X),⊠,1) with
unit 1 on a bounded derived category Db(X), we introduce the notion of almost
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spanning class with respect to a thick subcategory I (Definition 3.9) and we show
(Theorem 3.10) that if X is a smooth projective variety of general type then there
exists a proper tensor ideal IX∗ of (Db(X),⊗L

X ,OX ) such that the set of tensor
powers of ωX forms an almost spanning sequence with respect to this ideal IX∗ .
This result is meant to highlight the more general behavior of almost spanning
classes through the use of Thomason’s classification theorem and properties of the
Balmer spectrum. We see that this collection of objects can be used to prove the
following result:

Lemma 1.3 (Lemma 3.12). Suppose X is a smooth projective variety of general
type. If ⊠ is a tensor triangulated structure on Db(X) with unit OX , and U is a
⊠-invertible object such that U ⊠ IX∗ ⊆ IX∗ , then there is a natural equivalence
between the functors induced by U ⊠ _ and U ⊗

L
X _ in Db(X)/IX∗ .

When the ⊗
L
X -tensor ideal IX∗ is also a ⊠-tensor ideal for a tensor triangulated

category structure as described in the previous lemma, then we obtain that the
Picard group of ⊠-invertible objects is a subgroup of the Picard group of ⊗

L
X -

invertible objects (Corollary 3.15). This hypothesis holds true in particular when
the (anti)canonical bundle of X is ample.

With this observation, our main corollary is the following monoidal version of
the Bondal–Orlov reconstruction theorem:

Corollary 1.4 (Corollary 3.18). Let X be a smooth projective variety with ample
(anti)canonical bundle. If ωX [n] is an invertible object for a tensor triangulated
structure ⊠ on Db(X) with unit OX , then ⊠ and ⊗

L
X coincide on objects.

2. Derived categories and the Balmer reconstruction

Throughout the rest of this work we will be working exclusively with smooth
projective varieties over C. We will omit the mention of the base field. We
recommend [Huybrechts 2006] as a good reference for the material concerning
derived categories in this section.

The goal of this section is to introduce the basic results and notions we will
be using for our results. Let us start by recalling that if X is a smooth projective
variety then there exists an equivalence as triangulated categories between the
derived category Perf(X) of perfect complexes on X and the bounded derived
category Db(X). As a consequence of this, whenever we work with such a variety
we will at times make no distinction between these two categories.

One important feature of these categories is the existence of Serre functors.

Definition 2.1. Let T be a triangulated category. An autoequivalence S : T → T

satisfying Hom(A, B)∼= Hom(B, S(A))∗ for all objects A, B ∈ T is called a Serre
functor.
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Example 2.2. If the triangulated category is a derived category of a smooth projec-
tive scheme of dimension n, we have Grothendieck–Verdier duality, which implies
that for every pair of objects M, N ∈ Db(X), Hom(M, N )=Hom(N ,M⊗ωX [n])∗,
where ωX is the canonical bundle of X.

This notion was first defined by Bondal and Kapranov [1989]. The following
two properties of the Serre functor are essential to our work:

Lemma 2.3 [Bondal and Orlov 2001, Proposition 1.3]. Let T be a triangulated
category with Serre functor S, and let ψ : T → T be any autoequivalence. Then
ψ ◦ S ∼= S ◦ψ .

Proposition 2.4 [Bondal and Kapranov 1989, Proposition 3.4]. Let T be a triangu-
lated category and let S be a Serre functor on T . Then S is unique up to graded
isomorphism.

This latter proposition implies that whenever the Serre functor exists, it is intrinsic
to the given category. In our case of interest, because one can write this functor
using the derived tensor product ⊗

L
X , we have now some possible control on the

monoidal structure ⊗
L
X directly from the category without knowledge of X .

Another crucial notion we will use is that of spanning classes.

Definition 2.5. A collection of objects {X i }⊆ T of a triangulated category is called
a spanning class if the following hold:

(1) If Hom(X i , D[ j])= 0 for all i and j , then D ≃ 0.

(2) If Hom(D[ j], X i )= 0 for all i and j , then D ≃ 0.

However, whenever the Serre functor exists in the triangulated category we see
that only one of the conditions is necessary and the other will be automatically
satisfied by use of the Serre functor isomorphism.

A general way to produce spanning classes in derived categories of abelian
categories is from ample sequences:

Definition 2.6. Let A be an abelian category. A collection of objects {L i } ⊂ A is
called an ample sequence if for i ≪ 0 and all A ∈ A,

(1) Hom(L i , A)⊗k L i → A is surjective,

(2) Hom(A, L i )= 0, and

(3) Ext j (L i , A)= 0 for j ̸= 0.

As the name suggests, an important example of such sequences comes from
collections of tensor powers of ample line bundles. The relation between the two
notions of spanning class and ample sequence was shown by Orlov [1997]:
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Lemma 2.7. Let A be an abelian category of finite homological dimension, and
let {L i } be an ample sequence. Then the collection {L i }, seen as objects of D(A),
form a spanning class.

