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CATEGORIFICATION OF
THE INTERNAL BRAID GROUP ACTION

FOR QUANTUM GROUPS
I: 2-FUNCTORIALITY

MICHAEL T. ABRAM, LAFFITE LAMBERTO-EGAN,
AARON D. LAUDA AND DAVID E. V. ROSE

We define 2-functors on the categorified quantum group of a simply-laced
Kac–Moody algebra that induce Lusztig’s internal braid group action at the
level of the Grothendieck group.

1. Introduction

Geometric representation theory has motivated the study of categorical represen-
tation theory. Rather than studying the action of Lie algebras g, or quantum
groups Uq(g), on C(q)-vector spaces V with weight decompositions V =

⊕
λ Vλ,

categorical representation theory studies the action of these algebras on graded addi-
tive categories V with decomposition into graded additive subcategories V =

⊕
λ Vλ.

Rather than linear maps between spaces, Chevalley generators act by functors
Ei 1λ : Vλ → Vλ+αi , Fi 1λ : Vλ → Vλ−αi satisfying quantum group relations up to
natural isomorphism of functors. The novel and distinguishing feature of higher
representation theory is that the natural transformations between such functors
contain a wealth of information that is inaccessible within the realm of traditional
representation theory.

Indeed, the essence of categorification is to uncover this higher level structure
and use it to further our understanding of traditional representation theory, as well
as related fields. In this article we will focus our attention on the categorical
representation theory of the quantum group Uq(g) associated to a simply-laced
Kac–Moody algebra g. Categorified quantum groups are the objects that govern
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the higher structure and explicitly describe the natural transformations that arise in
categorical representations. More precisely, we focus on the higher representation
theory of Lusztig’s idempotent form U̇ := U̇q(g). This is a version of the quantum
group that arises in geometric representation theory and is most appropriate for
studying representations with integral weight decompositions. For the precise
definition of U̇ , see Section 2A.

In most instances when U̇ admits a categorical action as described above, the
natural transformations between functors arise via the action of a categorified
quantum group. The latter is a graded, additive, linear 2-category U̇Q associated to g.
The objects in U̇Q are elements of the weight lattice λ∈ X of g, and the 1-morphisms
are generated by Chevalley generators Ei 1λ : λ→ λ+ αi , Fi 1λ : λ→ λ− αi and
identity 1-morphisms 1λ :λ→λ, i.e., any 1-morphism is given by a finite direct sum
of grading shifts of composites of these generators. The 2-morphisms specify maps
between composites of Chevalley generators. For example, there are 2-morphisms

Xi : Ei 1λ → Ei 1λ⟨2⟩ and Ti j : EiE j 1λ → E jEi 1λ⟨−αi ·α j ⟩,

where here, and for the duration, · denotes the symmetric bilinear form specified
by the Catan datum for g (see Section 2A). A novel feature of the categorified
quantum group is its diagrammatic generators-and-relations description in which
all 2-morphisms are conveniently encoded in a 2-dimensional graphical calculus,
e.g., the generating 2-morphisms above have the depictions

Xi :=
•

OO

i

λλ+α j and Ti j :=

OOOO

i j

λλ+αi +α j
.

Key features are that Fi and Ei are biadjoint, and endomorphisms of compositions
of Ei ’s are given by the so-called KLR algebras developed in [18; 24; 25; 54; 55].
Taken together, the relations on 2-morphisms provide explicit isomorphisms lifting
relations in U̇ , and further guarantee that K0(U̇Q)∼= U̇ , where K0 denotes taking the
split Grothendieck ring to decategorify. Otherwise, only shadows of this structure are
visible at the decategorified level, e.g., Lusztig’s canonical basis of U̇ is recovered
by taking the classes in K0(U̇Q) of indecomposable 1-morphisms in U̇Q .

Pioneering work of Chuang and Rouquier demonstrated the importance of the
higher structure in categorical representation theory [18]. At the heart of their work
is a beautiful categorification of the familiar fact that, in any integrable representation
V =

⊕
λ Vλ of sl2, the Weyl group action gives rise to an isomorphism

t1λ : Vλ
∼=−→ V−λ

between opposite weight spaces. In the quantum setting, the Weyl group for sl2
(i.e., the symmetric group S2) deforms to the two-strand braid group B2, and the
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isomorphism t1λ can be written in a completion of U̇(sl2) as the infinite sum

(1-1) t1λ =

{∑
b≥0(−q)b F (λ+b)E (b)1λ if λ≥ 0,∑
a≥0(−q)−λ+a E (−λ+a)F (a)1λ if λ≤ 0,

where E (a) = Ea/[a]!, F (a) = Fa/[a]! are the so-called divided powers, and
[a]! =

∏a
m=1((q

m
− q−m)/(q − q−1)) are quantum factorials. Note that, when

acting on an integrable module, only finitely many terms in this infinite sum are
nonzero. From the perspective of categorification, the crucial observation about
(1-1) is the occurrence of minus signs.

For those initiated in the categorification doctrine, the occurrence of minus
signs immediately necessitates the departure from strictly additive categorifica-
tion. That is, we can no longer work with additive categories Vλ, as there is no
categorical analogue of subtraction therein. To accommodate such minus signs
within a categorical framework, one typically passes to derived, or, more generally,
triangulated, categories, where the translation functor gives a categorical notion
of multiplying by −1. One manner for doing so is to take the categories of chain
complexes Kom(Vλ) of the weight categories Vλ in an additive categorification,
and pass to their homotopy categories of complexes Com(Vλ). See Section 3D for
more details on homotopy categories of additive categories and their Grothendieck
groups; we note that we follow [4] in using the nonstandard notation Com to denote
the homotopy category, so as not to confuse with our notation K0 for taking the
Grothendieck group/ring. Under decategorification, the classes of such complexes
are equal to the alternating sum of the classes of their terms in K0(Vλ).

The alternating sum in (1-1) suggests that a categorification of t1λ might be
achieved using a chain complex whose differential is built from the 2-morphisms
in U̇Q(sl2). Indeed, Chuang and Rouquier’s work determines chain complexes τ1λ
and τ−11λ, the so-called Rickard complexes, that lift t1λ and its inverse t−11λ to
the categorical setting [18]. The composition of complexes ττ−11λ and τ−1τ1λ are
both isomorphic to the identity in Com(U̇Q(sl2)), i.e., the complexes are homotopy
equivalent to (but, in fact, not equal to) 1λ in Kom(U̇Q(sl2)). Using this, Chuang
and Rouquier lifted the Weyl group action of sl2 to define equivalences

τ1λ : Com(Vλ)
∼=−→ Com(V−λ)

lifting t1λ (to be precise, Chuang and Rouquier originally worked in the nonquantum
and abelian/derived setting, with the extension to the quantum and triangulated
setting given in work of Rouquier [55] and Cautis and Kamnitzer [13]).

For general g, the corresponding Weyl group action on integrable representations
deforms to an action of the type-g braid group Bg in the quantum setting; we will
follow the standard terminology in referring to this as the quantum Weyl group
action. Analogous to the g = sl2 case, this action lifts to highly nontrivial braid
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group actions in categorical representation theory [13; 55]. To illustrate their far
reaching impact in mathematics, we recall just a handful of their many applications:

• Chuang and Rouquier use the equivalence induced by categorical sl2 actions on
derived categories of modules over the symmetric group in positive characteristic to
resolve Broué’s abelian defect group conjecture for the symmetric group Sn [18].

• Cautis, Kamnitzer, and Licata use categorical sl2 actions to resolve a conjecture of
Namikawa [48] asserting the existence of a derived equivalence between cotangent
bundles of complementary Grassmannians T ∗G(k, N ) and T ∗G(N −k, N ) [10; 16].
These varieties are related by a stratified Mukai flop, and the problem of constructing
such equivalences had previously only been resolved in the k = 1 case [22; 47] and
for G(2, 4) in work of Kawamata [23]. More generally, Cautis, Kamnitzer, and
Licata construct categorical braid group actions on cotangent bundles to partial flag
varieties and Nakajima quiver varieties [11; 13; 15]

• Categorical representations of slm , and the associated braid group actions, can
be used to categorify the sln Reshetikhin–Turaev quantum link invariants via a
categorical analogue of the skew Howe duality between glm and gln [12; 16; 34; 49].
This perspective has led to the solution of a number of conjectures in link homology
[50; 53], and provides a framework for connecting link homologies defined using
wildly different machinery [12; 34; 39].

At the decategorified level, the braid group action on integrable modules of
U̇q(g) comes in several flavors:

(1-2)

t′i,e1λ =

∑
a,b;a−b=λi

(−q)eb F (a)i E (b)i 1λ =

∑
a,b;a−b=λi

(−q)eb E (b)i F (a)i 1λ,

t′′i,e1λ =

∑
a,b;−a+b=λi

(−q)eb E (a)i F (b)i 1λ =

∑
a,b;−a+b=λi

(−q)eb F (b)i E (a)i 1λ,

where e = ±1; see Section 2C for more details. Given the importance of these
braid group actions, it is natural to ask how the braid group action Bg on an
integrable module interacts with the U̇q(g) action. This was answered by Lusztig [38,
Proposition 37.1.2], who showed that, for each node in the Dynkin diagram i ∈ I
and e = ±1, there exist algebra automorphisms T ′

i,e and T ′′

i,e of U̇ = U̇q(g) uniquely
defined by the condition that, for any integrable U̇-module V , any z ∈ V , and
u ∈ 1νU̇1λ, we have the equations

(1-3)
T ′

i,e(u)t
′

i,e1λ(z)= t′i,e1ν(uz),

T ′′

i,e(u)t
′′

i,e1λ(z)= t′′i,e1ν(uz).
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Related operators were studied in finite type in [35; 57], then generalized to simply-
laced Cartan data in [36] and general Cartan data in [37]. See Section 2D for more
details.

The algebra automorphisms T ′

i,e and T ′′

i,e each define braid group actions on the
algebra U̇ itself that we call the internal braid group action. This internal action
plays an important role, e.g., in the construction of the PBW basis for U̇ . Lusztig
goes on to give precise formulas for the action of T ′

i,e and T ′′

i,e on the generators
of U̇ , that unsurprisingly involve minus signs, e.g.,

(1-4) T ′

i,+1(E j 1λ)= E j Ei 1si (λ) − q Ei E j 1si (λ) if i · j = −1,

where here si are the simple reflections in the Weyl group.
We now describe the results contained in this article. Throughout we let g be a

simply-laced Kac–Moody algebra.

1A. Categorifying T ′
i,e and T ′′

i,e. In Section 4 we define graded, additive 2-functors
T ′

i,e, T
′′

i,e : U̇Q → Com(U̇Q). To do so, we first assign explicit chain complexes to
generating 1-morphisms in U̇Q that lift the formulae defining T ′

i,e and T ′′

i,e, e.g.,
(1-4) lifts to the assignment

T ′

i,+1(E j 1λ)= ♣ E jEi 1si (λ)

OOOO

j i
−−−−−−−→ EiE j 1si (λ)⟨1⟩ if i · j = −1,

where (here, and throughout) ♣ denotes the term in homological degree zero.
Functoriality then requires that the composite xy1λ of composable 1-morphisms
y1λ′ and x1λ is sent to the composition of chain complexes T ′

i,+1(y1λ′)T ′

i,+1(x1λ),
defined using composition of 1-morphisms in U̇Q in a manner similar to taking
the tensor product of chain complexes. To complete the definition of T ′

i,e and T ′′

i,e,
we then assign an explicit chain map T ′

i,+1(α) : T ′

i,+1(x1λ)→ T ′

i,+1(x
′1λ) to each

generating 2-morphism α : x1λ → x ′1λ in U̇ , e.g., the 2-morphism X j : E j 1λ →

E j 1λ⟨2⟩ is sent by T ′

i,+1 to

T ′

i

(
•

OO

j

λλ+α j
)

:=

♣ E jEi 1si (λ)⟨2⟩

♣ E jEi 1si (λ)

•

OO

j

OO

i

OO
EiE j 1si (λ)⟨3⟩

EiE j 1si (λ)⟨1⟩

OO

i

•

OO

j

OO

OOOO

j i
//

OOOO

j i

//
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which is a chain map by the i ̸= j dot sliding relation; see (5) in Definition 3.3.
Finally, we show that the images of relations in U̇Q are satisfied in Com(U̇Q), up to
homotopy.

Proving that T ′

i,+1 is a well-defined 2-functor requires an immense number of
verifications. The diagrammatic relations defining U̇Q involve strands colored by
the Dynkin nodes of g, and depend on the adjacency of the colors involved. For
example, the relation involving the greatest number of strands is

OOOO OO

λ

ℓ j k

−

OOOOOO

λ

ℓ j k

=


tℓj OOOO OO

ℓ j ℓ

if ℓ= k and ℓ · j = −1,

0 if ℓ ̸= k or ℓ · j ̸= −1,

where tℓj is a scalar defined in Section 3A. Showing that T ′

i,+1 preserves this relation
for all i and all triples j , k, ℓ requires considering all possible types of adjacency
relations between the nodes corresponding to i , j , k, ℓ, requiring 27 essentially
distinct case that need to be verified. The complexity is further exacerbated by the
fact that T ′

i,+1 often only preserves a relation up to homotopy.
Unfortunately, we are not aware of a means to define the 2-functors lifting

Lusztig’s formulae without explicitly constructing the chain homotopies for each
relation and each possible coloring by nodes i ∈ I . We have made every attempt
to provide sufficient detail in this work to aid in any future applications of these
2-functors, and in particular provide sufficient detail so that the relevant homotopies
can be easily extracted.

Our main result in this article is the following theorem.

Theorem 1.1. Let g be a simply-laced Kac–Moody algebra. Then there is an
explicitly defined 2-functor

T ′

i,+1 : U̇Q(g)→ Com(U̇Q(g))

so that the induced map

[T ′

i,+1] : U̇q(g)∼= K0(U̇Q(g))→ K0(Com(U̇Q(g)))∼= U̇q(g)

agrees with T ′

i,+1.

At the level of 1-morphisms, such functors have already appeared at the categor-
ical level in [12; 13] and were given a geometric interpretation in [20; 21; 62; 63];
however, to our knowledge, no information about extending these maps to 2-
morphisms has appeared previously. As such, Theorem 1.1 initiates the study
of Lusztig’s operators at the 2-categorical level. In fact, we conjecture much
more. At the decategorified level, Lusztig’s operators are invertible and satisfy the
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braid relations. These properties, combined with our forthcoming work, stated in
Theorem 1.4 below, suggest the following:

Conjecture 1.2. Let g be a (simply-laced) Kac–Moody algebra. Then T ′

i,+1 extends
to an autoequivalence of Com(U̇Q(g)) so that the induced automorphism [T ′

i,+1]

of U̇q(g) ∼= K0(Com(U̇Q(g))) agrees with T ′

i,+1, and the T ′

i,+1 satisfy the braid
relations.

The extension (of domain) to the homotopy category is a problem in obstruction
theory that we plan to attack in future work. Having done so, the proof of braid
relations will be a straightforward (but tedious) check.

1B. Symmetries and the internal braid group action. There are a number of other
(anti)linear (anti)automorphisms σ , ω, ψ defined on U̇ ; see Section 2B for their
definitions. These (anti)involutions allow one to pass between the variants T ′

i,e and
T ′′

i,e of the internal braid group generators via conjugation, i.e.,

(1-5) σT ′

i,eσ = T ′′

i,−e, ωT ′

i,eω = T ′′

i,e, ψT ′

i,eψ = T ′

i,−e, ψT ′′

i,eψ = T ′′

i,−e.

In [26] these symmetries were lifted to define 2-functors σ, ω,ψ on a certain version
of the categorified quantum group. Each has a natural interpretation in terms of
symmetries of the graphical calculus for U̇Q , and, in the sl2 case, were extended to
the homotopy category of complexes in [4].

Recall (or see Section 3A below) that the definition of U̇Q requires a choice of
scalar parameters Q; it was recently shown that there is a natural normalization for
the categorified quantum group associated to an arbitrary KLR algebra and choice
of Q [5]. This so-called cyclic version of U̇Q satisfies the property that diagrams
that are planar isotopic relative to their boundaries specify the same 2-morphism
in U̇Q , a property that only holds up to scalars in previous formulations. Given the
utility of the cyclic version, we also prove the following result, which defines these
symmetries in this setting.

Theorem 1.3. There are invertible 2-functors σ, ω,ψ defined on the cyclic version
of the categorified quantum group U̇Q that categorify the symmetries σ , ω,ψ , i.e.,

[σ ] = σ , [ω] = ω, [ψ] = ψ

in K0(U̇Q(g))∼= U̇q(g).

Defining these 2-functors requires several subtle aspects involving the choice of
scalars Q, so we include the details below in Section 3E. Using these symmetries,
we use the categorical analogue of (1-5) to define the variants T ′

i,−1 and T ′′

i,e of the
internal braid group action.
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1C. Compatibility with Rickard complexes. As noted above, the defining feature
of the internal braid group action at the decategorified level is its compatibility with
the quantum Weyl group action, given in (1-3). In a sequel to this paper [1], we
show that our 2-functors T ′

i,+1 satisfy an analogous compatibility with the Rickard
complexes.

To be precise, note that the first equality in (1-3) asserts that the actions of
the elements T ′

i,e(u)t
′

i,e1λ and t′i,e1νu on the λ weight space of any integrable
representation agree for all u ∈ 1νU̇1λ. Equivalently, for any integrable represen-
tation V =

⊕
λ Vλ there is an equality between the corresponding linear maps

1νU̇1λ → Hom(Vλ, Vsi (ν)). At the categorical level, the operation of composing
with the complex τ ′

i,+1 defines a functor

(1-6) τ ′

i,+11ν(−)1λ : HomUQ (λ, ν)→ HomCom(UQ)(λ, si (ν)),

and we can similarly consider the functor T ′

i,e(−)τ
′

i,e1λ, which maps between the
same Hom-categories. The main result of [1] is the following:

Theorem 1.4. For all objects λ, ν in UQ , there is an isomorphism of functors

(1-7) ℶ : τ ′

i,+11ν(−)1λ ∼= T ′

i,e(−)τ
′

i,e1λ

between Hom-categories HomUQ (λ, ν)→ HomCom(UQ)(λ, si (ν)).

1D. Applications of the internal braid group action.

1D1. PBW basis and their categorifications. In finite type, Lusztig’s internal braid
group action can be used to deduce the quantum PBW theorem for U̇+(g), providing
a basis of monomials that are useful in many applications. The KLR algebra
provides a categorification of U̇+(g) via its category of projective/finitely generated
modules [24; 25; 55]. Therein, the indecomposable projective modules correspond
to the canonical basis of U̇+(g) [59], while the simple modules correspond to
the dual canonical basis [8; 60]. At the categorical level, the analogues of PBW
monomials lead to a rich theory of standard modules for KLR algebras. In finite
type, standard modules were first described in [31] (see also [6; 9; 19; 20; 41; 42]),
and in affine type they were studied in [29; 30; 43; 58]; in these studies, the focus
has been on finding specific modules over KLR algebras that lift a given PBW
monomial. In forthcoming work [44], McNamara plans to use our 2-functors T ′

i,+1
to build projective resolutions of standard KLR modules, producing a categorical
lift of Lusztig’s internal braid group construction of the PBW basis, and giving a
strengthening of Kato’s results on reflection functors for KLR algebras [20].

1D2. Quantum affine algebras. There is no obstruction to defining the 2-functors
T ′

i,+1 in arbitrary symmetrizable type, except that the check of well definedness is
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much more involved. For example, Lusztig provides the explicit formula

(1-8) T ′

i,+1(Eℓ1λ)=

−i ·ℓ∑
j=0

(−q) j E ( j)
i EℓE (−i ·ℓ− j)

i 1si (λ)

in arbitrary type (compare to (1-4) above), which suggests that the categorified
Lusztig operator T ′

i,1 should send Eℓ1λ to a complex of length 1 − i · ℓ. It is not
difficult to specify a complex lifting (1-8), for example, we could set

T ′

i,1(Eℓ1λ) := ♣EℓE (−i ·ℓ)
i 1si (λ)

OO

OO OOGG

−−−→ EiEℓE (−i ·ℓ−1)
i 1si (λ)⟨1⟩

OO

OO

OO OOOO

−−−−→ · · ·

OO

KK

OO

−−−−→ E (−i ·ℓ)
i Eℓ1si (λ)⟨−i · ℓ⟩.

Here, the terms in the differential are given using the thick calculus from [27], and
an easy computation therein verifies that they square to zero. The appearance of
complexes containing more than two nonzero terms suggests that even more of the
defining relations in U̇Q may be preserved by T ′

i,1 only up to homotopy, exacerbating
the difficulty of checking that these 2-functors are well defined. Despite this, we note
one interesting application of an extension of our 2-functors to non-simply-laced
type: it may be possible to promote Beck’s description [3] of the loop presentation
of affine algebras in terms of the internal braid group action to the categorical level,
giving a categorification of affine algebras in their loop realization.

1D3. Link invariants and skew Howe duality. As referenced above, one can study
the sln quantum link invariants via U̇(slm) representation theory using quantum
skew Howe duality. The latter is the quantum analogue of the duality arising
from the commuting actions of U̇(sln) and U̇(slm) on the quantum exterior power∧N

(Cm
q ⊗ Cn

q). The sln link invariants admit a formulation in terms of MOY
calculus [46] and sln webs [28; 32; 45], certain trivalent graphs which specify the
morphisms in a diagrammatic description of the category of U̇(sln) representations.

Cautis, Kamnitzer, and Morrison show that skew Howe duality admits a graphical
description in terms of so-called ladder webs, and use this to give an entirely
diagrammatic description of the full subcategory of quantum sln representations
tensor generated by the fundamental representations [17]. In this formulation,
skew Howe duality specifies a representation of U̇(slm) in which an slm weight
λ= (λ1, λ2, . . . , λm−1) is sent to the to the m-tuple (a1, a2, . . . , am) that satisfies
0 ≤ ai ≤ n,

∑m
i=1 ai = N and λi = ai − ai+1, and weights not satisfying these

conditions are sent to zero. This representation maps the generators of U̇(slm) as
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follows:

1λ 7→
. . .

a1 am

, E (r)i 1λ 7→ . . . . . .

a1 ai−1 ai ai+1 ai+2 am

ai +r ai+1−r

r
, F (r)i 1λ 7→ . . . . . .

a1 ai−1 ai ai+1 ai+2 am

ai −r ai+1+r

r
.

Under this representation, the braiding on the category of U̇(sln) is given by the
quantum Weyl group action, that is, diagrammatically, we have

(1-9) ti 1λ 7→

a1 ai−1 ai ai+1 amai+2

. . . . . .
, t−1

i 1λ 7→

a1 ai−1 ai ai+1 amai+2

. . . . . .
.

In this way, these link invariants can be computed and studied via the elements in
U̇(slm) corresponding to a given link diagram.

Under this correspondence, the internal braid group action plays an interesting
role in the diagrammatic description of quantum sln link invariants, as (1-3) shows
how to slide the image of an arbitrary element u ∈ U̇(slm) through a crossing, i.e.,
it gives the equality

a1 ai−1 ai ai+1 amai+2

u =

a1 ai−1 ai ai+1 amai+2

. . . . . .

T ′

i,+1(u)

where we abuse notation in denoting elements in U̇(slm) and their images under
the skew Howe representation via the same symbols.

This entire story lifts to the categorical level, allowing for the study of Khovanov
homology [34] and Khovanov–Rozansky homology [12; 49] following Cautis,
Kamnitzer, and Licata’s pioneering work in using categorical skew Howe duality
to study algebro-geometric categorifications of the sln link polynomials [16]. The
crucial point is that (1-9) lifts to map the Rickard complexes to the chain complexes
assigned to crossings in sln link homology.

In the foam-based description of link homology [2; 40; 49], categorical skew
Howe duality maps generators in U̇Q(slm) to explicit sln foams, certain singular
surfaces that categorify sln webs. Theorem 1.4 then explicitly shows how to slide
not only webs, but also foams mapping between them, through crossings in sln
link homology. At the level of 1-morphisms (webs), this interaction is key to the
stability results used to define sln analogues of Jones–Wenzl projectors [12; 51; 56],
and we anticipate that our extension to the level of 2-morphisms will prove useful
for future arguments in link homology.
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2. The quantum group and Lusztig symmetries

2A. The quantum group Uq(g).

2A1. Root datum. For the remainder of this article we restrict our attention to
simply-laced Kac–Moody algebras. These algebras are associated to a choice of
simply-laced Cartan datum consisting of

• a finite set I , and

• a Z-valued symmetric bilinear form · on ZI satisfying i · i = 2 for all i ∈ I
and i · j ∈ {0,−1} for i ̸= j ,

and root datum given by

• a free Z-module X , called the weight lattice, and

• a choice of simple roots {αi }i∈I ⊂ X and simple coroots {hi }i∈I ⊂ X∨
=

HomZ(X,Z) that satisfy ⟨hi , α j ⟩ = 2 i · j
i ·i , where here ⟨ · , · ⟩ : X∨

× X → Z is
the canonical pairing.

In this case, ai j := ⟨hi , α j ⟩ = i · j , so (ai j )i, j∈I is a symmetric generalized Cartan
matrix. Given an arbitrary weight λ ∈ X , we will often abbreviate ⟨hi , λ⟩ by either
⟨i, λ⟩ or simply by λi . We let {3i }i∈I ⊂ X denote the fundamental weights, which
are characterized by the property that ⟨hi ,3 j ⟩ = δi j for all i, j ∈ I .

We let X+
⊂ X denote the dominant weights, which are those of the form∑

i λi3i for λi ≥ 0. Associated to a simply-laced Cartan datum is a graph 0
without loops or multiple edges, with a vertex for each i ∈ I and an edge from
vertex i to vertex j if and only if i · j = −1.

2A2. The simply-laced quantum group. The quantum group U = Uq(g) associ-
ated to a simply-laced root datum is the unital, associative Q(q)-algebra given by
generators Ei , Fi , Kµ for i ∈ I and µ ∈ X∨, subject to the relations

(a) K0 = 1 and KµKµ′ = Kµ+µ′ for all µ,µ′
∈ X∨,

(b) KµEi = q⟨µ,αi ⟩Ei Kµ for all i ∈ I , µ ∈ X∨,

(c) KµFi = q−⟨µ,αi ⟩Fi Kµ for all i ∈ I , µ ∈ X∨,

(d) Ei F j − F j Ei = δi j ((Khi − K −1
hi
)/(q − q−1)), where we set Ki := Khi , and

(e) for all i ̸= j ,∑
a+b=−⟨i,α j ⟩+1

(−1)a E (a)i E j E (b)i = 0 and
∑

a+b=−⟨i,α j ⟩+1

(−1)a F (a)i F j F (b)i = 0,

where E (a)i = Ea
i /[a]!, F (a)i = Fa

i /[a]!, and [a]! =
∏a

m=1((q
m

− q−m)/(q − q−1)).
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2A3. The integral idempotented form of quantum group. We will work with the
idempotent form of U , which is adapted to the study of U-modules with weight
space decompositions. This nonunital algebra is equipped with a collection of
orthogonal idempotents, and hence can be described as a Q(q)-linear category
U̇ = U̇q(g), defined as follows. The objects of U̇ are elements of X , and the
Hom-space between λ, ν ∈ X is defined to be

U̇(λ, ν) := U/
(∑
µ∈X∨

U(Kµ − q⟨µ,λ⟩)+
∑
µ∈X∨

(Kµ − q⟨µ,ν⟩)U
)
.

The identity morphism of λ∈ X is denoted by 1λ and we will typically abbreviate
the element 1µx1λ ∈ U̇(λ, µ) determined by x ∈ U by either 1µx or x1λ, e.g.,
we have Ei 1λ = 1λ+αi Ei and Fi 1λ = 1λ−αi Fi . Composition in U̇ is induced by
multiplication in U , that is,

(1µx1ν)(1ν y1λ)= 1µxy1λ

for x, y ∈ U , λ,µ, ν ∈ X . The idempotent form U̇ admits an integral form, defined
as the Z[q, q−1

]-lattice AU̇ ⊂ U̇ spanned by products of divided powers E (a)i 1λ
and F (a)i 1λ.

2B. (Anti)linear (anti)automorphisms of U̇. We use several Z[q, q−1
]-(anti)linear

(anti)automorphisms in this paper. For f ∈ Q(q), let f 7→ f̄ be the Q-linear
involution of Q(q) that sends q to q−1.

• The Q(q)-linear algebra anti-involution σ : U → U is given by

σ(Ei )= Ei , σ (Fi )= Fi , σ (Ki )= K −1
i ,

σ ( f x)= f σ(x) for f ∈ Q(q) and x ∈ U,
σ (xy)= σ(y)σ (x) for x, y ∈ U .

• The Q(q)-linear algebra involution ω : U → U is given by

ω(Ei )= Fi , ω(Fi )= Ei , ω(Ki )= K −1
i ,

ω( f x)= f ω(x) for f ∈ Q(q) and x ∈ U,
ω(xy)= ω(x)ω(y) for x, y ∈ U .

• The Q(q)-antilinear algebra involution ψ : U → U is given by

ψ(Ei )= Ei , ψ(Fi )= Fi , ψ(Ki )= K −1
i ,

ψ( f x)= f̄ψ(x) for f ∈ Q(q) and x ∈ U,
ψ(xy)= ψ(x)ψ(y) for x, y ∈ U .
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These (anti)linear (anti)involutions pairwise commute and generate the group
G = (Z2)

3 of (anti)linear (anti)automorphisms acting on U . The (anti)involutions
σ , ω, and ψ all extend to U̇ and AU̇ by setting

σ(1λ)= 1−λ, ω(1λ)= 1−λ, ψ(1λ)= 1λ,

and taking the induced maps on each summand 1λ′U̇1λ.

2C. Quantum Weyl group action on integrable U̇-modules. Let V =
⊕

λ Vλ be
an integrable U̇-module. Then, for e = ±1, Lusztig [38, 5.2.1] defines linear maps
t′i,e, t′′i,e : V → V by

t′i,e(z)=

∑
a,b,c;a−b+c=λi

(−1)bqe(−ac+b)F (a)i E (b)i F (c)i z,

t′′i,e(z)=

∑
a,b,c;−a+b−c=λi

(−1)bqe(−ac+b)E (a)i F (b)i E (c)i z,

for z ∈ Vλ that are commonly called the quantum Weyl group elements. They are
mutually inverse automorphisms (specifically, they satisfy t′i,et

′′

i,−e = Id = t′′i,−et
′

i,e)
that satisfy the relations

t′i,et
′

j,et
′

i,e = t′j,et
′

i,et
′

j,e and t′′i,et
′′

j,et
′′

i,e = t′′j,et
′′

i,et
′′

j,e if i · j = −1,

t′i,et
′

j,e = t′j,et
′

i,e and t′′i,et
′′

j,e = t′′j,et
′′

i,e if i · j = 0,

and thus define an action of the type-g braid group on any integrable module [38,
Theorem 39.4.3]. This action on a particular weight space can be conveniently
described by the infinite sums

t′i,e1λ =

∑
a,b,c;a−b+c=λi

(−1)bqe(−ac+b)F (a)i E (b)i F (c)i 1λ,

t′′i,e1λ =

∑
a,b,c;−a+b−c=λi

(−1)bqe(−ac+b)E (a)i F (b)i E (c)i 1λ

of elements in U̇ , from which the maps t′i,e ,t′′i,e can be recovered by taking the sum
over all λ ∈ X . It was shown in [17, Lemma 6.1.1] that these elements admit the
simpler form given in (1-2) above, that is, all terms with c ̸= 0 cancel.

2D. Lusztig’s internal braid group action. For each i ∈ I and e = ±1, Lusztig
defines algebra automorphisms T ′

i,e and T ′′

i,e of U̇ = U̇q(g) defined uniquely by the
compatibility with the quantum Weyl group action given in (1-3) above. They are
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given explicitly in [38, 41.1.2] by

(2-1)

T ′

i,e(1λ)= 1si (λ),

T ′

i,e(Eℓ1λ)=


−q−e(2+λi )Fi 1si (λ) if i = ℓ,

EℓEi 1si (λ) − qe Ei Eℓ1si (λ) if i · ℓ= −1,
Eℓ1si (λ) if i · ℓ= 0,

T ′

i,e(Fℓ1λ)=


−qe(λi )Ei 1si (λ) if i = ℓ,

Fi Fℓ1si (λ) − q−e FℓFi 1si (λ) if i · ℓ= −1,
Fℓ1si (λ) if i · ℓ= 0,

and
T ′′

i,e(1λ)= 1si (λ),

T ′′

i,e(Eℓ1λ)=


−q−e(λi )Fi 1si (λ) if i = ℓ,

Ei Eℓ1si (λ) − q−e EℓEi 1si (λ) if i · ℓ= −1,
Eℓ1si (λ) if i · ℓ= 0,

T ′′

i,e(Fℓ1λ)=


−qe(λi −2)Ei 1si (λ) if i = ℓ,

FℓFi 1si (λ) − qe Fi Fℓ1si (λ) if i · ℓ= −1,
Fℓ1si (λ) if i · ℓ= 0,

where si is the Weyl group element corresponding to the simple root αi , i.e.,
si (λ)= λ−⟨i, λ⟩αi . Lusztig further shows [38, 41.1.1] that (T ′

i,e)
−1

= T ′′

i,−e, and
that these automorphisms interact with the automorphisms from Section 2B as in
(1-5) above. As a consequence, we see that both T ′

i,e and T ′′

i,e are invariant under
conjugation by the triple composite σωψ .

In what follows, we focus our attention on the automorphisms T ′

i,1, since similar
results can be deduced for T ′′

i,−1, T ′′

i,1, and T ′

i,−1 using (1-5). When the context is
clear, we will abbreviate T ′

i,1 by T ′

i . In [38, 39.2.4 and 39.2.5], Lusztig shows that
the T ′

i satisfy
T ′

i T ′

ℓT ′

i = T ′

ℓT ′

i T ′

ℓ if i · ℓ= −1,

T ′

i T ′

ℓ = T ′

ℓT ′

i if i · ℓ= 0,

and hence defined a type-g braid group action on U̇ .

3. The categorified quantum group

We recall the definition of the categorified quantum group UQ(g), specifically the
cyclic version from [5], and establish a number of additional properties needed for
our arguments.

3A. Choice of scalars Q. Let k be a field, not necessarily algebraically closed or
characteristic zero.
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Definition 3.1. A choice of scalars Q associated to a simply-laced Cartan datum,
consist of elements {ti j }i, j∈I satisfying

• ti i = 1 for all i ∈ I and ti j ∈ k× for i ̸= j ,

• ti j = t j i when ai j = 0.

We say that a choice of scalars Q is integral if ti j = ±1 for all i, j ∈ I .

The choice of scalars Q controls the form of the KLR algebra RQ that categorifies
the positive half of the quantum group U̇ , and the 2-category UQ(g) is governed
by the products vi j = t−1

i j t j i taken over all pairs i, j ∈ I , which can be viewed as a
k×-valued 1-cocycle on the graph 0 associated to the Cartan datum.

Definition 3.2. A choice of bubble parameters C consists of elements ci,λ ∈ k× for
i ∈ I and λ ∈ X . We say that they are compatible with the scalars Q if

(3-1) ci,λ+α j /ci,λ = ti j .

Given any choice of scalars Q, we obtain a compatible choice of bubble parame-
ters by fixing ci,λ for a representative in every coset of the root lattice in the weight
lattice, and then extending to the entire weight lattice using (3-1). For a compatible
choice, note that the bubble parameters remain constant along an sl2-string since

ci,λ+nαi = tn
ii ci,λ = ci,λ.

3B. Definition of the 2-category UQ(g). Recall that a graded linear category is
an additive category equipped with an auto-equivalence ⟨1⟩ called the shift (see, for
example, [2]), and a graded additive 2-category is a category enriched in graded
linear categories. Throughout, we will use ⟨t⟩ to denote the auto-equivalence
given by applying ⟨1⟩ t times, and ⟨−t⟩ to denote the auto-equivalence obtained by
applying the inverse of ⟨1⟩ t times.

Definition 3.3. Fix a choice of scalars Q and compatible bubble parameters C .
Then the 2-category UQ := Ucyc

Q (g) is the graded linear 2-category with:

• Objects: λ ∈ X .

• 1-morphisms: formal direct sums of shifts of compositions of the generating
1-morphisms:

1λ, 1λ+αiEi = 1λ+αiEi 1λ = Ei 1λ, 1λ−αiFi = 1λ−αiFi 1λ = Fi 1λ

for i ∈ I and λ ∈ X .
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• 2-morphisms: Hom-spaces are k-vector spaces spanned by (horizontal and verti-
cal) compositions of the decorated tangle-like diagrams

•

OO

i

λλ+αi : Ei 1λ → Ei 1λ⟨2⟩, •
��
i

λλ−αi
: Fi 1λ → Fi 1λ⟨2⟩,

OOOO

i j
λ : EiE j 1λ → E jEi 1λ⟨−i · j⟩, �� ��

i j
λ : FiF j 1λ → F jFi 1λ⟨−i · j⟩,

��

OO

i j
λ : FiE j 1λ → E jFi 1λ,

OO

��
i j

λ : EiF j 1λ → F jEi 1λ,

OO

i
λ

: 1λ → FiEi 1λ⟨1 + λi ⟩,
OO

i
λ

: 1λ → EiFi 1λ⟨1 − λi ⟩,

��

i λ
: FiEi 1λ → 1λ⟨1 + λi ⟩, ��

i λ
: EiFi 1λ → 1λ⟨1 − λi ⟩.

Note that we follow the grading conventions in [14; 34], which are opposite
to those from [26]. We read such diagrams from right to left and bottom to top,
and the identity 2-morphisms of the 1-morphisms Ei 1λ and Fi 1λ are depicted by
upward and downward oriented segments labeled by i , respectively.

The following local relations are imposed on the 2-morphisms:

(1) Right and left adjunction:

OO �� OO

λ

λ+αi

= OO

λλ+αi

, ��OO��

λ+αi

λ

= ��

λ+αiλ

,

OO��OO

λ

λ+αi

= OO

λλ+αi

, �� OO ��

λ+αi

λ

= ��

λ+αiλ

.

(2) Dot cyclicity:

OO

��

��

λ+αi

λ
•

=

��

•
λ λ+αi

= OO

��

��

λ+αi

λ

•
.
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(3) Crossing cyclicity:

����i j
λ =

OO ��

�� OO
λ

�� OO

��OO

j i

ji

=

OO��

��OO
λ

��OO

�� OO

ij

i j

,

OO

��j i
λ =

OO

λ
�� OO

��OO

i j

ij

=

��

λ
OO��

OO ��

ji

j i

,

��

OO

ij
λ =

OO

λ
��OO

�� OO

ji

j i

=

�� λ

OO ��

OO��

i j

ij

.

The next three relations imply that the E’s (and F ′s) carry an action of the KLR
algebra associated to Q:

(4) Quadratic KLR:

λ

OOOO

i j

=



0 if i = j ,

ti j

OOOO

i j
if i · j = 0,

ti j OOOO
•

i j
+ t j i OOOO

•

i j
if i · j = −1.

(5) Dot slide:
OO

•

OO

i j
−

OO

•
OO

i j
=

OOOO

•

i j
−

OOOO

•i j

=


OO OO

i i
if i = j ,

0 if i ̸= j .

(6) Cubic KLR:

OOOO OO

λ

i j k

−

OOOOOO

λ

i j k

=


ti j OOOO OO

i j i

if i = k and i · j = −1,

0 if i ̸= k or i · j ̸= −1.
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(7) Mixed EF : for i ̸= j ,

OO��

��

OO

λ

i j

= ��OO λ

i j

, ��

��

OO

OO

λ

i j

= OO�� λ

i j

.

(8) Bubble relations:

i
��MM

•
λi −1+m

λ

=

{
ci,λ Id1λ if m = 0,
0 if m < 0,

i
QQ��

•
−λi −1+m

λ

=

{
c−1

i,λ Id1λ if m = 0,
0 if m < 0.

(9) Extended sl2 relations: These final relations are the most involved, and require
the introduction of fake bubbles — positive degree endomorphisms of 1λ that are
denoted by a bubble carrying a formal label by a negative number of dots. They
are defined by

i
��MM

•
λi −1+ j

λ

=


−ci,λ

∑
a+b= j

b≥1

i
��MM

•
λi −1+a

i
QQ��

•
−λi −1+b

λ

if 0< j <−λi + 1,

0 if j ≤ 0,

when λi < 0, and by

i
QQ��

•
−λi −1+ j

λ

=


−c−1

i,λ

∑
a+b= j

a≥1

i
��MM

•
λi −1+a

i
QQ��

•
−λi −1+b

λ

if 0< j < λi + 1,

0 if j ≤ 0,

when λi > 0. The extended sl2 relations are then as follows, where we employ
the convention here (and throughout) that all summations are “increasing”, that is,∑

a+b+c=µ Xa,b,c is zero if µ < 0:

i i

OO �� λ = − OO��

��

OO

λ

i i

+

∑
a+b+c
=λi −1

λ

��NN•
c

		
OO

• a
i QQ��

•
−λi −1+b

i

i

,

i i

�� OO λ = − ��

��

OO

OO

λ

i i

+

∑
a+b+c
=−λi −1

RR��•
c

II��

•a
i
��MM

•
λi −1+b

i

i
λ

.
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Remark 3.4. We will find it helpful to work with the reduced presentation for UQ

where we restrict to the generating 2-morphisms

•

OO

i

λλ+αi : Ei 1λ → Ei 1λ⟨2⟩,

OOOO

i j
λ : EiE j 1λ → E jEi 1λ⟨−i · j⟩,

OO

i
λ

: 1λ → FiEi 1λ⟨1 + λi ⟩,
OO

i
λ

: 1λ → EiFi 1λ⟨1 − λi ⟩,

��

i λ
: FiEi 1λ → 1λ⟨1 + λi ⟩, ��

i λ
: EiFi 1λ → 1λ⟨1 − λi ⟩.

Indeed, the downward dot 2-morphism and sideways and downward crossings can
be defined in various ways by composing the upward versions with caps and cups,
and the cyclicity relations show that they do not depend on the choices made in
doing so. Further, Brundan [7] has shown that this presentation can be further
simplified to agree with the one given by Rouquier [54] that requires a smaller set
of axioms, together with the requirement that certain 2-morphisms are (abstractly)
invertible. Although this further reduced presentation is helpful in checking that
biadjointness and cyclicity hold in various 2-representations, it is not useful in our
present work, as showing that the required maps are invertible essentially requires
verifying the omitted axioms in UQ .

3C. Additional relations in UQ . Here, we collect additional useful relations that
will be used in later sections.

3C1. Curl relations. Dotted curls can be reduced to simpler diagrams using

λKK

LL

RR

VV
•

m

i

= −

∑
f1+ f2

=m−λi

λ
OO

i

i
��MM

•
λi −1+ f2

• f1

,

λ SS

RR

LL

HH
•

m

i

=

∑
g1+g2
=m+λi

i

λ

OO
i QQ��

•
−λi −1+g2

•g1

.

Note that in [14; 33] the m = 0 cases of these relations were included in the
defining list of relations, but it was shown in [5, Lemma 3.2] that these relations
(for arbitrary m) follow from the relations presented above.

3C2. Infinite Grassmannian relations. These relations are obtained by equating
the terms homogeneous in t in the expression below:

(
i QQ��

•
−λi −1

λ

+

i QQ��

•
−λi −1+1

λ

t+· · ·+

i QQ��

•
−λi −1+α

λ

tα+· · ·

)(
i
��MM

•
λi −1

λ

+

i
��MM

•
λi −1+1

λ

t+· · ·+

i
��MM

•
λi −1+α

λ

tα+· · ·

)
= Id1λ .

For low powers of t , these relations encode the definition of fake bubbles in terms of
(real) bubbles, and, for higher powers of t , they follow from the curl and extended
sl2 relations.
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3C3. Bubble slides. In what follows, we make use of the shorthand notation [27]

λ
i
��MM

•
♠+α

:=

λ
i
��MM

•
⟨i,λ⟩−1+α

,

λ
i
QQ��

•
♠+α

:=

λ
i
QQ��

•
−⟨i,λ⟩−1+α

.

As long as α ≥ 0, this notation makes sense even when ♠ +α < 0, in which case
these are the fake bubbles defined in the previous section.

Counterclockwise bubbles can be slid through upward oriented lines via

λ

OO

j

i
QQ��

•
♠+α

=



α∑
f =0

(α+ 1 − f )

λ+α j

OO

j

i
QQ��

•
♠+ f

•α− f
if i = j,

ti j

λ+α j

OO

j

i
QQ��

•
♠+α

+ t j i

λ+α j

OO

j

i
QQ��

•
♠+α−1

•

if ai j = −1,

ti j

λ+α j

OO

j

i
QQ��

•
♠+α

if ai j = 0,

λ+α j

OO

j

i
QQ��

•
♠+α

=



λ

OO

j

i
QQ��

•
♠+(α−2)

• 2

− 2
λ

OO

j

i
QQ��

•
♠+(α−1)

•

+

λ

OO

j

i
QQ��

•
♠+α

if i = j,

t−1
i j

α∑
f =0

(−t−1
i j t j i )

f
λ

OO

j

i
QQ��

•
♠+(α− f )

• f

if ai j = −1,

and we have similar relations involving clockwise bubbles:

λ

OO

j

i
��MM

•
♠+α

=



α∑
f =0

(α+ 1 − f )

λ

OO

j

i
��MM

•
♠+ f

•α− f
if i = j,

t j i

λ

OO

j

i
��MM

•
♠+α−1

•

+ ti j

λ

OO

j

i
��MM

•
♠+α

if ai j = −1,

t j i

λ

OO

j

i
��MM

•
♠+α

if ai j = 0,
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λ

OO

j

i
��MM

•
♠+α

=



λ+αi

OO

j

i
��MM

•
♠+(α−2)

• 2
− 2

λ+αi

OO

j

i
��MM

•
♠+(α−1)

•

+

λ+αi

OO

j

i
��MM

•
♠+α

if i = j,

t−1
i j

α∑
f =0

(−t−1
i j t j i )

f

λ+α j

OO

j

i
��MM

•
♠+α− f

• f
if ai j = −1.

Both types of bubbles can then be slid through downward oriented lines using these
relations and the cyclicity of UQ(g).

3C4. Triple intersections. We have

(3-2)

��

OO OO

λ

i j k

−

��

OOOO

λ

i j k

=


∑

a+b+c+d
=λi

λ

��NN•
c

		
OO

• a
i QQ��

•
♠+b

i

i
OO

i

•d
+

∑
a+b+c+d
=−λi −2

λ

PP��•
c

OO��

• a
i QQ��

•
♠+b

i

i
OO

i

•d if i = j = k,

0 else,

which is [33, Proposition 5.8] when i = j = k, and follows from cyclicity, the mixed
EF relation, and the cubic KLR relation in the other case.

3D. The 2-categories U̇Q , Kom(U̇Q), and Com(U̇Q).

3D1. Categories of complexes. Given an additive category M, we let Kom(M)

denote the category of bounded complexes in M. By convention, we work with
cochain complexes, so an object (X, d) of Kom(M) is a collection of objects X i

in M together with maps

· · ·
di−2

−−→ X i−1 di−1
−−→ X i di

−→ X i+1 di+1
−−→ · · ·

such that di+1di = 0 and only finitely many of the X i ’s are nonzero. A morphism
f : (X, d)→ (Y, d ′) in Kom(M) consists of a collection of morphisms fi : X i

→ Y i

in M such that fi+1di = d ′

i fi .
Recall that morphisms f, g : (X, d) → (Y, d ′) in Kom(M) are called (chain)

homotopic, denoted by f ∼ g, if there exist morphisms hi
: X i

→ Y i−1 such
that fi − gi = hi+1di + d ′

i−1hi for all i . A morphism of complexes is said to be
null-homotopic if it is homotopic to the zero map.
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Definition 3.5. The homotopy category Com(M) is the additive category with
the same objects as Kom(M) with morphisms given by morphisms in Kom(M)

modulo null-homotopic morphisms.

We say that two complexes (X, dX ) and (Y, dY ) are homotopy equivalent provided
they are isomorphic in Com(M), and denote this by X ≃ Y .

If M is monoidal, then Kom(M) is also monoidal, with the tensor product
(XY, d) of (X, dX ) and (Y, dY ) defined as

(3-3) (XY )i =

⊕
r+s=i

X r Y s, di :=

∑
r+s=i

(dX )r IdY s +(−1)r IdXr (dY )s .

Here, we denote the tensor product of objects and morphisms in M by juxtaposition.
Given chain maps f : (X, dX )→ (X ′, dX ′) and g : (Y, dY )→ (Y ′, dY ′) define the
tensor product f g : (XY, d)→ (X ′Y ′, d ′) of chain maps by setting

(3-4) fi =

⊕
r+s=i

fr gs .

It is straightforward to check that if f ∼ f ′ and g ∼ g′, then f g ∼ f ′g′, so Com(M)

inherits a monoidal structure from Kom(M).

Remark 3.6. More generally1, if C is an additive 2-category, we can consider
the 2-categories Kom(C) and Com(C) obtained by taking complexes in each Hom-
category. The above description of tensor product of complexes specifies how to
take horizontal composition in Kom(C) and Com(C).

3D2. Karoubi envelope. The Karoubi envelope Kar(M) of a category M is the
universal enlargement of M in which all idempotents split. Recall that we say an
idempotent e : b → b in a category M splits if there exist morphisms b g

−→ b′ h
−→ b

such that e = hg and gh = Idb′ . The Karoubi envelope Kar(M) admits an explicit
description as the category whose objects are pairs (b, e), where e : b → b is an
idempotent of M, and where morphisms are triples of the form

(e, f, e′) : (b, e)→ (b′, e′)

for f : b → b′ in M satisfying f = e′ f = f e. Composition is induced from
composition in M, and the identity morphism is (e, e, e) : (b, e)→ (b, e).

The identity map Idb : b → b is an idempotent, and the assignment b 7→ (b, Idb)

defines a fully faithful functor M ↪→ Kar(M), and this functor is universal among
functors from M to idempotent split categories. If M is additive then so is Kar(M)

and this embedding is additive; in this case, for (b, e) ∈ Kar(M), we have that
b ∼= im e ⊕ im(Idb −e) where im e := (b, e). See [33, Section 9] for more details.

1Recall that a monoidal category can be interpreted as a 2-category with only one object.
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The following result shows that the Karoubi envelope interacts nicely with
passage to (homotopy) categories of complexes.

Proposition 3.7 [4, Propositions 3.6 and 3.7]. For any additive category M
there is a canonical equivalence Kom(Kar(M)) ∼= Kar(Kom(M)). If M is k-
linear with finite-dimensional Hom-spaces, then there is a canonical equivalence
Com(Kar(M))∼= Kar(Com(M)).

3D3. Karoubi envelope of UQ .

Definition 3.8. The additive 2-category U̇Q has the same objects as UQ and has
Hom-categories given by U̇Q(λ, λ

′)= Kar(UQ(λ, λ
′)).

Horizontal composition in U̇Q is induced from composition in UQ using the
universal property of the Karoubi envelope, and we similarly obtain an additive, fully-
faithful 2-functor UQ → U̇Q that is universal with respect to splitting idempotents
in the Hom-categories U̇Q(λ, λ

′). The significance of the 2-category U̇Q(g) is given
by the following theorem.

Theorem 3.9 [26; 33; 61]. There is an isomorphism γ : AU̇ ∼=−→ K0(U̇Q(g)) where
K0(U̇Q) denotes the split Grothendieck ring of U̇Q .

For g = sl2, this theorem also holds over Z by the results in [27].

3D4. Karoubian envelopes of Kom(U) and Com(U). Following Remark 3.6 above,
we consider the 2-categories Kom(UQ) and Com(UQ). Noting that the 2-Hom-spaces
UQ(x, y⟨t⟩) are finite-dimensional k-vector spaces for each t ∈ Z, Proposition 3.7
gives equivalences

Kar(Kom(UQ))∼= Kom(U̇Q), Kar(Com(UQ))∼= Com(U̇Q).

