Download this article
 Download this article For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Hankel operators on $L^p({\mathbb{R}}_{+})$ and their $p$-completely bounded multipliers

Loris Arnold, Christian Le Merdy and Safoura Zadeh

Vol. 328 (2024), No. 2, 193–216
Abstract

We show that for any 1 < p < , the space Hank p(+) B(Lp( +)) of all Hankel operators on Lp( +) is equal to the w-closure of the linear span of the operators 𝜃u: Lp( +) Lp( +) defined by 𝜃uf = f(u), for u > 0. We deduce that Hank p(+) is the dual space of Ap( +), a half-line analogue of the Figà-Talamanca–Herz algebra Ap( ). Then we show that a function m:  + is the symbol of a p-completely bounded multiplier Hank p(+) Hank p(+) if and only if there exist α L( +;Lp(Ω)) and β L( +;Lp (Ω)) such that m(s + t) = α(s),β(t) for a.e. (s,t) +2. We also give analogues of these results in the (easier) discrete case.

Keywords
$p$-complete boundedness, multipliers, Hankel operators
Mathematical Subject Classification
Primary: 47B35
Secondary: 46L07
Milestones
Received: 3 February 2023
Accepted: 12 April 2024
Published: 30 April 2024
Authors
Loris Arnold
Institute of Mathematics
Polish Academy of Sciences
Warsaw
Poland
Christian Le Merdy
Laboratoire de Mathématiques de Besançon, UMR CNRS 6623
Université de Franche-Comté
Besançon
France
Safoura Zadeh
Laboratoire de Mathématiques Blaise Pascal, UMR 6620
Université Clermont Auvergne
France
School of Mathematics
University of Bristol
Bristol
United Kingdom
Institut des Hautes Études Scientifiques
Bures-sur-Yvette
France

Open Access made possible by participating institutions via Subscribe to Open.