The next example shows how we should exploit the existence of ample sequences.

Example 2.8. Let X be a smooth projective variety with ample canonical bundle.
Then the set {ω

⊗X
X } forms an ample sequence, so by the previous lemma it forms a

spanning class in the derived category Db(X).
As a consequence, we see that any bounded complex F of coherent sheaves can

be resolved by tensor powers of the canonical bundle ωX . In other words, there
exists an exact sequence

0 →

⊕
j0

(ω
⊗i0
X )→ · · · →

⊕
jk

(ω
⊗ik
X )→ F → 0.

Remark 2.9. In general, for a triangulated category T with a spanning class�⊂T ,
if φ : T → T is an autoequivalence then the set φ(�) is a spanning class.

This implies that in the example above one can resolve any bounded complex F

by tensor powers of sheaves of the form ωX (i)[ j] for a fixed i, j ∈ Z.

Tensor triangulated geometry. When dealing with derived categories of coherent
sheaves on a variety one can equip this category with a monoidal structure given
by the derived tensor product. One can axiomatize this sort of structure in what is
known as a tensor triangulated category.

In this subsection we recall Balmer’s spectrum construction, which inputs a
tensor triangulated category and outputs a locally ringed space, which as we will see
recovers a variety whenever we work with the derived category of perfect complexes
on said variety.

Definition 2.10. An essentially small tensor triangulated category (TTC) T is a
triangulated category together with the following data:

(1) A closed symmetric monoidal structure given by a functor ⊗ : T × T → T

that is additive and exact (with respect to the k-linear structure) on both entries.

(2) The internal Hom functor hom : T × T → T sending triangles to triangles
(up to a sign).

(3) Coherent natural isomorphisms for each n and m in Z, r : x⊗(y[n])∼= (x⊗y)[n]

and l : (x[n])⊗ y ∼= (x ⊗ y)[n], compatible with the symmetry, associative and
unit coherence morphisms from the symmetric monoidal category structure (see
for example [Dell’Ambrogio 2016, Section 2.1.1] for the explicit diagrams).

We will refer to a TTC by the triple (T ,⊗,1T ), where ⊗ refers to the monoidal
structure and 1T to the unit object. Often if there is no confusion or the unit plays
no role we will omit it and write (T ,⊗) instead.
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At times when we deal with a fixed underlying triangulated category T we will
write ⊗ or (⊗,1) to refer to a tensor triangulated category structure on T .

Let us remark however that the functor ⊗ and unit 1T do not completely de-
termine a tensor triangulated category since the compatibility conditions in the
symmetric monoidal category structure can in principle change while maintaining
the functor ⊗ and unit 1. As we will explain in the following, this does not represent
a problem for our purposes.

We proceed with a number of definitions.

Definition 2.11. Let T be a triangulated category, and I ⊆ T a full triangulated
subcategory. We say that I is thick if it is closed under direct summands, so that if
A ⊕ B ∈ I then A, B ∈ I .

Definition 2.12. Let (T ,⊗) be a TTC. We will say that a thick subcategory I ⊂ T

is a ⊗-ideal if for every A ∈ T we have A ⊗ I ⊂ I

Definition 2.13. Let (T ,⊗) be a tensor triangulated category. Let I be a ⊗-ideal.
We will say that I is prime if when A, B ∈ T with A ⊗ B ∈ I , it follows that
A ∈ I or B ∈ I .

As in affine algebraic geometry we can define the spectrum of a tensor triangulated
category.

Definition 2.14. Let (T ,⊗,1) be an essentially small tensor triangulated category.
The set of all prime ⊗-ideals will be denoted by Spc(T ,⊗,1) (alternatively Spc(T ),
Spc(⊗,1) or Spc(⊗), depending on which information is clear from context).

Importantly, whenever the triangulated category T is nonzero we have that
Spec(T ,⊗) ̸=∅ for any tensor triangulated category structure ⊗ we can put on T

(see [Balmer 2005, Proposition 2.3]).
On this set we will put a topological structure.

Definition 2.15. Let (T ,⊗,1) be a TTC. The support of an object A ∈ T , denoted
by supp(A), is the set {p ∈ Spc(T ) | A ̸∈ p}.

Lemma 2.16 [Balmer 2005, Lemma 2.6]. Let S ⊂ T be a family of objects. The
sets of the form Z(S) :=

⋂
A∈S supp(A) form a basis for a topology on Spc(T ).

An important result regarding this topology is the following, which restricts the
kind of spaces we should be expecting from the construction.

Theorem 2.17 [Balmer 2005, Propositions 2.15, 2.18]. For any TTC (T ,⊗,1),
the space Spc(T ) is a spectral space in the sense of Hochster, meaning it is sober
and has a basis of quasicompact open subsets.

Now that the topology on Spc(T ) has been chosen, the next step is to equip this
space with sheaf of rings which will act as the structure sheaf.
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To a subset Y ⊂ Spc(T ) we can assign a thick ⊗-ideal denoted by IY and
defined as the subcategory supported on Y , meaning IY := {A ∈ T | supp(A)⊂ Y }.