We arrange the various 2-categories built from UQ into the following diagram,
wherein the horizontal arrows denote passage to the Karoubian envelope, and vertical
arrows denote the canonical maps between the various categories of complexes:

UQ U̇ = Kar(UQ)

Kom(UQ) Kom(U̇Q)∼= Kar(Kom(U))

Com(UQ) Com(U̇Q)∼= Kar(Com(U))

� _

��

����

� _

��

����

� � //

� � //

� � //

Theorem 3.9 and the main result of [52] imply that

K0(Kar(Com(UQ)))∼= K0(Com(Kar(UQ)))∼= K0(Kar(UQ))∼= K0(U̇Q)∼= AU̇,
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where we employ the triangulated Grothendieck group for the categories of com-
plexes. We can hence view the Karoubi envelope of the homotopy category Com(UQ)

as a categorification of the integral idempotent form AU̇ of the quantum group.

3E. Symmetries of categorified quantum groups. We now use symmetries of the
diagrammatic relations in UQ to define 2-functors σ , ω, and ψ (for a general choice
of scalars Q and bubble parameters C) that lift the symmetries of quantum groups
from Section 2B. This extends the work of Khovanov and Lauda in [26], who defined
such functors in the specific case where ti j = 1 = ci,λ for all i, j ∈ I and λ ∈ X .
These 2-functors extend naturally to 2-functors on U̇Q , Kom(U̇Q), and Com(U̇Q) [4],
and induce the corresponding quantum group symmetries σ , ω, and ψ on AU̇ upon
passing to K0. For this reason, we refer to them as symmetry 2-functors.

Rather than being 2-endofunctors of UQ , some of these symmetries map between
versions UQ and U ′

Q of the categorified quantum group corresponding to different
bubble parameters. (Caveat lector: U ′

Q should not be confused with UQ′ from [14]
which instead corresponds to a different choice of scalars Q.) We define U ′

Q to be the
2-category given in Definition 3.3, but with the bubble parameters for UQ replaced
by primed bubble parameters (ci,λ)

′
:= c−1

i,−λ. The primed bubble parameters are
still compatible with the choice of scalars Q (used for both UQ and U ′

Q), since

(ci,λ+α j )
′

(ci,λ)′
=

c−1
i,−(λ+α j )

c−1
i,−λ

=
ci,−λ

ci,−λ−α j

= ti j .

In addition to mapping between versions of the categorified quantum group corre-
sponding to different bubble parameters, the symmetry 2-functors possess various
flavors of contravariance. Nevertheless, they are morally pairwise-commuting invo-
lutions, as the double application of a given symmetry is the identity and the result
of a composition does not depend on the order, despite the domain and codomain
being different versions of the categorified quantum group. Given this, we will
slightly abuse notation and refer to the symmetry and its inverse by the same symbol.

3E1. Forms of 2-categorical contravariance. Recall that a contravariant functor
C → D can be rephrased in terms of a (covariant) functor C → Dop, where Dop is the
opposite category, defined to have the same objects as in D, but with Dop(x, y) :=

D(y, x), i.e., the direction of the morphisms is opposite to that in D. For a 2-
category C, we can take the opposite 2-category in various ways, depending on
whether we take the opposite at the 1-morphism or 2-morphism level (or both).
Denote by Cop the 2-category with the same objects as C, and where we’ve taken
the opposite with respect to 1-morphisms, that is, for objects x, y in C, we let the
Hom-categories be given by Cop(x, y) := C(y, x). Let Cco denote the 2-category
with the same objects and 1-morphisms as C, but with opposite 2-morphisms, i.e.,
for objects x, y in C, we let the Hom-categories be given by Cco(x, y) := C(x, y)op.
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Finally, Ccoop is the 2-category in which we’ve taken opposite 1-morphisms and
2-morphisms, in other words, Ccoop(x, y) := C(y, x)op.

In the case of the 2-category UQ , functors between these opposite 2-categories cor-
respond to Z[q, q−1

]-(anti)linear algebra (anti)automorphisms of AU̇ upon taking
the Grothendieck group, as summarized in the following table:

2-functor induced map on AU̇

U̇Q → U̇Q Z[q, q−1
]-linear homomorphism

U̇Q → U̇op
Q Z[q, q−1

]-linear antihomomorphism

U̇Q → U̇co
Q Z[q, q−1

]-antilinear homomorphism

U̇Q → U̇coop
Q Z[q, q−1

]-antilinear antihomomorphism

In the following sections, we will explicitly describe σ , ω, and ψ . To do so, we
will use the notational convention from [26] that E−i := Fi .

3E2. The 2-functor σ : UQ → (U ′

Q)
op. Consider the operation on the diagrammatic

calculus or UQ that reflects a diagram across a vertical axis, replaces λ↔ −λ, and
scales all i i-crossings by −1. This operation is contravariant for composition of
1-morphisms, covariant for composition of 2-morphisms, preserves the degree of a
diagram, and takes relations in UQ to those in U ′

Q . As such, it defines an invertible
2-functor given explicitly as

σ : UQ → (U ′

Q)
op,

λ 7→ −λ, 1µE±i1E±i2 · · · E±im 1λ⟨t⟩ 7→ 1−λE±im · · · E±i2E±i11−µ⟨t⟩,
OOOO

i j
7→ (−1)δi j

OOOO

j i
, �� ��

i j
7→ (−1)δi j

�� ��
j i

,

��

OO

i j
7→ (−1)δi j

OO

��
j i

,

OO

��
i j

7→ (−1)δi j
��

OO

j i
,

��
i

λ
7→

i
��

−λ
,
OOi

λ
7→

i OO

−λ
,

OOi

λ
7→

iOO

−λ
, ��

i

λ
7→

i
��

−λ
,

OO

7→

OO

, •

OO

7→ •

OO

, �� 7→ �� ,
•
�� 7→

•
�� .

This extends to a 2-functor σ :Kom(UQ)→Kom(U ′

Q)
op defined on 1-morphisms via

(X, d) 7→ ( · · · → σ(X i−1)
(−1)i−1σ(di−1)

−−−−−−−−→ σ(X i )
(−1)iσ(di )
−−−−−→ σ(X i+1)→ · · · )

and on 2-morphisms by applying σ componentwise. The alternating differential
is essential here to preserve composition of 1-morphisms (contravariantly), due to
the sign conventions in taking horizontal composition of complexes.

3E3. The 2-functor ω : UQ → U ′

Q . Consider the operation on the diagrammatic
calculus for UQ that reverses the orientation of each strand, replaces λ↔ −λ, and
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scales all i i-crossings by −1. This operation is covariant for composition of both 1-
morphisms and 2-morphisms, preserves the degree of a diagram, and takes relations
in UQ to those in U ′

Q . This defines an invertible 2-functor given explicitly as

ω : UQ → U ′

Q,

λ 7→ −λ, 1µE±i1E±i2 · · · E±im 1λ⟨t⟩ 7→ 1−µE∓i1E∓i2 · · · E∓im 1−λ⟨t⟩,
OOOO

i j
7→ (−1)δi j

�� ��
i j

, �� ��
i j

7→ (−1)δi j

OOOO

i j
,

��

OO

i j
7→ (−1)δi j

OO

��
i j

,

OO

��
i j

7→ (−1)δi j
��

OO

i j
,

��

i

λ
7→

i
��

−λ
,
OOi

λ
7→

i OO

−λ
,

OOi

λ
7→

iOO

−λ
, ��

i

λ
7→

i
��

−λ
,

OO

7→ �� ,
•

OO

7→ •
�� , �� 7→

OO

, •
�� 7→

•

OO

.

This extends to a 2-functor ω : Kom(UQ)→ Kom(U ′

Q) defined on 1-morphisms via

(X, d) 7→ ( · · · → ω(X i−1)
ω(di−1)

−−−−→ ω(X i )
ω(di )
−−→ ω(X i+1)→ · · · )

and on 2-morphisms by applying ω componentwise.

3E4. The 2-functor ψ : UQ → (UQ)
co. Consider the operation on the diagrammatic

calculus for UQ that reflects a diagram across a horizontal axis, and reverses the ori-
entation. This operation is covariant for composition of 1-morphisms, contravariant
for composition of 2-morphisms, and preserves the relations in UQ . It determines
an invertible 2-functor given explicitly as

ψ : UQ → (UQ)
co,

λ 7→ λ, 1µE±i1E±i2 · · · E±im 1λ⟨t⟩ 7→ 1µE±i1E±i2 · · · E±im 1λ⟨−t⟩,
OOOO

i j
7→

OOOO

j i
, �� ��

i j
7→ �� ��

j i
, ��

OO

i j
7→

OO

��
j i

,

OO

��
i j

7→ ��

OO

j i
,

��
i

λ
7→

i

OO

λ,
OOi

λ
7→

i

��

λ
,

OOi

λ
7→

i

��

λ
, ��

i

λ
7→

i

OO

λ,

OO

7→

OO

, •

OO

7→ •

OO

, �� 7→ �� ,
•
�� 7→

•
�� .

Note that ψ must negate grading shift in order to be degree-preserving, due to
2-morphism contravariance. As such, it descends to an antilinear map on the
Grothendieck group. This extends to a 2-functor ψ :Kom(UQ)→Kom(UQ)

co given
on 1-morphisms by

(X, d) 7→ ( · · · → ψ(X i+1)
ψ(di )
−−→ ψ(X i )

ψ(di−1)
−−−−→ ψ(X i−1)→ · · · )
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and on 2-morphisms by applying ψ componentwise. Implicit in this formula
is that ψ negates the homological degree, i.e., for (X, d) in Kom(U) we have
ψ(X)i = ψ(X−i ).

3E5. Properties of symmetries of categorified quantum groups. The symmetries
σ , ω, and ψ are graded, additive, k-linear 2-functors, and it is immediate from their
definitions that each squares to the identity. The induced 2-functors on categories
of complexes descend to homotopy categories. The following result is immediate
from the above definitions.

Theorem 1.3. Under the isomorphism

K0(U̇Q)∼= AU̇ ∼= K0(U̇ ′

Q)

(see Theorem 3.9), the 2-functors defined above descend to the corresponding
symmetries: [σ ] = dσ, [ω] = dω, [ψ] = dψ .

Remark 3.10. The symmetry ωψ (which reflects a diagram across a horizontal
axis, sends λ to −λ, and scales all i i-crossings by −1) is closely related to the
Chevalley involution introduced in [7]. There, Brundan uses this to move between
the 2-categories Uco

Q and UQ′ associated to different choices of scalars. In the cyclic
setting, changing the choice of scalars from Q to Q′ is no longer necessary, provided
we change the choice of bubble parameters from C to C ′ as above.

4. Defining the categorical Lusztig operator T ′
i,1

We now proceed to explicitly define additive, k-linear 2-functors T ′

i,1 : UQ →

Com(UQ) for each i ∈ I . In Section 4A we define T ′

i,1 on objects and generating
1-morphisms, and extend via additive 2-functoriality to all 1-morphisms, i.e., we
send the horizontal composition of generators to the appropriate horizontal com-
position of the complexes giving their images, via (3-3), and map direct sums to
the corresponding direct sums. In Section 4B, we extend this definition to the
2-morphisms in UQ , assigning explicit chain maps to generating 2-morphisms,
again extending to all 2-morphisms as required by additive 2-functoriality.

Section 5 is then devoted to showing that T ′

i,1 is well defined, that is, showing
that it preserves all defining relations on 2-morphisms of U , up to chain homotopy.
We also explicitly compute the chain homotopies involved. We note that this check
is considerably lengthened due to the many relations that must be checked, and the
piecewise nature of the definition of the (categorified) Lusztig operator, specifically,
its dependency on the value of the bilinear form on I .

Theorem 1.1. Let g be a simply-laced Kac–Moody algebra. Then the data given
below defines a 2-functor

T ′

i,+1 : U̇Q(g)→ Com(U̇Q(g))
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so that the induced map on K0(U̇Q(g))∼= U̇q(g) satisfies

[T ′

i,+1] = T ′

i,+1 : U̇q(g)→ U̇q(g).

Given this, we then define the other versions of the categorified Lusztig operators
using the symmetries of categorified quantum groups from Section 3E.

Definition 4.1. Let

T ′′

i,−1 := σT ′

i,1σ, T ′′

i,1 := ωT ′

i,1ω, T ′

i,−1 := ψT ′

i,1ψ,

where in each case we apply T ′

i,1 on the appropriate version of the categorified
quantum group, as determined by the codomain of the categorified symmetry.

The following result now follows from Theorems 1.1 and 1.3.

Corollary 4.2. Upon passing to K0(U̇Q(g)), we have

[T ′′

i,−1] = [σT ′

i,1σ ] = [σ ][T ′

i,1][σ ] = σT ′

i,1σ = T ′′

i,−1,

[T ′′

i,1] = [ωT ′

i,1ω] = [ω][T ′

i,1][ω] = ωT ′

i,1ω = T ′′

i,1,

[T ′

i,−1] = [ψT ′

i,1ψ] = [ψ][T ′

i,1][ψ] = ψT ′

i,1ψ = T ′

i,−1.

Recall from the introduction that, while a similar categorification has previously
been defined on 1-morphisms [12], our definition extends to the 2-morphisms in
U̇Q(g), meaning that our categorified Lusztig operators help illuminate the higher
structure of categorified quantum groups.

We now proceed with the definition, regularly abbreviating T ′

i,1 simply by T ′

i . In
addition, we will make use of color in the diagrammatic calculus for U̇Q in specifying
T ′

i as follows: strands which are i-labeled (their label agrees with subscript on T ′

i )
will be black, those whose labels j and j ′ satisfy i · j = −1 = i · j ′ will be blue
and magenta (respectively), and those with label k satisfying i · k = 0 will be green,
unless stated otherwise.

4A. T ′
i,1 on objects and 1-morphisms. On objects, we define the 2-functor T ′

i,1 by

T ′

i (λ)= si (λ),

where si is the corresponding Weyl group element, defined by si (λ)= λ−λiαi . On
generating 1-morphisms, we define

T ′

i (1λ)= ♣1si (λ),

T ′

i (Eℓ1λ)=


Fi 1si (λ)⟨−2 − λi ⟩ → ♣ 0 if i = ℓ,

♣EℓEi 1si (λ)

OOOO

ℓ i
−−−→ EiEℓ1si (λ)⟨1⟩ if i · ℓ= −1,

♣Eℓ1si (λ) if i · ℓ= 0,
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T ′

i (Fℓ1λ)=


♣ 0 → Ei 1si (λ)⟨λi ⟩ if i = ℓ,

FℓFi 1si (λ)⟨−1⟩

�� ��
ℓ i

−−−→ ♣FiFℓ1si (λ) if i · ℓ= −1,

♣Fℓ1si (λ) if i · ℓ= 0,

where we have omitted all nonzero terms in these complexes, and we follow
our convention in denoting homological degree zero with a ♣. Since each of
these complexes has at most two nonzero terms, it is trivial that the square of the
differential is zero.

4B. Definition of T ′
i,1 on 2-morphisms. The 2-functor T ′

i,1 is given on generating
2-morphisms as follows. In these equations, we let our strand labels satisfy i · j =

−1 = i · j ′ and i · k = 0, and follow the color conventions specified above. We
will omit labeling the weight si (λ) in the far-right region of the diagrams in the
codomain, and in most cases will also only show the nonzero terms in our complexes.
Additionally, we will depict complexes of the form

W

(
α
β

)
−−→ X ⊕ Y (γ δ )

−−−→ Z

as anticommutative squares with arrows labeled by the corresponding maps, for ex-
ample, the last diagram in Section 4B2 depicts a chain map between such complexes.
In all cases, the chain map condition follows from the defining relations in U̇Q .

4B1. Definition of T ′

i,1 on upwards dot 2-morphisms. We have

T ′

i

(
•

OO

i

λλ+αi
)

:=

Fi 1si (λ)⟨−λi ⟩

Fi 1si (λ)⟨−2 − λi ⟩

•
��
i

OO

, T ′

i

(
•

OO

k

λλ+αk
)

:=

♣ Ek1si (λ)⟨2⟩

♣ Ek1si (λ)

•

OO

k

OO

,

T ′

i

(
•

OO

j

λλ+α j
)

:=

♣E jEi 1si (λ)⟨2⟩

♣E jEi 1si (λ)

•

OO

j

OO

i

OO
EiE j 1si (λ)⟨3⟩

EiE j 1si (λ)⟨1⟩

OO

i

•

OO

j

OO

OOOO

j i
//

OOOO

j i
//

4B2. Definition of T ′

i,1 on upwards crossing 2-morphisms. We have
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T ′

i

( OOOO

i i

λ
)

:=

FiFi 1si (λ)⟨−8 − 2λi ⟩

FiFi 1si (λ)⟨−6 − 2λi ⟩

− �� ��
i i

OO

, T ′

i

( OOOO

k k′

λ
)

:=

♣ Ek′Ek1si (λ)⟨−k · k ′
⟩

♣ EkEk′1si (λ)

OOOO

k k′

OO

,

T ′

i

( OOOO

i k

λ
)

:=

EkFi 1si (λ)⟨−2 − λi ⟩

FiEk1si (λ)⟨−2 − λi ⟩

��

OO

i k
tki

OO

, T ′

i

( OOOO

k i

λ
)

:=

FiEk1si (λ)⟨−2 − λi ⟩

EkFi 1si (λ)⟨−2 − λi ⟩

OO

��
k i

OO

,

T ′

i

( OOOO

i j

λ
)

:=

E jEiFi 1si (λ)⟨−1 − λi ⟩

FiE jEi 1si (λ)⟨−1 − λi ⟩

��

OO

i j i

��

OOOO

OO
♣ EiE jFi 1si (λ)⟨−λi ⟩

♣ FiEiE j 1si (λ)⟨−λi ⟩

−
��

OO

i i j

��

OOOO

OO

��
i

OOOO

j i //

��
i

OOOO

j i
−

//

T ′

i

( OOOO

j i

λ
)

:=

FiE jEi 1si (λ)⟨−λi ⟩

E jEiFi 1si (λ)⟨−2 − λi ⟩

OO

��
i ij

OO

��
•

OO

ti j −ti j
OO

��
i ij

OO

��

OO
•

OO
♣ FiEiE j 1si (λ)⟨1 − λi ⟩

♣ EiE jFi 1si (λ)⟨−1 − λi ⟩

OO

��
j ii

OO

��ti j

OO
•

−ti j
OO

��
j ii

OO

��

OO
•

OO

��
i

OOOO

j i //

��
i

OOOO

j i
−

//

T ′

i

( OOOO

j k

λ
)

:=

♣ EkE jEi 1si (λ)⟨− j · k⟩

♣ E jEiEk1si (λ)

t−1
ki

i kj

OOOO OO

OO
EkEiE j 1si (λ)⟨1 − j · k⟩

EiE jEk1si (λ)⟨1⟩

t−1
ki

j ki

OOOO OO

OO

OO

k

OOOO

j i //

OO

k

OOOO

j i //

T ′

i

( OOOO

k j

λ
)

:=

♣ E jEiEk1si (λ)⟨−k · j⟩

♣ EkE jEi 1si (λ)

k j i

OOOOOO

OO
EiE jEk1si (λ)⟨1 − k · j⟩

EkEiE j 1si (λ)⟨1⟩

k i j

OOOOOO

OO

OO

k

OOOO

j i //

OO

k

OOOO

j i //
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T ′

i

( OOOO

j j ′

λ
)

:=

♣ E jEiE j ′Ei 1si (λ)

EiE jE j ′Ei 1si (λ)⟨1⟩

E jEiEiE j ′1si (λ)⟨1⟩

EiE jEiE j ′1si (λ)⟨2⟩

OOOO

j i

OO

i

OO

j ′

77

OOOO

j ′ i

OO

i

OO

j
++

OOOO

j ′ i

OO

i
−

OO

j
,,

OOOO

j i

OO

j ′

OO

i

::

♣ E j ′EiE jEi 1si (λ)⟨− j · j ′
⟩

EiE j ′E jEi 1si (λ)⟨1 − j · j ′
⟩

E j ′EiEiE j 1si (λ)⟨1 − j · j ′
⟩

EiE j ′EiE j 1si (λ)⟨2 − j · j ′
⟩

77

++

,,

::

i j ′ ij

OOOO OOOO

t−1
i j

OO

j i j ′i

OOOO OOOO

−t−1
i j

OO

OOOO

i i

OO

j

OO

j
−δ j j ′vi j

OO

OOOO

j j ′

OO

i

OO

i
t−1
i j ti j ′

OO

==

YY

t−1
i j

j j ′ ii

OOOO OOOO

t−1
i j

i i j ′j

OOOO OOOO

In this last diagram, we have omitted the differentials on the codomain, so as not
to overcrowd it; they are given analogously to those in the domain, with j ↔ j ′.
Recall also that vi j := t−1

i j t j i .

4B3. Definition of T ′

i,1 on cap and cup 2-morphisms. We have

T ′

i

(
��

i λ
)

:=

♣ 1si (λ)⟨1 − λi ⟩

♣ FiEi 1si (λ)

��

ici,λ

OO

, T ′

i

(
OO

i

λ
)

:=

♣ 1si (λ)

♣ EiFi 1si (λ)⟨1 + λi ⟩

OO

i
c−1

i,λ

OO

,

T ′

i

(
OO

i

λ
)

:=

♣ 1si (λ)

♣ FiEi 1si (λ)⟨1 − λi ⟩

OO

i
ci,λ

OO

, T ′

i

(
��

i λ
)

:=

♣ 1si (λ)⟨1 + λi ⟩

♣ EiFi 1si (λ)

��

i
c−1

i,λ

OO

.

Note that the maps have the correct degree since the rightmost region in all the
images is labeled by si (λ), and 1±⟨i, si (λ)⟩=1±⟨i, λ−λiαi ⟩=1±λi ∓2λi =1∓λi .
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We have

T ′

i

(
��

k λ
)

:=

♣ 1si (λ)⟨1 − λk⟩

♣ EkFk1si (λ)

��

k
tλi
ki

OO

, T ′

i

(
OO

k

λ
)

:=

♣ 1si (λ)

♣ FkEk1si (λ)⟨1 + λk⟩

OO

kt−λi
ki

OO

,

T ′

i

(
OO

k

λ
)

:=

♣ 1si (λ)

♣ EkFk1si (λ)⟨1 − λk⟩

OO

k

OO

, T ′

i

(
��

k λ
)

:=

♣ 1si (λ)⟨1 + λk⟩

♣ FkEk1si (λ)

��

k

OO

.

The maps have the correct degree since 1 ±⟨k, si (λ)⟩ = 1 ±⟨k, λ−λiαi ⟩ = 1 ±λk .
We have

T ′

i

( OO

j λ

)
:=

♣ FiF jE jEi 1si (λ)⟨1 + λ j ⟩

F jFiE jEi 1si (λ)⟨λ j ⟩ FiF jEiE j 1si (λ)⟨2 + λ j ⟩

♣ F jFiEiE j 1si (λ)⟨1 + λ j ⟩

0 ♣ 1si (λ) 0

OOOO

�� ��
�� ��

OOOO

OOOO

��
−
��

�� ��

OOOO

OO OO

(−1)λ j c j,λ

OO OO

(−1)λ j +1c j,λ

T ′

i

(
��

j λ)
:=

E jEiF jFi 1si (λ)⟨λ j − 2⟩

♣ EiE jF jFi 1si (λ)⟨λ j − 1⟩

♣ E jEiFiF j 1si (λ)⟨λ j − 1⟩

EiE jFiF j 1si (λ)⟨λ j ⟩

OOOO

����

77

�� ��

OOOO

**

�� ��

OO

−

OO

**

OOOO

����

77

0 ♣ 1si (λ) 0// //
OO OO::

�� ��
(−1)λ j +1c−1

j,λ

YY

�� ��
(−1)λ j c−1

j,λ

T ′

i

( OO
j λ

)
:=



CATEGORIFICATION OF THE INTERNAL BRAID GROUP ACTION, I 33

E jEiF jFi 1si (λ)⟨−λ j ⟩

♣ EiE jF jFi 1si (λ)⟨1 − λ j ⟩

♣ E jEiFiF j 1si (λ)⟨1 − λ j ⟩

EiE jFiF j 1si (λ)⟨2 − λ j ⟩

OOOO

����

77

�� ��

OOOO

**

�� ��

OO

−

OO

**

OOOO

����

77

0 ♣ 1si (λ) 0// //

OO OO

MM

??

OOOO
(−ti j )

λi c−1
i,λ−α j

(−1)λ j c j,λ
OOOO

(−ti j )
λi c−1

i,λ−α j
(−1)λ j c j,λ

T ′

i

(
��

j λ)
:=

F jFiE jEi 1si (λ)⟨−2 − λ j ⟩

♣ FiF jE jEi 1si (λ)⟨−1 − λ j ⟩

♣ F jFiEiE j 1si (λ)⟨−1 − λ j ⟩

FiF jEiE j 1si (λ)⟨−λ j ⟩

�� ��

OOOO

77

OOOO

��
−
�� **

OOOO

�� ��

**

�� ��

OOOO

77

0 ♣ 1si (λ) 0// //
OO OOKK

����

(−ti j )
1−λi ci,λ(−1)λ j c−1

j,λ

YY

����

(−ti j )
1−λi ci,λ(−1)λ j c−1

j,λ

As above, a simple computation shows that the maps have the correct degree, e.g.,

deg
(
����

si (λ)
)

= 1 + ⟨ j, si (λ)⟩ + 1 + ⟨i, si (λ)+α j

= 2 + λ j − λi ( j · i)+ λi − λi (i · i)+ i · j = 1 + λ j .

5. Proof that categorified Lusztig operators are well defined

We show that T ′

i,1 is well defined, i.e., that T ′

i,1 preserves the defining relations
in UQ , up to chain homotopy. We’ll see, however, that many cases do not require a
chain homotopy. For example, T ′

i,1 preserves on the nose any relation that does not
involve j-labeled strands (for i · j = −1), since here the complexes involved have
only one nonzero term (in the same homological degree), precluding the existence
of nontrivial chain homotopies. A complete proof consists of checking many cases
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for each relation, since T ′

i,1 is defined in a piecewise manner that depends on the
connectivity of the graph associated to the simply-laced root datum.

To simplify this task, we will work with the presentation of UQ implicit in
Remark 3.4. Specifically, we view downward dot and sideways and downward
crossing 2-morphisms as defined in terms of cap/cup 2-morphisms and their upward
analogues (in the case of downward dots, we choose the presentation in terms of
right-oriented caps/cups). It follows that T ′

i,1 is already fixed on these 2-morphisms
(by 2-functoriality), and we record its value on these composite 2-morphisms in the
Appendix. We make extensive use of these computations in the sections that follow.

Throughout, we will continue with our convention that the labels j, j ′
∈ I satisfy

i · j = −1 = i · j ′ and correspond to blue and magenta strands, while the labels
k, k ′

∈ I satisfy i · k = 0 = i · k ′ and correspond to green strands. We also let ℓ ∈ I
denote an arbitrary label.

5A. Adjunction relations. We verify the right and left adjunction relations given
in Definition 3.3(1).

Proposition 5.1. For all ℓ ∈ I the equalities

T ′

i

(
�� OO

OO

λ

ℓ

)
= T ′

i

( OO

ℓ

λ
)

= T ′

i

(
��OO

OO

λ

ℓ

)
,

T ′

i

(
��

��

OO λ

ℓ

)
= T ′

i

(
��ℓ

λ
)

= T ′

i

(
��

��

OO λ

ℓ

)
hold in Com(UQ).

Proof. When ℓ= i or ℓ=k with i ·k =0, these relations follow from a straightforward
computation, provided one is careful with the relevant parameters. For example,
the first equality follows from the computation

T ′

i

(
�� OO

OO

λ

i

)
= ci,λ+αi c

−1
i,λ
��

��
i

OO si (λ)
=
��
i

si (λ)
= T ′

i

( OO
i

λ

)
,

when ℓ= i , and from

T ′

i

(
�� OO

OO

λ

k

)
= t (λi +i ·k)−λi

ki
��

k

OO

OO

si (λ)
=

OO

k

si (λ)
= T ′

i

( OO
k

λ

)
,

when ℓ= k. We omit the other checks, as they are completely analogous.
For ℓ = j , the coefficients are more delicate. As T ′

i (E j 1λ) is a 2-term chain
complex, we will use an ordered pair to describe its chain endomorphisms (with the
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convention that the first term in the pair corresponds to lower homological degree):

T ′

i

(
�� OO

OO

j
λ

λ+α j
)

=

(
(−1)λ j +2c−1

j,λ+α j
(−1)λ j c j,λ ��

ij

OO�� OO

OO OO

,

(−1)(λ j +2)+1c−1
j,λ+α j

(−1)λ j +1c j,λ ��

ji

OO�� OO

OO OO
)

=

( OO
j

OO

i

si (λ),

OO

i

OO

j

si (λ)

)
= T ′

i

( OO
j

λ

)
,

T ′

i

(
��

��

OO
j λ

λ−α j

)
=

(
(−1)λ j +1c−1

j,λ(−1)(λ j −2)+1c j,λ−α j ��

�� ��

OO ��OO

ij

,

(−1)λ j c−1
j,λ(−1)λ j −2c j,λ−α j ��

�� ��

OO ��OO

ji )

=

(
��
j
��
i

si (λ),
��
i
��
j

si (λ)

)
= T ′

i

(
��
j

λ

)
,

T ′

i

(
��OO

OO

j λ

λ+α j

)
= (−ti j )

1−λi ci,λ(−1)λ j c−1
j,λ(−ti j )

λi −1c−1
i,λ (−1)λ j +2c j,λ+α j(
��

j i

OO ��OO

OOOO

, ��

i j

OO ��OO

OOOO
)

=

( OO
j

OO

i

si (λ),

OO

i

OO

j

si (λ)

)
= T ′

i

( OO
j

λ

)
,

T ′

i

(
��

��

OO

j
λ

λ−α j
)

= (−ti j )
1−(λi +1)ci,λ−α j (−1)λ j −2c−1

j,λ−α j
(−ti j )

λi c−1
i,λ−α j

(−1)λ j c j,λ(
��

����

OO�� OO

j i

, ��

����

OO�� OO

i j )

=

( OO
j

OO

i

si (λ),
��
i
��
j

si (λ)

)
= T ′

i

(
��
j

λ

)
. □

5B. Dot cyclicity. We verify the dot cyclicity relation given in Definition 3.3(2).
Recall that, in our presentation given by Remark 3.4, the downward dot morphism
is defined in terms of the upward dot morphism and rightward cap/cup morphisms.
Dot cyclicity is then equivalent to the following.
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Proposition 5.2. For ℓ ∈ I , the relation

T ′

i

(
•

OO��

��

OO ��
λ

ℓ

)
= T ′

i

(
•
��
ℓ

λ

)
holds in Com(UQ).

Proof. We compute the left-hand side, and verify the relations by comparing to
the results of Section A.1, which give the value of T ′

i on downward oriented dot
2-morphisms:

T ′

i

(
•

OO��

��

OO ��
λ

i

)
= ci,λc−1

i,λ−αi
•
��

��OO

OO

OO

=
•

OO

i
=: T ′

i

(
•
��
i

λ

)

T ′

i

(
•

OO��

��

OO ��
λ

j

)
= (−ti j )

1−(λi +1)ci,λ−α j (−1)λ j −2c−1
j,λ−α j

(−ti j )
λi c−1

i,λ−α j
(−1)λ j c j,λ(

��

��
i
��
j

OO�� OO• , ��

��
j
��
i

OO�� OO•

)

=

(
•

��
j
��
i

si (λ),
��
i

•

��
j

si (λ)

)
=: T ′

i

(
•

��
j

λ

)

T ′

i

(
•

OO��

��

OO ��
λ

k

)
= •

OO��

��

OO �� =
•
��

k
=: T ′

i

(
•
��

k

λ

)
□

5C. Crossing cyclicity. We now verify the crossing cyclicity relations given in
Definition 3.3(3). It suffices to prove cyclicity for the downward crossing, as the
relations for the sideways crossings follow from this and the adjunction relations. We
will use the value of the downward crossing from Section A.3, where (by definition)
it is given in terms of the upward crossing and rightward cap/cup 2-morphisms.

Proposition 5.3. For all ℓ, ℓ′ ∈ I , the equation

T ′

i

(
OO

��

��

OO OO

OO

��

��
ℓ ℓ′

λ

)
= T ′

i

(
�� ��
ℓ ℓ′

λ
)

holds in Com(UQ).

Proof. We compute the left-hand side, considering the three possibilities for each
ℓ, ℓ′ ∈ I in relation to the fixed node i ∈ I . For both stands labeled i , we have

T ′

i

(
OO

��

��

OO OO

OO

��

��
i i

λ

)
=−ci,λci,λ−αi c

−1
i,λ−2αi

c−1
i,λ−αi OO

��OO

���� OO

��OO

i i

=−

OOOO

i i
=:T ′

i

(
�� ��
i i

λ
)
.
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For strands labeled i and j , we have

T ′

i

(
OO

��

��

OO OO

OO

��

��
i j

λ

)

= c−1
i,λ−αi −α j

(−ti j )
1−(λi +1)ci,λ−α j (−1)λ j −2c−1

j,λ−α j

ci,λ(−ti j )
λi −2c−1

i,λ−αi −α j
(−1)λ j +1c j,λ−αi

(
OO

��
i j

��
i

OO

��
− ,

OO

��
i i

��
j

OO

��

)

=

(
OO

��
i j

��
i

OO

��t−1
i j t−1

j i ,−t−1
i j t−1

j i
OO

��
i i

��
j

OO

��

)
=: T ′

i

(
�� ��
i j

λ
)
,

T ′

i

(
OO

��

��

OO OO

OO

��

��
j i

λ

)

= (−ti j )
2−λi ci,λ−α j (−1)λ j −1c−1

j,λ−αi
c−1

i,λ

ti j ci,λ−α j (−ti j )
λi c−1

i,λ−α j
(−1)λ j c j,λ

(
��

OO

i i
��
j

��

OO

•
−

��

OO

i i
��
j

��

OO

•
,

��

OO

j i
��
i

��

OO

•
−

��

OO

j i
��
i

��

OO

•

)

= t2
i j t j i

(
��

OO

i i
��
j

��

OO

•
−

��

OO

i i
��
j

��

OO

•
,

��

OO

j i
��
i

��

OO

•
−

��

OO

j i
��
i

��

OO

•

)
=: T ′

i

(
�� ��
j i

λ
)
.

For crossings in which at least one strand is k-labeled and no strand is j -labeled,
the relations are trivial to check. We compute

T ′

i

(
OO

��

��

OO OO

OO

��

��
k k′

λ

)
=

OO

��

��

OO OO

OO

��

��
k k′

= �� ��
k k′

=: T ′

i

(
�� ��

k k′

λ
)
,

T ′

i

(
OO

��

��

OO OO

OO

��

��
i k

λ

)
= c−1

i,λ−αi −αk
ci,λtki OO

��

��

OO

��

OO

OO

��

i k

=

OO

��
i k

t2
ki =: T ′

i

(
�� ��
i k

λ
)
,

T ′

i

(
OO

��

��

OO OO

OO

��

��
k i

λ

)
= ci,λ−αk c−1

i,λ−αi

OO

OO

��

��

OO

OO

��

��
k i

= ��

OO

k i
t−1
ki =: T ′

i

(
�� ��

k i

λ
)
.

For strands labeled j and k, we compute

T ′

i

(
OO

��

��

OO OO

OO

��

��
j k

λ

)
= (−ti j )

1−(λi +1)ci,λ−α j −αk (−1)λ j −2− j ·kc−1
j,λ−α j −αk

t−1
ki (−ti j )

λi c−1
i,λ−α j

(−1)λ j c j,λ

(
�� ��
i k
��
j

,
�� ��
j k
��
i

)
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= (−1) j ·k t−2
ki t jk

(
�� ��
i k
��
j

,
�� ��
j k
��
i

)
=: T ′

i

(
�� ��
j k

λ
)
,

T ′

i

(
OO

��

��

OO OO

OO

��

��
k j

λ

)
= (−ti j )

1−(λi +1)ci,λ−α j (−1)λ j −2c−1
j,λ−α j

(−ti j )
λi c−1

i,λ−αk−α j
(−1)λ j − j ·kc j,λ−αk

(
�� ��

k j
��
i

,
�� ��

k i
��
j

)

= (−1) j ·k tki t−1
jk

(
�� ��

k j
��
i

,
�� ��

k i
��
j

)
= T ′

i

(
�� ��

k j

λ
)
.

Finally, in the case of a crossing between strands labeled j and j ′, it’s clear that

T ′

i

(
OO

��

��

OO OO

OO

��

��
j j ′

)
= C · T ′

i

(
�� ��
j j ′

λ
)

for some scalar C . A direct computation shows that

C = t−1
i j ti j ′ci,λ−α j ′

c−1
i,λ−α j

c j,λc−1
j,λ−α j ′

c j ′,λ−α j c
−1
j ′,λ(c j ′,λ−α j c

−1
j ′,λc j,λc−1

j,λ−α j ′
)−1

= 1. □

5D. Quadratic KLR.

Proposition 5.4. T ′

i preserves the quadratic KLR relation.

Proof. We verify (4) in Definition 3.3, first considering the cases that do not require
homotopies. We compute

T ′

i

(
OOOO

i i

OOOO )
= (−1)2

�� ��
i i

�� ��
= 0,

T ′

i

(
OOOO

k k′

OOOO )
=

OOOO

k k′

OOOO

=



0 if k = k ′,

T ′

i

(
tkk′

OO

k

OO

k′

)
if k · k ′

= 0,

T ′

i

(
tkk′

•

OO

k

OO

k′

+ tk′k

OO

k

•

OO

k′

)
if k · k ′

= −1,

T ′

i

(
OOOO

k i

OOOO )
= tki

OO

��
k i

��

OO

= tki

OO

k
��
i

= T ′

i

(
tki

OO

k

OO

i

)
,

T ′

i

(
OOOO

i k

OOOO )
= tki

��

OO

i k

OO

��
= tki ��

i

OO

k

= T ′

i

(
tki

OO

i

OO

k

)
.
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Our next four cases concern endomorphisms of chain complexes concentrated in
two adjacent homological degrees; we denote endomorphisms of such complexes
using ordered pairs. We compute

T ′

i

(
OOOO

k j

OOOO )
=

t−1
ki

k j i

OOOOOO

OOOO OO

, t−1
ki

k i j

OOOOOO

OOOO OO 

=



(
tk j

OO

k

OO

j

OO

i

, tk j

OO

k

OO

i

OO

j

)
if j · k = 0,(

tk j
•

OO

k

OO

j

OO

i

+ t jk

OO

k

•

OO

j

OO

i

, tk j
•

OO

k

OO

i

OO

j
+ t jk

OO

k

OO

i

•

OO

j

)
if j · k = −1,

=


T ′

i

(
tk j

OO

k

OO

j

)
if j · k = 0,

T ′

i

(
tk j

•

OO

k

OO

j
+ t jk

OO

k

•

OO

j

)
if j · k = −1,

and similarly

T ′

i

(
OOOO

j k

OOOO )

=

t−1
ki

i kj

OOOO OO

OOOOOO

, t−1
ki

j ki

OOOO OO

OOOOOO  =


T ′

i

(
t jk

OO

j

OO

k

)
if j · k = 0,

T ′

i

(
t jk

•

OO

j

OO

k

+ tk j

OO

j

•

OO

k

)
if j · k = −1.

The remaining cases only hold up to chain homotopy. We compute

T ′

i

(
OOOO

j i

OOOO )

= ti j

 OO

��
i ij

OO

��
•

��

OO ��

OOOO

−
OO

��
i ij

OO

��

OO
•
��

OO ��

OOOO

,
OO

��
j ii

OO

��

OO��

OO ��

OOOO

•
−

OO

��
j ii

OO

��

OO��

OO ��

OOOO

•


= ti j

−

i

OO

j

OO

•

��
i

+

i

OO

j

OO

•

��
i

, −

i

OO

j

OO

•

��
i

+

i

OO

j

OO

•

��
i
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=

−

OOOO

OOOO

j i
��
i

+ t j i

i

OO

j

OO

•

��
i

+ ti j

i

OO

j

OO

•

��
i

, −

OOOO

OOOO

i j
��
i

+ t j i

i

OO

j

OO

•

��
i

+ ti j

i

OO

j

OO

•

��
i


= T ′

i

(
ti j

OO

j

•

OO

i

+ t j i
•

OO

j

OO

i

)
+

(
−

OOOO

OOOO

j i
��
i
, −

OOOO

OOOO

i j ��i

)
,

where in the second step we make use of the equality

��

OO

OO

��
i i

•
−
��

OO

OO

��
i i

• = −

i

OO

•
��
i

+

i

OO

•
��
i

,

which holds in any weight. The result now follows since the chain endomorphism(
−

OOOO

OOOO

j i
��
i
, −

OOOO

OOOO

i j ��i

)

is null-homotopic with homotopy h : T ′

i (E jEi 1λ)→ T ′

i (E jEi 1λ⟨2⟩) given by

E jEiFi 1si (λ)⟨−λi ⟩

E jEiFi 1si (λ)⟨−2 − λi ⟩

♣EiE jFi 1si (λ)⟨1 − λi ⟩

♣EiE jFi 1si (λ)⟨−1 − λi ⟩

OOOO

− ��

ll

��

OOOO

//

��

OOOO

//

We similarly compute

T ′

i

(
OOOO

i j

OOOO )

= ti j


OO

��

OO

��

OO

��

OO

i j i

��

OOOO

•

−

OO

��

OO

��

OO
•

��

OO

i j i

��

OOOO
,

OO

��

OO

��

OO
•

��

OO

i i j

��

OOOO
−

OO

��

OO

��

OO
•

��

OO

i i j

��

OOOO



=

−

OOOO

OOOO

j i
��
i

+ t j i

i

OO

j

OO

•

��
i

+ ti j

i

OO

j

OO

•

��
i

, −

OOOO

OOOO

i j
��
i

+ t j i

i

OO

j

OO

•

��
i

+ ti j

i

OO

j

OO

•

��
i


= T ′

i

(
ti j

OO

j

•

OO

i

+ t j i
•

OO

j

OO

i

)
+

(
−

OOOO

OOOO

j i
��
i

, −

OOOO

OOOO

i j��
i

)
,
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where in this case we use the equality
OO

��

��

OO

i i

•

−

OO

��

��

OO

i i

•

=

i

OO

•
��
i

−

i

OO

•
��
i

,

which holds in any weight. The relation is verified since the chain endomorphism(
−

OOOO

OOOO

j i
��
i

, −

OOOO

OOOO

i j��
i

)
is null-homotopic, with homotopy given by

FiE jEi 1si (λ)⟨1 − λi ⟩

FiE jEi 1si (λ)⟨−1 − λi ⟩

♣FiEiE j 1si (λ)⟨2 − λi ⟩

♣FiEiE j 1si (λ)⟨−λi ⟩

OOOO

��

ll

− ��

OOOO

//

− ��

OOOO

//

Finally, we compute the case in which strands are labeled j

T ′

i (E jE j ′1λ)= ♣E jEiE j ′Ei 1si (λ)

→ E jEiEiE j ′1si (λ)⟨1⟩ ⊕ EiE jE j ′Ei 1si (λ)⟨1⟩ → EiE jEiE j ′1si (λ)⟨2⟩,

and we denote the relevant endomorphism as an ordered triple. We abuse notation for
the component mapping between the terms in homological degree one: technically
this should be given by a 2×2 matrix, but, in the interest of space, we add all terms
in the relevant matrix, as the components are distinguished by their (co)domains.

T ′

i

(
OOOO

j j ′

OOOO )

= t−1
i j t−1

i j ′


i j ′ ij

OOOO OOOO

OOOO OOOO

, δ j j ′ t2
j i

OOOO

i i j ′j

OOOO OOOO

+

i i j ′j

OOOO OOOO

OOOO OOOO

− t j iδ j j ′
OOOO

i i

OO

j ′

OO

j

OOOO OOOO

+ ti j

i i j ′j

OOOO OOOO

OOOO OOOO

+ ti j ti j ′
OOOO

j j ′ ii

OOOO OOOO

+

j j ′ ii

OOOO OOOO

OOOO OOOO
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+ ti j ′

OOOO

j j ′

OO

i

OO

i

OOOO OOOO

− t j iδ j j ′

j j ′ ii

OOOO OOOO

OOOO OOOO

,

j i ji

OOOO OOOO

OOOO OOOO 

= t−1
i j t−1

i j ′


ti j

i j ′ ij

OO OOOO •

OOOO OOOO

+ t j i

i j ′ ij

OO OOOO •

OOOO OOOO

,

i i j ′j

OOOO OOOO

OOOO OOOO

+ ti j

i i j ′j

OOOO OOOO

OOOO OOOO

+ ti j ti j ′
OOOO

j j ′ ii

OOOO OOOO

+ ti j ′

OOOO

j j ′

OO

i

OO

i

OOOO OOOO

,

t j ′i

j i j ′i

OO OOOO
•

OOOO OOOO

+ ti j ′

j i j ′i

OO OOOO
•

OOOO OOOO 
,

which vanishes if j = j ′, as desired. If j ̸= j ′, we instead have

T ′

i

(
OOOO

j j ′

OOOO )
=


t−1
i j ′

i j ′j

OOOO OOOO

OOOOOO

i

OO

, t−1
i j t−1

i j ′

i i j ′j

OOOO OOOO

OOOO OOOO

+ t−1
i j ′

i i j ′j

OOOO OOOO

OOOO OOOO

+
OOOO

j j ′ ii

OOOO OOOO

+ t−1
i j OOOO

j j ′

OO

i

OO

i

OOOO OOOO

,−t−1
i j

j i j ′

OOOOOOOO

OOOO OOOO

i

 .
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If j · j ′
= 0 the right-hand side of the above simplifies to

T ′

i

(
t j j ′

OO

j

OO

j ′

)
+ t j j ′

t−1
i j ′

OO

j i j ′ i

OOOOOO

, vi j ′

OOOO

i i

•

OO

j ′

OO

j
− vi j

OOOO

i i

•

OO

j

OO

j ′

−

OO

j

OO

i

OO

i

OO

j ′

+ ti j ′

i i j ′j

OOOO OO OO

+ t−1
i j

OOOO OOOO

j ′ iji

,−t−1
i j

OO

j ′i j i

OOOO OO  ,
and if j · j ′

= −1 it instead simplifies to

T ′

i

(
t j j ′

•

OO

j

OO

j ′

+ t j ′ j

OO

j

•

OO

j ′

)

+

t j j ′ t−1
i j ′

OO

•

j i j ′ i

OOOOOO

+ t j ′ j t−1
i j ′

OO

j i j ′ i

OOOOOO

• , (t j j ′vi j ′ − t j ′ jvi j )

OOOO

i i

•

OO

j ′

•

OO

j

+ t j ′ jvi j ′

OOOO

i i

•

OO

j ′

OO

j

2
− t j j ′vi j

OOOO

i i

•

OO

j

2

OO

j ′

− t j j ′
•

OO

j

OO

i

OO

i

OO

j ′

− t j ′ j

OO

j

OO

i

OO

i

•

OO

j ′

+ t j j ′ t−1
i j ′

•

OOOO OO OO

j i i j ′

+ t j ′ j t
−1
i j ′

•

OOOO OO OO

j i i j ′

+ t j j ′ t−1
i j

OOOO OO

•

OO

i j j ′ i

+t j ′ j t−1
i j

OOOO OOOO

•

i j j ′ i

,−t j j ′ t−1
i j

OO

i j i j ′

OOOO OO

• − t j ′ j t−1
i j

OO

•

i j i j ′

OOOO OO  .
In both cases, the second summand (the “error term” preventing the relation from

holding on the nose) is null-homotopic. The nonzero terms of both null-homotopies
are defined as

A :=


t j j ′ t−1

i j ′

i i j ′j

OO OO OOOO

if j · j ′
= 0,

t j j ′ t−1
i j ′

i i j ′

•

j

OO OO OOOO

+t j ′ j t−1
i j ′

i i
•

j ′j

OO OO OOOO

if j · j ′
= −1,

B :=


i j j ′i

OO OOOO OO

−t j j ′ t−1
i j if j · j ′

= 0,

i j j ′i

•

OO OOOO OO

−t j j ′ t−1
i j

i j
•

j ′i

OO OOOO OO

−t j ′ j t−1
i j if j · j ′

= −1.
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and seen in the following diagram:

♣ E jEiE j ′Ei 1si (λ)

EiE jE j ′Ei 1si (λ)⟨1⟩

E jEiEiE j ′1si (λ)⟨1⟩

EiE jEiE j ′1si (λ)⟨2⟩

77

OOOOOOOO ++

−

OOOOOO OO

,,

OOOO OOOO
::

♣ E jEiE j ′Ei 1si (λ)⟨−2 j · j ′
⟩

EiE jE j ′Ei 1si (λ)⟨−2 j · j ′
+ 1⟩

E jEiEiE j ′1si (λ)⟨−2 j · j ′
+ 1⟩

EiE jEiE j ′1si (λ)⟨−2 j · j ′
+ 2⟩

OOOO OOOO 55

OOOOOOOO

++

,,

OOOO OOOO ::

]]

gg

A

B

□

5E. Dot slide.

Proposition 5.5. T ′

i preserve the KLR dot sliding relation.

Proof. We verify (5) from Definition 3.3, only exhibiting the computations for cross-
ings involving j - and j ′-labeled strands (for j ·i = −1 = j ′

·i), as all others are com-
pletely straightforward. For i j-crossings with dotted i-labeled strand, we compute

T ′

i

( OOOO

i j
•

OOOO

i j

•
−

)
=


��

OO

i j i

��

OO

•

OO

−

��

OO

i j i

��

OO
•

OO

,−

��

OO

i i j

��

OO

•

OO

+

��

OO

i i j

��

OO
•

OO 
=


��

OO

i j

i
OO

��

OO

,−
OO

�� j

i

i

��

OOOO =

 OOOO

j i
��

i
OO

��
,−

OO

��

OOOO

i

i j

 ,
which is null-homotopic, as desired, via the homotopy

E jEiFi 1si (λ)⟨1 − λi ⟩

FiE jEi 1si (λ)⟨−1 − λi ⟩

♣ EiE jFi 1si (λ)⟨2 − λi ⟩

♣ FiEiE j 1si (λ)⟨−λi ⟩

OOOO

��
−

dd

��

OOOO

//

��

OOOO

−

//
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For the i j-crossing with dotted j-labeled strand, we have

T ′

i

( OOOO

i j

•

)

=


��

OO

i j i

��

OOOO

•

, −

��

OO

i i j

��

OO

•
OO =


��

OO

i j i

��

OO

•

OO

, −

��

OO

i i j

��

OO

•

OO = T ′

i

( OOOO

i j
•

)
.

For dotted j i-crossings, neither case requires a chain homotopy, so we omit the
computations, which are straightforward.

Finally, we consider dotted j j ′-crossings. As in the proof of Proposition 5.4, our
chain maps here map between complexes supported in three adjacent homological
degrees, and we denote them as ordered triples. We have

T ′

i

( OOOO

j j ′
•

OOOO

j j ′

•
−

)

= t−1
i j


OOOO OOOO

j i j ′ i

•
−

OOOO OOOO

j i j ′ i

•

,

OOOO OOOO

j i i j ′

•
−

OOOO OOOO

j i i j ′

•

−

OOOO

i i

OO

j

•

OO

j

δ j j ′ t j i

+

OOOO

i i

•

OO

j

OO

j

δ j j ′ t j i +

OOOO OOOO

i j j ′ i
•

−

OOOO OOOO

i j j ′ i

•

+

OOOO

j j ′

OO

i

OO

i
•ti j ′ −

OOOO

j j ′

OO

i

OO

i

•
ti j ′ ,

−

OOOO OOOO

i j i j ′
•

+

OOOO OOOO

i j i j ′

•



= δ j j ′

t−1
i j

OO OOOOOO

j i j i

+

OO

j

OO

i

OO

j

OO

i

,

t−1
i j

OOOO OO OO

j i i j

− vi j

OOOO

i i

OO

j

•

OO

j
+ vi j

OOOO

i i

•

OO

j

OO

j
+ t−1

i j

OOOO OOOO

i j j i

+

OO

i

OO

j

OO

j

OO

i

,

− t−1
i j

OOOOOO OO

i j i j

+

OO

i

OO

j

OO

i

OO

j
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=



T ′

i

( OO
j

OO

j

)
+

t−1
i j

OO OOOOOO

j i j i

, t−1
i j

OOOO OO OO

j i i j

− vi j

OOOO

i i

OO

j

•

OO

j
+ vi j

OOOO

i i

•

OO

j

OO

j
−

OO

j

OO

i

OO

i

OO

j
if j = j ′,

+t−1
i j

OOOO OOOO

i j j i

,−t−1
i j

OOOOOO OO

i j i j


0 if j ̸= j ′.

