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THE GRIFFITHS DOUBLE CONE GROUP
IS ISOMORPHIC TO THE TRIPLE

SAMUEL M. CORSON

It is shown that the fundamental group of the Griffiths double cone space
is isomorphic to that of the triple cone. More generally if κ is a cardinal
such that 2 ≤ κ ≤ 2ℵ0 then the κ-fold cone has the same fundamental group
as the double cone. The isomorphisms produced are nonconstructive, and
no isomorphism between the fundamental group of the 2- and of the κ-fold
cones, with 2 < κ , can be realized via continuous mappings.

1. Introduction

The Griffiths double cone over the Hawaiian earring, which we denote GS2, was
introduced by H. B. Griffiths [1954] and has long stood as an interesting example
in topology (Figure 1). Although GS2 is a path connected, locally path connected
compact metric space (a Peano continuum) which embeds as a subspace of R3, it
has some subtle properties. Despite being a wedge of two contractible spaces, GS2

is not itself contractible, and more surprisingly the fundamental group of GS2 is
uncountable. The fundamental group is freely indecomposable and includes a copy
of the additive group of the rationals and of the fundamental group of the Hawaiian
earring. This group has found use in defining cotorsion-free groups in the nonabelian
setting [Eda and Fischer 2016] and continues to serve as a counterexample [Zastrow
1994] and as a test model for notions of infinitary abelianization [Brazas and
Gillespie 2022].

It is easy to see that analogous behavior is exhibited when one uses more cones in
the wedge, as in the triple wedge GS3 of cones over the Hawaiian earring or more
generally in the κ-fold wedge GSκ (the one-point union of cones, indexed by κ ,
with the natural metric topology). A natural question is whether the isomorphism
type of the fundamental group changes with this change in subscript. In light of the
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Figure 1. The Griffiths double cone GS2.

intuitive fact that no spatial isomorphism can be defined the following answer is
surprising.

Theorem A. If κ is a cardinal such that 2 ≤ κ ≤ 2ℵ0 then π1(GS2)≃ π1(GSκ).

The bounds on κ in the statement of Theorem A are the best possible. The
spaces GS0 and GS1 both strongly deformation retract to a point and therefore have
trivial fundamental group, and when κ > 2ℵ0 one has |π1(GSκ)|> 2ℵ0 = |π1(GS2)|

(Theorem 2.11). Using techniques of [Eda and Fischer 2016] or [Herfort and Hojka
2017] one can compute the abelianizations of π1(GS2) and π1(GS3) and see that
these abelianizations are isomorphic.

A notable point of comparison is that the wedge of 2, 3, etc. Hawaiian earrings
(without cones) is again homeomorphic to the Hawaiian earring, and so these
spaces have isomorphic fundamental groups. However the fundamental group of
a wedge of ℵ0 Hawaiian earrings, under the topology that we are considering,
will not have isomorphic fundamental group. This follows since the ℵ0-wedge of
Hawaiian earrings retracts to a subspace which is the ℵ0-wedge of circles each
having diameter 1, and this shows that the fundamental group of the ℵ0-wedge
homomorphically surjects onto an infinite rank free group, which the fundamental
group of the Hawaiian earring cannot do [Higman 1952].

The isomorphism given in Theorem A is produced combinatorially by a back-
and-forth argument, using the axiom of choice. It is intuitively clear that there is no
continuous function from GS2 to GS3 or vice versa which can yield an isomorphism
of fundamental groups. A comparable situation in the setting of topological groups
is that R and R2 are isomorphic as abstract groups, since by picking a Hamel
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basis over Q one sees that both are isomorphic to
⊕

2ℵ0 Q. There is no continuous,
or even Baire measurable, isomorphism between these topological groups. By
contrast Theorem A does not seem to follow by producing isomorphisms to an
easily understood third group like

⊕
2ℵ0 Q.

Another curiosity worth mentioning is that despite the necessary constraints on
the cardinality of κ in Theorem A, the first-order logical theory of π1(GS2) and
π1(GSκ) are the same whenever κ ≥ 2.

Theorem B. If 2 ≤ γ ≤ κ then π1(GSγ ) elementarily embeds in π1(GSκ). Thus
for κ ≥ 2 the groups π1(GS2) and π1(GSκ) are elementarily equivalent.

Of course when κ is 0 or 1 the fundamental group π1(GSκ) is trivial and therefore
not elementarily equivalent to π1(GS2). The proof of Theorem B utilizes Theorem A
and the action of the automorphism group, and no previous knowledge of first-order
logic is required to understand the proof.

The ideas used in proving Theorem A seem to have very broad applications, and
we state two now. Another space that is often mentioned along with the Griffiths
space is the harmonic archipelago HA of Bogley and Sieradski [2000]. The spaces
GS2 and HA share many common properties. Each embeds as a subspace of R3,
both contain a distinguished point at which every loop can be homotoped to have
arbitrarily small image, and both have uncountable fundamental group. Cannon
and Conner have conjectured that the two spaces share a further property, namely
that they have isomorphic fundamental group [Conner 2011], and in a forthcoming
paper we will show that this is indeed the case (the reader can see a proof of this fact
in [Corson 2021, Theorem D]). By further reworking these ideas one can produce a
correct proof of the main theorem of [Conner et al. 2015] (some errors have been
pointed out by K. Eda) as well as answer many of the questions of that paper in the
affirmative (see [Corson 2023]).

We describe the layout of this paper. In Section 2 we give the formal definition of
the Griffiths space and its κ-fold analogues. We also present some combinatorially
defined groups Cκ and show them to be isomorphic to the fundamental groups
π1(GSκ). In Section 3 we prove Theorems A and B.

2. The cone groups

We give a construction of GS2 and more generally of the κ-fold Griffiths space
GSκ for any cardinal κ . We consider each cardinal number κ as being the set of all
ordinals below it in the standard way. Thus 0 =∅, n ={0, . . . , n−1} for each n ∈ω,
ω+ 2 = {0, 1, . . . , ω, ω+ 1}, etc. Let 2ℵ0 denote the cardinal of the continuum.
Given a point p ∈ R2 and r ∈ [0,∞) we let C(p, r) denote the circle centered
at p of radius r (in case r = 0 we obtain the degenerate circle consisting only of
the point p). The Hawaiian earring is the subspace E =

⋃
n∈ω C

((
0, 1

n+3

)
, 1

n+3

)
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of R2. Let GS1 ⊆ R3 be the subspace
⋃

r∈[0,1]

(⋃
n∈ω C

((
0, 1−r

n+3

)
, r

n+3

)
×{r}

)
. The

space GS1 may also be viewed as the space obtained by first taking the Hawaiian
earring sitting in the xy-plane E ×{0} and joining each point of E ×{0} to the point
(0, 0, 1) by a geodesic line segment. A third, topological way of viewing GS1 is
by simply taking the topological cone over the Hawaiian earring. In other words,
GS1 is homeomorphic to the quotient space obtained by beginning with E ×[0, 1]

and identifying all points which have 1 in the last coordinate.
We define GS0 to be the metric space consisting of the single point ◦0. Let

κ ≥ 1 be a cardinal. We take GSκ to be the set obtained by taking κ-many disjoint
isometric copies

⊔
α<κ Xα of GS1 and identifying all copies of (0, 0, 0) to a single

point ◦κ . Thus we consider ◦κ ∈ Xα for all α < κ . Metrize GSκ by letting Dα be
the metric on Xα (making Xα an isometric copy of GS1) and

D(x, y)=

{
Dα(x, y) if x, y ∈ Xα,

Dα(x, ◦κ)+ dα′(◦κ , y) if x ∈ Xα \ {◦κ} and y ∈ Xα′ \ {◦κ}, α ̸= α′.

We note that this definition yields an isometric copy of GS1 when κ = 1 and so
the definition is consistent. When κ is finite, the space GSκ is a Peano continuum
and GSκ is homeomorphic to the topological wedge of κ-many copies of GS1 with
the copies of the point (0, 0, 0) identified. When κ ≥ ℵ0 the space GSκ is neither
compact nor homeomorphic to the quotient space obtained by identifying all copies
of (0, 0, 0) in the topological disjoint union of κ-many copies of GS1.

Next we give a description of what we call the cone group Cκ for each cardinal κ .
The description involves infinitary word combinatorics. Fix a cardinal κ . We start
with a set Aκ ={a±1

α,n}α<κ,n<ω equipped with formal inverses. We call the elements of
Aκ letters and a letter is positive if it has superscript 1. For convenience we shall usu-
ally leave off the superscript 1 on positive letters. A letter which is not positive is neg-
ative. Let proj0 and proj1 be the functions defined on Aκ which project respectively
the first and second subscript of a letter. Thus proj0(a

−1
α,n)= α and proj1(a

−1
α,n)= n.

A word in Aκ is a function W : W →Aκ such that W is a totally ordered set and
for each N ∈ ω the set {i ∈ W | proj1(W (i))≤ N } is finite. The domain of a word
is necessarily countable. We write W0 ≡ W1 if there exists an order isomorphism
ι : W0 → W1 such that W1(ι(i))= W0(i) for all i ∈ W0, and write ι : W0 ≡ W1 in
this case. Let E denote the word with empty domain.

Let Wκ denote the set of all ≡ classes of words in Aκ . For W ∈ Wκ we let
d(W ) = min{proj1(W (i)) | i ∈ W } and d(E) = ∞. There is a natural associative
binary operation on Wκ given by word concatenation, defined by letting W0W1 be
the word W such that W = W0 ⊔ W1 has the ordering that extends the orders of W0

and W1, placing elements in W0 below those of W1, and

W (i)=

{
W0(i) if i ∈ W0,

W1(i) if i ∈ W1.
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There is similarly a notion of infinite concatenation. If 3 is a totally ordered set
and {Wλ}λ∈3 is a collection of words such that for every N ∈ ω the set {λ ∈ 3 :

d(Wλ) ≤ N } is finite then we can take a concatenation
∏
λ∈3 Wλ whose domain

is the disjoint union
⊔
λ∈3 Wλ ordered in the natural way and whose outputs are

given by
(∏

λ∈3 Wλ

)
(i)= Wλ(i) where i ∈ Wλ. We also use this notation for the

concatenation of ordered sets. If {3λ}λ∈3 is a collection of ordered sets and 3 is
itself ordered we let

∏
λ∈33λ be the ordered set obtained by taking the disjoint

union of the 3λ and ordering the elements in the obvious way. To further abuse
notation we write 3≡2 if 3 is order isomorphic to 2.

We also have an inversion operation on words given by letting W −1 have domain
W under the reverse order and letting W −1(i) = (W (i))−1. For each N ∈ ω and
word W we let pN (W ) be the restriction W ↾ {i ∈ W | proj1(W (i)) ≤ N }. Thus
pN (W ) is a finite word in the alphabet Aκ . We write W0 ∼ W1 if for every N ∈ ω

the words pN (W0) and pN (W1) are equal when considered as elements in the free
group on positive elements of Aκ . As an example, the word W ≡a0,0a−1

0,0a0,1a−1
0,1 · · ·

satisfies W ∼ E since pN (W ) ≡ a0,0a−1
0,0a0,1a−1

0,1 · · · a0,N a−1
0,N is freely equal to E

for each N ∈ ω. Let [W ] denote the ∼ equivalence class of W . We obtain a group
structure on Wκ/∼ by letting [W0][W1] = [W0W1], from which one gets inverses
defined by [W ]

−1
= [W −1

] and [E] as the identity element. Let Hκ denote this
group. Define a word W to be α-pure if proj0 ◦W (i) = α for all i ∈ W . More
generally a word is pure if it is α-pure for some α. The empty word E is α-pure
for every α. Define the group Cκ to be the quotient of Hκ by the smallest normal
subgroup including the set of ∼ equivalence classes of pure words.

We work towards the proof that Cκ ≃ π1(GSκ , ◦κ). Recall that the Hawaiian
earring E ×{0} is a subspace of GS1. Each copy Xα of GS1 which appears in the
wedge GSκ therefore has such a copy of the Hawaiian earring, which we denote
Eα , at its “base”. Let Eκ denote the union of all of these copies Eα of the Hawaiian
earring.

In [Cannon and Conner 2000] is a description of an isomorphism of H1 with
the fundamental group of the Hawaiian earring π1(E1, ◦1), which we give and
generalize here. Let I denote the set of maximal open intervals in the closed
interval [0, 1] minus the Cantor ternary set. The natural ordering on I is order
isomorphic to that of the rationals, and so every countable order type embeds in I.
For each n ∈ ω let Ln be a loop based at ◦1 which passes exactly once around the
circle C

((
0, 1

n+3

)
, 1

n+3

)
and is injective except at 0 and 1. Given a word W ∈ W1

we let ι : W → I be an order embedding. Let Rι(W ) : [0, 1] → E1 be the loop given
by

Rι(W )(t)=


Ln

( t−inf I
sup I−inf I

)
if W (i)= a0,n and t ∈ I = ι(i),

L−1
n

( t−inf I
sup I−inf I

)
if W (i)= a−1

0,n and t ∈ I = ι(i),

◦1 otherwise.
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If ι0 : W → I is a distinct order embedding, then Rι(W ) and Rι0(W ) are
homotopic via a straightforward homotopy whose image lies inside the com-
mon image Rι(W )([0, 1]) = Rι0(W )([0, 1]). Thus we have a well-defined map
R : W → π1(E1, ◦1). Less obvious is the fact that W ∼ U implies R(W )= R(U ),
so that R descends to a map, which we also name R, from H1 to π1(E1, ◦1) which is
in fact an isomorphism. Each loop at ◦1, moreover, can be homotoped in its image
to a loop which is precisely Rι(W ) for some ι and W .

We’ll use these facts to produce such a map R for larger values of κ . To simplify
the work we introduce the notion of reduced words. As is the case with finitary
words, there is a notion of reducedness for words in Wκ . We say W ∈Wκ is reduced
if W ≡ W0W1W2 and W1 ∼ E implies W1 ≡ E . We state the following, whose
proof would follow in precisely the same way as that of [Eda 1992, Theorem 1.4,
Corollary 1.7].

Lemma 2.1. Given W ∈ Wκ there exists a reduced word W0 ∈ Wκ such that
[W ] = [W0] and this W0 is unique up to ≡. Moreover, letting W and U be reduced,
there exist unique words W0,W1,U0,U1 such that:

(1) W ≡ W0W1.

(2) U ≡ U0U1.

(3) W1 ≡ U−1
0 .

(4) W0U1 is reduced.

Let Redκ denote the set of reduced words in Wκ and for each W ∈ Wκ let
Red(W ) be the reduced word such that W ∼ Red(W ). The proof of the following
is straightforward.

Lemma 2.2. We have Red(WU ) ≡ Red(Red(W )Red(U )) given W ∈ Wκ and
U ∈ Wκ . Similarly, given W0,W1,W2 ∈ Wκ we have

Red(W0W1W2)≡ Red(W0 Red(W1W2))≡ Red(Red(W0W1)W2).

Lemma 2.2 implies the group Hκ is isomorphic to the set Redκ under the group
operation W ∗ U = Red(WU ). We give the following definition (see [Cannon and
Conner 2000, Definition 3.4]):

Definition 2.3. Given a word W ∈Wκ we say S ⊆ W ×W is a cancellation provided
the following:

(1) For ⟨i0, i1⟩ ∈ S, we have i0 < i1.

(2) If ⟨i0, i1⟩ ∈ S and ⟨i0, i2⟩ ∈ S, then i2 = i1.

(3) If ⟨i0, i1⟩ ∈ S and ⟨i2, i1⟩ ∈ S, then i2 = i0.

(4) If ⟨i0, i1⟩ ∈ S and i2 ∈ (i0, i1) ⊆ W , there exists i3 ∈ (i0, i1) such that either
⟨i2, i3⟩ ∈ S or ⟨i3, i2⟩ ∈ S.
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(5) If ⟨i0, i1⟩ ∈ S, then W (i0)= (W (i1))
−1.

The ⟨ · , · ⟩ notation for ordered pairs is used here in order to avoid confusion
with parenthetical notation ( · , · ) which can be interpreted as an open interval. We
shall use ⟨ · ⟩ to denote a generated subgroup, and the lack of a comma makes this
use unambiguous.

A cancellation may be understood as a transfinite strategy for freely reducing a
word. Conditions (2) and (3) imply that a cancellation is a pairing of elements in a
subset of elements of W . Condition (5) says that the pairing requires the associated
letters in W to be inverses of each other. Condition (4) requires the pairing to be
complete in the sense that each element between paired elements must also be
paired by S. Condition (4) also requires that the pairing is noncrossing in the sense
that if an element i lies between two paired elements i0 and i1, then the element
with which i is paired must also be between i0 and i1.

