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ON THE GENERIC BEHAVIOR OF THE SPECTRAL NORM

ERMAN ÇINELI, VIKTOR L. GINZBURG AND BAŞAK Z. GÜREL

Our main result is that for any closed symplectic manifold, the spectral norm
of the iterates of a Hamiltonian diffeomorphism is locally uniformly bounded
away from zero C∞-generically.

1. Introduction

We show that for a Hamiltonian diffeomorphism ϕ of a closed symplectic mani-
fold M , the spectral norm over Q of the iterates ϕk is locally uniformly bounded
away from zero C∞-generically in ϕ, without any additional assumptions on M .

The question of the behavior of the sequence γ (ϕk) of spectral norms goes back
to the work of Polterovich [2002]. Recently, there has been renewed interest in the
problem whether and when this sequence is bounded away from zero. There are
several reasons for this question, amounting roughly speaking to the fact that one
can obtain pretty strong results on the symplectic dynamics of ϕ when the sequence
is not bounded away from zero:

(1-1) γ (ϕ) := lim inf
k→∞

γ (ϕk)= 0.

Among these are, for instance, Lagrangian Poincaré recurrence [Ginzburg and Gürel
2018; Joksimović and Seyfaddini 2023], and the variant of the strong closing lemma
from [Cineli and Seyfaddini 2022]. Simultaneously, fairly explicit criteria for this
sequence to be bounded away from zero have been established, based on the crossing
energy theorem from [Ginzburg and Gürel 2014; 2018]; see, e.g., [Cineli et al.
2022] and Theorem 3.1. Let us now provide some more context for the question.

First, note that the condition (1-1) can be interpreted as that ϕ is γ -rigid or, in
other words, a γ -approximate identity.

This notion is a particular case of a much more general concept. Namely, consider
a class of diffeomorphisms ϕ or even homeomorphisms of a manifold M , which we
assume here to be closed. For instance, this can be the class of all diffeomorphisms or
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of Hamiltonian diffeomorphisms when M is symplectic, etc. Assume that this class
is equipped with some norm ∥ · ∥, e.g., the C0- or C1-norm or the γ - or Hofer-norm
in the Hamiltonian case. A map ϕ is said to be ∥ · ∥-rigid if ϕki → id with respect
to ∥ · ∥, i.e., ∥ϕki ∥ → 0, for some sequence ki → ∞. The term “rigid” is somewhat
overused in dynamics and also frequently confused with structural stability, and in
[Ginzburg and Gürel 2019a] we proposed to call such a map ϕ a ∥ · ∥-approximate
identity, or a ∥ · ∥-a.i. for the sake of brevity. We refer the reader to, e.g., [Bramham
2015; Ginzburg and Gürel 2019a; Cineli and Seyfaddini 2022] for a further discus-
sion of approximate identities, aka rigid maps, in different contexts. Here we only
mention that Cr -a.i. is obviously C s-a.i. for any s ≤ r and, when M is aspherical or
M = CPn , a C0-a.i. is also a γ -a.i.; see [Buhovsky et al. 2021; Shelukhin 2022b].

Zeroing in on γ -a.i.’s we note that there are rather few examples of such maps.
The most dynamically interesting examples are Hamiltonian pseudorotations. This
class of maps has been extensively studied in a variety of settings by dynamical
systems methods and more recently from the perspective of symplectic topology
and Floer theory; see, for example, [Anosov and Katok 1970; Avila et al. 2020;
Bramham 2015; Fayad and Katok 2004; Ginzburg and Gürel 2018; Joksimović and
Seyfaddini 2023; Le Roux and Seyfaddini 2022].

While the official definitions of Hamiltonian pseudorotations vary, these are,
roughly speaking, Hamiltonian diffeomorphisms with a finite and minimal possible
number of periodic points (in the sense of Arnold’s conjecture); see [Ginzburg and
Gürel 2018; Shelukhin 2020; 2021]. For instance, when M = CPn this number is
n + 1. Most likely, for many symplectic manifolds this condition can be relaxed.
Namely, in all examples of Hamiltonian diffeomorphisms ϕ with finitely many peri-
odic points, all periodic points are fixed points and their number is minimal possible.
Thus ϕ is a pseudorotation. For a certain class of manifolds M , including CPn ,
this has been established rigorously under a minor nondegeneracy assumption; see
[Shelukhin 2022a] and also [Çineli et al. 2022]. In all examples to date of Hamil-
tonian diffeomorphisms ϕ with finitely many periodic points, ϕ is nondegenerate.

