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HANKEL OPERATORS ON L p(R+) AND
THEIR p-COMPLETELY BOUNDED MULTIPLIERS

LORIS ARNOLD, CHRISTIAN LE MERDY AND SAFOURA ZADEH

We show that for any 1 < p < ∞, the space Hank p(R+) ⊆ B(L p(R+)) of
all Hankel operators on L p(R+) is equal to the w∗-closure of the linear
span of the operators θu : L p(R+) → L p(R+) defined by θu f = f (u− · ), for
u > 0. We deduce that Hank p(R+) is the dual space of Ap(R+), a half-line
analogue of the Figà-Talamanca–Herz algebra Ap(R). Then we show that
a function m : R∗

+ → C is the symbol of a p-completely bounded multiplier
Hank p(R+) → Hank p(R+) if and only if there exist α ∈ L∞(R+; L p(�)) and
β ∈ L∞(R+; L p′

(�)) such that m(s + t) = ⟨α(s), β(t)⟩ for a.e. (s, t) ∈ R∗2
+ .

We also give analogues of these results in the (easier) discrete case.

1. Introduction

For any u > 0 and for any function f : R+ → C, let τu f : R+ → C be the
shifted function defined by τu f = f ( · −u). Let 1< p, p′ <∞ be two conjugate
indices. We say that a bounded operator T : L p(R+)→ L p(R+) is Hankelian if
⟨T τu f, g⟩= ⟨T f, τug⟩ for all f ∈ L p(R+) and g ∈ L p′

(R+). Let B(L p(R+)) denote
the Banach space of all bounded operators on L p(R+). The main object of this paper
is the subspace Hankp(R+)⊆ B(L p(R+)) of all Hankel operators on L p(R+).

The case p = 2 has received a lot of attention; see [Nikolski 2002; 2020; Peller
2003; Yafaev 2015; 2017a; 2017b]. The most important result in this case is
that Hank2(R+) is isometrically isomorphic to the quotient space L∞(R)/H∞(R),
where H∞(R)⊂ L∞(R) is the classical Hardy space of essentially bounded func-
tions whose Fourier transform has support in R+ (see [Nikolski 2020, Section IV.5.3]
or [Peller 2003, Theorem I.8.1]). This result is the real line analogue of Nehari’s
classical theorem describing Hankel operators on ℓ2 (see [Nikolski 2020, Theo-
rem II.2.2.4], [Peller 2003, Theorem I.1.1] or [Power 1982, Theorem 1.3]). An
equivalent formulation of the above result is that

(1) Hank2(R+)≃ H 1(R)∗,

where H 1(R)⊆ L1(R) is the Hardy space of all integrable functions whose Fourier
transform vanishes on R−.
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The first main result of this paper is that for any 1< p <∞, the Banach space
Hankp(R+) coincides with Spanw

∗

{θu : u > 0} ⊂ B(L p(R+)), where, for any u > 0,
θu : L p(R+)→ L p(R+) is the Hankel operator defined by θu f = f (u− · ). As a
consequence, we show that

(2) Hankp(R+)≃ Ap(R+)
∗,

where Ap(R+) is a half-line analogue of the Figà-Talamanca–Herz algebra Ap(R)

(see, e.g., [Derighetti 2011, Chapter 3]). We will see in Remark 4.2(a) that
A2(R+) ≃ H 1(R). Thus, the duality result (2), established in Theorem 4.1, is
an L p-version of (1).

By a multiplier of Hankp(R+), we mean a w∗-continuous operator

T : Hankp(R+)→ Hankp(R+)

such that T (θu) = m(u)θu for all u > 0, for some function m : R∗

+
→ C. In this

case, we set T = Tm and it turns out that m is necessarily bounded and continuous,
see Lemma 4.5. The second main result of this paper is a characterization of
p-completely bounded multipliers Tm . We refer to Section 2 for some background
on p-complete boundedness, whose definition goes back to [Pisier 1990] (see
also [Daws 2010; Le Merdy 1996; Pisier 2001]). We prove in Theorem 4.6 that
Tm : Hankp(R+)→ Hankp(R+) is a p-completely bounded multiplier if and only
if there exist a measure space (�,µ) and two essentially bounded measurable
functions α : R+ → L p(�) and β : R+ → L p′

(�) such that m(s + t)= ⟨α(s), β(t)⟩
for almost every (s, t) ∈ R∗2

+
. This is a generalisation of [Arnold et al. 2022,

Theorem 3.1]. Indeed, the result in [Arnold et al. 2022] provides a characterization
of S1-bounded multipliers on H 1(R). Using (1), this yields a characterization of
completely bounded multipliers on Hank2(R+), which is nothing but the case p = 2
of Theorem 4.6. See Remark 4.7 for more on this.

Let us briefly explain the plan of the paper. Section 2 contains some preliminary
results. Section 3 is devoted to Hankp(N)⊂ B(ℓp), the space of Hankel operators
on ℓp. We establish analogues of the aforementioned results in the discrete setting.
Results for Hankp(N) are easier than those concerning Hankp(R+) and Section 3
can be considered as a warm up. The main results are stated and proved in Section 4.

2. Preliminaries

All our Banach spaces are complex ones. For any Banach spaces X, Z , we let
B(X, Z) denote the Banach space of all bounded operators from X into Z and we
write B(X) instead of B(X, X) when Z = X . For any x ∈ X and x∗

∈ X∗, the
duality action x∗(x) is denoted by ⟨x∗, x⟩X∗,X , or simply by ⟨x∗, x⟩ if there is no
risk of confusion.
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We start with duality on tensor products. Let X, Y be Banach spaces. Let X ⊗̂ Y
denote their projective tensor product [Diestel and Uhl 1977, Section VIII.1]. We
will use the classical isometric identification

(3) (X ⊗̂ Y )∗ ≃ B(X, Y ∗)

provided, e.g., by [Diestel and Uhl 1977, Corollary VIII.2.2]. More precisely,
for any ξ ∈ (X ⊗̂ Y )∗, there exists a necessarily unique Rξ ∈ B(X, Y ∗) such that
ξ(x ⊗ y) = ⟨Rξ (x), y⟩ for all x ∈ X and y ∈ Y . Moreover ∥Rξ∥ = ∥ξ∥ and the
mapping ξ 7→ Rξ is onto.

Lemma 2.1. Let A ⊂ X and B ⊂ Y such that Span{A} is dense in X and Span{B}

is dense in Y . Assume that (Rι)ι is a bounded net of B(X, Y ∗). Then Rι converges
to some R ∈ B(X, Y ∗) in the w∗-topology if and only if ⟨Rι(x), y⟩ → ⟨R(x), y⟩ for
all x ∈ A and y ∈ B.

Proof. Assume the latter property. Since the algebraic tensor product X ⊗Y is dense
in X ⊗̂ Y , it implies that ⟨Rι, z⟩ → ⟨R, z⟩, for all z belonging to a dense subspace
of X ⊗̂ Y . Next, the boundedness of (Rι)ι implies that ⟨Rι, z⟩ → ⟨R, z⟩, for all z
belonging to X ⊗̂ Y . The equivalence follows. □

We will use the above duality principles in the case when X = Y ∗ is an L p-space
L p(�), for some index 1< p <∞.

We now give a brief background on p-completely bounded maps, following
[Pisier 1990] (see also [Daws 2010; Le Merdy 1996; Pisier 2001]). Let 1< p <∞

and let SQ p denote the collection of quotients of subspaces of L p-spaces, where
we identify spaces which are isometrically isomorphic. Let E be an SQ p-space.
Let n ≥ 1 be an integer and let [Ti j ]1≤i, j≤n ∈ Mn ⊗ B(E) be an n × n matrix with
entries Ti j in B(E). We equip Mn ⊗ B(E) with the norm defined by

(4) ∥[Ti j ]∥ = sup
{( n∑

i=1

∥∥∥ n∑
j=1

Ti j (x j )

∥∥∥p) 1
p

: x1, . . . , xn ∈ E,
n∑

i=1
∥xi∥

p
≤ 1

}
.

If S ⊂ B(E) is any subspace, then we let Mn(S) denote Mn ⊗ S equipped with the
induced norm.