Zorn’s lemma implies that each cancellation S in a word W is included in
a maximal cancellation S ′; that is, S ⊆ S ′ and S ′ is not a proper subset of a
cancellation in W . It turns out that a maximal cancellation reveals the reduced word
representative, as happens with freely reducing a finitary word until free reductions
are no longer possible. We omit the proof of the following, but it follows in precisely
the same manner as [Cannon and Conner 2000, Theorem 3.9]:

Lemma 2.4. If S is a maximal cancellation for W ∈ Wκ then

W ↾ {i ∈ W | (¬∃i ′) (⟨i, i ′
⟩ ∈ S or ⟨i ′, i⟩ ∈ S)} ≡ Red(W ).

Thus a word has only trivial cancellation if and only if that word is reduced. As a
consequence, if W ∈Wκ with W ≡

∏
λ∈3 Wλ then Red(W )≡ Red

(∏
λ∈3 Red(Wλ)

)
.

Now we define our homomorphism from Redκ to π1(Eκ , ◦κ). For each α < κ
and n < ω we let Lα,n be a loop based at ◦κ which goes exactly once around the
n-th circle of Eα and is injective except at 0, 1. One can use an isometry between
E1 and Eα to define Lα,n from Ln if wished. Given a reduced word W ∈ Redκ and
an order embedding ι : W → I we get a loop Rι(W ) defined by

Rι(W )(t)=


Lα,n

( t−inf I
sup I−inf I

)
if W (i)= a0,n and t ∈ I = ι(i),

L−1
α,n

( t−inf I
sup I−inf I

)
if W (i)= a−1

0,n and t ∈ I = ι(i),

◦κ otherwise.

The check that this function on [0, 1] is continuous is straightforward. Given some
other order embedding ι0 : W →I we obtain a different loop Rι0 which is homotopic
to Rι via a homotopy which is a reparametrization.

In particular we have a well-defined map R : Redκ → π1(Eκ , ◦κ). To see that
this is a homomorphism, we let W,U ∈ Redκ and let W0,W1,U0,U1 be as in
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Lemma 2.1. The loop R(W1) is readily seen to be the inverse of R(U0). The word
W0U1 is reduced and therefore we have

R(W ∗ U )= R(Red(WU ))

= R(W0U1)

≃ R(W0)R(U0)
−1 R(U0)R(U1)

= R(W0)R(W1)R(U0)R(U1)

= R(W0W1)R(U0U1)

= R(W )R(U ).

Suppose now that W ∈ Redκ is in the kernel of R. Suppose for contradiction
that W ̸≡ E . We’ll construct a cancellation S of W to obtain a contradiction. Fix
an order embedding ι : W → I. Let H : [0, 1] × [0, 1] → Eκ be a nullhomotopy
of Rι(W ). That is, H(t, 0) = Rι(W )(t) and H(0, s) = H(1, s) = H(t, 1) for all
t, s ∈[0, 1]. For each I ∈I we let m(I ) signify the midpoint m(I )= 1

2(sup I +inf I ).
Consider the set of points M = {(m(ι(i)), 0)}i∈W ⊆ [0, 1]× [0, 1]. For each point
p ∈ M we consider its path component Pp in [0, 1] × [0, 1] \ H−1(◦κ). Each
p ∈ M is associated with a unique interval ι(ip) and therefore with a unique element
ip ∈ W , and each i ∈ W is in turn associated with a unique point p ∈ M . Moreover,
the natural order on points in M is isomorphic with the elements of W in this
association.

Fixing p ∈ M the set Pp ∩ M is necessarily finite, because each element of
Pp ∩ M corresponds to exactly one occurrence of a loop Lα,n or of its inverse,
for a fixed α and n, and there are only finitely many such occurrences since there
are finitely many occurrences of a±1

α,n in W . Write Pp ∩ M = {p0, p1, . . . , pj }

listing elements in the natural order. By modifying H to have output ◦κ outside
of Pp, we see that H witnesses a nullhomotopy of the loop Ri (W ↾ {ip0, . . . , ipj }),
which lies entirely in the n-th circle of Eα. Then there are exactly as many ipk

for which W (ipk )= aα,n as there are for which W (ipk )= a−1
α,n . Select neighboring

points pk, pk+1 which are of opposite parity and let ⟨ipk , ipk+1⟩ ∈ S. Among the
remaining points Pp ∩ M \ {pk, pk+1} select two which are neighboring under the
new order and add this ordered pair to S. Continue in this way until all elements of
Pp ∩ M are used. Perform this procedure on all path components Pp for p ∈ M .
It is straightforward to check that S satisfies the rules of a cancellation. We have
obtained our contradiction. Thus R is an injection.

We check that R is a surjection. Let L : [0, 1] → Eκ be a loop at ◦κ . Let J be
the set of maximal open intervals in [0, 1] \ L−1(◦κ). This set is countable and has
a natural ordering. For each restriction L ↾ J , where J ∈ J , there is a homotopy
HJ : J × [0, 1] → L(J ) to a loop L J : J → L(J ) which is either constant, or
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Lα,n
( t−inf J

sup J−inf J

)
or L−1

α,n
( t−inf J

sup J−inf J

)
. By gluing these homotopies together we get a

homotopy of L to a loop whose restriction to each nonconstant interval J is of the
form Lα,n

( t−inf J
sup J−inf J

)
or L−1

α,n
( t−inf J

sup J−inf J

)
.

Thus assuming L is of this form, we define a word W : J → Aκ by letting
W (J )= a±1

α,n where the α, n and superscript are determined in the straightforward
way. That the mapping W is indeed a word (no n in the subscript occurs infinitely
often) follows from the fact that L is continuous. Let S be a maximal cancellation
on W . This S can be used to homotope L so that the new associated word is Red(W ).
More explicitly, we define H : [0, 1] × [0, 1] → Eκ by having H(t, s) = L(t)
if t does not lie inside an interval (inf J0, sup J1) where ⟨J0, J1⟩ ∈ S. If a point
(t, s) ∈ [0, 1]× [0, 1] lies on the semicircle determined by points (t0, 0) and (t1, 0)
which is perpendicular to [0, 1] × {0} where t0 ∈ J0, t1 ∈ J1 and ⟨J0, J1⟩ ∈ S with
L(t0)= L(t1), we let H(t, s)= L(t0)= L(t1). Give H output ◦κ everywhere else.
That H is continuous and produces a loop H(t, 1) as described is intuitive but
tedious to check. Thus we may now assume that the associated word W is reduced.
By reparametrizing L we may make it so that all the intervals in J are elements in I,
which immediately gives an order embedding ι of W to I for which L = Rι(W ).
We have shown surjectivity and finished the proof of the following:

Lemma 2.5. The function R : Redκ → π1(Eκ , ◦κ) is an isomorphism.

We now approach the isomorphism Cκ ≃ π1(GSκ , ◦κ). For finite values of κ
this can be done by a straightforward argument in which van Kampen’s Theorem is
iterated finitely many times, as is done in [Eda and Fischer 2016, Section 4]. We
present an argument which works for every cardinal κ .

Lemma 2.6. Given ϵ > 0 and a loop L : [0, 1] → GSκ based at ◦κ , there is a loop
homotopic to L whose image is of diameter at most ϵ.

Proof. Let J be the set of maximal open intervals in [0, 1] \ L−1(◦κ). There are
only finitely many intervals J ∈J for which the diameter of the image diam(L ↾ J )
is at least 1

2ϵ. But for every J ∈ J the loop L ↾ J lies entirely in a contractible
space, a homeomorph of GS1. In particular each restriction L ↾ J is nullhomotopic.
Thus letting J ′

⊆ J be the set of those intervals whose images are of diameter at
least 1

2ϵ we have L homotopic to the loop L ′
: [0, 1] → GSκ given by

L ′(t)=

{
L(t) if t /∈

⋃
J ′,

◦κ if t ∈
⋃

J ′,

which has diameter at most ϵ. □

Let each copy of (0, 0, 1) in the copies of GS1 whose wedge forms GSκ be
called a “cone tip”. Let GS′

κ denote the space GSκ minus the set of cone tips. The
following is easy to see.
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Lemma 2.7. The space GS′
κ strongly deformation retracts to Eκ .

Now we let U ⊆ GSκ be the open set which is the union over all α < κ of
images Eα ×

[
0, 2

3

)
in the cone over Eα . For each α < κ we let Vα be the image of

Eα ×
( 1

3 , 1
]

in the cone over Eα. An application of van Kampen’s theorem gives
the following.

Theorem 2.8. The isomorphism R :Redκ →π1(Eκ , ◦κ) descends to an isomorphism
RCκ : Cκ → π1(GSκ , ◦κ).

We immediately obtain the following (cf. [Bogopolski and Zastrow 2012, Theo-
rem 8.1]):

Corollary 2.9. A reduced word W is in the kernel of the map Redκ → Cκ if and only
if there exist finitely many intervals I0, . . . , Ip such that W ↾ Ij is pure for each j
and Red

(
W ↾

(
W \

⋃p
j=0 Ij

))
= E.

Lemma 2.10. Suppose that we have a word V ≡
∏

n∈ω Vn with V ∈ Redκ , and that
the following properties are verified:

(1) Any interval I ⊆ V such that V ↾ I is pure is a subinterval of
∏m

n=0 Vn for some
m ∈ ω.

(2) For each n ∈ ω there exists jn ∈ ω such that
∣∣{i ∈ Vn | proj1(Vn(i)) = jn}

∣∣ >∑
m ̸=n

∣∣{i ∈ Vm | proj1(Vm(i))= jn}
∣∣.

Then [[V ]] ̸= [[E]] in Cκ .

Proof. Suppose for contradiction that [[V ]] = [[E]], so by Corollary 2.9 we obtain
a finite collection of intervals I0, . . . , Ip in V such that V ↾ Ik is pure for each
0 ≤ k ≤ p and Red

(
V ↾

(
V \

⋃p
k=0 Ik

))
= E . Let S be a maximal cancellation of

V ↾
(
V \

⋃p
k=0 Ik

)
. We know by (1) that

⋃p
k=0 Ik ⊆

∏m
n=0 Vn for some m ∈ ω. All

elements of Z = {i ∈ Vm+1 | proj1(Vm+1(i)) = jm+1} must participate in S since
Red

(
V ↾

(
V \

⋃p
k=0 Ik

))
= E , but since Vm+1 is reduced we know that the elements

of Z are paired with elements of V \
(
Vm+1 ∪

⋃p
k=0 Ik

)
, but this is impossible by

condition (2). □

For a reduced word W we let [[W ]] denote the equivalence class of W in Cκ and
if [[W ]] = [[U ]] we write W ≈ U .

Theorem 2.11. For each cardinal κ we have

|Cκ | =

{
1 if κ = 0,
κℵ0 if κ ≥ 1.

Proof. We have already seen that the formula holds in case κ = 0, 1. Suppose κ ≥ 2.
Notice that the space GSκ has 2ℵ0 · κ = max{2ℵ0, κ} points in it. Every continuous
function from [0, 1] to the metric space GSκ is totally determined by the restriction
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to [0, 1] ∩ Q. Thus there are at most (max{2ℵ0, κ})ℵ0 = κℵ0 loops in the space, so
in particular |Cκ | ≤ κℵ0 . We must show |Cκ | ≥ κℵ0 .

If 2 ≤ κ ≤ 2ℵ0 then let 6 be a collection of infinite subsets of ω such that for
distinct X, Y ∈6 we have X ∩Y finite and such that |6| = 2ℵ0 . Such a construction
is straightforward, see for example [Kunen 1980, Chapter II, Theorem 1.3]. For
each X ∈6 let X = {n0,X , n1,X , . . .} be the enumeration of X in the natural order.
Let

WX ≡ a0,n0,X a1,n1,X a0,n2,X a1,n3,X · · · .

Since WX uses only positive letters it is clear that WX and also any deletion of
finitely many letters of WX is a reduced word. By the conditions on 6 it is clear
that [[WX ]] ̸= [[WY ]] if X ̸= Y . Then κℵ0 ≤ |Cκ |.

Suppose that 2ℵ0 <κ and that κℵ0 = κ . Let f : κ×ω→ κ be an injection and for
each α < κ we define Wα ≡ a f (α,0),0 a f (α,1),1 · · · . It is clear that [[Wα]] ̸= [[Wβ]]

for distinct α, β < κ .
Suppose finally that 2ℵ0 < κ and that κℵ0 > κ . Let X be the set of all functions

from ω to κ and consider two functions σ0, σ1 ∈ X to be equivalent if they are
eventually identical: for some m ∈ ω we have σ0(m + n) = σ1(m + n) for all
n ∈ ω. Each equivalence class is of cardinality κ , so there are exactly κℵ0 distinct
equivalence classes. Letting Y ⊂ X be a selection from each equivalence class we
define a map Y → Cκ by letting σ 7→ Wσ where Wσ ≡ a f (σ (0),0),0 a f (σ (1),1),1 · · ·

and again f : κ ×ω→ κ is an injection. It is easy to see that for distinct elements
of Y the assigned words are not equivalent in Cκ . □

An interval I in a totally ordered set 3 is initial if it is a union of intervals
of the form (−∞, i] and is terminal if a union of intervals of form [i,∞) (an
initial or terminal interval may be empty). Given a nonempty word W ∈ Redκ
there exists a unique maximal initial interval I0 of W for which there exists a
terminal interval I1 ⊆ W such that W ↾ I0 ≡ (W ↾ I1)

−1. By the proof of [Eda 1992,
Corollary 1.6] the maximal such initial interval I0 and the accompanying I1 are
disjoint and W \(I0∪ I1) is nonempty, and this set is clearly an interval, say I2. Thus
W ≡ (W ↾ I0)(W ↾ I2)(W ↾ I0)

−1 and we call the word W ↾ I2 the cyclic reduction
of W . Clearly if U is the cyclic reduction of W then the cyclic reduction of U
is again U , so cyclic reduction is an idempotent operation. A word whose cyclic
reduction is itself is called cyclically reduced. It is clear from Lemma 2.4 that a
word U is cyclically reduced if and only if the word U n is reduced for all n ≥ 1,
thus if and only if U 2 is reduced.

3. Theorem A

We begin with a description of the overall strategy and then describe the structure
of this section. An isomorphism between two cone groups Cκ0 and Cκ1 will be
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constructed by induction on specially defined subgroups. We cannot expect that such
an isomorphism will be imposed by a homomorphism Redκ0 → Redκ1 . However,
the idea is that establishing careful correspondences between certain words in Redκ0

and certain words in Redκ1 will allow us to ultimately produce homomorphisms
φ0 : Redκ0 → Cκ1 and φ1 : Redκ1 → Cκ0 which will descend to isomorphisms
80 : Cκ0 → Cκ1 and 81 : Cκ1 → Cκ0 with 81 =8−1

0 .
What sort of correspondences between words should be produced? They should

not be so rigid as to produce a homomorphism Redκ0 → Redκ1 . Rather, they should
be forgiving enough to produce the homomorphisms φ0 and φ1 described above.
The correspondences should also agree with each other so that the φ0 and φ1 are
well defined.

Each word in Redκ0 and Redκ1 may be decomposed in a natural way as a concate-
nation of maximal pure subwords (the index over which concatenation is written is
unique up to order isomorphism and is called the p-index). Taking concatenations
over subintervals of the p-index gives us words which are recognizable pieces of the
original word (which we will call p-chunks). There is a natural way of comparing
certain words W ∈ Redκ0 with other words U ∈ Redκ1 via an order isomorphism
between a subset of the p-index of W and that of U . These subsets will be large
enough to “capture” any interval of the p-index, up to deletion of finitely many
elements, and there will be a correspondence between the p-chunks of W and
those of U . The bijections between the subsets of the p-indices will honor word
concatenation (up to finite deletion of pure subwords) and will allow us to define
isomorphisms between the subgroups of Cκ0 and Cκ1 which are generated by the
p-chunks of the words on which we have defined such bijections.

In order to have the isomorphisms be well defined, it is essential that the imposed
correspondences between p-chunks are in agreement with each other. That is,
suppose that W0,W1 ∈ Redκ0 and U0,U1 ∈ Redκ1 and Wi is made to correspond
to Ui for i = 0, 1. If W ∈ Redκ0 is a p-chunk of each of W0 and W1 then we
should be able to make W correspond to a word U ∈ Redκ0 in a way that honors
the correspondences Wi ↔ Ui , so any choice of such a U should be independent of
whether we are considering W as a p-chunk of W0 or of W1, up to the equivalence ≈.