The relation thus holds on the nose unless j = j ′, in which case the “error term”
is null-homotopic, with homotopy given by

♣ E jEiE jEi 1si (λ)

EiE jE jEi 1si (λ)⟨1⟩

E jEiEiE j 1si (λ)⟨1⟩

EiE jEiE j 1si (λ)⟨2⟩

66

++

,,

99

♣ E jEiE jEi 1si (λ)

EiE jE jEi 1si (λ)⟨1⟩

E jEiEiE j 1si (λ)⟨1⟩

EiE jEiE j 1si (λ)⟨2⟩

OOOO OOOO

55

OOOOOOOO

++

−

OOOOOO OO

,,

OOOO OOOO

99

NN

ii

t−1
i j

i i jj

OO OO OOOO

i j ji

OO OOOO OO

−t−1
i j

The verification that

T ′

i

( OOOO

j j ′

•
OOOO

j j ′
•−

)
∼ δ j j ′T ′

i

( OO
j

OO

j

)

is almost identical to the above case, so we omit the details. □

5F. Cubic KLR.

Proposition 5.6. T ′

i preserves the cubic KLR relation.

Proof. We verify (6) in Definition 3.3, the “Reidemeister III”-like KLR relation.
There are 27 cases to consider, depending on whether the label ℓ of each strand
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satisfies i ·ℓ= 2,−1, or 0. To cover multiple cases at once, we will use the notation

1abc =

{
tab if a = c and a · b = −1,
0 else.

Note that 1abc =1cba .
The relation holds on the nose (does not require a nonzero homotopy), except

for the strand labelings in the list

i j i, jk j ′, j i j ′, j j ′ j,

where we continue with our conventions for strand labelings (i · j = −1 = i · j ′ and
i ·k =0= i ·k ′). In the interest of space, we will explicitly exhibit three representative
cases that do not require homotopies (to give the flavor of the computations required),
exhibit the homotopy and verify the relation in the i j i-labeled case, and exhibit the
homotopy (but not include all the computations involved for the verification) in the
remaining three cases.

In the j i i-labeled case, the relation holds on the nose via the following computa-
tion, where, as above, we denote the chain map as an ordered pair:

T ′

i


OOOO OO

j i i

−

OOOOOO

j i i

= t2
i j

−

��

OO

��

•

OO

��

OO

��

OO

��

•

OOOO

�� ��

j i i i

+

��

OO

��

•

OO

��

OO

��

OO

��
•

OOOO

�� ��

j i i i

+

��

OO

��

OO

��
•

OO

��

OO

��

•

OOOO

�� ��

j i i i

−

��

OO

��

OO

��
•

OO

��

OO

��
•

OOOO

�� ��

j i i i

+

�� ��

OO

��

•

OO

��

OO

��

•

OOOO

��

j i i i

−

�� ��

OO

��

OO

��

OO

��
•

•

OOOO

��

j i i i

−

�� ��

OO

��

•

OO

��

OO

��

OOOO

��
•

j i i i

+

�� ��

OO

��

OO

��

OO

��
•

OOOO

��
•

j i i i

,

−

��

OO

��

OO

��

OO

��
•

OO

��
•

OOOO

�� ��

i j i i

+

��

OO

��

OO

��

OO

��
•

OO

��

OO
•

OO

�� ��

i j i i

+

��

OO

��

OO

��

OO

��
•

OO

��
•

OOOO

�� ��

i j i i

−

��

OO

��

OO

��

OO

��
•

OO

��

OO
•

OO

�� ��

i j i i

+

�� ��

OO

��

OO

��

OO

��
•

•
OOOO

��

i j i i

−

�� ��

OO

��

OO

��

OO

��
•

•
OOOO

��

i j i i

−

�� ��

OO

��

OO

��

OO

��
•

•
OOOO

��

i j i i

+

�� ��

OO

��

OO

��

OO

��
•

•
OOOO

��

i j i i





48 M. T. ABRAM, L. LAMBERTO-EGAN, A. D. LAUDA AND D. E. V. ROSE

To simplify, we use the dot slide relation to move all dots to the top, and apply the
cubic KLR relation to cancel terms, arriving at

T ′

i


OOOO OO

j i i

−

OOOOOO

j i i

= t2
i j


��

OO

��

OO

��

��

OO

OO

��

•

OOOO

�� ��

j i i i

−

��

OO

��

OO

��

��

OO

OO

��

•
OOOO

�� ��

j i i i

−

��

OO

��

OO

��

��

OO

OO

��

OOOO

�� ��

j i i i

−

��

OO

��

OO

��

OO

��

OO

��

•

OOOO

�� ��

j i i i

+

��

OO

��

OO

��

OO

��

OO

��

•

OOOO

�� ��

j i i i

−

�� ��

OO

��

OO

��

��

OO
•

OOOO

��

j i i i

+

�� ��

OO

��

OO

��

��

OO
•
OOOO

��

j i i i

,

−

��

OO

��

OO

��

OO

��

OO

��

OO
•

OO

�� ��

i j i i

+

��

OO

��

OO

��

OO

��

OO

��

OO
•

OO

�� ��

i j i i

−

��

OO

��

OO

��

OO

��

��

OO
•

OOOO

�� ��

i j i i

−

��

OO

��

OO

��

OO

��

��

OO

OOOO

�� ��

i j i i

+

��

OO

��

OO

��

OO

��

��

OO

OO
•

OO

�� ��

i j i i

+

�� ��

OO

��

OO

��

OO

��

•
OO

��

OO

i j i i

−

�� ��

OO

��

OO

��

OO

��

•
OO

��

OO

i j i i


= 0.

For the j ik-labeled case, we have

T ′

i


OOOO OO

j i k

= ti j

 OO

��

•

OO

��

OOOO

OOOO

OOOO

��

OO

j i i k

−

OO

��

OO

��

OOOO
•

OOOO

OOOO

��

OO

j i i k

,

OO

��

OO

��

OOOO
•

OOOO

OOOO

��

OO

i j i k

−

OO

��

OO

��

OOOO
•

OOOO

OOOO

��

OO

i j i k



= ti j


��

OO

OOOO

OOOO

OO

��

•

OOOO

��

OO

j i i k

−

��

OO

OOOO

OOOO

OO

��

OOOO

��

OO
•

j i i k

,

��

OO

OOOO

OOOO

OO

��

OOOO

��

OO
•

i j i k

−

��

OO

OOOO

OOOO

OO

��

OOOO

��

OO
•

i j i k



= T ′

i


OOOOOO

j i k

 ,
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where in the middle step we use dot sliding and (3-2).
The k jk ′-labeled case is given by

T ′

i


OOOO OO

k j k′



=

t−1
k′i

OOOO

OOOO

OOOO

OOOO

OOOO OO OO

k j i k′

, t−1
k′i

OOOO

OOOO

OOOO

OOOO

OOOO OO OO

k i j k′



=

t−1
k′i

OOOO

OOOO

OOOO

OOOO

OOOOOOOO

k j i k′

+1k jk′ t−1
k′i

OOOO

OO OO OOOO

k j i k′

, t−1
k′i

OOOO

OOOO

OOOO

OOOO

OOOOOOOO

k i j k′

+1k jk′ t−1
k′i

OOOO

OOOOOOOO

k i j k′



= T ′

i


OOOOOO

k j k′

+1k jk′

OO OO OO

k j k′


and all others that don’t require a nonzero homotopy are similar to these cases.

We now consider the cases listed above that require chain homotopies. Consider-
ing the i j i-labeled case, we compute that

T ′

i


OOOO OO

i j i

−

OOOOOO

i j i

− ti j

i j i

OO OO OO = (ϕ1, ϕ2)

where

ϕ1 = −ti j

��

OO

��

��

OO �� ��

OO

��

OO

��
•

OO

i j i i

+ ti j

��

OO

��

��

OO �� ��

OO

��

•
OO

��

OO

i j i i

+ ti j

OO

����

•

OO

��

�� ��

��

OO ��

OOOO

i j i i

− ti j

OO

����

OO

��

�� ��

��

OO

•

��

OOOO

i j i i

− ti j

����

OOOO

i j i i

= ti j

∑
a+b+c+d

=⟨i,si (λ)⟩−2
��

OO

��
•
b

d•
QQ��

•
♠+c

OO

��

OO

•
a+1

i j i

i

i

+ ti j

OO

����

OO

�� ��

OOOO

��

i j i

i



50 M. T. ABRAM, L. LAMBERTO-EGAN, A. D. LAUDA AND D. E. V. ROSE

− ti j

∑
a+b+c+d

=⟨i,si (λ)⟩−2
��

OO

��
•
b

d+1•
QQ��

•
♠+c

OO

��

OO

•
a

i j i

i

i

− ti j

∑
a+b+c

=⟨i,si (λ)⟩−1
�� ��

•
b

QQ��
•

♠+c

OO OO

•
a

i j i

i

i

= −ti j

∑
b+c+d

=⟨i,si (λ)⟩−1
��

OO

��
•
b

d•
QQ��

•
♠+c

OO

��

OO

i j i

i

i

+ ti j

OO

����

OO ��

OO

OOOO

��

i j i i

i

= −ti j

��

OOOO

��

OO

��

OO

i j i i

i

and

ϕ2 = −ti j

��

OO

��

��

OO �� ��

OO

��

•
OO

��

OO

i i j i

+ti j

��

OO

��

��

OO �� ��

OO

��

•
OO

��

OO

i i j i

+ti j

OO

����

OO

��

�� ��

��

OO

•

��

OOOO

i i j i

−ti j

OO

����

OO

��

�� ��

��

OO

•

��

OOOO

i i j i

−ti j

����

OO OO

i i j i

= −ti j

∑
a+b+c+d

=⟨i,si (λ)+α j ⟩−1
OO

��

•
b

��

•d

��

OOOO

QQ�� • ♠+c

i i j i

+ti j

OO

����

OO

��

��

OO

��

OOOO

i i j i

= −ti j

��

OOOO

��

OO

��
i i j i

.

In both computations, we make extensive use of (3-2). It follows that this chain
map is null-homotopic, with homotopy given by

FiE jEiFi 1si (λ)⟨−2λi − 5⟩

FiE jEiFi 1si (λ)⟨−2λi − 5⟩

FiEiE jFi 1si (λ)⟨−2λi − 4⟩

FiEiE jFi 1si (λ)⟨−2λi − 4⟩

ee

ti j

OO

��

OO

��

− ��

OOOO

��

//

− ��

OOOO

��
//
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For the remaining cases, we provide the explicit homotopy between the relevant
maps. We have

T ′

i


OOOO OO

j k j ′

∼ T ′

i


OOOOOO

j k j ′

+1 jk j ′

OO OO OO

j k j ′


via the homotopy

♣E j ′EiEkE jEi 1si (λ)
EiE j ′EkE jEi 1si (λ)⟨1⟩

⊕E j ′EiEkEiE j 1si (λ)⟨1⟩
EiE j ′EkEiE j 1si (λ)⟨2⟩

♣E jEiEkE j ′Ei 1si (λ)
EiE jEkE j ′Ei 1si (λ)⟨1⟩

⊕E jEiEkEiE j ′1si (λ)⟨1⟩
EiE jEkEiE j ′1si (λ)⟨2⟩

(0 h1)
( 0

h2

)

with

h1
=1 jk j ′ t−1

ki t−1
i j OOOO

OOOO

OOOO

OO OO OO OOOO

j i k i j ′

, h2
= −1 jk j ′ t−1

ki t−1
i j OOOO

OOOO

OOOO

OO OOOO OO OO

i j k i j ′

.

For the j i j ′-labeled case, we have

T ′

i


OOOO OO

j i j ′

∼ T ′

i


OOOOOO

j i j ′

+1 j i j ′

OO OO OO

j i j ′


with chain homotopy given by (here we indicate the signs on the differential since
they are not the usual ones, due to the homological shift on T ′

i (Ei 1λ))

E j ′EiFiE jEi 1si (λ)⟨−1 − λi ⟩ E jEiFiE j ′Ei 1si (λ)⟨−1 − λi ⟩

EiE j ′FiE jEi 1si (λ)⟨−λi ⟩

⊕E j ′EiFiEiE j 1si (λ)⟨−λi ⟩

EiE jFiE j ′Ei 1si (λ)⟨−λi ⟩

⊕E jEiFiEiE j ′1si (λ)⟨−λi ⟩

EiE j ′FiEiE j 1si (λ)⟨1 − λi ⟩ EiE jFiEiE j ′1si (λ)⟨1 − λi ⟩

(
+

−

) (
+

−

)

(+ +)

(h1
1 h1

2)

(+ +)

( h2
1

h2
2

)
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for

h1
1 = −

��

OO

OOOO

OO

��

OOOO OO OO

i j i j ′ i

, h1
2 = −

OO

��

OOOOOO

j i

i

i j ′

, h2
1 =

OOOO

��

OO

��

OOOO

OOOO

��

OOOO

i j i i j ′

, h2
2 = −

OO

��

OOOOOO

i j

i

i j ′

.

For the final case with j j ′ j-labeled strands, we have

T ′

i


OOOO OO

j j ′ j

∼ T ′

i


OOOOOO

j j ′ j

+1 j j ′ j

OO OO OO

j j ′ j


The relevant homotopy maps between chain complexes given as the triple composi-
tion of two term chain complexes, and is nonzero only when j ̸= j ′. We’ll exhibit the
homotopy assuming this, and that j · j ′

= 0, as the homotopy is more involved when
j · j ′

=−1. The latter is only possible when the graph 0 corresponding to our Cartan
datum has a length-three cycle (which in finite- or affine-type only occurs for ŝl3).

We give the relevant homotopy, where, in the interest of space, we follow [26]
in defining Eℓ1···ℓk := Eℓ1 · · · Eℓk ; we also indicate the signs of the nonzero terms in
the differentials, which are given up to sign by the relevant j i- (or j ′i-) crossing:

♣E j i j ′i j i

Ei j j ′i j i ⟨1⟩

⊕E j i i j ′ j i ⟨1⟩

⊕E j i j ′i i j ⟨1⟩

Ei j i j ′ j i ⟨2⟩

⊕Ei j j ′i i j ⟨2⟩

⊕E j i i j ′i j ⟨2⟩

♣Ei j i j ′i j ⟨3⟩

(
+
+
+

) (
− + 0
− 0 +

0 − +

)

(0 0 h1
3)

(+ − +)

( 0 0 0
0 0 h2

23
0 h2

32 h2
33

) (
0
0
h3

3

)

Herein, the maps in the homotopy are given by

h1
3 = t−1

i j vi j t−1
i j ′ t j j ′

j i j ′ i i j

OO OO OO OO OOOO

, h3
3 = −t−1

i j vi j t−1
i j ′ t j j ′

i j i j ′ i j

OO OOOO OOOO OO

,

h2
32 = −t−1

i j vi j t−1
i j ′ t j j ′

i j j ′ i i j

OO OOOO OOOO OO

, h2
33 = −vi j t−1

i j ′ t j j ′

j i i j ′ i j

OO OO OO OOOO OO

,

h2
23 = −t−1

i j vi j t−1
i j ′ t j j ′

j i i i i j

OO OO OO OO OOOO

. □
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5G. Bubble relations. We now verify that T ′

i preserves (8) in Definition 3.3.

Proposition 5.7. We have

T ′

i

(
ℓ
��MM

•
λi −1+m

λ )
=

{
cℓ,λ Id1si (λ)

if m = 0,
0 if m < 0,

T ′

i

(
ℓ
QQ��

•
−λi −1+m

λ )
=

{
c−1
ℓ,λ Id1si (λ)

if m = 0,
0 if m < 0.

Proof. We’ll give the proof only in the clockwise case, as the counterclockwise case
is completely analogous. The computations in Section A.4 show that

T ′

i

(
ℓ
��MM

•
⟨ℓ,λ⟩−1+m

λ )
=



c2
i,λ

i QQ��

•
−⟨i,si (λ)⟩−1+m

si (λ)

if ℓ= i ,

tλi
ki

k
��MM

•
⟨k,si (λ)⟩−1+m

si (λ)

if ℓ= k,

tλi
j i c−1

i,λ

m∑
h=0

(−vi j )
−h

j
��MM

•
♠+m−h

i
��MM

•
♠+h

si (λ)

if ℓ= j ,

which immediately gives the result in the m < 0 case.
For m = 0, we compute

c2
i,λ

i
QQ��

•
−⟨i,si (λ)⟩−1

si (λ)

= c2
i,λc−1

i,si (λ)
Id1si (λ)

= c2
i,λc−1

i,λ−λiαi
Id1si (λ)

= c2
i,λc−1

i,λ Id1si (λ)
= ci,λ Id1si (λ)

,

tλi
ki

k
��MM

•
⟨k,si (λ)⟩−1

si (λ)

= tλi
ki ck,si (λ) Id1si (λ)

= tλi
ki ck,λ−λiαi Id1si (λ)

= tλi
ki t−λi

ki ck,λ Id1si (λ)
= ck,λ Id1si (λ)

,

tλi
j i c−1

i,λ

j
��MM

•
♣+0

i
��MM

•
♣+0

si (λ)= tλi
j i c−1

i,λc j,si (λ)ci,si (λ) Id1si (λ)
= tλi

j i c j,λ−λiαi Id1si (λ)

= tλi
j i c j,λt−λi

j i Id1si (λ)
= c j,λ Id1si (λ)

. □

In Section A.4 we verify that the infinite Grassmannian relations from Section 3C2
are preserved by T ′

i .

5H. Mixed EF relation. We now verify (7) in Definition 3.3.

Proposition 5.8. T ′

i preserves the mixed EF relations.
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Proof. All cases involving k-labeled strands hold, and are trivial to verify. The
following computations exhibit half the requisite checks, and the remaining follow
almost identically. We make extensive use of Section A.2. We compute

T ′

i

 OO

��
k k′

��

OO

−

��
k′k

OO =
OO

��
k k′

��

OO

−

��
k′k

OO

= 0,

T ′

i

 OO

��
i k

��

OO

−

��
ik

OO = t−1
ki

�� ��
i k

�� ��
−

��
i

��
k

= 0,

T ′

i

 OO

��
k j

��

OO

−

��
jk

OO =

 OO

��
k j ��i

OO

��

��

OO

��

��

OO

−

��
jk

OO

��
i

, OO

��
k i
��j

OO

��

��

OO��

OO

−

��
jk

OO

��
i

= 0,

T ′

i

 OO

��
j k

��

OO

−

j

OO

��
k

=

 OO

��
i kj

OO

��

OO��

OO ��

OOOO

−

j

OO

��
ki

OO

, OO

��j ki

OO

��

OO��

OO ��

OOOO

−

j

OO

��
ki

OO
= 0.

We now consider the cases requiring homotopies. We compute

T ′

i

 OO

��
j i

��

OO

−

j

OO

��
i



=

t−1
i j

OOOO

i ij

OOOO

OOOO

OOOOOO
•

− t−1
i j

OOOO

i ij

OOOO

OOOO

OOOOOO

•
−

OOOO OO

ij i

,−t−1
i j

OOOO

j ii

OOOO

OOOO

OOOOOO

•
+ t−1

i j
OOOO

j ii

OOOO

OOOO

OOOO
•

OO

−

OO OO OO

i j i


=

−

OO

j

OOOO

i i
• − t−1

i j t j i
•

OO

j

OOOO

i i

,−t−1
i j

OOOO OO

i j i

=

−t−1
i j

OOOO

OO OOOO

OOOO

j i i

,−t−1
i j

OOOO OO

i j i

 ,
which is null-homotopic, with homotopy given by

E jEiEi 1si (λ)⟨λi ⟩

E jEiEi 1si (λ)⟨λi ⟩

EiE jEi 1si (λ)⟨λi + 1⟩

EiE jEi 1si (λ)⟨λi + 1⟩

ff

OOOO

i j i

OO OOOO

−t−1
i j

OO

i

OOOO

j i

//

OO

i

OOOO

j i
//
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and

T ′

i


��

OO

i j

OO

��
−

j

OO

��
i



=

t−1
i j

OOOO

OOOO OO

OOOO

i j i

OOOO
• − t−1

i j

OOOO

OOOO OO

OOOO

i j i

OOOO

•

−

OO OO OO

i j i

,−t−1
i j

OOOO

OOOO OO

OOOO

i i j

OOOO

•

+ t−1
i j

OOOO

OOOO OO

OOOO

i i j

OOOO

•
−

OO OOOO

i ji


=

t−1
i j

OOOOOO

i j i

,

OO

j

OOOO

i i

•

+ t−1
i j t j i

•

OO

j

OOOO

i i

=

t−1
i j

OOOOOO

i j i

, t−1
i j

OOOOOO

j

OOOO

i i

OOOO


is null-homotopic with homotopy given by

EiE jEi 1si (λ)⟨λi − 1⟩

EiE jEi 1si (λ)⟨λi − 1⟩

EiEiE j 1si (λ)⟨λi ⟩

EiEiE j 1si (λ)⟨λi ⟩

ff OOOO

−t−1
i j

OO

j

OOOO

i i

OO

i

OOOO

j i
−

//

OO

i

OOOO

j i
−

//

Similar computations show that

T ′

i


��

OO

j i

OO

��
−

��
j i

OO =

t−1
i j �� �� ��

�� ��

�� ��j i
��
i

, t−1
i j
�� ��
i j ��i

�� ��

�� �� ��

 ,
which is null-homotopic via the homotopy

F jFiFi 1si (λ)⟨−λi − 3⟩

F jFiFi 1si (λ)⟨−λi − 3⟩

FiF jFi 1si (λ)⟨−λi − 2⟩

FiF jFi 1si (λ)⟨−λi − 2⟩

ff

�� ��
i j

t−1
i j

��
i

�� ��

��
i

�� ��
j i

//

��
i

�� ��
j i

//
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and that

T ′

i

 OO

��
i j

��

OO

−

��
ji

OO =

−t−1
i j

�� ��j i
��
i

�� ��

�� ����

, −t−1
i j

�� ����

��j�� ��
i i

�� ��

 ,
which is null-homotopic with homotopy given by

FiF jFi 1si (λ)⟨−λi − 4⟩

FiF jFi 1si (λ)⟨−λi − 4⟩

FiFiF j 1si (λ)⟨−λi − 3⟩

FiFiF j 1si (λ)⟨−λi − 3⟩

ff

�� ��t−1
i j

��
j

�� ��
i i

��
i
�� ��
j i

−

//

��
i
�� ��
j i

−

//

The final case, involving j- and j ′-labeled strands (with j ̸= j ′), will be addressed
in Proposition 5.10 below. □

5I. Extended sl2 relations. We now verify (9) in Definition 3.3.

Proposition 5.9. T ′

i preserves the extended sl2 relations in the i- and k-labeled
cases.

Proof. In these cases, the relations hold on the nose, as we confirm:

T ′

i

 OO

��
i i

��

OO

+

i

OO

��
i

−

∑
a+b+c
=λi −1 ��

•
b
QQ�� •

♠+c

OO

•
a

i

i λ


= (−1)2

��

OO

i i

OO

��
+

��
i i

OO

− c2
i,λc−2

i,λ

∑
a+b+c
=λi −1 ��

•
b
��MM •

♠+c

OO

•
a

i

i si (λ)

=

��

OO

i i

OO

��
+

��
i i

OO

−

∑
a+b+c=

−⟨i,si (λ)⟩−1 ��
•
b
��MM •

♠+c

OO

•
a

i

i si (λ)

= 0,

T ′

i


��

OO

i i

OO

��
+

��
i i

OO

−

∑
a+b+c
=−λi −1 ��

•
b
��MM •

♠+c

OO

•
a

i

i λ
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= (−1)2 OO

��
i i

��

OO

+

i

OO

��
i

− c2
i,λc−2

i,λ

∑
a+b+c
=−λi −1 ��

•
b
QQ�� •

♠+c

OO

•
a

i

i si (λ)

=
OO

��
i i

��

OO

+

i

OO

��
i

−

∑
a+b+c=

⟨i,si (λ)⟩−1 ��
•
b
QQ�� •

♠+c

OO

•
a

i

i si (λ)

= 0,

T ′

i

 OO

��
k k

��

OO

+

k

OO

��
k

−

∑
a+b+c
=λk−1 ��

•
b
QQ�� •

♠+c

OO

•
a

k

k λ


=

OO

��
k k

��

OO

+

k

OO

��
k

− tλi
ki t−λi

ki

∑
a+b+c
=λk−1 ��

•
b
QQ�� •

♠+c

OO

•
a

k

k si (λ)

=
OO

��
k k

��

OO

+

k

OO

��
k

−

∑
a+b+c=

⟨k,si (λ)⟩−1 ��
•
b
QQ�� •

♠+c

OO

•
a

k

k si (λ)

= 0,

T ′

i


��

OO

k k

OO

��
+

��
k k

OO

−

∑
a+b+c

=−λk−1 ��
•
b
��MM •

♠+c

OO

•
a

k

k λ


=

��

OO

k k

OO

��
+

��
k k

OO

− tλi
ki t−λi

ki

∑
a+b+c

=−λk−1 ��
•
b
��MM •

♠+c

OO

•
a

k

k si (λ)

=

��

OO

k k

OO

��
+

��
k k

OO

−

∑
a+b+c=

−⟨k,si (λ)⟩−1 ��
•
b
��MM •

♠+c

OO

•
a

k

k si (λ)

= 0. □

We conclude by considering the outstanding relations, i.e., the j -labeled extended
sl2 relations, and the j j ′-labeled mixed EF relation. These are the most involved
relations, in part because the homotopies involved are not necessarily unique. Indeed,
if Hom(X, Y ) denotes the chain complex of all homogeneous maps (that are not
necessarily degree zero, or chain maps) between complexes X and Y , then given
any element α ∈ Hom−2(X, Y ), the element d(α)= dYα−αdX can be added to any
homotopy h without affecting dY h + hdX . Our previous cases have not admitted
such an α, but in the present case there exist (many) such α, given by any map
EiE j ′FiF j 1si (λ)⟨1⟩ → E j ′EiF jFi 1si (λ)⟨−1⟩.
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Proposition 5.10. The relation

(5-1) T ′

i

−
OO

��
j ′ j

��

OO

+ (−1)δ j j ′

j ′

OO

��
j

+ δ j j ′

∑
a+b+c=
λ j −1 ��

•
b
�� •
♠+c

OO

•a

j

j λ
∼ 0

holds in Com(UQ).

Proof. The left-hand side of (5-1) is given by

(5-2)

♣E j ′EiF jFi 1si (λ)⟨−1⟩ ♣E j ′EiF jFi 1si (λ)⟨−1⟩

EiE j ′F jFi 1si (λ)

⊕E j ′EiFiF j 1si (λ)

EiE j ′F jFi 1si (λ)

⊕E j ′EiFiF j 1si (λ)

EiE j ′FiF j 1si (λ)⟨1⟩ EiE j ′FiF j 1si (λ)⟨1⟩

ϕ1

(
ϕ2 ϕ4
ϕ3 ϕ5

)

ϕ6

where the components of the chain map are given as follows (which can be verified
by completely simplifying both sides of the equalities):

ϕ1 =

��

OOOO

��

OO

�� OO

��

OO

OO

��
i j ��ij ′

+ (−1)δ j j ′

OO OO

i
��j ��ij ′

= (−1)δ j j ′
∑

d+e+ f
=−λi −1

OO

�� ��

OO

OO
•

d
i QQ��

•
♠+ f��•e

OO

i
�� ��jj ′

i

+ δ j j ′ t j i

∑
a+c=
λi +λ j −1

OOOO

OO
•
aOO

�� j QQ��
•

♠+c
OO

����OOOO

j i ��
��
i

j

+ δ j j ′

∑
a+b+c=
λi +λ j −2

OOOO

OO
•
aOO

�� j QQ��
•

♠+c
OO

����
•
bOOOO

�� ��

j i
�� ��

i

j

+ δ j j ′ ti j

∑
a+b+c=
λi +λ j −2

OOOO

OO
•
aOO

�� j QQ��
•

♠+c
OO

��

•
b

��

j i
�� ��

i

j

,
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ϕ2 = −t2
j iδ j j ′

OO

��

OO

OO�� OO

��
i i
��

j

j

j

+

��

OOOO

��

OO

�� OO

��

OO

OO

��
j ′ j ��ii

+ (−1)δ j j ′

OO OO

j ′ ��j ��ii

− δ j j ′ ti j

∑
a+b+c
=λ j −1

c∑
h=0

(−vi j )
−λi −h

OOOO
•
a j

QQ��

•
♠+c−h

i QQ��

•
♠+h

�� ��
•
b

ji

j i

= δ j j ′ t j i

∑
a+c=
λi +λ j −1

OOOO

OOOO

OO
•a
OO

�� j QQ��
•

♠+c
OO

����
i j i

j

+ t−1
i j ′ (−1)δ j j ′

∑
d+e+ f +g
=−λi −2

(−vi j ′)g

OOOO

�� ��OO OO
•d

i QQ��
•

♠+ fg • •
e
��OOOO

�� ��

�� ��j

OO

j ′

OO

i

i

+ δ j j ′ t j i

∑
a+b+c=
λi +λ j −1

OO
•a
OO

�� j QQ��
•

♠+c
OO

����•
b
�� ��

�� ��
i

OO

j

OO

i

j

+ δ j j ′ ti j

∑
a+b+c=
λi +λ j −2

OO
•a
OO

��

•

j QQ��
•

♠+c
OO

����•
b
�� ��

�� ��
i

OO

j

OO

i

j

,

ϕ3 = δ j j ′ t j i

��

OOOO

��

OO

�� OO OO

��
i i
��

j

j

− ti j

OO

��

OO

�� OO

��

OO

OO

��
j ′ j ��i

i

− δ j j ′ ti j

∑
a+b+c
=λ j −1

c∑
h=0

(−vi j )
−λi −h

OOOO

•
a

j
QQ��

•
♠+c−h

i QQ��

•
♠+h

�� ��
•

bji

i j

= δ j j ′ t j i

∑
a+c=
λi +λ j −1

OOOO

�� ��

�� ��OO
•a
OO

�� j QQ��
•

♠+c
OO

����
i j i

j

− ti j t−1
i j ′ (−1)δ j j ′

∑
e+ f +g
=−λi −1

(−vi j ′)g

OO OO

i QQ��
•

♠+ f

g • •
e
��OOOO

�� ��
j i

OO

j ′

OO

i

− δ j j ′ ti j

∑
a+b+c=
λi +λ j −2

OOOO

•a

�� j QQ��
•

♠+c
OO

����
•b

�� ��OO

i

OO

j �� ��

i j

,
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ϕ4 = ti j ′

��

OOOO

��

OO

�� OO OO

��
j ′ j
��

i

i

− δ j j ′ t j i

OO

��

OO

�� OO

��

OO

OO

��
i i
��j

j

+ δ j j ′ ti j

∑
a+b+c
=λ j −1

c∑
h=0

(−vi j )
−λi −h

OOOO
•
a j

QQ��

•
♠+c−h

i QQ��

•
♠+h

�� ��
•
b

ij

j i

= (−1)δ j j ′


∑

d+e+ f =

−λi −1

OOOO

�� ��

�� ��OO
•
d

j ′

i QQ��
•

♠+ f

��•
e
��ji

i

− t−1
i j ′

∑
d+e+ f +g
=−λi −2

(−vi j ′)g

OOOO

�� ��

�� ��
•
d

•g
OOOO

OOOO

j ′ i

i QQ��
•

♠+ f•

��

e

��
j

i 

+ δ j j ′ ti j

∑
a+b+c=
λi +λ j −2

OOOO

OOOO

OO
•a
OO

�� j QQ��
•

♠+c
OO

�� ��
•b

j i

i j

− δ j j ′ t j i

∑
a+b+c=
λi +λ j −1

OO
•a
OO

�� j QQ��
•

♠+c
OO

����•
b

�� ��OOOO

j i
��
i
��

j

+ δ j j ′

∑
a+b+c=
λi +λ j −2

OOOO

OOOO

OO
•
aOO

�� j QQ��
•

♠+c
OO

����•
b
OOOO

j i
�� ��
i

j

− δ j j ′ ti j

∑
a+b+c=
λi +λ j −2

OO
•a•

OO

�� j QQ��
•

♠+c
OO

����•
b

�� ��OOOO

j i
��
i
��

j

,

ϕ5 = −ti j ti j ′

OO

��

OO

OO�� OO

��
j ′ j
��

i

i

i

+

��

OOOO

��

OO

�� OO

��

OO

OO

��
i i
��jj ′

+ (−1)δ j j ′

OO OO

i
��
i
��jj ′

+ δ j j ′ ti j

∑
a+b+c
=λ j −1

c∑
h=0

(−vi j )
−λi −h

OOOO

•a
j
QQ��

•
♠+c−h

i QQ��

•
♠+h

�� ��
•
b

ij

i j

= ti j t−1
i j ′ (−1)δ j j ′

∑
d+ f +g=

−λi −1

(−vi j ′)g

OO OO

i QQ��
•

♠+ f
g • •

e
�� ��

OOOO

j ′ i

OOOO

�� ��j

i

+ (−1)δ j j ′
∑

d+e+ f
=−λi −1

OO OO

�� ��

OO
•
d

�� �� i QQ��
•

♠+ f

j ′ ��j
��•

e

i

i
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+ δ j j ′

∑
a+b+c=
λi +λ j −2

OOOO

�� ��OO
•a
OO

�� j QQ��
•

♠+c
OO

����•b
OOOO

j i
�� ��
i

j

+ δ j j ′ ti j

∑
a+b+c=
λi +λ j −2

OOOO

•a

�� j QQ��
•

♠+c
OO

����
•b

�� ��

��

OOOO

j i
��

i j

+ δ j j ′ ti j

∑
a+b+c=
λi +λ j −2

OO OO

�� ��OOOO

OO
•a
OO

�� j QQ��
•

♠+c
OO

�� ��
•b

j i

i j

,

ϕ6 =

��

OOOO

��

OO

�� OO

��

OO

OO

��
j ′ i
��ji

+ (−1)δ j j ′

OO OO

j ′ ��i
��ji

= ti j t−1
i j ′ (−1)δ j j ′

∑
e+ f +g
=−λi −1

(−vi j ′)g

OOOO

OO OO

i QQ��
•

♠+ fg • •
e
��OOOO

i j ′ �� ��j

i

+ t−1
i j ′ (−1)δ j j ′

∑
d+e+ f +g
=−λi −2

(−vi j ′)g

OO OO

�� ��OOOO

�� ��OO OO
•d

i QQ��
•

♠+ fg • •
e
��OOOO

i j ′ �� ��j

i

+ δ j j ′ t j i

∑
a+b+c=
λi +λ j −1

OO OO

�� ��OO
•a
OO

�� j QQ��
•

♠+c
OO

����•
b

i j �� ��i

j

+ δ j j ′ ti j

∑
a+b+c=
λi +λ j −2

OO OO

�� ��OO
•

• a
OO

�� j QQ��
•

♠+c
OO

����•
b

i j �� ��i

j

+ δ j j ′ ti j

∑
a+b+c=
λi +λ j −2

OOOO

OOOO

•
a

�� j QQ��
•

♠+c
OO

����•
b

i j �� ��

i j

.

The chain map given in (5-2) is thus null-homotopic, with homotopy given by
the diagram

♣E j ′EiF jFi 1si (λ)⟨−1⟩
EiE j ′F jFi 1si (λ)

⊕E j ′EiFiF j 1si (λ)
EiE j ′FiF j 1si (λ)⟨1⟩

♣E j ′EiF jFi 1si (λ)⟨−1⟩
EiE j ′F jFi 1si (λ)

⊕E j ′EiFiF j 1si (λ)
EiE j ′FiF j 1si (λ)⟨1⟩

(h1
1 h1

2)
( h2

1
h2

2

)
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where

h1
1 = δ j j ′ t j i

∑
a+c=
λi +λ j −1

OOOO

OO
•
aOO

�� QQ��
•

♠+c
OO

����
i j

j

i

,

h1
2 = (−1)δ j j ′

∑
d+e+ f
=−λi −1

OO

�� ��

OO

OO
•

d
i QQ��

•
♠+ f����

•e

j ′ i j

i

+ δ j j ′

∑
a+b+c=
λi +λ j −2

OOOO

OO
•
aOO

�� j QQ��
•

♠+c
OO

����
•
bOOOO

�� ��
j i

j

i

+ δ j j ′ ti j

∑
a+b+c=
λi +λ j −2

OOOO

OO
•
aOO

�� QQ��
•

♠+c
OO

��

•
b

��
j i

j i

,

h2
1 = −t−1

i j ′ (−1)δ j j ′
∑

d+e+ f +g
=−λi −2

(−vi j ′)g

OOOO

�� ��OO OO
•d

i QQ��
•

♠+ fg • •e��OOOO

i j ′ �� ��j

i

− δ j j ′ t j i

∑
a+b+c=
λi +λ j −1

OO
•a
OO

�� j QQ��
•

♠+c
OO

����•
b

i j �� ��i

j

− δ j j ′ ti j

∑
a+b+c=
λi +λ j −2

OO
•

• a
OO

�� j QQ��
•

♠+c
OO

����•
b

i j �� ��i

j

,

h2
2 = ti j t−1

i j ′ (−1)δ j j ′
∑

e+ f +g
=−λi −1

(−vi j ′)g

OO OO

i QQ��
•

♠+ fg • •e��OOOO

i j ′ �� ��j

i

+ δ j j ′ ti j

∑
a+b+c=
λi +λ j −2

OOOO

•
a

�� j QQ��
•

♠+c
OO

����•
b

i j �� ��

i j

. □

It remains to verify the FE version of (5-1). We can proceed to compute as
above, but in this case we can obtain the relation via a trick using the symmetry ω.
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Indeed, note that, up to scalar factors, each map determining

T ′

i

( OO

��
j ′ j
λ
)

is given by applying ω to the corresponding component in

T ′

i

(
��

OO

j j ′

λ
)

and exchanging the roles of j and j ′. Upon taking the composition, the discrepancies
between the relevant scalars cancel, and we find that the maps determining

T ′

i


OO

��

��

OO

j j ′


are given by applying ω to the ϕi ’s. Similarly, the other terms in the relation are
obtained by those in (5-1) via ω. It follows that we can “apply ω” to the proof of
Proposition 5.10 (in weight −λ) to obtain the following.

Corollary 5.11. The relation

T ′

i

−

��

OO

j ′ j

OO

��
+ (−1)δ j j ′

��
j ′ j

OO

+ δ j j ′

∑
a+b+c=
−λ j −1 ��

•
b
OO •
♠+c

OO

•a

j

j λ

∼ 0

holds in Com(UQ).

Appendix: Computation of T ′
i,1 for composite 2-morphisms

In light of Remark 3.4, we can compute the value of T ′

i,1 on downward dot and
sideways and downward crossing 2-morphisms in terms of the presentation of
these 2-morphisms in terms of upward dot and crossing 2-morphisms and cap/cup
2-morphisms. In Sections A.1, A.2, and A.3, we compute this value, and in
Section A.4, we compute the value of T ′

i,1 on bubbles. Throughout, we employ our
conventions that i · j = −1 = i · j ′ and i ·k = 0 = i ·k ′, but assume no other relation
between j , j ′, k, and k ′.

A.1. Value of T ′
i,1 for downward dot 2-morphisms. We compute T ′

i,1 on downward
dot 2-morphisms using the right cyclicity relation. Each of the following is a direct
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consequence of the definitions in Sections 4B1 and 4B3:

T ′

i

(
•
��
i

λ
)

:= T ′

i

(
•

OO ��

��

OO

�� λ

)
=

Ei 1si (λ)⟨2 + λi ⟩

Ei 1si (λ)⟨λi ⟩

•

OO

i

OO

,

T ′

i

(
•
��

k

λ
)

:= T ′

i

(
•

OO ��

��

OO

�� λ

)
=

♣Fk1si (λ)⟨2⟩

♣Fk1si (λ)

•
��

k

OO

,

T ′

i

(
•
��
j

λ
)

:= T ′

i

(
•

OO ��

��

OO

�� λ

)

=

F jFi 1si (λ)⟨1⟩

F jFi 1si (λ)⟨−1⟩

•

��
j
��
i

OO
♣FiF j 1si (λ)⟨2⟩

♣FiF j 1si (λ)

��
i

•

��
j

OO

�� ��
j i

//

�� ��
j i

//

This agrees with the value in terms of left cyclicity, which is verified in Section 5B.

A.2. Value of T ′
i,1 on sideways crossing 2-morphisms. We explicitly compute the

value on sideways crossings in terms of the images of upward crossings, caps, and
cups. As above, each follows via a direct (but sometimes tedious) computation
using the definitions in Sections 4B2 and 4B3. In the interest of space, we will omit
displaying the domain and codomain of the image when they are 1-term complexes,
as, save for the relevant shifts, they can be read from the diagram. We have

T ′

i

( OO

��
i i

λ
)

:= −
��

OO

i i

, T ′

i

(
��

OO

i i

λ
)

:= −

OO

��
i i

,

T ′

i

( OO

��
i j

λ
)

:= T ′

i

(
OO

��

��

OOOO

OO )
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=

F jFiFi 1si (λ)⟨−3 − λi ⟩

FiF jFi 1si (λ)⟨−4 − λi ⟩

ti j t j i
�� ��
i j

��
i

�� ��
•

−ti j t j i
�� ��
i j

��
i

�� ��
•

OO
♣FiF jFi 1si (λ)⟨−2 − λi ⟩

♣FiFiF j 1si (λ)⟨−3 − λi ⟩

ti j t j i
�� ��
i i

��
j

�� ��
•

−ti j t j i
�� ��
i i

��
j

�� ��

•

OO

��
i

�� ��
j i //

��
i

− �� ��
j i //

T ′

i

(
��

OO

j i

λ
)

:= T ′

i

( OO

OOOO

OO

��

��

)

=

FiF jFi 1si (λ)⟨−4 − λi ⟩

F jFiFi 1si (λ)⟨−3 − λi ⟩

�� ��
i i
��
j

�� ��t−2
i j t−1

j i

OO
♣ FiFiF j 1si (λ)⟨−3 − λi ⟩

♣ FiF jFi 1si (λ)⟨−2 − λi ⟩

�� ��
j i

��
i

�� ��
−t−2

i j t−1
j i

OO

��
i

�� ��
j i //

��
i
�� ��
j i

−

//

T ′

i

( OO

��
j i

λ
)

:= T ′

i

(
OO

��

��

OOOO

OO )

=

EiE jEi 1si (λ)⟨λi − 1⟩

E jEiEi 1si (λ)⟨λi ⟩

OOOO

i ij

t−1
i j

OOOO OO

OO
EiEiE j 1si (λ)⟨λi ⟩

EiE jEi 1si (λ)⟨λi + 1⟩

OOOO

j ii

OOOO OO

−t−1
i j

OO

OO

i

OOOO

j i //

OO

i

OOOO

j i
−

//

T ′

i

(
��

OO

i j

λ
)

:= T ′

i

( OO

OOOO

OO

��

��

)

=

E jEiEi 1si (λ)⟨λi ⟩

EiE jEi 1si (λ)⟨λi − 1⟩

OOOO

i j i

OOOOOO
•

−
OOOO

i j i

OOOOOO

•

OO
EiE jEi 1si (λ)⟨λi + 1⟩

EiEiE j 1si (λ)⟨λi ⟩

OOOO

i i j

OOOOOO

•

−
OOOO

i i j

OOOOOO

•

OO

OO

i

OOOO

j i //

−

OO

i

OOOO

j i //
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T ′

i

( OO

��
i k

λ
)

:= T ′

i

(
OO

��

��

OOOO

OO )
= t−2

ki
�� ��
i k

,

T ′

i

(
��

OO

k i

λ
)

:= T ′

i

( OO

OOOO

OO

��

��

)
= tki

�� ��
k i

,

T ′

i

( OO

��
k i

λ
)

:= T ′

i

(
OO

��

��

OOOO

OO )
=

OOOO

k i

,

T ′

i

(
��

OO

i k

λ
)

:= T ′

i

( OO

OOOO

OO

��

��

)
= t−1

ik

OOOO

i k

,

T ′

i

( OO

��
k k′

λ
)

:= T ′

i

(
OO

��

��

OOOO

OO )
=

OO

��
k k′

,

T ′

i

(
��

OO

k′ k

λ
)

:= T ′

i

( OO

OOOO

OO

��

��

)
=

��

OO

k′ k

,

T ′

i

( OO

��
j k

λ
)

:= T ′

i

(
OO

��

��

OOOO

OO )

=

♣ FkE jEi 1si (λ)

♣ E jEiFk1si (λ)

OO

��
i kj

OO

��tki

OO
OO

FkEiE j 1si (λ)⟨1⟩

EiE jFk1si (λ)⟨1⟩

OO

��
j ki

OO

��tki

OO
OO

��
k

OOOO

j i //

��
k

OOOO

j i //

T ′

i

(
��

OO

k j

λ
)

:= T ′

i

( OO

OOOO

OO

��

��

)

=

♣ E jEiFk1si (λ)

♣ FkE jEi 1si (λ)

��

OO

k j i

��

OOOO

t−1
ki

OO
EiE jFk1si (λ)⟨1⟩

FkEiE j 1si (λ)⟨1⟩

��

OO

k i j

��

OOOO

t−1
ki

OO

��
k

OOOO

j i //

��
k

OOOO

j i //

T ′

i

( OO

��
k j

λ
)

:= T ′

i

(
OO

��

��

OOOO

OO )
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=

F jFiEk1si (λ)⟨−1⟩

EkF jFi 1si (λ)⟨−1⟩

OO

��
k j

��
i

OO

��
(−1) j ·k

t−1
ki t jk

OO
♣ FiF jEk1si (λ)

♣ EkFiF j 1si (λ)

OO

��
k i

��
j

OO

��
(−1) j ·k

t−1
ki t jk

OO

OO

k
�� ��
j i //

OO

k
�� ��
j i //

T ′

i

(
��

OO

j k

λ
)

:= T ′

i

( OO

OOOO

OO

��

��

)

=

EkF jFi 1si (λ)⟨−1⟩

F jFiEk1si (λ)⟨−1⟩

��

OO

i k
��
j

��

OO

(−1) j ·k

tik t−1
jk

OO
♣ EkFiF j 1si (λ)

♣ FiF jEk1si (λ)

��

OO

j k
��
i

��

OO

(−1) j ·k

tik t−1
jk

OO

OO

k
�� ��
j i //

OO

k
�� ��
j i //

and

T ′

i

( OO

��
j ′ j

(−1) j · j ′

t−1
j j ′

λ
)

:= T ′

i

(
OO

��

��

OOOO

OO

(−1) j · j ′

t−1
j j ′

)
=

E j ′EiF jFi 1si (λ)⟨−1⟩

♣ EiE j ′F jFi 1si (λ)

♣ E j ′EiFiF j 1si (λ)

EiE j ′FiF j 1si (λ)⟨1⟩

OOOO

j ′ i
��
i
��j

66

�� ��j i

OO

i

OO

j ′

++

�� ��j i

OO

i
−

OO

j ′

,,

OOOO

j ′ i
��j��i

99

F jFiE j ′Ei 1si (λ)⟨−1⟩

♣ FiF jE j ′Ei 1si (λ)

♣ F jFiEiE j ′1si (λ)

FiF jEiE j ′1si (λ)⟨1⟩

66

++

,,

99

OO

��
i j ��ij ′

OO

��

OO

t−1
i j

OO

OO

��j ′ i
��ji

OO

��

OO

t−1
i j

OO

OO

��
j ′ j
��

OO

−t−1
i j ti j ′

i

i

OO
OO

��
i i
��

OO

δ j j ′vi j
j

j

OO

GG

YY

−t−1
i j

OO

��j ′ j ��ii

OO

��

OO

t−1
i j

OO

��
i i
��jj ′

OO

��

OO

T ′

i

(
��

OO

j j ′
(−1) j · j ′

+1t j j ′
λ
)

:= T ′

i

( OO

OOOO

OO

��

��

(−1) j · j ′
+1t j j ′

)
=
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F jFiE j ′Ei 1si (λ)⟨−1⟩

♣ FiF jE j ′Ei 1si (λ)

♣ F jFiEiE j ′1si (λ)

FiF jEiE j ′1si (λ)⟨1⟩
�� ��j i

OO

i

OO

j ′

66

OOOO

j ′ i
− ��

i
��j

++

OOOO

j ′ i
��
i
��j
,,

�� ��j i

OO

j ′

OO

i

99

E j ′EiF jFi 1si (λ)⟨−1⟩

♣ EiE j ′F jFi 1si (λ)

♣ E j ′EiFiF j 1si (λ)

EiE j ′FiF j 1si (λ)⟨1⟩

66

++

,,

99

��

OO

i j ′ i
��j

��

OOOO

ti j

OO

��

OO

j i j ′��
i

��

OOOO

ti j

OO

��

OO

j j ′
��

OO

t2
i j

i

i

OO

��

OO

i i
��

OO

−δ j j ′ ti j t j ′i
j

j

OO

GG

YY

ti j
��

OO

j j ′ i
��
i

��

OOOO

−ti j
��

OO

i i j ′��j

��

OOOO

A.3. Value of T ′
i,1 on downwards crossing 2-morphisms. We have

T ′

i

(
�� ��
i i

λ
)

:= T ′

i

(
��OOOO

�� ��

OO

��

OO

)
= −

OOOO

i i

,

T ′

i

(
�� ��

k k′

λ
)

:= T ′

i

(
OO

��

��

OOOO

OO

��

��

)
=

�� ��
k k′

,

T ′

i

(
�� ��
i k

λ
)

:= T ′

i

(
OO

��

��

OOOO

OO

��

��

)
= t2

ki

OO

��
i k

,

T ′

i

(
�� ��

k i

λ
)

:= T ′

i

(
OO

��

��

OOOO

OO

��

��

)
= t−1

ki
��

OO

k i

,

T ′

i

(
�� ��
i j
λ
)

:= T ′

i

(
OO

��

��

OOOO

OO

��

��

)

=

♣ F jFiEi 1si (λ)⟨λi − 1⟩

♣ EiF jFi 1si (λ)⟨λi − 1⟩

OO

��
i j

��
i

OO

��
t−1
i j t−1

j i

OO
FiF jEi 1si (λ)⟨λi ⟩

EiFiF j 1si (λ)⟨λi ⟩

−t−1
i j t−1

j i
OO

��
i i

��
j

OO

��

OO

OO

i
�� ��
j i //

OO

i
�� ��
j i

−

//
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T ′

i

(
�� ��
j i
λ
)

:= T ′

i

(
OO

��

��

OOOO

OO

��

��

)

=

♣ EiF jFi 1si (λ)⟨λi + 1⟩

♣ F jFiEi 1si (λ)⟨λi − 1⟩

��

OO

i i

t2
i j t j i

��
j

��

OO

•

−t2
i j t j i

��

OO

i i
��
j

��

OO

•

OO
EiFiF j 1si (λ)⟨λi + 2⟩

FiF jEi 1si (λ)⟨λi ⟩

��

OO

j i

t2
i j t j i

��
i

��

OO

•

−t2
i j t j i

��

OO

j i
��
i

��

OO

•

OO

OO

i
�� ��
j i

//

OO

i
�� ��
j i

−

//

T ′

i

(
�� ��
j k

λ
)

:= T ′

i

(
OO

��

��

OOOO

OO

��

��

)
=

♣ FkF jFi 1si (λ)⟨−1 − j · k⟩

♣ F jFiFk1si (λ)⟨−1⟩

(−1) j ·k

t−2
ki t jk �� ��

i k
��
j

OO
FkFiF j 1si (λ)⟨− j · k⟩

FiF jFk1si (λ)

(−1) j ·k

t−2
ki t jk �� ��

j k
��
i

OO

��
k

�� ��
j i //

��
k
�� ��
j i //

T ′

i

(
�� ��

k j

λ
)

:= T ′

i

(
OO

��

��

OOOO

OO

��

��

)
=

FiF j ′F jFi 1si (λ)⟨−1 − j · j ′
⟩

F j ′FiF jFi 1si (λ)⟨−2 − j · j ′
⟩ ♣ FiF j ′FiF j 1si (λ)⟨− j · j ′

⟩

F j ′FiFiF j 1si (λ)⟨−1 − j · j ′
⟩

FiF jF j ′Fi 1si (λ)⟨−1⟩

F jFiF j ′Fi 1si (λ)⟨−2⟩ ♣ FiF jFiF j ′1si (λ)

F jFiFiF j ′1si (λ)⟨−1⟩

�� ��
j j ′ ��i
��
i

t−1
i j ti j ′

�� ��
j ′ i

��
i
��
j

�� ��
j i

��
i
��
j ′

�� ��
i j ′ ��i
��
j

−t−1
i j

�� ��
j ′ i
��
i

− ��
j

�� ��
j i

��
j ′��

i

t−1
i j

�� ��
j i

��
j ′��i

�� ��
i i
��
j

��
j

−δ j j ′vi j

t−1
i j
�� ��
i i
��
j ′��j

t−1
i j

�� ��
j j ′ ��i
��
i
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A.4. Computation of T ′
i,1 on bubble 2-morphisms. We compute the image of

bubble 2-morphisms, and use them to explicitly verify that T ′

i,1 preserves the infinite
Grassmannian relation:

T ′

i

(
i
��MM

•
⟨i,λ⟩−1+α

λ )
= c2

i,λ

i
QQ��

•
⟨i,λ⟩−1+α

si (λ)

= c2
i,λ

i
QQ��

•
−⟨i,si (λ)⟩−1+α

si (λ)

,

T ′

i

(
i
QQ��

•
−⟨i,λ⟩−1+α

λ )
= c−2

i,λ

i
��MM

•
−⟨i,λ⟩−1+α

si (λ)

= c−2
i,λ

i
��MM

•
⟨i,si (λ)⟩−1+α

si (λ)

,

T ′

i

(
k
��MM

•
⟨k,λ⟩−1+α

λ )
= tλi

ki

k
��MM

•
⟨k,λ⟩−1+α

si (λ)

= tλi
ki

k
��MM

•
⟨k,si (λ)⟩−1+α

si (λ)

,

T ′

i

(
k
QQ��

•
−⟨k,λ⟩−1+α

λ )
= t−λi

ki

k
QQ��

•
−⟨k,λ⟩−1+α

si (λ)

= t−λi
ki

k
QQ��

•
−⟨k,si (λ)⟩−1+α

si (λ)

.