Finally, with Y as above, we denote by 1TY the image of the unit 1 of T under
the localization functor π : T → T /IY .

Definition 2.18. Let T be a nonzero TTC. We define a structure sheaf OSpc(T )

over Spc(T ) as the sheaffification of the assignment U 7→ End(1TZ ), where Z :=

Spc(T ) \ U , for an open subset U ⊂ Spc(T ).

It is not hard to see the assignment Spc(F) respects composition of exact
monoidal functors, so if F : T → T ′ is such a functor, we get a morphism of ringed
spaces, since for a closed Z = Spc(T ) \ U we have F(IZ ) ⊂ IZ ′ , where Z ′

=

Spc(T ′) \ Spc(F)−1(U ), which implies there is a morphism OT → Spc(F)∗OL,
so Spc : TTC → RS is a functor, where TTC and RS denote the categories of
essentially small tensor triangulated categories and of ringed spaces, respectively.

Under nice conditions (for example, T rigid), this can be shown to be a functor
Spc : TTC → LRS, where LRS denotes the category of locally ringed spaces.

With this construction in mind we can now describe the anticipated reconstruction
theorem as described by Balmer.

Theorem 2.19 [Balmer 2005, Corollary 5.6]. Let X be a quasicompact and quasi-
separated scheme. There is a homeomorphism

f : X
∼=

−→ Spc(Perf(X),⊗L
X ).

This homeomorphism follows from Thomason’s classification theorem [1997,
Theorem 3.15], which establishes a correspondence between certain subsets of
a quasicompact and quasiseparated scheme X and ⊗

L
X -ideals of Perf(X). The

following is a general version of this classification for tensor triangulated categories
as presented by Balmer [2005, Theorem 4.10]

Theorem 2.20. Let (T ,⊗,1) be a TTC. Let S be those subsets Y ⊂ Spc(T )
which are unions Y =

⋃
i∈I Yi , where Yi is a closed subset with quasicompact

complement for all i ∈ I . Let R be the set of radical ⊗-ideals of T . Then there is
an order-preserving bijection S → R given by the assignment which sends Y to
the subcategory TY := {A ∈ T | supp(A)⊂ Y } and with inverse sending a radical
⊗-ideal I to the subset SI :=

⋃
A∈I supp(A).

Here by radical ⊗-ideal we mean a ⊗-ideal I such that whenever A⊗n is in I

then A is in I .
In practice every ⊗-ideal is automatically a radical ⊗-ideal and it certainly

depends on the monoidal structure one can put on the triangulated category T .
As pointed out by Balmer [2005] this condition is satisfied as soon as the tensor
triangulated category is rigid, meaning that every object is dualizable.
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When X is a variety the classification theorem can be specialized to a very simple
form, as pointed out by Rouquier [2003].

Theorem 2.21. Let X be a variety. There is a correspondence between the set of
closed subsets of X and ⊗

L
X -ideals of finite type, that is, those ideals generated by a

single object.

Using the homeomorphism from Theorem 2.19 and the construction of the struc-
ture sheaf on Spc(Perf(X),⊗L

X ) from Definition 2.18 we only need the following
theorem to complete the reconstruction theorem of Balmer.

Theorem 2.22 [Balmer 2002]. Let X be scheme with underlying noetherian topo-
logical space. There is an isomorphism OX ∼= OSpc(Perf(X),OX ).

The next proposition should inform us how localizations behave under taking Spc.

Proposition 2.23 [Balmer 2005, Proposition 3.11]. Let I ⊂ T be a thick ⊗-ideal.
Then the localization functor π : T → T /I is an exact monoidal functor and
induces an homeomorphism Spc(T /I )∼= {p ∈ Spc(T ) | I ⊂ p}.

In particular, when this is combined with the classification theorem in the form
of Theorem 2.21, we see that open subvarieties U of a variety X are isomorphic to
Spc(Perf(X)/IZ ), where Z is the complement of U in X .

Remark 2.24. So far we have been dealing with tensor triangulated categories as
described in Definition 2.10, meaning we require there to be a closed symmetric
monoidal category structure on T . However, under closer inspection, one sees that
nowhere in the classification theorem nor in Balmer’s construction does one need
the full monoidal structure.

In fact so far we really only need the data of a functor ⊗ : T × T → T ,
covariant and exact in each variable, together with a unit object 1 and isomorphisms
corresponding to the symmetric, associative and unit conditions. In other words, if
(T ,⊗,1) and (T ,⊠,1′) are two tensor triangulated categories with underlying
triangulated category T such that ⊗ ≃⊠ for every pair of objects in T , and 1 ≃ 1′,
then the Balmer spectra satisfy Spc(T ,⊗, 1) ∼= Spc(T ,⊠,1′) as locally ringed
spaces. The associators, unitors and braidings of the monoidal categories have no
influence in the resulting space.

It is this that justifies our notation (T ,⊗,1), as we have mentioned before. In
the following we shall keep referring to tensor triangulated categories although our
results apply for slightly more general but more awkward structures.

