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PEGO THEOREM ON COMPACT GROUPS

MANOJ KUMAR

The Pego theorem characterizes the precompact subsets of the square-
integrable functions on Rn via the Fourier transform. We prove the analogue
of the Pego theorem on (not necessarily abelian) compact groups.

1. Introduction

Characterizing precompact subsets is one of the classical topics in function space
theory. It is well known that the Arzelà–Ascoli theorem characterizes a precompact
subset of the space of continuous functions over a compact Hausdorff space. The
celebrated Riesz–Kolmogorov theorem provides a characterization of precompact
subsets of L p(Rn). We refer to [8] for a historical account of it. Weil [14, page 52]
extended it to the Lebesgue spaces over locally compact groups. See [7] for its
extension to the Banach function spaces over locally compact groups.

In 1985, Pego [13] used the Riesz–Kolmogorov theorem to find a characterization
of precompact subsets of L2(Rn) via certain decay of the Fourier transform.

Theorem 1.1. [13, Theorems 2 and 3] Let K be a bounded subset of L2(Rn). Then,
the following are equivalent:

(i) K is precompact.

(ii)
∫
|x |>r | f (x)|2 dx → 0 and

∫
|ξ |>r | f̂ (ξ)|2 dξ → 0 as r → ∞, both uniformly

for f in K .

(iii)
∫

Rn | f (x + y)− f (x)|2 dx → 0 as y → 0, and
∫

Rn | f̂ (ξ +ω)− f̂ (ξ)|2 dξ → 0
as ω → 0, both uniformly for f in K .

An application of this theorem to information theory has been provided in [13].
Pego-type theorems have also been studied via the short-time Fourier and wavelet

transforms [2], the Laplace transform [11] and the Laguerre and Hankel trans-
forms [10]. The Pego theorem has been extended to the locally compact abelian
groups with some technical assumptions [5]. Using the Pontryagin duality and the
Arzelà–Ascoli theorem, the authors in [6] showed that the technical assumptions
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are redundant. For the L1-space analogue of the Pego theorem over locally compact
abelian groups, see [12].

In Section 2, we present preliminaries on compact groups. In Section 3, using
Weil’s compactness theorem, we extend Theorem 1.1 to (not necessarily abelian)
compact groups; see Theorem 3.4.

2. Fourier analysis on compact groups

Let G be a compact Hausdorff group. Let mG denote the normalized positive Haar
measure on G. Let L p(G) denote the p-th Lebesgue space w.r.t. the measure mG .
The norm on the space L p(G) is denoted by ∥ · ∥p.

We denote by Ĝ the space consisting of all irreducible unitary representations
of G up to the unitary equivalence. The set Ĝ is known as the unitary dual of G
and is equipped with the discrete topology. Note that the representation space Hπ

of π ∈ Ĝ is a complex Hilbert space and finite-dimensional. Denote by dπ the
dimension of Hπ .

Let 3 ⊂ Ĝ. Assume that {(Xπ , ∥ · ∥π ) : π ∈ 3} is a family of Banach spaces.
For 1 ≤ p < ∞, we denote by ℓp-

⊕
π∈∧

Xπ the Banach space{
(xπ ) ∈ 5

π∈∧
Xπ :

∑
π∈∧

dπ∥xπ∥
p
π < ∞

}
endowed with the norm ∥(xπ )∥ℓp-

⊕
π∈∧

Xπ
:=

(∑
π∈∧

dπ∥xπ∥
p
π

)1/p. Denote by
ℓ∞-

⊕
π∈∧

Xπ the Banach space{
(xπ ) ∈ 5

π∈∧
Xπ : sup

π∈∧

∥xπ∥π < ∞
}

endowed with the norm ∥(xπ )∥ℓ∞-
⊕

π∈∧
Xπ

:= supπ∈∧∥xπ∥π . Similarly, denote by
c0-

⊕
π∈∧

Xπ the space consisting of (xπ ) from ℓ∞-
⊕

π∈∧
Xπ such that xπ → 0

as π → ∞, i.e., for any given ϵ > 0 there exists a finite set 3ϵ ⊂ 3 such that
∥xπ∥π < ϵ for all π ∈ 3 \ 3ϵ . Note that c0-