It will be necessary to be able to define many such correspondences between
words, so as to make the isomorphism between subgroups of Cκ0 and Cκ1 have larger
and larger domain and range. Keeping such new correspondences in agreement
with the previously defined ones requires us to consider concatenations of words
on which such bijections have already been defined, concatenations of order type
ω and of order type Q are of particular concern. If we can continue to do this
for sufficiently many steps (2ℵ0 steps will suffice) then we can succeed in the
construction.

This section is organized into subsections for the sake of clarity. We introduce
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and prove some basic properties of p-chunks in Section 3A. In Section 3B we
will make precise the concept of a “sufficiently large” subset of an ordered set.
In Section 3C we define what it means for bijections between sufficiently large
subsets of p-indices to honor word concatenation (up to deletion of finitely many
pure subwords). In Section 3D we give some baby steps towards defining such
bijections on more words, and in Sections 3E and 3F we show how to extend such
notions for ω- and Q-type concatenations, respectively. Finally in Section 3G we
combine all the previous ideas to prove Theorems A and B.

3A. P-chunks. Let κ be a cardinal. For each word W ∈ Redκ we have a decom-
position of the domain W ≡

∏
λ∈33λ such that each 3λ is a nonempty maximal

interval with W ↾3λ pure. We’ll call this decomposition the pure decomposition
of the domain of W . Write W ≡p

∏
λ∈3 Wλ to express that W ≡

∏
λ∈3 Wλ is

the p-decomposition of the domain of W , and call this writing W ≡p
∏
λ∈3 Wλ

the p-decomposition of W and 3 the p-index, denoted p*(W ). By definition we
therefore have E ≡p

∏
λ∈3 Wλ with 3 = ∅. If W ≡p

∏
λ∈p*(W ) Wλ and I is an

interval in p*(W ) then let W ↾p I denote the word
∏
λ∈I Wλ. Call a word W ′ a

p-chunk of W if for some interval I ⊆ p*(W ) we have W ′
≡ W ↾p I . For a given

W ∈ Redκ we let p-chunk(W ) denote the set of p-chunks of W . A pure p-chunk of
a word W ≡p

∏
λ∈3 Wλ will, of course, either be empty or one of the Wλ. Notice

as well that an equivalence W ≡ U immediately gives an order isomorphism from
p*(W ) to p*(U ).

Lemma 3.1. Suppose that W ≡p
∏
λ∈3 Wλ and U ≡p

∏
λ′∈3′ Uλ′ . Then there exists

a (possibly empty) initial interval I ⊆3 and a (possibly empty) terminal interval
I ′

⊆3′ such that either:

(i) Red(WU )≡p
∏
λ∈I Wλ

∏
λ′∈I ′ Uλ′ ; or

(ii) there exist λ0 ∈3 which is the least element strictly above all elements in I ,
λ1 ∈3′ which is the greatest element strictly below all elements of I ′ and

Red(WU )≡p

( ∏
λ∈I

Wλ

)
V

( ∏
λ′∈I ′

Uλ′

)
where V ≡ Red(Wλ0Uλ1) ̸≡ E is pure.

Proof. Since both W and U are reduced we have reduced words W0, W1, U0, U1

such that W ≡ W0W1, U ≡ U0U1, W1 ≡ U−1
0 and W0U1 is reduced, by Lemma 2.1.

Select I0 ⊆ 3 to be a maximal initial interval for which
⋃
λ∈I0

Wλ ⊆ W0. Select
I ′

1 ⊆3′ to be a maximal terminal interval such that
⋃
λ′∈I ′

1
Uλ′ ⊆ U1.

Suppose
∏
λ∈I0

Wλ ≡ W0 and
∏
λ′∈I ′

1
Uλ′ ≡ U1. If I0 has a maximal element λ0

and I ′

1 has a minimal element λ1 such that the words Wλ0 and Uλ1 are both α-pure
for some α, then we let I = I0 \ {λ0} and I ′

= I ′

1 \ {λ1} and V ≡ Wλ0Uλ1 and
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obviously condition (ii) holds. If there are no such maximal and minimal elements
then condition (i) holds.

Suppose that
∏
λ∈I0

Wλ ̸≡ W0. Then there exists some λ0 which is the least
element strictly above all elements in I0 and nonempty words Wλ0,0 and Wλ0,1 such
that

Wλ0 ≡ Wλ0,0Wλ0,1; W0 ≡p

( ∏
λ∈I0

Wλ

)
Wλ0,0; W1 ≡p Wλ0,1

( ∏
λ∈3\(I0∪{λ0})

Wλ

)
.

If in addition
∏
λ′∈I1

Uλ′ ≡U1 then3′
\ I1 has a maximum element λ1 which satisfies

Uλ1 ≡ W −1
λ0,1. Thus we let I = I0 \ {λ0} and I ′

= I1 and V ≡ Wλ0,0 ≡ Red(Wλ0Uλ1)

and we have condition (ii). On the other hand, if in addition we have
∏
λ′∈I1

Uλ′ ̸≡U1

then 3′
\ I1 has a maximum element λ1 and there exist nonempty words Uλ1,0 and

Uλ1,1 for which

Uλ1 ≡ Uλ1,0Uλ1,1; U0 ≡p

( ∏
λ′∈3′\I1

Uλ′

)
Uλ1,0; U1 ≡p Uλ1,1

( ∏
λ′∈I1

Uλ′

)
.

Then we let V ≡ Wλ0,0Vλ1,1 ≡ Red(Wλ0Uλ1) and I = I0 and I ′
= I1 and condition

(ii) holds.
The case where

∏
λ∈I0

Wλ ≡ W0 and
∏
λ′∈I ′

1
Uλ′ ̸≡ U1 follows from dualizing the

proof of an earlier case. □

Lemma 3.2. Suppose that X ⊆ Redκ . For each nonempty element W of the sub-
group

〈⋃
U∈X p-chunk(U )

〉
≤ Redκ , if W ≡p

∏
λ∈3 Wλ, then there exist nonempty

intervals I0, . . . , In in 3 such that:

(i) 3≡
∏n

i=0 Ii .

(ii) For each 0 ≤ i ≤ n, at least one of the following holds:
(a) Ii is a singleton {λ} such that Wλ is the reduction of a finite concatenation

of pure p-chunks of elements in X±1.
(b)

∏
λ∈Ii

Wλ is a p-chunk of some element in X±1.

Proof. The elements of
〈⋃

U∈X p-chunk(U )
〉

are of form Red(U0 · · · Ul) where each
Ui is a p-chunk of an element of X±1. The claim will follow by an induction on
the number l. If l = 0 or l = 1 then we are already done. Supposing that the
claim holds for l, we suppose W ≡ Red(U0 · · · Ul+1)≡ Red(Red(U0 · · · Ul)Ul+1)

and let W ′
≡ Red(U0 · · · Ul) and U ≡ Ul+1. Let W ′

≡ W0W1 and U ≡ U0U1 as
in Lemma 2.1 for performing the reduction Red(W ′U ). Let W ′

≡p
∏
λ∈3 Wλ and

U ≡p
∏
λ′∈3′ Uλ. By induction we have for the word W ′ a decomposition I0, . . . , In′

as in the conclusion of this lemma. We can select an initial interval I ⊆ 3 and
a terminal interval I ′

⊆3′ as in the conclusion of Lemma 3.1. Consider the two
possible cases in Lemma 3.1 for the word W ≡ Red(W ′U ). If case (i) of Lemma 3.1
holds then we can decompose the p-chunk total order for W into at most n′

+ 1
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intervals as in (i) and (ii) of the statement of the lemma that we are proving. If case
(ii) of Lemma 3.1 holds then we can decompose the p-chunk total order for W into
at most n′

+ 2 intervals, at least one of which will be a singleton. □

We say a subgroup G of Redκ is p-fine if each p-chunk U of each W ∈ G is also
in G (cf. [Eda 1999, page 600]).

Lemma 3.3. If X ⊆ Redκ then the subgroup
〈⋃

U∈X p-chunk(U )
〉
≤ Redκ is p-fine.

This is the smallest p-fine subgroup including the set X.

Proof. This follows immediately from the characterization in Lemma 3.2. □

Given a set X ⊆ Redκ we’ll denote the subgroup〈 ⋃
U∈X

p-chunk(U )
〉
≤ Redκ

by Pfine(X).

Lemma 3.4. If X ⊆ Redκ then there are at most (|X | + 1) · ℵ0 pure p-chunks of
elements in Pfine(X).

Proof. If X is empty then Pfine(X) has only the empty word and so there is one
pure p-chunk of elements in Pfine(X) and the claim is true. If X is not empty then
there are there are at most |X | · ℵ0 pure p-chunks of elements in X (since a p-index
is at most countable), and therefore we have at most |X | · ℵ0 · ℵ0 = |X | · ℵ0 finite
products of p-chunks, or their inverses, of elements in X . By Lemma 3.2 we know
all pure p-chunks of elements in Pfine(X) arise in this way and so we are also done
in this case. □

3B. Close subsets. We take a diversion through a concept which will be useful in
later subsections.

Definition 3.5. Let 3 be a totally ordered set. We say 30 ⊆ 3 is close in 3,
and write Close(30,3), if every infinite interval in 3 has nonempty intersection
with 30.

The idea of a close subset 30 in 3 is that there are no infinite gaps in 3 which
miss elements in 30. We give some elementary examples. If 30 is cofinite in 3
then Close(30,3). Any infinite subset of the ordered set ω of natural numbers is
close. A subset of Z is close precisely when it contains numbers of arbitrarily large
positive numbers and arbitrarily large negative numbers. A subset of Q is close
when it is dense.

Lemma 3.6. The following hold:

(i) If Close(30,3) then for any infinite interval I ⊆3 the set I ∩30 is infinite.

(ii) If 32 ⊆31 ⊆30 with Close(3i+1,3i ) for i = 0, 1, then Close(32,30).
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(iii) If we have that 3 ≡
∏
θ∈23θ , Close(3θ,0,3θ ) for each θ ∈ 2, and also

Close({θ ∈2 |3θ,0 ̸= ∅},2), then Close
(⋃

θ∈23θ,0,3
)
.

(iv) If I0 is an interval in 3 and Close(30,3), then Close(30 ∩ I0, I0).

Proof. (i) If instead I ∩30 = {λ0, λ1, . . . , λn} with λi < λi+1 then at least one of
the intervals I ∩ (−∞, λ0), (λ0, λ1), . . . , (λn−1, λn), I ∩ (λn,∞) in 3 is infinite,
but each has empty intersection with 30 and this is a contradiction.

(ii) Let I ⊆30 be an infinite interval. Notice that I ∩31 is infinite by (i) and so
I ∩31 is an infinite interval in 31, so I ∩32 = (I ∩31)∩32 ̸= ∅.

(iii) Let I ⊆ 3 be an infinite interval. The set I = {θ ∈ 2 | I ∩3θ ̸= ∅} is an
interval in 2. If I is finite then as I =

⊔
θ∈I (I ∩3θ ) there is some θ0 ∈ I for which

|I ∩3θ0 | = ∞, and as I ∩3θ0 is an infinite interval in3θ0 we see that I ∩3θ0,0 ̸=∅,
so I ∩

⋃
θ∈23θ,0 ̸= ∅. If I is infinite then I ∩ {θ ∈ 2 | 3θ,0 ̸= ∅} is infinite

by (i), as we are assuming Close({θ ∈2 |3θ,0 ̸= ∅},2). Then there exists some
θ0 ∈ I ∩ {θ ∈2 |3θ,0 ̸= ∅} for which I ⊇3θ0 . Thus I ∩3θ0,0 ̸= ∅.

(iv) This is obvious. □

If Close(30,3) then for each interval I ⊆3 we let ∝(I,30) denote the small-
est interval in 3 which includes the set I ∩ 30. In other words ∝(I,30) =⋃
λ0,λ1∈I∩30,λ0≤λ1

[λ0, λ1] where the intervals [λ0, λ1] are being considered in 3.

Lemma 3.7. Let Close(30,3) and I ⊆3 be an interval.

(i) The inclusion I ⊇ ∝(I,30) holds and ∝(I,30)= ∝(∝(I,30),30).

(ii) The set I \∝(I,30) is the disjoint union of an initial and terminal subinterval
I0, I1 ⊆ I (either subinterval could be empty) with |I0|, |I1|<∞.

Proof. (i) The claimed inclusion is obvious. For the claimed equality it is therefore
sufficient to prove that ∝(I,30)⊆∝(∝(I,30),30). We let λ∈∝(I,30) be given.
Select λ0, λ1 ∈ I ∩30 such that λ0 ≤ λ ≤ λ1. Then λ0, λ1 ∈ ∝(I,30)∩30 and
λ0 ≤ λ≤ λ1, so λ ∈ ∝(∝(I,30),30).

(ii) If I ∩30 = ∅ then I is finite (since Close(λ0,3)) and we can let I0 = ∅
and I1 = I . If I ∩30 ̸= ∅ then we let I0 = {λ ∈ I | (∀λ0 ∈ I ∩30) λ < λ0} and
I1 = {λ ∈ I | (∀λ0 ∈ I ∩30) λ > λ0}. Clearly I ≡ I0 ∝(I,30)I1. Each of I0 and I1

is a subinterval of I and therefore a subinterval of 3 as well. If, say, I0 is infinite
then I0 ∩30 ̸= ∅ but this is an obvious contradiction. □

We will say that two totally ordered sets 3 and 2 are close-isomorphic if
there exist 30 ⊆ 3 and 20 ⊆ 2 with Close(30,3), Close(20,2) and 30 order
isomorphic to 20; and if ι is an order isomorphism between such a 30 and 20 then
we will call ι a close order isomorphism from 3 to 2. It is obvious that the inverse
of a close order isomorphism from 3 to 2 is a close order isomorphism from 2

to 3.
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From a close order isomorphism (abbreviated coi) between totally ordered sets
one obtains a reasonable way of identifying intervals in one totally ordered set
with intervals in the other, which we now describe. Given coi ι between 3 and 2,
with 30 and 20 being the respective domain and range of ι, and an interval I ⊆3

we let ∝(I, ι) denote the smallest interval in 2 which includes the set ι(I ∩30).
Thus ∝(I, ι) =

⋃
θ0,θ1∈ι(I∩30),θ0≤θ1

[θ0, θ1], where each interval [θ0, θ1] is being
considered in 2.

Lemma 3.8. If ι : 30 → 20 is a coi between 3 and 2 and I ⊆ 3 is an interval
then ∝(∝(I, ι), ι−1)= ∝(I,30). □

We point out that a coi ι between3 and2 also induces a coi between the reversed
orders 3−1 and 2−1 in the obvious way.

Lemma 3.9. Let 3≡ I0 · · · In and ι :30 →20 a coi from3 to 2. Then there exist
(possibly empty) finite subintervals I ′

0, . . . , I ′

n+1 of ∝(3, ι) such that

∝(3, ι)≡ I ′

0 ∝(I0, ι)I ′

1 ∝(I1, ι)I ′

2 · · ·∝(In, ι)I ′

n+1.

Proof. Assume the hypotheses. Clearly each ∝(Ij , ι) is a subinterval of ∝(3, ι),
and it is easy to see that all elements of ∝(Ij , ι) are strictly below all elements of
∝(Ij+1, ι) for 0 ≤ j < n. Thus we may indeed write

∝(3, ι)≡ I ′

0 ∝(I0, ι)I ′

1 ∝(I1, ι)I ′

2 · · ·∝(In, ι)I ′

n+1

and we conclude by pointing out that I ′

l ∩20 = I ′

l ∩ι(30)= I ′

l ∩
(⋃n

j=0 ι(Ij ∩30)
)
⊆⋃n

j=0(I
′

l ∩∝(Ij , ι))= ∅ for each 0 ≤ l ≤ n + 1, and since Close(20,2) we have
I ′

l finite. □

Lemma 3.10. Let ι :30 →20 be a coi from3 to30. If I ⊆3 is finite then ∝(I, ι)
is finite.

Proof. Since I is finite, we know I ∩30 is finite. Clearly we have ∝(I, ι)∩20 =

ι(I ∩30), so ∝(I, ι) is an interval in 2 having finite intersection with 20. Thus
∝(I, ι) is finite by Lemma 3.6 (i). □

3C. Coherent coi triples. Suppose that κ0 and κ1 are cardinal numbers greater
than or equal to 2. For words W ∈ Redκ0 and U ∈ Redκ1 we’ll write coi(W, ι,U )
to denote that ι is a coi between p*(W ) and p*(U ) and say that coi(W, ι,U ) is a
coi triple from Redκ0 to Redκ1 . We will often abuse language and say that ι is a coi
from W to U when really ι is a coi from p*(W ) to p*(U ).

