HANKEL OPERATORS ON $L^p(\mathbb{R}_+)$ AND THEIR p-COMPLETELY BOUNDED MULTIPLIERS

LORIS ARNOLD, CHRISTIAN LE MERGY AND SAFOUA ZADEH
HANKEL OPERATORS ON $L^p(\mathbb{R}_+)$ AND THEIR p-COMPLETELY BOUNDED MULTIPLIERS

Loris Arnold, Christian Le Merdy and Safoura Zadeh

We show that for any $1 < p < \infty$, the space $\text{Hank}_p(\mathbb{R}_+)$ is equal to the w^*-closure of the linear span of the operators $\theta_u : L^p(\mathbb{R}_+) \to L^p(\mathbb{R}_+)$ defined by $\theta_u f = f(u - \cdot)$, for $u > 0$. We deduce that $\text{Hank}_p(\mathbb{R}_+)$ is the dual space of $A_p(\mathbb{R}_+)$, a half-line analogue of the Figà-Talamanca–Herz algebra $A_p(\mathbb{R})$. Then we show that a function $m : \mathbb{R}_+^* \to \mathbb{C}$ is the symbol of a p-completely bounded multiplier $\text{Hank}_p(\mathbb{R}_+) \to \text{Hank}_p(\mathbb{R}_+)$ if and only if there exist $\alpha \in L^\infty(\mathbb{R}_+; L^p(\mathcal{S}))$ and $\beta \in L^\infty(\mathbb{R}_+; L^p'(\mathcal{S}))$ such that $m(s + t) = \langle \alpha(s), \beta(t) \rangle$ for a.e. $(s, t) \in \mathbb{R}_+^2$.

We also give analogues of these results in the (easier) discrete case.

1. Introduction

For any $u > 0$ and for any function $f : \mathbb{R}_+ \to \mathbb{C}$, let $\tau_u f : \mathbb{R}_+ \to \mathbb{C}$ be the shifted function defined by $\tau_u f = f(\cdot - u)$. Let $1 < p, p' < \infty$ be two conjugate indices. We say that a bounded operator $T : L^p(\mathbb{R}_+) \to L^p(\mathbb{R}_+)$ is Hankelian if $\langle T \tau_u f, g \rangle = \langle T f, \tau_u g \rangle$ for all $f \in L^p(\mathbb{R}_+)$ and $g \in L^{p'}(\mathbb{R}_+)$. Let $B(L^p(\mathbb{R}_+))$ denote the Banach space of all bounded operators on $L^p(\mathbb{R}_+)$. The main object of this paper is the subspace $\text{Hank}_p(\mathbb{R}_+) \subseteq B(L^p(\mathbb{R}_+))$ of all Hankel operators on $L^p(\mathbb{R}_+)$. The case $p = 2$ has received a lot of attention; see [Nikolski 2002; 2020; Peller 2003; Yafaev 2015; 2017a; 2017b]. The most important result in this case is that $\text{Hank}_2(\mathbb{R}_+)$ is isometrically isomorphic to the quotient space $L^\infty(\mathbb{R})/H^\infty(\mathbb{R})$, where $H^\infty(\mathbb{R}) \subseteq L^\infty(\mathbb{R})$ is the classical Hardy space of essentially bounded functions whose Fourier transform has support in \mathbb{R}_+ (see [Nikolski 2020, Section IV.5.3] or [Peller 2003, Theorem I.8.1]). This result is the real line analogue of Nehari’s classical theorem describing Hankel operators on ℓ^2 (see [Nikolski 2020, Theorem II.2.2.4], [Peller 2003, Theorem I.1.1] or [Power 1982, Theorem 1.3]). An equivalent formulation of the above result is that

$$\text{Hank}_2(\mathbb{R}_+) \simeq H^1(\mathbb{R})^*, \tag{1}$$

where $H^1(\mathbb{R}) \subseteq L^1(\mathbb{R})$ is the Hardy space of all integrable functions whose Fourier transform vanishes on \mathbb{R}_-.

MSC2020: primary 47B35; secondary 46L07.

Keywords: p-complete boundedness, multipliers, Hankel operators.

© 2024 The Authors, under license to MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution License 4.0 (CC BY). Open Access made possible by subscribing institutions via Subscribe to Open.
The first main result of this paper is that for any $1 < p < \infty$, the Banach space $\text{Hank}_p(\mathbb{R}_+)$ coincides with $\text{Span}^{w^*}\{\theta_u : u > 0\} \subset B(L^p(\mathbb{R}_+))$, where, for any $u > 0$, $\theta_u : L^p(\mathbb{R}_+) \to L^p(\mathbb{R}_+)$ is the Hankel operator defined by $\theta_u f = f(u - \cdot)$. As a consequence, we show that

\begin{equation}
\text{Hank}_p(\mathbb{R}_+) \simeq A_p(\mathbb{R}_+)^*,
\end{equation}

where $A_p(\mathbb{R}_+)$ is a half-line analogue of the Figà-Talamanca–Herz algebra $A_p(\mathbb{R})$ (see, e.g., [Derighetti 2011, Chapter 3]). We will see in Remark 4.2(a) that $A_2(\mathbb{R}_+) \simeq H^1(\mathbb{R})$. Thus, the duality result (2), established in Theorem 4.1, is an L^p-version of (1).

By a multiplier of $\text{Hank}_p(\mathbb{R}_+)$, we mean a w^*-continuous operator

$T : \text{Hank}_p(\mathbb{R}_+) \to \text{Hank}_p(\mathbb{R}_+)$

such that $T(\theta_u) = m(u)\theta_u$ for all $u > 0$, for some function $m : \mathbb{R}_+^* \to \mathbb{C}$. In this case, we set $T = T_m$ and it turns out that m is necessarily bounded and continuous, see Lemma 4.5. The second main result of this paper is a characterization of p-completely bounded multipliers T_m. We refer to Section 2 for some background on p-complete boundedness, whose definition goes back to [Pisier 1990] (see also [Daws 2010; Le Merdy 1996; Pisier 2001]). We prove in Theorem 4.6 that $T_m : \text{Hank}_p(\mathbb{R}_+) \to \text{Hank}_p(\mathbb{R}_+)$ is a p-completely bounded multiplier if and only if there exist a measure space (Ω, μ) and two essentially bounded measurable functions $\alpha : \mathbb{R}_+ \to L^p(\Omega)$ and $\beta : \mathbb{R}_+ \to L^{p'}(\Omega)$ such that $m(s + t) = \langle \alpha(s), \beta(t) \rangle$ for almost every $(s, t) \in \mathbb{R}_+^2$. This is a generalisation of [Arnold et al. 2022, Theorem 3.1]. Indeed, the result in [Arnold et al. 2022] provides a characterization of S^1-bounded multipliers on $H^1(\mathbb{R})$. Using (1), this yields a characterization of completely bounded multipliers on $\text{Hank}_2(\mathbb{R}_+)$, which is nothing but the case $p = 2$ of Theorem 4.6. See Remark 4.7 for more on this.

Let us briefly explain the plan of the paper. Section 2 contains some preliminary results. Section 3 is devoted to $\text{Hank}_p(\mathbb{N}) \subset B(\ell^p)$, the space of Hankel operators on ℓ^p. We establish analogues of the aforementioned results in the discrete setting. Results for $\text{Hank}_p(\mathbb{N})$ are easier than those concerning $\text{Hank}_p(\mathbb{R}_+)$ and Section 3 can be considered as a warm up. The main results are stated and proved in Section 4.