3. Tensor triangulated categories and Picard groups

While the Bondal–Orlov reconstruction (Theorem 1.1) tells us that one can directly
recover a smooth projective variety X with ample (anti)canonical bundle from
the derived category Db(X) ≃ Perf(X), there are plenty of smooth projective
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varieties which have nonisomorphic Fourier–Mukai partners, varieties Y such that
Db(X)≃ Db(Y ), which implies that on a given derived category Db(X) there might
be many nonequivalent tensor triangulated category structures.

However, even in the case where our variety X has ample (anti)canonical bundle,
as in the hypothesis of the Bondal–Orlov reconstruction theorem, it is not immediate
that there is only one possible tensor triangulated category structure. It is, in
principle, possible that there might be one such structure (Db(X),⊠,1) such that
Db(Spc(⊠,1)) ̸≃ Db(X) and so Bondal–Orlov does not apply.

In some sense our motivating question is whether Balmer’s reconstruction implies
Bondal–Orlov. In this section we will be looking into this and related ideas by
exploring the possible tensor triangulated categories one can equip on Db(X) under
the slightly more general hypothesis of X having a big (anti)canonical bundle.

We start by mentioning a result by Liu and Sierra [2013] that shows, in particular,
that there are smooth projective varieties X with ample anticanonical bundle — thus
under the hypothesis of Bondal–Orlov — for which the derived category Db(X)
admits a tensor triangulated category structure (⊠,1) such that Spc(⊠,1) ̸∼= X .

Recall that there are varieties X that are known to have derived categories
equivalent to the derived category of representations on a quiver (possibly with
relations). For example, in the presence of a full strong exceptional collection {Ei },
we have that Db(X) is equivalent to Db

(
mod-End

(⊕
Ei

))
, the derived category

of finitely generated modules over the algebra End
(⊕

Ei
)
. This latter algebra

on the other hand is equivalent to the path algebra of a quiver, and so we obtain
an equivalence between the derived category of X and the derived category of
finite-dimensional representations of a quiver Q = (Pn, Ei j ).

The important point here is that this derived category of representations of a quiver
comes with a tensor triangulated category structure induced by the tensor product of
representations. Recall that for two such representations (Vi , pik) and (W j , q js) the
tensor product is given entrywise: (Vi , pik)⊗rep (W j , q js) := (Vi ⊗W j , pik ⊗q js).

We write rep Q for the abelian k-linear category of finite-dimensional quiver
representations on a quiver Q. Let us denote by (Db(rep Q),⊗L

rep,1rep) the resulting
tensor triangulated category structure on Db(rep Q), where ⊗

L
rep is the derived tensor

product coming from ⊗rep, and 1rep := (ki , I di j ) is the representation given by
putting k on every vertex and the identity morphism in each edge of the quiver.

Liu and Sierra [2013, Definition 1.2.5] consider quivers with relations satisfying
a compatibility condition with the tensor product and say that in this case the quiver
has tensor relations.

Theorem 3.1 [Liu and Sierra 2013, Theorem 2.1.5.1]. Let Q be a finite ordered
quiver with tensor relations. Then Spc((Db(rep Q),⊗L

rep)) is the discrete space {Pn}.

They also describe completely the structure sheaf in this case.
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Theorem 3.2 [Liu and Sierra 2013, Theorem 2.2.4.1]. Let Q be a finite ordered
quiver with tensor relations. Then OQ := OSpc(⊗L

rep)
is the constant sheaf of alge-

bras k, so that for any open W ⊂ Spc(⊗L
rep) we have OQ(W )= k⊕W .

In particular, for X = Pn , we have by a well-known result of Beilinson [1978]
that Db(X) is equivalent to the category of representations of a quiver with n + 1
vertices. Thus the derived category Db(X) has a tensor triangulated category
structure (⊗L

rep, 1rep) such that Spc((⊗L
rep,1rep)) ̸∼= X = Pn . As Pn is a smooth

projective variety with ample anticanonical bundle, this previous result implies that
the study of tensor triangulated category structures on Db(X) is not trivial even in
the cases falling under the hypothesis of the Bondal–Orlov reconstruction theorem
and might shed some light on the internal structure of the derived category in itself.

In general the behavior of the dynamics of the Balmer spectrum and taking
derived categories can be complex. Since the Balmer spectrum is a locally ringed
space, it has an abelian category of sheaves of modules which admits a tensor
product, and we can derive this category as usual, but the category of sheaves of
modules is in general much more complicated than a category of coherent or even
quasicoherent sheaves.

Having said that, let us put ourselves in the slightly more general situation of
derived categories of varieties of general type. Recall a variety is of general type if
its canonical bundle is big. In particular, varieties with ample canonical bundle are
of general type.

One alternative characterization of bigness for a variety is the following:

Theorem 3.3 [Lazarsfeld 2004, Example 2.2.9]. A smooth projective variety is of
general type if and only if , for any sheaf F ∈ Coh(X), there exists an integer i0

depending on F such that the sheaf F ⊗X ω
i
X is generically globally generated

for i ≫ i0.