For j-labeled bubbles, we use the bubble sliding relations from Section 3C3
(note that, in the first equation, the number of dots on the black circles equals zero
for both summands):

T ′

i

(
j
��MM

•
⟨ j,λ⟩−1+α

λ )

= (−ti j )
1+λi c−1

i,λ


��

•
⟨ j,si (λ)−αi ⟩−1+α−λi −1

OOOO

•
⟨i,si (λ)⟩−1+λi +1

��
j

i

si (λ)

− ��

•
⟨i,si (λ)−α j ⟩−1+λi

OOOO

•
⟨ j,si (λ)⟩−1+α−λi

��
i j

si (λ)


= (−ti j )

1+λi c−1
i,λ

(
α∑

h=
max(0,λi +1)

t−1
j i (−v j i )

h−λi −1
j
��MM

•
♠+α−h

i
��MM

•
♠+h

si (λ)

−

min(λi ,α)∑
h=0

t−1
i j (−vi j )

λi −h
j
��MM

•
♠+α−h

i
��MM

•
♠+h

si (λ)
)

= tλi
j i c−1

i,λ

α∑
h=0

(−vi j )
−h

j
��MM

•
♠+α−h

i
��MM

•
♠+h

si (λ)
.
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Similarly, the image of the counterclockwise bubble is given by

T ′

i

(
j
QQ��

•
−⟨ j,λ⟩−1+α

λ )

= (−ti j )
−λi ci,λti j

(min(−λi ,α)∑
h=0

t−1
i j (−vi j )

−λi −h
j
QQ��

•
♠+α−h

i
QQ��

•
♠+h

si (λ)

−

α∑
h=

max(0,−λi )

t−1
j i (−v j i )

λi −1+h
j
QQ��

•
♠+α−h

i
QQ��

•
♠+h

si (λ)

)

= t−λi
j i ci,λ

α∑
h=0

(−vi j )
−h

j
QQ��

•
♠+α−h

i
QQ��

•
♠+h

si (λ).

(In both cases, recall our convention that any sums with nonincreasing index are by
definition zero.)

These computations for the images of bubbles under T ′

i,1 are only valid when the
number of dots is positive; however, our next result shows that they also hold for
bubbles with a negative number of dots (i.e., for fake bubbles; see Definition 3.3(8)).

Lemma 1. T ′

i,1 preserves the infinite Grassmannian relation:

T ′

i

((
ℓ QQ��

•
−⟨i,λ⟩−1

λ
+·· ·+

ℓ QQ��

•
−⟨i,λ⟩−1+α

λ
tα+·· ·

)(
ℓ
��MM

•
⟨i,λ⟩−1

λ
+·· ·+

ℓ
��MM

•
⟨i,λ⟩−1+α

λ
tα+·· ·

))
= Id1si (λ)

.

Proof. The only nontrivial case is when the bubbles are j-labeled (for i · j = −1),
and here we compute the relation in degree α as follows:

T ′

i

( ∑
g+h=α

j
��MM

•
λi −1+g

j
QQ��

•
−λi −1+h

λ )

=

∑
r+s+t+u=α

(−vi j )
−s−u

j
��MM

•
♠+r

i
��MM

•
♠+s

j
QQ��

•
♠+t

i QQ��

•
♠+u

si (λ)

=

∑
k+s+u=α

(−vi j )
−s−u i

��MM

•
♠+s

i QQ��

•
♠+u

si (λ)
( ∑

r+t=k

j
��MM

•
♠+r

j
QQ��

•
♠+t

si (λ)
)

=

∑
k+s+u=α

δ0,k(−vi j )
−s−u i

��MM

•
♠+s

i QQ��

•
♠+u

si (λ)

=

∑
s+u=α

(−vi j )
−s−u i

��MM

•
♠+s

i QQ��

•
♠+u

si (λ)
= (−vi j )

−αδ0,α Id1si (λ)
□
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[58] P. Tingley and B. Webster, “Mirković–Vilonen polytopes and Khovanov–Lauda–Rouquier
algebras”, Compos. Math. 152:8 (2016), 1648–1696. MR Zbl

[59] M. Varagnolo and E. Vasserot, “Canonical bases and KLR-algebras”, J. Reine Angew. Math. 659
(2011), 67–100. MR Zbl

[60] B. Webster, “Canonical bases and higher representation theory”, preprint, 2012. arXiv 1209.0051

[61] B. Webster, “Knot invariants and higher representation theory”, preprint, 2013. arXiv 1309.3796

http://dx.doi.org/10.1016/j.aim.2018.03.034
http://dx.doi.org/10.1016/j.aim.2018.03.034
http://msp.org/idx/mr/3787560
http://msp.org/idx/zbl/1441.57014
http://dx.doi.org/10.2140/gt.2009.13.1075
http://dx.doi.org/10.2140/gt.2009.13.1075
http://msp.org/idx/mr/2491657
http://msp.org/idx/zbl/1202.57017
http://dx.doi.org/10.1515/crelle-2013-0075
http://dx.doi.org/10.1515/crelle-2013-0075
http://msp.org/idx/mr/3403455
http://msp.org/idx/zbl/1378.17018
http://msp.org/idx/arx/1712.00173
http://dx.doi.org/10.1007/s00209-016-1825-4
http://dx.doi.org/10.1007/s00209-016-1825-4
http://msp.org/idx/mr/3694676
http://msp.org/idx/zbl/1388.16041
http://msp.org/idx/arx/2308.01762
http://msp.org/idx/arx/0704.1503
http://msp.org/idx/mr/1659228
http://msp.org/idx/zbl/0958.57014
http://dx.doi.org/10.1515/crll.2003.061
http://msp.org/idx/mr/1992802
http://msp.org/idx/zbl/1033.18008
http://dx.doi.org/10.1090/crmp/038/07
http://msp.org/idx/mr/2096144
http://msp.org/idx/zbl/1086.14011
http://dx.doi.org/10.1016/j.aim.2016.07.027
http://dx.doi.org/10.1016/j.aim.2016.07.027
http://msp.org/idx/mr/3545951
http://msp.org/idx/zbl/1360.57025
http://dx.doi.org/10.1090/tran/7117
http://msp.org/idx/mr/3729501
http://msp.org/idx/zbl/1435.57010
http://dx.doi.org/10.4171/QT/46
http://dx.doi.org/10.4171/QT/46
http://msp.org/idx/mr/3176309
http://msp.org/idx/zbl/1294.57009
http://msp.org/idx/mr/3586623
http://dx.doi.org/10.2140/gt.2016.20.3431
http://msp.org/idx/mr/3590355
http://msp.org/idx/zbl/1420.57044
http://msp.org/idx/arx/0812.5023
http://dx.doi.org/10.1142/S1005386712000247
http://msp.org/idx/mr/2908731
http://msp.org/idx/zbl/1247.20002
http://dx.doi.org/10.4064/fm225-1-14
http://msp.org/idx/mr/3205575
http://msp.org/idx/zbl/1336.57025
http://msp.org/idx/mr/91i:58053a
http://msp.org/idx/zbl/0708.46029
http://dx.doi.org/10.1112/S0010437X16007338
http://dx.doi.org/10.1112/S0010437X16007338
http://msp.org/idx/mr/3542489
http://msp.org/idx/zbl/1425.17022
http://dx.doi.org/10.1515/CRELLE.2011.068
http://msp.org/idx/mr/2837011
http://msp.org/idx/zbl/1229.17019
http://msp.org/idx/arx/1209.0051
http://msp.org/idx/arx/1309.3796


CATEGORIFICATION OF THE INTERNAL BRAID GROUP ACTION, I 75

[62] J. Xiao and M. Zhao, “Geometric realizations of Lusztig’s symmetries”, J. Algebra 475 (2017),
392–422. MR Zbl

[63] M. Zhao, “Geometric realizations of Lusztig’s symmetries of symmetrizable quantum groups”,
Algebr. Represent. Theory 20:4 (2017), 923–950. MR Zbl

Received February 28, 2023. Revised October 19, 2023.

MICHAEL T. ABRAM

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF SOUTHERN CALIFORNIA

LOS ANGELES, CA
UNITED STATES

mabram@usc.edu

LAFFITE LAMBERTO-EGAN

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF SOUTHERN CALIFORNIA

LOS ANGELES, CA
UNITED STATES

llambert@usc.edu

AARON D. LAUDA

DEPARTMENT OF MATHEMATICS AND DEPARTMENT OF PHYSICS

UNIVERSITY OF SOUTHERN CALIFORNIA

LOS ANGELES, CA
UNITED STATES

lauda@usc.edu

DAVID E. V. ROSE

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

CHAPEL HILL, NC
UNITED STATES

davidrose@unc.edu

http://dx.doi.org/10.1016/j.jalgebra.2016.09.022
http://msp.org/idx/mr/3612477
http://msp.org/idx/zbl/1406.16011
http://dx.doi.org/10.1007/s10468-017-9669-0
http://msp.org/idx/mr/3669164
http://msp.org/idx/zbl/1383.16018
mailto:mabram@usc.edu
mailto:llambert@usc.edu
mailto:lauda@usc.edu
mailto:davidrose@unc.edu




PACIFIC JOURNAL OF MATHEMATICS
Vol. 328, No. 1, 2024

https://doi.org/10.2140/pjm.2024.328.77

FUSED HECKE ALGEBRA AND ONE-BOUNDARY ALGEBRAS

LOÏC POULAIN D’ANDECY AND MERI ZAIMI

This paper gives an algebraic presentation of the fused Hecke algebra which
describes the centraliser of tensor products of the Uq(glN)-representation
labelled by a one-row partition of any size with vector representations. It is
obtained through a detailed study of a new algebra that we call the symmetric
one-boundary Hecke algebra. In particular, we prove that the symmetric
one-boundary Hecke algebra is free over a ring of Laurent polynomials
in three variables and we provide a basis indexed by a certain subset of
signed permutations. We show how the symmetric one-boundary Hecke
algebra admits the one-boundary Temperley–Lieb algebra as a quotient, and
we also describe a basis of this latter algebra combinatorially in terms of
signed permutations with avoiding patterns. The quotients corresponding
to any value of N in glN (the Temperley–Lieb one corresponds to N = 2)
are also introduced. Finally, we obtain the fused Hecke algebra, and in
turn the centralisers for any value of N , by specialising and quotienting the
symmetric one-boundary Hecke algebra. In particular, this generalises to the
Hecke case the description of the so-called boundary seam algebra, which is
then obtained (taking N = 2) as a quotient of the fused Hecke algebra.
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1. Introduction

The usual Hecke algebra Hn(q) appears in the quantum Schur–Weyl duality [14]
describing the centralisers of tensor powers of the vector representation of the
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quantum group Uq(glN ). If we denote L N the vector representation of dimension N
of Uq(glN ), there is a surjective morphism

Hn → EndUq (glN )((L N )⊗n).

The Hecke algebra Hn does not depend on N and plays its role for glN for any N .
The dependence on N of the centraliser appears in the description of the kernel of
the above map. Indeed, for a given N , the centraliser of Uq(glN ) is isomorphic to the
quotient of Hn by the q-antisymmetriser on N + 1 points. This q-antisymmetriser
is a minimal central idempotent of HN+1 (the quotient is trivial if n ≤ N ) and
generates the kernel for any n ≥ N + 1. In particular, for N = 2, the resulting
algebra is the well-known Temperley–Lieb algebra.

We would like to generalise the whole picture for tensor products of more general
representations of Uq(glN ). The fused Hecke algebra was introduced in [7] for this
purpose. For k⃗ = (k1, . . . , km) a vector of positive integers, we have a surjective
morphism

(1-1) Hk⃗ → EndUq (glN )(L N
(k1)

⊗ L N
(k2)

⊗ · · · ⊗ L N
(km)),

where L N
(k) is the k-th q-symmetrised power of L N (in other words, the irreducible

representation of Uq(glN ) indexed by the one-row partition of size k) and Hk⃗ is
called the fused Hecke algebra. Again, the algebra Hk⃗ does not depend on N and for
large N is exactly the centraliser. The dependence of the centralisers on N appears
in the kernel of the surjective map, of which an explicit description is conjectured
in [7] and proved in some cases, including the ones we will study in this paper.
For N = 2, the centralisers can be called the fused Temperley–Lieb algebras in
our terminology. They appear in several recent works and are also known as seam
algebras, valenced Temperley–Lieb algebra or Jones–Wenzl algebras [1; 10; 27].

There is no known presentation by generators and relations for the fused Hecke
algebra Hk⃗ in general and in turn no known presentation for the Uq(glN )-centralisers
(see [10] for a study of this question for the Jones–Wenzl algebras, that is, for
Uq(gl2)-centralisers),

This paper is concerned with the case where only the first representation in (1-1)
is fused. Namely we fix k > 0 and n ≥ 0, and we denote by Hk,n the fused Hecke
algebra corresponding to the following centraliser:

(1-2) Hk,n → EndUq (glN )(L N
(k) ⊗ (L N )⊗n).

This situation is commonly referred to as the one-boundary case. Such one-boundary
centraliser algebras have been studied especially for Uq(gl2), and also often with an
infinite-dimensional module (like a Verma module) as the first factor; see [4; 13; 15]
for recent works. For N = 2, the one-boundary case of the fused Temperley–Lieb
algebra is referred to as the boundary seam algebra [16; 17; 19] and is a quotient
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of the one-boundary Temperley–Lieb algebra or blob algebra [8; 18; 20]. The
presentation given in [19], even if not explicitly stated this way, can be seen as a
description of the centraliser (1-2) in the gl2 case.

The first main goal of this paper is to give an algebraic presentation of the fused
Hecke algebra Hk,n and of its quotients corresponding to the centralisers for any N .
In particular, we obtain the boundary seam algebra (N = 2) explicitly as a quotient
of the fused Hecke algebra Hk,n , and provide its generalisation for any N > 2.

The second main purpose of this paper is the introduction of a new algebra,
which we denote An and call the symmetric one-boundary Hecke algebra. Roughly
speaking, this 3-parameter algebra An allows to interpolate between all algebras Hk,n

for varying k. The word symmetric is meant to recall the fact that the representations
allowed at the boundary are the q-symmetric powers. The algebra An admits as a
quotient the 3-parameter one-boundary Temperley–Lieb algebra, which we denote
here Cn,2, and we also define naturally as quotients of An the generalisations Cn,N

corresponding to glN for any N > 2.
We now describe more precisely, step by step, the algebras involved in the paper.

It is well known, see, for example, [22], that the one-boundary centraliser in (1-2)
is a quotient of the affine Hecke algebra. Moreover, since the partition (k) made
of a line of k boxes has only two addable nodes, this quotient factors through a
cyclotomic quotient of level 2. This is the starting point of our constructions.

The starting point Hα1,α2,n . We start with the cyclotomic Hecke algebra of level 2
Hα1,α2,n defined over the ring C[q±1, α±1

1 , α±2
2 ] with three indeterminates. The

indeterminates α1 and α2 correspond to the eigenvalues of the boundary, or type B,
generator, while the eigenvalues of the other generators are q and −q−1.

The algebra Hα1,α2,n has a standard basis indexed by the signed permutations and
we have a good understanding of the representation theory over the field of fractions
C(q, α1, α2). Namely, the algebra is semisimple and the irreducible representations
are indexed by bipartitions of n. Among these irreducible representations, four of
them are of dimension 1 and they correspond to the following bipartitions:

(□ · · ·□ ,∅),

(□...
□

,∅
)

, (∅ ,□ · · ·□),

(
∅ ,

□...
□

)
,

(q, α1), (−q−1, α1), (q, α2), (−q−1, α2).

Each of these one-dimensional representations corresponds to a choice of eigenval-
ues for the generators, as indicated above. Moreover, explicit expressions for the
minimal central idempotents corresponding to these representations are known (see
Section 2B). These idempotents live in the algebra Hα1,α2,n extended over the field
of fractions C(q, α1, α2), and by simply removing the denominators in these explicit
expressions, we obtain central quasiidempotents in the algebra Hα1,α2,n well defined
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over the ring of polynomials. These quasiidempotents are denoted E (x,y)
n , where

(x, y) are the corresponding eigenvalues, and will be crucial to all our constructions.
Indeed all algebras involved in the paper are obtained by quotienting by some of
these quasiidempotents, as summarised in the picture below.

Hα1,α2,n (
α1 = q−2

α2 = q2k

)
E (−q−1,α2)

2

An A(k)
n

Cn,N C(k)
n,N

E (−q−1,α1)

N E (−q−1,α1)

N

E (q,α1)

k+1

E (q,α1)

k+1

The full lines represent genuine quotients, while dashed lines represent quotients
combined with a specialisation of the parameters α1, α2 as indicated in the diagram.
We briefly detail each step of the diagram.

The algebra An . The symmetric one-boundary Hecke algebra An is obtained from
Hα1,α2,n by quotienting out the quasiidempotent E (−q−1,α2)

2 . This quotient is the
main object of study of Section 2. Quite naturally from its definition, the irreducible
representations of the algebra An over the field of fractions are indexed by biparti-
tions with a one-row partition as the second component. Our first main result is
that the algebra An is free over C[q±1, α±1

1 , α±2
2 ] and we provide a basis in terms

of signed permutations with avoiding patterns. We conclude this section with a
technical fact, namely, that some of the remaining central quasiidempotents E (x,y)

n

can be renormalised in An while still being well defined over C[q±1, α±1
1 , α±2

2 ].
This will be important for what follows in order for the subsequently defined
quotients to behave well.

The algebras Cn,N . In Section 3, for N > 1, the symmetric one-boundary N -centra-
liser algebras Cn,N are defined by further quotienting An by one of the remaining (and
renormalised) quasiidempotent when n ≥ N (as well as the usual q-antisymmetriser
on N + 1 points). The relevant quasiidempotent is indicated in the diagram above
and this definition leads easily to the description of the representation theory over
the field of fractions: the irreducible representations are now indexed by bipartitions
(λ, µ) where µ is a one-row partition and λ has strictly less than N rows.

The algebras Cn,N include the one-boundary Temperley–Lieb algebra, which is
the case N =2, and provide its natural generalisation for general N . The name comes
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from the fact that the algebra Cn,N somehow interpolates the Uq(glN )-centralisers
in (1-2) for fixed N and varying k. The case N = 2 is examined in more details and
again, we show that Cn,2 is free over the ring C[q±1, α±1

1 , α±2
2 ] with a basis also

given in terms of signed permutations with certain avoiding patterns (this is where
the renormalisation mentioned above is important). This description can be seen
as a one-boundary generalisation of the description of the usual Temperley–Lieb
algebra in terms of usual permutations with avoiding patterns.

The algebras A(k)
n . Section 4 is mainly devoted to the algebraic description of the

fused Hecke algebra Hk,n . For this purpose, we define the algebra A(k)
n as a special-

isation of An followed by a quotient by another (renormalized) quasiidempotent for
n ≥ k +1. The specialisation replaces α1 and α2 by the eigenvalues of the boundary
generator in the fused Hecke algebra. Their values are indicated in the diagram
above together with the relevant quasiidempotent. The main result of the section is
that the algebras A(k)

n and Hk,n are isomorphic. This leads to a presentation of the
fused Hecke algebra in terms of generators and relations. Again, a basis of A(k)

n in
terms of signed permutations with avoiding patterns is provided.

The algebras C(k)
n,N . Lastly, in Section 5, the algebras C(k)

n,N are defined by naturally
completing the square of the picture above. Namely, they are defined either as
specialisations and quotients of Cn,N , or equivalently as quotients of A(k)

n . The
algebras C(k)

n,N are shown to be isomorphic to the Uq(glN )-centraliser in (1-2) and this
provides an algebraic description of the centraliser. We show that we have reobtained
naturally with C(k)

n,2 the boundary seam algebra of [19] and thus the algebras C(k)
n,N

can be seen as the glN -generalisations. Following our results, a natural definition
of the algebra C(k)

n,2 over C[q±1
] is given (and here we differ from [19]) and it is

shown to be free over C[q±1
] with a basis given explicitly.

2. The symmetric one-boundary Hecke algebra

We will use the notations

[r ]x =
xr

− x−r

x − x−1 = xr−1
+ xr−3

+ · · · + x1−r and [r ]x ! = [2]x . . . [r ]x .

We will be working with the ring R = C[q±1, α±1
1 , α±1

2 ], where q, α1, α2 are
indeterminates, and with its field of fractions F = C(q, α1, α2).

2A. The cyclotomic Hecke algebra of level 2. Let n ≥ 0. We define the algebra
Hα1,α2,n as the algebra over R with generators gi for i = 0, 1, . . . , n−1 and defining
relations
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gi gi+1 gi = gi+1 gi gi+1, 1 ≤ i ≤ n − 2,(2-1)

g0 g1 g0 g1 = g1 g0 g1 g0,(2-2)

gi g j = g j gi , |i − j | ≥ 2,(2-3)

(gi − q)(gi + q−1) = 0, 1 ≤ i ≤ n − 1,(2-4)

(g0 − α1)(g0 − α2) = 0.(2-5)

By convention, Hα1,α2,0 = R. The algebra is a quotient of the affine Hecke algebra
of type A by the last relation. It is called a cyclotomic Hecke algebra of level 2 since
this last relation is a quadratic characteristic relation for g0. For what is recalled
below about Hα1,α2,n , see, e.g., [11].

The algebra Hα1,α2,n is free as an R-module and has a basis labelled by the
elements of the Coxeter group of type Bn . We will abuse notations and denote Bn

this Coxeter group. Its elements can be viewed as signed permutations, that is,
those permutations ω on the set {−n, −n + 1, . . . ,−1, 1, 2, . . . , n} such that we
have ω(−i) = −ω(i) for all i ∈ {1, 2, . . . , n}. We can represent the elements of Bn

by words b = b1 b2 . . . bn where each of the numbers 1, 2, . . . , n appears once and
is possibly barred (see, e.g., [25]). In this representation, bi is the image of i by ω,
where the bar notation is understood as a negative sign. The group Bn contains
n! 2n elements.

We denote by si the transposition of i and i +1 in Bn (which thus also transposes
−i and −(i+1)), and by s0 the transposition of −1 and 1. The group Bn is generated
by si with i = 0, . . . , n − 1. For an element ω ∈ Bn , we write it as a reduced
expression, that is, as a product si1 . . . sik with minimal k. We set gω = gi1 . . . gik in
Hα1,α2,n . The element gω does not depend on the choice of the reduced expression,
and the set {gω}ω∈Bn forms an R-basis of Hα1,α2,n . A standard choice of reduced
forms leads to an explicit expression for the basis as the following product of sets:

(2-6)
{

1,

g0

}
·


1,

g1,

g1 g0,

g1 g0 g1

 ·



1,

g2,

g2 g1,

g2 g1 g0,

g2 g1 g0 g1,

g2 g1 g0 g1 g2


· · · · ·



1,

gn−1,
...

gn−1 . . . g1 g0,

gn−1 . . . g1 g0 g1,
...

gn−1 . . . g1 g0 g1 . . . gn−1


.

Introducing the following notation for 0 ≤ m ≤ n:

[n, m] = gn . . . gm+1gm and [n, −m] = gn . . . g1 g0 g1 . . . gm,

the basis elements can be written as

[n1, m1][n2, m2] . . . [nk, mk], with 0 ≤ n1 < n2 < · · ·< nk ≤ n−1 and |mi |≤ ni .
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The algebra Hα1,α2,n−1 is naturally a subalgebra of Hα1,α2,n , the one generated by
g0, . . . , gn−2, where elements of Bn−1 are naturally identified with elements of Bn

leaving invariant the letter n.

Hecke algebra of type A. The algebra generated by g1, . . . , gn−1 with defining
relations (2-1), (2-3), (2-4) is the usual Hecke algebra Hn of type A, associated to
the symmetric group Sn on n letters. It is naturally identified as the subalgebra of
Hα1,α2,n generated by g1, . . . , gn−1, and a basis of Hn is the subset {gω}ω∈Sn , when
the symmetric group is naturally considered as a subgroup of Bn .

The basis of Hn is made of those elements in (2-6) which do not contain g0. The
basis (2-6) is well adapted to the inclusion Bn−1 ⊂ Bn . There is a different way to
produce a basis of Hα1,α2,n adapted to the inclusion Sn ⊂ Bn , which is the set of
elements:

(2-7) gω · g0 g1 . . . gi1 . . . g0 g1 . . . gik , ω ∈ Sn, n − 1 ≥ i1 > · · · > ik ≥ 0.

2B. Central quasiidempotents in Hα1,α2,n. For i = 0, 1, . . . , n − 1 and ω ∈ Bn ,
we denote ℓ(ω) the length of ω, which is the number of generators appearing
in any reduced expression of ω. We denote ℓ0(ω) the number of times that the
generator s0 appears in a reduced expression for ω. This does not depend on the
reduced expression since all braid relations in Hα1,α2,n are homogeneous in g0.

q-symmetriser and q-antisymmetriser in the Hecke algebra. First we discuss the
standard quasiidempotents in the usual Hecke algebra Hn generated by g1, . . . , gn−1.
Let x ∈ {q, −q−1

} and set

(2-8) 3x
n(g1, . . . , gn−1) =

∑
ω∈Sn

xℓ(ω)gω.

By convention, 3x
1 = 1. Using the basis in (2-6) without the elements containing g0,

we find the recursive formula

3x
n(g1, . . . , gn−1) = 3x

n−1(g1, . . . , gn−2)(1 + xgn−1 + · · · + xn−1gn−1 . . . g1).

It is well known and easy to check (see the proof of Proposition 2.1 below) that

3x
n(g1, . . . , gn−1) gi = gi3

x
n(g1, . . . , gn−1)

= x3x
n(g1, . . . , gn−1), i = 1, . . . , n − 1.

It follows that these two elements are central in Hn and are quasiidempotents,
namely,

(3x
n(g1, . . . , gn−1))

2
= q±

1
2 (n(n−1))

[n]q ! 3x
n(g1, . . . , gn−1), x = ±q±1.

To find the coefficient, one needs to replace each gi by x in the formula for the
quasiidempotents. This is easily done using their recursive formula. We refer to the
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element with x = q as the (unnormalised) q-symmetriser of Hn and to the element
with x = −q−1 as the (unnormalised) q-antisymmetriser of Hn .

The four quasiidempotents in Hα1,α2,n . Let x ∈ {q, −q−1
} and b ∈ {1, 2}. In what

follows, it will be convenient to consider the indices of α1, α2 modulo 2, so that
αb+1 = α1 when b = 2. We define

(2-9) E (x,αb)
n :=

∑
ω∈Bn

zω gω, zω := xℓ(ω)−ℓ0(ω)(−α−1
b+1)

ℓ0(ω).

By convention, E (x,αb)
0 = 1. Using the standard basis in (2-6), a recursive formula

for these elements is

(2-10) E (x,αb)
n = E (x,αb)

n−1

(
1 +

n−1∑
i=1

xn−i gn−1 . . . gi

− xn−1 α−1
b+1 gn−1 . . . g1 g0

(
1 +

n−1∑
i=1

x i g1 . . . gi

))
.

Using the basis (2-7) adapted to the embedding Hn ⊂ Hα1,α2,n , we also have

(2-11) E (x,αb)
n = 3x

n(g1, . . . , gn−1) · (1 − xn−1 α−1
b+1 g0 g1 . . . gn−1)

. . . (1 − xα−1
b+1 g0 g1)(1 − α−1

b+1 g0).

Explicit examples for small n are

E (x,αb)
1 = 1 − αb+1 g0,

E (x,αb)
2 = 1 + xg1 − αb+1 g0 − xαb+1(g1 g0 + g0 g1)

− x2αb+1 g1 g0 g1 + xα2
b+1 g0 g1 g0 + x2α2

b+1 g0 g1 g0 g1.

We recall the important facts about the elements E (x,αb)
n , implying in particular that

they are central quasiidempotents of Hα1,α2,n .

Proposition 2.1. Let x = ±q±1 and b ∈ {1, 2}. We have

(2-12) E (x,αb)
n g0 = g0 E (x,αb)

n =αb E (x,αb)
n and E (x,αb)

n gi = gi E (x,αb)
n = x E (x,αb)

n

for i = 1, . . . , n − 1, and

(2-13)

(E (x,αb)
n )2

= Pn(x, αb) E (x,αb)
n ,

Pn(x, αb) = q±
1
2 (n(n−1))

[n]q !

n−1∏
i=0

(
1 − q±2i αb

αb+1

)
.
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Proof. For any ω ∈ Bn and any i ∈ {0, 1, . . . , n −1}, we have ℓ(siω) = ℓ(ω)±1. If
ℓ(siω) > ℓ(ω), then we have gsi w = gi gw. Therefore we can write

(2-14) E (x,αb)
n =

∑
ω∈Bn

ℓ(si ω)>ℓ(ω)

(zω gω + zsi ω gi gω).

Note that under the hypothesis that ℓ(siω) > ℓ(ω), we must have zsi ω = xzω if
1 ≤ i ≤ n − 1 and zsi ω = −α−1

b+1 zω if i = 0. The defining relations (2-4) and (2-5)
imply that

(2-15) (g0 − αb)(1 − α−1
b+1 g0) = 0 and (gi − x)(gi + x−1) = 0

for i = 1, . . . , n − 1. Using the previous equations, we have, for example, if
1 ≤ i ≤ n − 1, that

(2-16) (gi − x) E (x,αb)
n =

∑
ω∈Bn

ℓ(si ω)>ℓ(ω)

(gi − x)(zω gω + xzωgi gω)

=

∑
ω∈Bn

ℓ(si ω)>ℓ(ω)

xzω(gi − x)(x−1
+ gi ) gω = 0.

The case i = 0 is similarly done. Moreover, similar arguments can be used when
considering instead the product E (x,αb)

n gi for 0 ≤ i ≤ n − 1. This proves (2-12).
Now the coefficient Pn(x, αb) in (2-13) is found by replacing g0 by αb and the

other gi ’s by x in the formula for E (x,αb)
n . The given formula for Pn(x, αb) follows

then easily from (2-11). □

Remark 2.2. Over the field of fractions F, or in a specialisation with Pn−1(x,αb) ̸=0,
we have also the recursive formula

(2-17) E (x,αb)
n = E (x,αb)

n−1 + x
E (x,αb)

n−1 gn−1 E (x,αb)
n−1

Pn−2(x, αb)

− x2(n−1)α−1
b+1

E (x,αb)
n−1 gn−1 . . . g1 g0 g1 . . . gn−1 E (x,αb)

n−1

Pn−1(x, αb)
.

2C. The symmetric one-boundary Hecke algebra An. We define below the main
object of this section that we call the symmetric one-boundary Hecke algebra.

Definition 2.3. Let n ≥0. We define the symmetric one-boundary Hecke algebra An

as the algebra over R which is the quotient of Hα1,α2,n by the relation

(2-18) E (−q−1,α2)

2 = 0.

It is understood that An = Hα1,α2,n if n = 0, 1.
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Using the explicit expression of E (−q−1,α2)

2 , this is equivalent to imposing the
following relation:

(2-19) g0 g1 g0 g1

= −q2α2
1 +qα2

1g1 +q2α1 g0 −qα1(g1 g0 +g0 g1)+α1g1 g0 g1 +qg0 g1 g0.

Semisimple representation theory. Here we extend the algebras Hα1,α2,n and An

over the field of fractions F , and denote them FHα1,α2,n and FAn to avoid any
confusion. The representation theory of FHα1,α2,n is well known [3; 12; 21], and
can be described in terms of bipartitions and Young tableaux.

A partition λ of n, denoted λ ⊢ n, is a decreasing sequence of positive integers
λ = (λ1, . . . , λk) with λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1 such that λ1 +· · ·+λk = n. We also
say that λ is a partition of size n and denote |λ| = n. We identify partitions with
their Young diagrams: the Young diagram of λ is a left-justified array of rows of
boxes such that the j -th row (we count from top to bottom) contains λ j boxes. The
number of nonempty rows is the length ℓ(λ) of λ. By convention, the empty set ∅
is the only partition of n = 0.

A standard tableau of shape λ is a bijective filling of the boxes of λ by numbers
1, . . . , n such that the entries strictly increase along any row and down any column
of the diagram. We denote by dλ the number of standard tableaux of shape λ. From
the representation theory of the symmetric group, or from the Robinson–Schensted
correspondence, we have

(2-20)
∑
λ⊢n

d2
λ = n!.

A bipartition of size n is a pair of partitions (λ, µ) such that |λ| + |µ| = n. We
denote Par2(n) the set of bipartitions of n. A standard tableau of shape (λ, µ) is
a bijective filling of the boxes of λ and µ by the numbers 1, . . . , n such that the
entries strictly increase along any row and down any column of the two diagrams.
The number of standard tableaux of shape (λ, µ) is easily seen to be

(2-21) dλ,µ =

(
n
|λ|

)
dλ dµ.

The set of irreducible representations of FHα1,α2,n is indexed by the bipartitions
of size n, and we will denote V(λ,µ) the irreducible representations indexed by
(λ, µ) ∈ Par2(n) so that

Irr(FHα1,α2,n) = {V(λ,µ) | (λ, µ) ∈ Par2(n)}.

There are four one-dimensional representations of FHα1,α2,n for n ≥ 2 and the
parametrisation is made such that they correspond to the following bipartitions of n,
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with the given corresponding values, respectively, of g0 and of gi , i = 1, . . . , n −1:

(2-22)

(□ · · ·□ ,∅),

(□...
□

,∅
)

, (∅ ,□ · · ·□),

(
∅ ,

□...
□

)
,

g0 7→ α1, g0 7→ α1, g0 7→ α2, g0 7→ α2,

gi 7→ q, gi 7→ −q−1, gi 7→ q, gi 7→ −q−1.

Moreover, the branching rules expressing the restriction from Hα1,α2,n to Hα1,α2,n−1

are given by inclusion of bipartitions (or more precisely, of their Young diagrams),
as shown in the beginning of the Bratteli graph below. We refer to an appendix
in [7] for a discussion of Bratteli diagrams and of quotients of semisimple algebras
by central idempotents.

The parametrisation of the irreducible representations is uniquely fixed by these
requirements, and the dimension of the irreducible representation V(λ,µ) is the
number of standard tableaux of shape (λ, µ):

dim V(λ,µ) = d(λ,µ) =

(
n
|λ|

)
dλ dµ,

(∅ ,∅)

(□ ,∅) (∅ ,□)

(□□ ,∅) (□□ ,∅) (□ ,□) (∅ ,□□) (∅ ,□□)

(□□□ ,∅) (□□□ ,∅) (
□
□
□

,∅) (□□ ,□) (□□ ,□) (□ ,□□) (□ ,□□) (∅ ,□□□) (∅ ,□□□ ) (∅ ,
□
□
□

)

Thanks to its properties recalled in Proposition 2.1, the element E (x,αb)
m in FHα1,α2,m

is a nonzero element proportional to the minimal central idempotent corresponding
to the one-dimensional representation associated to (x, αb). It means that it is
nonzero in this one-dimensional representation of FHα1,α2,m and acts as 0 in any
other irreducible representation. Now if n ≥ m, it follows that E (x,αb)

m seen as
an element of Hα1,α2,n is nonzero in an irreducible representation if and only if
this irreducible representation contains in its restriction to Hα1,α2,m the given one-
dimensional representation. Therefore the quotient by E (x,αb)

m = 0 removes exactly
these irreducible representations.

In the particular case of FAn , which is the quotient of Hα1,α2,n by the relation
E (−q−1,α2)

2 = 0, we recall the indexing of one-dimensional representations set up
in (2-22), and we find that the disappearing representations are those V(λ,µ) with µ

having at least two nonempty rows. We summarise this discussion in the following
proposition.
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Proposition 2.4. The algebra FAn is semisimple with the following set of irre-
ducible representations:

Irr(FAn) = {V(λ,µ) | (λ, µ) ∈ Par2(n) and ℓ(µ) < 2}.

The Bratteli diagram for the algebras An is obtained from the Bratteli diagram
for the algebras Hα1,α2,n above, where all bipartitions with more than one row in
the second component are removed:

(∅ ,∅) 1

(□ ,∅) (∅ ,□) 2

(□□ ,∅) (□□ ,∅) (□ ,□) (∅ ,□□) 7

(□□□ ,∅) (□□□ ,∅) (
□
□
□

,∅) (□□ ,□) (□□ ,□) (□ ,□□) (∅ ,□□□) 34

The dimension of FAn can be easily calculated, by summing the squares of the
dimensions of the irreducible representations:

dim(FAn) =

n∑
i=0

∑
λ⊢n−i

(dim V(λ,(i)))
2
=

n∑
i=0

(
n
i

)2 ∑
λ⊢n−i

d2
λ =

n∑
i=0

(
n
i

)2

(n − i)!,

where we first split the sum according to the size of the second partition µ, which
must be a single line of i boxes, and then we use successively (2-21) and (2-20).
The dimensions for n = 0, 1, 2, 3 are written in the diagram above.

Remark 2.5. The above description of the representations of FAn is also valid for
many specialisations of the parameters α1, α2, q in An , namely, those specialisations
such that the algebra Hα1,α2,n is semisimple. This happens if q2 is not a root of
unity of order e ≤ n and α1 ̸= α2q±2i for i = 1, . . . , n − 1, see [2].

An R-basis of An . A word b = b1 b2 . . . bn of Bn is said to be 1̄2̄-avoiding if all
barred numbers in b appear in decreasing order, see [25]. Put differently, b avoids
the pattern 1̄2̄ if there are no two indices 1≤ i < j ≤n such that bi =m1 and b j =m2

with 0 < m1 < m2. For instance, 356̄14̄2̄ is 1̄2̄-avoiding in B6 while 354̄16̄2̄ is not
because of the subsequence 4̄6̄.

We will denote by Bn(1̄2̄) the subset of all signed permutations in Bn which are
1̄2̄-avoiding. A word b = b1 b2 . . . bn corresponding to a permutation in Bn(1̄2̄)

can be written as follows: choose i numbers in {1, 2, . . . , n} that will be barred,
choose i positions among n to place these barred numbers in decreasing order in b,
and then permute the remaining n − i numbers in the remaining n − i positions in b.
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It follows that

(2-23) |Bn(1̄2̄)| =

n∑
i=0

(n − i)!
(

n
i

)2

.

We are now ready to give a basis of An over R. Thus, this also gives a basis for
any specialisation of q, α1, α2 to nonzero complex numbers.

Theorem 2.6. The algebra An is free over R with basis given by the set of ele-
ments gω corresponding to 1̄2̄-avoiding signed permutations, i.e., the basis is

(2-24) {gω | ω ∈ Bn(1̄2̄)}.

Proof. We first prove that the set (2-24) is a spanning set

(2-25) An = spanR{gω | ω ∈ Bn(1̄2̄)}.

Since An is a quotient of Hα1,α2,n , it is clearly linearly generated by the set of
elements gω with ω ∈ Bn . To show that this spanning set can be reduced to (2-25),
we proceed by induction on the length of elements in Bn .

Any signed permutation ω∈ Bn of length ℓ(ω)<4 is such that at most one number
in {1, 2, . . . , n} is mapped to a barred number. Therefore, all signed permutations ω

with ℓ(ω)<4 are 1̄2̄-avoiding and the associated elements gω belong to the spanning
set (2-25).

Suppose now that all elements gω with ℓ(ω) ≤ m, for some fixed integer m ≥ 4,
belong to the span of the set (2-24). Consider an element gω with ℓ(ω) = m + 1
such that ω /∈ Bn(1̄2̄). It follows by [28, Lemma 2.1] that ω must contain s0 s1 s0 s1

in some reduced expression. This implies in turn that there is a reduced expression
for gω that contains g0 g1 g0 g1. Relation (2-19) can hence be used to express gω as
a linear combination of terms of length less than m + 1. By induction hypothesis,
we therefore conclude that gω can be written in terms of the set (2-24).

Now, since the set (2-24) is a spanning set of An over R, it is also a spanning
set of FAn over F . Moreover, the dimension of FAn over F was calculated after
Proposition 2.4 and it coincides with the cardinality of the spanning set. Therefore,
the set (2-24) is a basis of FAn and in particular is linearly independent over F .
Thus it is also linearly independent over R (since R ⊂ F). We conclude that the
set (2-24) is an R-basis of An . □

Remark 2.7. The elements of Bn which avoid the pattern 1̄2̄ are in fact the same
as the elements which do not contain s0 s1 s0 s1 in any reduced expression, see [28,
Lemma 2.1].



90 LOÏC POULAIN D’ANDECY AND MERI ZAIMI

2D. Quasiidempotents in An. Let n ≥ 2. In An , the element E (−q−1,α2)
n , which is

proportional to E (−q−1,α2)

2 is equal to 0. Thus among the four central quasiidempo-
tents E (x,αb)

n of Hα1,α2,n , only three remain nonzero in An:

E (−q−1,α1)
n , E (q,α2)

n , E (q,α1)
n .

In Hα1,α2,n , no common factor appears in the coefficients of these elements. This
will now be different in An , where a nontrivial common factor in the ring R may
sometimes be factored out. Thus we can define renormalised elements defined
over R by removing this common factor, and it will be important for later use to do
so. In fact, only the two first elements in the list above factorise generically over
the ring R, and this is the content of the following statement.

Proposition 2.8. Let n ≥ 2. In An we have

E (−q−1,α1)
n = α−1

2

n−2∏
i=0

(
1 −

α1

α2
q−2i

)
Ẽ (−q−1,α1)

n ,(2-26)

E (q,α2)
n = q

1
2 (n(n−1))

[n]q ! Ẽ (q,α2)
n ,(2-27)

where the renormalised elements are given by

(2-28) Ẽ (−q−1,α1)
n = 3n(g1, . . . , gn−1)

·

(
α2 + α1q−(n−2)

[n − 1]q −

n−1∑
i=0

(−1)i q−i g0 . . . gi

)
,

(2-29) Ẽ (q,α2)
n = Ẽ (q,α2)

n−1

(
(1 − q2)(1 + qgn−1 + · · · + qn−2gn−1 . . . g2)

+ qn−1gn−1 . . . g1(1 − α−1
1 g0)

)
,

with the convention that Ẽ (q,α2)

1 = E (q,α2)

1 = (1 − α−1
1 g0).

Proof. Step 1. First we prove (2-26). Denote x = −q−1 and

X0
n = (1 − xn−1 α−1

2 g0 g1 . . . gn−1)(1 − xn−2α−1
2 g0 g1 . . . gn−2) . . . (1 − α−1

2 g0).

Recall from (2-11) that we have

E (x,α1)
n = 3n · X0

n, 3n = 3x
n(g1, . . . , gn−1).

We use induction on n. For n = 2, the formula is easy to check by direct calculation.
We write the definition of E (x,α1)

2 and use the defining relation of An to replace
g0 g1 g0 g1. Now, let n ≥ 3 and write the above formula as

(2-30) E (x,α1)
n = 3n · (1 − xn−1 α−1

2 g0 g1 . . . gn−1) X0
n−1.
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Note that

3n = A·3x
n−1(g1, . . . , gn−2)= B ·3x

n−1(g2, . . . , gn−1) for some A, B ∈ Hα1,α2,n.

Besides, we have

3x
n−1(g2, . . . , gn−1) g0 g1 . . . gn−1 = g0 g1 . . . gn−13

x
n−1(g1, . . . , gn−2)

using the braid relations. Therefore, in (2-30), we can bring 3x
n−1(g1, . . . , gn−2) in

front of X0
n−1 and thus use the induction hypothesis. At this point, we have

(2-31) E (x,α1)
n = γn−13n · (1 − xn−1 α−1

2 g0 g1 . . . gn−1)

·

(
α2 + α1q−(n−3)

[n − 2]q −

n−2∑
i=0

x i g0 . . . gi

)
,

with the coefficient γn−1 given by the induction hypothesis. Now we are going to
use the defining relation of An in the following form:

(1 − q−1 g1) g0 g1 g0 = (1 − q−1 g1)(qα2
1 − qα1 g0 + α1 g0 g1)

and the fact that 3n = C · (1−q−1 g1) for some C ∈ Hα1,α2,n to make the following
calculation, recalling that 3n gk = x3n for k = 1, . . . , n − 1:

3n · g0 g1 . . . gn−1

n−2∑
i=0

x i g0 g1 . . . gi

= 3n · (qα2
1 − qα1 g0 + α1 g0 g1) g2 . . . gn−1

n−2∑
i=0

x i g1 . . . gi

= 3n · (xn−2qα2
1 − xn−2qα1 g0 + α1 g0 g1 . . . gn−1)

n−2∑
i=0

x i g1 . . . gi

= 3n ·

(
q−(n−3)xn−2α2

1[n − 1]q

+ q−(n−2)α1[n − 1]q g0 g1 . . . gn−1 − xn−2qα1

n−2∑
i=0

x i g0 g1 . . . gi

)
.

We have used the braid relations to move g1 . . . gi through g0 g1 . . . gn−1 (getting
g2 . . . gi+1), and that

∑n−2
i=0 x i g1 . . . gi = q−(n−2)

[n − 1]q when all g’s are replaced
by x = −q−1.

It remains only to use this formula in (2-31) and to collect the various terms.
Omitting γn−13n , one finds directly that the coefficient in front of g0 g1 . . . gi

when i < n − 1 is −x i (1 − q−2(n−2)α1/α2). Then easy manipulations give that the
coefficients in front of 1 and in front of g0 g1 . . . gn−1 are respectively,(

1 − q−2(n−2) α1

α2

)
(α2 + α1q−(n−2)

[n − 1]q) and −

(
1 − q−2(n−2) α1

α2

)
xn−1.

This concludes the verification of (2-26).
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Step 2. Now we prove (2-27) with similar methods, using induction on n. Once
again, the case n = 2 is directly verified using the explicit expression for E (q,α2)

2
and the defining relation of An to replace g0 g1 g0 g1. For n ≥ 3, the recursive
formula (2-10) allows us to write

(2-32) E (q,α2)
n = E (q,α2)

n−1

(
1 +

n−1∑
i=1

qn−i gn−1 . . . gi − qn−1 α−1
1 gn−1

. . . g1 g0

(
1 +

n−1∑
i=1

q i g1 . . . gi

))
.

Then, we use in (2-32) the defining relation of An , which can be rewritten as

(−α−1
1 )(1 − α−1

1 g0) g1 g0 g1 = q(1 − α−1
1 g0)(−q + g1 − α−1

1 g1 g0),

together with the fact that E (q,α2)

n−1 = C · (1 − α−1
1 g0) for some C ∈ Hα1,α2,n to get

(2-33) E (q,α2)
n = E (q,α2)

n−1

(
1 +

n−1∑
i=2

qn−i gn−1 . . . gi + qn−1gn−1 . . . g1(1 − α−1
1 g0)

+ qn+1gn−1 . . . g2(−q + g1 − α−1
1 g1 g0)

·

(
1 +

n−1∑
i=2

q i−1g2 . . . gi

))
.

Recalling that E (q,α2)

n−1 gk = q E (q,α2)

n−1 for k = 1, . . . , n − 2, we can use the braid
relations and the Hecke relation to obtain

E (q,α2)

n−1 gn−1 . . . g2

(
1+

n−1∑
i=2

q i−1g2 . . . gi

)
= E (q,α2)

n−1 qn−2
(

1+

n−1∑
i=2

qn−i gn−1 . . . gi

)
,

E (q,α2)

n−1 gn−1 . . . g2 g1(1 − α−1
1 g0)

(
1 +

n−1∑
i=2

q i−1g2 . . . gi

)
= E (q,α2)

n−1 qn−2
[n − 1]q gn−1 . . . g2 g1(1 − α−1

1 g0).

Replacing these results in (2-33) and combining terms together, it is found that

E (q,α2)
n = E (q,α2)

n−1 qn−1
[n]q

(
(1 − q2)

(
1 +

n−1∑
i=2

qn−i gn−1 . . . gi

)
+ qn−1gn−1 . . . g1(1 − α−1

1 g0)

)
.

The proof is completed by using the induction hypothesis on E (q,α2)

n−1 . □
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3. The one-boundary Temperley–Lieb algebra and its glN -generalisations

Let N ≥ 2. In this section we define the symmetric one-boundary N -centraliser
algebras Cn,N as quotients of the algebra An . The meaning of this definition
will be clear from the point of view of representation theory, and will result in a
natural description of the semisimple representation theory of Cn,N . Besides, our
motivation and the origin of the terminology comes from the use we will make of
the algebras Cn,N to describe Uq(glN )-centralisers in Section 5.

We will then study in details the case N = 2, showing that we recover the generic
3-parameter one-boundary Temperley–Lieb algebra, for which we will describe a
basis using the signed permutations from the preceding section.

3A. Definition. We have defined in (2-8) the q-antisymmetriser 3
−q−1

N+1 (g1, . . . , gN )

of the usual Hecke algebra generated by g1, . . . , gN . From Section 2D we have

(3-1) Ẽ (−q−1,α1)
n

= 3n(g1, . . . , gn−1) ·

(
α2 + α1q−(n−2)

[n − 1]q −

n−1∑
i=0

(−1)i q−i g0 . . . gi

)
,

which is a renormalisation in An of the quasiidempotent Ẽ (−q−1,α1)
N . We propose:

Definition 3.1. We define the symmetric one-boundary N -centraliser algebra Cn,N

to be the quotient of the algebra An by the relations

Ẽ (−q−1,α1)
N = 0,(3-2)

3
−q−1

N+1 (g1, . . . , gN ) = 0.(3-3)

It is understood that Cn,N = An when n < N .

Semisimple representation theory. Here we extend the algebra Cn,N over the field
of fractions F and denote it FCn,N . The description below is also valid for speciali-
sations of the parameters satisfying the semisimplicity conditions for Hα1,α2,n in
Remark 2.5.

Proposition 3.2. The algebra FCn,N is semisimple with the following set of irre-
ducible representations

Irr(FCn,N ) = {V(λ,µ) | (λ, µ) ∈ Par2(n) with ℓ(λ) ≤ N − 1 and ℓ(µ) ≤ 1}.

Proof. In the algebra Cn,N , we have

E (−q−1,α1)
N = 0 and E (−q−1,α2)

2 = 0.

Reproducing the same reasoning as in the preceding section before Proposition 2.4,
we find that cancelling these two elements kills the irreducible representation V(λ,µ)
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of FHα1,α2,n if and only if either λ has strictly more than N − 1 rows or µ has
strictly more than one row.

It remains to argue that, in the remaining irreducible representations the last rela-
tion (3-3) cancelling the q-antisymmetriser in N generators g1, . . . , gN is satisfied.
This can be checked rather directly, using the explicit description of the irreducible
representations of Hα1,α2,n [3; 12; 21] and using the same sort of methods than
those used in [7] for the q-symmetriser.