2. Preliminaries

All our Banach spaces are complex ones. For any Banach spaces X, Z, we let $B(X, Z)$ denote the Banach space of all bounded operators from X into Z and we write $B(X)$ instead of $B(X, X)$ when $Z = X$. For any $x \in X$ and $x^* \in X^*$, the duality action $x^*(x)$ is denoted by $\langle x^*, x \rangle_{X^*, X}$, or simply by $\langle x^*, x \rangle$ if there is no risk of confusion.
We start with duality on tensor products. Let X, Y be Banach spaces. Let $X \hat{\otimes} Y$ denote their projective tensor product [Diestel and Uhl 1977, Section VIII.1]. We will use the classical isometric identification

$$(X \hat{\otimes} Y)^* \simeq B(X, Y^*)$$

provided, e.g., by [Diestel and Uhl 1977, Corollary VIII.2.2]. More precisely, for any $\xi \in (X \hat{\otimes} Y)^*$, there exists a necessarily unique $R_{\xi} \in B(X, Y^*)$ such that $\xi(x \otimes y) = \langle R_{\xi}(x), y \rangle$ for all $x \in X$ and $y \in Y$. Moreover $\|R_{\xi}\| = \|\xi\|$ and the mapping $\xi \mapsto R_{\xi}$ is onto.

Lemma 2.1. Let $A \subset X$ and $B \subset Y$ such that $\text{Span}\{A\}$ is dense in X and $\text{Span}\{B\}$ is dense in Y. Assume that $(R_i)_i$ is a bounded net of $B(X, Y^*)$. Then R_i converges to some $R \in B(X, Y^*)$ in the w^*-topology if and only if $\langle R_i(x), y \rangle \to \langle R(x), y \rangle$ for all $x \in A$ and $y \in B$.

Proof. Assume the latter property. Since the algebraic tensor product $X \otimes Y$ is dense in $X \hat{\otimes} Y$, it implies that $\langle R_i, z \rangle \to \langle R, z \rangle$, for all z belonging to a dense subspace of $X \hat{\otimes} Y$. Next, the boundedness of $(R_i)_i$ implies that $\langle R_i, z \rangle \to \langle R, z \rangle$, for all z belonging to $X \hat{\otimes} Y$. The equivalence follows.

We will use the above duality principles in the case when $X = Y^*$ is an L^p-space $L^p(\Omega)$, for some index $1 < p < \infty$.

We now give a brief background on p-completely bounded maps, following [Pisier 1990] (see also [Daws 2010; Le Merdy 1996; Pisier 2001]). Let $1 < p < \infty$ and let SQ_p denote the collection of quotients of subspaces of L^p-spaces, where we identify spaces which are isometrically isomorphic. Let E be an SQ_p-space. Let $n \geq 1$ be an integer and let $[T_{ij}]_{1 \leq i,j \leq n} \in M_n \otimes B(E)$ be an $n \times n$ matrix with entries T_{ij} in $B(E)$. We equip $M_n \otimes B(E)$ with the norm defined by

$$(4) \quad \|[T_{ij}]\| = \sup \left\{ \left(\sum_{i=1}^{n} \sum_{j=1}^{n} T_{ij}(x_j) \right)^p \right\}^{\frac{1}{p}} : x_1, \ldots, x_n \in E, \sum_{i=1}^{n} \|x_i\|^p \leq 1 \right\}. $$

If $S \subset B(E)$ is any subspace, then we let $M_n(S)$ denote $M_n \otimes S$ equipped with the induced norm.

Let S_1 and S_2 be subspaces of $B(E_1)$ and $B(E_2)$, respectively, for some SQ_p-spaces E_1 and E_2. Let $w: S_1 \to S_2$ be a linear map. For any $n \geq 1$, let $w_n: M_n(S_1) \to M_n(S_2)$ be defined by $w_n([T_{ij}]) = [w(T_{ij})]$, for any $[T_{ij}]_{1 \leq i,j \leq n} \in M_n(S_1)$. By definition, w is called p-completely bounded if the maps w_n are uniformly bounded. In this case, the $p\text{-cb}$ norm of w is defined by $\|w\|_{p\text{-cb}} = \sup_n \|w_n\|$. We further say that w is p-completely contractive if $\|w\|_{p\text{-cb}} \leq 1$ and that w is a p-complete isometry if w_n is an isometry for all $n \geq 1$. Note that the case $p = 2$ corresponds to the classical notion of completely bounded maps (see, e.g., [Paulsen 2002; Pisier 2001]).
We recall the following factorisation theorem of Pisier (see [Le Merdy 1996, Theorem 1.4; Pisier 1990, Theorem 2.1]), which extends Wittstock’s factorisation theorem [Paulsen 2002, Theorem 8.4].

Theorem 2.2. Let \((\Omega_1, \mu_1)\) and \((\Omega_2, \mu_2)\) be measure spaces and let \(1 < p < \infty\). Let \(S \subseteq B(L^p(\Omega_1))\) be a unital subalgebra. Let \(w : S \to B(L^p(\Omega_2))\) be a linear map and let \(C \geq 0\) be a constant. The following assertions are equivalent.

1. The map \(w\) is \(p\)-completely bounded and \(\|w\|_{p-cb} \leq C\).
2. There exist an \(S Q_p\)-space \(E\), a unital, nondegenerate \(p\)-completely contractive homomorphism \(\pi : S \to B(E)\) as well as operators \(V : L^p(\Omega_2) \to E\) and \(W : E \to L^p(\Omega_2)\) such that \(\|V\|\|W\| \leq C\) and for any \(x \in S\), \(w(x) = W\pi(x)V\).

Remark 2.3. Let \(1 < p < \infty\) and let \(p'\) be its conjugate index. Let \(E\) be an \(S Q_p\)-space. Then by assumption, there exist a measure space \((\Omega, \mu)\) and two closed subspaces \(E_2 \subseteq E_1 \subseteq L^p(\Omega)\) such that \(E = E_1/E_2\). Then \(E_1^\perp \subseteq E_2^\perp \subset L^{p'}(\Omega)\) and we have an isometric identification

\[
E^* \simeq \frac{E_2^\perp}{E_1^\perp},
\]

by the classical duality between subspaces and quotients of Banach spaces. More explicitly, let \(f \in E_1\) and let \(g \in E_2^\perp\). Let \(\hat{f} \in E\) denote the class of \(f\) modulo \(E_2\) and let \(\hat{g} \in E^*\) denote the element associated to the class of \(g\) modulo \(E_1^\perp\) through the identification (5). Then we have

\[
\langle \hat{g}, \hat{f} \rangle_{E^*, E} = \langle g, f \rangle_{L^{p'}, L^p}.
\]

We now turn to Bochner spaces. Let \((\Sigma, \nu)\) be a measure space and let \(X\) be a Banach space. For any \(1 \leq p \leq \infty\), we let \(L^p(\Sigma; X)\) denote the space of all measurable functions \(\phi : \Sigma \to X\) (defined up to almost everywhere zero functions) such that the norm function \(t \mapsto \|\phi(t)\|\) belongs to \(L^p(\Sigma)\). This is a Banach space for the norm \(\|\phi\|_p\), defined as the \(L^p(\Sigma)\)-norm of \(\|\phi(\cdot)\|\) (see, e.g., [Diestel and Uhl 1977, Chapters I and II]).

Assume that \(p\) is finite and note that in this case, \(L^p(\Sigma) \otimes X\) is dense in \(L^p(\Sigma; X)\). Let \(p'\) be the conjugate index of \(p\). For all \(\phi \in L^p(\Sigma; X)\) and \(\psi \in L^{p'}(\Sigma; X^*)\), the function \(t \mapsto \langle \psi(t), \phi(t) \rangle_{X^*, X}\) belongs to \(L^1(\Sigma)\) and the resulting duality paring \(\langle \psi, \phi \rangle := \int_\Omega \langle \psi(t), \phi(t) \rangle d\nu(t)\) extends to an isometric embedding \(L^{p'}(\Sigma; X^*) \hookrightarrow L^p(\Sigma; X)^*\). Furthermore, this embedding is onto if \(X\) is reflexive, that is,

\[
L^{p'}(\Sigma; X^*) \simeq L^p(\Sigma; X)^* \quad \text{if} \ X \text{ is reflexive.}
\]

We refer to [Diestel and Uhl 1977, Corollary III.2.13 and Section IV.1] for these results and complements.
Let \((\Sigma, \nu)\) and \((\Omega, \mu)\) be two measure spaces. Then we have an isometric identification
\[
L^p(\Sigma; L^p(\Omega)) \simeq L^p(\Sigma \times \Omega),
\]
from which it follows that for any \(T \in B(L^p(\Sigma))\), the tensor extension
\[
T \otimes I_{L^p(\Omega)} : L^p(\Sigma) \otimes L^p(\Omega) \to L^p(\Sigma) \otimes L^p(\Omega)
\]
extends to a bounded operator \(T \otimes I_{L^p(\Omega)}\) on \(L^p(\Sigma \times \Omega)\), whose norm is equal to the norm of \(T\). The following is elementary.

