
Pacific
Journal of
Mathematics

Volume 327 No. 2 December 2023



PACIFIC JOURNAL OF MATHEMATICS
Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

msp.org/pjm

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Matthias Aschenbrenner
Fakultät für Mathematik

Universität Wien
Vienna, Austria

matthias.aschenbrenner@univie.ac.at

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Atsushi Ichino
Department of Mathematics

Kyoto University
Kyoto 606-8502, Japan

atsushi.ichino@gmail.com

Robert Lipshitz
Department of Mathematics

University of Oregon
Eugene, OR 97403

lipshitz@uoregon.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Dimitri Shlyakhtenko
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

shlyakht@ipam.ucla.edu

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Ruixiang Zhang
Department of Mathematics

University of California
Berkeley, CA 94720-3840

ruixiang@berkeley.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2023 is US $605/year for the electronic version, and $820/year for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 1945-5844 electronic, 0030-8730 printed) at the University of California, c/o Department
of Mathematics, 798 Evans Hall #3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at
Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O.
Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2023 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:blasius@math.ucla.edu
mailto:matthias.aschenbrenner@univie.ac.at
mailto:balmer@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:atsushi.ichino@gmail.com
mailto:lipshitz@uoregon.edu
mailto:liu@math.ucla.edu
mailto:shlyakht@ipam.ucla.edu
mailto:yang@math.princeton.edu
mailto:ruixiang@berkeley.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://apps.isiknowledge.com
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS
Vol. 327, No. 2, 2023

https://doi.org/10.2140/pjm.2023.327.183

CO-HOPFIAN AND BOUNDEDLY ENDO-RIGID
MIXED ABELIAN GROUPS

MOHSEN ASGHARZADEH, MOHAMMAD GOLSHANI AND SAHARON SHELAH

For a given cardinal λ and a torsion abelian group K of cardinality less
than λ, we present, under some mild conditions (for example, λ = λℵ0),
boundedly endo-rigid abelian group G of cardinality λ with tor(G) = K.
Essentially, we give a complete characterization of such pairs (K, λ). Among
other things, we use a twofold version of the black box. We present an
application of the construction of boundedly endo-rigid abelian groups.
Namely, we turn to the existence problem of co-Hopfian abelian groups of
a given size, and present some new classes of them, mainly in the case of
mixed abelian groups. In particular, we give useful criteria to detect when a
boundedly endo-rigid abelian group is co-Hopfian and completely determine
cardinals λ > 2ℵ0 for which there is a co-Hopfian abelian group of size λ.
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1. Introduction

By a torsion (resp. torsion-free) group we mean an abelian group such that all its
nonzero elements are of finite (resp. infinite) order. A mixed group G contains
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both nonzero elements of finite order and elements of infinite order, and these are
connected via the celebrated short exact sequence

(∗) 0 → tor(G) → G →
G

tor(G)
→ 0.

Despite the importance of (∗), there are series of questions concerning how to glue
the issues from torsion and torsion-free parts and put them together to check the
desired properties for mixed groups.

Reinhold Baer [2; 3] was interested to find an interplay between abelian groups
and rings. In this regard, he raised the following general problem:

Problem 1.1. Which ring can be the endomorphism ring of a given abelian group G?

There are a lot of interesting research papers and books that study this problem,
see, for example, [11; 16]. According to Fuchs [15], for mixed groups, only very
little can be said. As an achievement, we cite the works of Corner and Göbel [8]
and Franzen and Goldsmith [12].

For any group G, by E f (G) we mean the ideal of End(G) consisting of all
elements of End(G) whose image is finitely generated. Corner [7] has constructed
an abelian group G := (M, +), for some ring R and an R-module M , such that
any of its endomorphisms is of the form multiplication by some r ∈ R plus a
distinguished function from E f (G). One can allow such a distinguished function
ranges over other classes such as finite-range, countable-range, inessential range
or even small homomorphism, and there are a lot of work trying to clarify such
situations. As a short list, we may mention Corner and Göbel [8], Dugas and
Göbel [10], Corner [7], Thomé [30] and Pierce [21].

Here, by a bounded group, we mean a group G such that nG = 0 for some fixed
0 < n ∈ N. By a theorem of Baer and Prüfer, a bounded group is a direct sum
of cyclic groups. The converse is not true. However, there is a partial converse
for countable p-groups. For more details, see Fuchs [15]. A homomorphism
h ∈ G1 → G2 of abelian groups is called bounded if Rang(h) is bounded.

Definition 1.2. An abelian group G is boundedly rigid when every endomorphism
of it has the form µn + h, where µn is multiplication by n ∈ Z and h has bounded
range. By Eb(G) we mean the ideal of End(G) consisting of all elements of End(G)

whose image is bounded.

Let us explain some motivation. The concept of a rigid system of torsion-free
groups has a natural analogue for the class of separable p-primary groups: a family
{Gi : i ∈ I } of separable p-primary groups is called rigid-like if for all i ̸= j ∈ I
every homomorphism Gi → G j is small, and also for all i ∈ I , every endomorphism
of Gi is the sum of a small endomorphism and multiplication by a p-adic integer.
Shelah [23] confirmed a conjecture of Pierce [21] by showing that if µ is an
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uncountable strong limit cardinal, then there is a rigid-like system {Gi : i ∈ I } of
separable p-primary groups such that |Gi | = µ and |I | = 2µ, see also [25] for more
results in this direction.

Let us now state our main results. Section 2 contains the preliminaries, basic
definitions and notations that we need. The reader may skip it, and come back to it
when needed later. In Section 3, and as a main result, we prove the following.

Theorem 1.3. Given a cardinal λ such that λ = λℵ0 > 2ℵ0 and a torsion group K of
cardinality less than λ, there is a boundedly rigid abelian group G of cardinality λ

with tor(G) = K.

To prove this, we introduce a series of definitions and present several claims.
The first one is the rigidity context, denoted by k, see Definition 3.1. Also, the
main technical tool is a variation of “Shelah’s black box”, and we refer to it as
twofold black box. For its definition (resp. its existence), see Definition 3.13 (resp.
Lemma 3.15). It may be worth to mention that the black boxes were introduced
by Shelah in [26], where he showed that they follow from ZFC (here, ZFC means
the Zermelo–Fraenkel set theory with the axiom of choice). We can consider black
boxes as general methods to generate a class of diamond-like principles provable
in ZFC. Then, we continue by introducing the approximation blocks, denoted by AP,
see Definition 3.18 for more precise definition. There is a distinguished object c
in AP that we call it full. The twofold black box helps us to find such distinguished
objects, see Lemma 3.30. Here, one may define the group G := Gc. Let h ∈ End(G).
In order to show that h is boundedly rigid, we apply a couple of reductions (see
Lemmas 3.35–3.43), to reduce to the case that h factors throughout G → tor(G).
Finally, in Lemma 3.31 we handle this case, by showing that any map G → tor(G)

is indeed boundedly rigid.
In the course of the proof of Theorem 1.3, we develop a general method which

allows us to prove that 0 → Z → End(G) →
End(G)
Eb(G)

→ 0 is exact, and also enables
us to present a connection to Problem 1.1. In order to display the connection, let R
be a ring coming from the rigidity context. For the propose of the introduction, we
may assume that (R, +) is cotorsion-free, see Definition 2.8 (with the convenience
that the argument becomes easier if we work with R := Z, or even (R, +) is ℵ1-free).
Following our construction, every endomorphism of G has the form µr + h, where
µr is a multiplication by r ∈ R and h has bounded range, i.e., the sequence

0 → R → End(G) →
End(G)

Eb(G)
→ 0

is exact.

Definition 1.4. A group G is called Hopfian (resp. co-Hopfian) if its surjective
(resp. injective) endomorphisms are automorphisms.
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Essentially, we give complete characterization of the pairs (K , λ) by relating our
work with the recent works of Paolini and Shelah, see [19; 20]. To this end, first
we recall the following folklore problem:

Problem 1.5. Construct co-Hopfian groups of a given size.

Baer [4] was the first to investigate Problem 1.5 for abelian groups. A torsion-free
abelian group is co-Hopfian if and only if it is divisible of finite rank, and hence the
problem naturally reduces to the torsion and mixed cases. Beaumont and Pierce [5]
proved that if G is co-Hopfian, then tor(G) is of size at most continuum, and further
that G cannot be a p-groups of size ℵ0. This naturally left open the problem of the
existence of co-Hopfian p-groups of uncountable size ≤ 2ℵ0 , which was later solved
by Crawley [9] who proved that there exist co-Hopfian p-groups of size 2ℵ0 . Braun
and Strüngmann [6] showed that the existence of three types of infinite abelian
p-groups of size ℵ0 < |G| < 2ℵ0 are independent of ZFC:

(a) Both Hopfian and co-Hopfian.

(b) Hopfian but not co-Hopfian.

(c) Co-Hopfian but not Hopfian.

Also, they proved that the above three types of groups of size 2ℵ0 exist in ZFC. So,
in light of Theorem 1.3, the remaining part is 2ℵ0 < λ < λℵ0 . Very recently, and
among other things, Paolini and Shelah [19] proved that there is no co-Hopfian
group of size λ for such a λ. As an application, in Section 4, we determine cardinals
λ > 2ℵ0 for which there is a co-Hopfian group of size λ. For the precise statement,
see Corollary 4.13.

Let us recall a connection between the concepts boundedly endo-rigid groups
and (co-)Hopfian groups. First, recall from the seminal paper [22], for any λ less
than the first beautiful cardinal, Shelah proved that there is an endo-rigid torsion-
free group of cardinality λ. By definition, for any f ∈ End(G) there is m f ∈ Z

such that f (x) = m f x . So, f is onto if and only if m f = ±1. In other words, G
is Hopfian. This naturally motives us to detect co-Hopfian property by the help
of some boundedly endo-rigid groups. This is what we want to do in Section 4.
Namely, our first result on co-Hopfian groups is stated as follows.

Construction 1.6. Let K := ⊕
{

Z
pnZ

: p ∈ P and 1 ≤ n < m
}
, where m < ω, and P

is the set of prime numbers. Let G be a boundedly endo-rigid abelian group such
that tor(G) = K. Then G is co-Hopfian.

We may recall from Theorem 1.3 that such a group exists for any λ = λℵ0 > 2ℵ0 .
In fact, the size of G is λ.

Let h be a natural number. One of the tools that we use is the h-power torsion
subgroup of G:

0h(G) := {g ∈ G : ∃n ∈ N such that hng = 0}.
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The assignment G 7→ 0h(G) defines a functor from the category of abelian groups
to itself. It may be worth to mention that, in the style of Grothendieck, this is called
section functor and some authors use Torh(−) to denote it.

In our study of the co-Hopfian property of G, the following subset of prime
numbers appears:

SG := {p ∈ P : G/0p(G) is not p-divisible}.

The set SG helps us to present a useful criterion to detect when a boundedly endo-
rigid abelian group is co-Hopfian:

Proposition 1.7. Assume λ > 2ℵ0 and G is a boundedly endo-rigid abelian group
of size λ. Then G is co-Hopfian if and only if :

(a) SG is a nonempty set of primes.

(b) (b1) 0p(G) ̸= G.
(b2) If p ∈ SG , then 0p(G) is not bounded.
(b3) If 0p(G) is bounded, then it is finite.

Let G be an abelian group. In order to show that G is (not) co-Hopfian, and also
to see a connection to bounded morphisms, we introduce a useful set NQr(m,n)(G)

consisting of those bounded h ∈ End(0n(G)) such that

(1) h′
:= m · id0n(G) +h ∈ End(0n(G)) is 1-to-1,

(2) h′ is not onto or m > 1 and G/0n(G) is not m-divisible.

In a series of nontrivial cases we check NQr(m,n)(G) and its negation. This enables
us to present some new classes of co-Hopfian and non-co-Hopfian groups (see
below, items 4.4–4.11).

See Eklof and Mekler [11] and Göbel and Trlifaj [16] for all unexplained defini-
tions from set theoretic algebra. Also, for unexplained definitions from the group
theory, see the books of Fuchs [13; 14; 15].

2. Preliminaries

In this paper all groups are abelian, otherwise specialized. In this section we recall
some basic definitions and facts that will be used in the later sections of the paper.

Definition 2.1. An abelian group G is called ℵ1-free if every countable subgroup
of G is free. More generally, an abelian group G is called λ-free if every subgroup
of G of cardinality < λ is free.

Definition 2.2. Let κ be a regular cardinal. An abelian group G is said to be
strongly κ-free if there is a set S of < κ-generated free subgroups of G containing 0
such that for any subset S of G of cardinality < κ and any N ∈ S, there is an L ∈ S
such that S ∪ N ⊂ L and L/N is free.
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A group G is pure in an abelian group H if G ⊆ H and nG = nH ∩ G for every
n ∈ Z. The common notation for this notion is G ⊆∗ H .

Fact 2.3. Suppose G is a torsion-free group. Then the intersection of pure subgroups
of G is again pure. In particular, for every S ⊂ G, there exists a minimal pure
subgroup of G containing S. The common notation for this subgroup is ⟨S⟩

∗

G .

Fact 2.4 (see [17, Theorem 7]). Let G be an abelian group and H a pure and
bounded subgroup of G. Then H is a direct summand of G.

The notation tor(G) stands for the full torsion subgroup of G. There is a natural
connection with the functor TorZ

1 (−, ∼):

tor(G) = TorZ
1 (Q/Z, G).

Fact 2.5 (see [17, Theorem 8]). Let G be an abelian group and T ⊆∗ tor(G). If T
is the direct sum of a divisible group and a group of bounded exponent, then T is a
direct summand of G. The same result holds if T ⊆∗ G.

Fact 2.6 (see [5]). (i) Let G be a countable p-group. Then G is co-Hopfian if and
only if G is finite.

(ii) If a group G is co-Hopfian, then tor(G) is of size at most continuum, and further
that G cannot be a p-groups of size ℵ0.

Fact 2.7 (see [13, Theorem 17.2]). If G is a p-group of bounded exponent, then G
is a direct sum of (finitely many, up to isomorphism) finite cyclic groups.

Definition 2.8. (i) An abelian group G is called cotorsion if Ext(J, G) = 0 for
all torsion-free abelian groups J .

(ii) An abelian group G is called cotorsion-free if it has no nonzero co-torsion
subgroup.

In other words, G is cotorsion provided that it is a direct summand of every
abelian group H containing G with the property that H/G is torsion-free. Here,
we recall a useful source to produce a cotorsion-free group:

Fact 2.9 (see [11, Corollary 2.10(ii)]). Any ℵ1-free group is cotorsion-free.

The p-torsion parts of a group G are important sources to produce pure subgroups.

Notation 2.10. Let P denote the set of all prime numbers.

(i) Let p ∈ P. The p-power torsion subgroup of G is

0p(G) := {g ∈ G : ∃n ∈ N such that png = 0}.

(ii) For each 1 ≤ m < ω, we let 0m(G) :=
⊕

{0p(G) : p | m}.
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Recall that the assignment G 7→ 0h(G) defines a functor from the category of
abelian groups to itself, which is also called section functor. It has the following
important property. Suppose f : G → H is a homomorphism of abelian groups.
Then the following diagram of natural short exact sequences is commutative:

0 // 0h(H)
⊆
// H // H/0h(H) // 0

0 // 0h(G)

f ↾

OO

⊆
// G

f

OO

// G/0h(H) //

f̄

OO

0

where f̄ (g + 0h(G)) := f (g) + 0h(H).
The connection from p-power torsion functors and the classical torsion functor

is read as
TorZ

1 (Q/Z, G) = tor(G) =

⊕
p∈P

0p(G).

Notation 2.11. In this paper, by End(−) we mean EndZ(−) where (−) is at least
an abelian group, otherwise we specify it.

The following notion of boundedness plays an important role in establishing the
main theorems.

Definition 2.12. Let G be an abelian group of size λ. We say G is boundedly endo-
rigid when for every f ∈ End(G) there is m ∈ Z such that the map x 7→ f (x)−mx
has bounded range.

The next fact follows from the definition.

Fact 2.13. An abelian group G is boundedly endo-rigid if and only if for every
f ∈ End(G) there is m ∈ Z and bounded h ∈ End(G) such that f (x) = mx + h(x).

Fact 2.14. Let K be a bounded torsion abelian group and let G ⊆∗ H. There is
h ∈ Hom(H, K ) extending g if g ∈ Hom(G, K ). This property is conveniently
summarized by the subjoined diagram:

0 // G
⊆∗
//

g
��

H

∃h~~

K

Fact 2.15. Let G be abelian group and suppose that G is not bounded, then the
bounded endomorphisms of G (i.e., those f ∈ End(G) with bounded range) form
an ideal of the ring End(G), we denote this ideal by Eb(G). With respect to this ter-
minology, G is boundedly rigid if and only if the quotient ring End(G)/ Eb(G) ∼= Z.
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Remark 2.16. Recall that torsion subgroups are pure. Let f be a bounded endo-
morphism of tor(G). By Fact 2.14, we have

0 // tor(G)
⊆∗
//

f
��

G

∃h||

tor(G)

Let f̂ : G h
−→ tor(G)

⊆
−→ G. In sum, f extends to an endomorphisms f̂ of G with

the same range:

tor(G)

⊆

��

f
// tor(G)

⊆

��

G
f̂

// G

Hence, the notion of boundedly rigid is really the right notion of endo-rigidity for
mixed groups (for G torsion-free abelian group, we say that G is endo-rigid when
End(G) ∼= Z). For instance, we look at

K =

⊕{
Z

pℓ+1 Z
: ℓ < m

}
for some m < ω, and recall that this has many bounded endomorphisms. The same
will happen for any G extending it.

In what follows we will use the concept of reduced group several times. Let us
recall its definition.

Definition 2.17. Let G be an abelian group.

(a) G is called reduced if it contains no divisible subgroup other than 0.

(b) G is called injective if for any inclusion G1 ⊆ G2 of abelian groups, any
morphism f : G1 → G can be extended into G2:

0 // G1
⊆
//

f
��

G2

∃h
}}

G

Fact 2.18 (see [15]). An abelian group G is divisible if and only if it is injective.

Here, we recall a connection between reduced and co-torsion-free abelian groups.

Fact 2.19 (see [11, Theorem V.2.9]). An abelian group G is cotorsion-free if and
only if it is reduced and torsion-free and does not contain a subgroup isomorphic
to Ẑp for any prime p.
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Recall that Ẑp means completion of Z in the p-adic topology. Here, we collect
more basic facts about injective groups that we need:

Discussion 2.20. Let p ∈ P be a prime number.

(i) (See [11, page 11].) By the structure theorem for an injective abelian group I ,
we mean the following decomposition:

I =

⊕
p∈P

Z(p∞)⊕x p ⊕ Q⊕x ,

where x p and x are index sets.

(ii) (See [18, Theorem 3.7].) Let p, q ∈ P0 := P ∪ {0} and set Z(0∞) := Q. Then

Hom(Z(p∞), Z(q∞)) =

{
Ẑp if p = q,

0, otherwise,

with the convenience that Ẑ0 = Q.

(iii) Combining (i) and (ii) we get the following well-known formula:

End(I ) =

∏
p∈P0

Ẑ
⊕x p
p ,

where x0 := x .

3. The ZFC construction of boundedly rigid mixed groups

In this section we show that for any cardinal λ = λℵ0 > 2ℵ0 and any torsion abelian
group K of size less than λ, there exists a boundedly rigid abelian group G with
tor(G) = K , see Theorem 3.11.

To this end, we define the notion of rigidity context k which in particular codes
a torsion group K , and assign to it a collection of objects m, which among other
things have a group G with tor(G) = K. We show that under the above assumptions
on λ and K , we can always find such an m that the associated group G is boundedly
rigid.

Definition 3.1. (1) We say a tuple k is a rigidity context when

k = (Kk, Rk, φ
k
r , 9k

r,s, 9
k
(r,s), Sk)r,s∈Rk = (K , R, φr , 9r,s, 9(r,s), S)r,s∈R,

where:

(a) K is a reduced torsion abelian group.

(b) R is a ring.

(c) S is a set of prime numbers, S⊥

k =P\S is its complement, and R is S⊥

k -divisible.
This means that R is divisible for any p ∈ S⊥

k .

(d) For r ∈ R, the map φr ∈ End(K ) has bounded range.
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(e) If r, s ∈ R, then 9r,s = φr + φs − φr+s ∈ End(K ).

(f) If r, s ∈ R, then 9(r,s) ∈ End(K ) has bounded range and, letting t = rs, for
x ∈ K we have

9(r,s)(x) = φr (φs(x)) − φt(x).

(2) We say k is nontrivial when for some prime p ∈ Sk the p-torsion 0p(K ) is
infinite, or the set

{p ∈ Sk : 0p(K ) ̸= 0}

is infinite.

(3) By Zk we mean the subring of Q generated by {1} ∪
{ 1

p : p ∈ S⊥

k
}
.

Observation 3.2. Suppose (Rk, +) is cotorsion-free as an abelian group. Then
Sk ̸= ∅.

Proof. Suppose on the way of contradiction that Sk = ∅. In other words, S⊥

k is
the set of prime numbers. By Definition 3.1(1)(c), R is S⊥

k -divisible. This means
that Q ⊆ Rk. It turns out from Fact 2.19 that (Rk, +) is not cotorsion-free, a
contradiction. □

Definition 3.3. Let k be a rigidity context. By Mk we mean the family of all tuples:

m = (km, Gm, F m
r , F m

r,s, F m
(r,s))r,s∈Rkm = (k, G, Fr , Fr,s, F(r,s))r,s∈Rk ,

where:

(a) G is an abelian group.

(b) tor(G) = Kk.

(c) For r ∈ Rk, Fr is an endomorphism of G extending φk
r :

K

⊆

��

φr
// K

⊆

��

G
Fr

// G

(d) For r, s ∈ Rk, Fr,s ∈ End(G) extends 9r, s:

K

⊆

��

9r,s
// K

⊆

��

G
Fr,s

// G

and they have the same range Fr,s[G] = 9r,s[K ].
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(e) For r, s ∈ Rk, F(r,s) ∈ End(G) extends 9k
(r,s):

K

⊆

��

9(r,s)
// K

⊆

��

G
F(r,s)

// G

and thereby they have the same range F(r,s)[G] = 9(r,s)[K ].

(f) If r, s, t ∈ R and t = r + s, then for x ∈ G,

Fr,s(x) = Fr (x) + Fs(x) − Ft(x),

(g) If r, s, t ∈ R and t = rs, then for x ∈ G,

F(r,s)(x) = Fr (Fs(x)) − Ft(x).

Definition 3.4. Adopt the previous notation, and let

M =

⋃
{Mk : k is a rigidity context}.

(1) We define ≤M as the partial order on M. Namely, m ≤M n if and only if
(a) m, n ∈ M,
(b) km = kn,
(c) Gm ⊆ Gn,
(d) F m

r ⊆ Fn
r .

(2) By ≤Mk we mean ≤M ↾Mk.

Notation 3.5. Let r ∈ R and x ∈ Gm. By r x we mean r x := F m
r (x) ∈ Gm.

Definition 3.6. Suppose k is a rigidity context and m ∈ Mk.

(1) We say m is boundedly rigid when for every f ∈ End(Gm) there are r ∈ R
and h ∈ Endb(Gm)1 and

x ∈ Gm =⇒ f (x) = r x + h(x).

(2) We say m is free when it has a base B which means that the set {x +Kk : x ∈ B}

is a free base of the abelian group Gm/K.

(3) We say m is λ-free when Gm/K is.

(4) We say m is strongly λ-free when Gm/K is.

(5) Let Mm be the R-module obtained by expanding Gm/K such that for x, y ∈ Gm
and r ∈ R

r x + K = y + K ⇐⇒ F m
r (x) = y.

The next easy lemma shows that Mm as defined above is well defined.

1so, h has a bounded range.
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Lemma 3.7. Suppose k is a rigidity context and m ∈ Mk. Then Mm can be turn to
an R-module structure.

Proof. Since Mm is an expansion of Gm/K , it is an abelian group. Let r ∈ R and
m := g + K ∈ Mm where g ∈ G. The assignment

(r, m) 7→ rm := F m
r (g) + K ∈ Gm/K = Mm

defines the desired module structure on Mm. □

Lemma 3.8. Suppose k is a rigidity context and m ∈ Mk. Then:

(1) Suppose Rk = Z (so, S⊥

k = ∅). Then m is boundedly rigid if and only if Gm is
boundedly rigid.