Definition 3.11. A collection {coi(Wx , ιx ,Ux)}x∈X of coi triples from Redκ0 to
Redκ1 is coherent if for any choice of x0, x1 ∈ X , intervals I0 ⊆ p*(Wx0) and
I1 ⊆ p*(Wx1) and i ∈ {−1, 1} such that Wx0 ↾p I0 ≡ (Wx1 ↾p I1)

i we get

[[Ux0 ↾p ∝(I0, ιx0)]] = [[(Ux1 ↾p ∝(I1, ιx1))
i
]],
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and similarly for any choice of x2, x3 ∈ X , intervals I2 ⊆ p-chunk(Ux2) and I3 ⊆

p-chunk(Ux3) and j ∈ {−1, 1} such that Ux2 ↾p I2 ≡ (Ux3 ↾p I3)
j we get

[[Wx2 ↾p ∝(I2, ι
−1
x2
)]] = [[(Wx3 ↾p ∝(I3, ι

−1
x3
)) j

]].

It is clear from the symmetric nature of this definition that if the collection of
coi triples {coi(Wx , ιx ,Ux)}x∈X from Redκ0 to Redκ1 is coherent then so is the
collection of coi triples {coi(Ux , ι

−1
x Wx)}x∈X from Redκ1 to Redκ0 . We emphasize

that a word can appear multiple times in a coherent collection. For example, if
each element of {Wx}x∈X is pure then the collection {(Wx , ιx , E)}x∈X is obviously
coherent (each ιx is the empty function).

Lemma 3.12. Suppose that2 is a totally ordered set and that {Tθ }θ∈2 is a collection
of coherent collections of coi triples from Redκ0 to Redκ1 such that θ ≤ θ ′ implies
Tθ ⊆ Tθ ′ . Then

⋃
θ∈2 Tθ is coherent.

Proof. Supposing that coi(Wx0, ιx0,Ux0), coi(Wx1, ιx1,Ux1)∈
⋃
θ∈2 Tθ and intervals

I0 ⊆ p*(Wx0) and I1 ⊆ p*(Wx1) and i ∈ {−1, 1} are such that Wx0 ↾p I0 ≡ (Wx1 ↾p I1)
i ,

we select θ ∈ 2 such that coi(Wx0, ιx0,Ux0), coi(Wx1, ιx1,Ux1) ∈ Tθ . As Tθ is
coherent we get

[[Ux0 ↾p ∝(I0, ιx0)]] = [[(Ux1 ↾p ∝(I1, ιx1))
i
]].

The comparable check for words Ux2,Ux3 ∈ Redκ1 is analogous. □

Lemma 3.13. Suppose {coi(Wx , ιx ,Ux)}x∈X is coherent, x ∈ X , I ⊆ p*(Wx) is an
interval, I ≡ I0 I1 · · · In . Suppose also that for each 0 ≤ j ≤ n we have an x j ∈ X ,
an interval I ′

j in p*(Wx j ) and i j ∈ {−1, 1} such that Wx ↾p Ij ≡ (Wx j ↾p I ′

j )
i j . Then

[[Ux ↾p ∝(I, ιx)]] =

n∏
j=0

[[(Ux j ↾p ∝(I ′

j , ιx j ))
i j ]].

Furthermore, if L = {0 ≤ j ≤ n | |Ij |> 1} we have

[[Ux ↾p ∝(I, ιx)]] =

∏
j∈L

[[(Ux j ↾p ∝(I ′

j , ιx j ))
i j ]].

Proof. For each 0 ≤ j ≤ n we have Wx ↾p Ij ≡ (Wx j ↾p I ′

j )
i j , so that by the fact that

{coi(Wx , ιx ,Ux)}x∈X is coherent we see that

[[Ux ↾p ∝(Ij , ιx)]] = [[(Ux j ↾p ∝(I ′

j , ιx j ))
i j ]]

for all 0 ≤ j ≤ n. In particular we have
n∏

j=0

[[Ux ↾p ∝(I ′

j , ιx)]] =

n∏
j=0

[[(Ux j ↾p ∝(I ′

j , ιx j ))
i j ]]
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and so we will be done with the first claim if we show that [[Ux ↾p ∝(I, ιx)]] =∏n
j=0[[Ux ↾p ∝(Ij , ιx)]]. But this is true since by Lemma 3.9 the (possibly unre-

duced) word
∏n

j=0 Ux ↾p ∝(Ij , ιx) is obtained from Ux ↾p ∝(I, ιx) by deleting
finitely many pure subwords.

Next we let L be as in the statement of the lemma. Notice that for each 0 ≤

j ≤ n with j /∈ L we have |Ij | = |I ′

j | ≤ 1 and so ∝(I ′

j , ιx j ) is a finite interval, by
Lemma 3.10. Thus for each such j we have [[(Ux j ↾p ∝(I ′

j , ιx j ))
i j ]] = [[E]] since

Ux j ↾p ∝(I ′

j , ιx j ) is a finite concatenation of pure words. Thus removing all such
j from the multiplication expression

∏n
j=0[[(Ux j ↾p ∝(I ′

j , ιx j ))
i j ]] will not change

the value in the group, and so we are done with the second claim. □

What follows is a rather technical result that will allow us to conclude that certain
natural maps are well defined despite certain choices that are made.

Lemma 3.14. Let the collection {coi(Wx , ιx ,Ux)}x∈X be coherent and let W be in
Pfine({Wx}x∈X ). Let I0, . . . , In be a finite set of subintervals of p*(W ) as in the
conclusion of Lemma 3.2 and let J = {0 ≤ j ≤ n | |Ij |> 1}. For each j ∈ J select
x j ∈ X , i j ∈ {−1, 1}, and an interval3j ⊆ p*(Wx j ) such that W ↾p Ij ≡ (Wx j ↾p3j )

i j .
Again, let I ′

0, . . . , I ′

n′ be a finite set of subintervals of p*(W ) as in the conclusion
of Lemma 3.2 and let J ′

= {0 ≤ j ′
≤ n′

| |I ′

j ′ |> 1}. For each j ′
∈ J ′ select yj ′ ∈ X ,

m j ′ ∈ {−1, 1}, and an interval 3′

j ′ ⊆ p*(Wyj ′
) such that W ↾p I ′

j ′ ≡ (Wyj ′
↾p3′

j ′)
m j ′ .

Then ∏
j∈J

[[(Ux j ↾p ∝(3j , ιx j ))
i j ]] =

∏
j ′∈J ′

[[(Uyj ′
↾p ∝(3′

j ′, ιyj ′
))m j ′ ]].

Proof. Assume the hypotheses. Take I to be the set of nonempty intervals ob-
tained by intersecting an Ij with an I ′

j ′ . For each 0 ≤ j ≤ n we can write
Ij ≡ I( j,0) I( j,1) · · · I( j,n j ) where each I( j,q) is an element of I. Similarly for each
0 ≤ j ′

≤ n′ we write I ′

j ′ ≡ I ′

( j ′,0) · · · I ′

( j ′,n′
j ′ )

where each I ′

( j ′,r) is an element of I.
We have I = {I( j,q)}0≤ j≤n,0≤q≤n j = {I ′

( j ′,r)}0≤ j ′≤n′,0≤r≤n′

j ′
. Let F : I → {( j, q) |

0 ≤ j ≤ n, 0 ≤ q ≤ n j } be the unique order isomorphism between the domain and
codomain where the codomain is given the lexicographic order, comparing the
leftmost coordinate first and define F ′

: I→{( j ′, r) |0≤ j ′
≤n′, 0≤r ≤n′

j ′} similarly.
Let h : {( j, q) | 0 ≤ j ≤ n, 0 ≤ q ≤ n j } → {0, . . . , n} denote projection to the first
coordinate, and similarly define h′

: {( j ′, r) | 0 ≤ j ′
≤ n′, 0 ≤ r ≤ n′

j ′} → {0, . . . , n′
}.

Let J ⊆ I denote the set of intervals in I which are of cardinality at least 2; that is,

J = {I( j,q) | 0 ≤ j ≤ n, 0 ≤ q ≤ n j , |I( j,q)| ≥ 2}.

For each j ∈ J and each I( j,q) ∈ J we know that W ↾p I( j,q) ∈ p-chunk(W i j
x j ), so

select an interval 3( j,q) ⊆ p*(Wx j ) such that W ↾p I( j,q) ≡ (Wx j ↾p3( j,q))
i j . Now
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we have that∏
j∈J

[[(Ux j ↾p ∝(3j , ιx j ))
i j ]]

=

∏
j∈J

∏
0≤q≤n j
I( j,q)∈J

[[(Ux j ↾p ∝(3( j,q), ιx j ))
i j ]]

=

∏
I∈J

[[(Uxh◦F(I ) ↾p ∝(3F(I ), ιxh ◦F(I )))
ih ◦F(I )]]

=

∏
j ′∈J ′

∏
0≤r≤n′

j ′

I( j ′,r)∈J

[[(Uxh ◦F◦(F ′)−1( j ′,r))
↾p ∝(3F◦(F ′)−1( j ′,r), ιxh ◦F◦(F ′)−1( j ′,r)

))
ih ◦F◦(F ′)−1( j ′,r)]]

=

∏
j ′∈J ′

[[(Uyj ′
↾p ∝(3′

j ′, ιyj ′
))m j ′ ]]

where the first equality holds by Lemma 3.13, the second and third equalities
are simply a rewriting of the order index, and the last equality holds by another
application of Lemma 3.13. This completes the proof. □

Now we may conclude that a coherent collection of cois produces well-defined
homomorphisms. For each i ∈ {0, 1} we let ℶκi : Redκi → Cκi denote the surjection
given by W 7→ [[W ]].

Proposition 3.15. Let {coi(Wx , ιx ,Ux)}x∈X be coherent. By selecting for each
W ∈ Pfine({Wx}x∈X ) a finite set of subintervals I0, . . . , In of p*(W ) as in the
conclusion of Lemma 3.2, letting J = {0 ≤ j ≤ n | |Ij | > 1}, selecting for each
j ∈ J an element x j ∈ X , i j ∈ {−1, 1}, and an interval 3j ⊆ p*(Wx j ) such that
W ↾p Ij ≡ (Wx j ↾p3j )

i j we obtain a homomorphism

φ0 : Pfine({Wx}x∈X )→ ℶκ1(Pfine({Ux}x∈X ))

given by φ0(W ) =
∏

j∈J [[(Ux j ↾p ∝(3j , ιx j ))
i j ]], whose definition is independent

of the choices made of the set of subintervals I0, . . . , In , elements x j ∈ X and
i j ∈ {−1, 1}, and intervals 3j ⊆ p*(Wx j ). The comparable map

φ1 : Pfine({Ux}x∈X )→ ℶκ0(Pfine({Wx}x∈X ))

similarly is a homomorphism whose definition is independent of the various selec-
tions made.

Proof. From Lemma 3.14 we see that the described function φ0 is well defined
and independent of the numerous choices made. We must check that φ0 is a
homomorphism.

We note first that if W ∈ Pfine({Wx}x∈X ) and p*(W ) has a first or last element,
say λ= max(p*(W )), then φ0(W )= φ0(W ↾p p*(W ) \ {λ}). This is easily seen by
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selecting the set of intervals I0, . . . , In for W to be such that In = {λ}. The fact
that |In| = 1 and therefore In /∈ J completes the argument.

Suppose that W ∈ Pfine({Wx}x∈X ) and W ≡ W0W1 where also both W0,W1 ∈

Pfine({Wx}x∈X ). Choose subintervals I0, . . . , In in p*(W0) as in Lemma 3.2, let
J = {0 ≤ j ≤ n | |Ij |> 1}, select x j ∈ X and i j ∈ {−1, 1} and intervals3j ⊆ p*(Wx j )

with W ↾p Ij ≡ (Wx j ↾p3j )
i j . Similarly choose intervals I ′

0, . . . , I ′

n′ in p*(W1) and
define J ′ and choose yj ′ ∈ X , m j ′ ∈ {−1, 1} and 3′

j ′ ⊆ p*(Wyj ′
) for each j ′

∈ J ′.
Notice that p*(W ) ≡ I0 · · · In I ′

0 · · · I ′

n′ is a decomposition as in Lemma 3.2 and
J ∪ J ′ is precisely the set of indices whose accompanying interval is of cardinality
at least two. Then

φ0(W )=

( ∏
j∈J

[[(Ux j ↾p ∝(3j , ιx j ))
i j ]]

)( ∏
j ′∈J ′

[[(Uyj ′
↾p ∝(3j ′, ιx j ))

m j ]]

)
= φ0(W0)φ0(W1).

Next we suppose that W ∈ Pfine({Wx}x∈X ) and let subintervals I0, . . . , In in
p*(W0) be as in Lemma 3.2, let J = {0 ≤ j ≤ n | |Ij | > 1}, select x j ∈ X and
i j ∈ {−1, 1} and intervals 3j ⊆ p*(Wx j ) with W ↾p Ij ≡ (Wx j ↾p3j )

i j . Notice that
p*(W −1) may be written as p*(W −1) ≡ I ′

n · · · I ′

0 as in Lemma 3.2, where I ′

j is
order isomorphic to the ordered set (Ij )

−1, and W ↾p Ij ≡ (W −1 ↾p I ′

j )
−1. Also,

{0 ≤ j ≤ n | |I ′

j |> 1} is equal to the set J . Then

φ0(W )=

∏
j∈J

[[(Ux j ↾p ∝(3j , ιx j ))
i j ]] =

( ∏
j∈J−1

[[(Ux j ↾p ∝(3j , ιx j ))
−i j ]]

)−1

= (φ0(W −1))−1,

where J−1 denotes the set J under the reverse order. Thus φ0(W −1)= (φ0(W ))−1.
Finally we let W0,W1 ∈ Pfine({Wx}x∈X ) be given. As in Lemma 2.1 we write

W0 ≡ W00W01 and W1 ≡ W10W11 with W01 ≡ W −1
10 and the word W00W11 reduced.

We will give the argument in the most difficult case and sketch how the argument
goes in the less difficult ones. Suppose that W00 ends with a nonempty α-pure word
and W11 begins with a nonempty α-pure word, and also that W01 begins with a
nonempty α-pure word. From this last assumption we know that W10 ends with a
nonempty α-pure word.

We have W00W11 ≡ W ′

00WaW ′

11 where we denote λ0 = max(p*(W00)), λ1 =

min(p*(W11)) and

W ′

00 ≡ W00 ↾p {λ ∈ p*(W00) | λ < λ0}, W ′

11 ≡ W1 ↾p {λ ∈ p*(W11) | λ > λ1},

Wa ≡ (W00 ↾p {λ0})(W11 ↾p {λ1}).

Note that W ′

00,Wa,W ′

11 ∈ Pfine({Wx}x∈X ) since the concatenation W00W11 is in
Pfine({Wx}x∈X ) and each of W ′

00, Wa , and W ′

11 are p-chunks of this word, whereas
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for example W00 ↾p {λ0} might not be in Pfine({Wx}x∈X ). Furthermore suppose
λ2 = min(p*(W01)) and λ3 = max(p*(W10)) and define

W ′

01 ≡ W01 ↾p (p*(W01) \ {λ2}), Wb ≡ (W00 ↾p {λ0})(W01 ↾p {λ2}),

W ′

10 ≡ W10 ↾p (p*(W10) \ {λ3}), Wc ≡ (W10 ↾p {λ3})(W11 ↾p {λ1}).

Notice that W ′

01 ≡ (W ′

10)
−1 and that each of the words W ′

01,Wb,W ′

10,Wc is in
Pfine({Wx}x∈X ).

By our work so far we get

φ0(W00W11)= φ0(W ′

00WaW ′

11)

= φ0(W ′

00)φ0(Wa)φ0(W ′

11)

= φ0(W ′

00)φ0(W ′

11)

= φ0(W ′

00)φ0(W ′

01)φ0(W ′

10)φ0(W ′

11)

= φ0(W ′

00)φ0(Wb)φ0(W ′

01)φ0(W ′

10)φ0(Wc)φ0(W ′

11)

= φ0(W0)φ0(W1).

In the simpler case where W01 does not begin with an α-pure word (hence W10

does not end with an α-pure word) we let W ′

01 = W01, W ′

10 = W10 and both Wb and
Wc be the empty word and the equalities above will all hold. In the case there does
not exist α < κ0 such that both W00 ends with a nonempty α-pure word and W11

begins with an α-pure word we let W ′

00 ≡ W00, W ′

11 ≡ W11 and Wa ≡ E . It may
still be the case that W00 ends with a nonempty β-pure word and W01 begins with
a nonempty β-pure word, β < κ0, and for this we define

W ′

01 ≡ W01 ↾p (p*(W01) \ {λ2}), Wb ≡ (W00 ↾p {λ0})(W01 ↾p {λ2}),

W ′

10 ≡ W10 ↾p (p*(W10) \ {λ3}),

and let Wc be given by
(W10 ↾p {λ3})(W11 ↾p {λ1}) in case W11 begins with a nonempty

β-pure word and λ3 = min p*(W11);

W10 ↾p {λ3} otherwise.