In general, the relation between pseudorotations and γ -a.i.’s is not obvious. All
known Hamiltonian pseudorotations are γ -a.i.’s and for M = CPn this is proved in
[Ginzburg and Gürel 2018] by using the results from [Ginzburg and Gürel 2009a].
The converse is not true: for instance any element ϕ of a Hamiltonian torus action
is a γ -a.i., although ϕ need not have isolated fixed points. (It is conceivable that
for a strongly nondegenerate γ -a.i., the periodic points are necessarily the fixed
points: in the obvious notation, Per(ϕ)= Fix(ϕ). However, a map ϕ with the latter
property need not be a γ -a.i. For instance, γ (ϕk) can grow linearly for such a map;
see Remark 4.10.)

Most closed symplectic manifolds (M, ω) admit no pseudorotations, that is,
every Hamiltonian diffeomorphism of M has infinitely many periodic points. This
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statement (for a specific manifold M) is usually referred to as the Conley conjecture.
To date, the Conley conjecture has been shown to hold unless there exists A ∈π2(M)
such that ⟨[ω], A⟩> 0 and ⟨c1(T M), A⟩> 0; see [Çineli 2018; Ginzburg and Gürel
2015; 2019b]. In particular, the Conley conjecture holds when M is symplectically
aspherical or negative monotone. For a broad class of closed symplectic manifolds,
ϕ has infinitely many periodic points C∞-generically; see [Ginzburg and Gürel
2009b; Sugimoto 2021] and Section 4B.

Although the classes of Hamiltonian pseudorotations and γ -a.i.’s are certainly
different, there is a clear parallel between these two classes and their existence
conditions on M .

Conjecture. Let M be closed symplectic manifold.

(i) The manifold M admits no γ -a.i.’s unless there exists A ∈ π2(M) such that
⟨[ω], A⟩> 0 and ⟨c1(T M), A⟩> 0.

(ii) A Hamiltonian diffeomorphism ϕ : CPn
→ CPn is a γ -a.i. if and only if all

iterates ϕk are Morse–Bott nondegenerate and dim H∗(Fix(ϕk); F)= n + 1 for
all k ∈ N and any ground field F.

This conjecture is supported by some evidence. For instance, M does not admit
periodic Hamiltonian diffeomorphisms ϕ (i.e., ϕN

= id for some N > 1) when M
satisfies the conditions of (i); see [Atallah and Shelukhin 2023; Polterovich 2002].
In addition, Fix(ϕk) is Morse–Bott nondegenerate whenever ϕ is periodic. This is a
consequence of the equivariant Darboux lemma; see, e.g., [Guillemin and Sternberg
1984, Theorem 22.2]. Aspherical or negative monotone symplectic manifolds do
not admit C1-a.i.’s; see [Polterovich 2002] and [Sugimoto 2023]. Further results
along these lines can be found in [Atallah and Shelukhin 2023]. In [Cineli et al.
2022] both assertions are proved in dimension two for strongly nondegenerate
Hamiltonian diffeomorphisms; see Corollary 3.4. In the setting of (i) the sequence
of the spectral norms γ (ϕ p) over Z/pZ, where p ranges through all primes, is
separated away from zero [Shelukhin 2023]. As we have already mentioned the “if”
part of (ii) is established in [Ginzburg and Gürel 2018] without any nondegeneracy
assumption when |Per(ϕ)| = n + 1. With this in mind, part (ii) of the conjecture
asserts, in particular, that every pseudorotation of CPn is strongly nondegenerate.

Remark 1.1. While part (ii) of the conjecture might extend to some other ambient
symplectic manifolds M , some restriction on M is necessary. For instance, the
torus T2n equipped with an irrational symplectic structure admits a Hamiltonian
diffeomorphism ϕ such that the conditions of (ii) are satisfied but γ (ϕk)→ ∞; see
[Zehnder 1987] and also [Cineli 2023] for further constructions of this type with
complicated dynamics.



122 ERMAN ÇINELI, VIKTOR L. GINZBURG AND BAŞAK Z. GÜREL

In a similar vein, the main result of this paper can be thought of as the γ -a.i.
analogue of the aforementioned theorem on the C∞-generic Conley conjecture,
although at this moment the proof of the latter requires some additional conditions
on the underlying manifold; see Section 4B.

Remark 1.2. Overall, rather little is known about the behavior of the γ -norm under
iterations. For a certain class of manifolds, including CPn , the spectral norm is
a priori bounded from above [Entov and Polterovich 2003; Kislev and Shelukhin
2021]. However, such manifolds appear to be rare; see Remark 4.10. Also, the
sequence γ (ϕk) is bounded from above when suppϕ is displaceable in M , but not
much beyond these facts and the results of this paper is known about the behavior
of this sequence. For instance, when M is a surface of positive genus, it is not
known if γ (ϕk) necessarily grows linearly or can be bounded from above when ϕ
is strongly nondegenerate or, at the opposite extreme, autonomous and suppϕ is
not displaceable.