Let S1 and S2 be subspaces of B(E1) and B(E2), respectively, for some SQ p-
spaces E1 and E2. Letw : S1 → S2 be a linear map. For any n ≥1, letwn : Mn(S1)→

Mn(S2) be defined by wn([Ti j ]) = [w(Ti j )], for any [Ti j ]1≤i, j≤n ∈ Mn(S1). By
definition, w is called p-completely bounded if the maps wn are uniformly bounded.
In this case, the p-cb norm of w is defined by ∥w∥p−cb = supn ∥wn∥. We further
say that w is p-completely contractive if ∥w∥p−cb ≤ 1 and that w is a p-complete
isometry ifwn is an isometry for all n ≥1. Note that the case p =2 corresponds to the
classical notion of completely bounded maps (see, e.g., [Paulsen 2002; Pisier 2001]).
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We recall the following factorisation theorem of Pisier (see [Le Merdy 1996,
Theorem 1.4; Pisier 1990, Theorem 2.1]), which extends Wittstock’s factorisation
theorem [Paulsen 2002, Theorem 8.4].

Theorem 2.2. Let (�1, µ1) and (�2, µ2) be measure spaces and let 1 < p <∞.
Let S ⊆ B(L p(�1)) be a unital subalgebra. Let w : S → B(L p(�2)) be a linear
map and let C ≥ 0 be a constant. The following assertions are equivalent.

(i) The map w is p-completely bounded and ∥w∥p−cb ≤ C.

(ii) There exist an SQ p-space E , a unital, nondegenerate p-completely contractive
homomorphism π : S → B(E) as well as operators V : L p(�2) → E and
W : E → L p(�2) such that ∥V ∥∥W∥≤C and for any x ∈ S, w(x)= Wπ(x)V .

Remark 2.3. Let 1 < p < ∞ and let p′ be its conjugate index. Let E be an
SQ p-space. Then by assumption, there exist a measure space (�,µ) and two closed
subspaces E2 ⊆ E1 ⊆ L p(�) such that E = E1/E2. Then E⊥

1 ⊆ E⊥

2 ⊆ L p′

(�) and
we have an isometric identification

(5) E∗
≃

E⊥

2

E⊥

1
,

by the classical duality between subspaces and quotients of Banach spaces. More
explicitly, let f ∈ E1 and let g ∈ E⊥

2 . Let ḟ ∈ E denote the class of f modulo E2

and let ġ ∈ E∗ denote the element associated to the class of g modulo E⊥

1 through
the identification (5). Then we have

(6) ⟨ġ, ḟ ⟩E∗,E = ⟨g, f ⟩L p′
,L p .

We now turn to Bochner spaces. Let (6, ν) be a measure space and let X be
a Banach space. For any 1 ≤ p ≤ ∞, we let L p(6; X) denote the space of all
measurable functions φ :6 → X (defined up to almost everywhere zero functions)
such that the norm function t 7→ ∥φ(t)∥ belongs to L p(6). This is a Banach space
for the norm ∥φ∥p, defined as the L p(6)-norm of ∥φ( · )∥ (see, e.g., [Diestel and
Uhl 1977, Chapters I and II]).

Assume that p is finite and note that in this case, L p(6)⊗X is dense in L p(6; X).
Let p′ be the conjugate index of p. For all φ ∈ L p(6; X) and ψ ∈ L p′

(6; X∗), the
function t 7→ ⟨ψ(t), φ(t)⟩X∗,X belongs to L1(6) and the resulting duality paring
⟨ψ, φ⟩ :=

∫
�
⟨ψ(t), φ(t)⟩ dν(t) extends to an isometric embedding L p′

(6; X∗) ↪→

L p(6; X)∗. Furthermore, this embedding is onto if X is reflexive, that is,

(7) L p′

(6; X∗)≃ L p(6; X)∗ if X is reflexive.

We refer to [Diestel and Uhl 1977, Corollary III.2.13 and Section IV.1] for these
results and complements.
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Let (6, ν) and (�,µ) be two measure spaces. Then we have an isometric
identification

L p(6; L p(�))≃ L p(6×�),

from which it follows that for any T ∈ B(L p(6)), the tensor extension

T ⊗ IL p(�) : L p(6)⊗ L p(�)→ L p(6)⊗ L p(�)

extends to a bounded operator T ⊗ IL p(�) on L p(6×�), whose norm is equal to
the norm of T . The following is elementary.

Lemma 2.4. The mapping π : B(L p(6)) → B(L p(6 ×�)) defined by π(T ) =

T ⊗ IL p(�) is a p-complete isometry.

Proof. Let n ≥ 1 and let Jn = {1, . . . , n}. It follows from (4) that Mn(B(L p(6)))=

B(ℓp
n (L p(6))) and hence Mn(B(L p(6))) = B(L p(Jn ×6)) isometrically. Like-

wise, we have Mn(B(L p(6×�)))= B(L p(Jn ×6×�)) isometrically. Through
these identifications,

[Ti j ⊗ IL p(�)] = [Ti j ] ⊗ IL p(�),

for all [Ti j ]1≤i, j≤n in Mn(B(L p(6))). The result follows at once. □

We finally state an important result concerning Schur products on B(ℓp
I )-spaces.

Let I be an index set, let 1< p<∞ and let ℓp
I denote the discrete L p-space over I .

Let (et)t∈I be its canonical basis. To any T ∈ B(ℓp
I ), we associate a matrix of

complex numbers, [ast ]s,t∈I , defined by ast = ⟨T (et), es⟩, for all s, t ∈ I . Following
[Pisier 2001, Chapter 5], we say that a bounded family {ϕ(s, t)}(s,t)∈I 2 of complex
numbers is a bounded Schur multiplier on B(ℓp

I ) if for all T ∈ B(ℓp
I ), with matrix

[ast ]s,t∈I , the matrix [ϕ(s, t)ast ]s,t∈I represents an element of B(ℓp
I ). In this case,

the mapping [ast ] → [ϕ(s, t)ast ] is a bounded operator from B(ℓp
I ) into itself. We

note that {ϕ(s, t)}(s,t)∈I 2 is a bounded Schur multiplier with norm ≤ C if and only
if for all n ≥ 1, all [ai j ]1≤i, j≤n in Mn and all t1, . . . , tn, s1, . . . , sn in I , we have

(8) ∥[ϕ(si , t j )ai j ]∥B(ℓp
n )

≤ C∥[ai j ]∥B(ℓp
n )
.

In the sequel, we apply the above definitions to the case when I = R∗

+
.

Theorem 2.5. Let ϕ :R∗2
+

→C be a continuous bounded function. Let 1< p, p′<∞

be conjugate indices and let C ≥ 0 be a constant. The following assertions are
equivalent.

(i) The family{ϕ(s, t)}(s,t)∈R∗2
+

is a bounded Schur multiplier on B(ℓp
R∗

+

), with
norm ≤ C.

(ii) There exist a measure space (�,µ) and two functions α∈ L∞(R+; L p(�)) and
β∈L∞(R+; L p′

(�)) such that ∥α∥∞∥β∥∞ ≤C and ϕ(s, t)=⟨α(s),β(t)⟩L p,L p′

for almost every (s, t) ∈ R∗2
+

.
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Proof. According to [Coine 2018, Section 4.1], (ii) is equivalent to the fact that as
an element of L∞(R2

+
),

(ii’) ϕ is a bounded Schur multiplier on B(L p(R+)).

It further follows from [Herz 1974, Lemmas 1 and 2] that since ϕ is continuous,
(ii’) is equivalent to (i). The result follows. □

3. Hankel operators on ℓ p and their multipliers

In this section we work on the sequence spaces ℓp
= ℓ

p
N, where N = {0, 1, . . .}. For

any 1< p <∞, we let (en)≥0 denote the classical basis of ℓp. For any T ∈ B(ℓp),
the associated matrix [ti j ]i, j≥0 is given by ti j = ⟨T (e j ), ei ⟩, for all i, j ≥ 0.

Let Hankp(N) ⊆ B(ℓp) be the subspace of all T ∈ B(ℓp) whose matrix is
Hankelian, i.e., has the form [ci+ j ]i, j≥0 for some sequence (ck)k≥0 of complex
numbers.