The case where W11 and W10 respectively begin and end with a β-pure word,
for some β < κ0, is analogous. If none of these cases holds then we simply let
W ′

00 ≡ W00, W ′

01 ≡ W01, W ′

10 ≡ W10, W ′

11 ≡ W11 and Wa ≡ Wb ≡ Wc ≡ E . This
exhausts all possibilities and the proof is complete (the arguments for φ1 are made
in the analogous way). □

Proposition 3.16. The homomorphisms φ0 and φ1 descend respectively to isomor-
phisms

80 : ℶ0(Pfine({Wx}x∈X ))→ ℶ1(Pfine({Ux}x∈X )),

81 : ℶ1(Pfine({Ux}x∈X ))→ ℶ0(Pfine({Wx}x∈X )),



THE GRIFFITHS DOUBLE CONE GROUP IS ISOMORPHIC TO THE TRIPLE 319

with 80 =8−1
1 .

Proof. If W ∈ Pfine({Wx}x∈X ) is a pure word the set p*(W ) is a singleton and for
any decomposition of p*(W ) by Lemma 3.2 the accompanying set J will necessarily
be empty. Thus all pure words in Pfine({Wx}x∈X ) are in ker(φ0) and so we get the
induced 80, and similarly we obtain an induced 80.

By Lemma 3.2 each element of the group ℶ0(Pfine({Wx}x∈X )) may be written
as a product [[W0]][[W1]] · · · [[Wn]] where each Wi is in

(⋃
x∈X p-chunk(Wx)

)±1.
For each 0 ≤ j ≤ n we select x j and i j and an interval 3j ⊆ p*(Wx j ) such that
Wj ≡ (Wx j ↾p3j )

i j . Now

81 ◦80([[W0]] · · · [[Wn]])=

n∏
j=0

81[[(Ux j ↾p ∝(3j , ιx j ))
i j ]]

=

n∏
j=0

(81([[Ux j ↾p ∝(3j , ιx j )]]))
i j

=

n∏
j=0

[[Wx j ↾p ∝(∝(3j , ιx j ), ι
−1
x j
)]]i j

=

n∏
j=0

[[Wx j ↾p3j ]]
i j

=

n∏
j=0

[[Wj ]],

where the fourth equality holds by Lemma 3.8 — the word Wx j ↾p ∝(∝(3j , ιx j ), ι
−1
x j
)

is obtained from the word Wx j ↾p3j by deleting finitely many pure subwords, namely
those associated with the set 3j \∝(∝(3j , ιx j ), ι

−1
x j
). Thus 81 ◦80 is the identity

map, and that 80 ◦81 is also the identity map follows from the same reasoning. □

3D. Extensions of coherent collections. By Proposition 3.16, the problem of
finding an isomorphism between cone groups is reduced to that of finding a coherent
collection of coi triples {coi(Wx ,Ux , ιx)}x∈X such that ℶ0(Pfine({Wx}x∈X ))= Cκ0

and ℶ1(Pfine({Ux}x∈X )) = Cκ1 . Thus, in this and all remaining subsections we
approach the problem of extending collections of coi triples. We still assume that
κ0, κ1 ≥ 2 and that the coi collections are from Redκ0 to Redκ1 .

Lemma 3.17. Let {coi(Wx , ιx ,Ux)}x∈X be coherent. If W is in Pfine({Wx}x∈X )

then there exists U ∈Redκ1 and a coi ι from W to U such that {coi(Wx , ιx ,Ux)}x∈X ∪

{(W, ι,U )} is coherent. Moreover if W is nonempty the domain (and range) of ι
can be made to be nonempty.

Proof. If W is empty then we let U and ι be empty. Else we choose subintervals
I0, . . . , In in p*(W ) as in Lemma 3.2, let J ={0 ≤ j ≤ n | |Ij |>1}, select x j ∈ X and
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i j ∈ {−1, 1} and intervals 3j ⊆ p*(Wx j ) with W ↾p Ij ≡ (Wx j ↾p3j )
i j . Let J ′

⊆ J
be given by

J ′
= { j ∈ J | (Ux j ↾p ∝(3j , ιx j ))

i j ̸≡ E}.

For each j ∈ J ′ let U ′

j ≡ (Ux j ↾p ∝(3j , ιx j ))
i j . For every 0 ≤ j ≤ n with j /∈ J ′ we

let U ′

j ≡ a0,0.
The word

∏n
j=0 U ′

j is probably not reduced, and so we will make slight modifica-
tions in order to obtain a reduced word. We know that each subword U ′

j is reduced
and nonempty. Let Un ≡ U ′

n . Let 0 ≤ j < n be given. There are a few possibilities:

• p*(U ′

j ) has a maximal element and p*(U ′

j+1) has a minimal element and both
U ′

j ↾p {max p*(U ′

j )} and U ′

j+1 ↾p {min p*(U ′

j+1)} are α-pure for some α < κ1.

• p*(U ′

j ) has a maximal element and p*(U ′

j+1) has a minimal element and both
U ′

j ↾p {max p*(U ′

j )} and U ′

j+1 ↾p {min p*(U ′

j+1)} are not α-pure for some α<κ1.

• p*(U ′

j ) does not have a maximal element or p*(U ′

j+1) does not have a minimal
element.

In the middle case we let Uj ≡ U ′

j . In the first or last case we choose α′

j < κ1 such
that U ′

j does not end with an α′

j -pure word (here we are using the fact that κ1 ≥ 2)
and let Uj ≡ U ′

j aα′,0. The word UjU ′

j+1 is reduced, and so the word UjUj+1 is
reduced (since Uj+1 is nonempty), and so the word U ≡

∏n
j=0 Uj is reduced.

We now define the coi ι from W to U in a very natural way. If j ∈ J ′ then
we let the domain of ιx j be 3′

j , and so Close(3′

j , p*(Wx j )). Let 3′′

j ⊆ Ij be the
image of 3′

j ∩3j under the order isomorphism given by W ↾p Ij ≡ (Wx j ↾p3j )
i j .

Similarly we let 2′′

j ⊆ p*(U ′

j ) ⊆ p*(Uj ) be the image of ιx j (3j ∩3′

j ) under the
order isomorphism given by U ′

j ≡ (Ux j ↾p ∝(3j , ιx j ))
i j . Define ιj :3′′

j →2′′

j to be
the order isomorphism given by the restriction to3′′

j of the composition of the order
isomorphism given by W ↾p Ij ≡ (Wx j ↾p3j )

i j with ιx j with the order isomorphism
given by (Ux j ↾p ∝(3j , ιx j ))

i j ≡ U ′

j . It is easy to check that Close(3′′

j , Ij ) and
Close(2′′

j , p*(Uj )), since for 0 ≤ j ≤ n either Uj ≡ U ′

j or Uj is obtained from U ′

j
by appending a word of length one on the right.

If 0 ≤ j ≤ n and j /∈ J ′ then Ij is finite and nonempty, as is p*(Uj ), and we
simply select elements λ ∈ Ij and λ′

∈ p*(Uj ) and let 3′′

j = {λ}, 2′′

j = {λ′

j } and
ιj :3′′

j →2′′

j be the unique function. Clearly Close(3′′

j , Ij ) and Close(2′′

j , p*(Uj )).
Let 3′′

=
⋃n

j=03
′′

j and 2′′
=

⋃n
j=02

′′

j , and note that Close(3′′, p*(W )) and
Close(2′′, p*(U )) by Lemma 3.6 (iii). Let ι :3′′

→2′′ be the unique extension of
the ιj . Now coi(W, ι,U ).

We check that {coi(Wx , ιx ,Ux)}x∈X ∪ {coi(W, ι,U )} is coherent. Suppose that
y ∈ X and intervals I ⊆ p-chunk(W ) and I ′

⊆ p-chunk(Wy) and i ∈ {−1, 1} are
such that W ↾p I ≡ (Wy ↾p I ′)i . Let L ⊆{0, . . . , n} denote the set of those j such that
Ij ∩ I ̸=∅. For each j ∈ L ∩ J we have W ↾p (Ij ∩ I )≡ (Wx j ↾p3

∗

j )
i j for the obvious
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choice of interval 3∗

j ⊆ 3j ⊆ p-chunk(Wx j ). Thus (Wx j ↾p3
∗

j )
i ·i j ≡ Wy ↾p I ′

j for
the obvious choice of interval I ′

j ⊆ I ′. By the coherence of {coi(Wx , ιx ,Ux)}x∈X

we therefore have

[[U ↾p ∝(I, ι)]] =

∏
j∈L

[[U ↾p ∝(Ij ∩ I, ι)]]

=

∏
j∈L∩J ′

[[U ↾p ∝(Ij ∩ I, ι)]]

=

∏
j∈L∩J ′

[[Ux j ↾p ∝(3∗

j , ιx j )]]
i j

=

∏
j∈(L∩J ′)i

[[Uy ↾p ∝(I ′

j , ιy)]]
i

= [[(Uy ↾p ∝(I ′, ιy))
i
]].

If we select intervals I, I ′
⊆ p*(W ) and i ∈ {−1, 1} such that W ↾p I ≡ (W ↾p I ′)i

then a similar strategy of finitely decomposing I and I ′ is employed to show
[[U ↾ ∝(I, ι)]] = [[(U ↾p ∝(I ′, ι))i ]].

With slight modifications, we check in a similar way that if U ↾p Q ≡ (Uz ↾p Q′)i ,
with z ∈ X , then the appropriate elements of Cκ0 are equal. Suppose z ∈ X , i ∈{−1, 1},
and intervals Q ⊆ p*(U ) and Q′

⊆ p*(Uz) are such that U ↾p Q ≡ (Uz ↾p Q′)i . By
construction we know that p*(U ′

j ) is an initial interval in p*(Uj ), with p*(Uj )\p*(U ′

j )

being of cardinality at most 1. Also, p*(U )≡ p*(U0) · · · p*(Un). Let T ⊆{0, . . . , n}

be the set of those j such that p*(Uj ) ∩ Q ̸= ∅. For each j ∈ T ∩ J ′ we have
U ↾p p*(U ′

j )∩ Q ≡ (Ux j ↾p2
∗

j )
i j for the obvious interval 2∗

j ⊆ p-chunk(Ux j ), and
(Ux j ↾p2

∗

j )
i ·i j ≡ Uz ↾p Q′

j for an appropriate Q′

j ⊆ p*(Uz). We see that

[[W ↾p ∝(Q, ι−1)]] =

∏
j∈T

[[W ↾p ∝(p*(Uj )∩ Q, ι−1)]]

=

∏
j∈L∩J ′

[[W ↾p ∝(p*(U ′

j )∩ Q, ι)]]

=

∏
j∈L∩J ′

[[Wx j ↾p ∝(2∗

j , (ιx j )
−1)]]i j

=

∏
j∈(L∩J ′)i

[[Wz ↾p ∝(Q′

j , ιy)]]
i

= [[(Wz ↾p ∝(Q′, ιy))
i
]].

Similar modifications are enacted if Q, Q′
⊆ p*(U ), and the proof is complete. □

We introduce some extra notation for convenience. For a not necessarily reduced
word W we let

∥W∥ = sup
{ 1

n+1
∣∣ n = proj1(W (i)) for some i ∈ W

}
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where the supremum is considered in the set of nonnegative reals. As examples we
have ∥E∥ = 0 and ∥a−1

α,5aα′,10∥ =
1
6 . By comparison to earlier notation, we have

d(W )= 1/∥W∥ − 1.

Lemma 3.18. Suppose that κ0 and κ1 are cardinal numbers greater than or equal
to 2. Suppose that {coi(Wx , ιx ,Ux)}x∈X is coherent, z ∈ X and that ϵ > 0 is a real
number. Then there exists U ∈ Redκ1 with ∥U∥< ϵ and a coi ι from Wz to U such
that {coi(Wx , ιx ,Ux)}x∈X ∪ {coi(Wz, ι,U )} is coherent. Moreover the domain (and
codomain) of ι may be chosen to be nonempty provided ιz satisfies this property.

Proof. If Wz is empty then let U be empty and ι = ∅. Otherwise let Uz ≡p∏
λ∈p*(Uz)

Uλ and J = {λ ∈ p*(Uz) | ∥Uλ∥ ≥ ϵ}. Since Uz is a word, we know that
J is finite. Let N ∈ ω be large enough that 1

N+1 < ϵ. For each λ ∈ p*(Uz) we let

U ′

λ ≡

{
Uλ if λ /∈ J,

aα,N if λ ∈ J and Uλ is α-pure.

We let U ≡
∏
λ∈p*(Ux )

U ′

λ. It is easy to see that U is reduced (a cancellation
in U would necessarily include the pairing of a letter aα,N ≡ Uλ, with λ ∈ J ,
with a letter in U ′

λ′ where λ′ is the immediate successor or immediate predecessor
of λ in p*(Ux), and thus U ′

λ and U ′

λ′ are both α-pure, so Uλ and Uλ′ are as well,
a contradiction). Moreover U ≡p

∏
λ∈p*(Ux )

U ′

λ and clearly ∥U∥ < ϵ. Letting
ι = ιz it is immediate that ι is a coi from Wz to U . The rather intuitive fact that
{coi(Wx , ιx ,Ux)}x∈X ∪ {coi(Wz, ι,U )} is coherent is proved along similar lines
used in earlier proofs. □

Lemma 3.19. Suppose that κ1 ≥ 2 and that |X |< 2ℵ0 . Given N ∈ ω \ {0} and an
ordinal α<κ1 there exists an α-pure word U ∈Redκ1 using only positive letters such
that ∥U∥ =

1
N , and U (max(U ))= aα,N−1 = U (min(U )), and U /∈ Pfine({Ux}x∈X ).

Proof. Assume the hypotheses. We will let U = [0, 1] ∩ Q. It is easy to see that the
set of all functions f : ([0, 1]∩Q)→ {aα,n}n≥N−1 such that f (0)= f (1)= aα,N−1

and the restriction f ↾ (0, 1)∩ Q is injective is of cardinality 2ℵ0 , and each such
function is an element of Redκ1 since there are no inverse letters with which to
perform a cancellation. On the other hand we have by Lemma 3.4 that there are less
than 2ℵ0 pure elements in Pfine({Ux}x∈X ). The lemma follows immediately. □

3E. ω-type concatenations. In this subsection we prove the following:

Proposition 3.20. Suppose that κ0 and κ1 are cardinal numbers greater than or
equal to 2. Suppose that {coi(Wx , ιx ,Ux)}x∈X is coherent, that W is reduced,
that p*(W ) ≡

∏
n∈ω In with each In ̸= ∅, W ↾p In ∈ Pfine({Wx}x∈X ), and W /∈

Pfine({Wx}x∈X ). Suppose also that |X |< 2ℵ0 . Then there exists U ∈ Redκ1 and a
coi ι from W to U such that {coi(Wx , ιx ,Ux)}x∈X ∪ {coi(W, ι,U )} is coherent.
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Proof. For each n ∈ ω write Wn ≡ W ↾p In . As W0 ∈ Pfine({Wx}x∈X ) is nontrivial
we select a word U0 ∈ Redκ1 and coi ι0 from W0 to U0 such that the domain of
ι0 is nonempty and such that {coi(Wx , ιx ,Ux)}x∈X ∪ {coi(W0, ι0,U0)} is coher-
ent, by Lemma 3.17. Assuming that the elements of {coi(Wi , ιj ,Uj )}j≤m have
already been chosen such that ∥Uj∥ <

1
2∥Uj−1∥, each ιj has nonempty domain

and also that the union of collections {coi(Wx , ιx ,Ux)}x∈X ∪ {coi(Wi , ιj ,Uj )}j≤m

is coherent, we use Lemmas 3.17 and 3.18 to select Um+1 ∈ Redκ1 and coi ιm+1

from Wm+1 to Um+1 so that ιm+1 has nonempty domain, ∥Um+1∥ <
1
2∥Um∥ and

{coi(Wx , ιx ,Ux)}x∈X ∪ {coi(Wi , ιj ,Uj )}j≤m+1 is coherent.