(2) Let Rk = Zk (see Definition 3.1(3)). Then m is boundedly rigid if and only if
Gm is boundedly rigid.

(3) If φk
r is zero for every r ∈ R, then Gm is an R-module.

Proof. (1) and (2) are trivial and follow from the definitions.

(3) For each x ∈ Gm and r ∈ R, we set r x := F m
r (x). It is straightforward to furnish

the following three properties.

• The identity r(x + y) = r x + r y follows from Definition 3.1(1)(c).

• The equality (r + s)x = r x + sx follows from Definition 3.1(1)(d).

• The equality r(sm) = (rs)m follows from (e) and (f) of Definition 3.1(1).

From these, Gm is equipped with an R-module structure. □

In what follows, the notation lg(−) stands for the length function.

Definition 3.9. Let α ∈ Ord.

(1) By 3ω[α] we mean{
η : lg(η)=ω and η(n)= (η(n,1), η(n,2)) for η(n,1)≤η(n,2)<η(n+1,1)<α

}
.

(2) For each η ∈ 3ω[α], we let j(η) =
⋃

{η(n, 1) : n < ω}.

(3) 3<ω[α] := {⟨ ⟩} ∪
⋃

k<ω3k[α], where 3k[α] is the set of all η furnished with
the properties:

(a) lg(η) = k + 1.

(b) η(k) < α.

(c) For any ℓ < k we suppose η(ℓ) is furnished with a pairing property in the
sense that:

(i) η(ℓ) = (η(ℓ, 1), η(ℓ, 2)), where η(ℓ, 1) ≤ η(ℓ, 2) < α.
(ii) Additionally, let ℓ+1< k, we may and do assume that η(ℓ, 2)<η(ℓ+1, 1).
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(d) If ℓ < k, then η(ℓ, 1) = η(ℓ, 2) ⇔ ℓ = 0.

(4) 3[α] := 3ω[α] ∪3<ω[α].

(5) For any η ∈ 3[α] and k + 1 < lg(η), we set

(a) η ↾L k := ⟨(η(ℓ, 1), η(ℓ, 2)) : ℓ < k⟩
⌢
⟨η(k, 1)⟩ and

(b) η ↾R k := ⟨(η(ℓ, 1), η(ℓ, 2)) : ℓ < k⟩
⌢
⟨η(k, 2)⟩.

Note that η ↾L k and η ↾R k belong to 3k+1[α].

(6) We say 3 ⊆ 3[α] is downward closed while for each η ∈ 3 and k + 1 < lg(η)

we have η ↾L k, η ↾R k ∈ 3.

We next define when a subset of 3ω[α] is free.

Definition 3.10. Suppose α ∈ Ord and 3 ⊆ 3ω[α].

(1) We say 3 is free whenever there is a function h : λ → ω such that the sequence

⟨{η↾Ln, η↾R n : h(η) ≤ n < ω} : η ∈ 3⟩

is a sequence of pairwise disjoint sets.

(2) We say 3 is µ-free when every 3′
⊆ 3 of cardinality < µ is free.

We can now state the main result of this section.

Theorem 3.11. Let λ = λℵ0 > 2ℵ0 . Let k be a nontrivial rigidity context such that
K := Kk and R := Rk are of cardinality ≤ λ. Then there exists an abelian group G
such that tor(G) = K and G is boundedly rigid. In particular, the sequence

0 → R → End(G) →
End(G)

Eb(G)
→ 0

is exact.

The rest of this section is devoted to the proof of the above theorem.

Definition 3.12. For any ordinal γ , a sequence η ∈ 3[λ] and a family 3 ⊆ 3[λ],
we define:

(1) Sγ is the closure of ω ∪ γ under finite subsets, so including finite sequences.

(2) γ (η) = η(0, 1).

(3) 3γ = {η ∈ 3 : γ (η) < γ }.

(4) We set 3<ω = 3 ∩ 3<ω[α] and 3ω = 3 ∩ 3ω[α].

In order to prove Theorem 3.11, we need a twofold version of the black box,
that we now introduce. On simple black boxes, see [24; 27; 28]. The presentation
here is a special case of the n-fold λ-black box from [29], when n = 2.

Definition 3.13. We say b is a twofold λ-black box when it consists of:

(1) ḡ = ⟨gη : η ∈ 3ω[λ]⟩, where gη is a function from ω into Sλ.
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(2) Suppose g : 3<ω[λ] → Sλ is a function and f : 3<ω[λ] → γ where γ < λ.
Then, for some η ∈ 3ω[λ],
(a) γ (η) > γ ,
(b) gη(0) = g(⟨ ⟩),
(c) gη(n + 1) =

(
g(η ↾L n), g(η ↾R n)

)
,

(d) η(n, 1) < η(n, 2) and f (η ↾L n) = f (η ↾R n) for all 1 ≤ n < ω.

Hypothesis 3.14. For the rest of this section we adopt the following hypotheses,
otherwise specializes:

• λ = λℵ0 > 2ℵ0 .

• k is a rigidity context as in Definition 3.1.

• K = Kk and R = Rk are of cardinality < λ. Without loss of generality, we
may assume that the set of elements of K and R are subsets of λ.

• (R, +) is cotorsion-free.

• b is a twofold λ-black box.

The following result was proved in [29, Lemma 1.14], with a setting more general
than here. As this plays a crucial ingredient, we sketch its proof.

Lemma 3.15. There exists a twofold λ-black box.

Proof. For notational simplicity, we set S := Sλ, and look at the fixed partition of λ

into λ-many sets, each of cardinality λ:

⟨Ws1,s2 : s1, s2 ∈ S⟩.

For each η ∈ 3ω[λ], we define gη(n) ∈ S, by induction on n < ω.
To start, set

(∗1) gη(0) = s ⇐⇒ η(0, 1) = η(0, 2) ∈ Ws,s .

Now suppose that n <ω and gη ↾ (n+1) is defined. We are going to define gη(n+1).
It is enough to note that

(∗2) gη(n + 1) = (s1, s2) ⇐⇒ η(n + 1, 1) ∈ Ws1,s2 .

We show that ḡ =⟨gη : η ∈3ω[λ]⟩ is as required. Suppose that g :3<ω[λ]→ Sλ is a
function and f : 3<ω[λ] → γ where γ < λ. We define η ∈ 3ω[λ], by defining η(n),
by induction on n.

Let η(0) := ⟨η(0, 1), η(0, 2)⟩, where

(∗3) γ < η(0, 1) = η(0, 2) ∈ Wg(⟨ ⟩),g(⟨ ⟩).

Now, suppose that n < ω and we have defined η ↾ n + 1. We define

η(n + 1) = ⟨η(n + 1, 1), η(n + 1, 2)⟩.
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Set

(a) s1 := g(η ↾L n),

(b) s2 := g(η ↾R n), and

(c) cn : Ws1,s2 → γ is defined via the assignment

(+) cn(α) := f
(
(η ↾ n + 1)⌢⟨α⟩

)
.

As γ < λ and Ws1,s2 has size λ, we can find an unbounded subset Wn of Ws1,s2 such
that cn ↾ Wn is constant. Let η(n + 1, 1) < η(n + 1, 2) be such that

(∗4) η(n, 2) < η(n + 1, 1), η(n + 1, 2) ∈ Wn ⊆ Wg(η↾L n),g(η↾Rn).

We claim that the η we constructed as above, satisfies the required conditions of
Definition 3.13(2). Indeed, thanks to our construction, γ (η) = η(0, 1) > γ . We
also have

gη(0) = g(⟨ ⟩) ⇐⇒ η(0, 1) = η(0, 2) ∈ Wg(⟨ ⟩),g(⟨ ⟩),

which is true by (∗3). We also have

gη(n + 1) =
(
g(η ↾L n), g(η ↾R n)

)
⇐⇒ η(n + 1, 1) ∈ Wg(η↾L n),g(η↾Rn),

which is again true by (∗4). Finally note that, clearly f (η ↾L 1) = f (η ↾R 1), and
for all n,

f (η ↾L n + 2) = f (η ↾ n + 1⌢
⟨η(n + 1, 1)⟩)

(+)
= cn(η(n + 1, 1))

(∗4)
= cn(η(n + 1, 2))

(+)
= f (η ↾ n + 1⌢

⟨η(n + 1, 2)⟩) = f (η ↾R n + 2).

The lemma follows. □

Assuming hypotheses beyond ZFC, we can get stronger versions of twofold
λ-black box (see again [29]).

Observation 3.16. Assume λ = cf(λ) ≥ ℵ1. Let

S ⊆ {α < λ : cf(α) = ℵ0}

be a stationary and nonreflecting subset of λ such that the principle ♢S holds. Then
there is a λ-free twofold λ-black box b such that 3b = {ηδ : δ ∈ S} and j(ηδ) = δ

for every δ ∈ S.

Recall that Jensen’s diamond principle ♢S is a kind of prediction principle whose
truth is independent of ZFC. The point in the above proof is that if 3b = {ηδ : δ ∈ S}

and j(ηδ) = δ for every δ ∈ S, then as S does not reflect, the set 3b is λ-free.
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Remark 3.17. Recall from [6] that a (co-)Hopfian group of size λ = 2ℵ0 exists
in ZFC. We can also deal with the case of λ = 2ℵ0 , but all is known in this case, so
we just concentrate on the case λ = λℵ0 > 2ℵ0 .

Definition 3.18. Let AP := APk,λ be the set of all quintuples

c = (3c, mc, 0c, X c, ⟨ac
η,n : η ∈ 3c, n < ω⟩)

such that:

(a) 3c ⊆ 3[λ] is downward closed.

(b) mc ∈ Mk. We may write Gc, Mc instead of Gmc, Mmc respectively, etc.

(c) X c is the set

{r xν : r ∈ R, ν ∈ 3c,<ω} ∪ {r yη,n : r ∈ R, η ∈ 3c,ω, n < ω}.

(d) Gc is generated, as an abelian group, by the sets K and X c. The relations
presented in (f), see below.

(e) For any ordinal α, let Gc,α be the subgroup of Gc generated by the set K and

{r xν : r ∈ R, ν ∈ 3c,<ω ∩ 3[α]} ∪ {r yρ,n : r ∈ R, ρ ∈ 3c,ω ∩ 3[α], n < ω}.

(f) Mc, as an R-module, is generated by X c∪K , freely except the following set 0c
of equations:

yη,n = ac
η,n + (n!) yη,n+1 + (xη↾L n − xη↾R n),

where ac
η,n ∈ Gc,η(0,1).

The following is clear:

Lemma 3.19. Suppose c ∈ APk,λ. Then Gc is of size λℵ0 .

Definition 3.20. For any c ∈ APk,λ, we define:

(1) γc := min{γ ≤ λ : 3c ⊆ 3[γ ]}.

(2) Let �c := 3c,<ω ∪ (3c,ω ×ω) and define ⟨xρ : ρ ∈ �c⟩ by the following rules:
(a) If ρ ∈ 3c,<ω, then xρ is defined as in Definition 3.18(c).
(b) If ρ = (η, n) ∈ 3c,ω × ω, we define xρ := yη,n .

(3) For b ∈ Gc choose the sequence

⟨rb,ℓ, ηb,ℓ, mb,ℓ : ℓ < nb⟩

such that
b −

∑
ℓ<nb

rb,ℓ yηb,ℓ,mb,ℓ
∈

∑
ρ∈3c,<ω

Rxρ + K ,

where rb,ℓ ∈ R \ {0} and (ηb,ℓ, mb,ℓ) ∈ 3c,ω × ω.

(4) By supp◦(b) we mean {ηb,ℓ : ℓ < nb}.
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Definition 3.21. Suppose c ∈ APk,λ and let a ∈ Gc.

(a) There is a finite set 3a ⊆3c, a sequence S := ⟨rρ :ρ ∈3a⟩ of nonzero elements
of R, an n(a) < ω and da ∈ K such that

a =

∑
η∈3a,<ω

rη xη +

∑
ν∈3a,ω

rν yν,n(a) + da,

where 3a,<ω = 3a ∩ 3c,<ω and 3a,ω = 3a ∩ 3c,ω.

(b) Let suppc(a)= supp(a) be the minimal set 3⊆3c with respect to the following
two properties:
(i) 3a ⊆ 3.

(ii) If ν ∈ 3a ∩ 3c,ω and n < ω, then 3ac
ν,n

⊂ 3 and η↾Ln, η↾R n ∈ 3.

Remark 3.22. Adopt the previous notation, and a ∈ Gc. Then suppc(a) is the
minimal set 3 ⊆ 3c such that

a ∈ ⟨{xη, yν,n : η ∈ 3(L , R), ν ∈ 3, n < ω} ∪ K ⟩
∗

Gc
.

Remark 3.23. Adopt the previous notation.

(1) The set suppc(a) is countable.

(2) If a = xν for some ν ∈ 3c, then

supp(a) \ Sη(ν,1) = {ν} ∪ {ν↾L , n, ν↾R, n : n < ω}.

Definition 3.24. Let ≤AP be the following partial order on AP = APk,λ. For any
c, d ∈ AP we say c ≤AP d when:

(a) 3c ⊆ 3d .

(b) mc ≤M md , and hence Gc ⊆ Gd , etc.

(c) ac
η,ℓ = ad

η,ℓ for η ∈ 3c, ℓ < ω.

(d) x c
η = x d

η for η ∈ 3c,<ω.

(e) yc
η,ℓ = yd

η,ℓ for η ∈ 3c,ω and ℓ < ω.

Lemma 3.25. (1) ≤AP is indeed a partial order,

(2) If c̄ = ⟨cα : α < δ⟩ is ≤AP-increasing, then there exists cδ =
⋃

α<δ cα in AP
which is the ≤AP-least upper bound of the sequence c̄.

Proof. Clause (1) is clear. For (2), let

cδ := (3, m, 0, X, ⟨aη,n : η ∈ 3, n < ω⟩),

where 3 :=
⋃

α<δ3cα
, m =: (G, Fr , Fr,s, F(r,s)), with

G :=

⋃
α<δ

Gcα
, Fr :=

⋃
α<δ

F cα
r , Fr,s :=

⋃
α<δ

F cα
r,s , F(r,s) :=

⋃
α<δ

F cα

(r,s),
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0 :=
⋃

α<δ 0cα
, X :=

⋃
α<δ X cα

, and for η ∈ 3ω and n < ω, we have aη,n = acα
η,n ,

for some and hence any α < δ such that η ∈ 3cα,ω.
It is easily seen that cδ is as required. □

An R-module M is called ℵ1-free if every countably generated submodule of M
is contained in a free submodule of M . Similarly, µ-free can be defined. For more
details, see [11, Chapter IV, Definition 1.1].

Lemma 3.26. Let c ∈ AP.

(1) tor(Gc) = K.

(2) The group
Gc/⟨K ∪ {r xν : r ∈ R, ν ∈ 3c,<ω}⟩

is divisible and torsion-free. Also, the parallel result holds for the R-module:

Mc/⟨K ∪ {r xν : r ∈ R, ν ∈ 3c,<ω}⟩.

(3) The following three properties are satisfied:

(a) 3c is ℵ1-free.

(b) If 3c is µ-free, then Mc is µ-free.

(c) If 3c is µ-free and (R, +) is µ-free, then Gc/K is a µ-free abelian group.

(4) If γ ≤ γc and 3 ⊆ 3c, then there exists a unique d ∈ AP such that

3d = 3 ∩ 3[γ ] and Gd ⊆ Gc.

Such a unique object is denoted by d := c ↾ (γ, 3).

(5) Assume η ∈ 3ω[λ] \ 3c, ℓ < ω and aℓ ∈ Gc are such that aℓ ∈ Gc,η(0,1) for
each ℓ. Then there is d ∈ AP equipped with the following three properties:

(a) 3d = 3c ∪ {η} ∪ {η↾Ln, η↾R n : n < ω}.

(b) c ≤AP d and so Gc ⊆ Gd .

(c) ad
η,ℓ = aℓ for ℓ < ω.

(6) The group Gc is of size λ.

Proof. (1)–(2) These are easy.

(3)(a) Let 3 ⊆ 3c,ω be countable, and let {ηn : n < ω} be an enumeration of it.
Define the maps h1 and h2 from 3 to ω as

h1(ηn) := min
{
k : ∀ j < n, ∀ℓ, r ∈ {L , R} we have ηj ↾ℓ k ̸= ηn ↾r k

}
,

h2(ηn) := min{k : ηn↾Lk ̸= ηn ↾R k}.

Finally, we set
h(ηm) := max{h1(ηn), h2(ηn)} + 1.
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Having Definition 3.10 in mind, we are going to show h is as required. Let j < i <ω

and let
h(η j ) ≤ n j < ω and h(ηi ) ≤ ni < ω.

We will show that ηj ↾ℓ ni ̸= ηi ↾r n j , where ℓ, r ∈ {L , R}. To see this, we note that
there is nothing to prove if ni ̸= n j . So, we may and do assume that n := ni = n j .
Thus, h(η j ), h(ηi ) ≤ n. We look at m := h1(ηi ). According to the definition of h1,
we know that ηj ↾ℓ m ̸= ηi ↾r m. As m ≤ n one has

ηi ↾ℓ n ̸= ηj ↾r n.

Also given any i < ω, if n ≥ h(ηi ), then by the definition of h2 and as n ≥ h2(ηi ),
we have

ηi↾Ln ̸= ηi ↾R n.

It follows that the sequence

⟨{η↾Ln, η↾R n : h(η) ≤ n < ω} : η ∈ 3⟩

is a sequence of pairwise disjoint sets. By definition, 3c is ℵ1-free.

(3)(b) For simplicity, we present the proof when µ := ℵ1. Let X ⊆ Mc be countable.
We are going to show that it is included into a countably generated free R-submodule
of Mc. As X countable, we have

∃3 ⊆ 3c,ω countable, ∃3∗ ⊆ 3c,<ω countable

such that

X ⊆

∑
{Ryη,n : η ∈ 3 and n < ω} +

∑
{Rxρ : ρ ∈ 3∗}.

As 3c is ℵ1-free and 3 is countable, there is a function h : 3 → ω such that

⟨{η↾Ln, η↾R n : h(η) ≤ n < ω} : η ∈ 3⟩

is a sequence of pairwise disjoint sets. Now, we note the following two properties:

(b1) The R-module M3 := ⟨xη↾L n, xη↾R n, yη,n : η ∈ 3 : h(η) ≤ n < ω⟩ is free.

(b2) Set M3∪3∗
:= ⟨M3 ∪{xν : ν ∈ 3∗}⟩. Then the R-module M3∪3∗

/M3∗
is free.

In view of (b2) the short exact sequence

0 → M3 → M3∪3∗
→ M3∪3∗

/M3 → 0,

splits. Combining this along with (b1), we observe that M3∪3∗
is free. Since it

includes X , we get the desired claim.

(3)(c) Now, suppose (R, +) is µ-free. Let H be a subset of (Gc/K , +) of size < µ.
There is a free R-module F such that H ⊂ F . There is a subset S of R of size < µ

such that any element of H can be written from a linear combination from F with
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coefficients taken from S. As (R, +) is µ-free, there is a free subgroup (T, +) of it
containing S. In other words, we have

H ⊆ T ∗ F :=

〈∑
{ti fi : ti ∈ T, fi ∈ F}

〉
.

Since (T ∗ F, +) is free as an abelian group, we get the desired claim.

(4) Let d be such that:

(i) 3d = 3 ∩ 3[γ ].

(ii) Xd is defined using 3d naturally.

(iii) For ν ∈ 3d,ω and n < ω, ad
ν,n = ac

ν,n .

(iv) 0d is defined naturally as the set of equations in (1), but only for η ∈ 3d,ω.

This is straightforward to check that d is as required.

(5) Let d be defined in the natural way, so that:

(i) 3d = 3c ∪ {η} ∪ {η↾Ln, η↾R n : n < ω}.

(ii) Xd = X c ∪ {xη↾L n, xη↾Rn : n < ω} ∪ {yη,n : n < ω}.

(iii) For ν ∈ 3c,ω and n < ω, ad
ν,n = ac

ν,n .

(iv) ad
η,n = an for n < ω.

(v) In addition to the equations displayed in 0c, 0d contains equations of the
forms

yη,n = an + (n!) yη,n+1 + (xη↾L n − xη↾R n),

where n < ω.

The assertion is now obvious by the above definition of d.

(6) In view of Lemma 3.19, the group Gc is of size λℵ0 . Recall from Hypothesis 3.14
that λℵ0 = λ. So, the desired claim is clear. □

Lemma 3.27. Let c ∈ AP. Then the abelian group Gc/K is reduced.

Proof. Suppose on the way of contradiction that Gc/K is not reduced. Then it
has a divisible direct summand, say I . By Fact 2.18, I is injective. We apply the
structure theorem for injective abelian groups (see Discussion 2.20(i)) to find the
decomposition

I =

⊕
p∈P

Z(p∞)⊕x p ⊕ Q⊕x ,

where x p and x are index sets. Since Gc/K is torsion-free, I is torsion-free. So,
I has no p-torsion part. This shows that x p = ∅ for all p ∈ P. In other words,
I = Q⊕x . Since I is nonzero, x ̸=∅. This yields that (Q, +) is a directed summand
of Gc/K. Thanks to Lemma 3.26(3)(a), 3c is ℵ1-free. We combine this with
Lemma 3.26(3)(b) to deduce that Mc is ℵ1-free as an R-module.
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We have two possibilities: (1) k is trivial and (2) k is nontrivial.

(1) k is trivial. Then R := Z. Recall that Mc = Gc/K is ℵ1-free. Since (Q, +) is
countable, it should be free, a contradiction.

(2) k is nontrivial. Recall that R is S⊥

k -divisible. Since the context is nontrivial,
there is p ∈ S⊥

k such that {1/pn
: n ≫ 0} ⊆ R. For simplicity, we assume that

{1/pn
: n > 0} ⊆ R. Since Mc is ℵ1-free and that {1/pn

: n > 0} ⊆ Q ⊆ Mc, there
is a free R-module F ⊆ Mc such that {1/pn

: n > 0} ⊆ F . Let F =
⊕

R. So, the
desired contraction follows by

{r/pn
: n > 0, r ∈ R} =

⋂
ℓ>0

pℓ
{r/pn

: n > 0, r ∈ R}

⊆

⋂
ℓ>0

pℓF =

⊕(⋂
ℓ>0

pℓ R
)

⊆

⊕(⋂
ℓ>0

ℓR
)

= 0,

where the last equality comes from the fact that (R, +) is cotorsion-free. In fact,
by Fact 2.19, the abelian group (R, +) is reduced, and so

⋂
ℓ>0 ℓR = 0. The proof

is now complete. □

Lemma 3.28. Let c ∈ APk,λ. Then

yc
η,0 =

n∑
i=0

(∏
j<i

j !
)

ac
η,i +

( n∏
i=1

i !
)

yc
η,n+1 +

n∑
i=0

(∏
j<i

j !
)

(x c
η↾L i − x c

η↾R i )

is valid for any n < ω.

Proof. We proceed by induction on n. The desired claim is clearly holds for n = 0.
Suppose inductively that it holds for n. We are going to show the claim for n + 1.
To this end, we apply the induction assumption along with the relation

yc
η,n+1 = ac

η,n+1 + (n + 1)! yc
η,n+2 + (x c

η↾L n+1 − x c
η↾Rn+1)

to deduce

yc
η,0 =

n∑
i=0

(∏
j<i

j !
)

ac
η,i +

( n∏
i=1

i !
)

yc
η,n+1 +

n+1∑
i=0

(x c
η↾L i − x c

η↾R i )

=

n∑
i=0

(∏
j<i

j !
)

ac
η,i +

( n∏
i=0

i !
)

ac
η,n+1 +

( n∏
i=1

i !
)

(n + 1)! yc
η,n+2

+

( n∏
i=0

i !
)

(x c
η↾L n+1 − x c

η↾Rn+1) +

n∑
i=0

(∏
j<i

j !
)

(x c
η↾L i − x c

η↾R i )

=

n+1∑
i=0

(∏
j<i

j !
)

ac
η,i +

(n+1∏
i=1

i !) yc
η,n+2 +

n+1∑
i=0

(∏
j<i

j !
)

(x c
η↾L i − x c

η↾R i ).

Thus the claim holds for n + 1 as well. □
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There are some distinguished and useful objects in APk,λ.