As a consequence of the Kodaira lemma (see [Lazarsfeld 2004, Proposition 2.2.6]),
we have the corollary:

Corollary 3.4. Let X be a smooth projective variety of general type. Then there
exists an open subvariety X∗ such that for any F ∈ Coh(X), there exists a positive
integer i0 for which, for any i ≫ i0, the sheaf F |X∗ ⊗Xω

i
X∗ on X∗ is globally

generated.

Let us explain the previous corollary and the nature of the open subvariety X∗.
We recall some basic definitions.

Definition 3.5. Let X be a projective variety, and let L be a line bundle on X . The
augmented base locus is the Zariski closed set

B+(L ) :=

⋂
m∈N

B(mL − A),
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where A is any ample line bundle, and for any line bundle L ′ the set B(L ′) is
defined as the intersection of the base loci of multiples of the line bundle, that is,

B(L ′) :=

⋂
m∈N

Bs(mL ′).

In [Boucksom et al. 2014] the following theorem characterizing the complement
of the augmented base locus is proven:

Theorem 3.6. Let L be a big line bundle on a normal projective variety X over an
algebraically closed field. Then the complement X \ B+(L ) of the augmented base
locus is the largest Zariski open subset U ⊆ X \ B(L ) such that for all large and
divisible m(L ) ∈ Z the restriction of the morphism

φm : X \ B(L ) 99K PH 0(X,mL )

to U is an isomorphism onto its image.

Two important observations follow immediately from the definition, the fact that
the augmented base locus is independent of the choice of ample line bundle, and
Kodaira’s decomposition of big line bundles.

Remark 3.7. (1) B+(L )= ∅ if and only if L is ample.

(2) B+(L ) ̸= X if and only if L is big.

From the remarks above and Thomason’s classification theorem, Theorem 2.20,
we know that since there exists a correspondence between closed subsets of the
Balmer spectrum and radical tensor ideals in the tensor triangulated category, there
exists a radical tensor ideal corresponding to the augmented base locus B+(L ) for
any given line bundle L . In particular, the open subvariety X∗ from Corollary 3.4
is the complement of the augmented base locus, X \ B+(ωX ), and corresponds to a
⊗

L
X -ideal generated by a single object (using Theorem 2.21) whose homological

support gives back the closed subset B+(ωX ).

Remark 3.8. Denote by IX∗ the ⊗
L
X -ideal corresponding to the open subvariety X∗.

By Remark 3.7, this ideal must be a proper ⊗
L
X -ideal of Db(X) and is the ideal 0

precisely when the (anti)canonical bundle is ample.

We would like to understand the effect of the positivity of the canonical bundle
(in this case the fact that the variety is of general type) on the tensor triangulated
structure of the category. We know from Proposition 2.4 that the Serre functor in a
triangulated category is unique up to degree whenever it exists and so it is intrinsic
to the category. In our concrete case we know furthermore that the Serre functor is
isomorphic to _ ⊗

L
X ωX [n], where n ∈ N is the dimension of the variety and ωX is

the dualizing sheaf of X .
Let us start with a definition mimicking that of spanning class:
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Definition 3.9. Let (T ,⊗) be a tensor triangulated category, let I ⊆ T be a thick
subcategory, and let us denote by π : T → T /I the localization functor. We say
that a collection of objects �⊂ T is an almost spanning class with respect to I if
the following two conditions hold:

(1) If X ∈ T /I is such that HomT /I (π(B), X [ j])= 0 for all B ∈� and j ∈ Z,
then X ∼= 0.

(2) If X ∈ T /I is such that HomT /I (X [ j], π(B))= 0 for all B ∈� and j ∈ Z,
then X ∼= 0.

It is immediate to see that the previous definition is equivalent to asking that the
collection � maps through π to a spanning class on the quotient T /I . When the
thick subcategory in question is the 0 subcategory then the definition reduces to
that of a spanning class as in Definition 2.5.

Additionally when the triangulated category T /I has a Serre functor, only one
of the conditions in the definition is necessary as the Serre duality implies the other
automatically.

We would like to generalize Lemma 2.7 but for a big canonical bundle instead
of an ample one and see that a big bundle induces an almost spanning class in the
derived category with respect to a ⊗

L
X -ideal I .

Theorem 3.10. Let X be a smooth projective variety of general type. Then the
collection of tensor powers (ω⊗i

X )i∈Z forms an almost spanning class with respect
to the tensor ideal IX∗ in the tensor triangulated category (Db(X),⊗L

X ).

Proof. We need to show that π({ω⊗i
X }) forms a spanning class in the quotient

Db(X)/IX∗ . As IX∗ is the ideal corresponding to the open smooth subvariety X∗,
from Corollary 3.4 we know that there is an isomorphism Spc(Db(X)/IX∗)∼= X∗.
Since ωX restricted to X∗ is ample by the characterization of Theorem 3.6, we get
that {ω⊗

Li
X |X∗} forms a spanning class, by Lemma 2.7, of the derived category of X∗

which coincides with the quotient category Db(X)/IX∗ by Proposition 2.23. □

The main key in our arguments is the fact that one can construct, as in the ample
case, a resolution for any bounded complex of coherent sheaves on X∗ in terms of
tensor powers of the canonical bundle ωX∗ of X∗, with the advantage that one is
able to have a concrete description of the derived category of this space in terms of
a quotient of the derived category of the larger variety X .