Lemma 2.4. The mapping \(\pi : B(L^p(\Sigma)) \to B(L^p(\Sigma \times \Omega))\) defined by \(\pi(T) = T \otimes I_{L^p(\Omega)}\) is a \(p\)-complete isometry.

Proof. Let \(n \geq 1\) and let \(J_n = \{1, \ldots, n\}\). It follows from (4) that \(M_n(B(L^p(\Sigma))) = B(\ell_n^p(L^p(\Sigma)))\) and hence \(M_n(B(L^p(\Sigma))) = B(L^p(J_n \times \Sigma))\) isometrically. Likewise, we have \(M_n(B(L^p(\Sigma \times \Omega))) = B(L^p(J_n \times \Sigma \times \Omega))\) isometrically. Through these identifications,
\[
[T_{ij} \otimes I_{L^p(\Omega)}] = [T_{ij}] \otimes I_{L^p(\Omega)},
\]
for all \([T_{ij}]_{1 \leq i, j \leq n}\) in \(M_n(B(L^p(\Sigma)))\). The result follows at once. \(\square\)

We finally state an important result concerning Schur products on \(B(\ell^p_I)\)-spaces.

Let \(I\) be an index set, let \(1 < p < \infty\) and let \(\ell^p_I\) denote the discrete \(L^p\)-space over \(I\). Let \((e_t)_{t \in I}\) be its canonical basis. To any \(T \in B(\ell^p_I)\), we associate a matrix of complex numbers, \([a_{st}]_{s, t \in I}\), defined by \(a_{st} = \langle T(e_t), e_s\rangle\), for all \(s, t \in I\). Following [Pisier 2001, Chapter 5], we say that a bounded family \(\{\varphi(s, t)\}_{s, t \in I}\) of complex numbers is a bounded Schur multiplier on \(B(\ell^p_I)\) if for all \(T \in B(\ell^p_I)\), with matrix \([a_{st}]_{s, t \in I}\), the matrix \([\varphi(s, t)a_{st}]_{s, t \in I}\) represents an element of \(B(\ell^p_I)\). In this case, the mapping \([a_{st}] \to [\varphi(s, t)a_{st}]\) is a bounded operator from \(B(\ell^p_I)\) into itself. We note that \(\{\varphi(s, t)\}_{s, t \in I}\) is a bounded Schur multiplier with norm \(\leq C\) if and only if for all \(n \geq 1\), all \([a_{ij}]_{1 \leq i, j \leq n}\) in \(M_n\) and all \(t_1, \ldots, t_n, s_1, \ldots, s_n\) in \(I\), we have
\[
\|[\varphi(s_i, t_j)a_{ij}]\|_{B(\ell^p_I)} \leq C \|[a_{ij}]\|_{B(\ell^p_I)}.
\]

In the sequel, we apply the above definitions to the case when \(I = \mathbb{R}^*_+\).

Theorem 2.5. Let \(\varphi : \mathbb{R}^*_+^{2} \to \mathbb{C}\) be a continuous bounded function. Let \(1 < p, p' < \infty\) be conjugate indices and let \(C \geq 0\) be a constant. The following assertions are equivalent.

(i) The family \(\{\varphi(s, t)\}_{(s, t) \in \mathbb{R}^*_+^{2}}\) is a bounded Schur multiplier on \(B(\ell^p_{\mathbb{R}^*_+})\), with norm \(\leq C\).

(ii) There exist a measure space \((\Omega, \mu)\) and two functions \(\alpha \in L^{\infty}(\mathbb{R}^*_+; L^p(\Omega))\) and \(\beta \in L^{\infty}(\mathbb{R}^*_+; L^{p'}(\Omega))\) such that \(\|\alpha\|_{\infty}\|\beta\|_{\infty} \leq C\) and \(\varphi(s, t) = (\alpha(s), \beta(t))_{L^p, L^{p'}}\) for almost every \((s, t) \in \mathbb{R}^*_+^{2}\).
Proof. According to [Coine 2018, Section 4.1], (ii) is equivalent to the fact that as an element of $L^\infty(\mathbb{R}_+^2)$,

(ii’) φ is a bounded Schur multiplier on $B(L^p(\mathbb{R}_+))$.

It further follows from [Herz 1974, Lemmas 1 and 2] that since φ is continuous, (ii’) is equivalent to (i). The result follows. \square

3. Hankel operators on ℓ^p and their multipliers

In this section we work on the sequence spaces $\ell^p = \ell^p_N$, where $N = \{0, 1, \ldots\}$. For any $1 < p < \infty$, we let $(e_n)_{n \geq 0}$ denote the classical basis of ℓ^p. For any $T \in B(\ell^p)$, the associated matrix $[t_{ij}]_{i, j \geq 0}$ is given by $t_{ij} = \langle T(e_j), e_i \rangle$, for all $i, j \geq 0$.

Let $\text{Hank}_p(N) \subseteq B(\ell^p)$ be the subspace of all $T \in B(\ell^p)$ whose matrix is Hankelian, i.e., has the form $[c_{i+j}]_{i, j \geq 0}$ for some sequence $(c_k)_{k \geq 0}$ of complex numbers.

Let p' be the conjugate index of p and regard $\ell^p \otimes \ell^{p'} \subset B(\ell^p)$ in the usual way. We set

$$\gamma_k = \sum_{i+j=k} e_i \otimes e_j$$

for any $k \geq 0$. Then each γ_k belongs to $\text{Hank}_p(N)$, and $\|\gamma_k\| = 1$. Indeed, the matrix of γ_k is $[c_{i+j}]_{i, j \geq 0}$ with $c_k = 1$ and $c_l = 0$ for all $l \neq k$.

Lemma 3.1. For any $1 < p < \infty$, the space $\text{Hank}_p(N)$ is the w^*-closure of the linear span of $\{\gamma_k : k \geq 0\}$.

Proof. It is plain that $\text{Hank}_p(N)$ is a w^*-closed subspace of $B(\ell^p)$, hence one inclusion is straightforward.

To check the other one, consider $T \in \text{Hank}_p(N)$. By the definition of this space, there is a sequence $(c_k)_{k \geq 0}$ of \mathbb{C} such that

$$\langle T(e_j), e_i \rangle = c_{i+j}, \quad \text{for all } i, j \geq 0.$$

For any $n \geq 1$, let K_n be the Fejér kernel defined by

$$K_n(t) = \sum_{k=-n}^{n} \left(1 - \frac{|k|}{n}\right)e^{int}, \quad t \in \mathbb{R}.$$

Then let $T_n \in B(\ell^p)$ be the finite rank operator whose matrix is $[\widehat{K}_n(i+j)c_{i+j}]_{i, j \geq 0}$. Note that

$$T_n = \sum_{k=0}^{n} \left(1 - \frac{|k|}{n}\right)c_k \gamma_k \in \text{Span}\{\gamma_k : k \geq 0\}.$$
We show that $\|T_n\| \leq \|T\|$. To see this, let $\alpha = (\alpha_j)_{j \geq 0} \in \ell^p$ and $(\beta_m)_{m \geq 0} \in \ell^{p'}$. We have that

$$\langle T_n(\alpha), \beta \rangle = \sum_{m, j \geq 0} K_n(m + j) c_{m+j} \alpha_j \beta_m$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} K_n(t) \sum_{m, j \geq 0} c_{m+j} \alpha_j \beta_m e^{-i(m+j)t} \, dt.$$

Since $K_n \geq 0$, we deduce

$$|\langle T_n(\alpha), \beta \rangle| \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} K_n(t) \left| \sum_{m, j \geq 0} c_{m+j} \alpha_j \beta_m e^{-i(m+j)t} \right| \, dt.$$

Now for all $t \in [-\pi, \pi]$, we have

$$\left| \sum_{m, j \geq 0} c_{m+j} \alpha_j \beta_m e^{-i(m+j)t} \right| = \left| \sum_{m, j \geq 0} c_{m+j} (e^{-ijt} \alpha_j)(e^{-imt} \beta_m) \right|$$

$$= \left| \langle T((e^{-ijt} \alpha_j)_{j \geq 0}), (e^{-imt} \beta_m)_{m \geq 0} \rangle \right|$$

$$\leq \|T\| \left(\sum_{j \geq 0} |e^{-ijt} \alpha_j|^p \right)^{\frac{1}{p}} \left(\sum_{m \geq 0} |e^{-imt} \beta_m|^p \right)^{\frac{1}{p'}}$$

$$\leq \|T\| \|\alpha\|_p \|\beta\|_{p'},$$

Since

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} K_n(t) \, dt = 1,$$

we therefore obtain that $|\langle T_n(\alpha), \beta \rangle| \leq \|T\| \|\alpha\|_p \|\beta\|_{p'}$. This proves that $\|T_n\| \leq \|T\|$, as requested.