Definition 3.29. We say c ∈ APk,λ is full when:

(a) 3c ⊇ 3<ω[λ].

(b) If an ∈ Gc for n < ω and f : 3<ω[λ] → γ , where γ < λ, then for some η ∈ 3c
and all n < ω we have ac

η,n = an and f (η ↾L n) = f (η ↾R n).

Now, we study the existence problem for fullness in AP.

Lemma 3.30. Adopt the notation from Hypothesis 3.14. Then there are some full
c ∈ APk,λ.

Proof. Let b be a twofold λ-black box, which exists by Lemma 3.15. We look at

� := 3<ω[λ] ∪ (3ω[λ] ×ω),

and for each ordinal α < λ we set

�α := 3<ω[α] ∪ (3ω[α] ×ω).

Fix a bijection map
h : Sλ

∼=
−→ (⊕ρ∈� Rxρ) ⊕ K

such that for each ordinal α < λ one has

(∗) h′′
[Sα] ⊆ (⊕ρ∈�α

Rxρ) ⊕ K .

This is possible, as for each α,

|Sα| ≤ ℵ0 + |α| ≤ |(⊕ρ∈�α
Rxρ) ⊕ K | < λ.

Let c be defined by:

(1) 3c = 3ω[λ] ∪3<ω[λ].

(2) X c is the set

{r xν : r ∈ R, ν ∈ 3c,<ω} ∪ {r yη,n : r ∈ R, η ∈ 3c,ω, n < ω}.

(3) ac
η,n = h(gb

η(n + 1)), where gb
η is given by the twofold λ-black box.

(4) Gc is generated, as an abelian group, freely by the sets K and X c except the
set of relations

yη,n = ac
η,n + (n!) yη,n+1 + (xη↾L n − xη↾R n),

with the convenience that ac
η,n is regarded as an element of Gc via the quotient map(⊕

ρ∈�

Rxρ

)
⊕ K ↠ Gc.

From this identification and (∗), we have ac
η,n ∈ Gc,η(0,1).

(5) 0c is defined naturally as in Definition 3.18.
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Let us show that c is as required. It clearly satisfies (a) of Definition 3.29. To show
that (b) of Definition 3.29 is satisfied, let ⟨an : n < ω⟩ ∈

ωGc and f : 3<ω[λ] → γ ,
where γ < λ. Let g : 3<ω[λ] → Sλ be defined such that for all ν ∈ 3<ω[λ] \ {⟨ ⟩},

(+) h(g(ν)) = alg(ν)−1.

We are going to apply the twofold λ-black box b. According to its properties, there
is an η ∈ 3ω[λ] such that:

(6) γ (η) > γ ,

(7) gb
η(0) = g(⟨ ⟩),

(8) gb
η(n + 1) = g(η ↾L n),2

(9) η(n, 1) < η(n, 2) and f (η ↾L n) = f (η ↾R n) for all 1 ≤ n < ω.

Applying h to the both sides of (8), one has

ac
η,n

(3)
= h(gb

η(n + 1)) = h(g(η↾Ln))
(+)
= an,

thereby completing the proof. □

Lemma 3.31. Assume c ∈ AP is full and let h ∈ Hom(Gc, K ) be unbounded. Then
there is a sequence

⟨an : n < ω⟩ ∈
ωRang(h)

such that the following set of equations 0 has no solution, not only in Gc, but in
any Gd with c ≤ d ∈ AP, where

0 := {zn = an + n! zn+1 : n < ω}.

Proof. We have two possibilities. First, suppose for some prime number p, the
group 0p(Rang(h)) is infinite, and let p be the first such prime number. Also, let
pn = p for all n < ω. Otherwise, we let

pn ∈ {p : 0p(Rang(h)) ̸= 0}

be a strictly increasing sequence of prime numbers. We refer this as a second
possibility.

In the first part of the proof, we argue for both possibilities at the same time.
Then, we consider each scenario separately.

Since h is not bounded, we can find by induction on n, the pair (Hn, an) such
that:

(+) (a) H0 = Rang(h).
(b) Hn = an Z ⊕ Hn+1.

2Here we are using a modified version of the twofold λ-black box b, which can be easily obtained
from the original one.
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(c) an has order pln
n .

(d) For n = m + 1 we have

(dn) : ln > lm +

(n+1∏
i=0

i !
)

.

To see this, let H0 := Rang(h) and let a0 ∈ 0p0[Rang(h)] be any nonzero element.
Now, suppose inductively that n > 0 and we have defined ⟨Hi : i ≤ n⟩ and ⟨ai : i < n⟩

satisfying the above items. We shall now define an and Hn+1. By our induction
assumption, we have

Rang(h) =

(⊕
i<n

ai Z

)
⊕ Hn.

In particular, Hn is torsion. Using Fact 2.5 (and also Fact 2.7 in the second possibility
case), we can find for some ℓn and an element an such that an has order pln

n and an Z

is a direct summand of Hn . We may further suppose that

ln > lm +

(n+1∏
i=0

i !
)

.

Since (an) is a direct summand of Hn , there is an abelian group Hn+1 so that
Hn = an Z ⊕ Hn+1.

To prove that the sequence ⟨an : n < ω⟩ is as required, assume towards a con-
tradiction that there is c ≤ d ∈ AP such that ⟨cn : n < ω⟩ is a solution of 0 in Gd .
So

(∗) Gd |H

∧
n<ω

(cn = an + n! cn+1).

Since for each n, an ∈ K , it follows that

Gd/K |H

∧
n<ω

(cn + K = n! cn+1 + K ).

By Lemma 3.27, Gc/K is reduced, and hence necessarily,∧
n<ω

(cn + K = 0 + K ).

In other words, cn ∈ K for all n < ω.
We now show that for each n,

(∗∗)
(∏

i<n

i !
)

cn ∈ Hn
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This is true for n =0, because c0 ∈ K = H0. Suppose it holds for n. Then multiplying
both sides of (∗) into

∏
i<n i ! we get(∏

i<n

i !
)

cn =

(∏
i<n

i !
)

an +

( ∏
i<n+1

i !
)

cn+1.

Using the induction hypothesis and (+)(b) we get( ∏
i<n+1

i !
)

cn+1 ∈ Hn+1,

as requested.
By an easy induction, for each n we have

(∗ ∗ ∗n) c0 = a0 +

∑
ℓ≤n

( ℓ∏
i=1

i !
)

aℓ +

( n∏
i=1

i !
)

cn+1.

Indeed this is true for n = 0, as c0 = a0 + c1. Suppose it holds for n, then using (∗)

and the induction hypothesis, we get

c0 = a0 +

∑
ℓ≤n

( ℓ∏
i=1

i !
)

aℓ +

( n∏
i=1

i !
)

cn+1

= a0 +

∑
ℓ≤n

( ℓ∏
i=1

i !
)

aℓ +

( n∏
i=1

i !
)(

an+1 + (n + 1)! cn+2
)

= a0 +

∑
ℓ≤n+1

( ℓ∏
i=1

i !
)

aℓ +

(n+1∏
i=1

i !
)

cn+2.

We are now ready to complete the proof. Let m(∗) be the order of c0.
Now, we consider each case separately.

Case 1. pn = p for all n.
Let t be an integer such that

m(∗) = tpℓ(∗) > 1,

where ℓ(∗) ≥ 0s and (p, t) = 1, i.e., p does not divide t . Let k be the least natural
number such that lk > ℓ(∗). By multiplying both sides of (∗ ∗ ∗)k+1 into tplk , we
get to

tplk c0 = tplk a0 + tplk
∑

ℓ≤k+1

( ℓ∏
i=1

i !
)

aℓ + tplk

(k+1∏
i=1

i !
)

ck+2.
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Since the sequence ⟨lℓ : ℓ ≤ k⟩ is increasing, we have plk aℓ = 0 for all ℓ ≤ k.
Consequently,

(†) 0 = tplk

(k+1∏
i=1

i !
)

ak+1 + tplk

(k+1∏
i=1

i !
)

ck+2

According to (+)(b), we know ak+1 Z∩ Hk+2 = 0, and by using (∗∗) along with (†)

we get that

tplk

(k+1∏
i=1

i !
)

ak+1 = 0.

Recall that the order of ak+1 is a power of p. We apply this along with the equality
(p, t) = 1 to get that

plk

(k+1∏
i=1

i !
)

ak+1 = 0.

Moreover,

plk+1 = ord(ak+1) ≤ plk

(k+1∏
i=1

i !
)

≤ plk+(
∏k+1

i=1 i !).

Taking logp(−) from both sides, we have lk+1 ≤ lk +
(∏k+1

i=1 i !
)
. But, this contra-

dicts (dlk+1). The result follows.
Thereby, without loss of generality we deal with:

Case 2. Otherwise.
The sequence ⟨pn : n < ω⟩ is strictly increasing. If k is the least integer, then

(††) pk+1 > m(∗) ×

(k+1∏
i=1

i !
)

.

By multiplying both sides of (∗ ∗ ∗)k+1 into m(∗) ×
(∏k

i=1 pli
i

)
we get

0 = m(∗) ×

( k∏
i=1

pli
i

)
c0

= m(∗) ×

( k∏
i=1

pli
i

)
a0 + m(∗) ×

( k∏
i=1

pli
i

) ∑
ℓ≤k+1

( ℓ∏
i=1

i !
)

aℓ

+ m(∗) ×

( k∏
i=1

pli
i

)(k+1∏
i=1

i !
)

ck+2.

We have that m(∗) ×
(∏k

i=1 pli
i

)
a0 = 0 and

m(∗) ×

( k∏
i=1

pli
i

)( ℓ∏
i=1

i !
)

aℓ = 0 for all ℓ ≤ k.
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Thus

0 = m(∗) ×

( k∏
i=1

pli
i

)(k+1∏
i=1

i !
)

ak+1 + m(∗) ×

( k∏
i=1

pli
i

)(k+1∏
i=1

i !
)

ck+2.

Again, according to (+)(b), we know ak+1 Z ∩ Hk+2 = 0, and by using (∗∗) along
with the previous formula, we lead to the following vanishing formula:

m(∗) ×

( k∏
i=1

pli
i

)(k+1∏
i=1

i !
)

ak+1 = 0.

As the order of ak+1 is a power of pk+1 and it is different from all pℓ’s, for ℓ ≤ k,
we have

m(∗) ×

(k+1∏
i=1

i !
)

ak+1 = 0.

So,

pk+1 < plk+1
k+1 = ord(ak+1) ≤ m(∗) ×

(k+1∏
i=1

i !
)

.

But this contradicts (††). The result follows. □

To prove the endo-rigidity property, we first deal with the following special case,
and then we reduce things to this situation.

Lemma 3.32. Let c ∈ AP be full. Then every h ∈ Hom(Gc, K ) is bounded.

Proof. Towards a contradiction assume h ∈ Hom(Gc, K ) is not bounded. In view
of Lemma 3.31, this implies that there is a sequence

⟨an : n < ω⟩ ∈
ωRang(h)

such that the set of equations

0 := {zn = an + n! zn+1 : n < ω}

has no solutions in Gc. Let γ = |K |, and define f : 3<ω[λ] → γ such that

(∗) f (η) = f (ν) ⇐⇒ h(xη) = h(xν)

Since an ∈ Rang(h) there is bn such that

(+) ∀n < ω, an = h(bn)

As c is full, we can find some η such that

f (η↾Ln) = f (η↾R n) and ac
η,n = bn for each n.

Let us combining (∗) and (1). This yields that

(†) ∀n < ω, h(xη↾L n) = h(xη↾R n).
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Moreover, by applying h to the both sides of the equation

yη,n = ac
η,n + (n!) yη,n+1 + (xη↾L n − xη↾R n),

we lead to the following equation:

h(yη,n) = h(ac
η,n) + n! h(yη,n+1) +

(
h(xη↾L n) − h(xη↾R n)

)
(2)
= h(bn) + n! h(yη,n+1) +

(
h(xη↾L n) − h(xη↾R n)

)
(†)
= h(bn) + (n!) h(yη,n+1)

(+)
= an + (n!) h(yη,n+1).

In other words, h(yη,n) is a solution for

0 = {zn = an + n! zn+1 : n < ω}.

This is a contradiction with the choice of the sequence ⟨an : n < ω⟩. □

Notation 3.33. Suppose c ∈ AP. For each n < ω, we define

Gn :=
Gc

K +
(∏n

i=1 i !
)

Gc
.

Also, the notation πn stands for the natural projection Gc ↠ Gn .

Fact 3.34. Adopt the above notation, let n < ω and g ∈ Gc.

(a) The abelian group Gn is a torsion abelian group with the following minimal
generating set

{xρ : ρ ∈ 3c,<ω} ∪ {yη,k : η ∈ 3c,ω and k ≥ n + 2}.

(b) Similar to Definition 3.20, we can define supp◦(πn(g)) with respect to generat-
ing set presented in (a).

(c) According to its definition, it is easy to see that supp◦(πn(g)) ⊆ supp◦(g).

(d) Recall from Lemma 3.27 that Gc/K is reduced. This in turns gives us an
integer mn > n such that supp◦(g) ⊆ supp◦(πmn (g)).

Proof. This is straightforward. □

Lemma 3.35. Suppose c ∈ AP is full and h ∈ End(Gc). Then for some countable
3h ⊆ �c we have

r ∈ R, ν ∈ �c \ 3h =⇒ supp◦(h(r xν)) ⊆ {ν} ∪3h .

Proof. Towards contradiction assume h ∈ End(Gc) but there is no 3h as promised.
We define a sequence

⟨(ηi , Yi , νi , ri ) : i < ω1⟩,

by induction on i < ω1, such that
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(∗) (a) ηi ∈ �c and ri ∈ R \ {0},
(b) Yi =

⋃
{supp◦(h(rj xηj )) : j < i} ∪ {ηj : j < i},

(c) νi ∈ supp◦(h(ri xηi )) but νi ̸= ηi , νi /∈ Yi .

To this end, suppose that i < ω1 and we have defined ⟨(ηj , Yj , νj , rj ) : j < i⟩. Set

Yi =

⋃
{supp◦(h(rj xηj )) : j < i} ∪ {ηj : j < i}.

Following its definition, we know Yi is at most countable. Thus, due to our assump-
tion, we can find some ηi ∈ �c \ Yi and ri ∈ R \ {0} such that

supp◦(h(ri xηi )) ⊈ ({ηi } ∪ Yi ).

This allows us to define νi , namely, it is enough to take νi be any element of
supp◦(h(ri xηi )) \ ({ηi } ∪ Yi ). This completes the definition of (ηi , Yi , νi , ri ).

Combining the facts νi ∈ supp◦(h(ri xηi )) and νi /∈ (Yi ∪ {ηi }) along with the
finiteness of supp◦(h(xηi )) we are able to find a subset W ⊆ ω1 of cardinality ω1

such that νj /∈ supp◦(h(ri xηi )) when i ̸= j ∈ W .
Without loss of generality we may and do assume that W = ω1. Let ai = ri xηi .

We can find
f : 3c,<ω → |R| +ℵ0 < λ

such that if b ∈ Gc,3 then from f (b) we can compute

⟨nb, {(ℓ, mb,ℓ, rb,ℓ) : ℓ < nb}⟩.

Recall that c is full, and that Rang( f ) has size less than λ. From these, there is
some η ∈ 3c,ω furnished with two properties:

(1) f (η ↾L n) = f (η ↾R n) for n < ω,

(2) ac
η,n = an for all n < ω.

Now, we bring a claim.

Claim. νi ∈ supp0(h(yη0)) for all i < ω.

Note that this will give us the desired contradiction, as supp0(h(yη0)) is finite.

Proof of Claim. By Lemma 3.28 we first observe that

yη,0 =

n∑
i=0

(∏
j<i

j !
)

ri xηi +

( n∏
i=1

i !
)

yη,n+1 +

n∑
i=0

(∏
j<i

j !
)

(xη↾L i − xη↾R i ).

Let ℓ be any integer. We are going to use the notation presented in Notation 3.33
for n = mℓ. Applying πn h(−) to it yields that

3Recall that we have chosen b −
∑

ℓ<nb
rb,ℓ yηb,ℓ,mb,ℓ ∈

∑
ρ∈3c,<ω

Rxρ + K .
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(3) πn(h(yη,0)) =

n∑
i=0

(∏
j<i

j !
)

πn h(ri xηi ) +

( n∏
i=1

i !
)

πn h(yη,n+1)

+

n∑
i=0

(∏
j<i

j !
)

πn h(xη↾L i − xη↾R i )

=

n∑
i=0

(∏
j<i

j !
)

πn h(ri xηi ) +

n∑
i=0

(∏
j<i

j !
)

πn h(xη↾L i − xη↾R i ),

where the last equality follows by Notation 3.33. Now, we recall from the construc-
tion (∗) that

νi ∈ supp◦(h(ri xηi )), νi ̸= ηi , νi /∈ Yi .

Thanks to Fact 3.34(d) we have

(4) νi ∈ supp◦(πnh(ri xηi )).

By clause (1) above, supp◦(h(xη↾L i − xη↾R i )) = ∅. In view of Fact 3.34(c), we
deduce that

(5) supp◦

(
πn(h(xη↾L i − xη↾R i ))

)
= ∅.

First, we plug items (4) and (5) in the clause (3), then we use (∗). These enable us
to observe that

νi ∈ supp◦

( n∑
i=0

(∏
j<i

j !
)

πn h(ri xηi ) +

n∑
i=0

(∏
j<i

j !
)

πn h(xη↾L i − xη↾R i )

)
= supp◦(πn h(yη,0)).

Another use of Fact 3.34(c), shows that νi ∈ supp◦(h(yη,0)). This completes the
proof of the claim. □

The lemma follows. □

Lemma 3.36. Let c ∈ AP be full and h ∈ End(Gc). Let Y0 ⊆ �c be the downward
closure of 3h , where 3h is as in Lemma 3.35 and set

K +
:= K +

∑
ρ∈Y0∩3c,<ω

Rxρ +

∑
ρ∈Y0∩3c,ωn<ω

Ryρ,n.

If b ∈ Gc, then there are choices

• r̄b := ⟨r2
b,ρ : ρ ∈ 3b⟩, and

• 3b ⊆ 3c,<ω \ Y0 finite

such that
b −

∑
ρ∈3b

r2
b,ρ xρ ∈ K +.
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Proof. This is straightforward. □

Hypothesis 3.37. For the rest of this section, we fix a well-ordering ≺ of the large
enough part of the universe, and for each:

• c ∈ AP which is full,

• h ∈ End(Gc), and

• b ∈ Gc,

we let r̄b := ⟨r2
b,ρ : ρ ∈ 3b⟩ be the ≺-least sequence satisfying the conclusions of

Lemma 3.36.

Notation 3.38. Suppose c ∈ AP and 3 ⊆ 3c. By Gc,3 we mean

Gc,3 := G3 := ⟨{r xν, r yη,n : r ∈ R, ν ∈ 3<ω, η ∈ 3ω and n < ω}⟩.

We have the following observation, but as we do not use it, we leave its proof.

Observation 3.39. Suppose 3 ⊆ 3[λ] is downward closed. Then Gc,3 is a pure
subgroup of Gc.

Lemma 3.40. Let c ∈ AP be full, and h ∈ End(Gc). Then for some countable
3h ⊆ 3[λ] we have

r ∈ R, ν ∈ �c \ 3h =⇒ h(r xν) ∈ Gc,3h∪{ν} + K .

Proof. Suppose on the way of contradiction that the lemma fails. Let Y0 be as
Lemma 3.36. We define a sequence

⟨(Yi , νi , ρi , ri ) : i < ω1⟩,

by induction on i < ω1, such that

(♮) (a) ri ∈ R \ {0},
(b) Yi =

⋃
{supp(h(rj xνj )) : j < i} ∪ {ρj : j < i} ∪ Y0,

(c) νi ∈ �c \ Yi ,
(d) h(riνi ) /∈ Gc,Yi ∪{νi } + K ,
(e) let bi := h(riνi ), and let r̄bi := ⟨r2

bi ,ρ
: ρ ∈ 3i ⟩ be as Lemma 3.36 applied

to bi . Then ρi ∈ 3i \ (Yi ∪ {νi }), and even

r2
bi ,ρi

xρi /∈ Gc,Yi ∪{νi } + K .

To construct this, suppose i < ω and we have constructed the sequence up to i .
Now, (♮)(b) gives the definition of Yi . Since we assume that the lemma fails, there
is an ri ∈ R and νi ∈ �c \ Yi such that h(ri xνi ) /∈ Gc,3h∪{ν} + K. Now, we define
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bi := h(riνi ). Thanks to Lemma 3.36, there is a finite set 3i ⊆ 3c,<ω \ Yi and a
sequence ⟨r2

bi ,ρ
: ρ ∈ 3i ⟩ such that

bi −

∑
ρ∈3i

r2
bi ,ρ

xρ ∈ K +.

As bi /∈ Gc,Yi ∪{νi } + K and due to the following containment

bi −

∑
ρ∈3i

r2
bi ,ρ

xρ ∈ K +
⊆ Gc,Yi ∪{νi } + K ,

there is ρi ∈ 3i such that ρi /∈ (Yi ∪ {νi }), and indeed

r2
bi ,ρi

xρi /∈ Gc,Yi ∪{νi } + K .

This completes the proof of construction. By shrinking the sequence, we may and
do assume in addition that ρj /∈ 3i for all i ̸= j < ω1.

Let an := rn xνn and define

f : 3c,<ω → |R| + |K | +ℵ0 < λ

be such that for any ρ ∈ 3c,<ω, f (ρ) codes

• ⟨r2
b,ρ : ρ ∈ 3b⟩, and

• b −
∑

ν∈3i
r2

b,ν xν ,

where b := h(xρ). To see such a function f exists, first we define:

• f1 : R<ω
× K +

→ |R| + |K | +ℵ0 is a bijection, and

• f2 : 3c,<ω → R<ω
× K + is defined as

f2(b) =

(
⟨r2

b,ρ : ρ ∈ 3b⟩, b −

∑
ν∈3i

r2
b,ν xν

)
.

Then, we set f := f1 ◦ f2. Suppose ρ1, ρ2 ∈ 3c,<ω are such that f (ρ1) = f (ρ2).
We claim that h(xρ1) = h(xρ2). To see this, it is enough to apply f (ρ1) = f (ρ2),
and conclude that

(1) ⟨r2
b1,ν

: ν ∈ 3b1⟩ = ⟨r2
b2,ν

: ν ∈ 3b2⟩

(2) b1 −
∑

ν∈3b1
r2

b,ν xν = b2 −
∑

ν∈3b2
r2

b,ν xν ,

where bi = h(xρi ). But, then we have

b1 = b1 −

∑
ν∈3b1

r2
b,ν xν +

( ∑
ν∈3b1

r2
b,ν xν

)
(2)
= b2 −

∑
ν∈3b2

r2
b,ν xν +

( ∑
ν∈3b2

r2
b,ν xν

)
= b2,

i.e., h(xρ1) = h(xρ2).
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Since c is full, and in light of Definition 3.29(b), we are able to find an η ∈ 3c,ω
such that

(3) an = ac
η,n , and

(4) f (η↾Ln) = f (η↾R n),

for all n < ω. Thanks to the previous paragraph and clause (4) we deduce

(♯) h(xη↾L n) = h(xη↾R n)

By applying h to the both sides of the equation

yη,0 =

n∑
i=0

(∏
j<i

j !
)

ri xνi +

( n∏
i=1

i !
)

yη,n+1 +

n∑
i=0

(∏
j<i

j !
)

(xη↾L i − xη↾R i ),

we get

(+) h(yη,0) =

n∑
i=0

(∏
j<i

j !
)

h(ri xνi ) +

( n∏
i=1

i !
)

h(yη,n+1)

+

(∏
j<i

j !
)(

h(xη↾L n) − h(xη↾R n)
)

(♯)
=

n∑
i=0

(∏
j<i

j !
)

h(ri xνi ) +

( n∏
i=1

i !
)

h(yη,n+1).

For each i < ω1, let bi = h(ri xνi ). Let also b = h(yη,0) and let 3b be as in
Lemma 3.36. As 3b is finite, for some large enough n, we have

{ρi : i < n} \3b ̸= ∅.

Let i < n be such that ρi /∈ 3b. Here, we apply the arguments presented in items
(3)–(4) in the proof of Lemma 3.35 to the displayed formula (+). So, on the one
hand, it turns out that

ρi ∈ 3i ⊆ 3b.