⊕
π∈∧

Xπ is a closed subspace of
ℓ∞-

⊕
π∈∧

Xπ .
For 1 ≤ p < ∞, let Bp(Hπ ) denote the space of all bounded linear operators T

on Hπ such that ∥T ∥Bp(Hπ ) := (tr(|T |
p))1/p < ∞. The space B2(Hπ ) is called the

space of the Hilbert–Schmidt operators on the Hilbert space Hπ . The space B2(Hπ )

is a Hilbert space endowed with the inner product

⟨T, S⟩B2(Hπ ) := tr(T S∗).

Let B(Hπ ) denote the space consisting of all bounded linear operators on Hπ

endowed with the operator norm.
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Let f ∈ L1(G). The Fourier transform of f is defined by

f̂ (π) =

∫
G

f (t)π(t)∗ dmG(t), π ∈ Ĝ.

The Fourier transform operator f 7→ f̂ from L1(G) into ℓ∞-
⊕

π∈Ĝ B(Hπ ) is
injective and bounded. By the Riemann–Lebesgue lemma, we know that f̂ ∈

c0-
⊕

π∈Ĝ B(Hπ ). The convolution of f, g ∈ L1(G) is given by

f ∗ g(x) =

∫
G

f (xy−1)g(y) dmG(y).

Then,
∧

f ∗ g(π) = ĝ(π) f̂ (π), π ∈ Ĝ. For y ∈ G, the right translation Ry of
f ∈ L p(G) is given by Ry( f )(x) = f (xy), x ∈ G. Then,

∧

Ry f (π) = π(y) f̂ (π),
π ∈ Ĝ.

For more information on compact groups, we refer to [4; 9].
Throughout the paper, G will denote a (not necessarily abelian) compact Haus-

dorff group. The identity of G is denoted by e. We will denote by Idπ
the dπ×dπ

identity matrix.

3. Pego theorem on compact groups

We discuss the characterization of precompact subsets of square-integrable functions
on G in terms of the Fourier transform. We need the following definitions.

Let K ⊂ L p(G). Define K̂ := { f̂ : f ∈ L p(G)}. K is said to be uniformly
L p(G)-equicontinuous if for any given ϵ > 0 there exists an open neighborhood O
of e such that

∥Ry f − f ∥p < ϵ, f ∈ K and y ∈ O.

Let F ⊂ ℓp-
⊕

π∈Ĝ Bp(Hπ ). F is said to have uniform ℓp-
⊕

π∈Ĝ Bp(Hπ )-decay
if for any given ϵ > 0 there exists a finite set A ⊂ Ĝ such that

∥φ∥ℓp-
⊕

π∈Ĝ\A Bp(Hπ ) < ϵ, φ ∈ F.

Let us begin with some important lemmas.

Lemma 3.1. Let K ⊂ L p(G), where p ∈ [1, 2]. If K is uniformly L p(G)-equicon-
tinuous then K̂ has uniform ℓp′

-
⊕

π∈Ĝ Bp′(Hπ )-decay.

Proof. Let (eU )U∈3 be a Dirac net on G; see [1, page 24]. By the Riemann–
Lebesgue lemma [9, Theorem 28.40], êU ∈ c0-

⊕
π∈Ĝ B(Hπ ). Then, there exists a

finite set A ⊂ Ĝ such that

∥êU (π)∥B(Hπ ) ≤
1
2 , π ∈ Ĝ \ A.
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Let f ∈ K . We denote by êU f̂ the pointwise product of êU and f̂ . Now,

∥ f̂ ∥ℓp′ -
⊕

π∈Ĝ\A Bp′ (Hπ )