Remark 1.3. It is worth keeping in mind that in contrast with some other dynamics
concepts, in most if not all settings a.i.’s are sensitive to reparametrization. To be
more specific, let an a.i. ϕ be the time-one map of the flow of a vector field X and
let ψ be the time-one map of f X for some function f > 0. Then, in general, ψ
need not be an a.i. For instance, assume that X is a solid rotation vector field on
M = S2 and f is not constant. Then one can show that ψ is not a C0-a.i., and
hence not a Cr -a.i. for any r ≥ 0. Apparently, the same is true for the γ -norm, but
this fact is yet to be proved rigorously; cf. item (ii) of the Conjecture.

2. Preliminaries and notation

We very briefly set our notation and conventions which are quite standard and
spelled out in more detail in, for example, [Cineli and Seyfaddini 2022]. The reader
may find it convenient to jump to Section 3 and consult this section only as needed.

Throughout the paper, all manifolds, functions and maps are assumed to be
C∞-smooth unless specifically stated otherwise.

Let (M2n, ω) be a closed symplectic manifold. A Hamiltonian diffeomorphism
ϕ=ϕH =ϕ1

H is the time-one map of the time-dependent flow ϕt
=ϕt

H of a 1-periodic
in time Hamiltonian H : S1

× M → R, where S1
= R/Z. We set Ht = H(t, · ). The

Hamiltonian vector field X H of H is defined by iX Hω = −d H . We say that ϕ is
nondegenerate if all fixed points of ϕ are nondegenerate, and strongly nondegenerate
if all periodic points of ϕ are nondegenerate. We will denote by Ham(M, ω) the
group of Hamiltonian diffeomorphisms of (M, ω).

Recall that the spectral norm, also known as the γ -norm, of ϕ is defined as

γ (ϕ)= inf
H

{c(H)+ c(H inv) | ϕ = ϕH },
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where H inv(x)= −Ht(ϕ
t
H (x)) is the Hamiltonian generating the flow (ϕt

H )
−1 and

c = c[M] is the spectral invariant associated with the fundamental class [M] ∈

H2n(M). (Here we can take as H inv any Hamiltonian generating this flow with the
same time/space average as H .) The infimum is taken over all 1-periodic in time
Hamiltonians H generating ϕ, i.e., ϕ = ϕH . The Hofer norm of ϕ is defined as

∥ϕ∥H = inf
H

∫
S1
(max

M
Ht − min

M
Ht) dt,

where the infimum is again taken over all 1-periodic in time Hamiltonians H
generating ϕ. Then

γ (ϕ)≤ ∥ϕ∥H .

We refer the reader to, e.g., [Oh 2005a; 2005b; Schwarz 2000; Viterbo 1992] and
also, e.g., [Cineli and Seyfaddini 2022; Entov and Polterovich 2003; Ginzburg and
Gürel 2009a; Kislev and Shelukhin 2021; Polterovich 2001; Usher 2008; 2011],
for the original treatment and a detailed discussion of spectral invariants and these
norms.

Here we are interested in the behavior of γ (ϕk), k ∈ N, and in particular in the
question when this sequence is bounded away from zero. As in the introduction, set

γ (ϕ)= lim inf
k→∞

γ (ϕk) ∈ [0, ∞].

These definitions implicitly depend on the construction of the filtered Floer
homology HFa(H) for the action window (−∞, a). In this paper we do not in
general assume that the class [ω] is rational or that ϕ is nondegenerate. Hence, we
feel, a word is due on the specifics of the definitions.

Assume first that H is nondegenerate. Then we utilize Pardon’s VFC package
[2016], to define the filtered Floer homology HFa(H) over Q and spectral invariants;
see, for example, [Cineli and Seyfaddini 2022; Usher 2008]. To be more specific,
HFa(H) is the homology of the subcomplex CFa(H) of the Floer complex CF(H)
generated by Floer chains with action below a. Virtually any choice of the Novikov
field can be used here. We take the standard Novikov field

3=
{ ∑

A∈0

bA A | bA ∈ Q and #{bA ̸= 0, ω(A) > c}<∞ for all c ∈ R
}
,

where 0 = π2(M)/(ker[ω] ∩ ker c1(T M)). Alternatively, we could have used the
universal Novikov field. Then, for any α ∈ H∗(M)⊗3, the spectral invariant cα(H)
is defined as

(2-1) cα(H)= inf{a ∈ R | α ∈ im ιa},

where

(2-2) ιa : HFa(H)→ HF(H)∼= H∗(M)⊗3
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is the natural inclusion-induced map and the identification on the right is the PSS-
isomorphism. We note that all spectral invariants necessarily belong to the action
spectrum S(H) of H when H is nondegenerate [Usher 2008].