Let p′ be the conjugate index of p and regard ℓp
⊗ℓp′

⊂ B(ℓp) in the usual way.
We set

γk =
∑

i+ j=k
ei ⊗ e j

for any k ≥ 0. Then each γk belongs to Hankp(N), and ∥γk∥ = 1. Indeed, the matrix
of γk is [ci+ j ]i, j≥0 with ck = 1 and cl = 0 for all l ̸= k.

Lemma 3.1. For any 1 < p < ∞, the space Hankp(N) is the w∗-closure of the
linear span of {γk : k ≥ 0}.

Proof. It is plain that Hankp(N) is a w∗-closed subspace of B(ℓp), hence one
inclusion is straightforward.

To check the other one, consider T ∈ Hankp(N). By the definition of this space,
there is a sequence (ck)k≥0 of C such that

⟨T (e j ), ei ⟩ = ci+ j , for all i, j ≥ 0.

For any n ≥ 1, let Kn be the Fejér kernel defined by

Kn(t)=

n∑
k=−n

(
1 −

|k|

n

)
eint , t ∈ R.

Then let Tn ∈ B(ℓp) be the finite rank operator whose matrix is [K̂n(i + j)ci+ j ]i, j≥0.
Note that

Tn =

n∑
k=0

(
1 −

|k|

n

)
ck γk ∈ Span{γk : k ≥ 0}.
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We show that ∥Tn∥ ≤ ∥T ∥. To see this, let α = (α j ) j≥0 ∈ ℓp and (βm)m≥0 ∈ ℓp′

.
We have that

⟨Tn(α), β⟩ =
∑

m, j≥0
K̂n(m + j)cm+ jα jβm

=
1

2π

∫ π

−π
Kn(t)

∑
m, j≥0

cm+ jα jβme−i(m+ j)t dt.

Since Kn ≥ 0, we deduce

|⟨Tn(α), β⟩| ≤
1

2π

∫ π

−π
Kn(t)

∣∣∣ ∑
m, j≥0

cm+ jα jβme−i(m+ j)t
∣∣∣ dt.

Now for all t ∈ [−π, π], we have∣∣∣ ∑
m, j≥0

cm+ jα jβme−i(m+ j)t
∣∣∣ =

∣∣∣ ∑
m, j≥0

cm+ j (e−i j tα j )(e−imtβm)

∣∣∣
=

∣∣〈T ((e−i j tα j ) j≥0), (e−imtβm)m≥0
〉∣∣

≤ ∥T ∥

(∑
j≥0

|e−i j tα j |
p
)1

p
( ∑

m≥0
|e−imtβm |

p′
) 1

p′

≤ ∥T ∥∥α∥p∥β∥p′,

Since
1

2π

∫ π

−π
Kn(t)dt = 1,

we therefore obtain that |⟨Tn(α), β⟩|≤∥T ∥∥α∥p∥β∥p′ . This proves that ∥Tn∥≤∥T ∥,
as requested.

For all i, j ≥ 0,

⟨Tn(e j ), ei ⟩ = K̂n(i + j) ⟨T e j , ei ⟩ → ⟨T e j , ei ⟩,

when n → ∞. Hence Tn → T in the w∗-topology, by Lemma 2.1. Consequently, T
belongs to the w∗-closure of Span{γk : k ≥ 0}. □

Remark 3.2. (a) Nehari’s celebrated theorem (see, e.g., [Nikolski 2020, Theo-
rem II.2.2.4], [Peller 2003, Theorem I.1.1] or [Power 1982, Theorem 1.3]) asserts
that

(9) Hank2(N)≃
L∞(T)

H∞(T)
.

Here T stands for the unit circle of C and H∞(T)⊂ L∞(T) is the Hardy space of
functions whose negative Fourier coefficients vanish. The isometric isomorphism
J : L∞(T)/H∞(T)→ Hank2(N) providing (9) is defined as follows. Given any
F ∈ L∞(T), let Ḟ denote its class modulo H∞(T). Then J (Ḟ) is the operator
whose matrix is equal to [F̂(−i − j − 1)]i, j≥0.
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(b) We remark that Hankp(N)⊆ Hank2(N). To see this, note that if T ∈ Hankp(N),
then because of the symmetry in its matrix representation due to being a Hankelian
matrix, T has the same matrix representation as T ∗, and therefore T extends to a
bounded operator on ℓp′

. By interpolation, T extends to a bounded operator on ℓ2,
which is represented by the same matrix as T . Hence, T belongs to Hank2(N).

However for 1 < p ̸= 2 < ∞, there is no description of Hankp(N) similar to
Nehari’s theorem.

(c) The definition of Hankp(N) readily extends to the case p = 1 isometrically:

Hank1(N)≃ ℓ1.

Indeed, let J1 : ℓ1
→ Hank1(N) be defined by

J1(c)=

∞∑
k=0

ckγk, c = (ck)k≥0 ∈ ℓ1.

Next, let J2 : Hank1(N) → ℓ1 be defined by J2(T ) = T (e0). Then J1, J2 are
contractions and it is easy to check that they are inverse to each other. Hence J1 is
an isometric isomorphism.

We say that a sequence m = (mk)k≥0 in C is the symbol of a multiplier on
Hankp(N) if there is a w∗-continuous operator Tm : Hankp(N) → Hankp(N)

such that
Tm(γk)= mkγk, k ≥ 0.

Such an operator is uniquely defined. In this case, m ∈ ℓ∞ and ∥m∥∞ ≤ ∥Tm∥.
The following is a simple extension of [Pisier 2001, Theorems 6.1 and 6.2].

Theorem 3.3. Let 1< p <∞, let C ≥ 0 be a constant and let m = (mk)k≥0 be a
sequence in C. The following assertions are equivalent.

(i) m is the symbol of a p-completely bounded multiplier on Hankp(N), and

∥Tm : Hankp(N)→ Hankp(N)∥p−cb ≤ C.

(ii) There exist a measure space (�,µ), and bounded sequences (αi )i≥0 in L p(�)

and (β j ) j≥0 in L p′

(�) such that mi+ j = ⟨αi , β j ⟩, for every i, j ≥ 0, and

sup
i≥0

∥αi∥p sup
j≥0

∥β j∥p′ ≤ C.

Proof. By homogeneity, we may assume that C = 1 throughout this proof.
Assume (i). Let κ : ℓ

p
Z → ℓ

p
Z be defined by κ((ak)k∈Z)= (a−k)k∈Z, let J : ℓ

p
N → ℓ

p
Z

be the canonical embedding and let Q : ℓ
p
Z → ℓ

p
N be the canonical projection.

Define q : B(ℓp
Z)→ B(ℓp

N) by q(T )= QκT J . According to the easy implication
(ii) =⇒ (i) of Theorem 2.2, the mapping q is p-completely contractive. We note that
if [ti, j ](i, j)∈Z2 is the matrix of some T ∈ B(ℓp

Z), then the matrix of q(T ) is equal
to [t−i, j ](i, j)∈N2 .
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Let Mp(Z)⊆ B(ℓp
Z) be the space of all bounded Fourier multipliers on ℓp

Z; this
is a unital subalgebra. Let T ∈ Mp(Z) and let φ ∈ L∞(T) denote its symbol. Then
the matrix of T is equal to [φ̂(i − j)](i, j)∈Z2 , hence the matrix of q(T ) is equal
to [φ̂(−i − j)](i, j)∈N2 . Hence, q(T ) is Hankelian. We can therefore consider the
restriction map

q|Mp(Z) : Mp(Z)→ Hankp(N).

Let s : ℓ
p
Z → ℓ

p
Z be the shift operator defined by s(e j )= e j+1, for all j ∈ Z. We

observe (left to the reader) that

(10) q(s−k)= γk, k ∈ N.

We assume that Tm : Hankp(N)→ Hankp(N) is p-completely contractive. Con-
sider w : Mp(Z)→ Hankp(N)⊆ B(ℓp) defined by w := Tm ◦ q|Mp(Z). Then w is
p-completely contractive. Applying Theorem 2.2 to w, we obtain an SQ p-space E ,
a contractive homomorphism π :Mp(Z)→ B(E) and contractive maps V : ℓ

p
N → E

and W : E → ℓ
p
N such that

(11) w(T )= Wπ(T )V, T ∈ Mp(Z).