By Lemma 3.12, the collection {coi(Wx , ιx ,Ux)}x∈X ∪ {coi(Wi , ιj ,Uj )}j∈ω is
coherent. For each j ∈ω we will construct a word Vj ∈ Redκ1 with 1 ≤ |p*(Vj )| ≤ 2.
Select αj < κ1 such that the word Uj does not end with an αj -pure subword.
This is possible since κ1 ≥ 2 and Uj can end in at most one pure subword
(and might possibly not end in a pure subword). By Lemma 3.19 we select
an αj -pure word V ′

j ∈ Redκ1 \ Pfine({Ux}x∈X ∪ {Ui }i∈ω) which uses only pos-
itive letters such that ∥V ′

j ∥ = ∥Uj∥ and V ′

j has maximum and minimum ele-
ments and V ′

j (max(V ′

j )) = aαj ,d(Uj )+1 = V ′

j (min(V ′

j )). If Uj+1 begins with an
αj -pure subword, then select α′′

j ∈ κ1 \ {αj }, and again by Lemma 3.19, select
V ′′

j ∈ Redκ1 \ Pfine({Ux}x∈X ∪ {Ui }i∈ω) which uses only positive letters such that
∥V ′′

j ∥ = ∥Uj∥ and V ′′

j has maximum and minimum elements and V ′′

j (max(V ′′

j ))=

aα′′

j ,d(Uj )−1 = V ′′

j (min(V ′′

j )) and V ′′

j is α′′

j -pure. If Uj+1 does not begin with an
αj -pure subword then let V ′′

j = E . Let Vj = V ′

j V ′′

j .

We know for each n ∈ ω that Un , V ′
n and V ′′

n are each reduced. By how V ′
n was

selected, we know that UnV ′
n is reduced since any cancellation would need to pair

letters in V ′
n with those in Un , and Un does not end in an αj -pure word. Similarly,

UnV ′
nV ′′

n ≡ UnVn is reduced.

As ∥UnVn∥ ≤
1
2n we know the expression

∏
n∈ω UnVn ≡ U0V0U1V1 · · · is a word.

By construction each of the words
∏m

n=0 UnVn is reduced, and therefore the word
U ≡

∏
n∈ω UnVn is reduced. We note as well that by how V ′

n and V ′′
n were chosen

we can write p*(U ) ≡
∏

n∈ω p*(Un) p*(Vn), and 1 ≤ |p*(Vn)| ≤ 2. Let ι be the
function ι=

⋃
j∈ω ιj . By Lemma 3.6 (iii) the domain of ι is close in p*(W ) and the

range of ι is close in U , and thus we may write coi(W, ι,U ). We will show that
{coi(Wx , ιx ,Ux)}x∈X ∪{coi(Wi , ιj ,Uj )}j∈ω∪{coi(W, ι,U )} is coherent, from which
it will immediately follow that {coi(Wx , ιx ,Ux)}x∈X ∪ {coi(W, ι,U )} is coherent.

Suppose that y ∈ X ∪ ω, 30 ⊆ p*(W ) and 31 ⊆ p*(Wy) are intervals and
i ∈{−1, 1} are such that W ↾p30 ≡ (Wy ↾p31)

i . If the set {n ∈ω | In∩30 ̸=∅} is infi-
nite, then by the fact that30 is an interval there exist m ∈ω and intervals I ′

m, I ′′
m ⊆ Im ,

with I ′
m possibly empty, such that Im ≡ I ′

m I ′′
m and 30 ≡ I ′′

m
∏

∞

n=m+1 In . Certainly
(Wy ↾p31)

i
∈Pfine({Wx}x∈X ∪{Wn}n∈ω), and since Wn ∈Pfine({Wx}x∈X ) for each n
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we have in fact that Pfine({Wx}x∈X ∪ {Wn}n∈ω) = Pfine({Wx}x∈X ). Therefore we
have W ↾p30 ≡ (Wy ↾p31)

i
∈ Pfine({Wx}x∈X ). But also

(∏m−1
n=0 Wn

)
W ↾p I ′

m ∈

Pfine({Wx}x∈X ). Thus W ≡
((∏m−1

n=0 Wn
)
W ↾p I ′

m
)
(W ↾p30) ∈ Pfine({Wx}x∈X ),

contrary to the assumptions of our lemma.
Thus we suppose that y ∈ X ∪ω, 30 ⊆ p*(W ) and 31 ⊆ p*(Wy) are intervals

and i ∈ {−1, 1} are such that W ↾p30 ≡ (Wy ↾p31)
i and know from this that the

set K = {n ∈ ω | In ∩ 30 ̸= ∅} is finite. If K = ∅ then 30 = ∅ = 31 and
[[U ↾p ∝(30, ι)]] = [[E]] = [[(Uy ↾p ∝(31, ιy))

i
]]. If K has cardinality 1 then we

let K = {m} and we can write Im ≡ I ′
m30 I ′′

m where either or both of I ′
m and I ′′

m may
be empty. Since {coi(Wx , ιx ,Ux)}x∈X ∪ {coi(Wj , ιj ,Uj )}j∈ω is coherent, we have

[[U ↾p ∝(30, ι)]] = [[Um ↾p ∝(3, ιm)]] = [[(Uy ↾p ∝(31, ιy))
i
]].

If K is of cardinality at least 2 then we let ma and mb be respectively the minimal and
maximal elements and write Ima ≡ I ′

ma
I ′′
ma

, Imb ≡ I ′
mb

I ′′
mb

(where either or both of I ′
ma

and I ′′
mb

may be empty) and30 ≡ I ′′
ma

Ima+1 · · · Imb−1 I ′
mb

. As W ↾p30 ≡ (Wy ↾p31)
i ,

there exist subintervals J0, . . . , Jmb−ma of 31 such that W ↾p Ij ≡ (Wy ↾p Jj − ma)
i

for ma < j <mb and W ↾p I ′′
ma

≡ (Wy ↾p J0)
i and W ↾p I ′

mb
≡ (Wy ↾p Jmb−ma )

i . Since
{coi(Wx , ιx ,Ux)}x∈X ∪ {coi(Wj , ιj ,Uj )}j∈ω is coherent, we have

[[U ↾p ∝(30, ι)]] = [[Uma ↾p ∝(I ′′

ma
, ιma )]][[Uma+1 ↾p ∝(Ima+1, ιma+1)]]

· · · [[Umb−1 ↾p ∝(Imb−1, ιmb−1)]][[U ↾p ∝(I ′

mb
, ιmb)]]

=

∏
j∈{0,...,mb−ma}i

[[(Uy ↾p ∝(Jj , ιy))
i
]]

= [[(Uy ∝(31, ιy))
i
]].

Suppose now that 30,31 ⊆ p*(W ) are intervals and i ∈ {−1, 1} are such that
W ↾p30 ≡ (W ↾p31)

i . Let K0 ={n ∈ω | In∩30 ̸=∅} and K1 ={n ∈ω | In∩31 ̸=∅}.

Case 1. K0 is infinite. In this case, if K1 is finite then W ↾p30 ∈ Pfine({Wx}x∈X ),
and we have already seen that this implies W ∈ Pfine({Wx}x∈X ) since K0 is infinite,
and this is a contradiction. Thus K1 must be infinite in this case. If i = −1 then
W ↾p30 ≡ (W ↾p31)

−1. As 30 and 31 are terminal intervals in p*(W ), let without
loss of generality 30 ⊆ 31 and set Q ≡ W ↾p30. Then W ↾p31 ≡ Q−1

≡ P Q
for nonempty Q and some possibly empty P . Then Q ≡ Q−1 P−1

≡ P Q P−1,
so P ≡ E , forcing 30 = 31. Then W ≡ AQ ≡ AQ−1 for a possibly empty A.
Write Q ≡ BCB−1 for nonempty cyclically reduced C . Then W W −1 has nonempty
reduced representative ABCCB−1 A−1, contradiction.

Therefore i = 1 and W ↾p30 ≡ W ↾p31, and both30 and31 are infinite terminal
intervals in p*(W ). If without loss of generality 31 is a proper subinterval of 30,
then since W ↾p30 ≡ W ↾p31 we can select a proper terminal subinterval 32 ⊆31

such that W ↾p31 ≡ W ↾p32, and inductively we select proper terminal subintervals
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3i+1 ⊆ 3i with W ↾p3i ≡ W ↾p3i+1. Thus, letting λ ∈ 30 \31 we see that the
nonempty W ↾p {λ} occurs infinitely often as a subword of W , so that W is not a
word, a contradiction. Thus 30 =31 and [[U ↾p ∝(30, ι)]] = [[(U ↾p ∝(31, ι)

i )]].

Case 2. K0 is finite. In this case we know that K1 is also finite (by applying the ar-
gument in Case 1, since W ↾p31 ≡ (W ↾p30)

i ). Thus W ↾p30 ∈ Pfine({Wn}n∈ω). If
K0 =∅ then so also K1 =∅=30 =31 and it is easy to see that [[U ↾p ∝(30, ι)]]=

[[E]] = [[(U ↾p ∝(31, ι))
i
]]. In case K0 ̸=∅, from the correspondence W ↾p30 ≡

(W ↾p31)
i we decompose 30 ≡ 2021 · · ·2m and 31 ≡ 2′

02
′

1 · · ·2′
m so that

W ↾p2j ≡ (W ↾p2′

f ( j))
i where

f ( j)=

{
j if i = 1,

m − j if i = −1,

and each2j is a subinterval of one of Imin(K0), . . . , Imax(K0) and each2′

j is a subinter-
val of one of Imin(K1), . . . , Imax(K1). Let f0 : {0, . . . ,m}→{min(K0), . . . ,max(K0)}

be the nondecreasing surjective function given by 2j ⊆ I f0( j), and also let f1 :

{0, . . . ,m} → {min(K1), . . . ,max(K1)} be given by 2′

j ⊆ I f1( j). We have

[[U ↾p ∝(30, ι)]] =

m∏
j=0

[[U f0( j) ↾p ∝(2j , ι f0( j))]]

=

m∏
j=0

[[(U f1( f ( j)) ↾p ∝(2 f ( j), ι f1( f ( j))))
i
]]

= [[(U ↾p ∝(31, ι))
i
]]

where the first and third equalities hold by performing a deletion of finitely many
pure words in Redκ1 (Lemma 3.13) and the second equality holds by the coherence
of the collection {coi(Wn, ιn,Un)}n∈ω. This completes case 2 and this part of the
argument.

Suppose y ∈ X∪ω, 30 ⊆p*(U ) and31 ⊆p*(Uy) are intervals and i ∈{−1, 1} are
such that U ↾p30 ≡ (Uy ↾p31)

i . Recalling that U ≡
∏

n∈ω(UnVn) and none of the
nonempty p-chunks of Vn are in Pfine({Ux}x∈X ∪{Un}n∈ω) we see that30 ⊆ p*(Un)

for some n ∈ω. From the coherence of {coi(Wn, ιn,Un)}n∈ω∪{coi(Wx , ιx ,Ux)}x∈X

it is easy to see that [[W ↾p ∝(30, ι
−1)] = [[(Wy ↾p ∝(31, ι

−1
y ))i ]].

Finally suppose intervals30,31 ⊆p*(U ) and i ∈{−1, 1} are such that U ↾p30 ≡

(U ↾p31)
i . Recall that U ≡

∏
n∈ω UnVn with

p*(U )≡

∏
n∈ω

p*(Un) p*(Vn)

and for all n ∈ω we have ∥Un∥ = ∥Vn∥ ≥ 2∥Un+1∥ and Vn uses only positive letters,
satisfies 1 ≤ |p*(Vn)| ≤ 2 and every nonempty p-chunk of Vn is not an element of
Pfine({Ux}x∈X ∪ {Un}n∈ω).
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If there exists λ ∈30 and n ∈ ω such that λ ∈ p*(Vn) then i = 1 since every pure
p-chunk of U which is not in Pfine({Ux}x∈X {Un}n∈ω) is a p-chunk in some Vm and
therefore has positive letters only. Furthermore the order isomorphism h :30 →31

induced by the word equivalence U ↾p30 ≡ U ↾p31 must have h(λ) = λ, for if
U ↾p {λ} is, say, α-pure, then U ↾p {λ} is the unique α-pure p-chunk of U which
has value ∥U ↾p {λ}∥ under the function ∥ · ∥. But this implies that h is the identity
function since if, say, λ′ <λ and h(λ′) < λ′, then λ′ < h−1(λ′) < h−2(λ′) < · · ·<λ

and so the word U ↾p30 has infinitely many disjoint occurrences of subwords
equivalent to U ↾p {λ′

}, which contradicts the fact that U is a word. Thus 30 =31

and obviously [[W ↾p ∝(30, ι
−1)]] = [[W ↾p ∝(31, ι

−1)]].
On the other hand if 30 ∩ p*(Vn)= ∅ for all n ∈ ω then 30 ⊆ p*(Um) for some

m ∈ω. Thus U ↾p30 ∈ Pfine({Ux}x∈X ∪{Un}n∈ω), so31 ∩p*(Vn)=∅ for all n ∈ω

as well. Thus 31 ⊆ p*(Um′) for some m′
∈ ω. Then

[[W ↾p ∝(30, ι
−1)]] = [[Wm ↾p ∝(30, ι

−1
m )]]

= [[(Wm′ ↾p ∝(31, ι
−1
m′ ))

i
]]

= [[(W ↾p ∝(31, ι
−1))i ]]

since Um ↾p30 ≡ Um′ ↾p31 and {coi(Wn, ιn,Un)}n∈ω is coherent. □

3F. Q-type concatenations. In this subsection we will devote our attention to
proving the following:

Proposition 3.21. Suppose that κ0 and κ1 are cardinal numbers greater than or
equal to 2. Suppose that {coi(Wx , ιx ,Ux)}x∈X is coherent, that p*(W )≡

∏
q∈Q Iq

with each Iq ̸= ∅, W ↾p Iq ∈ Pfine({Wx}x∈X ) for each q ∈ Q, and W ↾p
⋃
3 /∈

Pfine({Wx}x∈X ) for each interval 3⊆ Q with more than one point. Suppose also
that |X | < 2ℵ0 . Then there exists U ∈ Redκ1 and a coi ι from W to U such that
{coi(Wx , ιx ,Ux)}x∈X ∪ {coi(W, ι,U )} is coherent.

Proof. Let {Wn}n∈ω be a list such that for each q ∈ Q we have some n ∈ω for which
either W ↾p Iq ≡ Wn or W ↾p Iq ≡ W −1

n , and n ̸=n′ implies Wn ̸≡ Wn′ ̸≡ W −1
n . Notice

that indeed such a list must be infinite, for otherwise there is some q ′
∈ Q such that

{q ∈ Q | W ↾p Iq ≡ W ↾p Iq ′} is infinite, which contradicts the fact that W is a word.
By assumption, {Wn}n∈ω ⊆ Pfine({Wx}x∈X ). Select P0 ∈ Redκ1 and a coi ι0 from
W0 to P0 with nonempty domain such that {coi(Wx , ιx ,Ux)}x∈X ∪{coi(W0, ι0, P0)}

is coherent by Lemma 3.17. Assuming we have chosen Pn and ιn we select Pn+1 ∈

Redκ1 and a coi ιn+1 from Wn+1 to Pn+1 such that ∥Pn+1∥ ≤
1
2∥Pn∥, the domain of

ιn+1 is nonempty, and {coi(Wx , ιx ,Ux)}x∈X ∪ {coi(Wj , ιj , Pj )}
n+1
j=0 is coherent by

Lemmas 3.17 and 3.18. The collection {coi(Wx , ιx ,Ux)}x∈X ∪{coi(Wn, ιn, Pn)}n∈ω

is coherent by Lemma 3.12.
For each m ∈ ω select ordinals αm,b, αm,c < κ1 such that Pm does not begin

with an initial subword which is αm,b-pure and Pm does not end with a terminal
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subword which is αm,c-pure. By Lemma 3.19 we select an αm,b-pure word Vm,b

which uses only positive letters such that ∥Vm,b∥ = ∥Pm∥, and Vm,b(max(Vm,b))=

aαm,b,d(Pm)+1 = Vm,b(min(Vm,b)) and Vm,b /∈ Pfine({Ux∈X }x∈X ∪ {Pn}n∈ω). Sim-
ilarly select an αm,c-pure word Vm,c which uses only positive letters such that
∥Vm,c∥ = ∥Pm∥, and Vm,c(max(Vm,c)) = aαm,c,d(Pm)+1 = Vm,c(min(Vm,c)) and
Vm,c /∈ Pfine({Ux∈X }x∈X ∪ {Pn}n∈ω).

Define functions f0 : Q → ω and f1 : Q → {±1} by W ↾p Iq ≡ W f1(q)
f0(q) . For each

m ∈ ω the preimage f −1
0 (m) is nonempty (by how the list {Wn}n∈ω was chosen)

and finite (since W is a word). For each q ∈ Q let Uq ≡ (Vf0(q),b Pf0(q)Vf0(q),c)
f1(q)

and U ≡
∏

q∈Q Uq . Notice that this is a word since for each real number ϵ > 0 the
set {q ∈ Q | ∥Uq∥ ≥ ϵ} is finite. It is easy to see that each Uq is reduced and that
moreover p*(P

f1(q)
f0(q) ) is a subinterval of p*(Uq) and |p*(Uq) \ p*(P

f1(q)
f0(q) )| = 2.