When H is not necessarily nondegenerate, we set

cα(H) := inf
H̃≥H

cα(H̃)= sup
H̃≤H

cα(H̃)= lim
H̃→H

cα(H̃),

where H̃ is nondegenerate and the convergence H̃ → H is taken to be C0. The
second and third equalities and the existence of the limit follow from that cα is
monotone and cα(H̃ + k)= cα(H̃)+ k for any constant function k. Alternatively,
we could have set

HFa(H)= lim
−−→

H̃≥H

HFa(H̃),

and then used (2-1) and (2-2) to get the same result.
Defined in this way, spectral invariants cα can be easily shown to have all

the standard properties: cα(H) is monotone and Lipschitz continuous in H with
Lipschitz constant one; cα(H + k) = cα(H)+ k for any constant function k; etc.
(We refer the reader to, e.g., [Cineli and Seyfaddini 2022] for more details.) The
exception is that cα(H) has been proven to be spectral, i.e., an element of S(H),
only when [ω] is rational or H is nondegenerate; see [Entov and Polterovich 2003;
Oh 2005a; Usher 2008].

3. Main results

The key to bounding γ from below is the following fact connecting the behavior of
γ (ϕk) with the dynamics of ϕ and, in particular, its hyperbolic points.

Theorem 3.1. Let ϕ : M → M be a Hamiltonian diffeomorphism of a closed
symplectic manifold M with more than dim H∗(M) hyperbolic periodic points. Then
γ (ϕ) > 0. Also, γ is locally uniformly bounded away from zero near ϕ, i.e., there
exists δ > 0, possibly depending on ϕ, and a sufficiently C∞-small neighborhood U
of ϕ such that

γ (ψ) > δ for all ψ ∈ U .

Without the “Also” part, this theorem was originally proved in [Cineli et al. 2022].
We give a complete proof in Section 4. Let us emphasize that in Theorem 3.1 we
impose no nondegeneracy requirements on ϕ, and also that the property of ϕ to have
more than dim H∗(M) hyperbolic periodic points, or more than any fixed number
of hyperbolic periodic points, is open in C1-topology.

Example 3.2. Assume that M is a closed surface and htop(ϕ) > 0. Then ϕ has
infinitely many hyperbolic periodic points [Katok 1980]. Hence, γ (ϕ) > 0, and
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γ (ψ)>δ for some δ>0 and allψ which are C∞-close to ϕ. Also note in connection
with Theorem 3.3 and Corollary 3.4 below that htop > 0 is a C∞-generic condition
in dimension two [Le Calvez and Sambarino 2022].

The requirement of the theorem that the number of hyperbolic points is greater
than dim H∗(M) can be further relaxed by looking only at the odd/even-degree
homology of M , depending on whether n =dim M/2 is odd or even; see Remark 4.2.

The main result of the paper is the following theorem relying on Theorem 3.1
and the strong closing lemma from [Cineli and Seyfaddini 2022].

Theorem 3.3. Let M be a closed symplectic manifold. The function γ is locally
uniformly bounded away from zero on a C∞-open and dense set of Hamiltonian
diffeomorphisms ϕ : M → M , i.e., for every ϕ in this set there exists δ > 0, possibly
depending on ϕ but not on ψ , such that

γ (ψ) > δ,

whenever ψ is sufficiently C∞-close to ϕ.

We note that we do not assert here that in general the set of Hamiltonian diffeo-
morphisms ϕ with γ (ϕ) > 0 is itself C∞-open, but rather that this set contains a set
which is C∞-open and dense. Nor do we impose any restrictions on the (symplectic)
topology of M or require any of the iterates ϕk to be nondegenerate. The proof of
Theorem 3.3 given in Section 4A is based on a variant of the Birkhoff–Lewis–Moser
theorem. The key new ingredient of the proof is the strong closing lemma from
[Cineli and Seyfaddini 2022]. It is also worth pointing out that if we replaced the
statement that the set is C∞-dense by that it is C1-dense, the theorem would turn
into an easy consequence of already known facts; see Remark 4.5.

In several situations, Theorem 3.3 can be made slightly more precise. For
instance, we have the following result, also originally proved in [Cineli et al. 2022]
without the “Also” part.