Let i, j ≥ 0. By (10), we have

w(s−(i+ j))= Tm(q(s−(i+ j)))= Tm(γi+ j )= mi+ jγi+ j ,

hence ⟨w(s−(i+ j))ei , e j ⟩ = mi+ j . Consequently, from (11), we obtain that

mi+ j = ⟨π(s−(i+ j))V (ei ),W ∗(e j )⟩E,E∗ .

The mapping π is multiplicative, hence this implies that

mi+ j = ⟨π(s−i )V (ei ), π(s− j )∗W ∗(e j )⟩E,E∗ .

Set xi := π(s−i )V (ei ) ∈ E and y j := π(s− j )∗W ∗(e j ) ∈ E∗. Then, for all i, j ≥ 0
we have ∥xi∥ ≤ 1, ∥y j∥ ≤ 1 and mi+ j = ⟨xi , y j ⟩E,E∗ .

Let us now apply Remark 2.3. As in the latter, consider a measure space (�,µ)
and closed subspaces E2 ⊂ E1 ⊂ L p(�) such that E = E1/E2. Recall (5). For
any i ≥ 0, pick αi ∈ E1 such that ∥αi∥p = ∥xi∥ and α̇i = xi . Likewise, for any
j ≥ 0, pick β j ∈ E⊥

2 such that ∥β j∥p′ = ∥y j∥ and β̇ j = y j . Then for all i, j ≥ 0,
we both have ∥αi∥p ≤ 1, ∥β j∥p′ ≤ 1 and mi+ j = ⟨αi , β j ⟩L p,L p′ . This proves (ii).

Conversely, assume (ii). By [Pisier 2001, Corollary 8.2], the family {mi+ j }(i, j)∈N2

induces a p-completely contractive Schur multiplier on B(ℓp). It is clear that the
restriction of this Schur multiplier maps Hankp(N) into itself. More precisely, it
maps γk to mkγk for all k ≥ 0. Hence m is the symbol of a p-completely contractive
multiplier on Hankp(N). □
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4. Hankel operators on L p(R+)

Throughout we let 1< p <∞ and we let p′ denote its conjugate index. For any
u > 0, we set τu f := f ( · −u), for all f ∈ L1(R)+ L∞(R). Let

Hankp(R+)⊆ B(L p(R+))

be the space of Hankelian operators on L p(R+), consisting of all bounded operators
T : L p(R+)→ L p(R+) such that

⟨T τu f, g⟩ = ⟨T f, τug⟩,

for all f ∈ L p(R+), g ∈ L p′

(R+) and u > 0.
For any u > 0, let θu : L p(R+)→ L p(R+) be defined by θu f = f (u− · ). Note

that θu is a Hankelian operator on L p(R+). Indeed, for all f ∈ L p(R+), g ∈ L p′

(R+)

and v > 0, we have

⟨θuτv f, g⟩ =

∫ u

v
f (u − s)g(s − v) ds = ⟨θu f, τvg⟩

if v < u, and ⟨θuτv f, g⟩ = ⟨θu f, τvg⟩ = 0 if v ≥ u. The operators θu are the
continuous counterparts of the operators γk from Section 3. From this point of view,
part (1) of Theorem 4.1 below is an analogue of Lemma 3.1. However its proof is
more delicate.

We introduce a new space Ap(R+)⊆ C0(R+) by

Ap(R+):=
{

F =

∞∑
n=1

fn∗gn : fn ∈L p(R+), gn ∈L p′

(R+)and
∞∑

n=1
∥ fn∥p∥gn∥p′<∞

}
,

and we equip it with the norm

(12) ∥F∥Ap = inf
{ ∞∑

n=1
∥ fn∥p∥gn∥p′

}
,

where the infimum runs over all possible representations of F as above. The
space Ap(R+) is a half-line analogue of the classical Figà-Talamanca–Herz algebra
Ap(R); see, e.g., [Derighetti 2011]. The classical arguments showing that the latter
is a Banach space show as well that (12) is a norm on Ap(R+) and that Ap(R+) is
a Banach space.

It follows from the above definitions that there exists a (necessarily unique)
contractive map

Q p : L p(R+) ⊗̂ L p′

(R+)→ Ap(R+)

such that Q p( f ⊗ g)= f ∗ g, for all f ∈ L p(R+) and g ∈ L p′

(R+). Moreover Q p

is a quotient map. Hence the adjoint

Q∗

p : Ap(R+)
∗
→ B(L p(R+))
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of Q p is an isometry. This yields an isometric identification Ap(R+)
∗
≃ ker(Q p)

⊥

(= ran(Q∗
p)).

We observe that

(13) ker(Q p)
⊥

= Spanw
∗

{θu : u > 0}.

To prove this, we note that

(14) ⟨θu, f ⊗ g⟩ = ⟨θu( f ), g⟩ = ( f ∗ g)(u),

for all f ∈ L p(R), g ∈ L p′

(R+) and u > 0. Hence,〈
θu,

∞∑
n=1

fn ⊗ gn

〉
=

( ∞∑
n=1

fn ∗ gn

)
(u)

for all sequences ( fn)n in L p(R+) and (gn)n in L p′

(R+) such that
∞∑

n=1
∥ fn∥p∥gn∥p′ <∞,

and all u > 0. This implies that Span{θu : u > 0}⊥ = ker(Q p), and (13) follows.

Theorem 4.1. (1) The space Hankp(R+) is equal to the w∗-closure of the linear
span of {θu : u > 0}.

(2) We have an isometric identification

Hankp(R+)≃ Ap(R+)
∗.

Proof. Part (2) follows from part (1) and the discussion preceding the statement
of Theorem 4.1. For any f ∈ L p(R+), g ∈ L p′

(R+) and u > 0, the functionals
T 7→ ⟨T τu f, g⟩ and T 7→ ⟨T f, τug⟩ are w∗-continuous on B(L p(R+)). Conse-
quently, Hankp(R+) is w∗-closed. Hence Hankp(R+) contains the w∗-closure of
Span{θu : u > 0}. To prove the reverse inclusion, it suffices to show, by (13), that

Hankp(R+)⊂ ker(Q p)
⊥.

We will use a double approximation process. First, let k, l in Cc(R), the space of
continuous functions with compact support. To any T ∈ B(L p(R+)), we associate
Tk,l ∈ B(L p(R+)) defined by

⟨Tk,l( f ), g⟩ =

∫
R
⟨T (τuk · f ), τ−ul · g⟩ du, f ∈ L p(R+), g ∈ L p′

(R+).

We note that∫
R

∣∣⟨T (τuk · f ), τ−ul · g⟩
∣∣ du ≤ ∥T ∥p

(∫
R
∥τuk f ∥

p
p du

)1
p
(∫

R
∥τ−ulg∥

p′

p′ du
) 1

p′

= ∥T ∥p∥ f ∥p∥g∥p′∥k∥p∥l∥p′ .
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Thus, Tk,l is well-defined and ∥Tk,l∥ ≤ ∥T ∥∥k∥p∥l∥p′ . We are going to show that

(15) T ∈ Hankp(R+) =⇒ Tk,l ∈ ker(Q p)
⊥.

Let α ∈ Cc(R+)
+ such that ∥α∥1 = 1. Let Rα ∈ B(L p(R+)) be defined by

Rα( f )= α ∗ f, f ∈ L p(R+).