For all $i, j \geq 0$,

$$\langle T_n(e_j), e_i \rangle = \langle \widehat{K}_n(i + j), T e_j, e_i \rangle \rightarrow \langle T e_j, e_i \rangle,$$

when $n \to \infty$. Hence $T_n \rightarrow T$ in the w^*-topology, by Lemma 2.1. Consequently, T belongs to the w^*-closure of Span$\{\gamma_k : k \geq 0\}$. □

Remark 3.2. (a) Nehari’s celebrated theorem (see, e.g., [Nikolski 2020, Theorem II.2.2.4], [Peller 2003, Theorem I.1.1] or [Power 1982, Theorem 1.3]) asserts that

$$\text{Hank}_2(\mathbb{N}) \simeq \frac{L^\infty(\mathbb{T})}{H^\infty(\mathbb{T})}.$$

Here \mathbb{T} stands for the unit circle of \mathbb{C} and $H^\infty(\mathbb{T}) \subset L^\infty(\mathbb{T})$ is the Hardy space of functions whose negative Fourier coefficients vanish. The isometric isomorphism $J : L^\infty(\mathbb{T})/H^\infty(\mathbb{T}) \rightarrow \text{Hank}_2(\mathbb{N})$ providing (9) is defined as follows. Given any $F \in L^\infty(\mathbb{T})$, let \hat{F} denote its class modulo $H^\infty(\mathbb{T})$. Then $J(\hat{F})$ is the operator whose matrix is equal to $[\hat{F}(-i - j - 1)]_{i,j\geq 0}$.
(b) We remark that $\text{Hank}_p(\mathbb{N}) \subseteq \text{Hank}_2(\mathbb{N})$. To see this, note that if $T \in \text{Hank}_p(\mathbb{N})$, then because of the symmetry in its matrix representation due to being a Hankelian matrix, T has the same matrix representation as T^*, and therefore T extends to a bounded operator on ℓ^p. By interpolation, T extends to a bounded operator on ℓ^2, which is represented by the same matrix as T. Hence, T belongs to $\text{Hank}_2(\mathbb{N})$.

However for $1 < p \neq 2 < \infty$, there is no description of $\text{Hank}_p(\mathbb{N})$ similar to Nehari’s theorem.

(c) The definition of $\text{Hank}_p(\mathbb{N})$ readily extends to the case $p = 1$ isometrically:

$$\text{Hank}_1(\mathbb{N}) \simeq \ell^1.$$

Indeed, let $J_1 : \ell^1 \to \text{Hank}_1(\mathbb{N})$ be defined by

$$J_1(c) = \sum_{k=0}^{\infty} c_k \gamma_k, \quad c = (c_k)_{k \geq 0} \in \ell^1.$$

Next, let $J_2 : \text{Hank}_1(\mathbb{N}) \to \ell^1$ be defined by $J_2(T) = T(e_0)$. Then J_1, J_2 are contractions and it is easy to check that they are inverse to each other. Hence J_1 is an isometric isomorphism.

We say that a sequence $m = (m_k)_{k \geq 0}$ in \mathbb{C} is the symbol of a multiplier on $\text{Hank}_p(\mathbb{N})$ if there is a w^*-continuous operator $T_m : \text{Hank}_p(\mathbb{N}) \to \text{Hank}_p(\mathbb{N})$ such that

$$T_m(\gamma_k) = m_k \gamma_k, \quad k \geq 0.$$

Such an operator is uniquely defined. In this case, $m \in \ell^\infty$ and $\|m\|_\infty \leq \|T_m\|$.

The following is a simple extension of [Pisier 2001, Theorems 6.1 and 6.2].

Theorem 3.3. Let $1 < p < \infty$, let $C \geq 0$ be a constant and let $m = (m_k)_{k \geq 0}$ be a sequence in \mathbb{C}. The following assertions are equivalent.

(i) m is the symbol of a p-completely bounded multiplier on $\text{Hank}_p(\mathbb{N})$, and

$$\|T_m : \text{Hank}_p(\mathbb{N}) \to \text{Hank}_p(\mathbb{N})\|_{p-\text{cb}} \leq C.$$

(ii) There exist a measure space (Ω, μ), and bounded sequences $(\alpha_i)_{i \geq 0}$ in $L^p(\Omega)$ and $(\beta_j)_{j \geq 0}$ in $L^{p'}(\Omega)$ such that $m_{i+j} = \langle \alpha_i, \beta_j \rangle$, for every $i, j \geq 0$, and

$$\sup_{i \geq 0} \|\alpha_i\|_p \sup_{j \geq 0} \|\beta_j\|_{p'} \leq C.$$

Proof. By homogeneity, we may assume that $C = 1$ throughout this proof.

Assume (i). Let $\kappa : \ell^p_Z \to \ell^p_Z$ be defined by $\kappa((a_k)_{k \in \mathbb{Z}}) = (a_{-k})_{k \in \mathbb{Z}}$, let $J : \ell^p_N \to \ell^p_Z$ be the canonical embedding and let $Q : \ell^p_Z \to \ell^p_N$ be the canonical projection. Define $q : B(\ell^p_Z) \to B(\ell^p_N)$ by $q(T) = Q \kappa T J$. According to the easy implication (ii) \Rightarrow (i) of Theorem 2.2, the mapping q is p-completely contractive. We note that if $[t_{i,j}]_{(i,j) \in \mathbb{Z}^2}$ is the matrix of some $T \in B(\ell^p_Z)$, then the matrix of $q(T)$ is equal to $[t_{-i,j}]_{(i,j) \in \mathbb{Z}^2}$.

Let \(\mathcal{M}_p(\mathbb{Z}) \subseteq B(\ell^p_\mathbb{Z}) \) be the space of all bounded Fourier multipliers on \(\ell^p_\mathbb{Z} \); this is a unital subalgebra. Let \(T \in \mathcal{M}_p(\mathbb{Z}) \) and let \(\phi \in L^\infty(\mathbb{T}) \) denote its symbol. Then the matrix of \(T \) is equal to \([\hat{\phi}(i-j)]_{(i,j)\in\mathbb{Z}^2} \), hence the matrix of \(q(T) \) is equal to \([\hat{\phi}(-i-j)]_{(i,j)\in\mathbb{N}^2} \). Hence, \(q(T) \) is Hankelian. We can therefore consider the restriction map

\[
q|_{\mathcal{M}_p(\mathbb{Z})} : \mathcal{M}_p(\mathbb{Z}) \to \text{Hank}_p(\mathbb{N}).
\]

Let \(s : \ell^p_\mathbb{Z} \to \ell^p_\mathbb{Z} \) be the shift operator defined by \(s(e_j) = e_{j+1} \), for all \(j \in \mathbb{Z} \). We observe (left to the reader) that

\[
q(s^{-k}) = \gamma_k, \quad k \in \mathbb{N}.
\]