≤ ∥ f̂ − êU f̂ ∥ℓp′ -
⊕

π∈Ĝ\A Bp′ (Hπ ) + ∥êU f̂ ∥ℓp′ -
⊕

π∈Ĝ\A Bp′ (Hπ )

≤ ∥
∧

f − f ∗ eU ∥ℓp′ -
⊕

π∈Ĝ\A Bp′ (Hπ ) + ∥ f̂ ∥ℓp′ -
⊕

π∈Ĝ\A Bp′ (Hπ ) sup
π∈Ĝ\A

∥êU (π)∥B(Hπ )

≤ ∥
∧

f − f ∗ eU ∥ℓp′ -
⊕

π∈Ĝ\A Bp′ (Hπ ) +
1
2∥ f̂ ∥ℓp′ -

⊕
π∈Ĝ\A Bp′ (Hπ ).

Then, applying the Hausdorff–Young inequality [9, Theorem 31.22], we get

∥ f̂ ∥ℓp′ -
⊕

π∈Ĝ\A Bp′ (Hπ ) ≤ 2 ∥
∧

f − f ∗eU ∥ℓp′ -
⊕

π∈Ĝ Bp′ (Hπ )

≤ 2 ∥ f − f ∗eU ∥p

= 2
(∫

G
| f (x)− f ∗eU (x)|p dmG(x)

)1/p

= 2
(∫

G

∣∣∣∫
G
( f (x)− f (xy−1))eU (y) dmG(y)

∣∣∣p
dmG(x)

)1/p
.

Therefore, using the Minkowski integral inequality, we obtain

∥ f̂ ∥ℓp′ -
⊕

π∈Ĝ\A Bp′ (Hπ ) ≤ 2
∫

G

(∫
G
| f (x) − f (xy−1)|p dmG(x)

)1/p
eU (y) dmG(y)

≤ 2 sup
y∈U

(∫
G
| f (x) − f (xy−1)|p dmG(x)

)1/p
.

Let ϵ > 0. Since K is uniformly L p(G)-equicontinuous, there exists an open
neighborhood O of e such that

∥Ry f − f ∥p <
ϵ

2
, f ∈ K and y ∈ O.

By [1, Lemma 1.6.5, page 24], we get that there exists U ∈ 3 such that

∥Ry f − f ∥p <
ϵ

2
, f ∈ K and y ∈ U.

Hence,
∥ f̂ ∥ℓp′ -

⊕
π∈Ĝ\A Bp′ (Hπ ) < ϵ, f ∈ K . □

Lemma 3.2. Let K be a subset of L p′

(G), where p ∈ [1, 2]. If K̂ has uniform
ℓp-

⊕
π∈Ĝ Bp(Hπ )-decay then K is uniformly L p′

(G)-equicontinuous.

Proof. Let ϵ > 0. Since K̂ has uniform ℓp-
⊕

π∈Ĝ Bp(Hπ )-decay, there exists a
finite set A ⊂ Ĝ such that

∥ f̂ ∥ℓp-
⊕

π∈Ĝ\A Bp(Hπ ) <
ϵ

4
, f ∈ K .
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Let f ∈ K and y ∈ G. Then, applying [9, Corollary 31.25], we obtain

∥Ry f − f ∥p′ ≤ ∥
∧

Ry f − f ∥ℓp-
⊕

π∈Ĝ Bp(Hπ )

=

( ∑
π∈Ĝ

dπ∥
∧

Ry f (π) − f̂ (π)∥
p
Bp(Hπ )

)1/p

≤

( ∑
π∈A

dπ∥π(y) f̂ (π) − f̂ (π)∥
p
Bp(Hπ )

)1/p

+

( ∑
π∈Ĝ\A

dπ∥π(y) f̂ (π) − f̂ (π)∥
p
Bp(Hπ )

)1/p

≤ sup
π∈A

∥π(y) − Idπ
∥B(Hπ )

( ∑
π∈A

dπ∥ f̂ (π)∥
p
Bp(Hπ )

)1/p

+ sup
π∈Ĝ\A

∥π(y) − Idπ
∥B(Hπ )

( ∑
π∈Ĝ\A

dπ∥ f̂ (π)∥
p
Bp(Hπ )

)1/p

≤ M sup
π∈A

∥π(y) − Idπ
∥B(Hπ ) +

ϵ

2
,

where M is a positive number such that
(∑

π∈A dπ∥ f̂ (π)∥
p
Bp(Hπ )

)1/p
≤ M .