We show that (TRα)k,l belongs to ker(Q p)
⊥ if T ∈ Hankp(R+), and we use these

auxiliary operators to establish (15).
We fix some T ∈ Hankp(R+). Let z ∈ ker(Q p). Since Cc(R+) is both dense in

L p(R+) and L p′

(R+), it follows, e.g., from [Derighetti 2011, Chapter 3, Propo-
sition 6] that there exist sequences ( fn)n≥1 and (gn)n≥1 in Cc(R+) such that∑

∞

n=1 ∥ fn∥p∥gn∥p′ < ∞ and z =
∑

∞

n=1 fn ⊗ gn . Since z ∈ ker(Q p), we have∑
∞

n=1 fn ∗ gn = 0, pointwise.
We write Rα f =

∫
R+

f (s)τsα ds as a Bochner integral, for all f ∈ Cc(R+). A
simple application of Fubini’s theorem leads to

k ∗ l · fn ∗ gn =

∫
R

∫
R+

(τuk · fn)(s)τs(τ−ul · gn) dsdu,

for all n ≥ 1. We deduce that

∞∑
n=1

⟨(TRα)k,l( fn), gn⟩ =

∞∑
n=1

∫
R
⟨TRα(τuk · fn), τ−ul · gn⟩ du

=

∞∑
n=1

∫
R
⟨T ((τuk · fn) ∗α), τ−ul · gn⟩ du

=

∞∑
n=1

∫
R

∫
R+

(τuk · fn)(s)⟨T (τsα), τ−ul · gn⟩ dsdu

=

∞∑
n=1

∫
R

∫
R+

⟨T (α), (τuk · fn)(s)τs(τ−ul · gn)⟩ dsdu

=

∞∑
n=1

⟨T (α), k ∗ l · fn ∗ gn⟩

=

〈
T (α), k ∗ l ·

∞∑
n=1

fn ∗ gn

〉
= 0.

This shows that (TRα)k,l belongs to ker(Q p)
⊥.

For z, fn, gn as above, write

∞∑
n=1

⟨Tk,l( fn), gn⟩ =

∞∑
n=1

⟨Tk,l( fn), gn⟩ −

∞∑
n=1

⟨(TRα)k,l( fn), gn⟩.
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Then we have∣∣∣ ∞∑
n=1

⟨Tk,l( fn), gn⟩

∣∣∣
≤

∞∑
n=1

∫
R

∣∣⟨T (τuk · fn − (τuk · fn) ∗α), τ−ul · gn⟩
∣∣ du

≤

∞∑
n=1

∥T ∥

(∫
R
∥τuk · fn − (τuk · fn) ∗α∥

p
p du

)1
p
(∫

R
∥τ−ul · gn∥

p′

p′ du
) 1

p′

≤ ∥T ∥∥l∥p′

∞∑
n=1

∥gn∥p′

(∫
R
∥τuk · fn −

(
τuk · fn

)
∗α∥

p
p du

)1
p
.

Recall that by assumption, α ≥ 0 and
∫

R+
α(s)ds = 1. Then we deduce from

above that∣∣∣ ∞∑
n=1

⟨Tk,l( fn), gn⟩

∣∣∣
≤ ∥T ∥∥l∥p′

∞∑
n=1

∥gn∥p′

(∫
R

∥∥∥∫
R+

α(s)(τuk · fn − τs(τuk · fn))ds
∥∥∥p

p
du

)1
p

≤ ∥T ∥∥l∥p′

∞∑
n=1

∥gn∥p′

(∫
R

∫
R+

α(s)
∥∥τuk · fn − τs(τuk · fn)

∥∥p
p dsdu

)1
p
.

The integral in the right-hand side satisfies(∫
R

∫
R+

α(s)
∥∥τuk · fn −τs(τuk · fn)

∥∥p
p dsdu

)1
p

≤

(∫
R

∫
R+

α(s)
∥∥τuk · fn −τs+uk · fn

∥∥p
pdsdu

)1
p

+

(∫
R

∫
R+

α(s)
∥∥τs+uk · fn −τs(τuk · fn)

∥∥p
p dsdu

)1
p

≤

(∫
R

∫
R+

α(s)
∥∥τu((k−τsk)· fn)

∥∥p
p dsdu

)1
p

+

(∫
R

∫
R+

α(s)
∥∥τs+uk ·( fn −τs fn)

∥∥p
pdsdu

)1
p

≤ sup
s∈supp(α)

(∫
R

∥∥τu(k−τsk)· fn
∥∥p

p du
)1

p
+ sup

s∈supp(α)

(∫
R

∥∥τs+uk ·( fn −τs fn)
∥∥p

p du
)1

p

= sup
s∈supp(α)

∥k−τsk∥p∥ fn∥p+ sup
s∈supp(α)

∥k∥p∥ fn −τs fn∥p.

Hence we obtain that∣∣∣ ∞∑
n=1

⟨Tk,l( fn), gn⟩

∣∣∣
≤ ∥T ∥∥l∥p′

∞∑
n=1

∥gn∥p′

(
sup

s∈supp(α)
∥k − τsk∥p∥ fn∥p + sup

s∈supp(α)
∥k∥p∥ fn − τs fn∥p

)
.
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Given ϵ > 0, choose M such that
∞∑

n=M+1
∥ fn∥p∥gn∥p′ < ϵ.

We may find s0 > 0 such that for all s ∈ (0, s0) and all 1 ≤ n ≤ M , we have that

∥k − τsk∥p ≤
ϵ∥k∥p∑

∞

n=1 ∥ fn∥p∥gn∥p′

and ∥ fn − τs fn∥p ≤
ϵ

M∥gn∥p′

.

We may now choose α so that supp(α)⊆ (0, t0). Then we obtain from above that∣∣∣ ∞∑
n=1

⟨Tk,l( fn), gn⟩

∣∣∣
≤ ∥T ∥∥l∥p′

(
ϵ∥k∥p +

M∑
n=1

∥gn∥p′ · sup
s∈supp(α)

∥k∥p∥ fn − τs fn∥p

+

∞∑
n=M+1

∥gn∥p′ · sup
s∈supp(α)

∥k∥p∥ fn − τs fn∥p

)
≤ ∥T ∥∥l∥p′

(
2ϵ∥k∥p +

∞∑
n=M+1

2∥k∥p∥gn∥p′∥ fn∥p

)
≤ 4ϵ∥T ∥∥l∥p′∥k∥p.

Since ϵ was arbitrary, this shows that
∑

∞

n=1⟨Tk,l( fn),gn⟩=0. Since z=
∑

∞

n=1 fn⊗gn

was an arbitrary element of ker(Q p), we obtain (15).
Next, we construct a sequence (Tkn,ln )n which tends to T in the w∗-topology of

B(L p(R+)). In the sequel, we assume that k, l in Cc(R) are such that

(16) ∥k∥p = 1, ∥l∥p′ = 1 and
∫

R
k(−s)l(s) ds = 1.

Consider any f, g ∈ Cc(R+). We have∣∣⟨T ( f ), g⟩ − ⟨Tk,l( f ), g⟩
∣∣

=

∣∣∣∫
R
⟨T (k(−s) f ), l(s)g⟩ − ⟨T (τsk · f ), τ−sl · g⟩ ds

∣∣∣
≤

∫
R

∣∣⟨T ((k(−s)− τsk) f ), l(s)g⟩
∣∣ ds +

∫
R

∣∣⟨T (τsk · f ), (l(s)− τ−sl)g⟩
∣∣ ds

≤ ∥T ∥

(∫
R

∥∥(k(−s)− τsk) f
∥∥p

pds
)1

p
(∫

R
∥l(s)g∥

p′

p′ ds
) 1

p′

+ ∥T ∥

(∫
R
∥τsk · f ∥

p
pds

)1
p
(∫

R
∥(l(s)− τ−sl)g∥

p′

p′ ds
) 1

p′

≤ ∥T ∥∥g∥p′

(∫
R+

| f (t)|p
∥τt ǩ − ǩ∥

p
p dt

)1
p

+ ∥T ∥∥ f ∥p

(∫
R+

|g(t)|p′

∥τ−t l − l∥p′

p′ dt
) 1

p′

.

Here ǩ denotes the function s 7→ k(−s).
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Now for n ≥ 1, set

kn :=
χ[−n,n]

(2n)
1
p

and ln :=
χ[−n,n]

(2n)
1
p′

,

where χ[−n,n] is the indicator function of the interval [−n, n]. Then ∥kn∥p =

∥ln∥p′ = 1 and
∫

R
kn(−s)ln(s) ds = 1 as in (16). Let K = supp( f )∪ supp(g) and

let r = sup(K ). Note that ǩn = kn and that we have

sup
t∈K

∥τt kn − kn∥p ≤

(
r
n

)1
p

and sup
t∈K

∥τ−t ln − ln∥p′ ≤

(
r
n

) 1
p′

.