Corollary 3.4. Assume that M is a surface and ϕ is strongly nondegenerate. Then
γ (ϕ) > 0 when M has positive genus. When M is the two-sphere, γ (ϕ)= 0 if and
only if ϕ is a pseudorotation. Also, γ is locally uniformly bounded from 0 on the set
of all strongly nondegenerate Hamiltonian diffeomorphisms ϕ when M has positive
genus and on the set of such ϕ with at least three fixed points when M = S2.

Proof. When M has positive genus, a Conley conjecture type argument guarantees
that ϕ has infinitely many hyperbolic periodic points; see [Franks and Handel 2003;
Ginzburg and Gürel 2015; Salamon and Zehnder 1992] or [Le Calvez and Sambarino
2022]. Thus, in this case, the statement follows directly from Theorem 3.1.

Concentrating on M = S2, first note that for all, not necessarily nondegenerate,
pseudorotations of CPn , the sequence γ (ϕk) contains a subsequence converging to
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zero, and hence γ (ϕ)= 0; see [Ginzburg and Gürel 2018]. In the opposite direction,
when M = S2, the existence of one positive hyperbolic periodic point is enough to
ensure that γ (ϕ)> 0 and, moreover, γ is locally uniformly bounded away from zero;
see Remark 4.2. Hence, more generally, without any nondegeneracy assumption,
if γ (ϕ)= 0, then all periodic points of ϕ are elliptic. For strongly nondegenerate
Hamiltonian diffeomorphisms ϕ, this forces ϕ to be a pseudorotation. □

Since the Hofer norm is bounded from below by the spectral norm, we have the
following.

Corollary 3.5. In all results from this section, we can replace the spectral norm by
the Hofer norm.

We refer the reader to Section 4 for further refinements of Theorems 3.1 and 3.3.

Remark 3.6. Throughout the paper all homology groups are taken over Q. This
choice of the background coefficient field is necessitated by the use of Floer theory
for an arbitrary closed symplectic manifold M . When M is weakly monotone, Q

can be replaced by any coefficient field.

4. Proofs and refinements

In Section 4A, we prove Theorems 3.1 and 3.3. In Section 4B, we refine the latter
result under certain additional assumptions on M and further comment on the class
of γ -a.i.’s.

4A. Proofs of Theorems 3.1 and 3.3.

Proof of Theorem 3.1. By the conditions of the theorem, for some N ∈ N, the
Hamiltonian diffeomorphism ϕ has more than dim H∗(M) hyperbolic N -periodic
points. We denote the set of these points by K. Thus |K|> dim H∗(M) and clearly
K is a locally maximal hyperbolic set. Furthermore, every point in K is also ℓN -
periodic for all ℓ ∈ N. For ϵ > 0, denote by bϵ(ϕ) the number of bars in the barcode
of ϕ of length greater than ϵ including infinite bars; see, for example, [Cineli et al.
2021]. Then, we claim that, for a sufficiently small ϵ > 0 and any ℓ ∈ N,

(4-1) bϵ(ϕℓN )≥ dim H∗(M)+
⌈

|K|−dim H∗(M)
2

⌉
> dim H∗(M).

In particular, ϕℓN has at least one finite bar of length greater than ϵ > 0.
This inequality is essentially a consequence of [Cineli et al. 2021, Proposition 3.8

and 6.2]. To prove (4-1), first note that the number of infinite bars in the barcode of
any Hamiltonian diffeomorphism is equal to dim H∗(M). Secondly, it follows from
[Cineli et al. 2021, Proposition 6.2] and the proof of [Cineli et al. 2021, Proposi-
tion 3.8] that every periodic point in K appears as an “end point” of a bar of length
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greater than ϵ > 0. Combining these two facts, we conclude that ϕℓN has at least
⌈(|K| − dim H∗(M))/2⌉ finite bars of length greater than ϵ > 0, and (4-1) follows.

Furthermore, since the crossing energy lower bound in [Cineli et al. 2021, The-
orem 6.1] is stable under C∞-small perturbations of the Hamiltonian, for every
positive η < ϵ the same is true for any Hamiltonian diffeomorphism 9 which is
C∞-close to ϕN . Namely,

bη(9ℓ) > dim H∗(M),

and hence the barcode of 9ℓ has a finite bar of length greater than η.
Also, recall that as is proved in [Kislev and Shelukhin 2021, Theorem A], for

any ϕ,
βmax(ϕ)≤ γ (ϕ),

where the left-hand side is the boundary depth, i.e., the longest finite bar in the
barcode of ϕ. Thus, for a sufficiently small η > 0,

(4-2) η < βmax(9
ℓ)≤ γ (9ℓ).