Let π ∈ A. Using continuity of π , we obtain that there exists a neighborhood Oπ

of e such that
∥π(y) − Idπ

∥B(Hπ ) <
ϵ

2M
, y ∈ Oπ .

Assume that O =
⋂

π∈A
Oπ . Then,

∥π(y) − Idπ
∥B(Hπ ) <

ϵ

2M
, π ∈ A and y ∈ O.

Hence,
∥Ry f − f ∥p′ < ϵ, f ∈ K and y ∈ O. □

The following corollary is a generalization of [13, Theorem 1] studied on Rn ,
and [5, Theorem 1] and [3, Lemma 2.5] studied on locally compact abelian groups.
This is also an improvement of the corresponding result on compact abelian groups
in the sense that we do not assume boundedness of the subset of L2(G).

Corollary 3.3. Let K ⊂ L2(G). Then, K is uniformly L2(G)-equicontinuous if and
only if K̂ has uniform ℓ2-

⊕
π∈Ĝ B2(Hπ )-decay.

Proof. This is a direct consequence of Lemmas 3.1 and 3.2. □

Now, we present our main result, that is, the Pego theorem over compact groups.
It is a consequence of the Weil theorem and above corollary.

Theorem 3.4. Let K be a bounded subset of L2(G). Then, the following are
equivalent:

(i) K is precompact.
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(ii) K is uniformly L2(G)-equicontinuous.

(iii) K̂ has uniform ℓ2-
⊕

π∈Ĝ B2(Hπ )-decay.

Proof. For any given ϵ > 0 we have that

sup
f ∈K

∥ f χG\G∥2 = 0 < ϵ.

Therefore, (i) and (ii) are equivalent by the Weil theorem [14, page 52] (or see [7,
Theorems 3.1 and 3.3]). Further, (ii) and (iii) are equivalent by Corollary 3.3. □

The following gives an example of a set K ⊂ L2(G) which is not precompact but
K is uniformly L2(G)-equicontinuous and K̂ has uniform ℓ2-

⊕
π∈Ĝ B2(Hπ )-decay.

Example 3.5. Consider the set K = {nχG : n ∈ N} ⊂ L2(G) as given in [7, Exam-
ple 4.2]. Since K consists of only constant functions, it is clear that K is uniformly
L2(G)-equicontinuous. By Corollary 3.3, K̂ has uniform ℓ2-

⊕
π∈Ĝ B2(Hπ )-decay.

Since K is not bounded, K is not precompact.

Now, with the help of our main result Theorem 3.4, we show that certain subsets
of L2(G) are precompact.

Example 3.6. (i) Let r ∈ R. Consider the set K =
{ r

n χG : n ∈ N
}

⊂ L2(G). Since{ r
n : n ∈ N

}
is bounded and K consists of only constant functions, it follows that K

is bounded and uniformly L2(G)-equicontinuous. Therefore, by Theorem 3.4, K is
precompact.

(ii) Let A be a finite subset of Ĝ. Assume that K is a bounded subset of the linear
span of the set consisting of matrix entries [4, page 139] of elements in A. Note that
the matrix entries are bounded functions. For f ∈ K , using the Schur orthogonality
relations [4, Theorem 5.8] we obtain that

∥ f̂ ∥ℓ2-
⊕

π∈Ĝ\A B2(Hπ ) = 0.

Thus, K̂ has uniform ℓ2-
⊕

π∈Ĝ B2(Hπ )-decay. Hence, by Theorem 3.4, K is
precompact. In particular, the convex hull of the set consisting of matrix entries of
elements in A is precompact.
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