Otherwise, note that the claim is equivalent to the fact that the one-dimensional
representation of FHN+1 given by g1, . . . , gN 7→ −q−1 (that is, indexed by a
one-column partition) does not appear when we restrict to FHN+1 the irreducible
representations of FHα1,α2,N+1 indexed by bipartitions (λ, µ) with ℓ(λ) ≤ N − 1
and ℓ(µ) ≤ 1. These restrictions are expressed in terms of Littlewood–Richardson
coefficients (see, e.g., [5; 24]). This implies in particular the easy claim above since,
by what is called the Pieri rule, the Littlewood–Richardson coefficient dν

λ,µ is 0
with λ and µ as above and ν the one-column partition of length N + 1. □

The Bratteli diagram for the algebras FCn,N is thus obtained from the Bratteli
diagram for the algebras FAn given before, removing all bipartitions with N rows
or more in the first component. The dimension of FCn,N is then calculated as

dim(FCn,N ) =

n∑
i=0

(
n
i

)2 ∑
λ⊢i

ℓ(λ)<N

d2
λ .

For N = 2, the algebra FCn,2 will be studied in details in the next subsection.
For N = 3, the sum of the squares of dλ’s in the formula above is the Catalan

number 1
i+1

(2i
i

)
. Moreover, the series of dimensions start with 1, 2, 7, 33, 183 and

is the series labelled A086618 in [26]. We note that, similarly to the situation
N = 2 discussed in Remark 3.6, the dimension of FCn,3 is the number of signed
permutations of {−n, . . . ,−1, 1, . . . , n} which are 4321-avoiding [9].

In general, we may ask whether the algebra Cn,N is free over the ring R and
we may look for a basis indexed by a natural subset of signed permutations, for
example, those avoiding certain patterns. This is what we are going to do in details
for N = 2 in the next subsection.

Remark 3.3. The representation theory shows that over F the relation (3-3) is
actually implied by the others. This is not true over R but this is also true in any
specialisation such that the algebra Hα1,α2,n is semisimple (Remark 2.5).

3B. The case N = 2 (the Temperley–Lieb situation). The definition of Cn,N can
be written slightly differently and more explicitly when N = 2.

Proposition 3.4. The algebra Cn,2 is the quotient of the algebra Hα1,α2,n by the
relations:
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g1 g0 g1 = q(α1 + α2)(q − g1) − q2g0 + q(g0 g1 + g1 g0),(3-4)

gi gi+1 gi = q3
− q2(gi + gi+1) + q(gi gi+1 + gi+1 gi ), i = 1, . . . , n − 2.(3-5)

Proof. Using Proposition 2.8, the first relation is obtained easily by writing explicitly
Ẽ (−q−1,α1)

2 = 0. The second relation for i = 1 is 3−q−1

3 (g1, g2) = 0. It implies, by
suitable conjugation, the second relations for any i ≥ 1. The last statement is that
(3-4) implies the defining relation of An:

g0 g1 g0 g1 =−q2α2
1 +qα2

1g1+q2α1 g0−qα1(g1 g0+g0 g1)+α1g1 g0 g1+qg0 g1 g0.

This is easy to see since multiplying (3-4) on the left or on the right by g0 gives

(3-6) g0 g1 g0 g1 = g1 g0 g1 g0 = qα1α2(q − g1) + qg0 g1 g0,

which, combined with (3-4), produces the desired relation. □

A Temperley–Lieb presentation. We make the slight change of generators as

(3-7) e0 := α2 − g0, ei := q − gi , i = 1, 2, . . . , n − 1.

Then it is an easy exercise to check that the algebra Cn,2 can be equivalently presented
as generated by ei for i = 0, 1, . . . , n − 1 with the defining relations

e2
i = (q + q−1) ei , 1 ≤ i ≤ n − 1,(3-8)

e2
0 = (α2 − α1) e0,(3-9)

ei ej = ej ei , |i − j | ≥ 2,(3-10)

ei ei±1 ei = ei , 1 ≤ i, i ± 1 ≤ n − 1,(3-11)

e1 e0 e1 = (q−1α2 − qα1) e1.(3-12)

We recover a three-parameter version of the one-boundary Temperley–Lieb algebra,
or blob algebra, see for example [8; 16; 18; 19; 20].

Semisimple representation theory. We take N = 2 in the Proposition 3.2.

Proposition 3.5. The algebra FCn,2 is semisimple with the following set of irre-
ducible representations:

Irr(FCn,2) = {V(λ,µ) | (λ, µ) ∈ Par2(n) and ℓ(λ), ℓ(µ) ≤ 1}.

The Bratteli diagram for the algebras FCn,2 is obtained from the Bratteli diagram
for the algebras Hα1,α2,n , where all bipartitions with more than one row in any
component are removed. One finds the Pascal triangle, whose beginning is given
here:
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(∅,∅) 1

(□ ,∅) (∅ ,□) 2

(□□ ,∅) (□ ,□) (∅ ,□□) 6

(□□□ ,∅) (□□ ,□) (□ ,□□) (∅ ,□□□) 20

The dimension of FCn,2 is then easily calculated:

(3-13) dim(FCn,2) =

n∑
i=0

(
n
i

)2

=

(
2n
n

)
.

An R-basis of Cn,2. Now we produce an R-basis of Cn,2 in terms of signed permu-
tations, and also explicitly in terms of the generators.

We consider the signed permutations with the following avoiding patterns:
(±1, −2) and (±3, 2, ±1). This means that in the word b1 b2 . . . bn giving the
signed permutations (bi ∈ {±1, . . . ,±n} is the image of i), we never have:

• For i < j : bj < 0 and |bi | < |bj | (in words, a negative number bj is never
preceded by a smaller number when ignoring signs).

• For i < j < k: bj > 0 and |bi | > bj > |bk | (in words, a positive number is never
in the middle of a decreasing sequence of length 3, when ignoring signs).

We denote by Bn(1̄2̄, 12̄, 321, 3̄21, 321̄, 3̄21̄) the set of signed permutations with
these avoiding patterns. These elements are called fully commutative top elements
in [28]. For example, 32̄451̄ is in this set for n = 5, while 32̄5̄41 is not for three
reasons: the subsequences 35̄, 2̄5̄ and 5̄41.

In terms of the standard basis elements (2-6), it is proved in [28, Corollary 5.6]
that the set gω with ω ∈ Bn(1̄2̄, 12̄, 321, 3̄21, 321̄, 3̄21̄) corresponds to all elements
of the form

(3-14) [n1, m1][n2, m2] . . . [nr , mr ],

with
{

0 ≤ n1 < n2 < · · · < nr ≤ n − 1 and mi ≤ ni ,

0 = m1 = · · · = ms < ms+1 < · · · < mr .

The cardinality of the set Bn(1̄2̄, 12̄, 321, 3̄21, 321̄, 3̄21̄) has been calculated in [28,
Proposition 5.9] or [19, Appendix B], and it is found that

(3-15) |Bn(1̄2̄, 12̄, 321, 3̄21, 321̄, 3̄21̄)| =

(
2n
n

)
.
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Remark 3.6. An alternative description of Bn(1̄2̄, 12̄, 321, 3̄21, 321̄, 3̄21̄) is as fol-
lows. A signed permutation is in particular a permutation of {−n, . . . ,−1, 1, . . . , n}.
For these permutations on 2n elements, there is the usual meaning of being
321-avoiding (no strictly decreasing subsequence of length 3 in the sequence
of images b−n . . . b−1 b1 . . . bn). We leave to the reader to check that the set
Bn(1̄2̄, 12̄, 321, 3̄21, 321̄, 3̄21̄) coincides with the set of signed permutations which
are 321-avoiding as permutations of {−n, . . . ,−1, 1, . . . , n}. See [9] for a proof
that this latter set is indeed of cardinal

(2n
n

)
.

Theorem 3.7. The algebra Cn,2 is free over R with basis consisting of elements
in (3-14), that is,

(3-16) {gω | ω ∈ Bn(1̄2̄, 12̄, 321, 3̄21, 321̄, 3̄21̄)}.

One can replace each generator gi by ei in the expressions in (3-14) and this
clearly also gives a basis of Cn,2. This basis can be found in [19, Appendix B].

Proof. We proceed similarly to the proof of Theorem 2.6. All signed permutations
ω ∈ Bn with length ℓ(ω) < 3 avoid the patterns in (3-16). It is shown in [28]
(see Theorem 4.1 and Corollary 5.6) that an element ω which does not avoid the
patterns of (3-16) contains in a reduced expression s1 s0 s1 or si si+1 si for i ≥ 1.
This means that the defining relations (3-4) and (3-5) can be used to express gω

in terms of elements of smaller length. Using induction on the length, we can
therefore conclude that (3-16) is a spanning set for Cn,2 over R. The rest follows by
comparing the cardinality (3-15) with the dimension (3-13) of FCn,2. □

3C. Quasiidempotents in the one-boundary Temperley–Lieb algebra Cn,2. Let

n ≥ 2. Among the four central quasiidempotents of Hα1,α2,n , the two E (−q−1,αi )
n are

equal to 0 in Cn,2. The one with α2 was cancelled to define An , and the one with α1

was cancelled to define Cn,2. So only the following two remain:

E (q,α1)
n , E (q,α2)

n .

It turns out that the expression of these two remaining quasiidempotents in Cn,2

simplifies compared to their original definition in Hα1,α2,n and a global factor
appears, as shown in the following result. Note that the following result was already
true in An only for E (q,α2)

n (Proposition 2.8). So the novelty here is that it becomes
also true for E (q,α1)

n in Cn,2. Below, we use again the notation modulo 2 for the
indices of αb.

Proposition 3.8. Let n ≥ 2 and b ∈ {1, 2}. In Cn,2 we have

(3-17) E (q,αb)
n = q

1
2 (n(n−1))

[n]q ! Ẽ (q,αb)
n ,
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where the renormalised element is given recursively by

(3-18) Ẽ (q,αb)
n = Ẽ (q,αb)

n−1

(
(1 − q2)(1 + qgn−1 + · · · + qn−2gn−1 . . . g2)

+ qn−1gn−1 . . . g1(1 − α−1
b+1 g0)

)
,

with the convention that Ẽ (q,αb)

1 = E (q,αb)

1 = (1 − α−1
b+1 g0).

Proof. The case n = 2 is easily verified by a direct calculation in C2,2. Now suppose
that the formula (3-17) is true for some n ≥ 2. To show that it is true for n + 1,
one can use the recurrence relation (2-10) for E (q,αb)

n+1 in Hα1,α2,n+1 and then replace
g1 g0 g1 using the defining relation (3-4) of Cn+1,2. With the help of the property
E (q,αb)

n g0 = αb E (q,αb)
n , the result simplifies to

E (q,αb)

n+1 = E (q,αb)
n

(
1+qgn +· · ·

+qn−1gn . . . g2 −qn+3gn . . . g2(1+qg2 +· · ·+qn−1g2 . . . gn)

+qngn . . . g1(1+q2
+q3g2 +· · ·+qn+1g2 . . . gn)(1−α−1

b+1 g0)
)
.

The remaining terms can be simplified using the Hecke relation (2-4), the braid
relations (2-1) and (2-3), and the property E (q,αb)

n gi = q E (q,αb)
n for i = 1, . . . , n −1

to arrive at

(3-19) E (q,αb)

n+1 = E (q,αb)
n qn

[n + 1]q
(
(1 − q2)(1 + qgn + · · · + qn−1gn . . . g2)

+ qngn . . . g1(1 − α−1
b+1 g0)

)
.

The proof is completed by using the induction hypothesis. □

4. The fused Hecke algebra

Let k ≥ 1. We briefly recall the definition of the fused Hecke algebra Hk,n in
the particular case where only the k first strands are fused, and refer to [6; 7; 23]
for more details. The fused Hecke algebra Hk,n is defined for a nonzero complex
number q satisfying

(4-1) q2i
̸= 1, i = 1, . . . , k,

since denominators of the form q2i
− 1, with i = 1, . . . , k, appear in its definition.

Equivalently, we will consider Hk,n to be defined over the ring generated by C[q±1
]

and (q2i
− 1)−1 for i = 1, . . . , k:

(4-2) C(k)
[q±1

] = C[q±1, (q2
− 1)−1 . . . (q2k

− 1)−1
].

Remark 4.1. The fused Hecke algebra can also be defined for q =±1 (and is called
the algebra of fused permutations in [7]), but we will not consider this possibility
here, since this would require to replace from the beginning the algebra Hα1,α2,n of
Section 2 by a different algebra.
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4A. Definition of Hk,n. Let n ≥ 0. We denote Hk+n the Hecke algebra associated
to the symmetric group Sk+n , with generators σi , i = 1, . . . , k+n−1. Its definition
was given at the end of Section 2A, in terms of generators gi ’s, but we change the
names of the generators to avoid any confusion. We define it over C(k)

[q±1
].

The standard basis elements of Hk+n are denoted σω, where ω ∈ Sk+n . Recall
that σω = σi1 . . . σil if ω = si1 . . . sil is a reduced expression in terms of the adjacent
transpositions si = (i, i + 1).

The (normalised) q-symmetriser of the algebra Hk is

(4-3) Pk =

∑
ω∈Sk

qℓ(ω)σω∑
ω∈Sk

q2ℓ(ω)
=

q−k(k−1)/2

[k]q !

∑
ω∈Sk

qℓ(ω)σω,

and is well defined over the ring C(k)
[q±1

], see (4-2). We see the q-symmetriser Pk

as an element of Hk+n through the natural embedding of Sk in Sk+n , where Sk

acts on the first k letters.
The q-symmetriser is a primitive central idempotent of Hk such that we can

write Pk σi = σi Pk = q Pk for i = 1, . . . , k − 1 and Pk Pi = Pi Pk = Pk for all i ≤ k.
It satisfies the recursive formula

(4-4) qk−1
[k]q Pk = Pk−1(1+qσk−1+q2 σk−1 σk−2+· · ·+qk−1 σk−1 σk−2 . . . σ1).

Definition 4.2. The fused Hecke algebra Hk,n is the algebra of the form Pk Hk+n Pk .

A basis of the algebra Hk,n is indexed by the double cosets Sk\Sk+n/Sk of the
subgroup Sk in Sk+n . In each of these cosets, there is a unique representative of
minimal length (see [11]), and we will identify the set of double cosetsSk\Sk+n/Sk

with the set of minimal-length representatives. The standard basis of Hk,n is

{Pk σω Pk | ω ∈ Sk\Sk+n/Sk}.

The dimension of the algebra Hk,n is the number of double cosets in Sk\Sk+n/Sk ,
or of what were called fused permutations in [7]. It is the number of ways to connect
a row of n + 1 dots to another such row, with the requirement that k edges start
and k edges arrive at the first dot of each row, while the usual rule of a single edge
at each dot applies for the other dots. It will be convenient to draw and to refer to
the first dot as an ellipse. So from now on, we have two lines each consisting of
one ellipse followed by n dots.

To count such fused permutations, one has first to choose how many edges from,
say, the top ellipse will go to a dot. This is choosing i ∈ {1, 2, . . . , min{k, n}}. Then
one needs to chose i bottom dots among n where to put these i edges and i top dots
among n which will be connected to the bottom ellipse. Finally, one can choose an
arbitrary permutation diagram between the remaining two lines of n − i dots which
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are not connected to the ellipses. It follows from this discussion that

(4-5) dim(Hk,n) =

min{k,n}∑
i=0

(n − i)!
(

n
i

)2

.

For any word x in the generators σi of Hk+n and their inverses σ−1
i , the diagram-

matic representation of the element Pk x Pk of Hk,n is obtained by drawing the usual
braid-like picture for x between two rows of k + n dots, and then fusing in one
large dot (or ellipse) the k first top dots and similarly for the k first bottom dots.
For example, we define the following elements of Hk,n:

Si := k

1

. . .

i − 1 i i + 1 i + 2

. . .

n

(4-6)

S0 := k

1 2

. . .

n

(4-7)

T := k

1 2

. . .

n

(4-8)

where i = 1, 2, . . . , n − 1, which algebraically correspond to

Si = Pk σk+i Pk = Pk σk+i = σk+i Pk,(4-9)

S0 = Pk σk σk−1 . . . σ2 σ 2
1 σ2 . . . σk−1 σk Pk,(4-10)

T = Pk σk Pk .(4-11)

We have used that σk+i commutes with Pk when i ≥ 1.

Eigenvalues of the generator S0. We will need to know the characteristic equation
satisfied by S0 in order to relate the algebra Hk,n to a cyclotomic quotient Hα1,α2,n

for the correct values of α1, α2.

Proposition 4.3. In Hk,n we have

(4-12) (S0 − q2k Pk)(S0 − q−2 Pk) = 0.

Proof. First, we show the following relation between S0 and T :

(4-13) S0 = (q − q−1) qk−1
[k]q T + Pk .

To check this, we start with the defining formula for S0 and use the quadratic relation
for σ1. We find

S0 = (q − q−1) Pk σk σk−1 . . . σ2 σ1σ2 . . . σk−1 σk Pk

+ Pk σk σk−1 . . . σ 2
2 . . . σk−1 σk Pk .
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Using the braid relations and the property of Pk , the first term becomes

(q − q−1) Pk σ1 σ2 . . . σk−1 σk σk−1 . . . σ2 σ1 Pk = (q − q−1) q2(k−1) Pk σk Pk

= (q − q−1) q2(k−1) T .

We proceed similarly with the remaining term, which ultimately gives (4-13).
The proof of the proposition is concluded by calculating the eigenvalues of T .

We have

(4-14) (T − q Pk)(T + q−k
[k]

−1
q Pk) = 0.

To check this equality, we first use the recurrence relation for Pk to write

σk Pk σk =q−k+1
[k]

−1
q Pk−1 σk(1+qσk−1+q2 σk−1 σk−2+· · ·+qk−1 σk−1 . . . σ1) σk .

Then we proceed as follows, using Pk Pk−1 = Pk , the braid relations and σi Pk = q Pk

if i < k:

T 2
= Pk σk Pk σk Pk = q−k+1

[k]
−1
q Pk(1+ (q +q3

+q5
+· · ·+q2k−1

−q−1) σk) Pk

= q−k+1
[k]

−1
q Pk + (q −q−k

[k]
−1
q )T .

This concludes the verification. □

The semisimple representation theory of Hk,n . Here we work over C(q) (or we
assume that q2 is not a root of unity of order ≤ k + n).

The algebra C(q)Hk,n is semisimple and its irreducible representations were
described in [7]. They are indexed by partitions λ ⊢ k + n such that λ1 ≥ k (that is,
the first line of λ contains at least k boxes). For example, for n = 0, there is a single
irreducible representation, indexed by a line of k boxes. The branching rules are
given by inclusion of partitions. For example, when k = 3, the beginning of the
Bratteli diagram is as follows:

1

1 1

1 2 1 1

1 3 3 1 3 2 1

n = 0

n = 1

n = 2

n = 3

We have shaded the three fixed boxes in the first row of each partition. Next to
each partition is the dimension of the corresponding irreducible representation.
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We emphasise that the dimension is not the number of standard tableaux strictly
speaking, but is the number of standard fillings of the nonshaded boxes by 1, . . . , n.

It is easy to see that, when 2 ≤ n ≤ k, there are three one-dimensional represen-
tations for Hk,n . They are given by the following partitions:

λ = (k + n) : S0 7→ q2k, Si 7→ q,(4-15)

λ = (k, 1n) : S0 7→ q−2, Si 7→ −q−1,(4-16)

λ = (k, n) : S0 7→ q−2, Si 7→ q,(4-17)

where we give the associated values of the elements S0 and Si (i ≥ 1). These are
easily obtained from the description in [7]. The case of λ = (k + n) is immediate
and the level n = 1 together with the given branching rules give all the other values
of S0. Calculating the eigenvalue of Si is also immediate from the description in [7]
since Si = Pk σk+i with σk+i commuting with Pk .

When n > k, there is only two remaining one-dimensional representations, the
one corresponding to λ = (k, n) being removed from the list (it would not make
sense for n > k).

Remark 4.4. Let n ≤ k. Anticipating a little bit, the algebra Hk,n is going to be
obtained (below) as a specialisation of the parameters α1, α2 of the algebra An .
This specialisation is semisimple over C(q), and thus we have a bijection between
the irreducible representations of C(q) Hk,n and the representations described in
Section 2:

Irr(FAn) = {V(λ,µ) | (λ, µ) ∈ Par2(n) with ℓ(µ) ≤ 1}.

The bijection maps (λ, µ) to the partition made of a first line of k + |µ| boxes,
and with the diagram of λ for the remaining lines. This is well defined since n, and
in turn |λ|, is less or equal to k.

If n > k, the specialisation of An is not semisimple anymore and the algebra Hk,n

will be obtained as a quotient of this nonsemisimple specialisation of An . Therefore
we cannot immediately identify the irreducible representations of Hk,n with a subset
of the irreducible representations of An as soon as n > k.

4B. An algebraic description of Hk,n. In this section, we use the algebra An from
Section 2 to obtain an algebraic presentation of the fused Hecke algebra Hk,n . We
are going to work with the following specialisation of the parameters α1, α2:

(4-18) α1 = q−2, α2 = q2k .

This is motivated by Proposition 4.3 since these two values are the eigenvalues of
the element S0. For these specific values, we have the following factorisation result
for one of the quasiidempotents of An , as a corollary of our results in Section 2D.
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Corollary 4.5. In Ak+1, when (α1, α2) are specialised as in (4-18), the element
E (q,α1)

k+1 factorises as
E (q,α1)

k+1 = [k + 1]q E ′(q,α1)

k+1 ,

where E ′(q,α1)

k+1 is in Ak+1 with coefficients in C[q±1
].

Proof. It is clear that E (q,α1)

k+1 − E (q,α2)

k+1 is divisible by (α1 − α2). With the given
specialisation, this means that it is divisible by q2(k+1)

−1 and thus by [k+1]q . Now
Proposition 2.8 shows that E (q,α2)

k+1 is also divisible by [k + 1]q (actually, already
over R). Thus we get the desired statement. □

This allows us to define, in the specialisation of Ak+1, the following element
with coefficients in C[q±1

]:

E ′(q,α1)

k+1 :=
1

[k + 1]q
E (q,α1)

k+1 .

Definition 4.6. The algebra A(k)
n is defined over C(k)

[q±1
] as the specialisation

of An corresponding to (4-18) with the additional defining relation if n > k:

(4-19) E ′(q,α1)

k+1 = 0.

Note that it is not clear at once if over C(q) the algebra A(k)
n is semisimple for

all n ≥ 0 since the specialisation (4-18) falls into the nonsemisimple regime (see
Remarks 2.5 and 4.4). However, note that the specialisation is semisimple if n ≤ k.
Moreover, for n >k, we have taken a quotient of the nonsemisimple specialisation, so
it may well be that we obtain again something semisimple. Actually, the algebra A(k)

n

over C(q) will turn out to be semisimple as a consequence of its isomorphism with
the fused Hecke algebra Hk,n which is known to be semisimple [7].

Remark 4.7. The additional relation when n ≥ k + 1 is the analogue in the
Hecke case of the additional relation that is needed to pass from the one-boundary
Temperley–Lieb algebra to the boundary seam algebra. We refer to [19] and [17]
where this additional relation was interpreted in terms of a quasiidempotent of the
one-boundary Temperley–Lieb algebra (see also Section 5C).

A spanning set of A(k)
n . First, we find a spanning set for A(k)

n . Consider the signed
permutations with the following avoiding patterns: 1̄2̄ and k + 1 k̄ . . . 1̄. We denote
by Bn(1̄2̄, k + 1 k̄ . . . 1̄) the subset of these signed permutations.

The first condition defining Bn(1̄2̄, k + 1 k̄ . . . 1̄) is the same as the one giving
the basis of An in Theorem 2.6. The second one adds the condition that in the
word b1 b2 . . . bn giving the signed permutations, we never have a strictly decreasing
sequence of length k + 1 of barred numbers. Both together mean that all barred
numbers appear in decreasing orders, and that at most k barred numbers are present.
So to count the number of elements in Bn(1̄2̄, k + 1 k̄ . . . 1̄), we reason as follows
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on the word b1 b2 . . . bn giving the signed permutation. We choose i numbers in
{1, . . . , n} that will be barred, with the condition that i ≤ k; then choose i positions
among n to place these barred numbers in decreasing order; and finally we choose
a permutation of the remaining n − i numbers to be placed (not barred) in the
remaining n − i positions. This gives

(4-20) |Bn(1̄2̄, k + 1 k̄ . . . 1̄)| =

min(k,n)∑
i=0

(
n
i

)2

(n − i)!.

Note that the above discussion shows the alternative description

(4-21) Bn(1̄2̄, k + 1 k̄ . . . 1̄) = Bn(1̄2̄) ∩ {ω ∈ Bn | ℓ0(ω) < k + 1}.

Let us emphasise that if n ≤k, then the set Bn(1̄2̄, k + 1 k̄ . . . 1̄) is the same as Bn(1̄2̄)

since there are no signed permutations in Bn with more than k barred numbers.

Proposition 4.8. The following set is a spanning set of A(k)
n :

(4-22) {gω | ω ∈ Bn(1̄2̄, k + 1 k̄ . . . 1̄)}.

Proof. Recall the basis {gω | ω ∈ Bn(1̄2̄)} of An from Theorem 2.6. There is a
unique basis element containing n occurrences of g0 and all the others contain
strictly less. In other words, there is a unique element ω ∈ Bn(1̄2̄) with maximal ℓ0,
which is ℓ0(w) = n. This element corresponds to the sequence n̄, n − 1, . . . , 1̄, and
the corresponding basis element is

(4-23) g0 · g1 g0 · . . . · gn−1 . . . g1 g0.

Lemma 4.9. The element (4-23) appears with coefficient (−1)n α−n
2 q(n−1)n

[n]q !

when E (q,α1)
n is expanded in the basis {gω | ω ∈ Bn(1̄2̄)} of An .

Proof. The proof is by induction on n. The statement is immediate when n = 1.
Then we use the recurrence formula for the quasiidempotent:

E (q,α1)

n+1 = E (q,α1)
n

(
1+

n∑
i=1

qn−i+1gn . . . gi −α−1
2 qngn . . . g1 g0

(
1+

n∑
i=1

q i g1 . . . gi

))
.

Using the induction hypothesis and keeping the only terms which can contribute to
the relevant coefficient, we have to study

−γn α−1
2 qng0 · g1 g0 · . . . · gn−1 . . . g1 g0 · gn . . . g1 g0

(
1 +

n∑
i=1

q i g1 . . . gi

)
,

where γn is the coefficient given by the induction hypothesis. For dealing with
the terms in the sum, note that they produce the appearance of g0 g1 g0 g1 (the
leftmost g0 is the g0 just to the left of gn). So we can use the defining relation (2-19)
of An and keep only the term not reducing the occurrences of g0. This amounts to
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simply replacing g0 g1 g0 g1 by qg0 g1 g0. Thus all g1’s in the sum are replaced by q .
Similarly, if an element gi hits the expression on the left of the parenthesis, it will
move through gn . . . g1 g0, gn−1 . . . g1 g0, . . . , becoming successively gi−1, gi−2

and so on until it becomes g1 and hits again a g0 g1 g0. The same reasoning as before
allows to replace it by q . So all generators g1, . . . , gn appearing in the parenthesis
are replaced by q and we are left with (1 + q2

+ · · · + q2n) = qn
[n + 1]q . □

The lemma implies that in the renormalised quasiidempotent E ′(q,α1)

k+1 , the coeffi-
cient in front of the element (4-23) with n = k + 1 is

(−1)k+1 α
−(k+1)
2 qk(k+1)

[k]q !,

since we have divided E (q,α1)

k+1 by [k + 1]q . This coefficient is invertible in the ring
C(k)

[q±1
].

Now we will show that every element gω with ℓ0(ω) ≥ k + 1 can be rewritten
in A(k)

n in terms of elements gω′ with ℓ0(ω
′) < k + 1. Indeed, if the number of

occurrences of g0 is at least k + 1 then write gω in the standard form (2-6) and pick
k + 1 consecutive occurrences of g0. Then using the braid relations we have

g j · gi . . . g1 g0 = gi . . . g1 g0 · g j+1 for all 0 < j < i.

This allows to find a subexpression of gω:

gi1 . . . g1 g0 · gi2 . . . g1 g0 · . . . · gik+1 . . . g1 g0, i1 < i2 · · · < ik+1.

Moving some gi ’s to the left using commutation relations, we see at once that the
element (4-23) with n = k + 1 appears. Thanks to the lemma and its consequence
stated just after, we can use the relation E ′(q,α1)

k+1 = 0 of A(k)
n to rewrite this element

in terms of gω′ with ℓ0(ω
′) < k + 1. Thus we have strictly reduced the number of

occurrences of g0, and by induction we conclude that A(k)
n is spanned by elements gω′

with ℓ0(ω
′) < k + 1.

Now if an element ω with ℓ0(ω) < k + 1 has the pattern 1̄2̄ then as shown in the
proof of Theorem 2.6 we can use the defining relation of An allowing to rewrite
g0 g1 g0 g1 to write gω in terms of gω′ with ω′

∈ Bn(1̄2̄). In doing so, note that the
0-length ℓ0 never increases since the relation we use rewrites g0 g1 g0 g1 in terms
of elements with 2 occurrences of g0 or less. □

Isomorphism theorem. We are now ready to state the main result of this section.

Theorem 4.10. For any n, an algebra isomorphism from A(k)
n to Hk,n is given by

(4-24) φ : A(k)
n → Hk,n, 1 7→ Pk, gi 7→ Si , i = 0, 1, . . . , n − 1.

Corollary 4.11. Over C(k)
[q±1

], the following set is a basis of A(k)
n and its image

by φ is a basis of Hk,n:

{gω | ω ∈ Bn(1̄2̄, k + 1 k̄ . . . 1̄)}.
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Proof. This follows from the fact that this set is a spanning set (Proposition 4.8)
with cardinality given by (4-20), which is equal to the dimension of Hk,n , and from
the isomorphism of A(k)

n with Hk,n . □

4C. Proof of Theorem 4.10.

The morphism property of φ. By definition, the projector Pk acts as the unit element
in Hk,n . We must verify that the elements Si ∈ Hk,n for i = 0, 1, . . . , n satisfy the
same defining relations (2-1)–(2-5), (2-19) and (4-19) as the elements gi ∈ A(k)

n .
Relations (2-1), (2-3) for i, j ̸= 0 and (2-4) directly follow from the definition of the
fused Hecke algebra. It is also readily apparent that (2-3) for i = 0 is verified, since
S0 and S j with j ≥ 2 are elements that each act on different strands. In diagrams,
we have (ignoring unaffected strands in the illustrations for simplicity):

(4-25)
k

1 i i + 1

k

. . . = k

1 i i + 1

. . . =

k

1 i i + 1

k

. . .

Consider now relation (2-2). We start by computing the following (again ignoring
unaffected strands):

(4-26) S1S0 S1 =

k

1 2

k

k

= k

1 2

Now, in order to show that (2-2) holds for the images, one must show that S0

commutes with S1S0 S1. This is seen using the isotopy of diagrams and the fact
that an ellipse can be replaced by a sum of braids acting on the k fused strands.
This means that the strand labelled 2, which encircles both the strand 1 and the k
fused strands, can be moved up or down around any middle ellipse and around all
encircled strands, and hence the commutativity. In diagrams, we have

(4-27)
k

1 2

k
= k

1 2

=

k

1 2

k

The quadratic relation (2-5) for g0 is preserved thanks to Proposition 4.3.
Then to show that relation (2-19) is preserved, we start with a lemma.
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Lemma 4.12. For k any positive integer, the following relations hold:

T S1T S1 − qT S1T = q1−k
[k]

−1
q (S1T − q−1S1T S1),(4-28)

S1T S1T − qT S1T = q1−k
[k]

−1
q (T S1 − q−1S1T S1).(4-29)

Proof. Similarly as has been done before in this section, one can use the algebraic
expressions of T and S1, the properties of the projector Pk as well as the braid
relations to show that

(4-30) T S1T = Pk σk σk+1 Pk σk Pk

= q1−k
[k]

−1
q (S1T S1 + qk−1

[k − 1]q Pk σk σk−1 σk+1 σk Pk).

Multiplying the previous equation by S1 on the right, and then using the Hecke
relation and braid relations, it is found that

(4-31) T S1T S1

= q1−k
[k]

−1
q

(
(q − q−1)S1T S1 + S1T + qk

[k − 1]q Pk σk σk−1 σk+1 σk Pk
)
.

So, combining the two previous results, relation (4-28) is found. To obtain (4-29),
multiply by S1 on the left instead. □

One can now use (4-13) to write equation (4-28) in terms of S0, which gives

(4-32) S0 S1S0 S1

= −q−2 Pk + q−3S1 + S0 − q−1(S0S1 + S1S0) + q−2S1S0 S1 + q S0 S1S0.

The previous relation corresponds to (2-19) with parameters α1 and α2 as in (4-18).
Finally, when n > k, we must show that the additional relation (4-19) is satisfied

in Hk,n . If E ′(q,α1)

k+1 were nonzero, this would imply that this element would also
be nonzero in the algebra Hk,n extended over C(q). This in turn would imply the
existence of a one-dimensional representation S0 7→ q−2 and Si 7→ q, i ≥ 1. We
already discussed the nonexistence of such a one-dimensional representation around
equations (4-15)–(4-17).

Surjectivity of φ. For i = 1, 2, . . . , min{k, n}, we define the element Ui ∈ Hk,n

which consists of the diagram where the i last strands of the top ellipse go out to
the i first bottom circles (without crossing each other), and similarly for the strands
of the bottom ellipse. It is illustrated as

(4-33) Ui := . . .

i + 1

. . .

n1 i − 1 i

, i = 1, 2, . . . , min{k, n}.
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Here it is understood that there are k − i straight strands in the gray zone. If we
denote

(4-34) σk,i := σk σk+1 . . . σk+i−1,

then the algebraic expression of the element Ui is given by

(4-35) Ui = Pk σk,i σk−1,i . . . σk−i+1,i Pk .

The elements Pk , Ui for i = 1, 2, . . . , min{k, n} and Si for i = 1, 2, . . . , n − 1
generate the fused Hecke algebra Hk,n . Indeed, a basis for Hk,n consists of the set
of fused braid diagrams corresponding to fused permutations, which were described
when counting the dimension (4-5) of Hk,n . A generic fused braid diagram can be
obtained by multiplying the element Ui on the left and on the right by elements S j

for j = 1, . . . , n − 1.
We are now ready to prove that the map φ is surjective. It suffices to show that

the generators of Hk,n belong to the image of φ. We already know that Pk and Si

for i = 1, . . . , n − 1 belong to the image by definition of the map φ. We will show
that it is also the case for the elements Ui by induction on i .

For i = 1, we have U1 = T , which belongs to the image because of (4-13).
Suppose now that Ui belongs to the image for some integer 1 ≤ i < min{k, n}.
Then, the following element of Hk,n also belongs to the image of φ:

(4-36) T S1S2 . . . Si Ui =

1 i − 1 i i + 1

. . .

. . .

i + 2 n

. . .

Using the algebraic expressions (4-11), (4-9) and (4-35) as well as the properties of
the projector Pk , we can write

(4-37) T S1S2 . . . Si Ui = Pk σk,i+1 Pk σk,i σk−1,i . . . σk−i+1,i Pk .

Using now the property (4-4) for the middle projector, we get

T S1S2 . . . Si Ui

= q1−k
[k]

−1
q

k∑
m=1

qk−m Pk σk,i+1(σk−1 σk−2 . . . σm) σk,i σk−1,i . . . σk−i+1,i Pk,

where the interior of the parenthesis in the case m = k is understood to be 1.
Separating the previous sum in two at m = k − i , and absorbing braid generators in
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the right-most projector Pk for the terms with m < k − i , we find

(4-38) T S1S2 . . . Si Ui

= [k]
−1
q [k − i]q Pk σk,i+1(σk−1 σk−2 . . . σk−i ) σk,i σk−1,i . . . σk−i+1,i Pk

+ q[k]
−1
q

k∑
m=k−i+1

q−m Pk σk,i+1(σk−1 σk−2 . . . σm)

· σk,i σk−1,i . . . σk−i+1,i Pk .

All terms in the sum of the previous equation do not act on the k−i first fused strands.
Therefore, these terms correspond to diagrams where only the i last fused strands go
out of the top and bottom ellipses, and they can be obtained from a multiplication of
the diagram Ui with diagrams S j . Hence, by the induction hypothesis, they belong
to the image of φ. Since we have supposed that i < k and since q2m

−1 is invertible
for m = 1, . . . , k, the first term in (4-38) is, up to an invertible factor:

(4-39) Pk σk,i+1 σk−1 σk,i σk−2σk−1,i . . . σk−iσk−i+1,i Pk

= Pk σk,i+1 σk−1,i+1 σk−2,i+1 . . . σk−i,i+1 Pk = Ui+1.

Therefore, the element Ui+1 belongs to the image of φ. By induction, we conclude
that all the elements Ui for i = 1, 2, . . . min{k, n} belong to the image.

Injectivity of φ. At this point, we have shown that φ : A(k)
n → Hk,n is a surjective

morphism. By comparing the cardinality (4-20) of the spanning set (4-22) for A(k)
n

with the dimension (4-5) of Hk,n , we deduce that dim(A(k)
n ) ≤ dim(Hk,n). Hence

both algebras have the same dimension and φ is an isomorphism.

4D. Towards a definition of A(k)
n over C[q±1]. The fused Hecke algebra Hk,n is

not directly defined over C[q±1
]. Nevertheless, the presentation by generators and

relations of Definition 4.6 could be taken as it is over C[q±1
]. However, note that

the resulting algebra would then not be free over C[q±1
] with the correct dimension,

that is, Corollary 4.11 would not be true over C[q±1
] since we used that [k]q ! is

invertible in C(k)
[q±1

] to prove Proposition 4.8.
So we believe that Definition 4.6 is not the correct one to take over C[q±1

]. The
key to this problem is the following conjectural result.

Conjecture 4.13. In Ak+1, when (α1, α2) are specialised to (q−2, q2k), the element
E (q,α1)

k+1 factorises as
(4-40) E (q,α1)

k+1 = [k + 1]q ! Ẽ (q,α1)

k+1 ,

where Ẽ (q,α1)

k+1 is in Ak+1 with coefficients in C[q±1
].

To support this conjecture, we have checked it explicitly for small values of k.
Note moreover that it generalises Corollary 4.5 which already identified the factor
[k + 1]q (but not the full q-factorial). Finally, we are able to prove this statement in
the quotient Cn,2 of An (see Section 5C).



110 LOÏC POULAIN D’ANDECY AND MERI ZAIMI

Just for this subsection, we are going to assume that this conjecture is true,
thereby allowing to define, when α1, α2 are specialised as before, an element
Ẽ (q,α1)

k+1 in An with coefficients in C[q±1
]. Now the correct definition over C[q±1

]

of the algebra A(k)
n that we promote is:

Definition 4.14. The algebra A(k)
n is the specialisation over C[q±1

] of An corre-
sponding to (α1, α2) = (q−2, q2k) with the additional defining relation if n > k:

(4-41) Ẽ (q,α1)

k+1 = 0.

Now, we can prove the analogue of Corollary 4.11.

Proposition 4.15. If Conjecture 4.13 holds, the algebra A(k)
n is free over C[q±1

]

with basis
{gω | ω ∈ Bn(1̄2̄, k + 1 k̄ . . . 1̄)}.

Proof. First the above set is now a spanning set over C[q±1
]. Indeed, following the

proof of Proposition 4.8, we see that we have now removed all factors in front of
the element in Ak+1 that we need to rewrite using Ẽ (q,α1)

k+1 = 0. So the same proof
works now over C[q±1

]. The freeness follows immediately from the already proved
isomorphism with Hk,n over the field of fractions C(q). □

5. Centralisers of Uq(glN) and the boundary seam algebra (N = 2)

Let N > 1 and let k > 0. In this final section, we combine the preceding sections to
complete the following square by defining the algebras C(k)

n,N :

An A(k)
n

Cn,N C(k)
n,N

and we show their connections with the centralisers of Uq(glN ) as discussed in the
introduction. We then study in details the case N = 2 to show that we have finally
recovered the so-called boundary seam algebra from [19].

As in the preceding section, we are going to work, unless otherwise specified
over the ring C(k)

[q±1
].

5A. Definition of C(k)
n,N . The following definition has two equivalent forms, due to

the two paths in the square above to reach C(k)
n,N . Recall that the specialisation and

the relation (5-1) were by definition how to go from An to A(k)
n , while the relations

(5-2)–(5-3) were by definition how to go from An to Cn,N .

Definition 5.1. Over the ring C(k)
[q±1

] we have:
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• The algebra C(k)
n,N is the specialisation of Cn,N for α1 = q−2 and α2 = q2k , with

the additional defining relation if n > k:

(5-1) E ′(q,α1)

k+1 = 0.

• Equivalently, the algebra C(k)
n,N is the quotient of A(k)

n by the relations

Ẽ (−q−1,α1)
N = 0,(5-2)

3
−q−1

N+1 (g1, . . . , gN ) = 0.(5-3)

Remark 5.2. Exactly as discussed in Section 4D for the algebra A(k)
n , we emphasise

that a good definition of C(k)
n,N over C[q±1

] would require to prove that the idempotent
E (q,α1)

k+1 factorises as
E (q,α1)

k+1 = [k + 1]q ! Ẽ (q,α1)

k+1 .

Then we would define C(k)
n,N by replacing (5-1) by Ẽ (q,α1)

k+1 = 0.

5B. Isomorphism with the centralisers. We start by relating C(k)
n,N to the fused

Hecke algebra Hk,n .

Proposition 5.3. The algebra C(k)
n,N is isomorphic to the quotient of Hk,n by the

relations

Pk 3N+1(σk, . . . , σk+N−1) Pk = 0,(5-4)

Pk 3N+1(σk+1, . . . , σk+N ) Pk = 0.(5-5)

Proof. From the isomorphism of A(k)
n with Hk,n , it remains only to prove that the

quasiidempotent Ẽ (−q−1,α1)
N and the antisymmetriser 3−q−1

N+1 (g1, . . . , gN ) of A(k)
n are

mapped to the correct elements in Hk,n .
First, it is directly seen that

(5-6) φ(3N+1(g1, . . . , gN )) = 3N+1(S1, . . . , SN )

= Pk 3N+1(σk+1, . . . , σk+N ) Pk .

Then, using an explicit basis for SN+1, it is seen that

(5-7) 3N+1(σk, . . . , σk+N−1)

=3N (σk+1, . . . , σk+N−1)(1−q−1 σk +· · ·+(−q−1)N σk σk+1 . . . σk+N−1).

Therefore, by definition of the elements Si and T and by the properties of Pk we
can write

(5-8) Pk 3N+1(σk, . . . , σk+N−1) Pk

= 3N (S1, . . . , SN−1)(Pk − q−1T + · · · + (−q−1)N T S1 . . . SN−1).
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Define the element t of A(k)
n by

(5-9) g0 = (q−1α2 − qα1) t + q2α1,

where we recall that α1 = q−2 and α2 = q2k . Since q2k
− 1 is invertible, this

indeed defines the element t . Then we can rewrite the formula (2-28) obtained for
Ẽ (−q−1,α1)

N as

(5-10) Ẽ (−q−1,α1)
N

= 3N (g1, . . . , gN−1) · (α2 − q2α1)

(
1 − q−1

N−1∑
i=0

(−q−1)i tg1 . . . gi

)
.

Note that, because of (4-13) (taking into account the specialisation of α1 and α2),
the image of t under the map φ is T . Therefore, by comparing (5-8) with (5-10), it
is seen that

(5-11) φ(Ẽ (−q−1,α1)
N ) = (q2k

− 1)Pk 3N+1(σk, . . . , σk+N−1) Pk .

We conclude using again that q2k
− 1 is invertible. □

Example. Take N = 2 and let us write the first relation (5-4) in diagrams like:

(5-12) k

1 2

− q−1 k

1 2

− q−1 k

1 2

+ q−2 k

1 2

+ q−2 k

1 2

− q−3 k

1 2

= 0.

In words, we plug in the usual q-antisymmetriser (here on 3 strands) using the last
strand coming out of the ellipse as a first strand. In terms of the generators U1 := T
and S1 of Hk,2, the previous relation is

(5-13) Pk − q−1T − q−1S1 + q−2S1T + q−2T S1 − q−3S1T S1 = 0.

A similar description works for any N ≥ 2.
The second relation (5-5) is just the usual q-antisymmetriser on N + 1 strands,

which is plugged in using the N + 1 first dots (and not using at all the strands
coming out of the ellipse).

Isomorphism with the centraliser. In this paragraph only, we will work over the field
of fractions C(q). Using the notations of the introduction, consider the centraliser

Zk,n,N = EndUq (glN )(L N
(k) ⊗ (L N )⊗n).

Combining what we have obtained so far with the results from [7] on these cen-
tralisers, we get the following description of Zk,n,N .
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Corollary 5.4. For all k, n, N as before, we have that Zk,n,N is isomorphic to C(k)
n,N .

Proof. From [7, Section 5], we have that the fused Hecke algebra Hk,n surjects onto
the centraliser Zk,n,N . Moreover, it is also clear from this construction that both
relations (5-4) and (5-5) are satisfied in the image (since the expressions between the
projectors are already 0 in the usual Schur–Weyl duality with Uq(glN )). Moreover,
it was proved in [7, Section 9] that, for q2 not a root of unity or over C(q), the first
relation (5-4) is enough to generate the kernel, and this proves that the quotient
of Hk,n by (5-4) and (5-5) is isomorphic to Zk,n,N . With Proposition 5.3, this
concludes the proof. □

Remark 5.5. The proof shows that, over C(q) or for q2 not a root of unity, the
second relation (5-5) is implied by the first. This was already noticed at the level
of Cn,N , where it was shown, using the semisimple representation theory in Section 3
that relation (5-2) implies (5-3).

Remark 5.6. The representation theory of C(k)
n,N over C(q) or when q2 is not a root

of unity is described as follows. Starting with the algebra A(k)
n , which is the fused

Hecke algebra, for which the irreducible representations were indexed by partitions
λ ⊢ k +n with λ1 ≥ k, we simply remove all those which have strictly more than N
lines. This is in agreement with the known decomposition of the tensor product of
Uq(glN )-representations. We will give more details for N = 2 in Section 5C below.

5C. The boundary seam algebra (N = 2). For N = 2, using the methods and the
terminology of [7], the centraliser Zk,n,2 could be called the fused Temperley–Lieb
algebra, since it can be described by multiplying the usual Temperley–Lieb algebra
by a suitable projector on the left and on the right. In our case here, where only
the first representation is fused, the fused Temperley–Lieb algebra was introduced
in [19] and called the boundary seam algebra (see also [16; 17]). We will show
how it is recovered as the algebra C(k)

n,2.
First, recall that the algebra Cn,2 was identified in Section 3 as the one-boundary

Temperley–Lieb algebra, using the following change of generators:

(5-14) e0 := α2 − g0, ei := q − gi , i = 1, 2, . . . , n − 1.

The presentation of Cn,2 in terms of these generators was given explicitly in equations
(3-8)–(3-12). Here we complete the presentation of C(k)

n,2 in terms of the same
generators.

Proposition 5.7. The algebra C(k)
n,2 is the specialisation of the one-boundary Tem-

perley–Lieb algebra Cn,2 corresponding to α1 =q−2 and α2 =q2k , and the additional
relation, if n ≥ k + 1:

(5-15) u1 u2 . . . uk+1 = 0,
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where, for m = 0, . . . , k,

um+1 :=

m−1∑
r=0

(−q)r
(

1−q2(m−r) α1

α2

)
em em−1 . . . em+1−r +(−q)mα−1

2 em em−1 . . . e0.

Proof. According to Definition 5.1, it remains to describe, if n ≥ k+1, the following
relation of C(k)

n,2 in terms of the generators e0, e1, . . . , en−1:

(5-16)
1

[k + 1]q
E (q,α1)

k+1 = 0.

We have done most of the work in Proposition 3.8 which gives that, for any 1≤m <n,
we have in Cn,2:

(5-17) E (q,α1)

m+1 = q
1
2 (m(m+1))

[m + 1]q ! Ẽ (q,α1)

m+1 ,

where Ẽ (q,α1)

m+1 is defined recursively by Ẽ (q,α1)

1 = (1 − α−1
2 g0) and

(5-18) Ẽ (q,α1)

m+1 = Ẽ (q,α1)
m

(
(1 − q2)(1 + qgm + · · · + qm−1gm . . . g2)

+ qm gm . . . g1(1 − α−1
2 g0)

)
.

We rewrite this recursive definition using (5-14) together with the properties
Ẽ (q,α1)

m e0 = (α2−α1)Ẽ (q,α1)
m and Ẽ (q,α1)

m ei = 0 for 1 ≤ i ≤ m−1. As an intermediate
step, it is found that, for 1 ≤ i ≤ m + 1,

(5-19) Ẽ (q,α1)
m qm+1−i (q − em)(q − em−1) . . . (q − ei )

= Ẽ (q,α1)
m

m+1−i∑
r=0

(−1)r q2(m+1−i)−r em em−1 . . . em+1−r .

Using (5-19) in (5-18), and rearranging sums, the result Ẽ (q,α1)

m+1 = Ẽ (q,α1)
m um+1 is

achieved with um+1 as in the proposition. Now up to some unnecessary invertible
power of q , the relation reads

[k]q ! Ẽ (q,α1)

k+1 = [k]q ! u1 u2 . . . uk+1 = 0.

The claim follows from the invertibility of [k]q ! in the ring C(k)
[q±1

]. □

The elements um and Ẽ (q,α1)
m appear in [17] (up to global factors of α2 and −q−1)

as generalised Wenzl–Jones factors and generalised Wenzl–Jones projectors respec-
tively for the one-boundary Temperley–Lieb algebra. Now, using the preceding
proposition, it can be directly verified that the following mappings give an antiiso-
morphism from C(k)

n,2 to the boundary seam algebra (with the notations of [17])

(5-20) e0 7→ qk−1(q − q−1) en, ei 7→ en−i , 1 ≤ i ≤ n − 1.
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Let us also mention that a recursive formula, similar to (2-17) in Hα1,α2,n , holds
for Ẽ (q,α1)

m when q is not a root of unity (or over C(q)) in a specialisation such that∏m−2
r=0

(
1 − q2r α1

α2

)
̸= 0:

(5-21) Ẽ (q,α1)
m =

(
1 − q2(m−1) α1

α2

)
Ẽ (q,α1)

m−1 − q
Ẽ (q,α1)

m−1 em−1 Ẽ (q,α1)

m−1∏m−3
r=0

(
1 − q2r α1

α2

) .

Semisimple representation theory. Here we work over C(q) or we assume that q2

is not a root of unity. The representation theory of the boundary seam algebra
C(k)

n,2 is easily obtained from the one of the fused Hecke algebra A(k)
n . Recall from

Section 4 that the irreducible representations of A(k)
n were indexed by partitions

λ ⊢ k +n with λ1 ≥ k. The quotient giving the boundary seam algebra C(k)
n,2 consists

simply in removing all those which have strictly more than two lines.
The beginning of the Bratteli diagram, for example, for k = 3, of the algebras

C(k)
n,2 is as follows:

1

1 1

1 2 1

1 3 3 1

1 4 6 4

n = 0

n = 1

n = 2

n = 3

n = 4

We can see the special behaviour starting at the value n = k +1 = 4. The irreducible
representations, at level n, are indexed by a positive integer h, which is the number
of boxes added in the second row, satisfying 0 ≤ 2h ≤ k + n. It is easy to see
recursively from the branching graph that the dimension of the corresponding
irreducible representation is (

n
h

)
−

(
n

h − k − 1

)
,

with the understanding that
( n

h−k−1

)
= 0 if h ≤ k. Note that comparing with [19],

our h is their 1
2(n + k − d). The dimension of the algebra is

(5-22) dim C (k)
n,2 =

(
2n
n

)
−

(
2n

n − k − 1

)
.
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Definition over C[q±1
]. We have originally defined C(k)

n,2 over C(k)
[q±1

]. The pre-
sentation put forward in Proposition 5.7 can be used without problem over C[q±1

].
In our notation, this means to define the algebra C(k)

n,2 over C[q±1
] as follows.

Definition 5.8. Over C[q±1
], the algebra C(k)

n,2 is the specialisation of Cn,2 for
α1 = q−2 and α2 = q2k , with the additional defining relation if n > k:

(5-23) Ẽ (q,α1)

k+1 = 0,

where the renormalised quasiidempotent Ẽ (q,α1)

k+1 was obtained in Proposition 3.8
and recalled in (5-18).