Explicitly, for any bounded complex A of coherent sheaves over X∗, there is a
resolution

· · · → 0 →

⊕
j0

(ω
⊗i0
X∗ )→ · · · →

⊕
jk

(ω
⊗ik
X∗ )→ A → 0.

Another thing to notice is that in the example given above for the nonequivalent
tensor triangulated category structures on Db(Pn), one immediate issue with the two
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given such structures was that the units were nonisomorphic. So we should proceed
to work with tensor triangulated categories with a fixed unit isomorphic to OX .

Definition 3.11. Let (T ,⊗,1) be a TTC. An object X ∈ T is ⊗-invertible if there
exists X−1

∈ T such that X ⊗ X−1 ∼= 1. We will denote by Pic(Db(X),⊗) the
group of isomorphism classes of ⊗-invertible objects.

We will make use of the following lemma:

Lemma 3.12. Suppose X is a smooth projective variety of general type of dimen-
sion n. If ⊠ is a tensor triangulated structure on Db(X) with unit OX , and U is a
⊠-invertible object such that U ⊠ IX∗ ⊆ IX∗ , then there is a natural equivalence
between the functors induced by U ⊠ _ and U ⊗

L
X _ in Db(X)/IX∗ .

Proof. By our previous discussion we know that any bounded complex can be
resolved in Db(X)/IX∗ by a resolution

· · · → 0 →

⊕
j0

(ω
⊗i0
X∗ )→ · · · →

⊕
jk

(ω
⊗ik
X∗ )→ A → 0.

Because the Serre functor in Db(X∗) is given by _ ⊗
L
X ωX∗[n′

], where n′ is the
dimension of X∗, and we know any exact equivalence must commute with it, if we
let U⊠̂ and U⊗̂L

X denote the endofunctors of Db(X)/IX∗ induced respectively by
U⊠ and U⊗

L, then, since U⊠̂ is an autoequivalence,

(U ⊠̂ Â) ⊗̂L
X ωX∗[n′

] ∼= U ⊠̂ ( Â ⊗̂
L
X ωX∗[n′

]).

As OX is a unit for both ⊗X and ⊠, and after shifting by [−n′
], we deduce

U ⊗̂
L
X ωX∗

∼= U ⊠̂ωX∗ .

From this, the exactness of ⊗
L and ⊠, and the resolutions in terms of ωi

X∗ , we
obtain the isomorphisms

U ⊗̂L A ∼= U ⊠̂ A. □

Remark 3.13. Let us point out the slight abuse of notation of the functor U⊗̂L.
This functor would formally be denoted by Û⊗

L
Db(X)/IX∗

, as it is induced by the
object Û in the tensor triangulated category (Db(X)/IX∗,⊗L

Db(X)/IX∗
), but as the

only tensor ideal we are taking a quotient by in this section is IX∗ , we believe our
notation is lighter without losing sight of which functors they represent.

We have the following corollary:

Corollary 3.14. Let X be a variety of general type, and let ⊠ be a tensor trian-
gulated category structure on Db(X) with unit OX . Then, for any ⊠-invertible
object U such that U ⊠ IX∗ ⊆ IX∗ , the equivalence U⊠̂ : Db(X)/IX∗ → Db(X)/IX∗

induced by U ⊠ _ is equivalent to an equivalence given by objects in the group
Pic(Db(X)/IX∗, ⊗̂L) of invertible ⊗̂L-objects.
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Proof. From Lemma 3.12 we have that if U−1 is such that U ⊠U−1 ∼= OX then in
the quotient Db(X)/IX∗ ,

U ⊗̂L Û−1 ∼= U ⊠̂ Û−1 ∼= OX∗ .

As (Db(X)/IX∗, ⊗̂L) is a tensor triangulated category, we have that Û ∈ Db(X)/IX∗

is a ⊗̂L-invertible object. □

In Lemma 3.12 and Corollary 3.14, the ideal IX∗ might not be a ⊠-tensor ideal
and thus the quotient Db(X)/IX∗ does not necessarily carry a tensor triangulated
category structure induced by ⊠. However, our result guarantees that after passing
to the quotient, the equivalences induced by the functors U ⊠ _ are equivalent to
equivalences given by invertible objects in (Db(X)/IX∗,⊗L

X ) induced by the same
object, under the condition that IX∗ is stable by U⊠.

In particular, we have:

Corollary 3.15. Let X be a variety of general type and ⊠ a tensor triangulated
structure on Db(X) with unit OX . If IX∗ is a ⊠-ideal then the Picard group
Pic(Db(X)/IX∗, ⊠̂) is a subgroup of the Picard group Pic(Db(X)/IX∗, ⊗̂L

X ).