Therefore, ∣∣⟨T ( f ), g⟩ − ⟨Tkn,ln ( f ), g⟩
∣∣ ≤

2r
n

∥T ∥∥ f ∥p∥g∥p′,

hence ⟨Tkn,ln ( f ), g⟩ n→∞
−−→⟨T ( f ), g⟩. Since ∥Tkn,ln∥≤∥T ∥ for all n ≥1, this implies,

by Lemma 2.1, that Tkn,ln → T in the w∗-topology of B(L p(R+)). Consequently,
T ∈ ker(Q p)

⊥ as expected. □

Remark 4.2. (a) For any 1 ≤ p ≤ ∞, let H p(R)⊂ L p(R) be the subspace of all
f ∈ L p(R) whose Fourier transform has support in R+. Recall the factorisation
property

H 1(R)= H 2(R)× H 2(R).

More precisely, the product h1h2 ∈ H 1(R) and ∥h1h2∥1 ≤ ∥h1∥2∥h2∥2 for all
h1, h2 ∈ H 2(R) and conversely, for all h ∈ H 1(R), there exist h1, h2 ∈ H 2(R) such
that h = h1h2 and ∥h∥1 = ∥h1∥2∥h2∥2.

Recall that by definition,

A2(R+)=

{∑
fn ∗ gn : fn, gn ∈ L2(R+),

∑
∥ fn∥2∥gn∥2 <∞

}
.

It therefore follows from the above factorisation property and the identification of
L2(R+) with H 2(R) via the Fourier transform that

A2(R+)= {ĥ : h ∈ H 1(R)},

with ∥ĥ∥A2(R+) = ∥h∥H1(R). Therefore, we have an isometric identification

A2(R+)∼= H 1(R).

Since H 1(R)⊥ = H∞(R), we have

H1(R)
∗ ∼=

L∞(R)

H∞(R)
.
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Applying Theorem 4.1(2), we recover the well-known fact (see [Nikolski 2020,
Section IV.5.3] or [Peller 2003, Theorem I.8.1]) that

Hank2(R+)∼=
L∞(R)

H∞(R)
.

(b) Notice that Hankp(R+)⊆Hank2(R+). Indeed, suppose that T ∈Hankp(R+) and
note that the adjoint mapping T ∗

∈B(Lp′

(R+)) coincides with T on Lp(R+)∩Lp′

(R+).
To see this, take f, g ∈ L p(R+)∩L p′

(R+) and observe that f ⊗g−g⊗ f belongs to
ker(Q p). This implies that ⟨T ( f ), g⟩ = ⟨T (g), f ⟩. Therefore, T coincides with T ∗

on L p(R+)∩ L p′

(R+). It then follows by interpolation that T extends to a bounded
operator on L2(R+), say T̃ . Since T and T̃ coincide on L p(R+)∩ L2(R+) and T
is Hankelian, it follows from the definition of Hankel operators that T̃ is also a
Hankel operator and hence belongs to Hank2(R+).

(c) The definition of Hankp(R+) extends to the case p = 1. In analogy with
Remark 3.2(c), we have an isometric identification

Hank1(R+)≃ M(R∗

+
),

where M(R∗

+
) denotes the space of all bounded Borel measures on R∗

+
. To establish

this, we first note that for all f ∈ L1(R+), the function u 7→ θu( f ) is bounded
and continuous from R∗

+
into L1(R+). Hence for all ν ∈ M(R∗

+
), we may define

Hν ∈ B(L1(R+)) by

(17) Hν( f )=

∫
R∗

+

θu( f ) dν(u), f ∈ L1(R+).

It is clear that Hν is Hankelian. It follows from (14) that〈
Hν( f ), g

〉
=

∫
R∗

+

( f ∗ g)(u) dν(u), f ∈ L1(R+), g ∈ L∞(R+).

We note that the mapping ν 7→ Hν is a one-to-one contraction from M(R∗

+
) into

Hank1(R+). We shall now prove that this mapping is an onto isometry.
We use the isometric identification M(R∗

+
) ≃ C0(R

∗

+
)∗ provided by the Riesz

theorem and we regard L1(R+)⊆ M(R∗

+
) in the obvious way. Let T ∈ Hank1(R+).

We observe that for all h, f ∈ L1(R+) and all g ∈ C0(R
∗

+
), we have

(18) ⟨T (h ∗ f ), g⟩ = ⟨T (h), f ∗ g⟩

Indeed, write h∗ f =
∫

∞

0 f (s)τsh ds. This implies that T (h∗ f )=
∫

∞

0 f (s)T (τsh) ds,
hence

⟨T (h ∗ f ), g⟩ =

∫ ∞

0
f (s)⟨T τsh, g⟩ ds =

∫ ∞

0
f (s)⟨T h, τs g⟩ ds = ⟨T (h), f ∗ g⟩.

Let (hn)n≥1 be a norm one approximate unit of L1(R+). Then (T (hn))n≥1 is
a bounded sequence of L1(R+). Hence it admits a cluster point ν ∈ M(R∗

+
)



HANKEL OPERATORS ON L p(R+) 209

in the w∗-topology of M(R∗

+
). Thus, for all g ∈ C0(R

∗

+
), the complex number∫

R∗
+

g(u) dν(u) is a cluster point of the sequence (⟨T (hn), g⟩)n≥1. Furthermore,
we have ∥ν∥ ≤ ∥T ∥. Let f ∈ L1(R+) and let g ∈ C0(R

∗

+
). Since hn ∗ f → f

in L1(R+), we have that ⟨T (hn ∗ f ), g⟩ → ⟨T ( f ), g⟩. By (18), we may write
⟨T (hn ∗ f ), g⟩ = ⟨T (hn), f ∗ g⟩. We deduce that

⟨T ( f ), g⟩ =

∫
R∗

+

( f ∗ g)(u) dν(u).

This implies that T = Hν , see (17), which concludes the proof.

Definition 4.3. We say that a function m : R∗
+

→ C is the symbol of a multiplier on
Hankp(R+) if there exist a w∗-continuous operator Tm : Hankp(R+)→ Hankp(R+)

such that for every u > 0, Tm(θu) = m(u)θu . (Note that such an operator Tm is
necessarily unique.)

Remark 4.4. Suppose that Tm :Hankp(R+)→Hankp(R+) is a multiplier as defined
above. Using Theorem 4.1(2), let Sm : Ap(R+)→ Ap(R+) be the operator such
that S∗

m = Tm . For f ∈ L p(R+) and g ∈ L p′

(R+), we have, by (14),

[Sm( f ∗ g)](u)= ⟨θu, Sm( f ∗ g)⟩

= ⟨Tm(θu), f ∗ g⟩

= m(u)⟨θu, f ∗ g⟩

= m(u)( f ∗ g)(u).

We deduce that Sm(F)= m · F , for every F ∈ Ap(R+).
Conversely, if m : R∗

+
→ C is such that Sm : Ap(R+) → Ap(R+) given by

Sm(F)= m · F is well-defined and bounded, then S∗
m is a multiplier on Hankp(R+).

Lemma 4.5. If m : R∗
+

→ C is the symbol of a multiplier on Hankp(R+), then m is
continuous and bounded.

Proof. For all u > 0, we have m(u)θu = Tm(θu), hence |m(u)| ≤ ∥Tm∥. Thus, m is
bounded. For any a > 0, let χ(0,a) be the indicator function of the interval (0, a).
Then m ·χ(0,a) ∗χ(0,a) belongs to Ap(R+), hence to Cb(R

∗

+
), by Remark 4.4. Since

χ(0,a) ∗χ(0,a) > 0 on (0, 2a), it follows that m is continuous on (0, 2a). Thus, m is
continuous on R∗

+
. □

Theorem 4.6. Let 1 < p <∞, let C ≥ 0 be a constant and let m : R∗
+

→ C be a
function. The following assertions are equivalent.