With this definition, we can prove that we get an algebra which is free over
C[q±1

] with dimension equal to (5-22). In fact, we may check that the following
set of elements is a C[q±1

]-basis:

[n1, m1][n2, m2] . . . [nr , mr ],

with
{

0 ≤ n1 < n2 < · · · < nr ≤ n − 1 and mi ≤ ni ,

0 = m1 = · · · = ms < ms+1 < · · · < mr , s < k + 1.

Without the condition s < k + 1 in the second line, we already know that this set
is a spanning set for Cn,2, see (3-14). The relation Ẽ (q,α1)

k+1 = 0 further allows to
rewrite any element [n1, 0][n2, 0] . . . [nk+1, 0] in terms of elements with fewer g0

(smaller s). This works over C[q±1
] since the element we need to rewrite appears

with an invertible coefficient in Ẽ (q,α1)

k+1 . We refer to the proof of Proposition 4.8 for
more details. The above set is of the correct cardinality [19, Appendix B], that is,
equation (5-22), and thus is a basis over C[q±1

].

Remark 5.9. If we specialise q to a complex number such that q2i
̸= 1 for

i =1, . . . , k, of course Definition 5.8 recovers Definition 5.1. But now Definition 5.8
allows to consider the cases where q2i

= 1 for some i = 1, . . . , k. We note that we
differ here from [19] where the defining relations, when q2i

̸= 1, were modified ac-
cording to the value of q and the dimension of the algebra resultingly depended on q .
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ON THE GENERIC BEHAVIOR OF THE SPECTRAL NORM

ERMAN ÇINELI, VIKTOR L. GINZBURG AND BAŞAK Z. GÜREL

Our main result is that for any closed symplectic manifold, the spectral norm
of the iterates of a Hamiltonian diffeomorphism is locally uniformly bounded
away from zero C∞-generically.

1. Introduction

We show that for a Hamiltonian diffeomorphism ϕ of a closed symplectic mani-
fold M , the spectral norm over Q of the iterates ϕk is locally uniformly bounded
away from zero C∞-generically in ϕ, without any additional assumptions on M .

The question of the behavior of the sequence γ (ϕk) of spectral norms goes back
to the work of Polterovich [2002]. Recently, there has been renewed interest in the
problem whether and when this sequence is bounded away from zero. There are
several reasons for this question, amounting roughly speaking to the fact that one
can obtain pretty strong results on the symplectic dynamics of ϕ when the sequence
is not bounded away from zero:

(1-1) γ (ϕ) := lim inf
k→∞

γ (ϕk)= 0.

Among these are, for instance, Lagrangian Poincaré recurrence [Ginzburg and Gürel
2018; Joksimović and Seyfaddini 2023], and the variant of the strong closing lemma
from [Cineli and Seyfaddini 2022]. Simultaneously, fairly explicit criteria for this
sequence to be bounded away from zero have been established, based on the crossing
energy theorem from [Ginzburg and Gürel 2014; 2018]; see, e.g., [Cineli et al.
2022] and Theorem 3.1. Let us now provide some more context for the question.

First, note that the condition (1-1) can be interpreted as that ϕ is γ -rigid or, in
other words, a γ -approximate identity.

This notion is a particular case of a much more general concept. Namely, consider
a class of diffeomorphisms ϕ or even homeomorphisms of a manifold M , which we
assume here to be closed. For instance, this can be the class of all diffeomorphisms or
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of Hamiltonian diffeomorphisms when M is symplectic, etc. Assume that this class
is equipped with some norm ∥ · ∥, e.g., the C0- or C1-norm or the γ - or Hofer-norm
in the Hamiltonian case. A map ϕ is said to be ∥ · ∥-rigid if ϕki → id with respect
to ∥ · ∥, i.e., ∥ϕki ∥ → 0, for some sequence ki → ∞. The term “rigid” is somewhat
overused in dynamics and also frequently confused with structural stability, and in
[Ginzburg and Gürel 2019a] we proposed to call such a map ϕ a ∥ · ∥-approximate
identity, or a ∥ · ∥-a.i. for the sake of brevity. We refer the reader to, e.g., [Bramham
2015; Ginzburg and Gürel 2019a; Cineli and Seyfaddini 2022] for a further discus-
sion of approximate identities, aka rigid maps, in different contexts. Here we only
mention that Cr -a.i. is obviously C s-a.i. for any s ≤ r and, when M is aspherical or
M = CPn , a C0-a.i. is also a γ -a.i.; see [Buhovsky et al. 2021; Shelukhin 2022b].

Zeroing in on γ -a.i.’s we note that there are rather few examples of such maps.
The most dynamically interesting examples are Hamiltonian pseudorotations. This
class of maps has been extensively studied in a variety of settings by dynamical
systems methods and more recently from the perspective of symplectic topology
and Floer theory; see, for example, [Anosov and Katok 1970; Avila et al. 2020;
Bramham 2015; Fayad and Katok 2004; Ginzburg and Gürel 2018; Joksimović and
Seyfaddini 2023; Le Roux and Seyfaddini 2022].

While the official definitions of Hamiltonian pseudorotations vary, these are,
roughly speaking, Hamiltonian diffeomorphisms with a finite and minimal possible
number of periodic points (in the sense of Arnold’s conjecture); see [Ginzburg and
Gürel 2018; Shelukhin 2020; 2021]. For instance, when M = CPn this number is
n + 1. Most likely, for many symplectic manifolds this condition can be relaxed.
Namely, in all examples of Hamiltonian diffeomorphisms ϕ with finitely many peri-
odic points, all periodic points are fixed points and their number is minimal possible.
Thus ϕ is a pseudorotation. For a certain class of manifolds M , including CPn ,
this has been established rigorously under a minor nondegeneracy assumption; see
[Shelukhin 2022a] and also [Çineli et al. 2022]. In all examples to date of Hamil-
tonian diffeomorphisms ϕ with finitely many periodic points, ϕ is nondegenerate.

In general, the relation between pseudorotations and γ -a.i.’s is not obvious. All
known Hamiltonian pseudorotations are γ -a.i.’s and for M = CPn this is proved in
[Ginzburg and Gürel 2018] by using the results from [Ginzburg and Gürel 2009a].
The converse is not true: for instance any element ϕ of a Hamiltonian torus action
is a γ -a.i., although ϕ need not have isolated fixed points. (It is conceivable that
for a strongly nondegenerate γ -a.i., the periodic points are necessarily the fixed
points: in the obvious notation, Per(ϕ)= Fix(ϕ). However, a map ϕ with the latter
property need not be a γ -a.i. For instance, γ (ϕk) can grow linearly for such a map;
see Remark 4.10.)

Most closed symplectic manifolds (M, ω) admit no pseudorotations, that is,
every Hamiltonian diffeomorphism of M has infinitely many periodic points. This
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statement (for a specific manifold M) is usually referred to as the Conley conjecture.
To date, the Conley conjecture has been shown to hold unless there exists A ∈π2(M)
such that ⟨[ω], A⟩> 0 and ⟨c1(T M), A⟩> 0; see [Çineli 2018; Ginzburg and Gürel
2015; 2019b]. In particular, the Conley conjecture holds when M is symplectically
aspherical or negative monotone. For a broad class of closed symplectic manifolds,
ϕ has infinitely many periodic points C∞-generically; see [Ginzburg and Gürel
2009b; Sugimoto 2021] and Section 4B.

Although the classes of Hamiltonian pseudorotations and γ -a.i.’s are certainly
different, there is a clear parallel between these two classes and their existence
conditions on M .

Conjecture. Let M be closed symplectic manifold.

(i) The manifold M admits no γ -a.i.’s unless there exists A ∈ π2(M) such that
⟨[ω], A⟩> 0 and ⟨c1(T M), A⟩> 0.

(ii) A Hamiltonian diffeomorphism ϕ : CPn
→ CPn is a γ -a.i. if and only if all

iterates ϕk are Morse–Bott nondegenerate and dim H∗(Fix(ϕk); F)= n + 1 for
all k ∈ N and any ground field F.

This conjecture is supported by some evidence. For instance, M does not admit
periodic Hamiltonian diffeomorphisms ϕ (i.e., ϕN

= id for some N > 1) when M
satisfies the conditions of (i); see [Atallah and Shelukhin 2023; Polterovich 2002].
In addition, Fix(ϕk) is Morse–Bott nondegenerate whenever ϕ is periodic. This is a
consequence of the equivariant Darboux lemma; see, e.g., [Guillemin and Sternberg
1984, Theorem 22.2]. Aspherical or negative monotone symplectic manifolds do
not admit C1-a.i.’s; see [Polterovich 2002] and [Sugimoto 2023]. Further results
along these lines can be found in [Atallah and Shelukhin 2023]. In [Cineli et al.
2022] both assertions are proved in dimension two for strongly nondegenerate
Hamiltonian diffeomorphisms; see Corollary 3.4. In the setting of (i) the sequence
of the spectral norms γ (ϕ p) over Z/pZ, where p ranges through all primes, is
separated away from zero [Shelukhin 2023]. As we have already mentioned the “if”
part of (ii) is established in [Ginzburg and Gürel 2018] without any nondegeneracy
assumption when |Per(ϕ)| = n + 1. With this in mind, part (ii) of the conjecture
asserts, in particular, that every pseudorotation of CPn is strongly nondegenerate.

Remark 1.1. While part (ii) of the conjecture might extend to some other ambient
symplectic manifolds M , some restriction on M is necessary. For instance, the
torus T2n equipped with an irrational symplectic structure admits a Hamiltonian
diffeomorphism ϕ such that the conditions of (ii) are satisfied but γ (ϕk)→ ∞; see
[Zehnder 1987] and also [Cineli 2023] for further constructions of this type with
complicated dynamics.
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In a similar vein, the main result of this paper can be thought of as the γ -a.i.
analogue of the aforementioned theorem on the C∞-generic Conley conjecture,
although at this moment the proof of the latter requires some additional conditions
on the underlying manifold; see Section 4B.

Remark 1.2. Overall, rather little is known about the behavior of the γ -norm under
iterations. For a certain class of manifolds, including CPn , the spectral norm is
a priori bounded from above [Entov and Polterovich 2003; Kislev and Shelukhin
2021]. However, such manifolds appear to be rare; see Remark 4.10. Also, the
sequence γ (ϕk) is bounded from above when suppϕ is displaceable in M , but not
much beyond these facts and the results of this paper is known about the behavior
of this sequence. For instance, when M is a surface of positive genus, it is not
known if γ (ϕk) necessarily grows linearly or can be bounded from above when ϕ
is strongly nondegenerate or, at the opposite extreme, autonomous and suppϕ is
not displaceable.

Remark 1.3. It is worth keeping in mind that in contrast with some other dynamics
concepts, in most if not all settings a.i.’s are sensitive to reparametrization. To be
more specific, let an a.i. ϕ be the time-one map of the flow of a vector field X and
let ψ be the time-one map of f X for some function f > 0. Then, in general, ψ
need not be an a.i. For instance, assume that X is a solid rotation vector field on
M = S2 and f is not constant. Then one can show that ψ is not a C0-a.i., and
hence not a Cr -a.i. for any r ≥ 0. Apparently, the same is true for the γ -norm, but
this fact is yet to be proved rigorously; cf. item (ii) of the Conjecture.

2. Preliminaries and notation

We very briefly set our notation and conventions which are quite standard and
spelled out in more detail in, for example, [Cineli and Seyfaddini 2022]. The reader
may find it convenient to jump to Section 3 and consult this section only as needed.

Throughout the paper, all manifolds, functions and maps are assumed to be
C∞-smooth unless specifically stated otherwise.

Let (M2n, ω) be a closed symplectic manifold. A Hamiltonian diffeomorphism
ϕ=ϕH =ϕ1

H is the time-one map of the time-dependent flow ϕt
=ϕt

H of a 1-periodic
in time Hamiltonian H : S1

× M → R, where S1
= R/Z. We set Ht = H(t, · ). The

Hamiltonian vector field X H of H is defined by iX Hω = −d H . We say that ϕ is
nondegenerate if all fixed points of ϕ are nondegenerate, and strongly nondegenerate
if all periodic points of ϕ are nondegenerate. We will denote by Ham(M, ω) the
group of Hamiltonian diffeomorphisms of (M, ω).

Recall that the spectral norm, also known as the γ -norm, of ϕ is defined as

γ (ϕ)= inf
H

{c(H)+ c(H inv) | ϕ = ϕH },
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where H inv(x)= −Ht(ϕ
t
H (x)) is the Hamiltonian generating the flow (ϕt

H )
−1 and

c = c[M] is the spectral invariant associated with the fundamental class [M] ∈

H2n(M). (Here we can take as H inv any Hamiltonian generating this flow with the
same time/space average as H .) The infimum is taken over all 1-periodic in time
Hamiltonians H generating ϕ, i.e., ϕ = ϕH . The Hofer norm of ϕ is defined as

∥ϕ∥H = inf
H

∫
S1
(max

M
Ht − min

M
Ht) dt,

where the infimum is again taken over all 1-periodic in time Hamiltonians H
generating ϕ. Then

γ (ϕ)≤ ∥ϕ∥H .

We refer the reader to, e.g., [Oh 2005a; 2005b; Schwarz 2000; Viterbo 1992] and
also, e.g., [Cineli and Seyfaddini 2022; Entov and Polterovich 2003; Ginzburg and
Gürel 2009a; Kislev and Shelukhin 2021; Polterovich 2001; Usher 2008; 2011],
for the original treatment and a detailed discussion of spectral invariants and these
norms.

Here we are interested in the behavior of γ (ϕk), k ∈ N, and in particular in the
question when this sequence is bounded away from zero. As in the introduction, set

γ (ϕ)= lim inf
k→∞

γ (ϕk) ∈ [0, ∞].

These definitions implicitly depend on the construction of the filtered Floer
homology HFa(H) for the action window (−∞, a). In this paper we do not in
general assume that the class [ω] is rational or that ϕ is nondegenerate. Hence, we
feel, a word is due on the specifics of the definitions.

Assume first that H is nondegenerate. Then we utilize Pardon’s VFC package
[2016], to define the filtered Floer homology HFa(H) over Q and spectral invariants;
see, for example, [Cineli and Seyfaddini 2022; Usher 2008]. To be more specific,
HFa(H) is the homology of the subcomplex CFa(H) of the Floer complex CF(H)
generated by Floer chains with action below a. Virtually any choice of the Novikov
field can be used here. We take the standard Novikov field

3=
{ ∑

A∈0

bA A | bA ∈ Q and #{bA ̸= 0, ω(A) > c}<∞ for all c ∈ R
}
,

where 0 = π2(M)/(ker[ω] ∩ ker c1(T M)). Alternatively, we could have used the
universal Novikov field. Then, for any α ∈ H∗(M)⊗3, the spectral invariant cα(H)
is defined as

(2-1) cα(H)= inf{a ∈ R | α ∈ im ιa},

where

(2-2) ιa : HFa(H)→ HF(H)∼= H∗(M)⊗3
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is the natural inclusion-induced map and the identification on the right is the PSS-
isomorphism. We note that all spectral invariants necessarily belong to the action
spectrum S(H) of H when H is nondegenerate [Usher 2008].

When H is not necessarily nondegenerate, we set

cα(H) := inf
H̃≥H

cα(H̃)= sup
H̃≤H

cα(H̃)= lim
H̃→H

cα(H̃),

where H̃ is nondegenerate and the convergence H̃ → H is taken to be C0. The
second and third equalities and the existence of the limit follow from that cα is
monotone and cα(H̃ + k)= cα(H̃)+ k for any constant function k. Alternatively,
we could have set

HFa(H)= lim
−−→

H̃≥H

HFa(H̃),

and then used (2-1) and (2-2) to get the same result.
Defined in this way, spectral invariants cα can be easily shown to have all

the standard properties: cα(H) is monotone and Lipschitz continuous in H with
Lipschitz constant one; cα(H + k) = cα(H)+ k for any constant function k; etc.
(We refer the reader to, e.g., [Cineli and Seyfaddini 2022] for more details.) The
exception is that cα(H) has been proven to be spectral, i.e., an element of S(H),
only when [ω] is rational or H is nondegenerate; see [Entov and Polterovich 2003;
Oh 2005a; Usher 2008].

3. Main results

The key to bounding γ from below is the following fact connecting the behavior of
γ (ϕk) with the dynamics of ϕ and, in particular, its hyperbolic points.

Theorem 3.1. Let ϕ : M → M be a Hamiltonian diffeomorphism of a closed
symplectic manifold M with more than dim H∗(M) hyperbolic periodic points. Then
γ (ϕ) > 0. Also, γ is locally uniformly bounded away from zero near ϕ, i.e., there
exists δ > 0, possibly depending on ϕ, and a sufficiently C∞-small neighborhood U
of ϕ such that

γ (ψ) > δ for all ψ ∈ U .

Without the “Also” part, this theorem was originally proved in [Cineli et al. 2022].
We give a complete proof in Section 4. Let us emphasize that in Theorem 3.1 we
impose no nondegeneracy requirements on ϕ, and also that the property of ϕ to have
more than dim H∗(M) hyperbolic periodic points, or more than any fixed number
of hyperbolic periodic points, is open in C1-topology.

Example 3.2. Assume that M is a closed surface and htop(ϕ) > 0. Then ϕ has
infinitely many hyperbolic periodic points [Katok 1980]. Hence, γ (ϕ) > 0, and
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γ (ψ)>δ for some δ>0 and allψ which are C∞-close to ϕ. Also note in connection
with Theorem 3.3 and Corollary 3.4 below that htop > 0 is a C∞-generic condition
in dimension two [Le Calvez and Sambarino 2022].

The requirement of the theorem that the number of hyperbolic points is greater
than dim H∗(M) can be further relaxed by looking only at the odd/even-degree
homology of M , depending on whether n =dim M/2 is odd or even; see Remark 4.2.

The main result of the paper is the following theorem relying on Theorem 3.1
and the strong closing lemma from [Cineli and Seyfaddini 2022].

Theorem 3.3. Let M be a closed symplectic manifold. The function γ is locally
uniformly bounded away from zero on a C∞-open and dense set of Hamiltonian
diffeomorphisms ϕ : M → M , i.e., for every ϕ in this set there exists δ > 0, possibly
depending on ϕ but not on ψ , such that

γ (ψ) > δ,

whenever ψ is sufficiently C∞-close to ϕ.

We note that we do not assert here that in general the set of Hamiltonian diffeo-
morphisms ϕ with γ (ϕ) > 0 is itself C∞-open, but rather that this set contains a set
which is C∞-open and dense. Nor do we impose any restrictions on the (symplectic)
topology of M or require any of the iterates ϕk to be nondegenerate. The proof of
Theorem 3.3 given in Section 4A is based on a variant of the Birkhoff–Lewis–Moser
theorem. The key new ingredient of the proof is the strong closing lemma from
[Cineli and Seyfaddini 2022]. It is also worth pointing out that if we replaced the
statement that the set is C∞-dense by that it is C1-dense, the theorem would turn
into an easy consequence of already known facts; see Remark 4.5.

In several situations, Theorem 3.3 can be made slightly more precise. For
instance, we have the following result, also originally proved in [Cineli et al. 2022]
without the “Also” part.

Corollary 3.4. Assume that M is a surface and ϕ is strongly nondegenerate. Then
γ (ϕ) > 0 when M has positive genus. When M is the two-sphere, γ (ϕ)= 0 if and
only if ϕ is a pseudorotation. Also, γ is locally uniformly bounded from 0 on the set
of all strongly nondegenerate Hamiltonian diffeomorphisms ϕ when M has positive
genus and on the set of such ϕ with at least three fixed points when M = S2.

Proof. When M has positive genus, a Conley conjecture type argument guarantees
that ϕ has infinitely many hyperbolic periodic points; see [Franks and Handel 2003;
Ginzburg and Gürel 2015; Salamon and Zehnder 1992] or [Le Calvez and Sambarino
2022]. Thus, in this case, the statement follows directly from Theorem 3.1.

Concentrating on M = S2, first note that for all, not necessarily nondegenerate,
pseudorotations of CPn , the sequence γ (ϕk) contains a subsequence converging to
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zero, and hence γ (ϕ)= 0; see [Ginzburg and Gürel 2018]. In the opposite direction,
when M = S2, the existence of one positive hyperbolic periodic point is enough to
ensure that γ (ϕ)> 0 and, moreover, γ is locally uniformly bounded away from zero;
see Remark 4.2. Hence, more generally, without any nondegeneracy assumption,
if γ (ϕ)= 0, then all periodic points of ϕ are elliptic. For strongly nondegenerate
Hamiltonian diffeomorphisms ϕ, this forces ϕ to be a pseudorotation. □

Since the Hofer norm is bounded from below by the spectral norm, we have the
following.

Corollary 3.5. In all results from this section, we can replace the spectral norm by
the Hofer norm.

We refer the reader to Section 4 for further refinements of Theorems 3.1 and 3.3.

Remark 3.6. Throughout the paper all homology groups are taken over Q. This
choice of the background coefficient field is necessitated by the use of Floer theory
for an arbitrary closed symplectic manifold M . When M is weakly monotone, Q

can be replaced by any coefficient field.

4. Proofs and refinements

In Section 4A, we prove Theorems 3.1 and 3.3. In Section 4B, we refine the latter
result under certain additional assumptions on M and further comment on the class
of γ -a.i.’s.

4A. Proofs of Theorems 3.1 and 3.3.

Proof of Theorem 3.1. By the conditions of the theorem, for some N ∈ N, the
Hamiltonian diffeomorphism ϕ has more than dim H∗(M) hyperbolic N -periodic
points. We denote the set of these points by K. Thus |K|> dim H∗(M) and clearly
K is a locally maximal hyperbolic set. Furthermore, every point in K is also ℓN -
periodic for all ℓ ∈ N. For ϵ > 0, denote by bϵ(ϕ) the number of bars in the barcode
of ϕ of length greater than ϵ including infinite bars; see, for example, [Cineli et al.
2021]. Then, we claim that, for a sufficiently small ϵ > 0 and any ℓ ∈ N,

(4-1) bϵ(ϕℓN )≥ dim H∗(M)+
⌈

|K|−dim H∗(M)
2

⌉
> dim H∗(M).

In particular, ϕℓN has at least one finite bar of length greater than ϵ > 0.
This inequality is essentially a consequence of [Cineli et al. 2021, Proposition 3.8

and 6.2]. To prove (4-1), first note that the number of infinite bars in the barcode of
any Hamiltonian diffeomorphism is equal to dim H∗(M). Secondly, it follows from
[Cineli et al. 2021, Proposition 6.2] and the proof of [Cineli et al. 2021, Proposi-
tion 3.8] that every periodic point in K appears as an “end point” of a bar of length
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greater than ϵ > 0. Combining these two facts, we conclude that ϕℓN has at least
⌈(|K| − dim H∗(M))/2⌉ finite bars of length greater than ϵ > 0, and (4-1) follows.

Furthermore, since the crossing energy lower bound in [Cineli et al. 2021, The-
orem 6.1] is stable under C∞-small perturbations of the Hamiltonian, for every
positive η < ϵ the same is true for any Hamiltonian diffeomorphism 9 which is
C∞-close to ϕN . Namely,

bη(9ℓ) > dim H∗(M),

and hence the barcode of 9ℓ has a finite bar of length greater than η.
Also, recall that as is proved in [Kislev and Shelukhin 2021, Theorem A], for

any ϕ,
βmax(ϕ)≤ γ (ϕ),

where the left-hand side is the boundary depth, i.e., the longest finite bar in the
barcode of ϕ. Thus, for a sufficiently small η > 0,

(4-2) η < βmax(9
ℓ)≤ γ (9ℓ).

Next, set δ = η/2 and arguing by contradiction, assume that there exist ψ
sufficiently C∞-close to ϕ and a sequence ki → ∞ such that

γ (ψki ) < δ.

Since the sequence ki is infinite and there are only finitely many residues modulo N ,
there exists a pair ki < k j such that

k j − ki = ℓN

for some ℓ ∈ N.
Clearly, 9 = ψN is C∞-close to ϕN when ψ is sufficiently C∞-close to ϕ, and

hence (4-2) holds. Then by the triangle inequality for γ , we have

η < γ (9ℓ)≤ γ (ψk j )+ γ (ψ−ki ) < 2δ = η.

This contradiction concludes the proof of the theorem. □

Remark 4.1. It might be worth a second to examine how the invariants of ϕ involved
in the proof depend on the isotopy ϕt

H in Ham(M, ω) generated by H and its lift
to the universal covering of the group. Namely, γ (ϕ) is a priori independent of the
isotopy only on the universal covering. On Ham(M, ω) it is defined by passing to
the infimum over often infinitely many elements. However, the boundary depth
βmax is well defined on Ham(M, ω). In the proof we bound βmax(ϕ) from below
(see, e.g., [Usher 2011]) and that bounds γ (ϕ) from below regardless of the lift
[Kislev and Shelukhin 2021].



128 ERMAN ÇINELI, VIKTOR L. GINZBURG AND BAŞAK Z. GÜREL

Remark 4.2. When n = dim M/2 is odd, it is sufficient to require in Theorem 3.1
that the number of hyperbolic periodic points is greater than b = dim Hodd(M).
For instance, this is the case when M is a surface. Indeed, in the proof of the
theorem, by taking N even and sufficiently large, we can guarantee that the number
of positive hyperbolic N -periodic points is greater than b. Such points necessarily
have even Conley–Zehnder index, and hence contribute to the odd-degree homology
of M under the isomorphism HF∗(ϕ

N ) ∼= H∗+n(M). Likewise, when n is even,
it suffices to require the number of hyperbolic periodic points to be greater than
dim Heven(M).

Proof of Theorem 3.3. To prove the theorem, it suffices to show that every C∞-open
set U in the group of Hamiltonian diffeomorphisms contains an open subset W
such that γ (ϕ) > δ for all ϕ ∈W and some δ= δ(W) > 0 independent of ϕ. Indeed,
then fixing W for every U we can take the union of sets W for all U as the desired
open and dense subset.

Let q = dim H∗(M). For any U , there are two alternatives:

(i) There exists ϕ ∈ U with more than q periodic points.

(ii) Every ϕ ∈ U has at most q periodic points.

Let us first focus on case (i). Pick ϕ ∈ U with more than q periodic points and fix
q +1 of them. Denote these points by x0, . . . , xq , and note that arbitrarily C∞-close
to ϕ there exists a Hamiltonian diffeomorphism ϕ′

∈ U such that x0, . . . , xq are
nondegenerate periodic points of ϕ′. This is essentially a linear algebra fact and to
construct ϕ′, it suffices to perturb ϕ near these points, changing Dϕ slightly. (Note
that ϕ′ may have many other periodic points, nondegenerate or not. We can ensure
in addition that ϕ′ is strongly nondegenerate, but we do not need this fact.) We
replace ϕ by ϕ′, keeping the notation ϕ.

If all periodic points x0, . . . , xq are hyperbolic, we can take as W any C∞-small
neighborhood of ϕ by Theorem 3.1.

If one of the points x0, . . . , xq is not hyperbolic, we argue by perturbing ϕ again.
Namely, recall that by the Birkhoff–Lewis–Moser theorem (see [Moser 1977]),
whenever ϕ has a nonhyperbolic, nondegenerate periodic point x , there exists an
arbitrarily C∞-small perturbation ϕ′

∈ U of ϕ with infinitely many periodic points
near x . Moreover, ϕ′ can be chosen so that infinitely many of these periodic points
are hyperbolic; see [Arnaud 1992, Proposition 8.2]. (This follows from the proof
of the Birkhoff–Lewis–Moser theorem.) Thus, again by Theorem 3.1, we can take
a sufficiently C∞-small neighborhood of ϕ′ as W .

To deal with case (ii), we need the following quantitative variant of the strong
closing lemma:

Lemma 4.3 [Cineli and Seyfaddini 2022]. Let ψ be a Hamiltonian diffeomorphism
of a closed symplectic manifold M. Assume that there is a closed ball V ⊂ M
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containing no periodic points of ψ , that is, V ∩ Per(ψ) = ∅. Let G ≥ 0 be a
Hamiltonian supported in V and such that

c(G) > γ (ψ).

Then the composition ψϕG has a periodic orbit passing through V .

Pick a nondegenerate Hamiltonian diffeomorphism ϕ ∈ U , where U is as in
case (ii). Such a map exists since U is C∞-open and the set of nondegenerate
Hamiltonian diffeomorphisms is C∞-dense (and open). We will show that there
exists δ > 0 such that γ (ψ) > δ for all ψ ∈ U which are C∞-close to ϕ. Hence, in
this case, we can take a small C∞-neighborhood of ϕ as W .

Lemma 4.4. Let (M, ω) be a closed symplectic manifold. Suppose that there exists
a C∞-open U ⊂ Ham(M, ω) such that all ϕ ∈ U have at most q = dim H∗(M)
periodic points. Then the function γ : U → [0,∞) is locally uniformly bounded
away from zero at every nondegenerate ϕ ∈ U .

Note that the proof of Theorem 3.3 will be completed once we prove Lemma 4.4.
To prove the lemma, arguing by contradiction, fix a nondegenerate ϕ ∈ U and
assume that there exists a sequence ψi → ϕ in U such that

γ (ψi )→ 0.

Here and below convergence of maps is always understood in the C∞-sense.
We claim that when i is large enough, all periodic points of ψi are close to

periodic points of ϕ, and hence there exists a closed ball V ⊂ M containing no
periodic points of any of these maps. Indeed, since ϕ is nondegenerate and

|Fix(ϕ)| ≤ |Per(ϕ)| ≤ q = dim H∗(M),

by the Arnold conjecture (see [Fukaya and Ono 1999; Liu and Tian 1998] and also
[Pardon 2016]),

Per(ϕ)= Fix(ϕ) and |Per(ϕ)| = |Fix(ϕ)| = q.

Furthermore, when i is large enough, ψi ∈ U is also nondegenerate since ψi → ϕ.
Therefore, again by the Arnold conjecture,

Per(ψi )= Fix(ψi ) and |Per(ψi )| = |Fix(ψi )| = q.

It follows that Per(ψi ) converges to Per(ϕ).
Next, take G ≥ 0 as in Lemma 4.3, which is supported in V and small enough so

that ϕϕG ∈U . Hence, ψiϕG ∈U when i is large; for ψi → ϕ and thus ψiϕG → ϕϕG .
On the other hand, due to the assumption that γ (ψi )→ 0, we have

c(G) > γ (ψi ),
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when again i is sufficiently large. By the strong closing lemma, the composition
ψiϕG has a periodic orbit passing through V . On the other hand, the fixed points of
ψi (or equivalently the periodic points) are among the fixed points of ψiϕ because
supp G ⊂ V . It follows that

|Per(ψiϕG)| ≥ q + 1,

when i is large enough, which is impossible since ψiϕG ∈ U . This contradiction
completes the proof of Lemma 4.4 and hence of Theorem 3.3. □

Remark 4.5. If in Theorem 3.3 we were to find a C1-dense (and open) set of
Hamiltonian diffeomorphisms rather than C∞-dense, the argument would be con-
siderably simpler. Namely, in this case it would be enough to first construct a map ϕ
with just one hyperbolic periodic point. Once this is done, we could apply the
results from [Hayashi 1997; Xia 1996] to create nontrivial transverse homoclinic
intersections, and hence a horseshoe (see [Katok and Hasselblatt 1995]) by a C1-
small perturbation. As a consequence, the perturbed map ψ would have infinitely
many hyperbolic periodic points. For any m ∈ N, having at least m such points is a
C1-open property. Now we can take any m > dim H∗(M).

4B. Sugimoto manifolds and further remarks. As is shown in [Sugimoto 2021], a
strongly nondegenerate Hamiltonian diffeomorphism ϕ of a closed symplectic man-
ifold M2n has either a nonhyperbolic periodic point or infinitely many hyperbolic
periodic points when M meets one of the following requirements:

(i) n is odd.

(ii) Hodd(M) ̸= 0.

(iii) the minimal Chern number of M is greater than 1.

Below we refer to a closed symplectic manifold meeting at least one of these
requirements as a Sugimoto manifold. For this class of manifolds Theorem 3.3 has
a more direct proof and can be slightly refined. We do this in two steps.

Denote by Vm , m ∈ N, the set of Hamiltonian diffeomorphisms with at least m
hyperbolic points. Note that we do not require the elements of Vm to be strongly
nondegenerate.

Proposition 4.6. Let M be a Sugimoto manifold. Then for any m ∈ N the set Vm is
C1-open and C∞-dense in the space of all Hamiltonian diffeomorphisms.

Proof. The statement that Vm is C1-open is obvious. (It is essential here that m
is finite.) To show that it is C∞-dense we argue as in [Sugimoto 2021] and the
proof of Theorem 3.3. Let ϕ be a Hamiltonian diffeomorphism. To prove the
proposition, we need to find ψ ∈ Vm arbitrarily C∞-close to ϕ. Since the set
of strongly nondegenerate Hamiltonian diffeomorphisms is C∞-dense, we can
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assume that ϕ is in this class. As shown in [Sugimoto 2021], ϕ has infinitely many
hyperbolic periodic points or a (nondegenerate) nonhyperbolic point. In the former
case, ϕ ∈ Vm for all m ∈ N. In the latter case, by [Arnaud 1992, Proposition 8.2],
for any m ∈ N there exists ψ ∈ Vm arbitrarily close to ϕ. □

As an immediate consequence, we obtain a slightly more precise variant of the
main result from [Sugimoto 2021]:

Corollary 4.7. Assume that M is a Sugimoto manifold. Then C∞-generically a
Hamiltonian diffeomorphism ϕ of M has infinitely many hyperbolic periodic points.

The key difference with [Sugimoto 2021] is that the periodic points of ϕ here
are specified to be hyperbolic. The residual set in this corollary is, of course,

V :=
⋂

m∈N

Vm .

We note that this set is not C1- and even C∞-open. However, one can require in
addition ϕ to be strongly nondegenerate. Indeed, the set of such maps is residual
and its intersection with V is still a residual set.

Closer to the immediate subject of the paper we have the following refinement
of Theorem 3.3 and Corollary 3.4:

Corollary 4.8. Assume that M is a Sugimoto manifold. Then γ is locally uni-
formly bounded away from zero on a C1-open and C∞-dense set of Hamiltonian
diffeomorphisms of M.

Here we can take any Vm with m > dim H∗(M) as a C1-open and C∞-dense
set, where γ is locally uniformly bounded away from zero. Note also that in this
corollary we can again replace the spectral norm by the Hofer norm.

Remark 4.9. In contrast with Theorem 3.3, C∞-generic existence of infinitely
many periodic points is not known to hold without some additional assumptions
on M . The class of Sugimoto manifolds is the broadest to date for which such
existence has been proved [Sugimoto 2021]. (See also [Ginzburg and Gürel 2009b]
for the original result and a different approach.)

Remark 4.10. Continuing the discussion from the introduction and Remark 1.2, we
give some “textbook” examples where γ (ϕk) grows linearly, and hence γ (ϕ)= ∞,
and at the same time all periodic points of ϕ are fixed points: Per(ϕ) = Fix(ϕ).
Namely, let H : M → R be a nonconstant autonomous Hamiltonian such that H has
only finitely many critical values and all nonconstant periodic orbits of the flow of H
are noncontractible. Set ϕ = ϕH . Then, as is easy to see, γ (ϕk) grows linearly and
the only periodic points of ϕ are the critical points of H . For instance, we can take
H = sin 2πθ , where θ is the first angular coordinate θ on T2

= R2/Z2. Alternatively,
let (T4, ω) be a Zehnder’s torus, that is, a torus equipped with a sufficiently irrational



132 ERMAN ÇINELI, VIKTOR L. GINZBURG AND BAŞAK Z. GÜREL

translation invariant symplectic structure ω (see [Zehnder 1987]), and again let
θ : T4

→ R/Z be a fixed angular coordinate. Then the flow of H given by the same
formula has no periodic orbits at all, contractible or not, other than the critical points
of H : the 3-dimensional tori θ =

1
2 and θ =

3
2 . In both cases, γ (ϕk)= 2k. More

surprisingly, there exists a Hamiltonian diffeomorphism ϕ : S2
× S2

→ S2
× S2

such that γ (ϕk) grows linearly; see [Shelukhin 2022a, Remark 8] and [Polterovich
and Rosen 2014, Theorem 6.2.6], although the argument is quite indirect.

In all these examples, dim H∗(Fix(ϕ))= dim H∗(M) over any field, in addition to
the condition that Per(ϕ)=Fix(ϕ). Loosely following [Atallah and Shelukhin 2023],
we call such a map ϕ a generalized pseudorotation. Generalized pseudorotations
from the above examples have simple dynamics. However, this is not necessarily
so in general. For instance, in dimension six and higher Morse–Bott nondegenerate,
generalized pseudorotations ϕ with positive topological entropy have been recently
constructed in [Cineli 2023]. Such a generalized pseudorotation can be neither
a C0-a.i. since htop(ϕ) > 0 (see [Avila et al. 2020]) nor a γ -a.i. In fact, γ (ϕk)

also grows linearly since M is aspherical and Per(ϕ) = Fix(ϕ) has finitely many
connected components.
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PEGO THEOREM ON COMPACT GROUPS

MANOJ KUMAR

The Pego theorem characterizes the precompact subsets of the square-
integrable functions on Rn via the Fourier transform. We prove the analogue
of the Pego theorem on (not necessarily abelian) compact groups.

1. Introduction

Characterizing precompact subsets is one of the classical topics in function space
theory. It is well known that the Arzelà–Ascoli theorem characterizes a precompact
subset of the space of continuous functions over a compact Hausdorff space. The
celebrated Riesz–Kolmogorov theorem provides a characterization of precompact
subsets of L p(Rn). We refer to [8] for a historical account of it. Weil [14, page 52]
extended it to the Lebesgue spaces over locally compact groups. See [7] for its
extension to the Banach function spaces over locally compact groups.

In 1985, Pego [13] used the Riesz–Kolmogorov theorem to find a characterization
of precompact subsets of L2(Rn) via certain decay of the Fourier transform.

Theorem 1.1. [13, Theorems 2 and 3] Let K be a bounded subset of L2(Rn). Then,
the following are equivalent:

(i) K is precompact.

(ii)
∫
|x |>r | f (x)|2 dx → 0 and

∫
|ξ |>r | f̂ (ξ)|2 dξ → 0 as r → ∞, both uniformly

for f in K .

(iii)
∫

Rn | f (x + y)− f (x)|2 dx → 0 as y → 0, and
∫

Rn | f̂ (ξ +ω)− f̂ (ξ)|2 dξ → 0
as ω → 0, both uniformly for f in K .

An application of this theorem to information theory has been provided in [13].
Pego-type theorems have also been studied via the short-time Fourier and wavelet

transforms [2], the Laplace transform [11] and the Laguerre and Hankel trans-
forms [10]. The Pego theorem has been extended to the locally compact abelian
groups with some technical assumptions [5]. Using the Pontryagin duality and the
Arzelà–Ascoli theorem, the authors in [6] showed that the technical assumptions

MSC2020: primary 43A30, 43A77; secondary 22C05.
Keywords: compact group, Fourier transform, compactness.
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are redundant. For the L1-space analogue of the Pego theorem over locally compact
abelian groups, see [12].

In Section 2, we present preliminaries on compact groups. In Section 3, using
Weil’s compactness theorem, we extend Theorem 1.1 to (not necessarily abelian)
compact groups; see Theorem 3.4.

2. Fourier analysis on compact groups

Let G be a compact Hausdorff group. Let mG denote the normalized positive Haar
measure on G. Let L p(G) denote the p-th Lebesgue space w.r.t. the measure mG .
The norm on the space L p(G) is denoted by ∥ · ∥p.

We denote by Ĝ the space consisting of all irreducible unitary representations
of G up to the unitary equivalence. The set Ĝ is known as the unitary dual of G
and is equipped with the discrete topology. Note that the representation space Hπ

of π ∈ Ĝ is a complex Hilbert space and finite-dimensional. Denote by dπ the
dimension of Hπ .

Let 3 ⊂ Ĝ. Assume that {(Xπ , ∥ · ∥π ) : π ∈ 3} is a family of Banach spaces.
For 1 ≤ p < ∞, we denote by ℓp-

⊕
π∈∧

Xπ the Banach space{
(xπ ) ∈ 5

π∈∧
Xπ :

∑
π∈∧

dπ∥xπ∥
p
π < ∞

}
endowed with the norm ∥(xπ )∥ℓp-

⊕
π∈∧

Xπ
:=

(∑
π∈∧

dπ∥xπ∥
p
π

)1/p. Denote by
ℓ∞-

⊕
π∈∧

Xπ the Banach space{
(xπ ) ∈ 5

π∈∧
Xπ : sup

π∈∧

∥xπ∥π < ∞
}

endowed with the norm ∥(xπ )∥ℓ∞-
⊕

π∈∧
Xπ

:= supπ∈∧∥xπ∥π . Similarly, denote by
c0-

⊕
π∈∧

Xπ the space consisting of (xπ ) from ℓ∞-
⊕

π∈∧
Xπ such that xπ → 0

as π → ∞, i.e., for any given ϵ > 0 there exists a finite set 3ϵ ⊂ 3 such that
∥xπ∥π < ϵ for all π ∈ 3 \ 3ϵ . Note that c0-

⊕
π∈∧

Xπ is a closed subspace of
ℓ∞-

⊕
π∈∧

Xπ .
For 1 ≤ p < ∞, let Bp(Hπ ) denote the space of all bounded linear operators T

on Hπ such that ∥T ∥Bp(Hπ ) := (tr(|T |
p))1/p < ∞. The space B2(Hπ ) is called the

space of the Hilbert–Schmidt operators on the Hilbert space Hπ . The space B2(Hπ )

is a Hilbert space endowed with the inner product

⟨T, S⟩B2(Hπ ) := tr(T S∗).

Let B(Hπ ) denote the space consisting of all bounded linear operators on Hπ

endowed with the operator norm.
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Let f ∈ L1(G). The Fourier transform of f is defined by

f̂ (π) =

∫
G

f (t)π(t)∗ dmG(t), π ∈ Ĝ.

The Fourier transform operator f 7→ f̂ from L1(G) into ℓ∞-
⊕

π∈Ĝ B(Hπ ) is
injective and bounded. By the Riemann–Lebesgue lemma, we know that f̂ ∈

c0-
⊕

π∈Ĝ B(Hπ ). The convolution of f, g ∈ L1(G) is given by

f ∗ g(x) =

∫
G

f (xy−1)g(y) dmG(y).

Then,
∧

f ∗ g(π) = ĝ(π) f̂ (π), π ∈ Ĝ. For y ∈ G, the right translation Ry of
f ∈ L p(G) is given by Ry( f )(x) = f (xy), x ∈ G. Then,

∧

Ry f (π) = π(y) f̂ (π),
π ∈ Ĝ.

For more information on compact groups, we refer to [4; 9].
Throughout the paper, G will denote a (not necessarily abelian) compact Haus-

dorff group. The identity of G is denoted by e. We will denote by Idπ
the dπ×dπ

identity matrix.

3. Pego theorem on compact groups

We discuss the characterization of precompact subsets of square-integrable functions
on G in terms of the Fourier transform. We need the following definitions.

Let K ⊂ L p(G). Define K̂ := { f̂ : f ∈ L p(G)}. K is said to be uniformly
L p(G)-equicontinuous if for any given ϵ > 0 there exists an open neighborhood O
of e such that

∥Ry f − f ∥p < ϵ, f ∈ K and y ∈ O.

Let F ⊂ ℓp-
⊕

π∈Ĝ Bp(Hπ ). F is said to have uniform ℓp-
⊕

π∈Ĝ Bp(Hπ )-decay
if for any given ϵ > 0 there exists a finite set A ⊂ Ĝ such that

∥φ∥ℓp-
⊕

π∈Ĝ\A Bp(Hπ ) < ϵ, φ ∈ F.

Let us begin with some important lemmas.

Lemma 3.1. Let K ⊂ L p(G), where p ∈ [1, 2]. If K is uniformly L p(G)-equicon-
tinuous then K̂ has uniform ℓp′

-
⊕

π∈Ĝ Bp′(Hπ )-decay.

Proof. Let (eU )U∈3 be a Dirac net on G; see [1, page 24]. By the Riemann–
Lebesgue lemma [9, Theorem 28.40], êU ∈ c0-

⊕
π∈Ĝ B(Hπ ). Then, there exists a

finite set A ⊂ Ĝ such that

∥êU (π)∥B(Hπ ) ≤
1
2 , π ∈ Ĝ \ A.
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Let f ∈ K . We denote by êU f̂ the pointwise product of êU and f̂ . Now,

∥ f̂ ∥ℓp′ -
⊕

π∈Ĝ\A Bp′ (Hπ )

≤ ∥ f̂ − êU f̂ ∥ℓp′ -
⊕

π∈Ĝ\A Bp′ (Hπ ) + ∥êU f̂ ∥ℓp′ -
⊕

π∈Ĝ\A Bp′ (Hπ )

≤ ∥
∧

f − f ∗ eU ∥ℓp′ -
⊕

π∈Ĝ\A Bp′ (Hπ ) + ∥ f̂ ∥ℓp′ -
⊕

π∈Ĝ\A Bp′ (Hπ ) sup
π∈Ĝ\A

∥êU (π)∥B(Hπ )

≤ ∥
∧

f − f ∗ eU ∥ℓp′ -
⊕

π∈Ĝ\A Bp′ (Hπ ) +
1
2∥ f̂ ∥ℓp′ -

⊕
π∈Ĝ\A Bp′ (Hπ ).

Then, applying the Hausdorff–Young inequality [9, Theorem 31.22], we get

∥ f̂ ∥ℓp′ -
⊕

π∈Ĝ\A Bp′ (Hπ ) ≤ 2 ∥
∧

f − f ∗eU ∥ℓp′ -
⊕

π∈Ĝ Bp′ (Hπ )

≤ 2 ∥ f − f ∗eU ∥p

= 2
(∫

G
| f (x)− f ∗eU (x)|p dmG(x)

)1/p

= 2
(∫

G

∣∣∣∫
G
( f (x)− f (xy−1))eU (y) dmG(y)

∣∣∣p
dmG(x)

)1/p
.

Therefore, using the Minkowski integral inequality, we obtain

∥ f̂ ∥ℓp′ -
⊕

π∈Ĝ\A Bp′ (Hπ ) ≤ 2
∫

G

(∫
G
| f (x) − f (xy−1)|p dmG(x)

)1/p
eU (y) dmG(y)

≤ 2 sup
y∈U

(∫
G
| f (x) − f (xy−1)|p dmG(x)

)1/p
.

Let ϵ > 0. Since K is uniformly L p(G)-equicontinuous, there exists an open
neighborhood O of e such that

∥Ry f − f ∥p <
ϵ

2
, f ∈ K and y ∈ O.

By [1, Lemma 1.6.5, page 24], we get that there exists U ∈ 3 such that

∥Ry f − f ∥p <
ϵ

2
, f ∈ K and y ∈ U.

Hence,
∥ f̂ ∥ℓp′ -

⊕
π∈Ĝ\A Bp′ (Hπ ) < ϵ, f ∈ K . □

Lemma 3.2. Let K be a subset of L p′

(G), where p ∈ [1, 2]. If K̂ has uniform
ℓp-

⊕
π∈Ĝ Bp(Hπ )-decay then K is uniformly L p′

(G)-equicontinuous.

Proof. Let ϵ > 0. Since K̂ has uniform ℓp-
⊕

π∈Ĝ Bp(Hπ )-decay, there exists a
finite set A ⊂ Ĝ such that

∥ f̂ ∥ℓp-
⊕

π∈Ĝ\A Bp(Hπ ) <
ϵ

4
, f ∈ K .
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Let f ∈ K and y ∈ G. Then, applying [9, Corollary 31.25], we obtain

∥Ry f − f ∥p′ ≤ ∥
∧

Ry f − f ∥ℓp-
⊕

π∈Ĝ Bp(Hπ )

=

( ∑
π∈Ĝ

dπ∥
∧

Ry f (π) − f̂ (π)∥
p
Bp(Hπ )

)1/p

≤

( ∑
π∈A

dπ∥π(y) f̂ (π) − f̂ (π)∥
p
Bp(Hπ )

)1/p

+

( ∑
π∈Ĝ\A

dπ∥π(y) f̂ (π) − f̂ (π)∥
p
Bp(Hπ )

)1/p

≤ sup
π∈A

∥π(y) − Idπ
∥B(Hπ )

( ∑
π∈A

dπ∥ f̂ (π)∥
p
Bp(Hπ )

)1/p

+ sup
π∈Ĝ\A

∥π(y) − Idπ
∥B(Hπ )

( ∑
π∈Ĝ\A

dπ∥ f̂ (π)∥
p
Bp(Hπ )

)1/p

≤ M sup
π∈A

∥π(y) − Idπ
∥B(Hπ ) +

ϵ

2
,

where M is a positive number such that
(∑

π∈A dπ∥ f̂ (π)∥
p
Bp(Hπ )

)1/p
≤ M .

Let π ∈ A. Using continuity of π , we obtain that there exists a neighborhood Oπ

of e such that
∥π(y) − Idπ

∥B(Hπ ) <
ϵ

2M
, y ∈ Oπ .

Assume that O =
⋂

π∈A
Oπ . Then,

∥π(y) − Idπ
∥B(Hπ ) <

ϵ

2M
, π ∈ A and y ∈ O.

Hence,
∥Ry f − f ∥p′ < ϵ, f ∈ K and y ∈ O. □

The following corollary is a generalization of [13, Theorem 1] studied on Rn ,
and [5, Theorem 1] and [3, Lemma 2.5] studied on locally compact abelian groups.
This is also an improvement of the corresponding result on compact abelian groups
in the sense that we do not assume boundedness of the subset of L2(G).

Corollary 3.3. Let K ⊂ L2(G). Then, K is uniformly L2(G)-equicontinuous if and
only if K̂ has uniform ℓ2-

⊕
π∈Ĝ B2(Hπ )-decay.

Proof. This is a direct consequence of Lemmas 3.1 and 3.2. □

Now, we present our main result, that is, the Pego theorem over compact groups.
It is a consequence of the Weil theorem and above corollary.

Theorem 3.4. Let K be a bounded subset of L2(G). Then, the following are
equivalent:

(i) K is precompact.
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(ii) K is uniformly L2(G)-equicontinuous.

(iii) K̂ has uniform ℓ2-
⊕

π∈Ĝ B2(Hπ )-decay.

Proof. For any given ϵ > 0 we have that

sup
f ∈K

∥ f χG\G∥2 = 0 < ϵ.

Therefore, (i) and (ii) are equivalent by the Weil theorem [14, page 52] (or see [7,
Theorems 3.1 and 3.3]). Further, (ii) and (iii) are equivalent by Corollary 3.3. □

The following gives an example of a set K ⊂ L2(G) which is not precompact but
K is uniformly L2(G)-equicontinuous and K̂ has uniform ℓ2-

⊕
π∈Ĝ B2(Hπ )-decay.

Example 3.5. Consider the set K = {nχG : n ∈ N} ⊂ L2(G) as given in [7, Exam-
ple 4.2]. Since K consists of only constant functions, it is clear that K is uniformly
L2(G)-equicontinuous. By Corollary 3.3, K̂ has uniform ℓ2-

⊕
π∈Ĝ B2(Hπ )-decay.

Since K is not bounded, K is not precompact.

Now, with the help of our main result Theorem 3.4, we show that certain subsets
of L2(G) are precompact.

Example 3.6. (i) Let r ∈ R. Consider the set K =
{ r

n χG : n ∈ N
}

⊂ L2(G). Since{ r
n : n ∈ N

}
is bounded and K consists of only constant functions, it follows that K

is bounded and uniformly L2(G)-equicontinuous. Therefore, by Theorem 3.4, K is
precompact.

(ii) Let A be a finite subset of Ĝ. Assume that K is a bounded subset of the linear
span of the set consisting of matrix entries [4, page 139] of elements in A. Note that
the matrix entries are bounded functions. For f ∈ K , using the Schur orthogonality
relations [4, Theorem 5.8] we obtain that

∥ f̂ ∥ℓ2-
⊕

π∈Ĝ\A B2(Hπ ) = 0.