Proof. The proof is as in the previous two. If U is in Pic(Db(X)/IX∗, ⊠̂) then it
induces an autoequivalence of Db(X)/IX∗ and so it commutes with the Serre functor
on Db(X∗)≃ Db(X)/IX∗ . By writing a resolution for any bounded complex A in
terms of direct sums of derived tensor powers of ωX∗ we can use the same argument
as in the proof of Lemma 3.12 and we arrive at the isomorphisms

U ⊗̂L A ∼= U ⊠̂ A. □

Remark 3.16. In the results above we have chosen to work with varieties of general
type, but the same argument applies to varieties with big anticanonical bundle.

The case when our variety has an ample (anti)canonical bundle allows us to relate
the Picard group of the full derived category to that of any other tensor triangulated
category structure on it.

The following result follows from the previous argument.

Corollary 3.17. Let X be a variety with ample (anti)canonical bundle. Then if ⊠ is
a tensor triangulated category structure on Db(X) with unit OX , the Picard group
Pic(Db(X),⊠) is isomorphic to a subgroup of Pic(Db(X),⊗X ).

Proof. We just need to notice that in this case the ⊗X -ideal from Corollary 3.4 is
the 0 ideal and thus we can resolve any object A ∈ Db(X) by a sequence of powers
of the Serre functor. By the same reasoning as above we see that

U ⊗
L A ∼= U ⊠ A. □
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Although Bondal and Orlov had already classified the group of autoequivalences
of a derived category of a variety with ample (anti)canonical bundle, we are working
without the condition of an equivalence between the derived category of the Balmer
spectrum of ⊠ and the derived category Db(X), and as such it is not immediate
from their result that the Picard group of ⊠ must involve invertible sheaves over X .

In other words, since Spc(⊠) is not necessarily isomorphic to X , understanding
the autoequivalences of Db(X) alone does not give us an immediate relationship to
the Picard group of ⊠.

We should think of the following corollary as a monoidal version of the Bondal–
Orlov reconstruction theorem:

Corollary 3.18. Let X be as above. If ωX [n] is an invertible object for a tensor
triangulated structure ⊠ on Db(X) with unit OX then ⊠ and ⊗

L
X coincide on objects.

Proof. As ωX is ⊠-invertible, Corollary 3.17 tells us that for any A ∈ Db(X),

ωX ⊗
L
X A ∼= ωX ⊠ A.

But we can resolve any other bounded complex B in terms of derived powers of
the canonical sheaf, so by the exactness of ⊠, we have

B ⊗
L
X A ∼= B ⊠ A. □

The nature of this result comes precisely from the fact that the tensor triangulated
category structure (⊠,1) does not necessarily come from a derived equivalence
Db(X) ≃ Db(Y ), and although the extra assumption on the unit is required, the
result is in this direction slightly more general than the original theorem.

Corollary 3.19. Let X be a variety with ample (anti)canonical bundle. If (OX ,⊠)
is a tensor triangulated structure on Db(X) such that Pic(⊠)∼= Pic(Db(X)) via the
assignment U 7→ U then ⊠ coincides with ⊗

L
X on objects.

Proof. In this case if this morphism is an isomorphism, then ωX is ⊠-invertible and
the result follows from the previous corollary. □

In fact if we are under the same hypothesis for X then as soon as we are able to
show that the generators of Pic(Db(X),⊗L) are ⊠-invertible then by the previous
corollary there must be an equivalence between ⊠ and ⊗

L
X .

Example 3.20. Let X = Pn be the projective space. In this case we know that
Pic(Db(X))= Z ⊕ Z, corresponding to the line bundles plus their shifts. The result
above then says that whenever there is a tensor triangulated structure ⊠ on Db(X)
with unit OX then the Picard group of this tensor structure must necessarily be a
subgroup of Z ⊕ Z.

If ωX = OX (−n − 1) is ⊠-invertible then we get that ⊠ coincides with ⊗
L
X .

Similarly if OX (−1) is ⊠-invertible.
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One natural question to ask when working with Picard groups of tensor triangu-
lated category structures is what the relationship with line bundles on the associated
space is. Balmer and Favi [2007, Proposition 4.4] proved the following result:

Proposition 3.21. Let X be a scheme and consider Perf(X), its derived category of
perfect complexes. Then there is a split short exact sequence of abelian groups

0 → Pic(X)→ Pic(Perf(X),⊗L
X )→ C(X; Z)→ 0,

where C(X; Z) stands for the group of locally constant functions from X to Z.

Again, under the hypothesis of X having an ample (anti)canonical bundle, by
using Proposition 3.21 we see that for a TTC (⊠,OX ), if Spc(⊠) is a scheme then the
Picard group of Spc(⊠)must be a subgroup of the Picard group of Pic(Db(X),⊠)≤
Pic(Db(X),⊗L

X ). So a line bundle in Spc(⊠) has to be ⊗
L
X -invertible.

Remark 3.22. From the original proof of the Bondal–Orlov reconstruction theorem,
we know that it is actually possible to fully characterize line bundles up to a shift
from purely categorical properties. Given the importance of the Picard group of the
variety, we can ask whether it is possible to reconstruct the derived tensor product
in Db(X) without having to pass through a reconstruction theorem.