Next, set δ = η/2 and arguing by contradiction, assume that there exist ψ
sufficiently C∞-close to ϕ and a sequence ki → ∞ such that

γ (ψki ) < δ.

Since the sequence ki is infinite and there are only finitely many residues modulo N ,
there exists a pair ki < k j such that

k j − ki = ℓN

for some ℓ ∈ N.
Clearly, 9 = ψN is C∞-close to ϕN when ψ is sufficiently C∞-close to ϕ, and

hence (4-2) holds. Then by the triangle inequality for γ , we have

η < γ (9ℓ)≤ γ (ψk j )+ γ (ψ−ki ) < 2δ = η.

This contradiction concludes the proof of the theorem. □

Remark 4.1. It might be worth a second to examine how the invariants of ϕ involved
in the proof depend on the isotopy ϕt

H in Ham(M, ω) generated by H and its lift
to the universal covering of the group. Namely, γ (ϕ) is a priori independent of the
isotopy only on the universal covering. On Ham(M, ω) it is defined by passing to
the infimum over often infinitely many elements. However, the boundary depth
βmax is well defined on Ham(M, ω). In the proof we bound βmax(ϕ) from below
(see, e.g., [Usher 2011]) and that bounds γ (ϕ) from below regardless of the lift
[Kislev and Shelukhin 2021].
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Remark 4.2. When n = dim M/2 is odd, it is sufficient to require in Theorem 3.1
that the number of hyperbolic periodic points is greater than b = dim Hodd(M).
For instance, this is the case when M is a surface. Indeed, in the proof of the
theorem, by taking N even and sufficiently large, we can guarantee that the number
of positive hyperbolic N -periodic points is greater than b. Such points necessarily
have even Conley–Zehnder index, and hence contribute to the odd-degree homology
of M under the isomorphism HF∗(ϕ

N ) ∼= H∗+n(M). Likewise, when n is even,
it suffices to require the number of hyperbolic periodic points to be greater than
dim Heven(M).

Proof of Theorem 3.3. To prove the theorem, it suffices to show that every C∞-open
set U in the group of Hamiltonian diffeomorphisms contains an open subset W
such that γ (ϕ) > δ for all ϕ ∈W and some δ= δ(W) > 0 independent of ϕ. Indeed,
then fixing W for every U we can take the union of sets W for all U as the desired
open and dense subset.

Let q = dim H∗(M). For any U , there are two alternatives:

(i) There exists ϕ ∈ U with more than q periodic points.

(ii) Every ϕ ∈ U has at most q periodic points.

Let us first focus on case (i). Pick ϕ ∈ U with more than q periodic points and fix
q +1 of them. Denote these points by x0, . . . , xq , and note that arbitrarily C∞-close
to ϕ there exists a Hamiltonian diffeomorphism ϕ′

∈ U such that x0, . . . , xq are
nondegenerate periodic points of ϕ′. This is essentially a linear algebra fact and to
construct ϕ′, it suffices to perturb ϕ near these points, changing Dϕ slightly. (Note
that ϕ′ may have many other periodic points, nondegenerate or not. We can ensure
in addition that ϕ′ is strongly nondegenerate, but we do not need this fact.) We
replace ϕ by ϕ′, keeping the notation ϕ.

If all periodic points x0, . . . , xq are hyperbolic, we can take as W any C∞-small
neighborhood of ϕ by Theorem 3.1.

If one of the points x0, . . . , xq is not hyperbolic, we argue by perturbing ϕ again.
Namely, recall that by the Birkhoff–Lewis–Moser theorem (see [Moser 1977]),
whenever ϕ has a nonhyperbolic, nondegenerate periodic point x , there exists an
arbitrarily C∞-small perturbation ϕ′

∈ U of ϕ with infinitely many periodic points
near x . Moreover, ϕ′ can be chosen so that infinitely many of these periodic points
are hyperbolic; see [Arnaud 1992, Proposition 8.2]. (This follows from the proof
of the Birkhoff–Lewis–Moser theorem.) Thus, again by Theorem 3.1, we can take
a sufficiently C∞-small neighborhood of ϕ′ as W .

To deal with case (ii), we need the following quantitative variant of the strong
closing lemma:

Lemma 4.3 [Cineli and Seyfaddini 2022]. Let ψ be a Hamiltonian diffeomorphism
of a closed symplectic manifold M. Assume that there is a closed ball V ⊂ M
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containing no periodic points of ψ , that is, V ∩ Per(ψ) = ∅. Let G ≥ 0 be a
Hamiltonian supported in V and such that

c(G) > γ (ψ).

Then the composition ψϕG has a periodic orbit passing through V .