Thus, K̂ has uniform ℓ2-
⊕

π∈Ĝ B2(Hπ )-decay. Hence, by Theorem 3.4, K is
precompact. In particular, the convex hull of the set consisting of matrix entries of
elements in A is precompact.
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MAXIMAL DEGREE OF A MAP OF SURFACES

ANDREY RYABICHEV

Given closed possibly nonorientable surfaces M, N , we prove that if a map
f : M → N has geometric degree d > 0, then χ(M) ≤ d · χ(N). We give all
necessary comments on the definition and properties of geometric degree,
which can be defined for any map. Our proof is based on the factorization
theorem of Edmonds, a simple natural proof of which is also presented.

1. Introduction

Through this paper, we set M , N to be closed connected surfaces, possibly nonori-
entable.

Given a map f : M → N , we define its geometric degree Deg f as a minimal
cardinality of the preimage of a regular value among all smooth maps in the
homotopy class of f . Note that if M and N are orientable, then this number
coincides with the usual notion of degree; we discuss features of the definition and
prove some of its properties in Section 2.2.

Our goal is to prove the following fact:

Theorem 1. Let f : M → N be a map of geometric degree d > 0. Then χ(M) ≤

d · χ(N ).

This fact is well known; apparently it was first proved by Kneser [1930] in the
case of orientable surfaces. It looks very similar to the assertions “all maps S2

→ N
are nullhomotopic” and “if χ(M) > χ(N ), then d = 0”. These statements can
be easily proved using universal covering or the intersection form in cohomology.
However, similar elementary approaches to Theorem 1 are not known to the author.

The possible ways to prove Theorem 1 are rather a bit more technical. For
orientable surfaces, one can use the Milnor–Wood inequality [1971, Theorem 1.1]
or the Gromov norm [1999, §5.35]. In this paper, we present the most elementary
proof including the factorization theorem of Edmonds. First, let us recall the
notation.

Suppose we have a 2-submanifold with boundary K ⊂ M , such that for every
component Ki ⊂ K its boundary ∂Ki is connected. Collapsing each Ki to a single
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point (see, e.g., [Whitehead 1978, p. 23]) we obtain a smooth manifold Q. The
factorization map p : M → Q is called a pinch map.

A smooth map of closed surfaces q : Q → N is called a branched covering if it
is a local diffeomorphism outside of a finite subset P ⊂ M and near every x0 ∈ P
one can write q as z 7→ zk , k > 1, in some local complex coordinates. The number k
is called the index of the branch point x0.

Theorem 2. Every map f : M → N is either homotopic to the composition of
a pinch map p : M → Q with a branched covering q : Q → N for some closed
surface Q, or homotopic to a map whose image is a graph embedded into N.

This theorem is due to Edmonds [1979]. He proved the theorem for surfaces
with boundary as well, considering maps f whose restriction to the boundary is a
(Deg f )-sheeted covering. The proof of Edmonds was corrected and improved by
Skora [1987].

We present another proof of Theorem 2 which is simpler and more natural in
some ways. Namely, it does not use induction and constructs the factorization in one
step. The idea is to take a triangulation of N and consider a map h homotopic to f
which is transversal to sk1(N ) and has a minimal number of edges of h−1(sk1(N )),
and then to deform h over each triangle. This approach was inspired by Lurie’s
proof of the Dehn–Nielsen theorem [2009, Lecture 38]; see also [Farb and Margalit
2012, §8.3.1].

Unlike [Edmonds 1979] and [Skora 1987], in our proof we do not control the
degree of a branched covering. Also, our approach does not deal with surfaces
with boundary, the corresponding generalization is possible but it would require
some additional work. Finally, we do not use the theory of absolute degree — see
Section 2.2 for some remarks on this subject — so we tried to make our reasoning
completely self-contained.

2. Preliminaries

2.1. Conventions and notation on surfaces and transversality. We use the term
surface for a 2-manifold, and closed with respect to a manifold means that it is
compact without boundary. All manifolds will be assumed to be infinitely smooth,
as well as maps. The maps we construct sometimes will be not smooth and should
be smoothed if needed, but this inaccuracy will not cause difficulties; see, e.g.,
[Hirsch 1976, Chapter 8].

Every open subset of a surface U ⊂ M that we take is supposed to be “sufficiently
nice” — namely, it should be an interior of a compact 2-submanifold with boundary.
We refer to this boundary as ∂U (the notation ∂U here would be formally correct,
but it is more cumbersome).
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When we cut a closed surface M along a closed curve C ⊂ M , we assume to
obtain as a result a compact surface with boundary M ′, and each point of C will
double in M ′.

Given surfaces M , N , we say that a map f : M → N is transversal to a stratified
subset S ⊂ N , if f is transversal to its every stratum. Namely, every vertex y ∈ S
must be a regular value of f and for every edge C ⊂ S and any x ∈ f −1(C) there
must be a vector v ∈ Tx M such that d f (v) /∈ T f (x)C . By the implicit function
theorem, f −1(S) ⊂ M is a stratified subset. If S is closed, then the set of maps
transversal to S is a dense and open set in C∞(M, N ). See, for example, [Goresky
and MacPherson 1988, Part 1, §1] for details.

We say that a loop ϕ : S1
→ S1 has index i ≥ 0, if [ϕ] = ±i ∈ π1(S1).

2.2. Geometric degree. Recall, we define a degree of a map f : M → N as a
minimal d ∈ Z≥0 such that there is a smooth map h : M → N homotopic to f and
there is a regular value y ∈ N such that |h−1(y)| = d. It is known as geometric
degree, but in later sections, we will simply call it a degree and denote it as Deg f .

The degree theory began with the work of Hopf [1928; 1930] and was developed
by Olum [1953] and Epstein [1966]. The most important properties of geometric
degree in dimension 2 were proved by Kneser [1928; 1930].

Here we state and sketch the proofs of a few properties of degree. We consider
not famous properties, but only those that will be used in Section 4 in order to prove
Theorem 1. For a more detailed review, see, e.g., [Brown and Schirmer 2001] or
[Sklyarenko 2008] in addition to [Epstein 1966] and [Olum 1953]. As usual, we
suppose M , N to be closed connected surfaces, but one can similarly formulate
and prove corresponding statements for any pair of closed manifolds of the same
dimension.

2.2.1. Degree of a branched covering. Suppose a map f : M → N is orientation-
true. This means that it takes orientation-preserving/reversing loops in M to
orientation-preserving/reversing loops in N , respectively. Clearly, this is equivalent
to the equality f ∗(w1(N )) = w1(M) for Stiefel–Whitney classes, or to the fact
f ∗(ZN ) ≃ ZM , where ZM denotes the orientation local system of M with fiber Z.
Then f induces a homomorphism H 2(N ; ZN ) → H 2(M; ZM). Here both groups
are isomorphic to Z, so the homomorphism Z → Z is a multiplication by an integer
called the cohomological degree of f , denoted by deg f .

Note that for non-orientation-true maps one can similarly define a cohomological
degree as a residue (mod 2), but not as an integer because of H 2(M; f ∗(ZN )) ≃ Z2.
For more details on local systems, see, for example, [Spanier 1993] or [Whitehead
1978, Chapter VI].

Proposition 3. If the map f : M → N is orientation-true, then Deg f ≥ deg f .
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Proof. Homotope f so that a regular value y ∈ N has Deg f preimages. Choose a
local orientation of M and N . That allows us to define the sign for every preimage
xi ∈ f −1(y), so that the sum equals deg f . (Formally, here we use local cohomology;
see, e.g., [Hirsch 1976, Chapter 5]). □

In fact, the opposite inequation also holds, so we have Deg f = deg f for an
orientation-true f . The idea of a proof is to cancel a pair of preimages of y which
have different signs (see, e.g., [Epstein 1966, p. 380] for dimension > 2), but for
surfaces, this strategy is quite a bit more complicated (see, e.g., [Melikhov 2004,
Lemma 2]). Another strategy is to apply Theorem 2 (our proof uses Proposition 3,
but not the equality deg f = Deg f for an orientation-true f ).

Corollary 4. For a k-sheeted branched covering f : M → N we have Deg f = k.

Proof. Clearly, f is orientation-true and deg f = k, so by Proposition 3 we have
Deg f ≥ k. On the other hand, the regular values of f have k preimages, so
Deg f ≤ k. □

Corollary 5. If p : M → Q is an orientation-true pinch map and q : Q → N is a
k-sheeted branched covering, then we have Deg(q ◦ p) = k.

Proof. The reasoning is the same: use the functoriality of cohomology and
Proposition 3. □

2.2.2. Degree of the composition of maps.

Proposition 6. Take any map f : M → N. Let g : N ′
→ N be a k-sheeted covering

such that N ′ is connected and f lifts to N ′, i.e., there is f ′
: M → N ′ such that

f = g ◦ f ′. Then Deg f = k · Deg f ′.

Proof. Homotope f so that the regular value y ∈ N has Deg f preimages. This
homotopy can be lifted to a homotopy of f ′. So we obtain that every y′

∈ g−1(y)

is a regular value of f ′, and this immediately implies that Deg f ≥ k · Deg f ′.
The opposite inequality is true since for any finite subset P ⊂ N ′ we can homotope

f ′ so that each point of P becomes a regular value with Deg f ′ preimages. □

In fact, the last argument shows that Deg( f2 ◦ f1) ≤ Deg f1 ·Deg f2 for any maps
f1, f2. The opposite inequality in Proposition 6 is nontrivial (and does not hold if
g is a branched covering) because of the following pathology.

Remark 7. If f1 : S2
→ RP2 is the universal covering, then Deg f1 = 2 by

Corollary 4. If f2 : RP2
→ S2 is a map collapsing a projective line l ⊂ RP2

to a point, then Deg f2 = 1 since it is nonnullhomotopic (the homomorphism
f ∗

2 H 2(S2
; Z2) → H 2(RP2

; Z2) is nonzero).
However, the composition f2 ◦ f1 is nullhomotopic: it takes both hemispheres

of the domain S2 surjectively to the range S2, but with different orientations. So
Deg( f2 ◦ f1) = 0.
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Remark 8. If f2 : RP2
→ S2 is as above, we have Deg f2 = 1. If f3 : S2

→ S2

is any map of degree 7 as an element of π2(S2), then Deg f3 = 7 according to
Corollary 4. However, Deg( f3 ◦ f2) = 1, and f3 ◦ f2 ∼ f2.

Indeed, as one can see, there are exactly two homotopy classes of maps RP2
→ S2,

since the obstruction for such maps to be homotopic lies in H 2(RP2
; π2(S2)) ≃ Z2

(see, e.g., [Whitehead 1978, Chapter VI, §6]). One also can directly construct a
homotopy of f3 ◦ f2 to f2. So we have another example when Deg( f3 ◦ f2) ̸=

Deg f3 · Deg f2. In particular, we note that here f2 is homotopic to a pinch map,
and as f3 we can take a branched covering.

3. The factorization theorem

3.1. A map with a minimal graph.

Proof of Theorem 2. Take some triangulation of N and denote its 1-skeleton by
T ⊂ N . Consider maps h : M → N homotopic to f which are transversal to T .
Then h−1(T ) is an embedded graph in M , call it 0, possibly with isolated circles
whose images do not cover the vertices of T .

We take h such that 0 has a minimal number of edges E(0). Each isolated circle
is counted as one edge. Then we observe that 0 has the following three properties
which we will prove in Section 3.2.

Claim 9. For every edge of 0 the images of its endpoints do not coincide.

For every component A ⊂ M \0 its image h(A) is contained in a certain triangle
B ⊂ N and h(∂ A) ⊂ ∂ B. By Claim 9, for every component α ⊂ ∂ A we may assume
that either α is an isolated circle, or α is mapped to ∂ B monotonously with index
iα ̸= 0. In the last case, we call α essential.

Claim 10. Either 0 has no isolated circles, or 0 is a union of such circles and has
no vertices.

In the case when 0 is a union of isolated circles, the image h(M) is contained in
N \ sk0(T ). Note that N \ sk0(T ) can be deformation retracted onto the dual graph
of T . This proves the theorem in that case.

Further we will assume that 0 has no isolated circles. Take a triangle B ⊂ N and
a component A ⊂ h−1(B). Orient ∂ B ant ∂ A so that h|∂ A preserves the orientation.

Claim 11. The boundary ∂ A consists of one component with index 1, or A is
orientable and all the components of ∂ A have the same orientation with respect to A.

If A is nonorientable, then h|A is homotopic to a pinch map so that the homotopy
is stationary in a neighborhood of ∂ A. Indeed, in that case by Claim 11 the
boundary ∂ A is a circle with index 1. Since h takes ∂ A to ∂ B monotonously, the
restriction of h to a small neighborhood W ⊃ ∂ A is injective. Then h|A is homotopic
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. . .

D1

D2

Dk

S

C1

C2

Ck

Figure 1. Presentation of A as the connected sum.

to the composition of the collapse of A \ W to a point and a homeomorphism
A/(A \ W ) → B because of contractibility of B.

Otherwise, orient A. We can present A as a connected sum of a certain number
of disks D1, . . . , Dk , and a closed surface S (which is possibly a sphere). We may
assume that they are joined by cylinders C1, . . . , Ck in that order; see Figure 1.

Homotope h so that each C j is mapped to a single point as well as S. Then
on every D j we can homotope h to a branched covering with one critical point
of index i∂ D j or to a diffeomorphism if i∂ D j = 1. This is possible because the
restriction h|∂ D j : ∂ D j → ∂ B is a i∂ D j -sheeted covering. The homotopy is assumed
to be stationary in a neighborhood of ∂ A and the resulting h is assumed to preserve
the orientation. Finally, homotope h near C1, . . . , Ck−1 to a branched covering
with two branched points of index 2 (see, for instance, [Gabai and Kazez 1987,
Figure 2.1]). The subsurface Ck ∪ S ⊂ A remains pinched.

Repeat this for all components A ⊂ M \ 0, and the proof of Theorem 2 is
complete. □

3.2. Properties of the minimal graph.

Proof of Claim 9. Recall that h takes vertices of 0 to vertices of T and takes
interiors of edges of 0 to interiors of edges of T . By transversality of h to the
vertices of T , the half-edges of any vertex v ∈ 0 are in bijective correspondence
with the half-edges of h(v) ∈ T . Therefore, since T has no loops, 0 has no loops
either.

Take an edge e ⊂ 0 with endpoints v and w. Suppose h(v) = h(w). Let e′
⊂ T

be a (closed) edge that contains h(e). Take a small tubular neighborhood U ⊃ e′

and a tubular neighborhood V ⊃ e such that h(V ) ⊂ U and h(∂V ) ⊂ ∂U .
Since h(v) = h(w), the image h(V ) does not cover the whole of e′. Then we

can homotope h on V and squeeze h(V ) outside U , so that h(V ) ⊂ ∂U . When we
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↓

v we

e′

V

U

↓
e′

V

U

h(V ) h(V )

Figure 2. Collapsing of an edge with the same images of the endpoints.

redefine 0 as the preimage of T under new h, we will see that the edge e disappears
and other edges incident on v and w are modified as in Figure 2.

Thus, E(0) decreased at least by 1, which contradicts the minimality. □

Proof of Claim 10. Suppose 0 has isolated circles as well as vertices. Then find a
component A ⊂ M \ 0 whose boundary includes at least one isolated circle α0 and
at least one essential component α1 (to do this, one can consider the dual graph of 0,
mark blue the edges dual to isolated circles, mark red the edges dual to essential
curves, and then find a vertex incident to edges with different colors).

Take a triangle B ⊂ N such that h(A) ⊂ B. Take points x0 ∈ α0 and x1 ∈ α1 such
that h(x0) = h(x1) = y ∈ ∂ B. Take a non-self-intersecting path γ in A from x0 to
x1. Then h ◦ γ is a loop inside the triangle B with basepoint y ∈ ∂ B.

Similarly to the proof of Claim 9, we can homotope h to compress h(γ ) to y
and then to squeeze h(γ ) outside B, so that the homotopy is stationary outside a
small neighborhood of γ .

As a result, when we redefine 0 as the preimage of T under new h, the edges α0

and α1 will join together in one curve; see Figure 3. Thus E(0) decreased by 1,
which contradicts the minimality. □

Proof of Claim 11. Suppose the hypothesis of the claim is violated. Then one
can find two points x1, x2 ∈ ∂ A such that h(x1) = h(x2) = y ∈ N and a non-self-
intersecting curve γ in A from x1 to x2 which admits a coorientation agreed with
the orientation of ∂ A at x1 and x2. (Indeed, if A is nonorientable, we can take any

Aα0

α1

x1

x0 γ

A

Figure 3. Join of an isolated circle with an essential curve.
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x1, x2 with the same image and then choose γ properly. And if A is orientable, we
take x1 and x2 on the components of ∂ A with different orientations with respect to
A and take any γ .)

Then we can homotope h in a small neighborhood of γ similarly to the proof of
Claim 10. Suppose x1 belongs to the oriented edge v1w1 of 0, and x2 belongs to
the oriented edge v2w2. Then after the homotopy 0 modifies as in Figure 3 so that
these edges will be replaced by the edges v1v2 and w1w2.

Note that the homotopy will not change E(0). But also note that h(v1) = h(v2)

and h(w1) = h(w2), which contradicts Claim 9. □

Remark 12. Clearly, if f is the composition of a pinch map with a branched
covering, then Deg f ̸= 0. In the case Deg f = 0 one can strengthen Theorem 2 as
follows: f is homotopic to the composition of a retraction of M to a graph 0′

⊂ M
with a projection 0′

→ N . Note that as 0′ we can take the dual graph of 0 above,
but it may be not isomorphic to the dual graph of T .

4. Estimation of the degree

Note that in Theorem 2 the pinched subsurface of M may be assumed to be connected
(or empty). Also, in order to prove Theorem 1, we note the following remark.

Proposition 13. The resulting map in our proof of Theorem 2 cannot both pinch a
nonorientable subsurface of M and have a branch point.

Note that this assertion refers to the decomposition obtained just in our proof
of Theorem 2. Of course, one can compose a pinch of a crosscap with a branched
covering (e.g., as in Remark 8), but this is not our case.

Proof. Suppose that the obtained pinch map p : M → Q collapses a Möbius
band L ⊂ M (and, possibly, some other subsurface). Note that we can “move” L
across M . Namely, we can replace L by a point and for any component A ⊂ M \0

glue a Möbius band instead of any point inside A defining p on it as a collapse to a
single point.

For such an A we take a component of M \ 0 with a disconnected boundary
or a component whose boundary has index > 1. Otherwise, if there is no such
component, the resulting map will have no branched points, as we can see from the
final part of the proof of Theorem 2, and our proposition holds.

Then, after the “moving” of L into A, the statement of Claim 11 does not hold
for the obtained map. But the moving of L does not change 0, which contradicts
the minimality of E(0). □

Proposition 14. For the factorization M p
−→ Q q

−→ N from our proof of Theorem 2,
if q is a d-fold branched covering, then Deg(q ◦ p) = d.

This assertion is nontrivial in view of Remark 8.
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Proof. Note that a pinch map p cannot be contractible since the homomorphism
p∗

: H 2(Q; Z2) → H 2(M; Z2) is nonzero. Therefore Deg p = 1.
Suppose p is not orientation-true. Then by Proposition 13 we have that q is a

covering (without branch points). Then Deg(q ◦ p) = d by Proposition 6.
Suppose p is orientation-true. Then Deg(q ◦ p) = d by Corollary 5. □

Proof of Theorem 1. We are given a map f : M → N of geometric degree d > 0.
Applying Theorem 2, we obtain a factorization M p

−→ Q q
−→ N . Denote the set

of critical values of q by B ⊂ N (it is finite, possibly empty). By Proposition 14
the number of sheets of q equals d. Then

χ(Q \ q−1(B)) = d · χ(N \ B),

and therefore χ(Q) ≤ d · χ(N ) (this is similar to the reasoning in the Riemann–
Hurwitz formula). To complete our proof, note that χ(M) ≤ χ(Q). □

Appendix: Stable maps and apparent contours

Now let us show one unexpected application of the factorization theorem.
A map of surfaces f : M → N is called generic if its critical points 6 f are

folds and cusps. A generic map is called stable if the set of its critical values
f (6 f ) has only transversal self-crossings, called nodes. For more details, see, for
example [Arnold et al. 2012, Part 1] or [Yamamoto 2017] (see also [Ryabichev
2020]). Denote the number of nodes by n( f ).

Note that stable maps form a dense open subset in C∞(M, N ). Pinches and
branched coverings, which we have considered above, are not stable, but one can
deform them to stable maps by an arbitrary small homotopy.

Theorem 15. Every map of closed surfaces f : M → N is homotopic to a stable
map f ′ such that n( f ′) = 0, i.e., the set of critical values f ′(6 f ′) is a collection of
nonintersecting non-self-intersecting curves (possibly with cusps) in N.

→

Figure 4. Collapsing of a handle adds a fold curve with 4 cusps.
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→

Figure 5. Collapsing of a Möbius band via adding two fold curves
with 1 cusp.

This fact connects the study of apparent contours of T. Yamamoto with the theory
of branched coverings; see, e.g., [Gabai and Kazez 1987]. Note that if N = R2,
then Theorem 15 can be proved without the factorization theorem, and in the case
N = S2, Theorem 15 was proved in [Yamamoto 2010, Theorem 1.4].

Proof. Applying Theorem 2 to the map f , we obtain a factorization M p
−→ Q q

−→ N .
The branched covering q can be homotopied so that each branch point of index i

will turn into a fold circle with i + 2 cusps. See, for example, [Arnold et al. 2012,
Part 1, §1.8] for more details.

A collapsing of an orientable handle can be turned into a fold curve with 4 cusps,
just as a projection of a plane with a handle in R3 to the plane; see Figure 4 (see
also the discussion in [Yamamoto 2017, §3.2]).

Finally, a collapsing of a Möbius band is homotopic into a map with a fold curve
along the Möbius band and with a fold curve with one cusp around it; see Figure 5
(on the left, the opposite points on the inner circle should be identified, we show
them connected by dotted lines; see also [Yamamoto 2010, Figures 11 and 12]).

The described homotopies are local, the images of these curves are small and we
may assume that they do not cross each other. □
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A VIRO–ZVONILOV-TYPE INEQUALITY
FOR Q-FLEXIBLE CURVES OF ODD DEGREE

ANTHONY SAINT-CRIQ

We define an analogue of the Arnold surface for odd degree flexible curves,
and we use it to double branch cover Q-flexible embeddings, where Q-
flexible is a condition to be added to the classical notion of a flexible curve.
This allows us to obtain a Viro–Zvonilov-type inequality: an upper bound
on the number of nonempty ovals of a curve of odd degree. We investigate
our method for flexible curves in a quadric to derive a similar bound in two
cases. We also digress around a possible definition of nonorientable flexible
curves, for which our method still works and a similar inequality holds.

Let F ⊂ CP2 be a flexible curve of odd degree m. We denote as ℓ± and ℓ0 the
number of ovals of the curve RF ⊂ RP2 that bound from the outside a component
of RP2 ∖RF which has positive, negative or zero Euler characteristic, respectively.
In particular, ℓ+ is the number of empty ovals, and ℓ0

+ ℓ− is that of nonempty
ones. O. Viro and V. Zvonilov [1992] proved the following upper bound for the
number of nonempty ovals:

ℓ0
+ ℓ− ⩽ (m−3)2

4
+

m2
−h(m)2

4h(m)2
,

with h(m) denoting the biggest prime power that divides m. Their proof relied
on taking a branched cover of CP2, ramified over the surface F . Usually, it is a
good choice to take doubly sheeted branched covers, but this is not possible in this
setting where m is odd. Odd degree curves are a different story compared to even
degree ones, one reason being the nonexistence of the Arnold surface in S4 (RF is
not null-homologous in H1(RP2

;Z/2), and neither is F in H2(CP2
;Z/2)). In the

present paper, we give a definition of an analogue of the Arnold surface in CP2 for
odd degree curves. This means that, under a certain condition of being Q-flexible
(up to taking another conic Q with empty real part and pseudoholomorphic, this is
always satisfied by pseudoholomorphic curves), we are allowed to take the double
branched cover of CP2 ramified over a perturbation of this Arnold surface. This
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condition is also always satisfied by algebraic curves. We will show the following
result, by methods analogous to Viro and Zvonilov.

Theorem 3.11. Let F be a Q-flexible curve of odd degree m. Then

ℓ0
+ ℓ− ⩽ (m−1)2

4
.

If equality holds, then the curve is type I.

It is worth mentioning that this is not quite Zvonilov’s bound (m− 1)(m− 3)/4
[1979], which works for any flexible curve that intersects a real line generically
(this condition being the degree-one analogue of our Q-flexibility), and in particular
for any pseudoholomorphic curve. However, it appears that Q-flexibility and this
condition by Zvonilov are independent for general flexible curves.

In Section 1, we discuss some constructions in CP2 and CP2 seen as 2-fold
branched covers of the standard 4-sphere. In Section 2, we construct the Arnold
surface for odd degree curves, and we describe the behavior of the real part of the
curve under this construction. In Section 3, we prove the inequality. In Section 4,
we review our method for curves in a quadric to produce a result which, to our
knowledge, is new even for algebraic curves. In Section 5, we compare our inequality
to Viro and Zvonilov’s, and we investigate the possible notion of nonorientable
flexible curves, for which our method still applies to derive a similar bound.

1. Preliminaries

Throughout this paper, all surfaces will be assumed to be connected, and all embed-
dings are smooth.

The complex conjugation conj : CP2
→ CP2 is defined in homogeneous coor-

dinates by conj([z0 : z1 : z2]) = [z0 : z1 : z2], and RP2
⊂ CP2 is the fix-point set

Fix(conj). Here, Q will always denote a generic real conic with empty real part (for
instance, the Fermat conic given by the equation z2

0+ z2
1+ z2

2 = 0). In particular, it
is a smoothly embedded 2-sphere Q ⊂ CP2 which represents the homology class
[Q] = 2[CP1

] in H2(CP2
;Z)∼= Z, the choice of a generator being the homology

class of any complex line.

Flexible and Q-flexible curves. A real plane algebraic curve is a real nonsingular
homogenous polynomial X ∈R[x0 : x1 : x2]. By the real part of the curve, we mean
the set

RX = {[x0 : x1 : x2] ∈ RP2
| X (x0, x1, x2)= 0},

and by the complexification of the curve, we mean

CX = {[z0 : z1 : z2] ∈ CP2
| X (z0, z1, z2)= 0}.
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Evidently, CX is invariant under complex conjugation. If m = deg(X) ⩾ 1, then
we see that [CX ] = m [CP1

] ∈ H2(CP2
;Z), and that CX is a surface of genus

g = (m− 1)(m− 2)/2. Also, the tangent space of the complex curve is related to
that of the real curve in the following sense:

for all x ∈ RX, Tx CX = Tx RX ⊕ i · Tx RX.

We define a flexible curve, in the sense of Viro [1984], as follows:

Definition 1.1. Let F be a closed oriented surface embedded in CP2. The surface F
is called a degree m ⩾ 1 flexible curve if

(i) conj(F)= F ;

(ii) χ(F)=−m2
+ 3m;

(iii) [F] = m [CP1
] ∈ H2(CP2

;Z);

(iv) for all x ∈ RF , Tx F = Tx RF ⊕ i · Tx RF , where RF = F ∩RP2.

The following classical results are known for flexible curves (see [Rokhlin 1978]):

(i) If b0 denotes the 0-th Betti number, then b0(RF)⩽ g+1= (m−1)(m−2)/2+1.
Curves with b0(RF)= g+ 1 are called M-curves. On the other hand, curves
with b0(RF) = 0 if m is even and b0(RF) = 1 if m ⩾ 3 is odd are called
minimal curves (note that there are no minimal curves in degree one).

(ii) If m is even, then each component of RF is contractible in RP2, and if m is
odd, all but one components of RF are. Contractible components of RF are
called ovals. An odd degree curve can never have RF =∅ (it always has the
noncontractible component).

(iii) A flexible curve F is said to be a type I (resp. type II) curve if F ∖RF has
two connected components (resp. is connected). An M-curve is always type I,
and a minimal curve is always type II.

What makes flexible curves so different from algebraic curves is the lack of
rigidity, mainly seen with the Bézout theorem, which, in particular, implies that a
degree m algebraic curve generically intersects Q transversely in exactly 2m points.

Definition 1.2. A flexible curve F of degree m ⩾ 1 is called Q-flexible if F ⋔ Q
consists of 2m points, necessarily swapped pairwise by complex conjugation.

Two double branched covers. There is a well-known diffeomorphism between
CP2/conj and S4 (see [Kuiper 1974]). We denote the associated (cyclic) 2-fold
branched cover as p : (CP2, RP2)→ (S4, R), with R= p(RP2) an embedded RP2

in S4. We also let Q = p(Q), the image of the preferred conic under that branched
cover. From the fact that Q does not intersect the branch locus RP2, we see that the
restriction p : Q→Q is an unbranched 2-fold cover, with the conjugation being
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an orientation-preserving involution generating the group of deck transformations.
As such, we see that Q is also an embedded RP2 in S4.

Given a closed embedded surface F2 in a (closed oriented) 4-manifold X4, we
denote as e(X, F) the normal Euler number of the embedding F ⊂ X ; that is,
the Euler class of the normal bundle νF . It is also equal to the self-intersection
number F · F , which is defined by counting signed intersection points between F
and a small perturbation F ′ of F in the normal direction. If F is oriented, then it
corresponds to the intersection form of X evaluated on [F] ∈ H2(X;Z).

Proposition 1.3. We have the following normal Euler numbers:

e(CP2, RP2)=−1, e(CP2, Q)=+4, e(S4, R)=−2 and e(S4, Q)=+2.

Proof. The conic Q is oriented and [Q] = 2[CP1
] ∈ H2(CP2

;Z), so we obtain
e(CP2, Q)=+4. Next, because RP2 is Lagrangian in CP2, we have that the normal
bundle νRP2 and the tangent bundle T RP2 are anti-isomorphic, and thus, for the
Euler class, e(νRP2)=−e(T RP2)=−χ(RP2)=−1. Finally, the computations
of e(S4, R) and e(S4, Q) come from the next lemma. □

Lemma 1.4. Given a 2-fold branched cover f : (Y 4, B̃2)→ (X4, B2), and given
F an embedded closed surface in X , we denote as F̃ the lift p−1(F).

(i) If F ⋔ B, possibly with F ∩ B =∅, then e(Y, F̃)= 2e(X, F).

(ii) If F ⊂ B, then e(Y, F̃)= 1
2 e(X, F).

Proof. One has to inspect what happens in each case individually. In the first, note
that the lift of a perturbation is a perturbation of the lift, and one can ensure that the
self-intersection points occur away from the ramification locus B. As such, each
of these points lifts to two intersections, and the orientations agree because f is
orientation-preserving.

The second case can be deduced from the first. Let F̃ ′ be a small transverse
perturbation of F̃ . Letting τ : Y → Y denote the involution that spans Aut( f ), and
letting F ′ = f (F̃ ′), we see that F ′ is a perturbation of F and F̃ ′ ∪ τ(F̃ ′) is the lift
of F ′. By the first case, we obtain e(τ (F̃ ′))= e(F̃ ′)= 2e(F ′)= 2e(F). Moreover,
we have 2e(F̃)= e(F̃ ′ ∪ τ(F̃ ′))= e(F̃ ′)+ e(τ (F̃ ′))= 4e(F). □

We now wish to consider the 2-fold branched cover of S4, ramified over Q this
time. It is possible to make some computations to find an orientation-reversing
involution of S4 which swaps R and Q. Alternatively, taking any orientation-
reversing free involution of S4, this maps R to a projective plane with normal Euler
number +2, and this is always isotopic to Q in S4. Tracking this isotopy produces
the involution needed. As such, we see that the smooth 4-manifold obtained as the
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RP2 CP2 Q

R S4 Q

Q CP2 RP2

p̃

p||

||

⊂ ⊃

⊃⊂

⊂ ⊃

Figure 1. The two branched coverings of interest and their associ-
ated branch loci. The arrows marked −→→ denote an unbranched
2-fold cover from a 2-sphere to a real projective plane.

double branched cover of S4 ramified along Q is diffeomorphic1 to CP2. We let
p̃ : CP2

→ S4 denote that double branched cover.
Define Q= p̃−1(R). We see that RP2 and Q are respectively embeddings of RP2

and S2 in CP2. Using Lemma 1.4 again, we can compute the normal Euler numbers.

Proposition 1.5. We have e(CP2, RP2)=+1 and e(CP2, Q)=−4.

In Figure 1 we depict a summary of the different maps in play.

2. The Arnold surface of an odd degree flexible curve

For a flexible curve F ⊂ CP2, let A+(F) = F/conj = p(F). It is an embedded
surface in S4 with boundary ∂ A+(F)⊂R identified with RF , and it is orientable
if and only if F is type I.

If the curve has even degree, then RF is null-homologous, and thus exactly one
component of RP2 ∖ RF is nonorientable (it is a punctured Möbius band). Let
RP2
±

be the closure of the two possible subsets of RP2∖RF that have ∂RP2
±
= ∂ F .

We choose RP2
−

to be the one containing the punctured Möbius band (i.e., RP2
+

is
orientable, and RP2

−
has exactly one nonorientable component). In the case where

F is an algebraic curve of even degree, the polynomial P defining it can be chosen
in such a way that

RP2
±
= {[x0 : x1 : x2] ∈ RP2

| ±P(x0, x1, x2) ⩾ 0}.

In Figure 2, we depict such an example for an algebraic curve.

Definition 2.1. Given a flexible curve F of even degree, we let

A(F)= A+(F)∪ p(RP2
+
)⊂ S4,

and we call it the Arnold surface of F .

1In fact, it is sufficient to obtain that the double branch cover of S4 ramified over Q is a homol-
ogy CP2, as will be the case for curves on quadrics in a later section.
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Figure 2. The set RP2
+

, shaded, for Gudkov’s M-sextic.

In odd degrees, it is not possible to define a surface in this way; we need to go
to CP2 first. Take F to be a flexible curve of odd degree. We denote as J ⊂ RP2

the noncontractible component of RF and as o an oval of RF . Let J+ = p(J ),
o+ = p(o), and set J = p̃−1(J+) ⊂ Q and ō = p̃−1(o+) ⊂ Q. Observe that p̃
restricts to an unbranched 2-fold covering p̃ : J → J+ and p̃ : ō→ o+.

Proposition 2.2. We have J ∼= S1 and ō∼= S1
⊔S1, and the unbranched coverings

p̃ : J → J+ and p̃ : ō→ o+ are respectively the nontrivial and the trivial 2-fold
coverings of the circle.

Proof. Isotope J in RP2 to be J = RX with X ∈ R[x0 : x1 : x2] a degree-one
nonsingular homogeneous polynomial. Note that we do not need to look at what
happens outside of RP2 for the claim. In particular, CX ⋔ Q is two points. Letting
G+ = p(CX) and G = p̃−1(G+), we obtain

J+ = ∂G+ and J = ∂G.

Moreover, G+ ⋔Q is one point, for the two points in CX ⋔ Q are swapped pairwise
by conjugation. In particular, the covering p̃ : G→ G+ is a 2-fold branched cover
of the disc G+ (for in degree one, CX is a sphere and RX is type I), with one
branch point in its interior. This is unique, and it is known to induce the nontrivial
cover on the boundary, so the first claim follows (see Figure 3).

For the other claim, an oval o bounds a disc D embedded in RP2, and is thus
disjoint from Q. Therefore, the disc D/conj ⊂ R bounded by o+ lifts in CP2 to
two disjoint discs in Q. This means that p : ō→ o+ is the trivial covering, and ō is
two circles. □

We let RF be the set
J ∪

⋃
o oval

ō⊂ Q.

The previous statement implies that every oval of RF gets doubled in RF , whereas
the noncontractible component J does not.
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p
−→

p̃
←−

J

CX ⋔ Q

J+ J

Figure 3. The restrictions p : CX → G+ and p̃ : G→ G+, the
second one being a branched covering. On the right, the rotation
by 180◦ generates the group of deck transformations.

Proposition 2.3. Let o1 and o2 be ovals of RF.

(i) The set Q ∖ J is two open discs, each containing one of the two components of
ō1.

(ii) If o1 ⊂ o2 (where inclusion means that o1 is contained in the orientable
component of RP2 ∖ o2), then o1 ⊂ o2, in the following sense: Q ∖ o2 has
three components, one being a cylinder containing J , and the other two being
discs each containing a component of o1.

Proof. This comes from the observation that the covering p̃ : Q→Q is the quotient
of the 2-sphere Q by a fixed-point free involution (that is, the antipodal map), as well
as the fact that p : (RP2, RF)→ (R, p(RF)) is a diffeomorphism of the pair. □

This means that the real scheme RF can be seen doubled in RF , as Figure 4
depicts. Now, define A+(F) = p̃−1(A+(F)) = p̃−1(F/conj). For the analogue
of RP2

+
, there are two subsets Q± of Q ∖RF that have ∂ Q± = RF , and those are

diffeomorphic, exchanged by “symmetry” of Q along J . To be more precise, we

p̃
←−

p(RF)⊂R RF ⊂ Q

Figure 4. The set Q+, shaded, for an algebraic curve of degree 7
with real scheme ⟨J ⊔ 2⊔ 1⟨1⟩⟩ (in Viro notation), obtained as a
perturbation of three ellipses and a line.
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denote as Q± the closure of these two sets, with a choice involved in labeling one
Q+ and the other Q−.

Definition 2.4. The Arnold surface of a flexible curve F of odd degree is the surface
A(F)= A+(F)∪ Q+ ⊂ CP2.

3. Proving the inequality

The idea is that we would like to take the 2-fold branched cover of CP2 ramified
along the Arnold surface. This is not yet possible in this odd degree setting, for the
surface A(F) is not null-homologous in H2(CP2

;Z/2) (we will see that it has an
odd self-intersection number). In fact, this limitation is what led Viro and Zvonilov
to consider h(m)-sheeted branched covers, where h(m) denotes the highest prime
power that divides m. However, in our favorable setting, we can perturb the Arnold
surface, with the important feature that it preserves the structure of the curve RF
inside Q. One last remark is that we could not apply the same construction to a
Q-flexible curve F ⊂CP2 directly, because the conic Q has an even homology class.

Branching over the Arnold surface. We are first interested in computing the
normal Euler number of A(F)⊂ CP2. Recall that if F ⊂ X is a closed surface in a
closed oriented 4-manifold, then the Euler class e(νF) ∈ H 2(F;Zw) corresponds
to the self-intersection of F (here, Zw means coefficients twisted by w1(νF), and
w1(X)= 0 implies w1(νF)= w1(F), from which twisted Poincaré duality readily
gives H 2(F;Zw)∼= Z).

In the case where ∂ F ̸=∅ however, one needs to choose a fixed nonvanishing
section θ of νF |∂ F , and consider a relative Euler class (see [Sharafutdinov 1973]):

eθ (X, F)= eθ (νF) ∈ H 2(F, ∂ F;Zw)∼= Z.

This Euler class corresponds to the integer obstruction to extend this section θ to
the whole νF . However, if one needs to glue two surfaces F1 and F2 along their
common boundary ∂ F1 = ∂ F2 and compute the Euler number of F1 ∪∂ F2 in terms
of relative Euler numbers of F1 and F2, there are two things to be careful about:

(1) The bundle 3= (νF1 ∩ νF2)|∂ Fi over ∂ Fi needs to be rank one.

(2) This bundle 3 needs to have a nonvanishing section θ .

If both conditions are satisfied, the section θ gives rise to the same section of
νF1|∂ F1 and νF2|∂ F2 . This can be used to define relative Euler numbers eθ (X, Fi ).
Since, in the closed case, the number e(X, F) does not depend on the choice of the
(possibly vanishing) global section of νF , we obtain the relation

e(X, F1 ∪∂ F2)= eθ (X, F1)+ eθ (X, F2).
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For instance, if F ⊂ CP2 is a flexible curve of even degree m = 2k with nonempty
real part RF , one sees that 3= (νRP2

+
∩νF)|RF is the trivial line bundle over RF .

If θ denotes a section of the normal bundle RF in RP2, then iθ is a section of 3,
and letting R+ = RP2

+
/conj and A+(F) = F/conj, it also induces a section θ̂ of

(νR+ ∩ ν A+(F))|∂ A+(F). By a careful examination, one can use Lemma 1.4 to
compute

eθ̂ (S
4, A+(F))= 1

2 eiθ (CP2, F)= 1
2 F · F = 2k2,

because F is closed, and

eθ̂ (S
4, R+)= 2eiθ (CP2, RP2

+
)=−2χ(RP2

+
),

because RP2 is Lagrangian. This means that the Arnold surface A(F) ⊂ S4 has
normal Euler number

e(S4,A(F))= 2k2
− 2χ(RP2

+
).

If F ⊂ CP2 is now a flexible curve of odd degree, the normal bundle of RF in
RP2 is a nontrivial line bundle over RF (to be more precise, exactly one connected
component of this bundle is the nonorientable line bundle over the circle: the
component associated to the pseudoline J ⊂RF). As such, there is no nonvanishing
section θ of 3, and it does not give rise to a section iθ of νF |RF . However, the
subbundle i3⊂ νF |RF can be seen as a field of lines of νF |RF (instead of a section
being a vector field).

In general, let 3⊂ νF |∂ F be a line subbundle. As done in [Guillou and Marin
1980, §3], one can still consider the integer obstruction

ẽ3(X, F) ∈ H 2(F, ∂ F;Zw)

to extend this field of line to the whole νF . In the case where 3 does have a
section θ , we have ẽ3(X, F)= 2eθ (X, F).

Back to where F is a flexible curve of odd degree, and letting A+(F)= F/conj,
we see that i3 induces a line subbundle 3̂ of ν A+(F)|∂ A+(F). From an application
of Lemma 1.4,

ẽ3̂(S4, A+(F))= 1
2 ẽi3(CP2, F)= 1

2 · 2e(CP2, F)= m2,

because F is closed. This means that, in the above sense, we have e(S4, A+(F))=

m2/2, although this is a noninteger value.
To ease out the exposition, we will allow ourselves to write half-integer Euler

numbers and to use Lemma 1.4 with half-integers. It will be understood that we
use the obstruction ẽ when needed. We will also omit the choice of the field of
lines in the subscript, as all surfaces will ultimately become closed at the end of
computations.
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Proposition 3.1. We have e(CP2,A(F))= m2
− 2.

Proof. Recall that we defined A+(F)= p̃−1(A+(F)), and A(F)= A+(F)∪ Q+.
Using Lemma 1.4 twice, we compute that e(CP2, A+(F))= m2. Now, we simply
make use of the fact that e(CP2, Q+)=−2. Indeed, Q = Q+ ∪ Q−, thus

−4= e(CP2, Q)= e(CP2, Q+)+ e(CP2, Q−),

and because Q+ and Q− are swapped by the (orientation-preserving) involution of
CP2 spanning Aut( p̃), we obtain

e(CP2, Q+)= e(CP2, Q−),

from which we derive e(CP2, Q±)=−2. Alternatively, this can be obtained from
the following lemma. □

Lemma 3.2. Let X be a submanifold of Q. Then e(CP2, X)=−2χ(X).

Proof. The submanifold RP2
⊂CP2 being Lagrangian, and the covering p :CP2

→

S4 being branched exactly on p(RP2), we observe that νR∼=−T R in S4. However,
the covering p̃ : CP2

→ S4 is unbranched in a regular neighborhood of R, whence
νQ ∼=−2T Q. In particular, for the Euler classes, we have e(CP2, X)= e(νX)=

−2e(T X)=−2χ(X). □

Because A(F) has an odd self-intersection, we see that it cannot be null-
homologous in H2(CP2

;Z/2). In fact, because this group has rank one, being
Z/2-null-homologous is equivalent to having an even self-intersection. There is
another surface, however, which is not null-homologous and transverse to A(F): the
surface RP2. If F is a Q-flexible curve of odd degree m, the transverse intersection
F ⋔ Q is 2m points. This implies that A(F) intersects RP2 transversely in m points.
The surface A(F)∪RP2 is therefore immersed with m transverse crossings only.
We will describe how to resolve those double points to obtain an embedded surface.

Firstly, in a closed oriented 4-manifold X , let 6 ⊂ X be the image of a closed
surface through an immersion, with only one transverse self-intersection point
x ∈ 6. Take B ⊂ X to be a small 4-ball around x , which meets 6 in two disks
intersecting transversely at their common center x . The boundary of those discs is
a Hopf link ∂ B ∩6 ⊂ ∂ B ∼= S3, which bounds a Hopf band H ⊂ B. We call the
surface 6′ defined by a choice of a gluing of a Hopf band H to 6∖ B a smoothing
of the singularity of the immersed surface 6 ⊂ X .

Lemma 3.3. The resulting surface 6′ is an embedded surface in X with χ(6′)=

χ(6)− 1, e(X, 6′)= e(X, 6)± 2, and we have freedom in the choice.

Proof. Regarding the claim about the normal Euler numbers, we use similar
arguments as in [Yamada 1995, §5]. Note that if B is a small 4-ball around the
double point x ∈6, then the Hopf link ∂ B ∩6 comes with two possible choices of
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e(6′)= e(6)± 2 e(6′)= e(6)∓ 2

Figure 5. The two possible smoothings of a singularity of an
immersion, given by both choices of orientation of the Hopf link.

orientations. Each determines a unique (up to isotopy fixing the boundary) oriented
Hopf band H inducing that orientation. A transverse push-off s(6) of 6 can be
assumed to be parallel to 6 near x , and the intersection s(6)∩6∩H is two points
with the same sign. Finally, we see that those signs are opposite to one another in
both choices of orientations of ∂ B ∩6 (see Figure 5).

The fact that χ(6′)=χ(6)−1 is simply a matter of using the formula χ(A∪B)=

χ(A)+χ(B)−χ(A∩ B) twice (here, all the sets involved are cellular subspaces).
Indeed, if H denotes the Hopf band that is glued to 6 ∖ B, then

χ(6′)= χ(6 ∖ B ∪∂ H)= χ(6 ∖ B)+χ(H)−χ(S1
⊔S1)= χ(6 ∖ B),

and

χ(6)=χ(6∖B∪∂ B∩6)=χ(6∖B)+χ(B∩6)−χ(S1
⊔S1)=χ(6∖B)+1,

by noting that B ∩6 is topologically a wedge of two discs. □

Consider F ⊂ CP2 a Q-flexible curve of odd degree m. The Arnold surface
A(F) needs not be orientable, and as said before, there is no 2-fold branched cover
of (CP2,A(F)). Recall that A(F) ⋔ RP2 is m points, and as such, A(F)∪RP2 is
an immersed surface with m double points. Applying the previous smoothing of
the singularities at each of those m points, this yields a surface X (F)⊂ CP2, with

χ(X (F))= χ(A(F)∪RP2)−m;

e(CP2,X (F))= e(CP2,A(F)∪RP2)+ 2r, r ∈ {−m, . . . , m}.

Here, r is not free to take all the possible values in {−m, . . . , m}. However, the
extremal values ±m are always realizable. Define X (F) to be the one where we
pick up a +2 every time (that is, r = +m). Two applications of the topological
Riemann–Hurwitz formula give χ(A(F))= χ(F)−m+ 1. Therefore, we have

χ(X (F))=−m2
+ 2.
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Next, we compute

e(CP2,X (F))= e(CP2,A(F)∪RP2)+ 2m = m2
+ 2m− 1.

Take Y 4 to be the 2-fold cover of CP2 branched over X (F). This has been
made possible because the surface X (F) has zero homology mod 2: [X (F)] =

0 ∈ H2(CP2
;Z/2) (see [Gompf and Stipsicz 1999, §6.3] or [Nagami 2000, Corol-

lary 2.10]). Indeed,
H2(CP2

;Z/2)= {0, [RP2
]},

and A(F) intersects RP2 in an odd number m of points. Therefore, we deduce
that [A(F)] = [RP2

] in H2(CP2
;Z/2). Now, adding RP2 and smoothing the

singularities means that X (F)∩RP2
=∅, and as such [X (F)]=0 in H2(CP2

;Z/2).
We denote as 2 : Y 4

→ (CP2,X (F)) the 2-fold branched cover. The previous
computations of χ(X (F)) and e(CP2,X (F)) will allow us to obtain homological
information about the 4-manifold Y .

Proposition 3.4. The homology groups H1(Y ;Z) and H3(Y ;Z) are torsion. In
particular, for Betti numbers, we have b1(Y )= b3(Y )= 0.

Proof. In order to show that H1(Y ;Z) is torsion, it is sufficient to know that
H1(Y ;Z/2)= 0, for any free part Zp < H1(Y ;Z) would give p copies of Z/2 in
H1(Y ;Z/2). We use a generalization of the Gysin sequence, as stated in [Lee and
Weintraub 1995, Theorem 1]:

H1(CP2,X (F);Z/2)→ H1(Y, ∗;Z/2)→ H1(CP2,X (F);Z/2).

Here, H1(Y, ∗;Z/2) ∼= H̃1(Y ;Z/2) the reduced homology group, and we have
H1(CP2,X (F);Z/2)= 0, by looking at the homology long exact sequence of the
pair (CP2,X (F)). This provides H1(Y ;Z/2)= 0, as claimed. For b3(Y )= 0, this
is a consequence of b1(Y )= 0 and Poincaré duality. □

An educated guess is that Y may be simply connected, just like the usual branched
cover of CP2 branched over an algebraic curve {P(x0, x1, x2)= 0}, given as the
algebraic surface {P(x0, x1, x2) = w2

} ⊂ CP(1, 1, 1, m/2), is simply connected
(see [Wilson 1978]). However, we have enough information to compute all the
homological invariants of Y that will be useful. We recall the Hirzebruch formula
for the signature of 2-fold branched covers.

Theorem 3.5 [Hirzebruch 1969, Section 3]. Let f : (Y, B)→ (X, A) be a cyclic
2-fold branched cover, with X and Y both closed oriented 4-manifolds, A a closed
surface and f orientation-preserving. Then, we have

σ(Y )= 2σ(X)− 1
2 e(X, A).
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Proposition 3.6. We have

χ(Y )= m2
+ 4, b2(Y )= m2

+ 2, σ (Y )=
−m2
−2m−3
2

,

b+2 (Y )=
(m−1)2

4
and b−2 (Y )=

3m2
+2m+7

4
,

where b+2 (Y ) and b−2 (Y ) respectively denote the maximal ranks of the subspaces of
H2(Y ;Z) on which the intersection form QY is positive and negative definite.

Proof. First, the topological Riemann–Hurwitz formula again yields

χ(Y )= 2χ(CP2)−χ(X (F))= m2
+ 4.

Next, we use the Theorem 3.5 with the branched cover 2 to obtain

σ(Y )= 2σ(CP2)− 1
2 e(CP2,X (F))=−2− m2

+2m−1
2

=
−m2
−2m−3
2

.

Now, because of Proposition 3.4, we see that χ(Y )= 2+ b2(Y ). This provides

b+2 (Y )+ b−2 (Y )= b2(Y ) and b+2 (Y )− b−2 (Y )= σ(Y ),

which we can easily solve for b±2 (Y ). □

Proving the inequality. We will now mostly mimic the proof of Viro and Zvonilov
[1992]. Note that the construction of X (F) from A(F)∪RP2 happens away from
a neighborhood Q. In particular, we still see RF embedded inside X (F). Given an
oval o⊂RF , recall that RP2 ∖o has two connected components, one of which is a
punctured disc (the other being a punctured Möbius band). Letting C(o)⊂R be
the image of that component under p : CP2

→ S4, we see that p̃−1(C(o))⊂ Q is
diffeomorphic to two disjoint copies of C(o). We denote as C±(o) each of these
copies, with the property that C±(o)⊂ Q± (see Figure 6).

C−(o)⊂ Q− C+(o)⊂ Q+

Figure 6. Using the same scheme ⟨J ⊔2⊔1⟨1⟩⟩ as in the example
of Figure 4, we take o to be the only nonempty oval. In the shaded
regions, we depict C±(o), where part of the boundary ∂C±(o) is ō.
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2
←−

χ(o)=−1 e(Y, C̃(o))=+4

C−(o) C̃(o)

Figure 7. The “pseudo” branched cover C̃(o)→ C−(o).

We see that C+(o) is totally included in the ramification locus of the branched
cover 2 : Y → CP2, and that C−(o) intersects this ramification locus only at its
boundary ∂C−(o) ⊃ ō. We let C̃(o) = 2−1(C−(o)). The restriction 2 : C̃(o)→

C−(o) is not a branched cover, but it is close enough: it maps the boundaries
∂C̃(o)→ ∂C−(o) diffeomorphically, and is two-to-one on the interior. Because
C−(o) is planar (that is, a sphere with holes), we have that C̃(o) is obtained as
gluing two spheres with holes along their boundary components. Additionally,
Aut(2) is a Z/2 spanned by τ : Y → Y an orientation-preserving involution. This
involution τ swaps those two planar surfaces in Y that glue to C̃(o) and fixes their
common boundary. As such, we have shown the next result.