We assume that \(T_m : \text{Hank}_p(\mathbb{N}) \to \text{Hank}_p(\mathbb{N}) \) is \(p \)-completely contractive. Consider \(w : \mathcal{M}_p(\mathbb{Z}) \to \text{Hank}_p(\mathbb{N}) \subseteq B(\ell^p) \) defined by \(w := T_m \circ q|_{\mathcal{M}_p(\mathbb{Z})} \). Then \(w \) is \(p \)-completely contractive. Applying Theorem 2.2 to \(w \), we obtain an \(SQ_p \)-space \(E \), a contractive homomorphism \(\pi : \mathcal{M}_p(\mathbb{Z}) \to B(E) \) and contractive maps \(V : \ell^p_\mathbb{N} \to E \) and \(W : E \to \ell^p_\mathbb{N} \) such that

\[
w(T) = W\pi(T)V, \quad T \in \mathcal{M}_p(\mathbb{Z}).
\]

Let \(i, j \geq 0 \). By (10), we have

\[w(s^{-(i+j)}) = T_m(q(s^{-(i+j)}))) = T_m(\gamma_{i+j}) = m_{i+j},\]

hence \(\langle w(s^{-(i+j)})e_i, e_j \rangle = m_{i+j} \). Consequently, from (11), we obtain that

\[m_{i+j} = \langle \pi(s^{-(i+j)})V(e_i), W^*(e_j) \rangle_{E,E^*}.
\]

The mapping \(\pi \) is multiplicative, hence this implies that

\[m_{i+j} = \langle \pi(s^{-i})V(e_i), \pi(s^{-j})*W^*(e_j) \rangle_{E,E^*}.
\]

Set \(x_i := \pi(s^{-i})V(e_i) \in E \) and \(y_j := \pi(s^{-j})*W^*(e_j) \in E^* \). Then, for all \(i, j \geq 0 \) we have \(\|x_i\| \leq 1, \|y_j\| \leq 1 \) and \(m_{i+j} = \langle x_i, y_j \rangle_{E,E^*} \).

Let us now apply Remark 2.3. As in the latter, consider a measure space \((\Omega, \mu) \) and closed subspaces \(E_2 \subset E_1 \subset L^p(\Omega) \) such that \(E = E_1/E_2 \). Recall (5). For any \(i \geq 0 \), pick \(\alpha_i \in E_1 \) such that \(\|\alpha_i\|_p = \|x_i\| \) and \(\alpha_i = x_i \). Likewise, for any \(j \geq 0 \), pick \(\beta_j \in E_2^\perp \) such that \(\|\beta_j\|_{p'} = \|y_j\| \) and \(\beta_j = y_j \). Then for all \(i, j \geq 0 \), we both have \(\|\alpha_i\|_p \leq 1, \|\beta_j\|_{p'} \leq 1 \) and \(m_{i+j} = \langle \alpha_i, \beta_j \rangle_{L^p,L^{p'}} \). This proves (ii).

Conversely, assume (ii). By [Piéron 2001, Corollary 8.2], the family \(\{m_{i+j}\}_{(i,j)\in\mathbb{N}^2} \) induces a \(p \)-completely contractive Schur multiplier on \(B(\ell^p) \). It is clear that the restriction of this Schur multiplier maps \(\text{Hank}_p(\mathbb{N}) \) into itself. More precisely, it maps \(\gamma_k \) to \(m_k\gamma_k \) for all \(k \geq 0 \). Hence \(m \) is the symbol of a \(p \)-completely contractive multiplier on \(\text{Hank}_p(\mathbb{N}) \).

\[\square\]
4. Hankel operators on $L^p(\mathbb{R}_+)$

Throughout we let $1 < p < \infty$ and we let p' denote its conjugate index. For any $u > 0$, we set $\tau_u f := f(\cdot - u)$, for all $f \in L^1(\mathbb{R}) + L^\infty(\mathbb{R})$. Let

$$\text{Hank}_p(\mathbb{R}_+) \subseteq B(L^p(\mathbb{R}_+))$$

be the space of Hankelian operators on $L^p(\mathbb{R}_+)$, consisting of all bounded operators $T : L^p(\mathbb{R}_+) \to L^p(\mathbb{R}_+)$ such that

$$\langle T \tau_u f, g \rangle = \langle T f, \tau_u g \rangle,$$

for all $f \in L^p(\mathbb{R}_+)$, $g \in L^{p'}(\mathbb{R}_+)$ and $u > 0$.

For any $u > 0$, let $\theta_u : L^p(\mathbb{R}_+) \to L^p(\mathbb{R}_+)$ be defined by $\theta_u f = f(u - \cdot)$. Note that θ_u is a Hankelian operator on $L^p(\mathbb{R}_+)$. Indeed, for all $f \in L^p(\mathbb{R}_+)$, $g \in L^{p'}(\mathbb{R}_+)$ and $v > 0$, we have

$$\langle \theta_u \tau_v f, g \rangle = \int_v^u f(u - s)g(s - v) \, ds = \langle \theta_u f, \tau_v g \rangle$$

if $v < u$, and $\langle \theta_u \tau_v f, g \rangle = \langle \theta_u f, \tau_v g \rangle = 0$ if $v \geq u$. The operators θ_u are the continuous counterparts of the operators γ_k from Section 3. From this point of view, part (1) of Theorem 4.1 below is an analogue of Lemma 3.1. However its proof is more delicate.

We introduce a new space $A_p(\mathbb{R}_+) \subseteq C_0(\mathbb{R}_+)$ by

$$A_p(\mathbb{R}_+):= \left\{ F = \sum_{n=1}^\infty f_n * g_n : f_n \in L^p(\mathbb{R}_+), \ g_n \in L^{p'}(\mathbb{R}_+) \text{ and } \sum_{n=1}^\infty \| f_n \|_p \| g_n \|_{p'} < \infty \right\},$$

and we equip it with the norm

$$\| F \|_{A_p} = \inf \left\{ \sum_{n=1}^\infty \| f_n \|_p \| g_n \|_{p'} \right\},$$

(12)

where the infimum runs over all possible representations of F as above. The space $A_p(\mathbb{R}_+)$ is a half-line analogue of the classical Figà-Talamanca–Herz algebra $A_p(\mathbb{R})$; see, e.g., [Derighetti 2011]. The classical arguments showing that the latter is a Banach space show as well that (12) is a norm on $A_p(\mathbb{R}_+)$ and that $A_p(\mathbb{R}_+)$ is a Banach space.

It follows from the above definitions that there exists a (necessarily unique) contractive map

$$Q_p : L^p(\mathbb{R}_+) \hat{\otimes} L^{p'}(\mathbb{R}_+) \to A_p(\mathbb{R}_+)$$

such that $Q_p(f \otimes g) = f * g$, for all $f \in L^p(\mathbb{R}_+)$ and $g \in L^{p'}(\mathbb{R}_+)$. Moreover Q_p is a quotient map. Hence the adjoint

$$Q_p^* : A_p(\mathbb{R}_+)^* \to B(L^p(\mathbb{R}_+))$$
of Q_p is an isometry. This yields an isometric identification $A_p(\mathbb{R}_+)^* \simeq \ker(Q_p)^\perp (= \operatorname{ran}(Q_p^*))$.

We observe that

\begin{equation}
\ker(Q_p)^\perp = \overline{\operatorname{span}}_{w^*} \{ \theta_u : u > 0 \}.
\end{equation}

To prove this, we note that

\begin{equation}
\langle \theta_u, f \otimes g \rangle = \langle \theta_u(f), g \rangle = (f * g)(u),
\end{equation}

for all $f \in L^p(\mathbb{R})$, $g \in L^{p'}(\mathbb{R}_+)$ and $u > 0$. Hence,

$$\left\{ \theta_u, \sum_{n=1}^{\infty} f_n \otimes g_n \right\} = \left(\sum_{n=1}^{\infty} f_n * g_n \right)(u)$$

for all sequences $(f_n)_n$ in $L^p(\mathbb{R}_+)$ and $(g_n)_n$ in $L^{p'}(\mathbb{R}_+)$ such that

$$\sum_{n=1}^{\infty} \| f_n \|_p \| g_n \|_{p'} < \infty,$$

and all $u > 0$. This implies that $\overline{\operatorname{span}}_{w^*} \{ \theta_u : u > 0 \} = \ker(Q_p)$, and (13) follows.