Lemma 3.22. U is reduced.

Proof. For each n ∈ ω we let Jn =
{
q ∈ Q | ∥Uq∥ =

1
n+1

}
. We see that each Jn is

finite since U is a word. For any cancellation S on U we define Ln(S) to be the set
of those q ∈ Jn for which there exists i ∈ Uq which occurs in some ordered pair
in S. Define L ′

n(S)⊆ Ln(S) to be the set of all q ∈ Ln(S) for which there exists
a unique q ′

∈ Ln(S) such that S pairs each element in Uq with an element in Uq ′

and each element in Uq ′ with an element in Uq . Our strategy will be to assume for
contradiction that a nonempty cancellation over U exists and then to inductively
modify the cancellation into a cancellation which witnesses a cancellation over W ,
contradicting the reducedness of W .

Suppose that S0 is a nonempty cancellation over U and let n0 be minimal such
that Ln0(S) ̸= ∅. If Ln0(S0)= L ′

n0
(S0) then we write S1 = S0 and move on to the

next step of our induction. If Ln0(S0) ̸= L ′
n0
(S0) then we write Ln0(S0)\ L ′

n0
(S0)=

{q0, . . . , qk} with qr < qr+1 under the ordering on Q. Define a relation E on
Ln0(S0) \ L ′

n0
(S0) by writing E(qr0, qr1), where qr0, qr1 ∈ Ln0(S0) \ L ′

n0
(S0), if

there exist i0 ∈ Uqr0
and i1 ∈ Uqr1

such that ⟨i0, i1⟩ ∈ S0. Since each Uq is reduced
we see that E(qr , qr ) is false for all 0 ≤ r ≤ k. Also, E(qr0, qr1) implies that
qr0 < qr1 since ⟨i0, i1⟩ ∈ S0 implies i0 < i1 in U . By how each Uq is defined,
we see that Uq(min(Uq)) = Uq(max(Uq)) ∈ {a±1

αn0 ,n0
} for each q ∈ Ln0(S0). For

q ′
∈

⋃
n>n0

Ln(S0) we have ∥Uq ′∥ < 1/(n0 + 1). Since Uq is reduced for each
q ∈ Ln0(S0), we see that for each q ∈ Ln0(S0) at least one of max(Uq) or min(Uq)

must appear in some element of S0. Moreover, by how L ′
n(S0) is defined, for each

q ∈ Ln0(S0) \ L ′
n0
(S0) at least one of max(Uq) or min(Uq) must appear in S0 and

be paired with some element in Uq ′ for some q ′
∈ Ln0(S0) \ (L ′

n0
(S0)∪ {q}).

Thus we see that each q ∈ Ln0(S0) \ L ′
n1
(S0) must appear as a first or second

coordinate in the relation E . Notice as well that if E(qr0, qr1) and E(qr2, qr3) where
qr0 < qr2 ≤ qr1 then qr0 < qr2 < qr3 ≤ qr1 by property (4) of cancellations (see
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Definition 2.3). Similarly if E(qr0, qr1) and E(qr2, qr3) hold and qr0 ≤ qr3 < qr1 then
we have qr0 ≤ qr2 < qr3 < qr1 . Since the set Ln0(S0)\ L ′

n1
(S0) is finite, we therefore

have some 0 ≤ r < k such that E(qr , qr+1). Again, since Uqr and Uqr+1 are each
reduced we must have ⟨max(Uqr ),min(Uqr+1)⟩ ∈ S0. Thus Uqr ≡ (Uqr+1)

−1 and we
let f : Uqr → Uqr+1 be an order reversing bijection with Uqr+1( f (i))= (Uqr (i))

−1

witnessing this equivalence.
We let S(1)0 be given by

S(1)0 = {⟨i0, i1⟩ ∈ S0 | i0, i1 /∈ Uqr ∪ Uqr+1}

∪ {⟨i0, f (i0)⟩ | i0 ∈ Uqr }

∪ {⟨i0, i1⟩ ∈ U × U | (∃i2 ∈ Uqr ) ⟨i0, i2⟩, ⟨ f (i2), i1⟩ ∈ S0}

∪ {⟨i0, i1⟩ ∈ U × U | (∃i2 ∈ Uqr ) ⟨i1, i2⟩, ⟨i0, f (i2)⟩ ∈ S0}

∪ {⟨i0, i1⟩ ∈ U × U | (∃i2 ∈ Uqr ) ⟨i2, i1⟩, ⟨ f (i2), i0⟩ ∈ S0}.

It is straightforward to see that S(1)0 is a cancellation and Ln(S(1)0 ) ⊆ Ln(S0) for
all n ∈ ω. But also L ′

n0
(S(1)0 ) = L ′

n0
(S0) ⊔ {qr , qr+1}. Iterating the argument

to produce S(2)0 , S(3)0 , etc. so as to make L ′
n0
(S( j+1)

0 ) strictly include L ′
n0
(S( j)

0 )

and have Ln0(S
( j+1)
0 )⊆ Ln0(S

( j)
0 ), we see, since Ln0(S0) is finite, that eventually

L ′
n0
(S( j)

0 )= Ln0(S
( j)
0 ). Set S1 = S( j)

0 for sufficiently large j .
Notice that S1 does not pair any element of Uq with Uq ′ when q ∈ Ln0(S1)

and q ′ /∈ Ln0(S1). Letting n1 ∈ ω be minimal such that n1 > n0 and Ln1(S1) ̸= ∅
(an n > n0 with Ln(S1) ̸= ∅ must exist since Q is order dense), we may thus
repeat the arguments as before to create S2 such that Ln1(S2)= L ′

n1
(S2) and also

S2 agrees with S1 on Ln0(S1) = Ln0(S2). Select n2 > n1 which is minimal such
that Ln2(S2) ̸= ∅, produce S3, and continue this process inductively. Let S∞ equal{
⟨i0, i1⟩ | (∃p ∈ ω) i0, i1 ∈

⋃
q∈Lnp

Uq and ⟨i0, i1⟩ ∈ Sp+1
}

and we have that S∞ is
a cancellation such that Ln(S∞)= L ′

n(S∞) for all n ∈ ω and S∞ ̸= ∅.
But now let S ′

= {⟨q0, q1⟩ | ∃(i0 ∈ Uq0, i1 ∈ Uq1) ⟨i0, i1⟩ ∈ S∞} and notice that
S ′ is a pairing of a subset of elements in Q that satisfies the comparable properties
(1)–(4) of Definition 2.3, and ⟨q0, q1⟩ ∈ S ′ implies that Uq0 ≡ (Uq1)

−1. Then
Wq0 ≡ (Wq1)

−1 for ⟨q0, q1⟩ ∈ S ′ and it is easy to use S ′ to define a nonempty
cancellation S on W , and we have a contradiction. □

Now that we know that U is reduced, it is easy to see that

p*(U )≡

∏
q∈Q

p*(Uq)≡

∏
q∈Q

(p*(Vf0(q),b) p*(Pf0(q)) p*(Vf0(q),c))
f1(q).

Using the collection {coi(Wn, ιn, Pn)}n∈ω we define the coi ι from W to U in the
natural way. Namely, let Tq denote the subword W ↾p Iq , and recall that W f1(q)

f0(q) ≡ Tq

and Uq ≡ (Vf0(q)Pf0(q)Vf0(q))
f1(q). Let g : p*(P

f1(q)
f0(q) ) → p*(Uq) denote the order

embedding given by this last equivalence, and ιq be the function whose domain
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dom(ιq) is the image of dom(ι f0(q)) under the order isomorphism f : p*(W
f1(q)

f0(q) )→

p*(Wq), whose image lies in p*(Uq) and such that ιq(i)= g ◦ ι f0(q) ◦ f −1(i).
Notice that ιq is an order isomorphism between its domain and image since ι f0(q)

is order preserving and exactly one of the following holds:

• f is an order isomorphism between p*(Tq) and p*(W f0(q)) and g is an order
embedding from p*(Pf0(q)) to p*(Uq).

• f gives an order reversing bijection between p*(Tq) and p*(W f0(q)) and g gives
an order reversing embedding from p*(Pf0(q)) to p*(Uq).

Since Close(dom(ιn), p*(Wn)), the relation Close(dom(ιq), p*(Tq)) is easily
seen to hold. Also, since |p*(Vf0(q),b)| = 1 = |p*(Vf0(q),c)|, we easily see that
Close(im(ιq), p*(Uq)). Let ι be the order isomorphism given by ι=

⋃
q∈Q ιq . By

Lemma 3.6 (iii) we have Close(dom(ι), p*(W )) and Close(im(ι), p*(Uq)), so ι is a
coi from W to U . We check the coherence of

{coi(Wx , ιx ,Ux)}x∈X ∪ {coi(Wn, ιn, Pn)}n∈ω ∪ {coi(W, ι,U )},

which will imply the coherence of {coi(Wx , ιx ,Ux)}x∈X ∪ {coi(W, ι,U )}.
Suppose that x0 ∈ X ∪ ω, 30 ⊆ p*(W ) and 31 ⊆ p*(Wx0) are intervals, and

i ∈ {−1, 1} are such that W ↾p30 ≡ (Wx0 ↾p31)
i . Notice that30 must be a subinter-

val of some p*(Tq) since Q is order dense, W ↾p3 /∈Pfine({Wx}x∈X ) for each interval
3⊆ Q with more than one point and (Wx0 ↾p31)

i
∈ Pfine({Wx}x∈X ∪ {Wn}n∈ω)=

Pfine({Wx}x∈X ). But letting f : p*(W
f1(q)

f0(q) )→ p*(Tq) be the natural order isomor-
phism and 3′

0 ⊆ p*(W
f1(q)

f0(q) ) be the interval given by f −1(30), it is easy to see
that

[[U ↾p ∝(30, ι)]] = [[(Pf0(q) ↾p ∝(3′

0, ι f0(q)))
f1(q)]] = [[(Ux0 ↾p ∝(31, ιx0))

i
]]

by how the function ιq was defined (for the first equality) and the coherence of
{coi(Wx , ιx ,Ux)}x∈X ∪ {coi(Wn, ιn, Pn)}n∈ω (for the second equality).

Next, suppose that 30,31 ⊆ p*(W ) are intervals and i ∈ {−1, 1} are such that
W ↾p30 ≡ (W ↾p31)

i . Let J0 = {q ∈ Q | p*(Tq) ∩30 ̸= ∅} and J1 = {q ∈ Q |

p*(Tq)∩31 ̸=∅}. Clearly each of J0 and J1 are intervals in Q. If, say, J0 is empty
or a singleton then W ↾p30 ∈ Pfine({Wx}x∈X ), and so J1 is not infinite (since we
are assuming W ↾p3 /∈ Pfine({Wx}x∈X ) for each interval 3 ⊆ Q with more than
one point). Similarly if J1 is empty or a singleton then J0 is finite (hence a singleton
or empty). In case J0 is finite we can argue as before, using the coherence of the
collection {coi(Wn, ιn, Pn)}n∈ω to obtain [[U ↾p ∝(30, ι)]] = [[(U ↾p ∝(31, ι))

i
]].

Suppose now that J0 (and therefore also J1) is infinite. Since J0 is order dense
and W ↾p3 /∈ Pfine({Wx}x∈X ) for each interval 3⊆ Q with more than one point,
we notice that J0 has a minimum if and only if the word W ↾p30 has a nonempty
initial subword which is an element of Pfine({Wx}x∈X ). Also, if J0 has minimum q
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then W ↾p (p*(Wq)∩30) is the maximal initial subword of W ↾p30 which is an
element in Pfine({Wx}x∈X ). Similarly J0 has a maximum if and only if the word
W ↾p30 has a nonempty terminal subword which is an element of Pfine({Wx}x∈X ),
and if J0 has maximum q then W ↾p (p*(Wq)∩30) is the maximal terminal subword
of W ↾p30 which is an element in Pfine({Wx}x∈X ). Let J ′

0 ⊆ J0 be the subinterval
which consists of J0 minus any maximum or minimum that J0 might have. By
similar reasoning, we see that for each q ∈ J ′

0 the subword Tq is a maximal subword
of W ↾p30 which is an element of Pfine({Wx}x∈X ).

The comparable claims hold for J1; for example J1 has a minimum if and
only if the word W ↾p31 has a nonempty initial subword which is an element of
Pfine({Wx}x∈X ), and if q ∈ J1 is minimal then W ↾p (p*(Tq)∩31) is the maximal
initial subword of W ↾p31 which is an element in Pfine({Wx}x∈X ). Define the
interval J ′

1 ⊆ J1 similarly. As W ↾p30 ≡ (W ↾p31)
i , we see that if i = 1:

• J0 has a minimum if and only if J1 has one.

• J0 has a maximum if and only if J1 has one.

• If q0 = min(J0) and q1 = min(J1), W ↾p (30 ∩p*(Tq0))≡ W ↾p (31 ∩p*(Tq1)).

• If q0 = max(J0) and q1 = max(J1), W ↾p (30 ∩p*(Tq0))≡ W ↾p (31 ∩p*(Tq1)).

• There is an order isomorphism h : J ′

0 → J ′

1 such that Wh(q) ≡ Wg.

Now if i = −1:

• J0 has a minimum if and only if J1 has a maximum.

• J0 has a maximum if and only if J1 has a minimum.

• If q0 =min(J0) and q1 =max(J1), W ↾p(30∩p*(Tq0))≡
(
W ↾p(31∩p*(Tq1))

)−1.

• If q0 =max(J0) and q1 =min(J1), W ↾p(30∩p*(Tq0))≡
(
W ↾p(31∩p*(Tq1))

)−1.

• There is an order reversing bijection h : J ′

0 → J ′

1 such that Th(q) ≡ (Tq)
−1.

From this and how the ιq were defined it is clear that

U ↾p ∝

( ⋃
q∈J ′

0

p*(Tq), ι

)
≡

(
U ↾p ∝

( ⋃
q∈J ′

1

p*(Tq), ι

))i

.

Now suppose, for example, i = −1 and J0 has maximum and minimum. Let
K ≡ U ↾p ∝

(⋃
q∈J ′

0
p*(Tq), ι

)
. By Lemma 3.13 we have that [[U ↾p ∝(30, ι)]] is

equal to

[[U ↾p ∝(30 ∩ p*(Tmin(J0)), ι)]][[K ]][[U ↾p ∝(30 ∩ p*(Tmax(J0)), ι)]]

and that [[(U ↾p ∝(31, ι))
−1

]] is equal to

[[(U ↾p (31 ∩ p*(Tmax(J1)), ι))
−1

]][[K ]][[(U ↾p ∝(31 ∩ p*(Tmin(J1)), ι))
−1

]].
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Since the coi collection {coi(Wn, ιn, Pn)}n∈ω is coherent we also have the equalities

[[U ↾p ∝(30 ∩ p*(Tmin(J0)), ι)]] = [[(U ↾p ∝(31 ∩ p*(Tmax(J1)), ι))
−1

]]

and

[[U ↾p ∝(30 ∩ p*(Tmax(J0)), ι)]] = [[(U ↾p ∝(31 ∩ p*(Tmin(J1)), ι))
−1

]].

Thus [[U ↾p ∝(30, ι)]] = [[(U ↾p ∝(31, ι))
−1

]] by direct substitution. All other
possibilities can be similarly argued.

Suppose that x0 ∈ X and30 ⊆ p*(U ), 31 ⊆ p*(Ux0) are intervals and i ∈ {−1, 1}

are such that U ↾p30 ≡ (Ux0 ↾p31)
i . As (Ux0 ↾p31)

i
∈ Pfine({Ux}x∈X ∪ {Pn}n∈ω),

and Vm,b, Vm,c /∈ Pfine({Ux}x∈X ∪ {Pn}n∈ω) for all m ∈ ω we see that 30 must be
a subinterval of some p*(Uq), and more particularly a subinterval of p*(P

f1(q)
f0(q) ).

By how ιq was defined, and since {coi(Wx , ιx ,Ux)}x∈X ∪ {coi(Wn, ιn, Pn)}n∈ω is
coherent it follows that

[[W ↾p ∝(30, ι
−1)]] = [[(Wx0 ↾p ∝(31, ι

−1
x0
))i ]].

If n0 ∈ ω and 30 ⊆ p*(U ), 31 ⊆ p*(Pn0) are intervals and i ∈ {−1, 1} are such
that U ↾p30 ≡ (Pn0 ↾p31)

i then the same argument shows that

[[W ↾p ∝(30, ι
−1)]] = [[(Wn0 ↾p ∝(31, ι

−1
n0
))i ]].