Pick a nondegenerate Hamiltonian diffeomorphism ϕ ∈ U , where U is as in
case (ii). Such a map exists since U is C∞-open and the set of nondegenerate
Hamiltonian diffeomorphisms is C∞-dense (and open). We will show that there
exists δ > 0 such that γ (ψ) > δ for all ψ ∈ U which are C∞-close to ϕ. Hence, in
this case, we can take a small C∞-neighborhood of ϕ as W .

Lemma 4.4. Let (M, ω) be a closed symplectic manifold. Suppose that there exists
a C∞-open U ⊂ Ham(M, ω) such that all ϕ ∈ U have at most q = dim H∗(M)
periodic points. Then the function γ : U → [0,∞) is locally uniformly bounded
away from zero at every nondegenerate ϕ ∈ U .

Note that the proof of Theorem 3.3 will be completed once we prove Lemma 4.4.
To prove the lemma, arguing by contradiction, fix a nondegenerate ϕ ∈ U and
assume that there exists a sequence ψi → ϕ in U such that

γ (ψi )→ 0.

Here and below convergence of maps is always understood in the C∞-sense.
We claim that when i is large enough, all periodic points of ψi are close to

periodic points of ϕ, and hence there exists a closed ball V ⊂ M containing no
periodic points of any of these maps. Indeed, since ϕ is nondegenerate and

|Fix(ϕ)| ≤ |Per(ϕ)| ≤ q = dim H∗(M),

by the Arnold conjecture (see [Fukaya and Ono 1999; Liu and Tian 1998] and also
[Pardon 2016]),

Per(ϕ)= Fix(ϕ) and |Per(ϕ)| = |Fix(ϕ)| = q.

Furthermore, when i is large enough, ψi ∈ U is also nondegenerate since ψi → ϕ.
Therefore, again by the Arnold conjecture,

Per(ψi )= Fix(ψi ) and |Per(ψi )| = |Fix(ψi )| = q.

It follows that Per(ψi ) converges to Per(ϕ).
Next, take G ≥ 0 as in Lemma 4.3, which is supported in V and small enough so

that ϕϕG ∈U . Hence, ψiϕG ∈U when i is large; for ψi → ϕ and thus ψiϕG → ϕϕG .
On the other hand, due to the assumption that γ (ψi )→ 0, we have

c(G) > γ (ψi ),
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when again i is sufficiently large. By the strong closing lemma, the composition
ψiϕG has a periodic orbit passing through V . On the other hand, the fixed points of
ψi (or equivalently the periodic points) are among the fixed points of ψiϕ because
supp G ⊂ V . It follows that

|Per(ψiϕG)| ≥ q + 1,

when i is large enough, which is impossible since ψiϕG ∈ U . This contradiction
completes the proof of Lemma 4.4 and hence of Theorem 3.3. □

Remark 4.5. If in Theorem 3.3 we were to find a C1-dense (and open) set of
Hamiltonian diffeomorphisms rather than C∞-dense, the argument would be con-
siderably simpler. Namely, in this case it would be enough to first construct a map ϕ
with just one hyperbolic periodic point. Once this is done, we could apply the
results from [Hayashi 1997; Xia 1996] to create nontrivial transverse homoclinic
intersections, and hence a horseshoe (see [Katok and Hasselblatt 1995]) by a C1-
small perturbation. As a consequence, the perturbed map ψ would have infinitely
many hyperbolic periodic points. For any m ∈ N, having at least m such points is a
C1-open property. Now we can take any m > dim H∗(M).

4B. Sugimoto manifolds and further remarks. As is shown in [Sugimoto 2021], a
strongly nondegenerate Hamiltonian diffeomorphism ϕ of a closed symplectic man-
ifold M2n has either a nonhyperbolic periodic point or infinitely many hyperbolic
periodic points when M meets one of the following requirements:

(i) n is odd.

(ii) Hodd(M) ̸= 0.

(iii) the minimal Chern number of M is greater than 1.

Below we refer to a closed symplectic manifold meeting at least one of these
requirements as a Sugimoto manifold. For this class of manifolds Theorem 3.3 has
a more direct proof and can be slightly refined. We do this in two steps.

Denote by Vm , m ∈ N, the set of Hamiltonian diffeomorphisms with at least m
hyperbolic points. Note that we do not require the elements of Vm to be strongly
nondegenerate.

Proposition 4.6. Let M be a Sugimoto manifold. Then for any m ∈ N the set Vm is
C1-open and C∞-dense in the space of all Hamiltonian diffeomorphisms.