Antieau [2013] sketched a construction in which by considering invertible objects
(in the sense of Bondal and Orlov) one can define a collection of tensor products ⊗

L
U

by exploiting the resolution by derived tensor powers of ωX .
The idea is to pick an invertible object U , shown in [Bondal and Orlov 2001] to

be isomorphic to a shift of a line bundle in X , and then by use of the resolution we
only need to define the products ω⊗

L
X i

X [ni] ⊗
L
U A• for any object A•. As the Serre

functor S ≃ _⊗
L
X ωX [n] comes from the categorical structure alone then we can set

these products to be simply Si (A•).
These tensor products ⊗

L
U have U as unit, and they all have X as Balmer spectrum.

In general for a triangulated category T we have an action by Aut(T ) on the
collection TTS(T ).

If (⊗,1) ∈ TTS(T ) and φ ∈ Aut(T ) we have a tensor structure defined by

X ⊗φ Y := φ−1(φ(X)⊗φ(Y )
)
,

with unit given by φ−1(1).
We have now justified enough the following definition:

Definition 3.23. Let T be a triangulated category. Denote by TTS(T ) the collec-
tion of equivalence classes of tensor triangulated category structures on T , where
we consider two tensor triangulated category structures to be equivalent if there is a
monoidal equivalence between the two of them.

To keep some control and avoid counting structures coming from autoequivalences
as we saw, we should at least fix the unit object.
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Definition 3.24. Let T be a triangulated category and U ∈ T an object. Then
the set TTSU (T ) is the set of equivalence classes of tensor triangulated structures
on T , where U is the unit.

This is the set we are mainly interested in classifying.
Let us finish by discussing the original Bondal–Orlov reconstruction theorem in

terms of the results we have shown so far.

Theorem 3.25. Let X be a variety with ample (anti)canonical divisor, and let ⊠
be a tensor triangulated structure on Db(X) with unit OX . If Spc(⊠) is a smooth
projective space with ample (anti)canonical bundle and there is an equivalence
Db(X)≃ Db(Spc(⊠)), then X ∼= Spc(⊠).

Proof. The only thing to note here is that since Spc(⊠) has ample (anti)canonical
bundle, ωX has to be ⊠-invertible. Indeed, we recall that one can pick the equiva-
lence Db(X)≃ Db(Spc(⊠)) to send ωX to ωSpc(⊠) and then the assertion follows
by applying Corollary 3.17 to Spc(⊠) so that we obtain that Pic(Db(X),⊗L

X ) is
isomorphic via the assignment L 7→ L to a subgroup of Pic(Db(X),⊠). Since
ωX is ⊠-invertible, by Corollary 3.18 we obtain our result. □

Remark 3.26. We need to explain our choice of hypotheses. First, the assumption
that Spc(⊠) is a smooth projective variety is necessary just as in the original Bondal–
Orlov theorem formulation. We have added a couple more assumptions, however.
We suppose that the (anti)canonical bundle of Spc(⊠) is also ample to highlight
the use of the monoidal structures in the theorem. This hypothesis is however not
necessary as it can be directly deduced from the derived equivalence between the
two spaces, just as in the original proof of Bondal and Orlov. Alternatively, we can
formulate the theorem as follows:

Theorem 3.27. Let X be a variety with ample (anti)canonical divisor, and let ⊠ be
a tensor triangulated structure on Db(X) with unit OX . Suppose that Spc(⊠) is a
smooth projective space and that we have an equivalence Db(X)≃ Db(Spc(⊠)).
Then X ∼= Spc(⊠).

Of more importance is perhaps the choice of unit, as we have seen that there are
tensor triangulated category structures on the derived category of such a variety
which will produce very different spaces under the Balmer reconstruction. This
choice of unit allows us to keep some control in the classification of structures
producing the same space.

A natural next step for future work would be to deal with the possible sort of
objects which can be units for such a structure.

Remark 3.28. There is some nuance in the way in which Bondal–Orlov follows
from our results as we make use of some important technical results from the
original proof. We expect however that the discussion in this work has provided
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enough of a justification and motivation for looking at this problem in terms of
monoidal structures.

We can close our discussion with the following theorem:

Theorem 3.29. Let X be a smooth projective variety with ample (anti)canonical
bundle. If ⊠ is a tensor triangulated category structure on Db(X) such that OX is
its unit and Spc(⊠) is isomorphic to X , then ⊠ and ⊗

L
X coincide on objects.

This however does not fully classify TTSOX (D
b(X)), since we require Balmer’s

spectrum to be a Fourier–Mukai partner, but there is no reason to expect in general
a relationship between the derived category of the Balmer spectrum and the original
triangulated category.

The lack of morphisms between a space X and the Balmer spectrum Spc(⊠)
for some tensor triangulated structure, and thus of functors between the derived
categories of these two spaces, is one of the obstacles to being able to understand
the possible structures ⊠.
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