Proposition 3.7. For any oval o⊂ RF , C̃(o) is an oriented surface in Y of genus
b the number of ovals directly contained in o. The restriction 2 : C̃(o)→ C−(o),
shown in Figure 7, is the result of the quotient of the surface 6b by reflection along
a plane of symmetry that cuts it into two planar surfaces. □

The same construction works for J : there are two path-connected subsets D±(J )

of Q± that have J as a part of their boundary. Letting D̃(J )=2−1(D−(J )), we
have that D̃(J ) is a surface of genus e the number of exterior ovals in RF (those
not included in any other), and the restriction 2 : D̃(J )→ D−(J ) is again the
quotient of 6e by reflection along a plane in the middle.

Given an oval o⊂ RF , we denote as χ(o)= χ(C−(o)) the Euler characteristic
of the connected subset of RP2 ∖RF bounded by o from outside. Similarly, we let
χ(J ) = χ(D−(J )). One remarks that χ(o) ⩽ 1, with equality if and only if o is
empty, and that χ(J )= 1− e with e the number of exterior ovals.

Proposition 3.8. Let o, o′⊂RF be ovals, and denote again by J the noncontractible
component of RF.

(1) We have QY (C̃(o), C̃(o)) = −4χ(o) and QY (D̃(J ), D̃(J )) = −4χ(J ) =

4(e− 1).

(2) We have QY (C̃(o), D̃(J ))= 0. If o ̸= o′, then QY (C̃(o), C̃(o′))= 0.
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Proof. For the first claim, observe e(CP2, C−(o))=−2χ(o) and e(CP2, D−(J ))=

−2χ(J ), by using Lemma 3.2. Next, from Lemma 1.4, we can see that

e(Y, C̃(o))= 2e(CP2, C−(o)) and e(Y, D̃(J ))= 2e(CP2, D−(J )).

To derive QY (C̃(o), C̃(o)) and QY (D̃(J ), D̃(J )), we remark that C̃(o) and D̃(J )

are orientable surfaces, so the self-intersection and the evaluation of the intersection
form agree.

For the second claim, distinct ovals o and o′ cannot satisfy C−(o)∩C−(o′) ̸=∅,
even if one is included inside the other (but it is possible that C−(o)∩C+(o′) ̸=∅).
The same goes for C−(o)∩ D−(J ) = ∅. As such, the surfaces C̃(o), C̃(o′) and
D̃(J ) are nonintersecting in Y . □

The homology classes of the surfaces C̃(oi ), i ∈ [[1, ℓ]], and D̃(J ) were respec-
tively denoted as βi and β0 by Viro and Zvonilov (where ℓ denotes the number of
ovals in RF). They showed the following result.

Lemma 3.9 [Viro and Zvonilov 1992, Lemma 1.3]. Let h = pr be a prime power.
Let ν : Y → X be an h-sheeted cyclic covering between two n-manifolds, branched
over a codimension-two subset A ⊂ X. Let B ⊂ X be a membrane, let b be the
class in Hk(X, A) determined by B, and let β be the class in Hk(Y ) determined by
ν−1(B), oriented coherently with B. Let τ : Y → Y be a generator of Aut(ν), and
let ϱ = 1− τ ∈ (Z/p)[Aut(ν)]. Recall the Smith long exact sequence in homology
(with coefficients in Z/p):

· · · → Hϱ

k+1(Y )
∂
−→ Hk(X, A)⊕ Hk(A)

αk
−→ Hk(Y )

ϱ∗
−→ Hϱ

k (Y )→ · · · .

Then, the restriction α̃k : Hk(X, A)→ Hk(Y ) maps b to β, and

(1) αn−1 is monic if Hϱ
n (Y )= 0;

(2) α̃n−2 is monic if X is connected and Hn−1(Y )= 0;

(3) if ⌊(n+ 1)/2⌋⩽ k < n− 2, then αk is monic if X and A are connected and if
Hi (Y )= 0 for all k+ 1 ⩽ i ⩽ n− 1.

We can now prove an analogue to their Corollary 1.5.C.

Corollary 3.10. The set {C̃(oi ) | 1 ⩽ i ⩽ ℓ} ∪ {D̃(J )} has rank at least ℓ (where ℓ

is the number of ovals o1, . . . , oℓ of the curve). If the family has rank ℓ+ 1, then
the curve is type I.

Proof. We can apply Lemma 3.9 in our setting, where ν =2 : Y → (CP2,X (F))

and h = 2. We then see that

α̃2 : H2(CP2,X (F);Z/2)→ H2(Y ;Z/2)
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is injective, because CP2 is connected and H3(Y ;Z/2)=0 (Proposition 3.4). Noting
that α̃2(C−(o))= C̃(o) and α̃2(D−(J ))= D̃(J ), the claim follows from the very
same arguments as in [Viro and Zvonilov 1992, §2.4]. □

Recall that ℓ± and ℓ0 denote the number of ovals of the curve that bound from the
outside a component of RP2∖RF with positive/negative or zero Euler characteristic,
respectively. The previous results finally wraps up to yield our main theorem.

Theorem 3.11. Let F be a Q-flexible curve of odd degree m. Then

ℓ0
+ ℓ− ⩽ (m−1)2

4
.

If equality holds, then the curve is type I.

Proof. Take the maximal subset P of {C̃(oi ) | 1 ⩽ i ⩽ ℓ} ∪ {D̃(J )} that spans a
subspace of H+2 (Y ), and let r = rank(P). Then, we obtain r ⩽ b+2 (Y ). Moreover,
because of QY (C̃(o), C̃(o)) = −4χ(o) and similarly for D̃(J ), observe that P
has exactly ℓ0

+ ℓ−+ 1 elements (assuming that there is at least one oval to have
D̃(J ) ∈ P; if there are none, the theorem is vacuous). Therefore, because of
Corollary 3.10, we deduce r ⩾ #P − 1= ℓ0

+ ℓ−. This produces

ℓ0
+ ℓ− ⩽ b+2 (Y ),

which is the claimed inequality. The extremal case also follows from an almost
word-for-word proof as in [Viro and Zvonilov 1992]. □

4. Curves on a quadric

We investigate our method for flexible curves in CP1
× CP1, with either of its

antiholomorphic involutions c1(x, y)= (x̄, ȳ) or c2(x, y)= (ȳ, x̄). This is motivated
by recent work from Zvonilov [2022], which generalizes [Viro and Zvonilov 1992]
to flexible curves on almost-complex 4-manifolds. For a survey of results regarding
curves in CP1

×CP1, we refer the reader to [Matsuoka 1991] or [Gilmer 1991].
We will also need the following result.

Theorem 4.1 [Letizia 1984, §3]. There are diffeomorphisms CP1
×CP1/c1 ∼= S4

and CP1
×CP1/c2 ∼= CP2.

More precisely, the differential structure on CP1
×CP1 ∖ Fix(ci )/ci extends to

the standard one on S4 or CP2, respectively.
Note that in the present work, we do not make any assumption regarding gcd(a, b)

with [F] = (a, b) ∈ H2(CP1
×CP1), contrary to [Zvonilov 2022] where there is

no result if gcd(a, b)= 1.
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Curves on a hyperboloid. Consider the space X = CP1
×CP1 with its involution

c1 : ([x0 : x1], [y0 : y1]) 7→ ([x̄0 : x̄1], [ȳ0 : ȳ1]). We call (X, c1) the hyperboloid. Let
R= Fix(c1)= RP1

×RP1. We consider Q to be a generic real algebraic curve of
bidegree (2, 2) and with empty real part RQ=∅⊂R. We will prove the following
result.

Theorem 4.5. Let F be a Q-flexible curve in the hyperboloid with bidegree (a, b)

where both a and b are odd. Let ℓ± and ℓ0 denote the number of ovals of the
curve that bound from the outside a subset with positive, negative or zero Euler
characteristic, respectively. Then

ℓ−+ ℓ0 ⩽ ab+1
2

.

Note that H2(X;Z) is a Z⊕ Z spanned by the homology classes of algebraic
curves of bidegree (1, 0) and (0, 1). We have a notion of a (Q-)flexible curve in
this setting too.

Definition 4.2. Let F ⊂ X be a closed, connected and oriented surface. We call F
a bidegree (a, b) flexible curve if the following conditions hold:

(1) conj(F)= F .

(2) [F] = (a, b) in H2(X;Z)= Z⊕Z.

(3) χ(F)= 2− 2(a− 1)(b− 1).

(4) If RF = F ∩R, then for all x ∈ RF , Tx F = Tx RF ⊕ i · Tx RF .

If, additionally, F ⋔Q is 2(a+ b) points, then F is said to be Q-flexible.

Note that if both a and b are odd, then RF is some number of ovals (null-
homologous curves in R), and some nonzero number of parallel copies of a curve
with homology class (α, β) in H1(R;Z)∼= Z⊕Z, where 0 ⩽ α ⩽ a and 0 ⩽ β ⩽ b
are both odd and coprime, and π1(R)= H1(R;Z)∼= Z⊕Z is spanned by the real
parts of bidegree (1, 0) and (0, 1) algebraic curves. In the case of an oval o, the
complement R∖ o has two connected components, one of which is a disk and is
called the interior of that oval, and we say that o bounds it from the outside.

We observe that R is a null-homologous torus, and Q is a torus with homology
class (2, 2), both in H2(X;Z). Therefore

e(X,R)= 0 and e(X,Q)= 8.

Denoting as p : X → X/c1 ∼= S4 the 2-fold branched cover, we set R = p(R)

and Q = p(Q). Observe that R is a torus and Q is a Klein bottle. Finally, letting
p̃ : X → S4 be the 2-fold branched cover of S4 ramified along Q (which exists
because [Q] = 0 ∈ H2(S

4
;Z/2) ∼= 0), we set R = p̃−1(Q) and Q = p̃−1(R).
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R X Q

R S4 Q

Q X R

p̃

p||

||

⊂ ⊃

⊃⊂

⊂ ⊃

Figure 8. The branched covers in the case of CP1
×CP1 with its

hyperboloid structure, with the same notation conventions as in
Figure 1.

Consecutive applications of Lemma 1.4 yield

e(S4, R)= 0, e(S4, Q)= 4, e(X ,R)= 2 and e(X ,Q)= 0.

The situation is depicted in Figure 8.
The topological Riemann–Hurwitz formula gives χ(X)= 4, and Theorem 3.5

provides σ(X) = −2. A similar reasoning as in Proposition 3.4 ensures that
H1(X;Z/2)= 0, and thus that H1(X;Z) is torsion. In particular,

b1(X)= b3(X)= 0 and b2(X)=−σ(X)= 2.

This suggests that X may be diffeomorphic to CP2#CP2, but this will not be needed.
Consider a Q-flexible curve F ⊂ X of bidegree (a, b), where a and b are both

odd. In particular,

χ(F)=−2ab+ 2a+ 2b and e(X, F)= 2ab.

Letting A+(F)= p(F) and A+(F)= p̃−1(A+(F)), one checks that

χ(A+(F))=−2ab+ a+ b and e(A+(F))= 2ab.

In order to understand RF = p̃−1(∂ A+(F)) ⊂ Q, it is necessary to describe the
unbranched 2-fold covering p̃ :Q→R, which is a nontrivial 2-fold cover of the
torus (nontriviality can be deduced by the same argument as in the proof of the next
proposition). There are only three such coverings, each given by the subgroups
2Z⊕Z, Z⊕ 2Z and G = {(x, y) ∈ Z2

| x + y ≡ 0 mod 2}.

Proposition 4.3. The covering p̃ :Q→R corresponds to the subgroup G.

Proof. Assume it corresponds to the subgroup 2Z⊕Z (the argument is the same
with the other). Let γ be a curve with homology class (0, 1) in R. Its preimage is
therefore two parallel copies of it. The situation is depicted in Figure 9.

Now, let C be a generic bidegree (0, 1) algebraic curve, so that ∂ A+(C) = γ .
Then A+(C) ⋔ Q is one point, so that the map p̃ : A+(C)→ A+(C) is a branched
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p̃−1(γ )

−→
p̃ γ

Figure 9. The unbranched 2-fold covering of the torus correspond-
ing to the subgroup 2Z⊕Z, and its effect on the curve with homol-
ogy class (0, 1).

covering that restricts to an unbranched covering of the boundary. An application
of the Riemann–Hurwitz formula gives χ(A+(C))= 1, and A+(C) has at most two
boundary components. Therefore, there is no other choice but the same situation as
depicted in Figure 3. That is, A+(C) is a disk, and p̃−1(γ )= ∂ A+(C) is connected.
This is excluded, by assumption. The same argument with a bidegree (1, 0) algebraic
curve works for the subgroup Z⊕ 2Z. □

The covering corresponding to the subgroup G is depicted in Figure 10. If a
curve γ ⊂R has homology class (α, β) with both α and β odd (and coprime), then
its preimage is two parallel copies p̃−1(γ )⊂Q.

Recalling that RF is some ovals and some number of parallel copies of an (α, β)

curve with α and β coprime and odd, we have the following immediate facts:

(1) Each copy of the (α, β) curve is doubled (indeed, the homotopy class of that
curve belongs to the subgroup G).

(2) Each oval is doubled.

−→
p̃

Figure 10. The unbranched covering p̃ :Q→R corresponding
to the subgroup G = {(x, y) ∈ Z2

| x + y ≡ 0 mod 2} ⊂ Z2. On
the left, the preimage of the (3, 1) curve is two parallel copies of a
(1,−2) curve. It is understood that the two tori are represented by
the two squares, whose opposite sides are identified.
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←−−→

Figure 11. In the middle, a curve with real scheme ⟨(1, 1), 1⊔1⟨2⟩⟩.
On the left and on the right, the two possible choices Q±.

(3) The preimage respects mutual position of ovals, as in Proposition 2.3 (that is,
an oval inside another lifts to two copies inside the other two copies).

Hence, we see that Q∖RF has two diffeomorphic subsets Q± with the property
∂Q± = RF (we provide an example in Figure 11). We therefore have

χ(Q+)= χ(Q−) and χ(Q)= χ(Q+)+χ(Q−),

so that χ(Q±)= 0. The same argument gives e(X ,Q±)= 0.
Therefore, we can define the Arnold surface of the curve as A(F)= A+(F)∪Q+.

Note that A(F) ⋔R is a+ b points (coming from the 2(a+ b) points in F ⋔Q).
We consider the immersed surface A(F)∪R, and we let X (F) be the smoothing
of its singularities, as provided by Lemma 3.3, where we choose the smoothing that
satisfies

e(X ,X (F))= e(X ,A(F)∪R)+ 2(a+ b).

Proposition 4.4. Let F ⊂ X be a Q-flexible curve of bidegree (a, b) with both a
and b odd. The surface X (F) has zero homology in H2(X;Z/2) and satisfies

χ(X (F))=−2ab− a− b and e(X ,X (F))= 2ab+ 2a+ 2b+ 2.

Proof. Computing χ(X (F)) and e(X ,X (F)) is straightforward. To prove that
[X (F)] = 0 ∈ H2(X;Z/2), it suffices to show that A(F) and R are homologous
mod 2. Note that by the previous computations, b2(X) = −σ(X) = 2, so that X
is a negative definite smooth 4-manifold. By virtue of Donaldson’s theorem, this
means that the intersection form of X is, up to a change of basis, that of CP2#CP2.
We consider a basis of H2(X , Z/2)∼= Z/2⊕Z/2 that diagonalizes this intersection
form, and we will show that A(F) and R both realize the homology class (1, 1) in
H2(X;Z/2).



A VIRO–ZVONILOV-TYPE INEQUALITY 177

Because e(X ,A(F)) and e(X ,R) are both even, this rules out the two classes
(1, 0) and (0, 1). As such, it suffices to show that A(F) and R are both not null-
homologous in H2(X;Z/2) (if A(F) was null-homologous, we could directly take
the 2-fold covering of X ramified along A(F), without adding R).

By Theorem 5.5, we have the congruences

e(X ,A(F))+ 2χ(A(F))≡ q([A(F)]) mod 4,

e(X ,R)+ 2χ(R)≡ q([R]) mod 4,

for some quadratic function q :H2(X;Z/2)→Z/4. From the previous computations,
this yields

2ab ≡ q([A(F)]) mod 4 and 2≡ q([R]) mod 4.

Since a and b are both odd, this means that 2ab ̸≡ 0 mod 4. As such, we cannot
have q([A(F)])= 0 and q([R])= 0, thus implying [A(F)] ̸= 0 and [R] ̸= 0. □

Let Y denote the 2-fold covering of X ramified along X (F). By Proposition 3.4,
H1(Y ) is torsion, and computations of χ(Y ) = 2ab + a + b + 8 and σ(Y ) =

−ab− a− b− 5 yield

b+2 (Y )=
ab+1

2
.

This implies the following result.

Theorem 4.5. Let F be a Q-flexible curve in the hyperboloid with bidegree (a, b)

where both a and b are odd. Let ℓ± and ℓ0 denote the number of ovals of the
curve that bound from the outside a subset with positive, negative or zero Euler
characteristic, respectively. Then

ℓ−+ ℓ0 ⩽ ab+1
2

.

Proof. We denote as 2 : Y → X the double branched cover of (X ,X (F)). For any
oval o ⊂ RF , R∖ RF has exactly two path-connected components that have o
as a part of their boundary. One is a punctured disc, and the other is a punctured
torus. We denote as C(o)⊂R the image under p : X→ S4 of the punctured disc
component, and as C±(o)⊂Q± the preimages under p̃ : X→ S4 of C(o). We set
C̃(o)=2−1(C−(o)). For an analogue of D̃(J ), there is a subtlety. Indeed, in RF ,
there may be several parallel copies of an (α, β)-curve in H1(R;Z), where α and
β are both odd and coprime. Each of these curves will lift in Q to two copies.
If RF contains ovals, then it is possible to choose one connected component D−
of Q∖ RF that has one of those curves as a boundary component, and at least
one oval as another boundary component, and which is included in Q−. Define
D̃=2−1(D−). By computations analogous to the CP2 case, we have the following:
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(1) If o⊂ RF is an oval, then e(Y, C̃(o))=−4χ(o), where χ(o)= χ(C−(o)). In
particular, e(Y, C̃(o)) ⩽ 0 if and only if o is a nonempty oval.

(2) QY (D̃, D̃) ⩽ 0.

(3) If o ̸=o′ are two distinct ovals, then QY (C̃(o), C̃(o′))=0 and QY (C̃(o), D̃)=0.

We can now apply Lemma 3.9 to the family composed of the collection of the C̃(o)

and of D̃. □

Curves on an ellipsoid. We now consider the other antiholomorphic involution
c2 : ([x0 : x1], |y0 : y1]) 7→ ([ȳ0 : ȳ1], [x̄0 : x̄1]) on X =CP1

×CP1. This time, we have

R= Fix(c2)= {(x, x̄) | x ∈ CP1
} ∼= S2,

and X/c2 ∼= CP2. Algebraic curves in (X, c2) necessarily have a bidegree of the
form (m, m) for some m ⩾ 1. Consider a purely imaginary bidegree (2, 2) algebraic
curve Q, and define flexible curves and Q-flexible curves as before. Note that we
still keep the same basis for H2(X;Z) as in the case of the hyperboloid.

Theorem 4.6. Let F be a bidegree (m, m) Q-flexible curve on the ellipsoid, with m
odd. Let ℓ± and ℓ0 denote the number of connected components of R∖RF with
positive, negative or zero Euler characteristic. Then

ℓ0
+ ℓ− ⩽ m2

+1
2

.

We have
e(X,R)=−2 and e(X,Q)= 8,

because [R] = (±1,∓1) ∈ H2(X;Z) (depending on a choice of orientation) and
[Q] = (2, 2). Denoting the branched cover as p : X → CP2, we see that, letting
R = p(R) and Q = p(Q),

e(CP2, R)=−4 and e(CP2, Q)= 4.

In particular, Q is a null-homologous Klein bottle in H2(CP2
;Z/2), because it has

even normal Euler number. This means that there is a well-defined 2-fold branched
cover p̃ : X→CP2 ramified along Q. We let R= p̃−1(Q) and Q= p̃−1(R), so that

e(X ,R)= 2 and e(X ,Q)=−8.

A direct computation provides

χ(X)= 6 and σ(X)=−4,

with H1(X) torsion. This is evidence to think that X ∼= 4CP2. What will be
useful is knowing that X is negative definite, and so has intersection form −I4 by
Donaldson’s theorem.
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←−
p̃

−→
p̃

Q+ Q−

p(RF)⊂R

Figure 12. The two possible subsets Q±, shaded. It is understood
that the two spheres in the first row are Q1, and the two in the
second are Q2.

This time, the restriction p̃ :Q→R is a two-fold covering of the 2-sphere, and
is necessarily trivial. We set Q = Q1 ⊔ Q2. Let τ : X → X be the involution of
X spanning Aut( p̃). Denote as R1 and R2 the two subsets of R ∖ p(RF) with
∂ Ri = p(RF), and define

Q+ = Q1 ∩ p̃−1(R1)⊔ Q2 ∩ τ( p̃−1(R1)),

Q− = Q2 ∩ p̃−1(R1)⊔ Q1 ∩ τ( p̃−1(R1)).

We refer to Figure 12 for a representation. Of course, this definition depends on the
choices of the labeling Qi of the two components of Q, as well as the choice of
the labeling of the Ri . But ultimately, the inequality we obtain will not depend on
these choices.

This allows for a definition of A(F) such that e(Q+) = 1
2 e(Q) and χ(Q+) =

1
2χ(Q). We obtain

χ(A(F))=−2m2
+ 2m+ 2 and e(A(F))= 2m2

− 4.

Another key difference from the cases of CP2 and of the hyperboloid is that the
second homology H2(X;Z/2) now has rank four (the intersection form of X is−I4).
To show that A(F) and R are homologous mod 2 and not null-homologous, we
need to eliminate more cases. We consider a basis of H2(X;Z) that diagonalizes the
intersection form of X . It also descends to a basis of H2(X;Z/2). If (a, b, c, d) ∈

H2(X;Z/2) denotes the homology class of A(F) or R, with a, b, c, d ∈ {0, 1}, then
the fact that e(X ,A(F)) and e(X ,R) are even implies that a+b+c+d ≡ 0 mod 2.
There are 8 remaining cases: (0, 0, 0, 0), (1, 1, 1, 1), and the six cases of the type



180 ANTHONY SAINT-CRIQ

ℓiRi ∖ Di

Di

Figure 13. The core of a Möbius strip can be seen as a real line in
the associated real projective plane.

(1, 0, 1, 0) with two nonzero coefficients. Theorem 5.5 rules out the zero homology
class, as well as the (1, 1, 1, 1) one. Let X (F) be A(F)∪R with all 2m singularities
removed accordingly to Lemma 3.3. This gives

χ(X (F))=−2m2
− 2m+ 2 and e(X ,X (F))= 2m2

+ 4m− 2.

One last application of Theorem 5.5 provides q([X (F)])≡ 0 mod 4. In particular,
if, without loss of generality, we have [R] = (1, 1, 0, 0), then this means that there
are only two choices:

[A(F)] = (1, 1, 0, 0) or (0, 0, 1, 1).

That is, either X (F) is null-homologous, in which case [R] = [A(F)], or it is a
characteristic surface if [R] ̸= [A(F)]. Assuming that X (F) is characteristic, the
Guillou–Marin congruence (Theorem 5.10) applies and gives

β(X ,X (F))≡−(m+ 1)2
≡ 0 or 4 mod 8,

by inspection of the squares of odd integers mod 8. Because the surface X (F) has
high genus, this method will a priori not yield any contradiction.

Proposition 4.7. The surface A(F) is homologous to R mod 2.

Proof. We start by describing the generators of the homology H2(X;Z/2). Consider
a complex line CP1

⊂ CP2 such that CP1
∩Q =∅. This means that CP1 lifts to

two spheres S1 and S2 in X , each with e(X , Si )=−1. Moreover, because they are
disjoint, we have Q X ,Z/2(S1, S2) ≡ 0 mod 2, i.e., they are linearly independent.
There are two more generators that come from the following construction.

Q is a Klein bottle, which can be seen as the desingularization of two real
projective planes R1 and R2, with R1 ⋔ R2={∗} and e(CP2, Ri )=1. By Lemma 3.3,
we see that this is possible from the computation e(CP2, Q)= 4. Let x ∈ R1 ⋔ R2 be
the transverse intersection, and let Di ⊂ Ri be a small disc centered at x . Ri ∖Di is a
Möbius strip, whose core ℓi can be seen as a real projective line in Ri (see Figure 13).
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This real line separates a complex line L i into two components L±i with ∂L±i = ℓi .
Let 6i = p̃−1(L+i ). From L+i ⋔Q= ℓi = ∂L+i , we see that 6i is a sphere in X with
e(X , 6i )=−1. Moreover, QZ/2(61, 62)≡ 0 mod 2 because 61∩62=∅. Finally,
because L±i ∩CP1

⊂ CP2 ∖Q, we have 6i ⋔ SJ is an even number of points, and
thus QZ/2(6i , S j )≡0 mod 2. As such, (S1, S2, 61, 62) is a basis for the homology
H2(X;Z/2). From [Nagami 2000, Lemma 3.4], the surface p̃−1(CP1)∪R is mod 2
characteristic in X , and as such, we have [R]Z/2= [S1]+[S2]. In order to show that
A(F) and R are homologous mod 2, it suffices to prove that Q X ,Z/2(A(F), 6i )≡

0 mod 2 for i = 1, 2. Equivalently, we need to show that A(F) ⋔ 6i is an even
number of points for i = 1, 2. Intersection points in A(F) ⋔ 6i come in two types:

(1) intersections between p̃−1(F+) and 6i ; this number equals that of intersection
points between F+ and CP1, which is itself even because e(CP2, F+)= 2m2;

(2) intersections between Q+ and 6i , itself also equal to #R ⋔ CP1, which is
even because e(CP2, R)=−4. □

To prove Theorem 4.6, we apply the same method as before. Given a connected
component U ⊂R∖RF (or equivalently, U ⊂R∖ p(RF)), the lift p̃−1(U ) is two
disjoint copies of U . We let C±(U ) denote those copies, with the condition that
C±(U ) ⊂Q±. As before, let C̃(U ) =2−1(C−(U )), with 2 : Y → X the double
branched cover of X ramified over X (F). We have

e(Y, C̃(U ))=−4χ(U ).

If QY is the intersection form of Y , and if U and V are two distinct components of
R∖RF , then there are two possibilities:

(1) U∩V =∅, in which case C−(U )∩C−(V )=∅, and thus QY (C̃(U ), C̃(V ))=0.

(2) U ∩ V is a component of RF , in which case C−(U )⊂ Qi and C−(V )⊂ Q j ,
with {i, j} = {1, 2}. In particular, we still have C−(U )∩C−(V )=∅.

Finally, one applies the same arguments as before to the family {C̃(U )}χ(U )⩽0

to obtain the claimed bound.

5. Further comments

Other ways to resolve the singularities. In order to take the 2-fold branched cover,
we added RP2 to A(F). This led us to resolve the m singularities that arose. As
suggested by Zvonilov in a personal communication, one could be tempted to use
blow-ups and see what effect this has. But in order to ensure that the new surface
X (F) is still connected, we cannot blow-up all m singularities. Doing this procedure
to m− 1 of those, and gluing a Hopf band for the last as we did previously, leads
to the very same bound. That is, the 4-manifold Y which is the double branched
cover of (mCP2,X (F)) still has b+2 (Y )= (m− 1)2/4.
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Comparisons of our inequality. Given a prime number p and an integer m ∈ N⋆,
we denote as νp(m)=max{n ∈N | pn divides m} the p-adic valuation of m. Define
the function h : N⋆

→ N by

h(m)= max
p prime

pνp(m).

That is, h(m) is the largest prime power that divides m. Viro and Zvonilov’s
inequality, which holds for flexible curves, is

ℓ0
+ ℓ− ⩽ (m−3)2

4
+

m2
−h(m)2

4h(m)2
.

We denote as V Z(m) and S(m) the bounds obtained by Viro and Zvonilov and
ours, respectively. That is,

V Z(m)=
(m−3)2

4
+

m2
−h(m)2

4h(m)2
and S(m)=

(m−1)2

4
.

For infinitely many degrees m, one has S(m) < V Z(m). But in infinitely many
others (e.g., when m is a prime power), the converse holds. However, both are far
from sharp estimates that can be obtained from considerations for algebraic curves
that come from Bézout theorem computations. That is, there are degrees m for
which V Z(m) and S(m) are both not realized as upper bounds for ℓ0

+ ℓ−. For
instance, Zvonilov [1979] has the sharper estimate, valid for pseudoholomorphic
curves,

ℓ0
+ ℓ− ⩽ (m−1)(m−3)

4
.

If one starts with Viro and Zvonilov’s inequality in the case where m + 2 is a
prime power and the curve is Q-flexible of degree m, then one can perturb its union
with the conic Q into a nonsingular degree m+ 2 flexible curve (which will have
the same real set, for RQ =∅), and obtain

ℓ0
+ ℓ− ⩽ (m−1)2

4
+

(m+2)2
−h(m+2)2

4h(m+2)2
=

(m−1)2

4
.

That is, one can derive our Theorem 3.11 from Viro and Zvonilov’s when m+ 2 is
a prime power. On a side note, if the famous twin prime conjecture happens to be
true, this means that there are infinitely many degrees m for which V Z(m) < S(m)

and the bound S(m) is a corollary of their bound.
By some easy number-theoretic considerations, one can show that there are

infinitely many odd degrees m such that neither of m and m+ 2 are prime powers,
and for which S(m) < V Z(m). Indeed, the difference of the upper bounds in both
inequalities is

V Z(m)− S(m)=
1
4

([
m

h(m)

]2
− 4m+ 7

)
.
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With m p=1287×42912p+1, one has 5 |m p+2 and 7 | p+2, and h(m p)∈o(m19/40
p ).

In particular, the difference diverges to +∞ on the degrees m p.
The same conclusion can be derived when comparing the inequalities of The-

orems 4.5 and 4.6 with Zvonilov’s work [2022]. It turns out that, for a curve of
bidegree (a, b) with a and b coprime, Zvonilov has no possibility to take a cyclic
covering, and there is no inequality in those cases.

Nonorientable flexible curves. There is a new object that could be interesting to
study: nonorientable flexible curve. The motivation comes from the observation that
in the operation of taking double branched covers, orientability of the ramification
locus is disregarded. This is not the case for other cyclic branched covers (and the
methods from [Viro and Zvonilov 1992] cannot apply to nonorientable surfaces).
We propose the following nonorientable analogue of Definition 1.1.

Definition 5.1. Let F ⊂ CP2 be a closed, connected and nonorientable surface.
We call F a nonorientable degree m and genus h flexible curve if the following
conditions hold:

(i) χ(F)= 2− h.

(ii) conj(F)= F .

(iii) e(CP2, F)= m2.

(iv) For any x ∈ RF = F ∩RP2, we have Tx F = Tx RF ⊕ i · Tx RF .

What plays the role of asking that the integral homology class of F is m times a
generator [CP1

] in H2(CP2
;Z) is the condition e(CP2, F)=m2. In the traditional

orientable case, we also had the condition that χ(F) = −m2
+ 3m. This was a

requirement of extremality in the genus bound proved by Kronheimer and Mrowka.

Theorem 5.2 (Thom conjecture, [Kronheimer and Mrowka 1994]). Let F ⊂ CP2

be a smoothly embedded oriented and connected surface with [F] =m [CP1
]. Then

χ(F) ⩽−m2
+ 3m.

One could ask whether the implication

e(CP2, F)= m2
=⇒ χ(F)≤−m2

+ 3m

holds for closed, connected, nonorientable surfaces F smoothly embedded in CP2.
In fact, self-intersection numbers of nonorientable surfaces need not be squares.
Given any m ∈Z, set 6(m) to be the collection of all smoothly embedded, connected
and nonorientable surfaces F ⊂ CP2 with e(CP2, F) = m. We can define the
following nonorientable genus function of CP2:

g̃ : Z→ Z⩽1,

m 7→ max
F∈6(m)

χ(F).
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We will later prove the following result.

Theorem 5.3. Here, k ∈ N⋆ denotes a nonnegative integer.

(1) We have g̃(0)= 0.

(2) Let ℓ ∈ {0, 1} have the same parity as k. Then, on negative integers, we have

g̃(−k)= 2− k+ℓ

2
.

(3) On even positive integers, we have

g̃(4k)= 4− 2k (for k ⩾ 2) and g̃(4k+ 2)= 3− 2k.

We also have the special values g̃(2)= 1 and g̃(4)= 0.

(4) On odd positive integers, we have the bounds

g̃(4k+ 1) ⩾ 2− 2k and g̃(4k+ 3) ⩾ 1− 2k.

We also have the special values g̃(1)= 0, g̃(3)= 1, g̃(5)= 0, g̃(7)=−1 and
g̃(9)=−2.

In the previous theorem, one can now look at the values of g̃(m2). We obtain{
g̃(m2)= 8−m2

2 if m is even,
g̃(m2) ⩾ 5−m2

2 if m is odd.

In particular, we see that the nonorientable analogue g̃(m2) ⩽ −m2
+ 3m of

Theorem 5.2 has the quadratic term off by 50%. Nonorientable flexible curves still
share some properties with traditional flexible curves. More precisely, we show the
following.

Proposition 5.4. Let F ⊂ CP2 be a nonorientable flexible curve of degree m. Then

(1) χ(F) is an even integer;

(2) RF realizes the nontrivial homology class in H1(RP2
;Z) if and only if m is

odd, and it has exactly one pseudoline in this case;

(3) F satisfies the Harnack bound: b0(RF) ⩽ 3−χ(F).

Proof. The first claim is a consequence of the following result, which is a general-
ization of the well-known Whitney congruence.

Theorem 5.5 [Yamada 1995, Theorems 1.2 and 1.4]. Let X be a closed, connected,
oriented 4-manifold.

(1) If H1(X;Z)= 0, define q : H2(X;Z/2)→Z/4 by setting, for ξ ∈ H2(X;Z/2),
q(ξ)=Q X (ξ̃ , ξ̃ ) mod 4, where ξ̃ ∈ H2(X;Z) is any integral lift of ξ . Then, for
any embedded, closed, connected (not necessarily orientable) surface F ⊂ X ,

e(X, F)+ 2χ(F)≡ q([F]) mod 4.



A VIRO–ZVONILOV-TYPE INEQUALITY 185

(2) Without the assumption that H1(X;Z)= 0, the map

q : H2(X;Z/2)→ Z/4

defined by q([F])= e(X, F)+ 2χ(F) is a well-defined Z/4-quadratic map.

Indeed, if e(CP2, F)=m2, then one inspects two cases, depending on the parity
of m. If m is even, then [F] = 0 ∈ H2(CP2

;Z/2), and if m is odd, then [F] is the
generator of H2(CP2

;Z/2). Both cases yield χ(F)≡ 0 mod 2.
For the other claims, the classical proofs for flexible curves, found, for instance,

in Viro’s lecture notes, work word for word. □

We call a nonorientable flexible curve of degree m Q-flexible if, as before, the
intersection F ⋔ Q is 2m points. Then, we have the following result.

Theorem 5.6. Let F ⊂ CP2 be a nonorientable Q-flexible of odd degree m. Then

ℓ0
+ ℓ− ⩽−χ(F)

2
−

m2
−1
4
+m.

Proof. The only difference with traditional flexible curves is that one needs to do all
the computations in terms of χ(F). Indeed, starting at the level of S4, the surface
F/conj needs not be orientable anymore. One checks that, for the Arnold surface,
we have

χ(A(F))= χ(F)−m+ 1 and e(CP2,A(F))= m2
− 2,

and for the smoothing X (F), we obtain

χ(X (F))= χ(F)− 3m+ 2 and e(CP2,X (F))= m2
+ 2m− 1.

This gives, denoting as Y the double branched cover of (CP2,X (F)),

b+2 (Y )=−
χ(F)

2
−

m2
−1
4
+m.

Note that χ(F) ⩽ 0 is necessarily even, as seen in Proposition 5.4. □

In regards to Theorem 5.3, we conjecture the following.

Conjecture 5.7. The lower bounds for g̃ over nonnegative odd integers are equali-
ties.

If this holds, then one may add to the definition of a nonorientable flexible
curve F of degree m that they must satisfy the extremal bound χ(F)= g̃(m). In
this case, Theorem 5.6 becomes

ℓ0
+ ℓ− ⩽ m− 1,

whereas the Harnack bound gives

b0(RF) ⩽ m2
+1
2

.
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This is to be compared to

b0(RF) ⩽ m2
−3m+4

2
∼

m2

2
and ℓ0

+ ℓ− ⩽ m2
−2m+1

4
∼

m2

4

for traditional Q-flexible curves.

Proof of Theorem 5.3. The two steps of the proof are to

(1) obtain upper bounds for χ(F) given e(CP2, F)= m, and

(2) construct a surface realizing that upper bound.

To this end, we will use the following.

Theorem 5.8 [Levine et al. 2015, Theorem 10.1]. Let X be a closed, connected,
oriented, positive definite 4-manifold with H1(X;Z)= 0, and let F ⊂ X be a closed,
connected, nonorientable surface with nonorientable genus h(F) = 2 − χ(F).
Denote as ℓ(F) the minimal self-intersection of an integral lift of [F] ∈ H2(X;Z/2).
Then

e(X, F)≥ ℓ(F)− 2h(F).

This allows us to obtain the upper bounds

g̃(−k) ⩽ 2− k+ℓ

2

for k ∈ N⋆ and ℓ ∈ {0, 1} having the same parity as k. Indeed, if F ⊂ CP2 has
e(CP2, F) = −k, then ℓ(F) = ℓ, because [F] ̸= 0 ∈ H2(CP2

;Z/2) if and only
if −k is odd, in which case a complex line is an integral lift of F with minimal
self-intersection.

Another method (which worked for the orientable Thom conjecture in degree 4,
for instance) is to make use of homological information of the double branched
cover of CP2 ramified along F . More precisely, we have the following.

Proposition 5.9. Let F ⊂ CP2 be a closed, connected surface such that [F] = 0 ∈
H2(CP2

;Z/2) (or equivalently, such that e(CP2, F) is even). Then

χ(F) ⩽ 4− e(CP2, F)

2
.

Proof. Let Y denote the double branched cover of CP2 ramified over F . We
compute

χ(Y )= 6−χ(F) and σ(Y )= 2− e(CP2, F)

2
.

Moreover, by reasoning analogous to the proof of Proposition 3.4, we have b1(Y )=

b3(Y ) = 0, so that b2(Y ) = 4− χ(F). If one considers any orientable surface
6 ⊂ CP2 which is not null-homologous in H2(CP2

;Z), and which is transverse
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to F , we see that e(CP2, 6) > 0, and 6 lifts in Y to a surface 6̃ with e(Y, 6̃)=

2e(CP2, 6) > 0. This implies that

b+2 (Y )=
b2(Y )+σ(Y )

2
⩾ 1,

yielding the inequality that was claimed. □

Note that unless e(CP2, F) ⩾ 8, the previous result only gives trivialities, since
χ(F) ⩽ 1 for a nonorientable surface. This is enough to obtain the upper bounds

g̃(4k) ⩽ 4− 2k and g̃(4k+ 2) ⩽ 3− 2k

for k ∈ N⋆. Note that if k = 1, then the bound g̃(4) ⩽ 2 is vacuous.
What remains to do is

(1) compute the special values of g̃ at 0, 1, 2, 3, 4, 5, 7 and 9;

(2) construct surfaces F ⊂ CP2 that realize the upper bounds for g̃(−k), g̃(4k)

and g̃(4k+ 2);

(3) construct surfaces F ⊂CP2 to derive lower bounds for g̃(4k+1) and g̃(4k+3).

To obtain upper bounds for g̃ on odd integers ⩽ 9, we will need the following.

Theorem 5.10 [Guillou and Marin 1980]. Let F ⊂ X be a mod 2 characteristic
surface in a closed, connected, oriented 4-manifold with H1(X;Z)= 0. Then

σ(X)− e(X, F)≡ 2β(X, F) mod 16,

where β(X, F) is the Brown invariant of the embedding.

We shall recall what β(X, F) is. The Guillou–Marin form

ϕ : H1(F;Z/2)→ Z/4

is defined as follows. Because H1(X;Z)= 0, any immersed circle C ↬ F bounds
an immersed orientable surface D ↬ X . Isotope D (relatively to its boundary)
such that it is transverse to F . The normal bundle νD of D in X is trivial, and as
such, so is νD |C . Considering the normal bundle νC of C in F as a subbundle
νC < νD |C , count the number n(D) of right-handed half-twists with respect to the
fixed trivialization νD |C ∼= C ×R2. Define

(∗) ϕ(C )= n(D)+ 2D · F + 2e(F, C ) mod 4,

where D · F is the number of transverse intersection points F ⋔ D taken mod 2.
Then this definition does not depend on any of the choices made, and ϕ(C ) depends
only on the homology class [C ] ∈ H1(F;Z/2). This defines a quadratic map

ϕ : H1(F;Z/2)→ Z/4,
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b
a

Figure 14. The standard basis for the first homology of the Klein bottle.

to which one can regard its Brown invariant

(∗∗) β(X, F)
def.
=

(
1
√

2

)b1(F;Z/2) ∑
x∈H1(F;Z/2)

√
−1

ϕ(x)
.

For instance, we can compute the possible values of β(CP2, K ) where K ⊂CP2

is a Klein bottle. We refer to Figure 14 for a choice of generators a and b of
H1(K ;Z)= {0, a, b, a+ b}.

From ϕ(a+ b)= ϕ(a)+ϕ(b)+ 2a · b= ϕ(a)+ϕ(b)+ 2, it suffices to compute
ϕ(a) and ϕ(b). One checks that ϕ(a) ∈ {1, 3} and ϕ(b) ∈ {0, 2}, by computing each
term in (∗). Therefore, it suffices to inspect each of the four cases individually, and
plug the values in (∗∗) to obtain

β(CP2, K ) ∈ {0, 2, 6}.

Proposition 5.11. We have g̃(1)⩽ 0, g̃(3)⩽ 1, g̃(5)⩽ 0, g̃(7)⩽−1 and g̃(9)⩽−2.

Proof. Note that Theorem 5.5 gives

e(CP2, F) ∈ {1, 5, 9} =⇒ χ(F) is even,

e(CP2, F) ∈ {3, 7} =⇒ χ(F) is odd.

In particular, from χ(F) ⩽ 1 always, we see that the only nontrivial bounds are for
g̃(7) and g̃(9).

(1) Assume that F ⊂CP2 has e(CP2, F)= 7 and χ(F)= 1 (that is, F is diffeomor-
phic to a projective plane). Then, the Guillou–Marin congruence (Theorem 5.10)
gives

1− 7≡ 2β(CP2, F) mod 16.

A simple calculation as before for the possible values of β(CP2, K ) gives that, in
the case of the projective plane, β(CP2, RP2)= 1, a contradiction.
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(2) If F now has e(CP2, F) = 9 and χ(F) = 0 (that is, F is a Klein bottle), we
can use the Guillou–Marin congruence again to derive

β(CP2, F)≡ 4 mod 8.

The previous calculations gave β(CP2, K ) ∈ {0, 2, 6}, which is a contradiction. □

Now, the only things that remain to do are to construct surfaces that realize the
upper bounds obtained thus far, and compute upper bounds for g̃ in the special
cases not covered yet. For constructions of surfaces, we will make use of local
surfaces. Recall the so-called Whitney–Massey theorem.

Theorem 5.12 [Massey 1969]. Let F ⊂ S4 be a closed, connected, nonorientable
surface. Then

e(S4, F) ∈ {2χ(F)− 4, 2χ(F), . . . , 4− 2χ(F)}.

All tuples (e, χ) satisfying this condition are realizable by a closed, connected,
nonorientable surface.

A surface F embedded in the 4-ball B4 that realizes an admissible tuple (e, χ)

will be called a local surface. Note that the previous theorem ensures that those
always exist for any admissible tuple.

Proposition 5.13. All upper bounds obtained for g̃ so far are sharp. We have

g̃(4k+ 1) ⩾ 2− 2k and g̃(4k+ 3) ⩾ 1− 2k.

Proof. Fix k ∈ N⋆ a nonnegative integer.

(1) If k = 2p is even, consider a local surface F ⊂ B4
⊂ CP2 of genus p and

self-intersection −2p. Then χ(F)= 2− p= 2− k/2 and e(CP2, F)=−k. If now
k= 2p+1 is odd, choose F ⊂B4 a local surface of genus p+1 and self-intersection
−2(p+ 1). Embed the 4-ball B4 in CP2 away from a fixed complex line L ⊂ CP2,
and consider the surface F#L obtained by connecting F and L with a small tube.
Then, by noting that L is a 2-sphere with self-intersection +1, we have

χ(F#L)= χ(F)= 2− (p+ 1)= 2− k+1
2

and

e(CP2, F#L)=−2(p+ 1)+ 1=−k.

In both cases, this implies that

g̃(−k) ⩾ 2− k+ℓ

2
.
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(2) Assume that k ⩾ 2. Let F ⊂ B4 be a local surface of genus 2(k − 1) and
self-intersection 4(k− 1). Embed the 4-ball away from the conic Q, and consider
the surface F#Q (again, by connecting them with a small tube). We compute, using
that Q is a 2-sphere with self-intersection +4,

χ(F#Q)= 4− 2k and e(CP2, F#Q)= 4k,

yielding the lower bound g̃(4k) ⩾ 4− 2k. Note that in the case k = 1, this works,
but gives an orientable surface (the 2-sphere Q).

(3) Let F ⊂ B4 be a local surface of genus 2k − 1 and self-intersection 4k − 2.
Tubing with the conic Q gives

χ(F#Q)= 3− 2k and e(CP2, F#Q)= 4k+ 2,

which provides us with g̃(4k+ 2) ⩾ 3− 2k.

(4) One can do the same to derive the bounds

g̃(4k+ 1) ⩾ 2− 2k and g̃(4k+ 3) ⩾ 1− 2k.

Indeed, taking F to be a local surface of genus 2k (resp. 2k+1) and self-intersection
4k (resp. 4k+ 2), this can be embedded away from a complex line L . Looking at
the surface F#L gives the lower bounds. The special cases for g̃(5), . . . , g̃(9) are
covered by this construction. For g̃(1), it suffices to consider a local Klein bottle
with self-intersection 0 and tubing it with a complex line, and for g̃(3), the conic Q
can be tubed to RP2

= Fix(conj). □

To conclude the proof of Theorem 5.3, there only remains to compute three
special values that have not been covered yet:

(1) g̃(0) = 0, because the Euler characteristic must be even, and a local Klein
bottle with zero self-intersection gives a lower bound.

(2) g̃(2)= 1, since a local projective plane with self-intersection +2 works.

(3) g̃(4) = 0, as the Euler characteristic must be even, and a local Klein bottle
with self-intersection +4 suffices.
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137Pego theorem on compact groups
MANOJ KUMAR

145Maximal degree of a map of surfaces
ANDREY RYABICHEV

157A Viro–Zvonilov-type inequality for Q-flexible curves of odd degree
ANTHONY SAINT-CRIQ

Pacific
JournalofM

athem
atics

2024
Vol.328,N

o.1


	 vol. 328, no. 1, 2024
	Masthead and Copyright
	01
	1. Introduction
	1A. Categorifying T'i,e and T''i,e
	1B. Symmetries and the internal braid group action
	1C. Compatibility with Rickard complexes
	1D. Applications of the internal braid group action
	1D1. PBW basis and their categorifications
	1D2. Quantum affine algebras
	1D3. Link invariants and skew Howe duality


	2. The quantum group and Lusztig symmetries
	2A. The quantum group U_q(g)
	2A1.  Root datum 
	2A2. The simply-laced quantum group
	2A3. The integral idempotented form of quantum group

	2B. (Anti)linear (anti)automorphisms of U
	2C. Quantum Weyl group action on integrable U-modules
	2D. Lusztig's internal braid group action

	3. The categorified quantum group
	3A. Choice of scalars Q
	3B. Definition of the 2-category U_Q(g)
	3C. Additional relations in U_(Q)
	3C1. Curl relations
	3C2. Infinite Grassmannian relations
	3C3. Bubble slides
	3C4. Triple intersections

	3D. The 2-categories U_Q, Kom(U_Q), and Com(U_Q)
	3D1. Categories of complexes
	3D2. Karoubi envelope
	3D3. Karoubi envelope of U_Q
	3D4. Karoubian envelopes of Kom(U) and Com(U)

	3E. Symmetries of categorified quantum groups
	3E1. Forms of 2-categorical contravariance 
	3E2. The 2-functor sigma 
	3E3. The 2-functor omega 
	3E4. The 2-functor psi 
	3E5. Properties of symmetries of categorified quantum groups


	4. Defining the categorical Lusztig operator T'i,1
	4A. T'i,1 on objects and 1-morphisms
	4B. Definition of T'i,1 on 2-morphisms
	4B1. Definition of T'i,1 on upwards dot 2-morphisms
	4B2. Definition of T'i,1 on upwards crossing 2-morphisms
	4B3. Definition of T'i,1 on cap and cup 2-morphisms


	5. Proof that categorified Lusztig operators are well defined
	5A. Adjunction relations
	5B. Dot cyclicity
	5C. Crossing cyclicity
	5D. Quadratic KLR
	5E. Dot slide
	5F. Cubic KLR
	5G. Bubble relations
	5H. Mixed EF relation
	5I. Extended sl(2) relations

	Appendix: Computation of T'i,1 for composite 2-morphisms 
	A.1. Value of T'i,1 for downward dot 2-morphisms
	A.2. Value of T'i,1 on sideways crossing 2-morphisms
	A.3. Value of T'i,1 on downwards crossing 2-morphisms
	A.4. Computation of T'i,1 on bubble 2-morphisms

	Acknowledgments
	References

	02
	1. Introduction
	2. The symmetric one-boundary Hecke algebra
	2A. The cyclotomic Hecke algebra of level 2
	2B. Central quasiidempotents in H1,2,n
	2C. The symmetric one-boundary Hecke algebra An
	2D. Quasiidempotents in An

	3. The one-boundary Temperley–Lieb algebra and its glN-generalisations
	3A. Definition
	3B. The case N=2 (the Temperley–Lieb situation)
	3C. Quasiidempotents in the one-boundary Temperley–Lieb algebra Cn,2

	4. The fused Hecke algebra
	4A. Definition of Hk,n
	4B. An algebraic description of Hk,n
	4C. Proof of @0=thm.1391=Theorem 4.10
	4D. Towards a definition of An(k) over C[q1]

	5. Centralisers of Uq(glN) and the boundary seam algebra (N=2)
	5A. Definition of C(k)n,N
	5B. Isomorphism with the centralisers
	5C. The boundary seam algebra (N=2)

	Acknowledgements
	References

	03
	1. Introduction
	2. Preliminaries and notation
	3. Main results
	4. Proofs and refinements
	4A. Proofs of Theorems 3.1 and 3.3
	4B. Sugimoto manifolds and further remarks

	Acknowledgements
	References

	04
	1. Introduction
	2. Fourier analysis on compact groups
	3. Pego theorem on compact groups
	Acknowledgements
	References

	05
	1. Introduction
	2. Preliminaries
	2.1. Conventions and notation on surfaces and transversality
	2.2. Geometric degree
	2.2.1. Degree of a branched covering
	2.2.2. Degree of the composition of maps


	3. The factorization theorem
	3.1. A map with a minimal graph
	3.2. Properties of the minimal graph

	4. Estimation of the degree
	Appendix: Stable maps and apparent contours
	Acknowledgements
	References

	06
	1. Preliminaries
	Flexible and Q-flexible curves
	Two double branched covers

	2. The Arnold surface of an odd degree flexible curve
	3. Proving the inequality
	Branching over the Arnold surface
	Proving the inequality

	4. Curves on a quadric
	Curves on a hyperboloid
	Curves on an ellipsoid

	5. Further comments
	Other ways to resolve the singularities
	Comparisons of our inequality
	Nonorientable flexible curves
	Proof of Theorem 5.3

	Acknowledgements
	References

	Guidelines for Authors
	Table of Contents