On the other hand by the choice of i , ρi /∈ 3b. This is a contraction that we searched
for it. □

Lemma 3.41. Let c ∈ AP be full, and h ∈ End(Gc). Then for some m∗ ∈ R and
some countable 3h = cl(3h) ⊆ 3[λ] we have

r ∈ R, ν ∈ �c \ 3h =⇒ h(r xν) − m∗xν ∈ G3h + K .

Proof. In view of Lemma 3.40, there is some countable downward closed subset 3

of 3c such that for every r ∈ R and η ∈ �c\3, we have h(r xη) ∈ G3∪{ν}+ K. Thus,
for such r and η, there are mr

η ∈ R and br
η satisfying the following two properties:

h(r xη) = mr
η xη + br

η and br
η ∈ G3 + K .
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Suppose on the way of contradiction that the desired conclusion fails. By induction
on i < ω1 we define a sequence

⟨Yi , ri,1, ri,2, ηi,1, ηi,2 : i < ω1⟩

such that:

(†) (a) Yi = 3 ∪ {η j,ℓ : j < i, ℓ ∈ {1, 2}},
(b) ri,1, ri,2 ∈ R \ {0},
(c) ηi,ℓ ∈ �c \ Yi for ℓ ∈ {1, 2},
(d) mri,1

ηi,1 ̸= mri,2
ηi,2 .

The construction is easy, but we elaborate. Let us start with the case i = 0. We set
Y0 = 3 and then choose r0,1, r0,2 ∈ R \ {0} and η0,1, η0,2 ∈ 3<ω[λ] \ 3h such that
mr0,1

η0,1 ̸= mr0,2
η0,2 . Now suppose i < ω1 and we have define the sequence for all j < i .

Define Yi as in clause (†)(a). By our assumption, we can find

(i) ri,1, ri,2 ∈ R \ {0} and

(ii) ηi,1, ηi,2 ∈ �c \ Yi ,

so that mri,1
ηi,1 ̸= mri,2

ηi,2 . This completes the induction construction.
Let

f : 3c,<ω → |R| + |K | +ℵ0 < λ

be such that if r ∈ R and η ∈ �c, then f (r xη) is defined in a way that one can
compute mr

η and br
η. Again we can define f as

f = f1 ◦ f2 ◦ f3,

where

• f1 : R × (G3 + K ) →| R | + | K | +ℵ0 is a bijection,

• f2 : R × 3c,<ω → R × (G3 + K ) is defined as f2(r, η) = (mr
η, br

η),

• f3 : 3c,<ω → R × 3c,<ω is a bijection.

For each n < ω, we set

an := rn,1 xηn,1 − rn,2 xηn,2 .

Applying h to it yields

(+) h(an) = mrn,1
ηn,1 xηn,1 − mrn,2

ηn,2 xηn,2 + bn,

where bn := brn,1
ηn,1 − brn,1

ηn,1 . Since c is full, there is an η ∈ 3c,ω such that

(1) an = ac
η,n , and

(2) f (η↾Ln) = f (η↾R n)

for all n < ω. By clause (2) we deduce:

(3) supp◦(h(xη↾L n − xη↾R n)) = ∅ for all n < ω.
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Applying h to

yη,0 =

n∑
i=0

ai +

( n∏
i=1

i !
)

yη,n+1 +

n∑
i=0

(∏
j<i

j !
)

(xη↾L i − xη↾R i ),

yields that

(♮) h(yη,0) =

n∑
i=0

h(ai ) +

( n∏
i=1

i !
)

h(yη,n+1) +

(∏
j<i

j !
)(

h(xη↾L n) − h(xη↾R n)
)

(3)
=

n∑
i=0

h(ai ) +

( n∏
i=1

i !
)

h(yη,n+1)

(+)
=

n∑
i=0

(mrn,1
ηn,1 xηn,1 − mrn,2

ηn,2 xηn,2 + bn) +

( n∏
i=1

i !
)

h(yη,n+1).

Let n < ω be large enough. Here, we are going to apply the arguments taken from
items (3)–(4) in the proof of Lemma 3.35 to the displayed formula (♮). Then,

(4) supp◦(h(yη,0)) ⊇ supp◦(h(an)), and

(5) supp◦(h(an)) ∩ {ηn,1, ηn,2} ̸= ∅.

Without loss of generality, assume that for each n < ω, ηn,1 ∈ supp◦((h(an)). So,

{ηn,1 : n < ω} ⊆ supp◦(h(yη,0)),

which is infinite. This is a contraction. □

Lemma 3.42. Assume 3 = cl(3) ⊆ 3c is countable and h ∈ Hom(Gc, G3 + K ).
Then h is bounded.

Proof. Towards a contradiction we assume that h is unbounded. It follows from
Lemma 3.32 that Rang(h) ⊈ K. Let b∗ ∈ Rang(h) \ K. Then, for some d∗ ∈ K , a
finite set 3∗ and two sequences ⟨rη ∈ R \ {0} : η ∈ 3∗⟩ and ⟨mη ∈ ω : η ∈ 3∗⟩, we
can represent b∗ as

b∗ =

∑
{rη xη : η ∈ 3∗ ∩ 3<ω} +

∑
{rη yη,m(η) : η ∈ 3∗ ∩ 3ω} + d∗.

Let

(1) J0 = G3 + K ,

(2) J1 = J0/K , which is torsion free.

So, b∗ ∈ J0. Let π : J0 → J1 be the natural map defined by the assignment
b 7→ π(b) := b + K. Since b∗ ∈ Rang(h) \ K , we have π(b∗) ̸= 0.

Suppose on the way of contradiction that for any sequence ⟨en : n < ω⟩ ∈
ωZ the

following system of equations

0 := {yn = n! yn+1 + en b∗ : n < ω}

is solvable in J1. Say, for example, {yn : n < ω} is such a solution.



218 MOHSEN ASGHARZADEH, MOHAMMAD GOLSHANI AND SAHARON SHELAH

Thanks to Lemma 3.26(3)(a) we find that 3c is ℵ1-free. We combine this with
Lemma 3.26(3)(b) to deduce that Mc is ℵ1-free as an R-module. Now, since J1 is
countably generated, we can find a solution to

0 = {yn = n! yn+1 + en b̄∗ : n < ω}

in R. Since R is cotorsion-free, a such system of equations has no solution the ring.
So, there is a sequence ⟨en : n < ω⟩ ∈

ωZ the following equations:

0 = {yn = n! yn+1 + en b∗ : n < ω}

is not solvable in J1.
Let a∗ ∈ Gc be such that b∗ = h(a∗). Let also f : 3c,<ω → ω be such that for

all ν, ρ ∈ 3c,<ω,

f (ν) = f (ρ) ⇐⇒ π ◦ h(xν) = π ◦ h(xρ).

As c is full, there is some η ∈ 3c,ω such that:

(3) ac
η,n = en a∗, for all n < ω, and

(4) f (η ↾L n) = f (η ↾R n), for n < ω.

Thanks to (4), one has

(+) ∀n < ω, π ◦ h(xη↾L n) = π ◦ h(xη↾Rn)

By applying π ◦ h into the equation

yη,n = ac
η,n + n! yη,n+1 + (xη↾L n − xη↾Rn),

and using clause (3) and (+) we get

π ◦ h(yη,n) = en π(b∗) + n! π ◦ h(yη,n+1).

This clearly gives a contradiction, as then

J1 |H yn = n! yn+1 + en b′′

∗
,

where yn = π ◦ h(yη,n). □

Lemma 3.43. Let c be full and h ∈ End(Gc). Then Rang(h) is bounded.

Proof. Suppose not, it follows that for some countable 3 = cl(3) ⊆ 3c,

h ↾ G ∈ Hom(G, G3 + K )

is unbounded, where G is the subgroup of Gc generated by h−1
[G3 + K ]. This

contradicts Lemma 3.42. □

Now, we are ready to prove:
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Theorem 3.44. Adopt the notation from Hypothesis 3.14. Then there is some c
such that the abelian group Gc is boundedly rigid. In particular, there is an abelian
group G equipped with the following properties:

(1) tor(G) = K .

(2) G is of size λ.

(3) The sequence

0 → Rc → End(G) →
End(G)

Eb(G)
→ 0

is exact.

Proof. According to Lemma 3.30, there is a full c ∈ AP. This allows us to apply
Lemma 3.43, and deduce that G := Gc is boundedly rigid. By definition, this
completes the proof. □

4. Co-Hopfian and boundedly endo-rigid abelian groups

As stated in [15], it is difficult to construct an infinite Hopfian–co-Hopfian p-group.
What about mixed groups? In this section, we answer this question. We start by
recalling that a group G is called:

(i) Hopfian if its surjective endomorphisms are automorphisms.

(ii) co-Hopfian if its injective endomorphisms are automorphisms.

In what follows we will use the following two items.

Fact 4.1. (i) Any direct summand of a co-Hopfian abelian group is again co-
Hopfian.

(ii) Suppose 2ℵ0 < λ < λℵ0 . Then there is no co-Hopfian abelian group of size λ

(see [19, Theorem 1.2]).

Here, we introduce a useful criterion.

Definition 4.2. Let G be an abelian group of size λ and m, n ≥ 1 be such that m | n.

(1) NQr(m,n)(G) means that there is an (m, n)-antiwitness h such that
(a) h ∈ End(0n(G)),
(b) Rang(h) is a bounded group,
(c) h′

:= m · id0n(G) +h ∈ End(0n(G)) is 1-to-1,
(d) h′ is not onto or m > 1 and G/0n(G) is not m-divisible.

(2) NQrm(G) means NQr(m,n)(G) for some n ≥ 1.

(3) NQr(G) means NQrm(G) for some m ≥ 1.

Definition 4.3. Adopt the previous notation.

(1) Qr(G) means the negation of NQr(G).



220 MOHSEN ASGHARZADEH, MOHAMMAD GOLSHANI AND SAHARON SHELAH

(2) Qr∗(G) means Qr(G) and in addition that 0p(G) is unbounded, for at least one
p ∈ P.

In items 4.4–4.11 we check NQr(m,n)(G) and its negation. This enables us to
present some new classes of co-Hopfian and non-co-Hopfian groups.

Lemma 4.4. Let G be an abelian group such that the property NQr(G) holds. Then
G is not co-Hopfian. Furthermore, let h ∈ Hom(G, 0n(G)) be such that h ↾ 0n(G)

is an (m, n)-antiwitness. Then m · idG +h witnesses that G is not co-Hopfian.

Proof. Suppose that G admits an (m, n)-antiwitness h0 ∈ End(0n(G)) as in
Definition 4.2. As h0 is bounded, by Fact 2.14 we extend h0 to h1 ∈Hom(G, 0n(G)).
So, the following diagram commutes:

0 // 0n(G)
⊆∗

//

h0
��

G

∃h1||

0n(G)

We claim that f = m · idG + h1 ∈ End(G) is 1-to-1 but not onto.

(∗1) f is one-to-one.

To see this, suppose x ∈ G in nonzero and we want to show that f (x) ̸= 0. Suppose
first we deal with the case x ∈ 0n(G) \ {0}. According to Definition 4.2(1)(c), we
have

f (x) = mx + h1(x) = m · id0n(G)(x) + h0(x) ⇒ f (x) ̸= 0.

Now, suppose that x ∈ G \ 0n(G). Recall from Definition 4.2 that m divides n. As
m | n, we have mx ∈ G \ 0n(G). If f (x) = 0, we have mx + h1(x) = 0, thus

h1(x) = −mx ∈ G \ 0n(G).

But, Rang(h1) ⊆ 0n(G), which is impossible. Thus f is 1-to-1, as wanted.

(∗2) f is not onto.

For this, we consider two cases.

Case 1. h0 is not onto.
By the case assumption, there is

y ∈ 0n(G) \ Rang
(
id0n(G) + (h0 ↾ 0n(G))

)
and it is easy to see that such a y is also a witness for f to be not onto.

Case 2. h0 is onto.
By Definition 4.2(1)(d), we must have m > 1 and G/0n(G) is not m-divisible.

Let z ∈ G be such that z + 0n(G) is not divisible by m in G/0m(G). Clearly, z
does not belong to Rang( f ).
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The lemma follows. □

Lemma 4.5. Let K be an abelian p-group. The following claims are valid: If
NQr(K ) holds, then K is infinite.

Proof. By definition, there are m and n such that m | n and that NQr(m,n)(K ) holds.
Thanks to Definition 4.2(1), there is h ∈ End(0n(G)) satisfying the following
properties:

(a) Rang(h) is a bounded group.

(b) h′
:= m · (id0n(K)) + h ∈ End(0n(K)) is 1-to-1.

(c) h′ is not onto or m > 1 and K/0n(K ) is not m-divisible.

We have two possibilities: (1) p ∤ n and (2) p | n.

(1) Suppose first that p ∤ n. As K is a p-group, 0n(K ) = {0}. This means that h is
constantly zero and is onto, as well as h′. Thanks to clause (c) it follows that m > 1
and K is not m-divisible. Since m | n we deduce that p ∤ m. Now, we consider the
map m · idK : K → K. Since K is not m-divisible, this map is not surjective. Let
us show that it is 1-to-1. To this end, let x ∈ K be such that mx = 0. Let ℓ be the
order of x so that pℓx = 0. As (pℓ, m) = 1, we can find r, s such that r pℓ

+ sm = 1.
By multiplying both sides with x , we obtain

x = r pℓx + smx = 0 + 0 = 0.

It follows that m · idK : K → K is 1-to-1 and not onto, hence K is infinite.

(2) Suppose p | n. As K is a p-group, this implies that 0n(K ) = K. Therefore, in
the above item (c), the case “K/0n(K ) is not m-divisible” does not occur. This is
in turn implies that h′ is not onto K. We proved that the map h′

∈ End(K ) is 1-to-1
and not onto. Hence K is infinite. □

Discussion 4.6. Keep the notation of Fact 2.5. One cannot replace “divisible” with
“reduced” and drives a similar result, as some easy examples suggest this. Here, we
consider this as an application of the construct of co-Hopfian groups.

(1) Suppose on the way of contradiction that the replacement is valid.

(2) Let G be a co-Hopfian group such that its reduced part is unbounded (recall
from the introduction that a such group exists, see [9]).

(3) Here, we drive a contradiction by showing from that G is not co-Hopfian.
Indeed, let K2 be the maximal divisible subgroup of K. Recall from Fact 2.18 that
K2 is injective. Since it is injective, we know K2 is a directed summand. Let us
write K as K = K1 ⊕ K2. Due to the maximality of K2 one may know that K1 is
reduced. We show that K1 is not co-Hopfian, and hence by Fact 4.1(i), K is not
co-Hopfian. Thus by replacing K by K1 if necessary, we may assume without loss
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of generality that K is reduced and unbounded. For ℓ < ω, we choose by induction
Hℓ, yℓ and zℓ such that:

(a) H0 = K.

(b) If ℓ = k + 1, then Hk = Hℓ ⊕ Zzℓ.

(c) For zℓ ∈ (Zyℓ)∗, recall that (Zyℓ)∗ denotes the pure closure of Zyℓ.

(d) yℓ+1 ∈ Hℓ.

(e) The order of zi is ≥ pℓ.

[Why? For ℓ = 0, we set H0 = K and let y0 ∈ K be arbitrary. Then (Zy0)∗ is a
pure subgroup of K of bounded exponent. Thanks to Fact 2.5, we know that (Zy0)∗

is a direct summand of K. In view of Fact 2.7 we can find z0 such that Zz0 is a
direct summand of (Zy0)∗. In other words, Zz0 is a direct summand of H0 = K
as well. Consequently, we have H0 = H1 ⊕ Zz0 for some H1. Having defined
inductively {Hℓ, yℓ, zℓ}, let yℓ+1 ∈ Hℓ. Let χ be a regular cardinal, large enough,
so that Hℓ ∈ H (χ). The notation B stands for (H (χ), ∈). Let Bℓ be countable
such that Hℓ ∈ Bℓ. Now, we look at

Lℓ := Bℓ ∩ Hℓ.

We find easily that Lℓ is an unbounded countable abelian p-group. Hence it is of
the form ⊕i Zzℓ,i where zℓ,i is of order pm(ℓ,i). As Lℓ is unbounded, we may and
do assume that m(ℓ, i) > ℓ. This implies that Zzℓ,i is a pure subgroup of Lℓ, and
hence Hℓ. Consequently, Zzℓ,i is a direct summand of Hℓ as well. By definition,
we have Hℓ = Hℓ+1 ⊕ Zzℓ+1 for some abelian subgroup Hℓ+1 of Hℓ.]

For each i < ω, we let ℓ(i) > 1 be such that zi is of order pℓ(i). Following (e),
clearly we can find some infinite u ⊆ ω such that the sequence ⟨ℓ(i) : i ∈ u⟩

is increasing. For any j < ω, we clearly have
⊕

i∈u∩ j Zzi ⊆∗ K , and hence⊕
i∈u Zzi ⊆∗ K. In light of part (i),

⊕
i∈u Zzi is a direct summand of K. Thus there

is some K3 such that K =
⊕

i∈u Zzi ⊕ K3. Assume that ⟨ j (k) : k < ω⟩ lists u in an
increasing order, and define h ∈ End(K ) such that

• h↾K3 = idK3 ,

• h(z j (k)) = pℓ(k+1)−1 z j (ℓ+1).

It is easy to check that h is a well-defined endomorphism of K and it satisfies

• h is injective,

• h is not surjective.

In sum, h witnesses that K is not co-Hopfian, a contradiction we searched for.

Corollary 4.7. Let G be a p-group such that its reduced part is unbounded and its
countable pure subgroups are directed summand. Then G is not co-Hopfian.
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Lemma 4.8. Let G be an abelian group of size λ and m ≥ 1. Suppose there is a
bounded h ∈ End(G) such that f := m · idG +h ∈ End(G) is 1-to-1 not onto.4 Then
for some n ≥ 1 we have:

(i) NQr(m,n)(G).

(ii) Letting h0 = h ↾ 0n(G), h0 is an (m, n)-antiwitness for 0n(G).

Proof. Let f and h be as above. As Rang(h) is bounded, for some n ≥ 1 we
have Rang(h) ≤ 0n(G) and without loss of generality m | n. Possibly, replacing n
with nm, which is possible as n1 | n2 implies that 0n1(G) ≤ 0n2(G). Notice that:

(∗1) (a) f maps 0n(G) into itself.
(b) If x ∈ G \ 0n(G), then f (x) /∈ 0n(G).

Clause (a) clearly holds as by the choice of n we have Rang(h) ≤ 0n(G). For (b),
we suppose by contradiction that f (x) = mx + h(x) ∈ 0n(G). It follows that
mx = f (x) − h(x) ∈ 0n(G), and hence as m | n, x ∈ 0n(G), a contradiction.

Now let h0 = h ↾ 0n(G). Then we have:

(∗2) (a) h0 ∈ End(0n(G)).
(b) h0 is bounded.
(c) Since f is 1-to-1, so is f0 = m · id0n(G) +h0 ∈ End(0n(G)).

We are left to show that h0 is an (m, n)-antiwitness. By (∗2) it suffices show that
f0 is not onto or G/0n(G) is not m-divisible. Suppose on the contrary that f0 is
onto and G/0n(G) is m-divisible. We are going to show that f is onto, which
contradicts our assumption. To this end, let x ∈ G. Since G/0n(G) is m-divisible,
we can find some y ∈ G such that

x − my ∈ 0n(G).

We look at
w := x − my − h0(y) ∈ 0n(G).

As f0 is onto, we can find some z ∈ 0n(G) such that f0(z) = w. So,

x − my − h0(y) = w = f0(z) = mz + h0(z).

Using this equation, and the additivity of h0, we observe that

x = m(y + z) + h0(y + z) = f (y + z).

In other words, f is onto. This is a contradiction. □

Notation 4.9. Let κ and µ be infinite cardinals. The infinitary language Lµ,κ(τ )

is defined so as its vocabulary is the same as τ , it has the same terms and atomic
formulas as in τ , but we also allow conjunction and disjunction of length less than µ,

4Thus f witnesses non-co-Hopfianity of G.
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i.e., if φj , for j < β < µ are formulas, then so are
∨

j<β φj and
∧

j<β φj . Also,
quantification over less than κ many variables.

Lemma 4.10. Let G be a reduced abelian group of size λ such that

(1) λ > 2ℵ0 ,

(2) G is co-Hopfian.

Then the property Qr∗(G) is valid.

Proof. Thanks to Lemma 4.4 we know Qr(G) is satisfied, so it is enough to show
that 0p(G) is not bounded for some prime p. Towards a contradiction, we suppose
that 0p(G) is bounded for every prime p ∈ P.

Here, we are going to show that the pure subgroup 0p(G) is finite. Suppose on
the way of contradiction that 0p(G) is infinite. Recall that p-torsion subgroups are
pure. According to Fact 2.4, 0p(G) is a direct summand of G, as we assumed that
it is bounded. Also, following Fact 2.7 we know that 0p(G) is a direct summand of
cyclic groups. In sum, we observed that 0p(G) has a direct summand K which is a
countably infinite p-group. In view of Fact 2.6(i), we may and do assume that K is
not co-Hopfian. Recall that any direct summand of co-Hopfian, is co-Hopfian. This
means that G is not co-Hopfian as well, which contradicts our assumption. Thus,
it follows that for every p ∈ P, the group 0p(G) is finite and therefore a direct
summand of G, and hence there is a projection h p from G onto 0p(G). Recall that
p ∈ P and also h p ↾ 0p(G) ∈ End(0p(G)) is essentially equal to the identity map,
so is one-to-one, and hence onto, as 0p(G) is finite. Since Qr(G) is satisfied, it
follows from Definition 4.2(1)(d) that G/0p(G) is p-divisible.

Now, we take χ be a regular cardinal, large enough, such that G ∈ H (χ) and let

M ≺Lℵ1,ℵ1
(H (χ), ∈)

be such that

• M has cardinality 2ℵ0 ,

• G, tor(G) ∈ M ,

• 2ℵ0 + 1 ⊆ M .

In light of Fact 2.6(ii), we may and do assume that |tor(G)| = µ ≤ 2ℵ0 . Recall that
2ℵ0 +1 ⊆ M and tor(G) ∈ M . These imply that tor(G) ⊆ M . Now, as G/0p(G) is
p-divisible, then so is

G/0p(G)

(G ∩ M)/0p(G)
,

which by the third isomorphism theorem, is canonically isomorphic to G/G ∩ M .
As tor(G) ⊆ M , G/(G ∩ M) is torsion-free, it is divisible. Let x ∈ G \ M and
define the sequence (xn : n < ω) such that
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• x0 = x ,

• if n = m + 1 then

G/(G ∩ M) |Hn! xn + (G ∩ M) = xm + (G ∩ M)′′.

So, letting a0 = 0 and for n = m + 1 < ω,

an = n! xn − xm ∈ G ∩ M,

we have that (an : n < ω) ∈ Mω
⊆ M and so, as

M ≺Lℵ1,ℵ1
(H (χ), ∈),

we can find
ȳ = (yn : n < ω) ∈ (G ∩ M)ω

such that an = n! yn − ym , but then for every m < ω we have

G |H m!(xm+1 − ym+1) = xm − y′′

m .

Hence, ⋃
{Z(xm − ym) : m < ω}

is a nontrivial divisible subgroup of G, contradicting the assumption that G is
reduced. So we have proved the desired claim. □

Proposition 4.11. Let G ∈ be a boundedly endo-rigid abelian group. The following
assertions are valid:

(1) G is co-Hopfian if and only if Qr(G).

(2) If |G| > 2ℵ0 , then G is co-Hopfian if and only if Qr∗(G).

Proof. (1) If G is co-Hopfian, then by Lemma 4.4, Qr(G) holds. For the other
direction, suppose that G is boundedly rigid and Qr(G) holds. Let f ∈ End(G)

be 1-to-1, we want to show that f is onto. As G is boundedly rigid we have m, h
and L such that

(a) m ∈ Z, h ∈ End(G),

(b) f (x) = mx + h(x),

(c) L = Rang(h) is a bounded subgroup of G (and so of tor(G)).

If f is not onto, then by Lemma 4.8, there is n ≥ 1 such that NQr(m,n)(G) holds,
which is not possible (as we are assuming Qr(G)). Thus f is onto as required.