Theorem 4.1. (1) The space $\operatorname{Hank}_p(\mathbb{R}_+)$ is equal to the w^*-closure of the linear span of $\{ \theta_u : u > 0 \}$.

(2) We have an isometric identification

$$\operatorname{Hank}_p(\mathbb{R}_+) \simeq A_p(\mathbb{R}_+)^*.$$

Proof. Part (2) follows from part (1) and the discussion preceding the statement of Theorem 4.1. For any $f \in L^p(\mathbb{R}_+)$, $g \in L^{p'}(\mathbb{R}_+)$ and $u > 0$, the functionals $T \mapsto \langle T \tau_u f, g \rangle$ and $T \mapsto \langle T f, \tau_u g \rangle$ are w^*-continuous on $B(L^p(\mathbb{R}_+))$. Consequently, $\operatorname{Hank}_p(\mathbb{R}_+)$ is w^*-closed. Hence $\operatorname{Hank}_p(\mathbb{R}_+)$ contains the w^*-closure of $\overline{\operatorname{span}}_{w^*} \{ \theta_u : u > 0 \}$. To prove the reverse inclusion, it suffices to show, by (13), that

$$\operatorname{Hank}_p(\mathbb{R}_+) \subset \ker(Q_p)^\perp.$$

We will use a double approximation process. First, let k, l in $C_c(\mathbb{R})$, the space of continuous functions with compact support. To any $T \in B(L^p(\mathbb{R}_+))$, we associate $T_{k,l} \in B(L^p(\mathbb{R}_+))$ defined by

$$\langle T_{k,l}(f), g \rangle = \int_{\mathbb{R}} \langle T(\tau_u k \cdot f), \tau_u -l \cdot g \rangle \, du, \quad f \in L^p(\mathbb{R}_+), \ g \in L^{p'}(\mathbb{R}_+).$$

We note that

$$\int_{\mathbb{R}} \left| \langle T(\tau_u k \cdot f), \tau_u -l \cdot g \rangle \right| \, du \leq \| T \|_p \left(\int_{\mathbb{R}} \| \tau_u k f \|_p \, du \right)^{\frac{1}{p'}} \left(\int_{\mathbb{R}} \| \tau_u f \|_{p'} \, du \right)^{\frac{1}{p'}} = \| T \|_p \| f \|_p \| g \|_{p'} \| k \|_p \| l \|_{p'}.$$
Thus, $T_{k,l}$ is well-defined and $\|T_{k,l}\| \leq \|T\|\|k\|_p\|l\|_p$. We are going to show that

$$T \in \text{Hank}_p(\mathbb{R}_+) \Rightarrow T_{k,l} \in \text{ker}(Q_p) \perp. \tag{15}$$

Let $\alpha \in C_c(\mathbb{R}_+) \perp$ such that $\|\alpha\|_1 = 1$. Let $R_\alpha \in B(L^p(\mathbb{R}_+))$ be defined by

$$R_\alpha(f) = \alpha * f, \quad f \in L^p(\mathbb{R}_+).$$

We show that $(TR_\alpha)_{k,l}$ belongs to $\text{ker}(Q_p) \perp$ if $T \in \text{Hank}_p(\mathbb{R}_+)$, and we use these auxiliary operators to establish (15).

We fix some $T \in \text{Hank}_p(\mathbb{R}_+)$. Let $z \in \text{ker}(Q_p)$. Since $C_c(\mathbb{R}_+)$ is both dense in $L^p(\mathbb{R}_+)$ and $L^{p'}(\mathbb{R}_+)$, it follows, e.g., from [Derighetti 2011, Chapter 3, Proposition 6] that there exist sequences $(f_n)_{n \geq 1}$ and $(g_n)_{n \geq 1}$ in $C_c(\mathbb{R}_+)$ such that $\sum_{n=1}^{\infty} \|f_n\|_p \|g_n\|_{p'} < \infty$ and $z = \sum_{n=1}^{\infty} f_n \otimes g_n$. Since $z \in \text{ker}(Q_p)$, we have $\sum_{n=1}^{\infty} f_n \otimes g_n = 0$, pointwise.

We write $R_\alpha f = \int_{\mathbb{R}_+} f(s) \tau_s \alpha \, ds$ as a Bochner integral, for all $f \in C_c(\mathbb{R}_+)$. A simple application of Fubini’s theorem leads to

$$k * l \cdot f_n \otimes g_n = \int_{\mathbb{R}_+} \int_{\mathbb{R}_+} (\tau_u k \cdot f_n)(s) \tau_s (\tau_{-u} l \cdot g_n) \, ds \, du,$$

for all $n \geq 1$. We deduce that

$$\sum_{n=1}^{\infty} \langle (TR_\alpha)_{k,l}(f_n), g_n \rangle = \sum_{n=1}^{\infty} \int_{\mathbb{R}_+} \langle TR_\alpha(\tau_u k \cdot f_n), \tau_{-u} l \cdot g_n \rangle \, du$$

$$= \sum_{n=1}^{\infty} \int_{\mathbb{R}_+} \langle T((\tau_u k \cdot f_n) \ast \alpha), \tau_{-u} l \cdot g_n \rangle \, du$$

$$= \sum_{n=1}^{\infty} \int_{\mathbb{R}_+} \int_{\mathbb{R}_+} (\tau_u k \cdot f_n)(s) \langle T(\tau_s \alpha), \tau_{-u} l \cdot g_n \rangle \, ds \, du$$

$$= \sum_{n=1}^{\infty} \int_{\mathbb{R}_+} \int_{\mathbb{R}_+} \langle T(\alpha), (\tau_u k \cdot f_n)(s) \tau_s (\tau_{-u} l \cdot g_n) \rangle \, ds \, du$$

$$= \sum_{n=1}^{\infty} \langle T(\alpha), k * l \cdot \sum_{n=1}^{\infty} f_n \otimes g_n \rangle$$

$$= \langle T(\alpha), k * l \cdot \sum_{n=1}^{\infty} f_n \otimes g_n \rangle = 0.$$

This shows that $(TR_\alpha)_{k,l}$ belongs to $\text{ker}(Q_p) \perp$.

For z, f_n, g_n as above, write

$$\sum_{n=1}^{\infty} \langle T_{k,l}(f_n), g_n \rangle = \sum_{n=1}^{\infty} \langle T_{k,l}(f_n), g_n \rangle - \sum_{n=1}^{\infty} \langle (TR_\alpha)_{k,l}(f_n), g_n \rangle.$$
Then we have
\[\left| \sum_{n=1}^{\infty} \langle T_{k,l}(f_n), g_n \rangle \right| \]
\[\leq \sum_{n=1}^{\infty} \int_{\mathbb{R}} \left| (T(\tau_u k \cdot f_n - (\tau_u k \cdot f_n) \ast \alpha), \tau_{-u} l \cdot g_n) \right| du \]
\[\leq \sum_{n=1}^{\infty} \| T \| \left(\int_{\mathbb{R}} \| \tau_u k \cdot f_n - (\tau_u k \cdot f_n) \ast \alpha \|_{p}^p du \right)^{\frac{1}{p}} \left(\int_{\mathbb{R}} \| \tau_{-u} l \cdot g_n \|_{p'}^p du \right)^{\frac{1}{p'}} \]
\[\leq \| T \| \| I \|_{p'} \sum_{n=1}^{\infty} \| g_n \|_{p'} \left(\int_{\mathbb{R}} \| \tau_u k \cdot f_n - (\tau_u k \cdot f_n) \ast \alpha \|_{p}^p du \right)^{\frac{1}{p}}. \]

Recall that by assumption, \(\alpha \geq 0 \) and \(\int_{\mathbb{R}^+} \alpha(s) ds = 1 \). Then we deduce from above that
\[\left| \sum_{n=1}^{\infty} \langle T_{k,l}(f_n), g_n \rangle \right| \]
\[\leq \| T \| \| I \|_{p'} \sum_{n=1}^{\infty} \| g_n \|_{p'} \left(\int_{\mathbb{R}} \left(\int_{\mathbb{R}^+} \alpha(s)(\tau_u k \cdot f_n - \tau_s(\tau_u k \cdot f_n)) ds \right)^{\frac{1}{p}} du \right)^{\frac{1}{p}} \]
\[\leq \| T \| \| I \|_{p'} \sum_{n=1}^{\infty} \| g_n \|_{p'} \left(\int_{\mathbb{R}} \int_{\mathbb{R}^+} \alpha(s) \| \tau_u k \cdot f_n - \tau_s(\tau_u k \cdot f_n) \|_{p}^p ds du \right)^{\frac{1}{p}}. \]