Proof. The statement that Vm is C1-open is obvious. (It is essential here that m
is finite.) To show that it is C∞-dense we argue as in [Sugimoto 2021] and the
proof of Theorem 3.3. Let ϕ be a Hamiltonian diffeomorphism. To prove the
proposition, we need to find ψ ∈ Vm arbitrarily C∞-close to ϕ. Since the set
of strongly nondegenerate Hamiltonian diffeomorphisms is C∞-dense, we can
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assume that ϕ is in this class. As shown in [Sugimoto 2021], ϕ has infinitely many
hyperbolic periodic points or a (nondegenerate) nonhyperbolic point. In the former
case, ϕ ∈ Vm for all m ∈ N. In the latter case, by [Arnaud 1992, Proposition 8.2],
for any m ∈ N there exists ψ ∈ Vm arbitrarily close to ϕ. □

As an immediate consequence, we obtain a slightly more precise variant of the
main result from [Sugimoto 2021]:

Corollary 4.7. Assume that M is a Sugimoto manifold. Then C∞-generically a
Hamiltonian diffeomorphism ϕ of M has infinitely many hyperbolic periodic points.

The key difference with [Sugimoto 2021] is that the periodic points of ϕ here
are specified to be hyperbolic. The residual set in this corollary is, of course,

V :=
⋂

m∈N

Vm .

We note that this set is not C1- and even C∞-open. However, one can require in
addition ϕ to be strongly nondegenerate. Indeed, the set of such maps is residual
and its intersection with V is still a residual set.

Closer to the immediate subject of the paper we have the following refinement
of Theorem 3.3 and Corollary 3.4:

Corollary 4.8. Assume that M is a Sugimoto manifold. Then γ is locally uni-
formly bounded away from zero on a C1-open and C∞-dense set of Hamiltonian
diffeomorphisms of M.

Here we can take any Vm with m > dim H∗(M) as a C1-open and C∞-dense
set, where γ is locally uniformly bounded away from zero. Note also that in this
corollary we can again replace the spectral norm by the Hofer norm.

Remark 4.9. In contrast with Theorem 3.3, C∞-generic existence of infinitely
many periodic points is not known to hold without some additional assumptions
on M . The class of Sugimoto manifolds is the broadest to date for which such
existence has been proved [Sugimoto 2021]. (See also [Ginzburg and Gürel 2009b]
for the original result and a different approach.)

Remark 4.10. Continuing the discussion from the introduction and Remark 1.2, we
give some “textbook” examples where γ (ϕk) grows linearly, and hence γ (ϕ)= ∞,
and at the same time all periodic points of ϕ are fixed points: Per(ϕ) = Fix(ϕ).
Namely, let H : M → R be a nonconstant autonomous Hamiltonian such that H has
only finitely many critical values and all nonconstant periodic orbits of the flow of H
are noncontractible. Set ϕ = ϕH . Then, as is easy to see, γ (ϕk) grows linearly and
the only periodic points of ϕ are the critical points of H . For instance, we can take
H = sin 2πθ , where θ is the first angular coordinate θ on T2

= R2/Z2. Alternatively,
let (T4, ω) be a Zehnder’s torus, that is, a torus equipped with a sufficiently irrational
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translation invariant symplectic structure ω (see [Zehnder 1987]), and again let
θ : T4

→ R/Z be a fixed angular coordinate. Then the flow of H given by the same
formula has no periodic orbits at all, contractible or not, other than the critical points
of H : the 3-dimensional tori θ =

1
2 and θ =

3
2 . In both cases, γ (ϕk)= 2k. More

surprisingly, there exists a Hamiltonian diffeomorphism ϕ : S2
× S2

→ S2
× S2

such that γ (ϕk) grows linearly; see [Shelukhin 2022a, Remark 8] and [Polterovich
and Rosen 2014, Theorem 6.2.6], although the argument is quite indirect.

In all these examples, dim H∗(Fix(ϕ))= dim H∗(M) over any field, in addition to
the condition that Per(ϕ)=Fix(ϕ). Loosely following [Atallah and Shelukhin 2023],
we call such a map ϕ a generalized pseudorotation. Generalized pseudorotations
from the above examples have simple dynamics. However, this is not necessarily
so in general. For instance, in dimension six and higher Morse–Bott nondegenerate,
generalized pseudorotations ϕ with positive topological entropy have been recently
constructed in [Cineli 2023]. Such a generalized pseudorotation can be neither
a C0-a.i. since htop(ϕ) > 0 (see [Avila et al. 2020]) nor a γ -a.i. In fact, γ (ϕk)

also grows linearly since M is aspherical and Per(ϕ) = Fix(ϕ) has finitely many
connected components.
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