(2) It follows from clause (1) and Lemma 4.10. □
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Construction 4.12. Let K := ⊕
{

Z
pnZ

: p ∈ P and 1 ≤ n < m
}
, where m < ω, and P

is the set of prime numbers. Let G be a boundedly endo-rigid abelian group such
that tor(G) = K.5 Then G is co-Hopfian.

Proof. For any p1 ∈ P and n1 < m, let us define

(x(p1,n1))(p,n) =

{
1 + pn Z if (p, n) = (p1, n1),

0, otherwise.

For simplicity, we abbreviate it by x(p1,n1). Assume towards a contradiction that
there exists f ∈ End(G) such that f is 1-to-1 and not onto. As G is boundedly
endo-rigid, there are m ∈ Z and h ∈ Eb(G) such that f = m · idG +h. As f is 1-to-1
and K has no infinite bounded subgroup, we can conclude that m ̸= 0.

(∗1) m ∈ {1, −1}.

To see (∗1), suppose on the contrary that there is p ∈ P such that p | m and let m1

be such that m = m1 p. Now, as Rang(h) is bounded, there is k ≥ 1 such that

pk(Rang(h)) ∩ 0p(G) = {0}.

Let n ≥ k + 1, then

f (pn−1x(p,n)) = mpn−1x(p,n) + h(pn−1x(p,n))

= m1 ppn−1x(p,n) + pkh(pn−1−k x(p,n)) = 0,

which contradicts the fact that f is 1-to-1. This completes the argument of
m ∈ {1, −1} and without loss of generality we may assume that m = 1. Thus
f = idG +h.

(∗2) f maps G \ tor(G) into itself.

This is because f is 1-to-1. Indeed let x ∈ G \ tor(G). If f (x) ∈ tor(G), then
f (kx) = k f (x) = 0 for some k, thus kx = 0, i.e., x ∈ tor(G) which contradicts
x ∈ G \ tor(G).

(∗3) f ↾ tor(G) ∈ End(tor(G)) is 1-to-1 not onto.

Clearly f ↾ tor(G) ∈ End(tor(G)), and since f is 1-to-1, f ↾ tor(G) is 1-to-1 as
well. Now, suppose by contradiction that f ↾ tor(G) is onto. Then

(1) tor(G) ⊆ Rang( f ),

(2) x ∈ G ⇒ f (x) = x + h(x) ∈ tor(G).

Recall that h(x)∈ tor(G). Apply this along with (1), we deduce that h(x)∈Rang( f ).
Also, recall that Rang( f ) is a group. Let x ∈ G. Thanks to (2), we observe that

x = f (x) − h(x) ∈ Rang( f ).

5In light of our main result, such a group exists for any λ = λℵ0 > 2ℵ0 and the size of G should
be λ.
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In other words, f is onto, a contradiction. So, f ↾ tor(G) is not onto.

(∗4) (a) For every p ∈ P, f maps 0p(G) into itself and so f ↾ 0p(G) is 1-to-1.
(b) For some p ∈ P, f ↾ 0p(G) is not onto.

Item (a) above is simply because f is 1-to-1. To see (b) holds, note that if f ↾0p(G)

is onto for all prime number p, then so is f ↾ tor(G), which contradicts (∗3).
Thus, let us fix some prime p ∈ P such that f ↾ 0p(G) is not onto and let

h p = h ↾ 0p(G). Then by the above observations, it equipped with the following
properties:

(∗5) (a) h p ∈ End(0p(G)).
(b) Rang(h p) is bounded.
(c) h′

p = m · id0p(G) +h p = id0p(G) +h p is 1-to-1.
(d) h′

p is not onto.

In light of Definition 4.2 and (∗5) we observe that

(∗6) h p is a (1, p)-antiwitness for 0p(G) and so NQr(0p(G)).

Thanks to Lemma 4.5, 0p(G) is infinite. But,

0p(G) = 0p(K ) =

⊕{
Z

pnZ
: 1 ≤ n < m

}
,

which is finite. Thus we get a contradiction, and hence f is onto. It follows that G
is co-Hopfian and the lemma follows. □

Corollary 4.13. For any cardinals λ > 2ℵ0 , there is a co-Hopfian abelian group G
of size λ if and only if λ = λℵ0 .

Proof. Let λ>2ℵ0 be given. Suppose first that λ<λℵ0 . In other words, 2ℵ0 <λ<λℵ0 .
According to Fact 4.1(ii), there is no co-Hopfian abelian group of size λ. Now,
assume that λ = λℵ0 . Let

K := ⊕

{
Z

pnZ
: p ∈ P and 1 ≤ n < m

}
,

where m < ω. In light of Theorem 3.11, there exists a boundedly endo-rigid abelian
group G with tor(G) = K. By Construction 4.12, G is co-Hopfian. □

Lemma 4.14. Let G = G1 ⊕ G2 be a boundedly endo-rigid abelian group. Then
G1 is boundedly endo-rigid.

Proof. Let f1 ∈ End(G1). Then f1 ⊕ idG2 ∈ End(G). Since G is boundedly endo-
rigid there is m ∈ Z such that the map x 7→ f (x)−mx has bounded range. In other
words,

( f1 − m · idG1) ⊕ 0 ⊆ ( f1 − m · idG1) ⊕ (idG2 −m · idG2) = ( f − m · idG)

has bounded range. By definition, G1 is boundedly endo-rigid. □
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Notation 4.15 (Harrison). For each group G, we set

S := SG := {p ∈ P : G/0p(G) is not p-divisible}.

Now, we are ready to present the following promised criteria:

Proposition 4.16. Let λ > 2ℵ0 , and suppose G is a boundedly endo-rigid abelian
group of size λ. Then G is co-Hopfian if and only if :

(a) SG is a nonempty set of primes.

(b) (b1) tor(G) ̸= G.
(b2) If p ∈ S, then 0p(G) is not bounded.
(b3) If 0p(G) is bounded, then it is finite (and p /∈ SG).

Proof. Let K := tor(G), and for each prime number p, we set Kp := 0p(G).
First, we assume that G is co-Hopfian, and we are going to show items (a) and (b)

are valid. As G is co-Hopfian, and recall from the introduction that Beaumont and
Pierce (see [5]) proved that for the co-Hopfian group G, we know tor(G) is of size
at most continuum. In other words, |tor(G)| ≤ 2ℵ0 . We combine this along with our
assumption |G| = λ > 2ℵ0 , and conclude that K = tor(G) ̸= G, as claimed by (b1).

To prove (b2), let p ∈ S and suppose by contradiction that Kp is bounded. As
Kp is pure in G, and following Fact 2.4, the boundedness property guarantees that
Kp is a direct summand of G. By definition, there is Gp such that G = Kp ⊕ Gp.
Now, we look at idKp +p · idGp ∈ End(G). Let

(k, g) ∈ Ker(idKp +p · idGp).

Following definition, we have

(0, 0) = (idKp +p · idGp)(k, g) = (k, pg).

In other words, k = 0 and as Gp is p-torsion-free, g = 0. This means that

Ker(idKp +p · idGp) = 0,

and hence idKp +p · idGp is 1-to-1. Since p ∈ S, Gp := G/0p(G) is not p-divisible,
thus there is g in Gp such that g /∈ Rang(p · idGp). Consequently, idKp +p · idGp is
1-to-1 not onto. This is in contradiction with the co-Hopfian assumption, so Kp is
not bounded and (b2) follows.

In order to check (b3), suppose Kp = 0p(G) is bounded. Then it is a direct
summand of G, say G = Kp ⊕ Gp. Since G is co-Hopfian, and in view of Fact 4.1,
we observe that Kp is co-Hopfian. Thanks to Fact 2.6 Kp is finite.

Lastly, we check clause (a). Suppose on the way of contradiction that S is empty.
Let G1 ≺Lℵ1,ℵ1

G be of cardinality 2ℵ0 containing tor(G), recalling |tor(G)| ≤ 2ℵ0 ,
so G/G1 is divisible of cardinality λ.
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As G1 ̸= G, there is x0 ∈ G \ G1, and note that x /∈ tor(G). Now as G/ tor(G) is
divisible, we can choose the sequence ⟨xn : n ≥ 1⟩ of elements of G, by induction
on n, such that x0 = x and for each n,

G/ tor(G) |H n! xn+1 + tor(G) = xn + tor(G)′′.

Set
an := n! xn+1 − xn ∈ tor(G).

Note that ⟨an : n < ω⟩ ∈ G1, thus as G1 ≺Lℵ1,ℵ1
G, we can find elements yn ∈ G1

for n < ω such that
n! yn+1 = yn + an.

Subtracting the last two displayed formulas, shows that the group

L =

⋃
{Z(xn − yn) : n < ω}

is a nonzero divisible subgroup of G. Recall from Fact 2.18 that L is injective.
Since it is injective, we know L is a directed summand of its extensions. In sum,
the sequence

0 → L g
−→ G → coker(g) → 0,

splits. Recall from Discussion 2.20 that

End(I ) =

∏
p∈P0

Ẑ
⊕x p
p ,

where P0 := P ∪ {0} and x p are some index sets. This turns out that I is not
boundedly endo-rigid, provided it is nonzero. Recall from Lemma 4.14 that the
property of boundedly endo-rigid behaves well with respect to direct summand, it
obviously implies G is not boundedly endo-rigid. This contradiction implies that S
is not empty. So clause (a) holds. All together, we are done proving the left-right
implication.

For the right-left implication, assume items (a) and (b) hold, and we show that
G is co-Hopfian. Suppose on the way of contradiction that there exists f ∈ End(G)

such that f is 1-to-1 and not onto. As G is boundedly endo-rigid, there are m ∈ Z

and h ∈ Eb(G) such that f = m · idG +h.

(∗1) m ̸= 0.

To see (∗1), suppose m = 0. Then f = h, and since Rang(h) is bounded and
f is 1-to-1, we can conclude that G is bounded and therefor G = tor(G). This
contradicts clause (b1).

(∗2) If 0p(G) is infinite, then p ∤ m.

In order to see (∗2), first note that tor(G) is unbounded, as otherwise 0p(G) is also
bounded, and hence by (b3) it is finite, contradicting our assumption. Suppose on
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the way of contradiction that p | m. Then there is m1 such that m = m1 p. Now, as
Rang(h) is bounded, there exists k ≥ 1 such that

pk(Rang(h)↾0p(G)
)
= {0}.

Recall that Kp is unbounded. This gives us an element x ∈ 0p(G) of order pn for
some n ≥ k + 1. But then

f (pn−1x) = mpn−1x + h(pn−1x) = m1 ppn−1x + pkh(pn−1−k x) = 0,

which contradicts the fact that f is 1-to-1.
As before, we have the following properties:

(∗3) f maps G \ tor(G) into itself.

(∗4) f ↾ tor(G) ∈ End(tor(G)) is 1-to-1 not onto.

(∗5) (a) For every p ∈ P, f maps 0p(G) into itself and so f ↾ 0p(G) is 1-to-1.
(b) For some p ∈ P, f ↾ 0p(G) is not onto.

Fix p ∈ P such that f ↾ 0p(G) is not onto. Then h p := h ↾ 0p(G) is equipped
with the following properties:

(∗6) (a) h p ∈ End(0p(G)).
(b) Rang(h p) is bounded.
(c) h′

p = m · id0p(G) +h p = id0p(G) +h p is 1-to-1.
(d) h′

p is not onto.

In light of its definition, h p is a (1, p)-antiwitness and so NQr(0p(G)) holds.
Thanks to Lemma 4.5:

(∗7) 0p(G) is infinite.

This is in contradiction with (∗2). □

In [1] we studied absolutely co-Hopfian abelian groups. Recall that an abelian
group is absolutely co-Hopfian if it is co-Hopfian in any further generic extension of
the universe. Also, see [20] for the existence of absolutely Hopfian abelian groups
of any given size. Similarly, one may define absolutely endo-rigid groups. Despite
its simple statement, one of the most frustrating problems in the theory infinite
abelian groups is as follows:

Problem 4.17. Are there absolutely endo-rigid abelian groups of arbitrary large
cardinality?
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THE FUNDAMENTAL SOLUTION TO □b
ON QUADRIC MANIFOLDS WITH

NONZERO EIGENVALUES AND NULL VARIABLES

ALBERT BOGGESS AND ANDREW RAICH

We prove sharp pointwise bounds on the complex Green operator and its
derivatives on a class of embedded quadric manifolds of high codimension.
In particular, we start with the class of quadrics that we previously ana-
lyzed (Trans. Amer. Math. Soc. Ser. B 10 (2023), 507–541) — ones whose
directional Levi forms are nondegenerate, and add in null variables. The
null variables do not substantially affect the estimates or analysis at the
form levels for which □b is solvable and hypoelliptic. In the nonhypoelliptic
degrees, however, the estimates and analysis are substantially different. In
the earlier paper, when hypoellipticity of □b failed, so did solvability. Here,
however, we show that if there is at least one null variable, □b is always
solvable, and the estimates are qualitatively different than in the other cases.
Namely, the complex Green operator has blow-ups off of the diagonal. We
also characterize when a quadric M whose Levi form vanishes on a complex
subspace admits a □b-invariant change of coordinates so that M presents
with a null variable.

1. Introduction

A quadric submanifold of Cn
× Cm is a CR manifold that can be written as a graph

of a scalar- or vector-valued Hermitian symmetric quadratic form, φ, i.e.,

M = {(z, w) ∈ Cn
× Cm

: Im w = φ(z, z)}.

For a hypersurface (m = 1), the analysis of the Kohn Laplacian, □b, and the complex
Green operator (the relative inverse of □b) is well understood and has a long history.
The motivating example is the Heisenberg group where φ(z, z) = |z|2. Its group
structure can be exploited to construct explicit convolution kernels to invert the
sub-Laplacian as well as the Kohn Laplacian in degree (0, q), 1 ≤ q ≤ n − 1, the
cases where □b is invertible [Folland and Stein 1974a; 1974b; Hulanicki 1976;
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Gaveau 1977; Beals et al. 2000; Boggess and Raich 2009]. Estimates of these
kernels then show that the Green operator as well as some of its derivatives are
continuous operators on L p(M) as well as in other normed topologies.

For higher codimension quadrics, i.e., m ≥ 2, much less is understood about
the behavior of the Green operator. Part of the difficulty has to do with the fact
that the Levi form, φ, is vector valued instead of scalar valued as is the case for a
hypersurface. Thus, one must consider the directional Levi form for each normal
direction (see (2) for a precise definition). A breakthrough result came when
Peloso and Ricci [2003] characterized the solvability and hypoellipticity for the □b-
equation on quadrics based on the inertias of the directional Levi forms. This result
provided the impetus for much of our research. In [Boggess and Raich 2023], we
analyzed the pointwise estimates and L p regularity of the complex Green operator
on (0, q)-forms under the assumption that the eigenvalues of each directional Levi
form are nonvanishing. In particular, we showed that the complex Green operator
in this setting possesses all the same regularity properties as that of the Heisenberg
group. On the other hand, there are simple examples of quadrics (see [Boggess and
Raich 2021]) where some of the directional Levi forms are degenerate (i.e., have
vanishing eigenvalues) and for which the estimates on the complex Green operator
have no known parallel with that of any quadric hypersurface. The goal of this
paper is to introduce degeneracy into the Levi form in a controlled manner. We do
this by adding what we call null variables and catalog the effect on the solvability
of the □b-equation as well as providing sharp estimates for the complex Green
operator. As an added dividend, our techniques yield a new result on estimates for
the complex Green operator for a hypersurface with null directions in its Levi form.

Analyzing the □b-operator on quadrics is a problem that mathematicians have
been working on for the past 50 years. Hans Lewy [1957] discovered his famous
counterexample of the Cauchy–Kowalevsky theorem in the C∞ category while
investigating the associated ∂̄b-operator on the Heisenberg group. Regardless of the
hypotheses on the Levi form, □b is neither elliptic nor constant coefficient and this
makes the function theory difficult. The additional tools provided by the Lie group
structure of quadrics permits analysis that is currently unavailable in the general
case, especially in the higher codimension setting. For additional background on
the ∂̄b- and □b-operators, please see [Boggess 1991; Chen and Shaw 2001; Biard
and Straube 2017]. For detailed analysis of the □b-operator on quadric manifolds,
please see [Boggess 1991; Peloso and Ricci 2003; Boggess and Raich 2011; 2013;
2020; 2022b] and especially [Boggess and Raich 2023].

As mentioned above, in [Boggess and Raich 2023] we analyzed the estimates
on the Green operator for a quadric in Cn

× Cm where the codimension, m, is at
least 2 and where all the directional Levi forms are nondegenerate. As detailed
below, this assumption implies that n must be even. In this paper, we add null
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directions. Therefore, our setting is as follows: let n′
≥ 1, n′′

≥ 0, and n = 2n′
+n′′.

Let φ0 : C2n′

× C2n′

→ Cm be a Hermitian symmetric quadratic form; define
φ : C2n′

+n′′

× C2n′
+n′′

by

φ((z′, z′′), (z̃′, z̃′′)) = φ0(z′, z̃′).

Here, z′′ is a null variable whereby we mean that φ is independent of z′′. We let
z = (z′, z′′) so that z′

k = zk for 1 ≤ k ≤ 2n′ and z′′

j = z j for j = 2n′
+1, . . . , 2n′

+n′′.
Our main focus is on quadric submanifolds of the form

(1) Mφ = M = {(z′, z′′, w) ∈ C2n′

× Cn′′

× Cm
: Im w = φ(z′, z′)}.

For each unit vector ν ∈ Sm−1
⊂ Rm , we define the directional Levi form φν

:

C2n′
+n′′

× C2n′
+n′′

→ C by

(2) φν(z, z̃) = φ(z, z̃) · ν = (z̃′)∗ Aνz′,

where Aν is a Hermitian symmetric matrix, depending linearly on the parameter
ν ∈ Sm−1. We define the eigenvalues and eigenvectors of the directional Levi
forms to be the eigenvalues and eigenvectors of Aν , and let n±(ν) be the number of
positive/negative eigenvalues of Aν . When M is a hypersurface, there are directional
Levi forms in only two directions: ν = 1 and ν = −1 since S0 has two points.
In codimension m ≥ 2, ν belongs to the unit sphere Sm−1, a connected set. As
shown in [Boggess and Raich 2023], the connectivity of Sm−1, m ≥ 2, implies that
n+(ν) = n−(ν) = n′ whereas this is not necessarily true for the hypersurface case
(m = 1).

Peloso and Ricci [2003] found that □b is solvable (resp. hypoelliptic) on (0, q)-
forms on Mφ if and only if there does not exist ν ∈ Rm

\{0} so that n+(ν) = q (resp.
n+(ν)≤q) and n−(ν)= 2n′

+n′′
−q (resp. n−(ν)≤ 2n′

+n′′
−q). For the m ≥ 2 and

n′′
= 0 case studied in [Boggess and Raich 2023], n+(ν) = n′

= n−(ν), and hence
□b is solvable and hypoelliptic for all q ̸= n′ and neither solvable nor hypoelliptic
when q = n′. The lack of solvability is related to the fact that ker□b ̸= {0} when
q = n′. After subtracting the orthogonal projection onto ker□b in the case q = n′,
the complex Green operator satisfies estimates analogous to those for the Heisenberg
group, that is, estimates that are completely governed by the control metric for
M . We know, however, that when the eigenvalues of the directional Levi forms
are not bounded away from zero, the control distance does not always suffice to
control estimates on N0,q . This occurs both for hypersurfaces as well as higher
codimension quadrics [Machedon 1988; Nagel and Stein 2006; Boggess and Raich
2021].

As mentioned above, z′′ are null variables, and we henceforth assume that n′′
≥ 1.

Given this assumption and the fact that for all ν ∈ Rm
\ {0}, n+(ν) = n−(ν) = n′,

it follows that □b is solvable on Mφ for all 0 ≤ q ≤ 2n′
+ n′′. Additionally,
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□b fails to be hypoelliptic if q satisfies n′
≤ q and n′

≤ 2n′
+ n′′

− q, that is,
n′

≤ q ≤ n′
+ n′′. Interestingly, adding in null variables improves the solvability of

□b while leaving alone the number of hypoelliptic degrees. The estimate for N0,q in
the nonhypoelliptic cases is qualitatively worse than in the hypoelliptic cases. The
sharp bound is no longer controlled solely by the control distance and the integral
kernel has singularities off of the diagonal. Detailed results are stated in Section 2.

In contrast, the class of hypersurfaces we study are of the form

M = {(z′, z′′, w) ∈ Cn′

× Cn′′

× C : Im w = φ(z′, z′)},

where φ : Cn′

× Cn′

→ C is a Hermitian symmetric, scalar-valued, quadratic form.
We write φ(z′, z′) = (z′)∗ Az′, where A is a nondegenerate, Hermitian symmetric
matrix. Suppose that A has n+ positive eigenvalues and n− negative eigenvalues.
Here, we are not assuming n+

= n−. Solvability always holds because solvability
fails if and only if there is a direction for which the sum of the positive eigenvalues
and negative eigenvalues is n. However, this never happens with A or −A as
this sum equals n′ < n. Additionally, hypoellipticity fails if n+

≤ q ≤ n − n− or
n−

≤ q ≤ n − n+ and holds otherwise. Since n′
= n+

+ n−, hypoellipticity fails if
and only if n+

≤ q ≤ n+
+ n′′ or n − n+

− n′′
≤ q ≤ n − n+. Detailed estimates on

the Green operator for a hypersurface with null variables are stated in Section 2.
As with many past researchers (e.g., Folland and Stein [1974a], Nagel et al.

[2001], and Nagel and Stein [2006]), our approach to computing a working formula
for the Green operator, for m ≥ 1, involves the integral of the fundamental solution
to the heat equation associated to □b in the time variable. However, in the case of
a one-dimensional null space (n′′

= 1), the heat kernel is not integrable in the time
variable, and we therefore develop a new technique to obtain the Green operator in
this case. The resulting kernel and its estimates are stated in Section 2. Proofs of
the theorems stated in Section 2 are given in Sections 3, 4, and 5. In Section 6, we
show that the estimates given in our theorems are sharp.

2. Notation and main results

Notation for null variables. Define the projection π : C2n′
+n′′

×Cm
→ C2n′

+n′′

×Rm

by π(z, t+is)= (z, t). Given a quadric M ⊂ C2n′
+n′′

×Cm , the projection π induces
CR and Lie group structures on C2n′

+n′′

× Rm , and we call this Lie group G. Since
the projection is a CR isomorphism, we primarily work on G but use the same
notation interchangeably for objects on M and their pushfowards/pullbacks on G.

The group structure for G is

(3) (z, t) ∗ (ζ, u) = (z + ζ, t + u − 2 Im φ(z, ζ )) for (z, t), (ζ, u) ∈ G,

and this group operation can easily be lifted to M .
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Denote the set of increasing q-tuples by

Iq = {K = (k1, . . . , kq) ∈ Nq
: 1 ≤ k1 < k2 < · · · < kq ≤ 2n′

+ n′′
}.

Definition 2.1. Given an index K ∈Iq , we say a current NK =
∑

L∈Iq
ÑK ,L(z, t)dz̄L

is a fundamental solution to □b on forms spanned by dz̄K if □b NK = δ0(z, t) dz̄K .
A fundamental solution N0,q to □b acting on (0, q)-forms is then given by

N0,q f =

∑
K∈Iq

NK { fK dz̄K }.

In higher codimension (m ≥ 2) a fundamental solution to □b on forms spanned
by dz̄K usually involves terms spanned by dz̄L for L ̸= K in addition to L = K .

NK acts on smooth forms with compact support by componentwise convolution
with respect to the group structure on G, that is, if f = f0 dz̄K , then NK ∗ f =∑

L∈Iq
ÑK ,L ∗ f0 dz̄L . Thus

ÑK ,L ∗ f0(z, t) =

∫
(ζ,u)∈G

NK ,L((z, t) ∗ (ζ, u)−1) f0(ζ, u) dv(z) dt,

where dv(z) dt is the usual volume form for G, and (using (3))

(z, t) ∗ (ζ, u)−1
= (z − ζ, t − u + 2 Im φ(z, ζ )).