The integral in the right-hand side satisfies
\[\left(\int_{\mathbb{R}} \int_{\mathbb{R}^+} \alpha(s) \| \tau_u k \cdot f_n - \tau_s(\tau_u k \cdot f_n) \|_{p}^p ds du \right)^{\frac{1}{p}} \]
\[\leq \left(\int_{\mathbb{R}} \int_{\mathbb{R}^+} \alpha(s) \| \tau_u k \cdot f_n - \tau_{s+u} k \cdot f_n \|_{p}^p ds du \right)^{\frac{1}{p}} \]
\[+ \left(\int_{\mathbb{R}} \int_{\mathbb{R}^+} \alpha(s) \| \tau_{s+u} k \cdot f_n - \tau_s(\tau_u k \cdot f_n) \|_{p}^p ds du \right)^{\frac{1}{p}} \]
\[\leq \left(\int_{\mathbb{R}} \int_{\mathbb{R}^+} \alpha(s) \| \tau_u ((k - \tau_s k) \cdot f_n) \|_{p}^p ds du \right)^{\frac{1}{p}} \]
\[+ \left(\int_{\mathbb{R}} \int_{\mathbb{R}^+} \alpha(s) \| \tau_{s+u} k \cdot (f_n - \tau_s f_n) \|_{p}^p ds du \right)^{\frac{1}{p}} \]
\[\leq \sup_{s \in \text{supp}(\alpha)} \left(\int_{\mathbb{R}} \| \tau_u (k - \tau_s k) \cdot f_n \|_{p}^p du \right)^{\frac{1}{p}} + \sup_{s \in \text{supp}(\alpha)} \left(\int_{\mathbb{R}} \| \tau_{s+u} k \cdot (f_n - \tau_s f_n) \|_{p}^p du \right)^{\frac{1}{p}} \]
\[= \sup_{s \in \text{supp}(\alpha)} \| k - \tau_s k \|_{p} \| f_n \|_{p} + \sup_{s \in \text{supp}(\alpha)} \| k \|_{p} \| f_n - \tau_s f_n \|_{p}. \]

Hence we obtain that
\[\left| \sum_{n=1}^{\infty} \langle T_{k,l}(f_n), g_n \rangle \right| \]
\[\leq \| T \| \| I \|_{p'} \sum_{n=1}^{\infty} \| g_n \|_{p'} \left(\sup_{s \in \text{supp}(\alpha)} \| k - \tau_s k \|_{p} \| f_n \|_{p} + \sup_{s \in \text{supp}(\alpha)} \| k \|_{p} \| f_n - \tau_s f_n \|_{p} \right). \]
Given $\epsilon > 0$, choose M such that
\[
\sum_{n=M+1}^\infty \|f_n\|_p \|g_n\|_{p'} < \epsilon.
\]
We may find $s_0 > 0$ such that for all $s \in (0, s_0)$ and all $1 \leq n \leq M$, we have that
\[
\|k - \tau_s k\|_p \leq \frac{\epsilon \|k\|_p}{\sum_{n=1}^M \|f_n\|_p \|g_n\|_{p'}} \quad \text{and} \quad \|f_n - \tau_s f_n\|_p \leq \frac{\epsilon}{M \|g_n\|_{p'}}.
\]
We may now choose α so that $\text{supp}(\alpha) \subseteq (0, t_0)$. Then we obtain from above that
\[
\left| \sum_{n=1}^\infty \langle T_{k,l}(f_n), g_n \rangle \right|
\leq \|T\| \|I\|_{p'} \left(\epsilon \|k\|_p + \sum_{n=1}^M \|g_n\|_{p'} \cdot \sup_{s \in \text{supp}(\alpha)} \|k\|_p \|f_n - \tau_s f_n\|_p
+ \sum_{n=M+1}^\infty \|g_n\|_{p'} \cdot \sup_{s \in \text{supp}(\alpha)} \|k\|_p \|f_n - \tau_s f_n\|_p \right)
\leq \|T\| \|I\|_{p'} \left(2\epsilon \|k\|_p + \sum_{n=M+1}^\infty 2\|k\|_p \|g_n\|_{p'} \|f_n\|_p \right)
\leq 4\epsilon \|T\| \|I\|_{p'} \|k\|_p.
\]
Since ϵ was arbitrary, this shows that $\sum_{n=1}^\infty \langle T_{k,l}(f_n), g_n \rangle = 0$. Since $z = \sum_{n=1}^\infty f_n \otimes g_n$ was an arbitrary element of $\text{ker}(Q_p)$, we obtain (15).

Next, we construct a sequence $(T_{k_n,l_n})_n$ which tends to T in the w^*-topology of $B(L^p(\mathbb{R}_+))$. In the sequel, we assume that $k, l \in C_c(\mathbb{R})$ are such that
\[
(16) \quad \|k\|_p = 1, \quad \|l\|_{p'} = 1 \quad \text{and} \quad \int_\mathbb{R} k(-s)l(s) \, ds = 1.
\]
Consider any $f, g \in C_c(\mathbb{R}_+)$. We have
\[
\left| \langle T(f), g \rangle - \langle T_{k,l}(f), g \rangle \right|
= \left| \int_\mathbb{R} \langle T(k(-s)f), l(s)g \rangle - \langle T(\tau_s k \cdot f), \tau_{-s} l \cdot g \rangle \, ds \right|
\leq \int_\mathbb{R} \left| \langle T((k(-s) - \tau_s k)f), l(s)g \rangle \right| \, ds + \int_\mathbb{R} \left| \langle T(\tau_s k \cdot f), (l(s) - \tau_{-s} l)g \rangle \right| \, ds
\leq \|T\| \left(\int_\mathbb{R} \|k(-s) - \tau_s k\|_p \|f\|_p \, ds \right)^{\frac{1}{p'}} \left(\int_\mathbb{R} \|l(s)g\|_{p'} \, ds \right)^{\frac{1}{p'}}
+ \|T\| \left(\int_\mathbb{R} \|\tau_s k \cdot f\|_p \, ds \right)^{\frac{1}{p'}} \left(\int_\mathbb{R} \|\tau_{-s} l\|_{p'} \, ds \right)^{\frac{1}{p'}}
\leq \|T\| \|g\|_{p'} \left(\int_{\mathbb{R}_+} |f(t)|^p \|\tau_{i \hat{k}} \tilde{k} - \hat{k}\|_p \, dt \right)^{\frac{1}{p'}}
+ \|T\| \|f\|_p \left(\int_{\mathbb{R}_+} |g(t)|^p \|\tau_{-l} l - l\|_{p'} \, dt \right)^{\frac{1}{p'}}.
\]
Here \hat{k} denotes the function $s \mapsto k(-s)$.