(i) m is the symbol of a p-completely bounded multiplier on Hankp(R+), and

∥Tm : Hankp(R+)→ Hankp(R+)∥p−cb ≤ C.
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(ii) m is continuous and there exist a measure space (�,µ) and two functions
α ∈ L∞(R+; L p(�)) and β ∈ L∞(R+; L p′

(�)) such that ∥α∥∞∥β∥∞ ≤ C
and m(s + t)= ⟨α(s), β(t)⟩, for almost every (s, t) ∈ R∗2

+
.

Proof. By homogeneity, we may assume that C = 1 throughout this proof.
Assume (i). The continuity of m follows from Lemma 4.5. Let Tm :Hankp(R+)→

Hankp(R+) be the p-completely contractive multiplier associated with m. Let
κ : L p(R) → L p(R) be defined by (κ f )(t) = f (−t), for all f ∈ L p(R). Let
J : L p(R+)→ L p(R) be the canonical embedding and let Q : L p(R)→ L p(R+) be
the canonical projection defined by Q f = f|R+

. Let q : B(L p(R))→ B(L p(R+))

be given by q(T )= QκT J , for all T ∈ B(L p(R)). Applying the easy implication
(ii) =⇒ (i) of Theorem 2.2 we obtain that q is p-completely contractive.

Let Mp(R)⊆ B(L p(R)) denote the subalgebra of bounded Fourier multipliers.
Let us show that if T ∈ Mp(R), then q(T ) ∈ Hankp(R+). For any s ∈ R, recall
τs ∈ B(L p(R)) given by τs( f )= f ( · −s). Note that τs ∈Mp(R) and that Mp(R)=

Spanw
∗

{τs : s ∈ R}. For all f ∈ L p(R+), we have

q(τs) f = Qτ( f ( · −s))= Q( f (−( · +s)))= {t ∈ R+ 7→ f (−t − s)}.

Hence, if s ≥ 0, then q(τs)= 0 and if s < 0, then q(τs)= θ−s . It is plain that q is
w∗-continuous. Since Hankp(R+) is w∗-closed, we deduce that q maps Mp(R)

into Hankp(R+).
Consider the mapping

q0 := q|Mp(R) : Mp(R)→ Hankp(R+)

and set
0 := Tm ◦ q0 : Mp(R)→ B(L p(R+)).

It follows from above that

(19) 0(τ−s)= m(s)θs, s > 0.

Since q is p-completely contractive, 0 is also p-completely contractive. Applying
Theorem 2.2 to 0, we obtain the existence of an SQ p-space E , a unital p-completely
contractive, nondegenerate homomorphism π :Mp(R)→ B(E) as well as operators
V : L p(R+) → E and W : E → L p(R+) such that ∥V ∥∥W∥ ≤ 1 and for every
x ∈ Mp(R), 0(x)= Wπ(x)V .

Let c : L1(R)→ Mp(R) be defined by [c(g)]( f )= g ∗ f , for all g ∈ L1(R) and
f ∈ L p(R). Let λ : L1(R)→ B(E) be given by λ= π ◦ c. Then λ is a contractive,
nondegenerate homomorphism. By [de Pagter and Ricker 2008, Remark 2.5], there
exists σ : R → B(E), a bounded strongly continuous representation such that for all
g ∈ L1(R), λ(g)=

∫
R

g(t)σ (t) dt (defined in the strong sense). Let us show that

(20) 0(τ−s)= Wσ(−s)V, s > 0.
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Let η ∈ L1(R)+ be such that
∫

R
η(t) dt = 1. For any r > 0, let ηr (t) = rη(r t).

Since σ : R → B(E) is strongly continuous, the function t 7→ ⟨σ(t)x, x∗
⟩ is

continuous and we have

(21)
∫

R
ηr (−s − t)⟨σ(t)x, x∗

⟩ dt r→∞
−−→ ⟨σ(−s)x, x∗

⟩,

for all x ∈ E and x∗
∈ E∗. Since the left-hand side in (21) is equal to

⟨π(c(ηr (−s− · )))x, x∗
⟩,

we obtain, by Lemma 2.1, that π(c(ηr (−s− · ))) → σ(−s) in the w∗-topology
of B(E). This implies that Wπ(c(ηr (−s− · )))V → Wσ(−s)V in the w∗-topology
of B(L p(R+)). We next show that Wπ(c(ηr (−s− · )))V → 0(τ−s) in the w∗-
topology of B(L p(R+)), which will complete the proof of (20). Since

Wπ(c(ηr (−s− · )))V = 0(c(ηr (−s− · )))

and 0 is w∗-continuous, it suffices to show that c(ηr (−s− · )) → τ−s in the w∗-
topology of B(L p(R)). To see this, let f ∈ L p(R) and g ∈ L p′

(R). We have that

⟨c(ηr (−s− · )) f, g⟩ = ⟨ηr (−s− · ) ∗ f, g⟩

= ⟨δ−s ∗ ηr ∗ f, g⟩

→ ⟨δ−s ∗ f, g⟩ = ⟨τ−s f, g⟩.

By Lemma 2.1 again, this proves that c(ηr (−s− · ))→ τ−s in the w∗-topology, as
expected.

Given any ϵ > 0, let mϵ : R∗
+

→ C be defined by

mϵ(t)= m(t + ϵ), t > 0.

Let f ∈ L p(R+) be given by f = ϵ
−

1
pχ(0,ϵ) and let g ∈ L p′

(R+) be given by
g = ϵ

−
1
p′ χ(0,ϵ). For any s, t > 0, set

αϵ(s) := σ
(
−s −

ϵ
2
)
V (τs f ) and βϵ(t) := σ

(
−t −

ϵ
2
)∗W ∗(τt g).

Since σ is strongly continuous, αϵ and βϵ are continuous. By (19) and (20), we
have that

⟨αϵ(s), βϵ(t)⟩E,E∗ =
〈
σ
(
−s −

ϵ
2
)
V (τs f ), σ

(
−t −

ϵ
2
)∗W ∗(τt g)

〉
= ⟨Wσ(−s − t − ϵ)V (τs f ), τt g⟩

= ⟨(0(τ−s−t−ϵ))(τs f ), τt g⟩

= m(s + t + ϵ)⟨θs+t+ϵ(τs f ), τt g⟩

= mϵ(s + t)⟨ϵ−1/pχ(t,t+ϵ), ϵ
−1/p′

χ(t,t+ϵ)⟩

= mϵ(s + t),
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for all s, t > 0. Moreover, ∥αϵ(s)∥ ≤ ∥V ∥ and ∥βϵ(t)∥ ≤ ∥W∥ for all t, s> 0. Since
αϵ and βϵ are continuous, this implies that αϵ ∈ L∞(R+; E), βϵ ∈ L∞(R+; E∗)

and ∥αϵ∥∞∥βϵ∥∞ ≤ ∥V ∥∥W∥ ≤ 1.
We now show that the SQ p-space E can be replaced by an L p-space in the above

factorisation property of mϵ . Following Remark 2.3, assume that E = E1/E2, with
E2 ⊆ E1 ⊆ L p(�), and for all f ∈ E1, let ḟ ∈ E denote the class of f . Recall (5)
and for all g ∈ E⊥

2 , let ġ ∈ E∗ denote the class of g. Since E is a quotient of E1,
we have an isometric embedding E∗

⊆ E∗

1 . More precisely,

E∗
=

E⊥

2

E⊥

1
↪→

L p′

(�)

E⊥

1
= E∗

1 .

This induces an isometric embedding

L1(R+; E∗)⊆ L1(R+; E∗

1).