Recall that δ0 ∗ f = f . Therefore, if NK is a fundamental solution to □b and
f = f d z̄K is a smooth form with compact support, then □b{NK ∗ f } = f . As
mentioned in the introduction, Peloso and Ricci [2003] showed that solvability
in our context is possible in all degrees, i.e., 0 ≤ q ≤ n = 2n′

+ n′′. They also
showed that solvability is equivalent to the triviality of the L2 null space of □b. We
therefore conclude that if n′′ > 0, then any two fundamental solutions to □b must
differ by a non-L2 current.

For a multiindex I = (I1, I2, I3) ∈ N4n′
+2n′′

+m
0 , the multiindex I1 ∈ N4n′

0 records
the differentiation in the z′ and z̄′ variables, I2 ∈ N2n′′

0 records the differentiation
in the z′′ and z̄′′ variables, and I3 ∈ Nm

0 records the t-derivatives. Given such a
multiindex I , define the weighted order of I by ⟨I ⟩ = |I1| + |I2| + 2|I3| and the
order of I by |I | = |I1| + |I2| + |I3|.

As a consequence of the discussion in Section 1, we assume the following when
the codimension, m, is at least 2:

• For each ν ∈ Sm−1, there are n′ positive eigenvalues µν
j for j in some index

set Pν of cardinality n from the set {1, 2, . . . , 2n′
} and n′ negative eigenvalues

µν
k for k ∈ (Pν)c, the complement of Pν in {1, 2, . . . , 2n′

}.
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Remark 2.2. Given that our nonzero eigenvalues stay bounded away from 0 inde-
pendently of ν ∈ Sm−1, we may arrange the indices so that Pν

= P is independent
of ν.

Recall the set of increasing q-tuples is denoted by

Iq = {K = (k1, . . . , kq) ∈ Nq
: 1 ≤ k1 < k2 < · · · < kq ≤ 2n′

+ n′′
}.

Also set

I ′

q ′ = {K ′
= (k1, . . . , kq ′) ∈ Nq ′

: 1 ≤ k1 < k2 < · · · < kq ′ ≤ 2n′
},

I ′′

q ′′ = {K ′′
= (k1, . . . , kq ′′) ∈ Nq ′′

: 2n′
+ 1 ≤ k1 < k2 < · · · < kq ′′ ≤ 2n′

+ n′′
}.

Given K ∈ Iq , we can always decompose K = (K ′, K ′′) where K ′
∈ I ′

q ′ and
K ′′

∈ I ′′

q ′′ for some q ′, q ′′ with q ′
+ q ′′

= q. Our notation follows [Boggess and
Raich 2022b]. For λ ∈ Rm

\ {0}, set ν = λ/|λ| ∈ Sm−1. We write z′
∈ Cn′

in terms
of the unit eigenvectors of φλ which means that (z′)λj = (z′)νj is given by

(z′)ν := Z(ν, z′) := U (ν)∗ · z′,

where U (ν) is the matrix whose columns are the eigenvectors vν
k , 1 ≤ k ≤ 2n′, of the

directional Levi form φν , and · represents matrix multiplication with z′ written as a
column vector. Note that the corresponding orthonormal basis of (0, 1)-covectors
for this basis is

d Z̄ j (ν, z′), 1 ≤ j ≤ 2n′,

where d Z̄(ν, z′) = U (ν)T
· dz̄′, dz̄′ is written as a column vector of (0, 1)-forms,

and the superscript T stands for transpose. Note that (z′)ν = Z(ν, z′) depends
smoothly on z′

∈ Cn′

but only is locally integrable as a function of ν ∈ Sm−1 [Rainer
2011]. The coordinates for the remaining n′′ variables, z′′

= (z2n′+1, . . . , zn), do
not depend on ν. Denote by In′′ the n′′

×n′′ identity matrix. We write

zν
= (z′, z′′)ν = (zν, z′′) = Z(ν, z) = (Z(ν, z′), z′′) = (U (ν)∗ ⊕ In′′)(z′, z′′),

where (A ⊕ B)(z′, z′′) := (A(z′), B(z′′)) for any n′
×n′ matrix, A, and any n′′

×n′′

matrix, B. Also,

d Z̄(ν, z) = (d Z̄(ν, z′), dz̄′′) = (U (ν)T
⊕ In′′) · (dz̄′, dz̄′′).

We will need to express dz̄K in terms of d Z̄(ν, z)L for L ∈ Iq . We have

(4) dz̄K = dz̄′

K ′ ∧ dz̄′′

K ′′ =

∑
L ′∈I ′

q′

det(Ū (ν)K ′,L ′) d Z̄(ν, z′)L ′ ∧ dz̄′′

K ′′,

where Ū (ν)K ′,L ′ is the q ′
×q ′ minor of Ū (ν) comprised of elements in the rows K ′

and columns L ′. Note that if q = 2n′
+ n′′, then the above sum only has one term
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and det Ū (ν)K ,K = 1. In addition, when q = 0, I0 = ∅ and the sum (4) does not
appear. Similarly,

(5) d Z̄(ν, z′)L =

∑
J∈I ′

q′

det(U (ν)T
L ′,J ) dz̄′

J ∧ dz̄′′

L ′′ .

Throughout the paper, we use the function

A(r, ν, z) = A(r, ν, z′, z′′) =
2

|log r |
|z′′

|
2
+

2n′∑
j=1

|µν
j |

(
1 + r |µν

j |

1 − r |µν
j |

)
|zν

j |
2,

where µν
j are the nonzero eigenvalues for Aν and the dimensional constant is

K2n′+n′′,m =
42n′

+n′′

(2n′
+ n′′

+ m − 2)!

2(2π)2n′+n′′+m .

Main results for codimension ≥ 2. Our first theorem provides a formula for the
fundamental solution to □b in the case where the null variable dimension satisfies
n′′

≥ 2.

Theorem 2.3. Let M ⊂ C2n′
+n′′

×Cm , with m ≥ 2, n′
≥ 1, and n′′

≥ 2, be a quadric
submanifold defined by (1) with associated projection G, and assume that there
exists a Hermitian symmetric quadratic form φ0 : Cn′

× Cn′

→ Cm such that

(1) φ(z, z̃) = φ0(z′, z̃′) for all z ∈ C2n′
+n′′

and

(2) the eigenvalues of the directional Levi forms of φ0 are nonzero.

For any 0 ≤ q ≤ 2n′
+ n′′, there is a fundamental solution N = N0,q to □b on

(0, q)-forms given by convolution with the kernel

(6) NK (z, t) = K2n′+n′′,m

∑
L∈Iq

∫
ν∈Sm−1

det(Ū (ν)K ,L) d Z̄(ν, z)L

×

∫ 1

r=0

1
|log r |n

′′

( ∏
j∈Lc

∩P
j∈L∩Pc

r |µν
j ||µν

j |

1 − r |µν
j |

∏
k∈L∩P

k∈Lc∩Pc

|µν
k |

1 − r |µν
k |

)

×
1

(A(r, ν, z′, z′′) − iν · t)2n+m−1

dr dν

r
,

where dν is surface measure on the unit sphere Sm−1.

This theorem follows directly from Theorem 2.3 in [Boggess and Raich 2022b],
and the formula is similar to the corresponding one in the same work, where n′′

= 0
(no log r term appears). The formula for N is the s-integral over 0 ≤ s < ∞ of
the partial Fourier transform of the □b heat kernel H̃K (s, z, λ̂); see (16) (where s
represents time). For this derivation, we require that this heat kernel is integrable in
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s over 0 ≤ s < ∞, which, as we shall see below, holds whenever □b is hypoelliptic
or n′′

≥ 2. However, when n′′
= 1 in the nonhypoelliptic case, this heat kernel fails

to be integrable in s and, consequently, the factor 1/(r |log r |
n′′

) appearing in (6)
is not integrable in r near r = 0 when n′′

= 1. The numerator is nonvanishing at
r = 0 when L = P . In Theorem 2.4, below, we derive a fundamental solution for
□b when n′′

= 1 and L = P by modifying our earlier construction to ensure greater
decay in the time variable s without disturbing the approximation of the identity
behavior as s → 0. This kernel requires a genuinely new idea that is not anticipated
in [Boggess and Raich 2022b].

Theorem 2.4. Let M ⊂ Cn
× Cm be a quadric submanifold as in Theorem 2.5

but with n′′
= 1 (and n = 2n′

+ 1). Let K ∈ Iq where q = n′ or q = n′
+ 1 and

K ′
∈ I ′

n′ . Then H̃K (s, z, λ̂) is not integrable on (0, n′)- or (0, n′
+ 1)-forms, and a

fundamental solution to □b on forms spanned by dz̄K is given by

(7) NK (z, t)

= K2n′+1,m

∑
L∈I′

q′

L ̸=P

∫
ν∈Sm−1

det(Ū (ν)K ′,L) d Z̄(ν, z′)L ∧ dz̄′′

K ′′

×

∫ 1

r=0

( ∏
j∈(L′)c∩P
j∈L′∩Pc

r |µν
j ||µν

j |

1 − r |µν
j |

∏
k∈L′

∩P
k∈(L′)c∩Pc

|µν
k |

1 − r |µν
k |

)

×
1

(A(r, ν, z) − iν · t)2n′+m

dr dν

|log r |r

+

∫
ν∈Sm−1

det(Ū (ν)K ′,P) d Z̄(ν, z′)P ∧ dz̄′′

K ′′ |det Aν |

×

∫ 1
2

r=0

[( 2n′∏
j=1

1

1 − r |µν
j |

)
1

(A(r, ν, z) − iν · t)2n′+m

−
1

(A(0, ν, z′, 0) − iν · t)2n′+m

]
dr dν

|log r |r

+

∫
ν∈Sm−1

det(Ū (ν)K ′,P) d Z̄(ν, z′)P ∧ dz̄′′

K ′′ |det Aν |

×

∫ 1

r=
1
2

( 2n′∏
j=1

1

1 − r |µν
j |

)
1

(A(r, ν, z) − iν · t)2n′+m

dr dν

|log r |r
.

When L = P in the above formula for N , the term inside the large brackets, [ · ],
in the integrand of (7) vanishes sufficiently quickly at r = 0, and thus this term is
integrable in r over 0 ≤ r ≤

1
2 .
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Our main theorem regarding pointwise bounds on the kernel for the fundamental
solution of □b is the following:

Theorem 2.5. Let M ⊂ C2n′
+n′′

× Cm , with m ≥ 2 and n′, n′′
≥ 1, be a quadric

submanifold defined by (1) with associated projection G, and assume that there
exists a Hermitian symmetric quadratic form φ0 : Cn′

× Cn′

→ Cm so that

(1) φ(z, z̃) = φ0(z′, z̃′) for all z ∈ C2n′
+n′′

and

(2) the eigenvalues of the directional Levi forms of φ0 are nonzero.

Let N = N0,q .

• Suppose that 0 ≤ q < n′ or q > n′
+n′′. For any multiindex I ∈ N4n′

+2n′′
+m

0 , there
exists a constant C I > 0 so that

(8) |D I N (z, t)| ≤
C I

(|z|2 + |t |)2n′+n′′+m−1+
1
2 ⟨I ⟩

.

• Suppose that n′
≤ q ≤ n′

+ n′′ and n′′
≥ 2. Then there exists a constant C I > 0 so

that

(9) |D I N (z, t)| ≤
C I

(|z|2 + |t |)n′′−1+
1
2 |I2|(|z′|2 + |t |)2n′+m+

1
2 |I1|+|I3|

.

• Finally, suppose that n′
≤ q ≤ n′

+ n′′ and n′′
= 1. Then there exists a constant

C I > 0 so that

(10) |D I N (z, t)| ≤ C I


log
(
1 +

|zn′+1|
2

|z′|2+|t |

)
(|z′|2 + |t |)2n′+m if I = 0,

1

(|z|2 + |t |)
1
2 |I2|(|z′|2 + |t |)2n′+m+

1
2 |I1|+|I3|

if I ̸= 0.

These estimates are sharp.

In this paper, we only provide the proof for the case I = 0. The proof in the I ̸= 0
case provides no additional insights, though we do discuss later how derivatives
affect the estimates. Keeping track of higher derivatives requires some bookkeeping,
which is thoroughly explained and carried out in [Boggess and Raich 2023].

In the case where 0 ≤ q < n′ or q > n′
+ n′′, the estimate in (8) implies that

Nq is locally integrable in G and more can be said about the regularity of Nq as
an operator using the theory of homogeneous groups. Let W k,p(M) denote the
Sobolev space of forms on M with z-, z̄- and t-derivatives of order k in L p(M).
Following the approach of [Boggess and Raich 2022a, Section 7.3], we can view G
(and hence M) as a homogeneous group with norm function ρ(z, t) = |z| + |t |1/2.
From (8), it follows that the integration kernel of N0,q and its derivatives have the
appropriate pointwise decay (analogous to that in the case of nonzero eigenvalues
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handled in [Boggess and Raich 2023]). A second consequence of (8) is that N0,q is
a tempered distribution, and combining this fact with the natural dilation structure
and that D I N0,q is a convolution operator shows that D I N0,q is uniformly bounded
on normalized bump functions. This is exactly what is required to establish the L p

boundedness, 1 < p < ∞. The convolution operator D I N0,q extends to a bounded
operator on W k,p(Cn

× Rm), and we state this as a corollary to Theorem 2.5.

Corollary 2.6. Let M ⊂ C2n′
+n′′

× Cm be a quadric submanifold satisfying the
hypothesis of Theorem 2.5. Assume 0 ≤ q < n′ or q > n′

+ n′′. Given a multiindex
I ∈ N4n+m

0 such that ⟨I ⟩ = 2, the operator D I N0,q is exactly regular on W k,p(M)

for all k ≥ 0 and all 1 < p < ∞. In other words, D I N0,q extends to a bounded
operator on W k,p(M). In particular, D I N0,q is a hypoelliptic operator.

The regularity properties of N(0,q) are not yet known for n′
≤ q ≤ n′

+ n′′.

Results for hypersurfaces. Even though our focus is mostly on the higher codi-
mension case, our technique provides a new result in the hypersurface case as well.
When M is a hypersurface, M is of the form

(11) M = {(z′, z′′, w) ∈ Cn′

× Cn′′

× C : Im w = φ0(z′, z′)},

where φ0(z′, z′) = (z′)∗ Az′ and A is a nondegenerate Hermitian matrix. Since A is
Hermitian, we can choose coordinates in which A is diagonal. In these coordinates
(which we still call (z′, z′′)),

φ(z, z) =

n′∑
j=1

µ j |z j |
2,

where µ1, . . . , µn′ are the nonzero eigenvalues of A. In the hypersurface case,
there is not a requirement that n′ is even or n+

= n−. Also, □b acts diagonally in
these coordinates. This means if f =

∑
J∈Iq

f J dz̄ J , then □b f =
∑

J∈Iq
□J f J dz̄ J .

Consequently, to invert □b, we need only to invert the □J -operators which is simpler
than the higher codimension cases handled in the previous subsection. We continue
to let P denote the indices of the positive eigenvalues of A. For the theorems in
this section, we need the following notation. Let

A(r, z) =
2

|log r |
|z′′

|
2
+

n′∑
j=1

1 + r |µ j |

1 − r |µ j |
|µ j ||z j |

2

and

ε j,L =

{
sgn(µ j ), j ∈ L ,

−sgn(µ j ), j ̸∈ L .

The proof of Theorem 2.4 is easily adapted to prove the following result.
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Theorem 2.7. Let M ⊂ Cn′

×Cn′′

×C be a quadric hypersurface described by (11).
Fix 0 ≤ q ≤ n, where n = n′

+ n′′, and let L ∈ Iq .

(1) If n′′
≥ 2 or n′′

= 1 and L ′ is neither P nor Pc, then the fundamental solution
to the □L -equation given by the inverse Fourier transform in t of

∫
∞

0 e−s□L ds is

NL(z, t) =
22n−1(n−1)!

(2π)n+1 |det A|

(∫ 1

0

n′∏
j=1

r
1
2 (1−ε j,L )|µ j |

1−r |µ j |

1
(A(r, z)−i t)n

dr
r |log r |n

′′

+

∫ 1

0

n′∏
j=1

r
1
2 (1+ε j,L )|µ j |

1−r |µ j |

1
(A(r, z)+i t)n

dr
r |log r |n

′′

)

(2) If n′′
= 1 and L ′

= P , then there is a fundamental solution to the □L -equation
given by

NL(z, t) =
22n−1(n−1)!

(2π)n+1 |det A|(∫ 1

0

n′∏
j=1

r |µ j |

1−r |µ j |

1
(A(r, z)+i t)n

dr
r |logr |

+

∫ 1

1
2

n′∏
j=1

1
1−r |µ j |

1
(A(r, z)−i t)n

dr
r |logr |

+

∫ 1
2

0

( n′∏
j=1

1
1−r |µ j |

1
(A(r, z)−i t)n

−
1

(A(0, z)−i t)n

)
dr

r |logr |

)
.

(3) If n′′
= 1 and L ′

= Pc, then

NP(z, −t) = NP(z, t)

is a fundamental solution to the □L -equation.

The form of the solutions from Theorem 2.7 are simpler versions than in
Theorem 2.4 in the n′′

= 1 case and (20) in the n′′
≥ 2 case. The analysis in

the higher codimension case shows that the size comes from the r -integral and there
is no cancellation in the ν-integral. Consequently, the proof of Theorem 2.5 proves
the following theorem as well.

Theorem 2.8. Let M ⊂ Cn′

×Cn′′

×C be a quadric hypersurface described by (11).
Fix 0 ≤ q ≤ n, where n = n′

+ n′′, and L ∈ Iq . For any multiindex I ∈ N2n+1
0 , there

exists a constant C I > 0 so that the following hold.

• If L ′ is neither P nor P ′, then

|D I N (z, t)| ≤
C I

(|z|2 + |t |)n+
1
2 ⟨I ⟩

.

This case includes the q for which □b is hypoelliptic.
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• If n′′
≥ 2 and L ′

= P or L ′
= Pc, then

(12) |D I N (z, t)| ≤
C I

(|z|2 + |t |)n′′−1+
1
2 |I2|(|z′|2 + |t |)n′+1+

1
2 |I1|+|I3|

.

• Finally, suppose that n′′
= 1 and L ′

= P or L ′
= Pc. Then

(13) |D I N (z, t)| ≤ C I


log
(
1 +

|zn |
2

|z′|2+|t |

)
(|z′|2 + |t |)n′+1 if I = 0,

1

(|z|2 + |t |)
1
2 |I2|(|z′|2 + |t |)n′+1+

1
2 |I1|+|I3|

if I ̸= 0.

These estimates are sharp.

Corollary 2.9. Suppose M is a quadric hypersurface in Cn satisfying the hypotheses
of Theorem 2.8. Fix 0 ≤ q ≤ n, where n = n′

+ n′′ and L ∈ Iq . If L ′ is neither P
nor P ′, then for any multiindex I ∈ N4n+m

0 with ⟨I ⟩ = 2, the operator D I NL extends
to a bounded operator on W k,p(M). In particular, D I NL is a hypoelliptic operator.

Remark 2.10. The estimates in (9), (10), (12), and (13) suggest that we investigate
N from the point of view of flag kernels, à la Nagel, Ricci, and Stein [2001]. N is
the wrong degree to be a flag kernel as it inverts second-order differential operators,
just as the Newtonian potential is the wrong degree to be a Calderón–Zygmand
operator. The are four types of second-order derivatives (two derivatives in z′

variables, two derivatives in z′′ variables, one derivative each in z′ and z′′ variables,
and one derivative in a t variable), and only applying two derivatives in z′′ variables
to N produces a kernel with the correct order of decay. Even in this case, it is
currently unclear if the kernel is a flag kernel. It would be an interesting project to
understand the complete mapping properties of N and its second-order derivatives.

Vanishing variables. Our above assumption is that z′′ is a null variable. There is a
more general concept that we call a vanishing variable which is defined as follows:
z′′ is a vanishing variable for φ if φ(z, z) = 0 whenever z = (0, z′′), z′′

∈ Cn′′

. A
null variable is also a vanishing variable but the converse is not true, as illustrated by
the example below. We briefly discuss vanishing variables since the techniques in
this paper only apply to null variables. We expect that the analysis of estimates for
fundamental solutions in the case of vanishing variables will be more complicated.

Here is an example in C3 where z3 is a vanishing variable but not a null variable:

(14)

φ1(z, z) = |z1|
2
− |z2|

2,

φ2(z, z) =
√

2 Re(z3 z̄1 + z3 z̄2),

φ3(z, z) =
√

2 Re(i z3 z̄1 − i z3 z̄2).
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Note that z3 is a vanishing variable but not a null variable for φ due to φ’s
dependence on z3. There is no □b-invariant change of coordinates that will make z3 a
null variable for φ. Here, a □b-invariant change of coordinates between two quadrics
M and M ′ in Cn

×Cm is a nonsingular, complex linear map T : Cn
×Cm

→ Cn
×Cm

with T (M)= M ′ and T ∗(□b f )=□b(T ∗( f )) for all (0, q)-forms on M ′. As shown
in [Boggess and Raich 2020], a □b-invariant change of variables requires a unitary
change of coordinates in the z variables, i.e., ẑ = U (z) where U is a unitary
matrix. However, in order to preserve the independence of z3 for φ1, U must
map the copy of C2 spanned by the z1 and z2 axes to itself. Since U is unitary,
the orthogonal complement of this set (namely the z3 axis) must remain invariant
under U . Therefore U has the form

U =

(
U2 0
0 1

)
,

where U2 is a 2×2 unitary matrix. A change of variables involving this U cannot
remove the dependence of φ2 or φ3 on z3.

This example illustrates the following point: if z′′ is a null variable, then φ only
depends on the variable z′, which is the coordinate for the orthogonal complement
of the space spanned by the null variables. This observation and the analysis in the
previous paragraph leads to the following theorem.

Theorem 2.11. Suppose L is a complex subspace of C-dimension n′′ in Cn (n′′
≤ n),

and suppose φ(z, z) = 0 for all z ∈ L. Then there exists a □b-invariant change of
variables so that z′′

∈ Cn′′

is a null variable for φ if and only if for each 1 ≤ j ≤ n,
the map z ∈ Cn

→ A j z preserves L⊥ (the orthogonal complement of L in Cn),
where A j are the Hermitian matrices corresponding to the directional Levi forms of
the standard basis vectors, E j , 1 ≤ j ≤ m, in Rm , that is, φ j (z, z) = z∗ A j z.

Proof. The proof is clear — if there is a unitary change of variables mapping L to a
space spanned by the null variable z′′, then the matrices A j , 1 ≤ j ≤ n, in the new
variables must preserve the directions spanned by the z′ variables. Since U is unitary,
in the original coordinates, A j must map L⊥ to itself. The converse is similar. □

From a practical point of view, finding a null variable or vanishing variable
for a given φ can proceed as follows. First, establish whether all the A j have a
common kernel. If the common kernel is trivial, then there are no vanishing or
null variables. If there is a nontrivial common kernel, then diagonalize the matrix
representing one of the coordinate functions, say A1. At least one of the variables,
say zn , is a vanishing variable (representing an eigenvector corresponding to the
zero eigenvalue of A1). Next, see if the other component functions are independent
of zn . If so, then zn is also a null variable. If not, then zn is a vanishing variable
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but not a null variable. There may be additional vanishing and/or null variables
depending on the dimension of the common kernel.

3. The □b-heat equation and the proof of Theorem 2.4

□b and the partial Fourier transform. The operator □b is translation invariant in t ,
and so we introduce the partial Fourier transform of a function f (z, t) by

f (z, λ̂) =
1

(2π)m/2

∫
Rm

f (t)e−iλ·t dt

with ˆ appearing over the transform variables. As is shown in [Peloso and Ricci
2003], for a fixed λ ∈ Rm (with ν = λ/|λ|), the coordinates Z(ν, z′) that diagonalize
Aν also diagonalize □̂b. On the transform side, we treat λ as a parameter and write
the transformed operator as □̂λ

b . Fix K ∈ Iq . Note that if f (z, t) = fK dz̄K and
q ′

= |K ′
|, then

f (z, λ̂) = fK (z, λ̂) dz̄′

K ′∧dz̄′′

K ′′ =

∑
L∈I ′

q′

fK (z, λ̂) det(Ū (ν)K ′,L) d Z̄(ν, z′)L ∧dz̄′′

K ′′ .