Finally, suppose that intervals 30,31 ⊆ p*(U ) and i ∈ {−1, 1} are such that
U ↾p30 ≡ (U ↾p31)

i . As before we define

J0 = {q ∈ Q | p*(Uq)∩30 ̸= ∅}, J1 = {q ∈ Q | p*(Uq)∩31 ̸= ∅}.

Once again, the cases where J0, hence also J1, is empty or a singleton are treated
the same. We therefore assume that both J0 and J1 are infinite. One sees that
J0 has a minimum if and only if U ↾p30 has a nonempty initial subword which
is a pure p-chunk (i.e., a word V ±1

m,b or V ±1
m,c for some m ∈ ω) or which is in

Pfine({Ux}x∈X ∪ {Pn}n∈ω), and not both since the words Vm,b and Vm,c were not in
Pfine({Ux}x∈X ∪ {Pn}n∈ω). In either case, J0 has a minimum if and only if there is
an element λ∈30 for which U ↾p {λ} /∈ Pfine({Ux}x∈X ∪{Pn}n∈ω) which is minimal.
Similar such statements for maxima and J1 apply. Thus we see that when i = 1,
J0 has a minimum if and only if J1 has one, and J0 has a maximum if and only if
J1 has one. When i = −1 the comparable dual statements hold. Let J ′

0 be the set
J0 minus any maximal or minimal element and define J ′

1 analogously. For each
q ∈ J ′

0 (or q ∈ J ′

1) we have that U f1(q)
f0(q) is a maximal subword of U which is in

Pfine({Ux}x∈X ∪ {Pn}n∈ω), and each of V f1(q)
f0(q),b and V f1(q)

f0(q),c is a maximal p-chunk
of U all of whose nonempty p-chunks are not in Pfine({Ux}x∈X ∪ {Pn}n∈ω).

In particular, U ↾p
⋃

q∈J ′

0
p*(Uq) is the word obtained from U by removing an

initial pure p-chunk (if it exists) and then removing an initial nonempty p-chunk
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which is an element of Pfine({Ux}x∈X ∪ {Pn}n∈ω) (if it exists) and then removing
an initial pure p-chunk (if step two applies) and doing the similar three-step process
to the terminal part of the word U . Hence it is clear that U ↾p

⋃
q∈J ′

0
p*(Uq) ≡

(U ↾p
⋃

q∈J ′

1
p*(Uq))

i . Moreover this word equality will pair maximal intervals
3⊆

⋃
q∈J ′

0
p*(Uq) for which U ↾p3∈Pfine({Ux}x∈X ∪{Pn}n∈ω)with such intervals

in
⋃

q∈J ′

1
p*(Uq), and for such a 3 we’ll have U ↾p3≡ P±1

n for some n ∈ ω. As
Pn ̸≡ Pn′ ̸≡ P−1

n when n ̸= n′ we have a bijection h : J ′

0 → J ′

1 which is an
order isomorphism in case i = 1, or an order reversal in case i = −1, such that
Uh(q) ≡ (Uq)

i once again. Thus we get

W ↾p ∝

( ⋃
q∈J ′

0

p*(Uq), ι
−1

)
≡

(
W ↾p ∝

( ⋃
q∈J ′

1

p*(Uq), ι
−1

))i

.

Thus for example, if i = −1 and J0 has maximum and minimum then we let
K ≡ W ↾p ∝

(⋃
q∈J ′

0
p*(Uq), ι

−1
)
. Then [[W ↾p ∝(30, ι

−1)]] is equal to the product

[[W ↾p ∝(30 ∩ p*(Umin(J0)), ι
−1)]][[K ]][[W ↾p ∝(30 ∩ p*(Umax(J0)), ι

−1)]]

by Lemma 3.13. By the same reasoning we have that [[(W ↾p ∝(31, ι
−1))−1

]] is
equal to

[[(W ↾p ∝(31∩p*(Umax(J1)), ι
−1))−1

]][[K ]][[(W ↾p ∝(31∩p*(Umin(J1)), ι
−1))−1

]].

By coherence we get that

[[W ↾p ∝(30 ∩ p*(Umin(J0)), ι
−1)]] = [[(W ↾p ∝(31 ∩ p*(Umax(J1)), ι

−1))−1
]],

and similarly

[[W ↾p ∝(30 ∩ p*(Umax(J0)), ι
−1)]] = [[(W ↾p ∝(31 ∩ p*(Umin(J1)), ι

−1))−1
]],

and so the equality [[W ↾p ∝(30, ι
−1)]]= [[(W ↾p ∝(31, ι

−1))−1
]] is immediate. □

3G. Arbitrary extensions. In this subsection we will prove the following proposi-
tion and then complete the proof of Theorem A as well as prove Theorem B.

Proposition 3.23. Suppose that κ0 and κ1 are cardinal numbers greater than or
equal to 2. Suppose that {coi(Wx , ιx ,Ux)}x∈X is coherent and that |X | < 2ℵ0 .
Then given W ∈ Redκ0 there exists U ∈ Redκ1 and a coi ι from W to U such that
{coi(Wx , ιx ,Ux)}x∈X ∪ {coi(W, ι,U )} is coherent.

Proof. Assume the hypotheses. If W is the empty word E then we let U ≡ E
and ι be the empty function. This clearly satisfies the conclusion of the proposition.
Thus we may now assume that W is not E and so p*(W ) is nonempty. For each
λ ∈ p*(W ) we let ιλ be the empty function, so ιλ is a coi from W ↾p {λ} to E . It
is quite trivial to see that T0 = {coi(Wx , ιx ,Ux)}x∈X ∪{coi(W ↾p {λ}, ιλ, E)}λ∈p*(W )
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is coherent. Let ≺ be a well-order on the set p*(W ) and if T is a collection of
cois then we let h(T ) denote the set of first words listed in the ordered triples (for
example h(T0)= {Wx}x∈X ∪ {W ↾p {λ}}λ∈p*(W )).

Step 1. Define a function f0 from an initial subset of the set ℵ1 of countable
ordinals to p*(W ), as well as a function f1 with the same domain as f0 and with
codomain the set of two letters {L , R} and f2 a function with the same domain
as f0 and with codomain the set of intervals in p*(W ). We shall also extend the
coi collection. If each λ ∈ p*(W ) is contained in a maximal interval I ⊆ p*(W )

such that W ↾p I ∈ h(Tζ ) then we cease our construction of step 1 and proceed to
step 2. If it is not the case that each λ ∈ p*(W ) is contained in a maximal interval
I ⊆ p*(W ) such that W ↾p I ∈ h(Tζ ) then we select a minimal such λ under the
well-ordering ≺ and let f0(ζ )= λ. Note that it is possible that each singleton {λ} is
already maximal such that W ↾p {λ} ∈ h(T0). At least one of two possibilities holds:

Case i. If there is a sequence {Im}m∈ω such that λ = min(Im) and Im is strictly
included in Im+1 for all m ∈ ω with W ↾p Im ∈ Pfine(h(Tζ )) but W ↾p

⋃
m∈ω Im /∈

Pfine(h(Tζ )), then we let f1(ζ )= L (for Left endpoint) and f2(ζ )=
⋃

m∈ω Im . By
Proposition 3.20 we select Uζ ∈ Redκ1 and a coi ιζ from W ↾p f2(ζ ) to Uζ such that
Tζ+1 = Tζ ∪ {coi(W ↾p f2(ζ ), ιζ ,Uζ )} is coherent.

Case ii. If such a sequence as in case i does not exist then there exists a sequence
{Im}m∈ω such that λ = max(Im) and Im is strictly included in Im+1 for all m ∈ ω

with W ↾p Im ∈ Pfine(h(Tζ )), but W ↾p
⋃

m∈ω Im /∈ Pfine(h(Tζ )). In this case we let
f1(ζ )= R (for Right endpoint) and f2(ζ )=

⋃
m∈ω Im . By Proposition 3.20 applied

to the word W −1 we select Uζ ∈ Redκ1 and a coi ιζ from W ↾p f2(ζ ) to Uζ such
that Tζ+1 = Tζ ∪ {coi(W ↾p f2(ζ ), ιζ ,Uζ )} is coherent.

Iterating this recursion and letting Tζ =
⋃
ζ0<ζ

Tζ0 when ζ is a limit ordinal, we
define the functions f0, f1, f2 over an increasingly large initial segment of ℵ1. We
claim, however, that this recursion must terminate at some stage, and thus move
us into step 2. If, otherwise, the recursion does not terminate, then the functions
f0, f1, f2 are defined on all of ℵ1. Since the codomains, p*(W ) and {L , R}, of
f0 and f1 are countable, there exists some λ ∈ p*(W ) and, say, R ∈ {L , R}, and
uncountable J ⊆ℵ1 such that f0(J )={λ} and f1(J )={R}. Suppose that ζ0, ζ1 ∈ J
are such that ζ0<ζ1. Then by construction, at step ζ1 we see that f2(ζ1) is an interval
in p*(W ) with right endpoint λ which is larger than any interval I in p*(W ) with
λ= max(I ) and W ↾p I ∈ Pfine(h(Tζ1)). As W ↾p f2(ζ0)∈ Pfine(Tζ0+1)⊆ Pfine(Tζ1)

we get that f2(ζ0) is strictly included into f2(ζ1). But as J is well ordered under
the restriction of the order on ℵ1 we let s(ζ ) denote the successor of ζ ∈ J in J
and select λζ ∈ f2(s(ζ )) \ f2(ζ ), giving us an injection from the uncountable set J
to the countable set p*(W ), contradiction.

Step 2. From step 1 we obtain a coherent collection Tζ of cois, with |Tζ | < 2ℵ0 ,
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and each λ ∈ p*(W ) includes into a maximal interval Iλ ⊆ p*(W ) with respect
to the property that W ↾p Iλ ∈ Pfine(h(Tζ )). Note that it is possible that Iλ = {λ}

for each λ ∈ p*(W ). The collection 3 of all such maximal intervals has a natural
induced ordering and is necessarily order dense, for if there existed distinct Iλ and
Iλ′ between which there are no elements in 3 then the word W ↾p Iλ ∪ Iλ′ would
be in Pfine(h(Tζ )), contradicting maximality. As W is not the empty word we
know that 3 ̸= ∅. If 3 is a singleton then 3= {p*(W )}, so W ∈ Pfine(Tζ ), so by
Lemma 3.17 select U ∈ Redκ1 and ι such that Tζ ∪ {coi(W, ι,U )} is coherent.

If 3 is not a singleton let 3′ be the interval in 3 which excludes min(3) and
max(3) if either or both exist. If 3′ is not empty then it is order isomorphic to Q,
and in either case by Proposition 3.21 we may add, if necessary, a single coi triple
to Tζ to obtain a coherent collection T ′

ζ such that W ↾p
(⋃

3′
)
∈ Pfine(h(T ′

ζ )). Next,
since W ↾p min(3),W ↾p max(3) ∈ Pfine(h(T ′

ζ )) if either of min(3) or max(3)
exists, we have that W ∈ Pfine(h(T ′

ζ )) as W is the concatenation of one or two or
three words in Pfine(h(T ′

ζ )). By Lemma 3.17 we select U ∈ Redκ1 and a coi ι such
that T ′

ζ ∪{coi(W, ι,U )} is coherent. Then {coi(Wx , ιx ,Ux)}x∈X ∪{coi(W, ι,U )} is
coherent and our proposition is proved. □

Proof of Theorem A. Let κ be a cardinal such that 2 ≤ κ ≤ 2ℵ0 . It is easy to see
from Theorem 2.11 that |Red2| = |Redκ | = 2ℵ0 . Thus we let ≺ well-order Red2

in such a way that each element has fewer than 2ℵ0 predecessors. Similarly let ≺
′

well-order Redκ in such a way that each element has fewer than 2ℵ0 predecessors.
We inductively define a coherent collection {coi(Wζ , ιζ ,Uζ )}ζ<2ℵ0 of coi triples
from Red2 to Redκ .

Recall that each ordinal ζ may be written uniquely as an ordinal sum ζ = β+ m
where β is either 0 or a limit ordinal and m ∈ ω, and so ζ can be considered even
or odd depending on the parity of m. Select a word W0 ∈ Red2 minimal under ≺

and by Proposition 3.23 select U0 ∈ Redκ and a coi ι0 such that {coi(W0, ι0,U0)}

is coherent. Suppose that we have defined coherent {coi(Wζ , ιζ ,Uζ )}ζ<µ for all
µ < ν < 2ℵ0 . By Lemma 3.12 we know {coi(Wζ , ιζ ,Uζ )}ζ<ν is coherent. If ν
is even then by Lemma 3.19 we select a word Wν /∈ Pfine({Wζ }ζ<ν) which is
minimal under ≺ and by Proposition 3.23 select Uν ∈ Redκ and a coi ιν such
that {coi(Wζ , ιζ ,Uζ )}ζ<ν+1 is coherent (using κ0 = 2 and κ1 = κ). Similarly if
ν is odd then by Lemma 3.19 we select a word Uν /∈ Pfine({Uζ }ζ<ν) which is
minimal under ≺

′ and by Proposition 3.23 select Wν ∈ Redκ and a coi ιν such that
{coi(Wζ , ιζ ,Uζ )}ζ<ν+1 is coherent (using κ0 = κ and κ1 = 2).

Notice that Pfine({Wζ }ζ<2ℵ0 ) = Red2 and Pfine({Uζ }ζ<2ℵ0 ) = Redκ . Thus by
Proposition 3.16 we have an isomorphism 8 : C2 → Cκ . □

We will derive Theorem B as a consequence of Theorem A. Instead of defining
the notions of elementary equivalence and elementary subsumption, we will trust
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the reader to know these concepts or to look them up. We will rely on the following
classical result.

Lemma 3.24. Suppose U0 is a submodel of U1 such that for every a0, . . . , an−1 ∈U0

and a ∈ U1 there exists an automorphism φ : U1 → U1 such that φ(ai )= ai for all
i < n and φ(a) ∈ U0. Then U0 is an elementary submodel of U1.

Proof of Theorem B. Certainly if γ = κ or if 2 ≤ γ ≤ κ ≤ 2ℵ0 then we have Cγ ≃ Cκ
(using Theorem A in the second case) and the isomorphism is an elementary
embedding. We may therefore assume that 2ℵ0 ≤ γ < κ , for the result will follow
for 2 ≤ γ < 2ℵ0 < κ as well by the fact that Cγ ≃ C2ℵ0 in this case.

The map ψγ,κ : Cγ → Cκ given by [[W ]] 7→ [[W ]] is easily seen to be an injection
and we consider Cγ as the substructure of Cκ consisting of those [[W ]] which have
a representative utilizing only letters with first coordinate less than γ . Any bijection
f : κ → κ induces a bijection Ff :Aκ →Aκ given by a±1

α,n 7→ a±1
f (α),n which induces

a bijection F f : Wκ → Wκ given by W 7→
∏

i∈W Ff (W (i)). This F f induces an
automorphism θ f : Redκ → Redκ given by W 7→ F f (W ) which descends to an
automorphism θ f : Cκ → Cκ .

Lemma 3.25. Suppose γ ≤ κ with γ uncountable. If X ⊆ Cγ and Y ⊆ Cκ with
|X |, |Y | < γ there exists a bijection f : κ → κ such that θ f (x) = x for all x ∈ X
and θ f (Y )⊆ Cγ .

Proof. Assume the hypotheses. For each x ∈ X fix a representative Wx ∈ x such that
proj0(W )⊆ γ . For each y ∈ Y fix a representative Wy . Since each set proj0(Wx)

is at most countable, the set
⋃

x∈X proj0(Wx) is of cardinality at most ℵ0 · |X |.
Similarly the set

⋃
y∈Y proj0(Wy) is of cardinality at most ℵ0 · |Y |.

Since γ is uncountable,
⋃

x∈X proj0(Wx)⊆ γ is of cardinality less than γ and⋃
y∈Y proj0(Wy) ⊆ κ is also of cardinality less than γ , we can easily select a

bijection f : κ → κ which fixes the elements in
⋃

x∈X proj0(Wx) and such that
f
(⋃

y∈Y proj0(Wy)
)
⊆ γ . The automorphism θ f satisfies the desired properties. □

The proof of Theorem B is now complete by appealing to Lemma 3.24. □

Note that the map f 7→ θ f gives a homomorphic injection from the full symmetric
group on the set κ , Sκ , to the automorphism group Aut(π1(GSκ)). Since π1(GS2)≃

π1(GS2ℵ0 ) we immediately get the following, which is not obvious a priori:

Corollary 3.26. The group Aut(π1(GS2)) includes a subgroup isomorphic to the
full symmetric group S2ℵ0 on a set of size continuum.
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