Since E∗ and E∗

1 are reflexive, we may apply the identifications

L1(R+; E∗)∗ ≃ L∞(R+; E) and L1(R+; E∗

1)
∗
≃ L∞(R+; E1)

provided by (7). By the Hahn–Banach theorem, we deduce the existence of
α̃ϵ ∈ L∞(R+; E1) such that ∥α̃ϵ∥∞ = ∥αϵ∥∞ and the functional L1(R+; E∗

1)→ C

induced by α̃ϵ extends the functional L1(R+; E∗)→ C induced by αϵ . It is easy to
check that the latter means that ˙α̃ϵ(s)= αϵ(s) almost everywhere on R+. Likewise,
there exist β̃ϵ ∈ L∞(R+; E⊥

2 ) such that ∥β̃ϵ∥∞ = ∥βϵ∥∞ and ˙β̃ϵ(t)= βϵ(t) almost
everywhere on R+. Regard α̃ϵ as an element of L∞(R+, L p(�)) and β̃ϵ as an
element of L∞(R+, L p′

(�)). By (6), we then have

⟨αϵ(s), βϵ(t)⟩E,E∗ = ⟨̃αϵ(s), β̃ϵ(t)⟩L p,L p′ ,

for almost every (s, t) ∈ R∗2
+

.
We therefore obtain that mϵ : R∗

+
→ C satisfies condition (ii) of the theorem

(with C = 1).
Define ϕ : R∗2

+
→ C by ϕ(s, t) = m(s + t). Likewise, for any ϵ > 0, define

ϕϵ : R∗2
+

→ C by ϕ(s, t)= mϵ(s + t). Since m is continuous, the functions ϕ and ϕϵ
are continuous. It follows from above that for all ϵ > 0, ϕϵ satisfies condition (ii)
in Theorem 2.5, with C = 1. The latter theorem therefore implies that the family
{ϕϵ(s, t)}(s,t)∈R∗2

+
is a bounded Schur multiplier on B(ℓp

R∗
+

), with norm less than
one. Thus for all [ai j ]1≤i, j≤n in Mn and for all t1, . . . , tn, s1, . . . , sn in R∗

+
, we

have ∥[ϕϵ(si , t j )ai j ]∥B(ℓp
n )

≤ ∥[ai j ]∥B(ℓp
n )

. Since m is continuous, ϕϵ → ϕ pointwise
when ϵ → 0. We deduce that ϕ satisfies (8) with C = 1 for all [ai j ]1≤i, j≤n in Mn

and all t1, . . . , tn, s1, . . . , sn in R∗
+

. Consequently, the family {ϕ(s, t)}(s,t)∈R∗2
+

is
a bounded Schur multiplier on B(ℓp

R∗
+

), with norm less than one. Applying the
implication (i) =⇒ (ii) in Theorem 2.5, we deduce the assertion (ii) of Theorem 4.6.
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Conversely, assume (ii). Following Lemma 2.4, let

π : B(L p(R+))→ B(L p(R+ ×�))

be the p-completely isometric homomorphism defined by π(T )= T ⊗ IL p(�). This
map is w∗-continuous. Indeed, let (Tι)ι be a bounded net of B(L p(R+)) converging
to some T ∈ B(L p(R+)) in the w∗-topology. For any f ∈ L p(R+), g ∈ L p′

(R+),
ϕ ∈ L p(�) and ψ ∈ L p′

(�), we have〈
π(Tι), ( f ⊗ϕ)⊗ (g ⊗ψ)

〉
= ⟨Tι f, g⟩L p(R+),L p′

(R+)
⟨ϕ,ψ⟩L p(�),L p′

(�),

where the duality pairing in the left-hand side refers to the identification(
L p(R+ ×�) ⊗̂ L p′

(R+ ×�)
)∗

≃ B(L p(R+ ×�)).

Since ⟨Tι f, g⟩ → ⟨T f, g⟩, we deduce that

⟨π(Tι), ( f ⊗ϕ)⊗ (g ⊗ψ)⟩ → ⟨π(T ), ( f ⊗ϕ)⊗ (g ⊗ψ)⟩.

Since L p(R+) ⊗ L p(�) and L p′

(R+) ⊗ L p′

(�) are dense in L p(R+ × �) and
L p′

(R+ ×�), respectively, we deduce that π(Tι)→ π(T ) in the w∗-topology, by
Lemma 2.1. This proves that π is w∗-continuous.

Let V : L p(R+)→ L p(R+; L p(�))≃ L p(R+ ×�) be defined by

V ( f )= f α, f ∈ L p(R+).

This is a well-defined contraction. Likewise we define a contraction

W : L p(R+ ×�)→ L p(R+)

by setting
W ∗(g)= gβ, g ∈ L p′

(R+).

It follows from above and from the implication (ii) =⇒ (i) of Theorem 2.2 that the
mapping

w : B(L p(R+))→ B(L p(R+)), w(T )= Wπ(T )V

is a w∗-continuous p-complete contraction.
We claim that for all u > 0, we have

(22) w(θu)= m(u)θu .

To prove this, consider f ∈ L p(R+) and g ∈ L p′

(R+). For all u > 0, we have

⟨w(θu) f, g⟩ = ⟨π(θu)V ( f ),W ∗(g)⟩ = ⟨π(θu)( f α), (gβ)⟩.

By the definitions of π and θu , we have π(θu)( f α)= ( f α)(u− · ). Consequently,

⟨w(θu) f, g⟩ =

∫ u

0
f (u − t)g(t)⟨α(u − t), β(t)⟩ dt, u > 0.
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Let h ∈ L1(R+) be an auxiliary function. Then using Fubini’s theorem and setting
s = u − t in due place, we obtain that∫ ∞

0
⟨w(θu) f, g⟩h(u) du =

∫ ∞

0

∫ ∞

t
h(u) f (u − t)g(t)⟨α(u − t), β(t)⟩ dudt

=

∫ ∞

0

∫ ∞

0
h(s + t) f (s)g(t)⟨α(s), β(t)⟩ dsdt.

Applying the a.e. equality m(s + t)= ⟨α(s), β(t)⟩ and reversing this computation,
we deduce that∫ ∞

0
⟨w(θu) f, g⟩h(u) du =

∫ ∞

0
m(u)( f ∗ g)(u)h(u) du.

Since h is arbitrary, this implies that ⟨w(θu) f, g⟩ = m(u)( f ∗ g)(u) for a.e. u > 0.
Equivalently, ⟨w(θu) f, g⟩ = m(u)⟨θu f, g⟩ for a.e. u > 0. It is plain that u 7→ θu

is w∗-continuous on B(L p(R+)). Since w is w∗-continuous, the function u 7→

⟨w(θu) f, g⟩ is continuous as well. Since m is assumed continuous, we deduce that
⟨w(θu) f, g⟩ = m(u)⟨θu f, g⟩ for all u > 0. This yields (22), for all u > 0.

By part (1) of Theorem 4.1 and the w∗-continuity of w, the identity (22) implies
that Hankp(R+) is an invariant subspace of w. Further the restriction of w to
Hankp(R+) is the multiplier associated to m. The assertion (i) follows. □

Remark 4.7. We proved in [Arnold et al. 2022, Theorem 3.1] that a continuous
function m : R∗

+
→ C is the symbol of an S1-bounded Fourier multiplier on H 1(R),

with S1-bounded norm ≤ C , if and only if there exist a Hilbert space H and
two functions α, β ∈ L∞(R+;H) such that ∥α∥∞∥β∥∞ ≤ C and m(s + t) =

⟨α(t), β(s)⟩H for almost every (s, t) ∈ R∗2
+

. It turns out that using (1), a mapping
S : H 1(R)→ H 1(R) is an S1-bounded Fourier multiplier with S1-bounded norm ≤C
if and only if S∗

: Hank2(R+)→ Hank2(R+) is a completely bounded multiplier
with completely bounded norm ≤ C . See [Arnold et al. 2022, Remark 3.4] for more
on this. Thus the statement in [Arnold et al. 2022, Theorem 3.1] is equivalent to
the case p = 2 of Theorem 4.6. In this regard, Theorem 4.6 can be regarded as a
p-analogue of [Arnold et al. 2022, Theorem 3.1].

Remark 4.8. Let f ∈ L p(R+) and g ∈ L p′

(R+). For any s, t > 0, we may write

( f ∗ g)(s + t)=

∫
R

f (s + r)g(t − r) dr.

Equivalently,
( f ∗ g)(s + t)= ⟨τ−s f, τt ǧ⟩L p(R+),L p′

(R+)
.

According to the implication (ii) =⇒ (i) of Theorem 4.6 and Remark 4.4, f ∗ g
is therefore a pointwise multiplier of Ap(R+), with norm less than or equal to
∥ f ∥p∥g∥p′ . We deduce that every F ∈ Ap(R+) is a pointwise multiplier of Ap(R+),
with norm less than or equal to ∥F∥Ap . This means that Ap(R+) is a Banach algebra
for the pointwise product.
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