One of the reasons for using the Z(ν, z′) coordinates is that □̂λ
b acts diagonally in

these coordinates (see [Boggess and Raich 2022b]). Specifically,

(□b f )(z, λ̂) = □̂λ
b{ f (z, λ̂)} =

∑
L∈I ′

q′

□̂λ
L{ fK (z, λ̂) det(Ū (ν)K ′,L)} d Z̄(ν, z′)L ∧dz̄′′

K ′′

where

□̂λ
L = −

1
41z + 2i

n∑
k=1

µλ
k Im{zν

k∂zν
k
} +

n∑
k=1

(µλ
k )

2
|zν

k |
2
−

(∑
k∈L

µλ
k −

∑
k ̸∈L

µλ
k

)
and 1z is the ordinary Laplacian in the indicated variables. Our approach to solving
the □b-equation is via the □b-heat equation. Given the diagonalization of □̂b, it is
enough to solve the □̂λ

L equations

(15)

(
∂

∂s
+ □̂λ

L

)
{H̃L(s, z, λ̂)} = 0 for s > 0,

H̃L(s = 0, z, λ̂) = (2π)−m/2δ0(z) ⊗ 1λ,

where δ0(z) is the Dirac-delta function centered at the origin in the z variables and
1λ is the function which is identically 1 for all λ ∈ Rm . The function H̃L(s, z, λ̂) is
called the heat kernel and is given by (see [Boggess and Raich 2011])

(16) H̃L(s, z, λ̂) =
2n

(2π)m/2+n

e−|z′′
|
2/s

sn′′

2n′∏
j=1

esεν
j,L |µλ

j ||µλ
j |

sinh(s|µλ
j |)

e−|µλ
j | coth(s|µλ

j |)|Z j (ν,z′)|2
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where

εα
j,L =

{
sgn(µλ

j ) if j ∈ L ,

−sgn(µλ
j ) if j ̸∈ L .

Integrability in s over 0 ≤ s < ∞ holds when n′′
≥ 2 or when L ̸= P . However,

integrability fails when L = P and n′′
= 1 since

H̃P(s, z, λ̂) =
2n

(2π)m/2+n

e−|z′′
|
2/s

s

2n′∏
j=1

es|µλ
j ||µλ

j |

sinh(s|µλ
j |)

e−|µλ
j | coth(s|µλ

j |)|Z j (ν,z′)|2

and so H̃P(s, z, λ̂) decays like 1
s as s → ∞. Consequently, the harmonic projection

onto ker □̂λ
L is 0 yet the “formula"

(□̂λ
P)−1

=

∫
∞

0
e−s□̂λ

P ds

fails to hold because the integral on the right-hand side diverges.

Proof of Theorem 2.4. Set δL ,P = 1 if L = P and δL ,P = 0 otherwise. Define

S̃L ,P(z′, λ̂) = lim
s→∞

2n

(2π)m/2+n

2n′∏
j=1

es|µλ
j ||µλ

j |

sinh(s|µλ
j |)

e−|µλ
j | coth(s|µλ

j |)|Z j (ν,z′)|2
δL ,P

=
2n+2n′

(2π)m/2+n |det Aλ|

2n′∏
j=1

e−|µλ
j ||Z j (ν,z′)|2

δL ,P .

Let χ be an indicator function on the ray [b, ∞) where b > 0 is to be determined
later. Set

(17) ÑL(z, λ̂) =

∫
∞

0
H̃L(s, z, λ̂) −

χ(s|λ|)

s
S̃L ,P(z′, λ̂) ds.

The integral defining ÑL converges because

es|µλ
j |

sinh(s|µλ
j |)

e−|µλ
j | coth(s|µλ

j |)|Z j (ν,z′)|2
− 2e−|µλ

j ||Z j (ν,z′)|2

decays exponentially in s (and the integral kernel is ∂ H̃L/∂s near 0). Not coinciden-
tally, S̃P(z′, λ̂) is the integral kernel of the harmonic projection onto ker{□̂λ,M0

P } on
the quadric M0. Since □̂λ

P = −△z′′ + □̂λ,M0
P , it follows that □̂λ

L S̃L ,P = 0 for all L .
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Consequently,

□̂λ
L ÑL(z, λ̂) =

∫
∞

0
□̂λ

L H̃L(s, z, λ̂) −
χ(s|λ|)

s
□̂λ

L S̃L ,P(z′, λ̂) ds

= −

∫
∞

0

∂ H̃L(s, z, λ̂)

∂s
ds = δ0(z) ⊗ 1λ by (15),

as desired. The latter integral converges as s → ∞ because ∂ H̃L(s, z, λ̂)/∂s decays
at least as fast as s−2. We can now construct a solution to invert □b using the
modified ÑL(z, λ̂) functions. Following the argument of [Boggess and Raich
2022b, Proposition 3.2], we have the following solution. In the following statement
F−1

λ denotes the inverse partial Fourier transform in λ.

Proposition 3.1. For given indices K ∈ Iq and L ∈ I ′

q ′ , define

(18) NK ,L(z, λ̂) = det(Ū (ν)K ′,L)ÑL((z′, z′′), λ̂) d Z̄(z′, ν)L ∧ dz̄K ′′,

where ÑL(z′, z′′, λ̂) is defined by (17). Then there is a fundamental solution to □b

on M applied to a form spanned by dz̄K given by

(19) NK (z, t) = F−1
λ

{∑
L∈I ′

q′

NK ,L(z, λ̂)

}
(t).

We now continue with the proof of Theorem 2.4. If L ̸= P , then S̃L ,P(z′, λ̂) = 0
in (17). Recalling that n′′

= 1, the calculation in Section 4 of [Boggess and Raich
2022b] shows

(20) F−1
λ {NK ,L(z, λ̂)}(t)

= Kn,m

∫
ν∈Sm−1

det(Ū (ν)K ′,L) d Z̄(ν, z′)L ∧ dz̄′′

K ′′

×

∫ 1

r=0

( ∏
j∈(L′)c∩P
j∈L′∩Pc

r |µν
j ||µν

j |

1−r |µν
j |

∏
k∈L′

∩P
k∈(L′)c∩Pc

|µν
k |

1−r |µν
k |

)

×
1

(A(r, ν, z)−iν ·t)2n′+m
dr dν

|log r |r
.

This establishes the terms in (7) where L ̸= P .
When L = P , the SP,P term is present in ÑP (see (17)) and we compute the

inverse Fourier transform in λ by switching to polar coordinates, λ = τν, τ ≥ 0,
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ν ∈ Sm−1. We have

(21) F−1
λ {NK ,P(z, λ̂)}(t)

=
1

(2π)m/2

∫
λ∈Rm

eiλ·t
{det(Ū (ν)K ′,P)ÑP(z, λ̂) d Z̄(z, ν)P ∧ dz̄′′

K ′′} dλ

=
1

(2π)m/2

∫
ν∈Sm−1

det(Ū (ν)K ′,P) d Z̄(z, ν)P ∧ dz̄′′

K ′′

×

∫
∞

τ=0
eiτν·t

∫
∞

s=0

(
H̃P(s, z, τ̂ ν) −

χ(sτ)

s
SP,P(z′, τ̂ ν)

)
τm−1 ds dτ dν,

where dν is surface measure on the unit sphere Sm−1. Now we insert the heat
kernel, H̃P , from (16) and focus on the above s, τ -integral in (21), denoted by Iν .
Note that

µλ
j = τµν

j and det Aλ = τ 2n′

det Aν .

We scale in s by replacing sτ by s and then integrate we in τ . With Cm,n =

2n/(2π)m/2+n , we have

Iν = Cm,n|det Aν |

∫
∞

s=0

∫
∞

τ=0

(
e−τ |z′′

|
2/s

2n′∏
j=1

es|µν
j |

sinh(s|µν
j |)

e−|µν
j | coth(s|µν

j |)τ |zν
j |

2

−22n′

χ(s)
2n′∏
j=1

e−|µν
j |τ |zν

j |
2

)
ei t ·ντ τ 2n′

+m−2 dτ
ds
s

=Cm,n|det Aν |

∫
∞

s=0

∫
∞

τ=0

(
2n′∏
j=1

es|µν
j |

sinh(s|µν
j |)

e−τ
(
|z′′

|
2/s+

∑2n′

j=1 |µν
j | coth(s|µν

j |)|z
ν
j |

2
−iν·t

)

−22n′

χ(s)e−τ
(∑2n′

j=1 |µν
j ||z

ν
j |

2
−i t ·ν

))
τ 2n′

+m−1 dτ
ds
s

= (2n′
+m−1)! Cm,n|det Aν |

×

∫
∞

s=0

(( 2n′∏
j=1

es|µν
j |

sinh(s|µν
j |)

)
1(

|z′′|2

s +
∑2n′

j=1 |µν
j | coth(s|µν

j |)|z
ν
j |

2−iν ·t
)2n′+m

−22n′

χ(s)
1(∑2n′

j=1 |µν
j ||z

ν
j |

2−i t ·ν
)2n′+m

)
ds
s

,

where the last equality uses the formula∫
∞

0
τ pe−ατ dτ =

p!

α p+1 for Re α > 0.
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We use the substitution r = e−2s in the remaining s-integral (and so ds/s =

−dr/(r |log r |) and the oriented r -limits of integration become 1 to 0) to obtain

Iν = Km,n|det Aν |

∫ 1

r=0

(( 2n′∏
j=1

1

1 − r |µν
j |

)
1

(A(r, ν, z′, z′′) − iν · t)2n′+m

− χ
( 1

2 |log r |
) 1
(A(0, ν, z′, 0) − iν · t)2n′+m

)
dr

r |log r |
.

We choose b =
1
2 log 2 so that χ(1

2 |log r |) is the characteristic function of
[
0, 1

2

]
.

From (21), observe that

F−1
λ {NK ,P(z, λ̂)}(t) =

∫
ν∈Sm−1

Iν det(Ū (ν)K ′,P) d Z̄(z, ν)P ∧ dz̄′′

K ′′ dν,

which equals the term in (7) with L = P . Therefore, the proof of Theorem 2.4 is
complete.

4. Proof of Theorem 2.5, |t| ≥ |z|2

In [Boggess and Raich 2023], the case when |t | ≥ |z|2 is the most delicate for the
proof of the estimates. In our current manuscript, when n′′

≥ 2, the case |t | ≥ |z|2 is
handled by adapting the argument from the corresponding argument in [Boggess and
Raich 2023]. Here we only sketch this argument with details on the modifications
needed to handle the null variables (z′′). We then provide complete details when
n′′

= 1 since new ideas are involved.
The primary new term is (2 |z′′

|
2)/|log r | that appears in A(r, ν, z′, z′′). However,

the series expansion for 1/|log r | around r = 1 has leading term 1/(1 − r), so the
effect of the null directions on the estimates near r = 1 is the same as for the nonnull
directions. Some bookkeeping is required but the estimates in our context here are
very similar to the estimates presented in detail in [Boggess and Raich 2023].

The first step of the analysis is to factor out |t |2n′
+n′′

+m−1 from the denominator
and rotate in ν via an orthogonal matrix Mt chosen so that Mt(t/|t |) is the unit
vector in the ν1 direction (so in the new coordinates, ν · t = ν1|t |). We also set
νt

= M−1
t ν,

p = (p′, p′′) =
z

|t |1/2 ∈ C2n′
+n′′

,

Q(νt , p) =
Z(νt , z)
|t |1/2 =

(Z(νt , z′), z′′)

|t |1/2 =
(U (νt)∗ · z′, z′′)

|t |1/2 .

Note that |Q(νt , p)|2 = |p|
2 since Uνt is unitary.
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We obtain
NK (z, t) = |t |−(2n′

+n′′
+m−1)

∑
L ′∈I ′

q′

NK L ′(p)

where

(22) NK ,L ′(p)

=

∫
νt∈Sm−1

∫ 1

r=0

det(Ū (νt)K ′,L ′)BL ′(r, νt) d Z̄(νt , z′)L ′ ∧ dz̄′′

K ′′

(A(r, νt , p) − iν1)2n′+n′′+m−1

dν dr
r |log r |n

′′

if L ′
̸= P or n′′

≥ 2 and where

BL ′(r, ν) =

∏
j∈(L′)c∩P
j∈L′∩Pc

r |µν
j ||µν

j |

1 − r |µν
j |

∏
k∈L′

∩P
k∈(L′)c∩Pc

|µν
k |

1 − r |µν
k |

,(23)

A(r, ν, p) =
2

|log r |
|p′′

|
2
+

2n′∑
j=1

|µν
j |

(
1 + r |µν

j |

1 − r |µν
j |

)
|Q j (ν, p′)|2.(24)

If L ′
= P and n′′

= 1, then

NK ,P(p) =

∫
νt∈Sm−1

det(Ū (νt)K ′,P) d Z̄(νt , z′)P ∧ dz̄′′

K ′′ |det Aνt |

×

∫ 1
2

r=0

(( n−1∏
j=1

1

1 − r |µνt
j |

)
1

(A(r, νt , p) − iν1)2n′+m

−
1

(A(0, νt , p′, 0) − iν1)2n′+m

)
dr dνt

|log r |r

+

∫
νt∈Sm−1

det(Ū (νt)K ′,P) d Z̄(νt , z′)P ∧ dz̄′′

K ′′ |det Aνt |

×

∫ 1

r=
1
2

( n−1∏
j=1

1

1 − r |µνt
j |

)
1

(A(r, νt , p) − iν1)2n′+m

dr dν

|log r |r
.

To prove Theorem 2.5 in the case that |t | ≥ |z|2 and 0 ≤ q ≤ 2n′
+ n′′, it suffices

to prove the following theorem.

Theorem 4.1. There is a uniform constant C > 0 so that |NK ,L(p)| ≤ C for all
p ∈ C2n′

+n′′

with |p| ≤ 1 and all K , L ∈ Iq with 0 ≤ q ≤ 2n′
+ n′′.

We first sketch the estimate of the kernel near r = 1 using the ideas from [Boggess
and Raich 2023].

Subcase: |t| ≥ |z|2 and 1
2 < r < 1. We prove Theorem 4.1. We start with a key

result — Lemma 5.2 in [Boggess and Raich 2023], which we restate here.
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Lemma 4.2. Let

(25) B(r, ν) = B∅(r, ν) =

∏
j∈P

r |µν
j ||µν

j |

1 − r |µν
j |

∏
k∈Pc

|µν
k |

1 − r |µν
k |

.

Then

(26)
∑

L ′∈I ′

q′

det(Ū (ν)K ′,L ′) d Z̄(ν, z′)L ′ BL ′(r, ν) =

∑
J ′∈I ′

q′

det([r− Āν ]K ′,J ′)B(r, ν) dz̄ J ′

is real analytic in ν ∈ Sm−1 and 0 < r < 1.

Remark 4.3. The real content of this lemma is the real analyticity in ν of the
expression in (26), especially in view of the fact that the eigenvalues µν

j are not
necessarily real analytic or even smooth in the parameter ν. As shown in [Boggess
and Raich 2023], the expression B(r, ν) is real analytic in ν due to the fact that the
positive eigenvalues are bounded away from the negative eigenvalues. In addition,
r− Āν is real analytic in ν since Aν depends linearly on ν.

Using Lemma 4.2, a typical term for NK ,L(p) in (22) — with 1
2 ≤ r < 1 for the

domain of integration — is

(27) N u
K ,J (p) =

∫
ν∈Sm−1

∫ 1

r=
1
2

det([r− Āν ]K ′,J ′)B(r, ν)

(A(r, νt , p) − iν1)2n′+n′′+m−1

dν dr
r |log r |n

′′
.

The superscript u refers to the fact that the integral is over the “upper” piece of the
r -interval. Our goal in this section is to establish the following lemma.

Lemma 4.4. There is a uniform constant C such that

|N u
K ,J (p)| ≤ C

for all p ∈ C2n′
+n′′

with |p| ≤ 1.

As in [Boggess and Raich 2023], we use the change of variable

(28) r = r(s) =
s − 1
s + 1

or equivalently s =
r + 1
1 − r

with
dr
r

=
2 ds

s2 − 1

and observe that 1
2 ≤ r < 1 transforms to s ≥ 3. We obtain

(29) N u
K ,J (p)

= 2
∫

ν∈Sm−1

∫
∞

s=3

det[r(s)− Āν ]K ′,J ′

(A(r(s), νt , p)−iν1)2n′+n′′+m−1
B(r(s), ν)r ′(s)

r(s)
ds dν

|log r(s)|n′′ .

We then expand the various components of the integrand defining N u
K ,J (p) on the

last line of (29) about s = ∞. We briefly outline the main steps in Sections 5, 6,
and 7 in [Boggess and Raich 2023] and point out the differences needed to deal
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with the factor of |log r(s)|n
′′

in the denominator. From Proposition 5.4 in [Boggess
and Raich 2023], we have

B(r(s), ν)r ′(s)
r(s)

=
2

22n′
(
1 −

1
s2

)( 2n′
−1∑

ℓ=0

Pℓ(ν)s2n′
−ℓ−2

+
O(s, ν)

s2

)
,(30)

a typical monomial in Pℓ(ν) = νℓ−e, where e is even with 0 ≤ e ≤ ℓ.(31)

Here, Pℓ(ν) is a polynomial in ν = (ν1, . . . νm) ∈ Sm−1 of total degree ℓ. By an
abuse of notation, the term νℓ−e in (31) stands for a monomial in the coordinates
of ν of total degree ℓ − e. Also note that the term (1 − s−2)−1 on the right-hand
side of (30) only has even powers of 1/s in its expansion about s = ∞.

Next, we use the second part of Proposition 5.4 in [Boggess and Raich 2023] to
expand det[r(s)− Āν ]K ,J around s = ∞. The result is a sum of terms of the form

(32)
νℓ′

−e′

sℓ′
,

where ℓ′
≥ 1, e′ is an even integer with 0 ≤ e′

≤ ℓ′, and νℓ′
−e′

is a monomial of
degree ℓ′

− e′ in the coordinates of ν ∈ Sm−1.
Now, we expand |log r(s)|−n′′

about s = ∞ and obtain

(33)
1

|log r(s)|n′′
=

sn′′

2n′′
+

∞∑
k=1

ck,n′′sn′′
−2k .

Finally, we have the following expansion of the terms involving A(r(s), νt , p)

from equation (36) in [Boggess and Raich 2023] (with I1, I2, I3 = ∅):

(34)

1
(A(r(s), νt , p) − iν1)2n′+n′′+m−1

=
1

(s|p|2 − iν1)2n′+n′′+m−1

(
1 +

∞∑
j=1

α j
(∑

∞

k=1
p∗

·

(
p2k(Aνt )⊕

1
2 ck,1In′′

)
·p

s2k−1

) j

(s|p|2 − iν1) j

)
.

Now we assemble a typical term in the expansion of the integrand in (29) by
multiplying the typical terms from (31), (32), (33), and (34). We summarize a
typical term from each of the components that comprise (29) in the following chart:

term typical term notes

det[r(s)− Āν ]K ,J
νℓ′−e1

sℓ′

ℓ′
≥ 1, e1 is even,

and 0 ≤ e1 ≤ ℓ′

B(r(s),ν)r ′(s)
r(s) νℓ−e2s2n′

−ℓ−e3−2 e2 and e3 are even,
0 ≤ e2 ≤ ℓ

1
|log r(s)|n′′ sn′′

−e4 e4 is even

(34) 1
(s|p|2−iν1)2n′+n′′+m−1+ j

ν j (2k−e5)

s j (2k−1)

j, k ≥ 1, e5 is even,
and 0 ≤ e5 ≤ k
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The typical terms of (29) that require the most care are those involving powers
of s which are greater than −2. The remaining terms comprise the “remainder term”
and will be handled later. From the above chart, we see that a typical term from the
integrand of (29) is of the form

(35) C(p, p̄)2 j s N j −2−ℓ j −2k j νℓ j −e j

(s|p|2−iν1)
N j +m−1 ,

where the integers N j , ℓ j , e j , k j satisfy

(36) N j = 2n′
+ n′′

+ j, e j > 0 is even, 0 < e j ≤ ℓ j , and k j ≥ 0.

What is relevant for the proof of Lemma 4.5 below is that a typical term in the
expansion satisfies

(37) exponent(denominator) − exponent(s) − exponent(ν) = m + 1 + E,

where E is an even, nonnegative integer.
In view of Lemma 4.2, the remainder term is analytic in ν ∈ Sm−1 and s > 3. In

addition, the typical term is

(38) O(pα′

)O(ν, s)
(s|p|2−iν1)αsβ

,

where O(ν, s) is real analytic in ν ∈ Sm−1 and s ≥ 3, bounded in s, and β ≥ 2.

Analysis of typical term in (35). We will now show that the integral (over ν ∈ Sm−1

and s ≥ 1) of the typical term in (35) is bounded in p. We will also show the same
for the remainder term in (38).

As to the first task, let r̂ = |p|
2 > 0 and define

HN ,ℓ,m,e,k(r̂ , s, ν) =
s N−2−ℓ−2kνℓ−e

(sr̂ −iν1)N+m−1 .

To establish Lemma 4.4 over the region 1
2 ≤ r < 1, we need to show that for

each ℓ ≥ 0, there is a uniform constant C such that

(39)
∣∣∣∫

ν∈Sm−1

∫ ∞

s=3
HN ,ℓ,m,e,I3,k(r̂ , s, ν) ds dν

∣∣∣≤ C

for all r̂ > 0 near zero.
As discussed at the end of Section 7 in [Boggess and Raich 2023], we can assume

the monomial νℓ−e depends on ν1 only (by writing ν = (ν1, ν
′) and noting that

integrals of odd powers of monomials in ν ′ over ν ′
∈ Sm−2 are zero). We let x = ν1,

and then the surface measure on the unit sphere in Sm−1 can be written as

dν = (1 − x2)(m−3)/2 dx dν ′

where dν ′ is the surface measure on Sm−2.
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The desired estimate in (39) will follow from the next lemma.

Lemma 4.5. For any nonnegative integers N , m and ℓ with m ≥ 2 and any even
integer E with 0 ≤ E ≤ |ℓ|, let

Aℓ,E
N ,m,k(r̂) =

∫ 1

x=−1

∫
∞

s=3

(1 − x2)(m−3)/2s N−2−ℓ−2k xℓ−E ds dx
(sr̂ − i x)N+m−1 .

Then Aℓ,E
N ,m,k(r̂) is a smooth function of r̂ > 0 up to r̂ = 0.

This lemma is almost identical to Lemma 8.1 in [Boggess and Raich 2023] (the
difference is in the exponent of s). Below, we give a short argument to reduce our
lemma to Lemma 8.1 in [Boggess and Raich 2023].

Proof of Lemma 4.5. First write

Aℓ,E
N ,m,k(r̂) = CN ,ℓDN−(2+ℓ+2k)

r̂ {Bℓ,E
m (r̂)},

where CN ,ℓ is a constant and

Bℓ,E,2k
m (r̂) =

∫ 1

x=−1

∫
∞

s=3

(1 − x2)(m−3)/2xℓ−E ds dx
(sr̂ − i x)m+ℓ+2k+1 .

Here, D j
r̂ indicates the j-th derivative with respect to r̂ . The index j is allowed

to be negative in which case this means the | j |-th antiderivative with respect to r̂
(with a particular initial condition specified at a fixed value of r̂ = r̂0 > 0).

Note, Bℓ,E,2k
m (r̂) is identical to the corresponding expression in the proof of

[Boggess and Raich 2023, Lemma 8.1] except that the exponent in the denominator
differs by the even integer 2k ≥ 0. The rest of the proof proceeds exactly as the
proof of Lemma 8.1 to show that Bℓ,E,2k

m (r̂) is smooth for r̂ > 0 up to r̂ = 0. □

Analysis of Remainder Term in (38). The remainder term in (38) is

O(ν, s)
(s|p|2 − iν1)αsβ

with β ≥ 2 and α ≥ 2.

As above, we set x = ν1. Since s−β is integrable over {s ≥ 3} and since O(ν ′, ν1, x)

is real analytic (and hence uniformly bounded) in ν ′
∈

√
1 − x2Sm−2 ((m−2)-

dimensional sphere of radius
√

1 − x2), the following lemma will finish the proof
of Theorem 4.1 for the integral over the region 1

2 ≤ r < 1 (and in the case |t | ≥ |z|2

and 0 ≤ q ≤ 2n′
+ n′′).

Lemma 4.6. For m ≥ 2, let

R(s, r̂ , ν ′) =

∫ 1

x=−1

(1 − x2)(m−3)/2O(ν ′, x, s) dx
(sr̂ − i x)α

.

Then R(s, r̂ , ν ′) is uniformly bounded for s ≥ 3, r̂ ≥ 0, and ν ′
∈

√
1 − x2Sm−2.
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This lemma is identical to Lemma 9.1 in [Boggess and Raich 2023]. The basic
idea is to use Cauchy’s theorem to deform the contour of integration into the upper
half plane and away from x = 0.

Subcase: |t| ≥ |z|2 and 0 < r < 1
2 . We first assume that n′′

≥ 2 or n′′
= 1 and

J ′
̸= P . We start with the lower r version of (27). In this case, however, we stick

with the r variable, 0 ≤ r ≤
1
2 (instead of changing to s). We rewrite this term here:

N ℓ
K ,J (p) =

∫
ν∈Sm−1

∫ 1
2

r=0

det([r− Āν ]K ′,J ′)B(r, ν)

(A(r, νt , p) − iν1)2n+m−1

dν dr
r |log r |n

′′
.(40)

The ℓ superscript indicates that we are working on the lower half of the r -interval.
N ℓ

K ,J (p) is the coefficient of the dz̄ J ′ component of

(41)
∫

νt∈Sm−1

∫ 1
2

r=0

det(Ū (νt)K ′,J ′) d Z̄(νt , z)L ′ ∧ dz̄′′

K ′′ BL ′(r, νt)

(A(r, νt , p) − iν1)2n+m−1

dν dr
r |log r |n

′′

Our goal is to prove the following:

Lemma 4.7. We have

(42) |N ℓ
K ,J (p)| ≤ C for all p =

z
|t |1/2 ∈ C2n′

+n′′

,

where C is a uniform constant.

Proof. The proof is nearly identical to the proof of Lemma 10.1 in [Boggess and
Raich 2023] with the only difference being the presence of the log-terms. We give a
quick outline. We are in a case where at least one of L ∩ Pc or Lc

∩ P is nonempty.
In view of (23), there must be a positive power of r in the numerator of BL ′(r, ν).
Therefore

(43)
|BL ′(r, ν)|

r |log r |n
′′

≤
Cr c0

r |log r |n
′′
,

where C and c0 are uniform positive constants. Having a positive power of r in
the numerator turns out to be one of the most useful terms for offsetting enough of
the blow-up of 1/r as r → 0 to guarantee integrability in r near 0. We repeatedly
use this fact in both the |t | large and |z| large cases. In fact, as soon as there is a
factor of r c0 for some c0 > 0 in the numerator, we can use a straightforward size
argument to bound the integrand.

For |t | ≥ |z|2, the presence of a positive power of r allows for the following.
First, the integrand of N ℓ

K ,J is integrable over the interval 0 < r < 1
2 . Therefore,

the integral on the right-hand side of (41) over the set
{
0 ≤ r ≤

1
2

}
×
{
|ν1| ≥

1
2

}
is

uniformly bounded for p ∈ C2n′
+n′′

. Thus, we turn our attention to the integral over{
0 ≤ r ≤

1
2

}
×
{
|ν1| ≤

1
2

}
.
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The idea is to integrate by parts in ν1 over the integral in (40) over the interval{
|ν1| ≤

1
2

}
to reduce the power of (A(r, νt , p) − iν1) in the denominator where

A(r, νt , p) is defined in (24). As shown in Section 10 in [Boggess and Raich 2023],
A(r, νt , p) is analytic in ν ∈ Sm−1.

Let

X (r, ν, p) :=

(
∂

∂ν1
{A(r, νt , p)} − i

)−1

and note that

X (r, ν, p)Dν1

{
−i(2n′

+ n′′
− 2)−1

(A(r, νt , p) − iν1)2n′+n′′−2

}
=

1
(A(r, νt , p) − iν1)2n′+n′′−1 .

When integrating by parts with X (r, ν, p)Dν1 over
{
|ν1| ≤

1
2

}
, there will be terms

involving the ν1-derivatives of X (r, ν, p), r− Āν

and B(r, ν) that occur in the inte-
grand of (40). These derivatives produce additional powers of |log r | which do not
affect the integrability in r over 0 ≤ r ≤

1
2 . In addition, there are boundary terms at

|ν1| =
1
2 and these terms are uniformly integrable on

{
0 ≤ r ≤

1
2

}
×
{
|ν1| =

1
2

}
.

This process of integration by parts with X (r, ν, p)Dν1 can be repeated until the
integrand in (40) involves only log(A(r, νt , p)− iν1) (using the principle branch
of log since the A term is positive). This log-term is uniformly integrable on{
0 ≤ r ≤

1
2

}
×
{
|ν1| ≤

1
2

}
, and thus Lemma 4.7 is proved. For more details, see

Section 10 of [Boggess and Raich 2023] (where z-, z̄-, and t-derivatives are also
handled in full generality).

The remaining case is n′′
= 1 and J ′

= P where the relevant term to estimate
is given by (7) with the r-interval of integration restricted to 0 ≤ r ≤

1
2 . We first

recall [Boggess and Raich 2023, Lemma 12.3].

Lemma 4.8. The following functions are analytic as a function of ν ∈ Sm−1:

• ν → |det Aν |.

• ν → A(0, ν, p) =
∑2n′

j=1 |µν
j ||pν

j |
2.

• ν → det(Ū (ν)K ,P) d Z̄(p, ν)P
=
∑

J∈In
det(Ū (ν)K ,P) det[U (ν)P,J ]

T dz̄ J .

Therefore, the functions to estimate in (7) with the r-interval of integration
restricted to 0 ≤ r ≤

1
2 are of the form

N ℓ
K ,J (p) =

∫
νt∈Sm−1

det(Ū (ν)K ,P) det[U (ν)P,J ]
T
|det Aνt |

×

∫ 1
2

r=0

(( 2n′∏
j=1

1

1 − r |µνt
j |

)
1

(A(r, νt , p) − iν1)2n′+m

−
1

(A(0, νt , p′, 0) − iν1)2n′+m

)
dr dνt

|log r |r
.



258 ALBERT BOGGESS AND ANDREW RAICH

By writing

(44)
1

1 − r |µνt
j |

= 1 +
r |µνt

j |

1 − r |µνt
j |

and
1 + r |µνt

j |

1 − r |µνt
j |

= 1 +
2r |µνt

j |

1 − r |µνt
j |

,

we can write

(45) N ℓ
K ,J (p) =

∫
νt∈Sm−1

det(Ū (ν)K ,P) det[U (ν)P,J ]
T
|det Aνt |

×

∫ 1
2

r=0

(
1( 2

|log r |
|q ′′|2 + A(0, νt , p) − iν1

)2n′+m

−
1

(A(0, νt , p′, 0) − iν1)2n′+m

)
dr dνt

|log r |r
+ OK,

where the OK term is comprised of terms with r c0 in the numerator for values
c0 > 0 and the discussion after (43) applies. Focusing on the integral in r , we let
s = −2/log r so that ds/s = dr/(|log r |r) so that∫ 1

2

r=0

(
1( 2

|log r |
|p′′|2+ A(0, νt , p′, 0)−iν1

)2n′+m −
1

(A(0, νt , p′, 0)−iν1)2n′+m

)
dr

r |log r |

=

∫ 2
log 2

s=0

(
1

(s|p′′|2+ A(0, νt , p′, 0)−iν1)2n′+m −
1

(A(0, νt , p′, 0)−iν1)2n′+m

)
ds
s

.

By Lemma A.1, with a = |p′′
|
2, b = A(0, νt , p′, 0) − iν1, and γ = 2/log 2,

(46)
∫ 2

log2

s=0

(
1

(s|p′′|2+A(0,νt , p′,0)−iν1)2n′+m −
1

(A(0,νt , p′,0)−iν1)2n′+m

)
ds
s

=
1

(A(0,νt , p′,0)−iν1)2n′+m log
(

1+
2

log2
|z′′

|
2

A(0,νt , z′,0)−iν1|t |

)
+E2n′+m(|p′′

|
2, A(0, p′,0)−iα1).

To complete the proof of Lemma 4.7, we use Lemma 4.8 and shift the contour in
ν1 to avoid ν1 = 0. By doing this,

|A(0, νt , p′, 0) − iν1| ∼ |p′
|
2
+ 1

on the new contour and basic size estimates now suffice. □

5. Proof of Theorem 2.5, |z|2 ≥ |t|

Subcase: |z|2 ≥ |t| and 0 < r < 1
2 . Analogous to the case when |t | ≥ |z|2, we

investigate the terms in (41) but with the term |t |2n′
+n′′

+m−1 inserted back into the
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denominator of the integrand. Using (5) we are led to estimate the term

(47) N ℓ
K ,L ,J (z, t) =

∫
ν∈Sm−1

det(Ū (ν)K ′,L) det(U (ν)L ,J ′)|det Aν |

×

∫ 1
2

r=0

( ∏
j∈(L′)c∩P
j∈L′∩Pc

r |µν
j |

1 − r |µν
j |

∏
k∈L′

∩P
k∈(L′)c∩Pc

1
1 − r |µν

k |

)

×
1

(A(r, ν, z) − iν · t)2n′+n′′+m−1

dr dν

|log r |n
′′r

,

when n′′
≥ 2 or L ′

̸= P , and

(48) N ℓ
K ,P,J (z, t) =

∫
νt∈Sm−1

det(Ū (ν)K ,P) det[U (ν)P,J ]
T
|det Aνt |

×

∫ 1
2

r=0

(( 2n′∏
j=1

1

1 − r |µνt
j |

)
1

(A(r, νt , z) − iν · t)2n′+m

−
1

(A(0, νt , z′, 0) − iν · t)2n′+m

)
dr dνt

|log r |r
,

when n′′
= 1 and L ′

= P .
We start with the case n′′

= 1 and L ′
= P because the analysis of (48) is virtually

identical to that of (45). The same reductions and equalities hold, and factoring
|t | back into (46) is the calculation that we need. The size estimates are more
straightforward than the |t | large case because we do not have to shift the contour.

We now focus on (47). We first assume |z′
|
2
≥ |z′′

|
2. The upper bound estimates

in this case will follow directly from size estimates. Since |A(r, ν, z)−iν ·t |≥ c |z′
|
2

and either 1/(r |log r |
n′′

) is integrable near r = 0 (n′′
≥ 2) or there is an r c0 term in

the numerator (n′′
= 1 and J ′

̸= P), we use size estimates to establish

|N ℓ
K ,L ,J (z, t)| ≤

C
|z′|2(2n′+n′′+m−1)

.

The |z′′
| ≥ |z′

| estimate requires more care. In the case that there is a factor of r c0

in the numerator, the estimate is straightforward with size estimates, as bounding
(1 + rµ)/(1 − rµ) by |log r | shows that

r c0

|A(r, ν, z) − iν · t |2n′+n′′+m−1|log r |n
′′r

≤
r c0(

|z|2
|log r |

)2n′+n′′+m−1
|log r |n

′′r

=
1

|z|2(2n′+n′′+m−1)
r c0−1

|log r |
2n′

+m−1
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is integrable at 0, and the estimate

(49) |N ℓ
K ,L ,J (z, t)| ≤ C |z|−2(2n′

+n′′
+m−1)

holds. A factor r c0 will always be present whenever N is hypoelliptic, that is,
when 0 ≤ q < n′ or n′

+ n′′ < q ≤ n. Additionally, it will also be present when
n′

≤ q ≤ n′
+ n′′ as long as L ̸= P and (49) holds, a better estimate than (9).

It remains to analyze

N ℓ
K ,P,J (z, t) =

∫
ν∈Sm−1

det(Ū (ν)K ′,P) det(U (ν)P,J ′)|det Aν |

×

∫ 1
2

r=0

2n′∏
k=1

1
1 − r |µν

k |

1
(A(r, ν, z) − iν · t)2n′+n′′+m−1

dr dν

|log r |n
′′r

,

when n′′
≥ 2. As we have seen, once we have a positive power of r in the numerator,

we can use size estimates to obtain the estimates in (8). This is relevant for the
error estimates when |z′

|
2
≥ |t | in two ways. First, we can apply (44) to replace∏2n′

k=1 1/(1 − r |µν
k |) by 1 and an OK term. Second, since

A(r, ν, z) =
2

|log r |
|z′′

|
2
+

2n′∑
j=1

|µν
j ||z

ν
j |

2
+

2n′∑
j=1

2r |µν
j |

1 − r |µν
j |
|zν

j |
2,

we can write
1

(A(r, ν, z) − iν · t)2n′+n′′+m−1

=
1

(A0(r, ν, z) + iν · t)2n′+n′′+m−1 +
O(r c0)

(A0(r, ν, z) + iν · t)2n′+n′′+m−1

+
O(r c0 |z′

|
2)

(A0(r, ν, z) + iν · t)2n′+n′′+m ,

where

A0(r, ν, z) =
2

|log r |
|z′′

|
2
+

2n′∑
j=1

|µν
j ||z

ν
j |

2

and c0 > 0. The first error term arises from estimating BP(r, ν) by |det(Aν)|. The
second error term uses the expansion

1
(V + ζ )2n′+n′′+m−1 =

1
V 2n′+n′′+m−1 +

∞∑
j=1

α j
ζ j

V 2n′+n′′+m−1+ j

and therefore has A0(r, ν, z) raised to one higher power than in the main term.
When integrated, however, the estimate from the extra degree in the denominator is
offset by the additional factor of |z|2 in the numerator.



SOLUTION TO □b ON QUADRIC MANIFOLDS WITH NULL VARIABLES 261

This means that the remaining term to analyze is∫
ν∈Sm−1

det(U (ν)K ′,P) det(U (ν)T
P,J ′)|det Aν |

×

∫ 1
2

0

1
(A0(r, ν, z) − iν · t)2n′+n′′+m−1

dr dν

r |log r |n
′′
.

We factor out 2|z′′
|
2 from the denominator and let

a =

2n′∑
j=1

|µν
j |

|zν
j |

2

|z′′|2
− iν ·

t
|z′′|2

.

Note that 1/log 2 + a = O(1). By (53), we compute∫ 1
2

0

1
(A0(r, ν, z) − iν · t)2n′+n′′+m−1

dr dν

r |log r |n
′′

=
1

|z′′|2(2n′+n′′+m−1)

∫ 1
log 2

0

sn′′
−2

(s + a)2n′+n′′+m−1 ds

=
1

|z′′|2(2n′+n′′+m−1)

n′′
−2∑

ℓ=0

(
n′′

−2
ℓ

)
(−1)n′′

−ℓ

2n′ + n′′ + m − 1 − ℓ − 1

(
1

a2n′+m + O(1)

)

=
C

|z′′|2(n′′−1)

1(∑2n′

j=1 |µν
j ||z

ν
j |

2 − iν · t
)2n′+m + O(|z′′

|
−2(2n′

+n′′
+m−1)).

If |z′
|
2

≥ |t |, then
∑2n′

j=1 |µν
j ||z

ν
j |

2
− iν · t = O(|z′

|
2), and size estimates produce

O(|z|−2(n′′
−1)

|z′
|
−2(2n′

+m)), the desired estimate. If, on the other hand, |t | ≥ |z′
|
2,

then we treat the integral similarly to the large |t | case, rotating in ν and factoring
out |t | to produce the integral

C
|z′′|2(n′′−1)|t |2n′+m

∫
ν∈Sm−1

det(U (ν)K ′,P) det(U (ν)T
P,J ′)

|det Aν |(∑2n′

j=1 |µν
j ||q

ν
j |

2 − iν1
)2n′+m

dν

where qν
j = zν

j/|t |
1/2. The integrand in the above integral is O(1) when |ν1| ≥

1
2 . In

the case |ν1| ≤
1
2 , we handled this exact type of integral in [Boggess and Raich 2023,

(68)] and showed that the above integral is bounded by C/(|z′′
|
2(n′′

−1)
|t |2n′

+m) (in
fact, this bound is sharp).

Subcase: |z|2 ≥ |t| and 1
2 < r < 1. We are finally in a position to finish the proof

of the estimates in Theorem 2.5. As with the previous subsection, we include the
term |t |−(2n′

+n′′
+m−1) in the integrand. Define N u

K ,J (z, t) analogously to N u
K ,J (p)

in (27), with the r-integral over
[ 1

2 , 1
]

and including the term |t |−(2n′
+n′′

+m−1) in
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the integrand. We follow the analysis of the |t | large case through (35) to obtain

N u
K ,J (z, t) :=

∫
∞

s=3

∫
ν∈Sm−1

typical term in NK ,J (p)

|t |2n′+n′′+m−1 dν ds

=

∫
∞

s=3

∫
ν∈Sm−1

C(z, z̄)2 j s N j −2−ℓ j −K j νℓ j −e j

(s|z|2 − iν1|t |)N j +m−1 dν ds,

where N j = 2n′
+ n′′

+ j and ℓ j , K j ≥ 0, m ≥ 2. Since |z|2 ≥ |t | and |ν| = 1, we
use size estimates and drop the t-term in the denominator to obtain

|N u
K ,J (z, t)| ≤

∫
∞

s=3

∫
ν∈Sm−1

C |z|2 j s N j −1−ℓ j −K j

(s|z|2)N j +m−1 dν ds

≤

∫
∞

s=3

∫
ν∈Sm−1

C
|z|2(2n′+n′′+m−1)

·
1
s3 dν ds

after taking into account the constraints on ℓ j , K j , m. Therefore

(50) |N u
K ,J (z, t)| ≤

C
|z|2(2n′+n′′+m−1)

,

and we have established the estimates in Theorem 2.5.

Higher derivatives. As mentioned in the introduction, we will refer the reader to
[Boggess and Raich 2023] for details on how to handle the estimates for higher
derivatives. Here is the basic idea on how to obtain the estimates for derivatives.
Note that z and z̄ appear quadratically in A(r, ν, z) and t only appears in the ν · t
term. Thus, differentiating (20) once with a z′ or z̄′ derivative adds one more
factor of A(r, ν, z) − iν · t to the denominator along with a linear z′ or z̄′ term in
the numerator. The overall estimate in (8) changes by a factor of (|z|2 + |t |)−1/2.
By contrast, a t-derivative of (20) also adds a factor of A(r, ν, z) − iν · t to the
denominator but with no compensating factor of z′, z̄′ or t in the numerator. Thus
the overall estimate in (8) changes by a factor of (|z|2 + |t |)−1. The z′′- and z̄′′-
derivatives behave similarly. This is the basic idea behind why there is a 1

2 in front
of the exponents |I1| and |I2|, which represent z- or z̄-derivatives, and not in front
of |I3|, which represents t-derivatives.

6. Conclusion of the proof Theorem 2.5 — sharpness of the estimates

We will show the dominant term in (9) is nonzero for the index K = P provided
the eigenvectors of Aν depend continuously on ν.

We focus on the dz̄′

P component of NP (here, the value of n′′ is not important
because we are focusing on the integral in ν). Ignoring the power of |z′

| out front,
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this term is

NP =

∫
ν∈Sm−1

|det U (ν)P,P |
2 |det Aν |( 2

|log r |
|z′′|2 +

∑2n′

j=1 |µν
j ||z

ν
j |

2 − iν · t
)2n′+m dν.

Consider the case when |t | is smaller than |z′
|
2 < |z′′

|
2. We factor out |z′

|
2(2n′

+m)

from the denominator and obtain NP = |z′
|
−2(2n′

+m) ÑP where

ÑP =

∫
ν∈Sm−1

|det U (ν)P,P |
2 |det Aν |( 2

|log r |
|q ′′|2 +

∑2n′

j=1 |µν
j ||q

ν
j |

2 − iν · qt
)2n′+m dν

with q ′′
= z′′/|z′

|, qν
j = |zν

j |
2/|z′

|
2 and qt = t/|z′

|
2.

Now take a limit as qt → 0 and we obtain

(51) lim
qt→0

ÑP =

∫
ν∈Sm−1

|det U (ν)P,P |
2 |det Aν |( 2

|log r |
|q ′′|2 +

∑2n′

j=1 |µν
j ||q

ν
j |

2
)2n′+m dν.

Now µν
j ̸=0 for j =1, . . . , 2n′; and

∑2n′

j=1 qν
j =1; and det Aν ̸=0 for all ν ∈ Sm−1.

So if the integral on the right-hand side of (51) vanishes, then we conclude that
det U (ν)P,P = 0 for all ν ∈ Sm−1 except for a set of zero measure in ν. Thus, to
conclude the proof of Theorem 2.5, we have only to show

(52)
∫

ν∈Sm−1
|det U (ν)[P,P]|

2 dν > 0,

where U (ν) is the unitary matrix which diagonalizes Aν and where P is the set of
indices corresponding to the positive eigenvalues of Aν and U (ν)[P,P] is the P×P
minor matrix of U (ν). We may assume P ={1, 2, . . . , n′

} and Pc
={n′

+1, . . . , 2n′
}

where here, the eigenvalues are counted with multiplicity. We also let N = 2n′.
Define

• N0 = essential sup{the number of distinct eigenvalues of Aν : ν ∈ Sm−1
},

• S0 = {ν ∈ Sm−1
: the number of distinct eigenvalues of Aν = N0},

• λ j (ν), 1 ≤ j ≤ N0, are the distinct eigenvalues of Aν for ν ∈ S0,

• E j (ν) equals the eigenspace of λ j (ν) in CN for ν ∈ S0.

Note that N0 is an even number between 1 and N = 2n′. The set S0 has positive
measure by the definition of essential sup. Since there are only a finite number of
choices for dimC{E j (ν)}, we can shrink S0, but still with positive measure, so that
dimC{E j (ν)} is constant in ν ∈ S0 for each 1 ≤ j ≤ N0.

Although we are not assuming the eigenvalues are continuous in ν ∈ Sm−1, the
λ j ( · ) are measurable functions that are locally integrable on Sm−1. Using the
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usual row and column operations together with Gram–Schmidt, we can find an
orthonormal set of eigenvectors for the eigenspace E j (ν) of the form

U k
j (ν), 1 ≤ j ≤ N0, 1 ≤ k ≤ dimC{E j (ν)},

where these C N -valued functions are measurable and integrable in ν ∈ Sm−1. Now
let U (ν) be the unitary matrix with column vectors U k

j (ν).
By removing a set of measure zero from S0, we can assume that every point in

S0 lies in the Lebesgue set of each λ j ( · ) and U k
j ( · ) as well as all n-fold products

of the component entries of U k
j ( · ). Now fix any ν0 ∈ S0 and choose coordinates

for CN which diagonalize Aν0 where the first n diagonal entries correspond to the
positive eigenvalues of Aν0 . Note that in these coordinates, U[P,P](ν0) is the identity
matrix.

Now, for ε > 0, define

B(ν0, ε) = {ν ∈ Sm−1
: |ν − ν0| < ε}.

From the Lebesgue differentiation theorem,

lim
ε→0

1
|B(ν0, ε)|

∫
ν∈B(ν0,ε)

|det U[P,P](ν)|2 dν → |det U[P,P](ν0)|
2
= 1,

where |B(ν0, ε)| is the Lebesgue measure of B(ν0, ε) relative to Sm−1. We conclude
that, for small enough ε > 0,∫

ν∈B(ν0,ε)

|det U[P,P](ν)|2 dν > 0,

and this implies (52).

Appendix: Calculus computations

Lemma A.1. Suppose that a, γ > 0, b ̸= 0, and k ∈ N. Then∫ γ

0

1
s(as + b)k −

1
sbk ds =

1
bk log

(
1 + γ

a
b

)
+ E(a, b),

where Ek(a, b, γ ) is comprised of a sum of terms of the form

Ek(a, b, γ ) =

k∑
ℓ=0

cℓ

bℓ(aγ + b)k−ℓ

for some constants cℓ.

Proof. The proof is a computation using a partial fraction decomposition, recogniz-
ing that the 1/s terms cancel (so that the integral converges). □
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In that vein, we also have the following. We compute∫ 1
log 2

0

sk−2

(s + a)ℓ
ds =

∫ 1
log 2

0

(s + a − a)k−2

(s + a)ℓ
ds

=

k−2∑
i=0

(
k−2

i

)
(−1)k−2−i

∫ 1
log 2

0

ak−2−i

(s + a)ℓ−i+2 ds

=

k−2∑
i=0

(
k−2

i

)
(−1)k−1−i

(−ℓ + i + 1)

(
1

aℓ−k+1 −
ak−2−i( 1

log 2 + a
)ℓ−i−1

)
.(53)
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