Now for \(n \geq 1 \), set
\[
k_n := \frac{\chi([-n,n])}{(2n)^\frac{1}{p}} \quad \text{and} \quad l_n := \frac{\chi([-n,n])}{(2n)^{\frac{1}{p'}}},
\]
where \(\chi([-n,n]) \) is the indicator function of the interval \([-n,n]\). Then \(\|k_n\|_p = \|l_n\|_{p'} = 1 \) and \(\int_{\mathbb{R}} k_n(-s)l_n(s)\,ds = 1 \) as in (16). Let \(K = \text{supp}(f) \cup \text{supp}(g) \) and let \(r = \sup(K) \). Note that \(k_n = k_n \) and that we have
\[
\sup_{t \in K} \|\tau_t k_n - k_n\|_p \leq \left(\frac{r}{n} \right)^{\frac{1}{p}} \quad \text{and} \quad \sup_{t \in K} \|\tau_t l_n - l_n\|_{p'} \leq \left(\frac{r}{n} \right)^{\frac{1}{p'}}.
\]
Therefore,
\[
\left| \langle T(f), g \rangle - \langle T_{k_n,l_n}(f), g \rangle \right| \leq \frac{2r}{n} \|T\| \|f\|_p \|g\|_{p'},
\]
hence \(\langle T_{k_n,l_n}(f), g \rangle \xrightarrow{n \to \infty} \langle T(f), g \rangle \). Since \(\|T_{k_n,l_n}\| \leq \|T\| \) for all \(n \geq 1 \), this implies, by Lemma 2.1, that \(T_{k_n,l_n} \to T \) in the \(w^* \)-topology of \(B(L^p(\mathbb{R}^+)) \). Consequently, \(T \in \ker(Q_p)^\perp \) as expected. \(\square \)

Remark 4.2. (a) For any \(1 \leq p \leq \infty \), let \(H^p(\mathbb{R}) \subset L^p(\mathbb{R}) \) be the subspace of all \(f \in L^p(\mathbb{R}) \) whose Fourier transform has support in \(\mathbb{R}_+ \). Recall the factorisation property
\[
H^1(\mathbb{R}) = H^2(\mathbb{R}) \times H^2(\mathbb{R}).
\]

More precisely, the product \(h_1h_2 \in H^1(\mathbb{R}) \) and \(\|h_1h_2\|_1 \leq \|h_1\|_2\|h_2\|_2 \) for all \(h_1, h_2 \in H^2(\mathbb{R}) \) and conversely, for all \(h \in H^1(\mathbb{R}) \), there exist \(h_1, h_2 \in H^2(\mathbb{R}) \) such that \(h = h_1h_2 \) and \(\|h\|_1 = \|h_1\|_2\|h_2\|_2 \).

Recall that by definition,
\[
A_2(\mathbb{R}_+) = \left\{ \sum f_n * g_n : f_n, g_n \in L^2(\mathbb{R}_+), \sum \|f_n\|_2 \|g_n\|_2 < \infty \right\}.
\]
It therefore follows from the above factorisation property and the identification of \(L^2(\mathbb{R}_+) \) with \(H^2(\mathbb{R}) \) via the Fourier transform that
\[
A_2(\mathbb{R}_+) = \left\{ \hat{h} : h \in H^1(\mathbb{R}) \right\},
\]
with \(\|\hat{h}\|_{A_2(\mathbb{R}_+)} = \|h\|_{H^1(\mathbb{R})} \). Therefore, we have an isometric identification
\[
A_2(\mathbb{R}_+) \cong H^1(\mathbb{R}).
\]
Since \(H^1(\mathbb{R})^\perp = H^\infty(\mathbb{R}) \), we have
\[
H^1(\mathbb{R})^* \cong \frac{L^\infty(\mathbb{R})}{H^\infty(\mathbb{R})}.
\]
Applying Theorem 4.1(2), we recover the well-known fact (see [Nikolski 2020, Section IV.5.3] or [Peller 2003, Theorem I.8.1]) that
\[\text{Hank}_2(\mathbb{R}_+) \cong \frac{L^\infty(\mathbb{R})}{H^\infty(\mathbb{R})}. \]

(b) Notice that Hank\(p\)(\(\mathbb{R}_+\)) \(\subseteq\) Hank\(2\)(\(\mathbb{R}_+\)). Indeed, suppose that \(T \in \text{Hank}_p(\mathbb{R}_+)\) and note that the adjoint mapping \(T^* \in B(L^p(\mathbb{R}_+))\) coincides with \(T\) on \(L^p(\mathbb{R}_+)\cap L^p(\mathbb{R}_+)\). To see this, take \(f, g \in L^p(\mathbb{R}_+)\cap L^p(\mathbb{R}_+)\) and observe that \(f \otimes g - g \otimes f\) belongs to \(\ker(Q_p)\). This implies that \(\langle T(f), g \rangle = \langle T(g), f \rangle\). Therefore, \(T\) coincides with \(T^*\) on \(L^p(\mathbb{R}_+)\cap L^p(\mathbb{R}_+)\). It then follows by interpolation that \(T\) extends to a bounded operator on \(L^2(\mathbb{R}_+)\), say \(\widetilde{T}\). Since \(T\) and \(\widetilde{T}\) coincide on \(L^p(\mathbb{R}_+)\cap L^2(\mathbb{R}_+)\) and \(T\) is Hankelian, it follows from the definition of Hankel operators that \(\widetilde{T}\) is also a Hankel operator and hence belongs to Hank\(2\)(\(\mathbb{R}_+\)).

(c) The definition of Hank\(p\)(\(\mathbb{R}_+\)) extends to the case \(p = 1\). In analogy with Remark 3.2(c), we have an isometric identification
\[\text{Hank}_1(\mathbb{R}_+) \simeq M(\mathbb{R}_+^*), \]
where \(M(\mathbb{R}_+^*)\) denotes the space of all bounded Borel measures on \(\mathbb{R}_+^*\). To establish this, we first note that for all \(f \in L^1(\mathbb{R}_+)\), the function \(u \mapsto \theta_u(f)\) is bounded and continuous from \(\mathbb{R}_+^*\) into \(L^1(\mathbb{R}_+)\). Hence for all \(v \in M(\mathbb{R}_+^*)\), we may define \(H_v \in B(L^1(\mathbb{R}_+))\) by
\[H_v(f) = \int_{\mathbb{R}_+^*} \theta_v(f) \, d\nu(u), \quad f \in L^1(\mathbb{R}_+). \]

It is clear that \(H_v\) is Hankelian. It follows from (14) that
\[\langle H_v(f), g \rangle = \int_{\mathbb{R}_+^*} (f * g)(u) \, d\nu(u), \quad f \in L^1(\mathbb{R}_+), \ g \in L^\infty(\mathbb{R}_+). \]

We note that the mapping \(v \mapsto H_v\) is a one-to-one contraction from \(M(\mathbb{R}_+^*)\) into Hank\(1\)(\(\mathbb{R}_+\)). We shall now prove that this mapping is an onto isometry.

We use the isometric identification \(M(\mathbb{R}_+^*) \simeq C_0(\mathbb{R}_+^*)^*\) provided by the Riesz theorem and we regard \(L^1(\mathbb{R}_+) \subseteq M(\mathbb{R}_+^*)\) in the obvious way. Let \(T \in \text{Hank}_1(\mathbb{R}_+)\). We observe that for all \(h, f \in L^1(\mathbb{R}_+)\) and all \(g \in C_0(\mathbb{R}_+^*)\), we have
\[\langle T(h * f), g \rangle = \langle T(h), f * g \rangle \]
Indeed, write \(h * f = \int_0^\infty f(s) \tau_s h \, ds\). This implies that \(T(h * f) = \int_0^\infty f(s) T(\tau_s h) \, ds\), hence
\[\langle T(h * f), g \rangle = \int_0^\infty f(s) \langle T \tau_s h, g \rangle \, ds = \int_0^\infty f(s) \langle T h, \tau_s g \rangle \, ds = \langle T(h), f * g \rangle. \]
Let \((h_n)_{n \geq 1}\) be a norm one approximate unit of \(L^1(\mathbb{R}_+)\). Then \((T(h_n))_{n \geq 1}\) is a bounded sequence of \(L^1(\mathbb{R}_+)\). Hence it admits a cluster point \(v \in M(\mathbb{R}_+^*)\).
in the w^*-topology of $M(\mathbb{R}_+^*)$. Thus, for all $g \in C_0(\mathbb{R}_+^*)$, the complex number
$\int_{\mathbb{R}_+^*} g(u) \, dv(u)$ is a cluster point of the sequence $(\langle T(h_n), g \rangle)_{n \geq 1}$. Furthermore, we have $\|v\| \leq \|T\|$. Let $f \in L^1(\mathbb{R}_+)$ and let $g \in C_0(\mathbb{R}_+^*)$. Since $h_n \ast f \to f$ in $L^1(\mathbb{R}_+)$, we have that $(T(h_n \ast f), g) \to (T(f), g)$. By (18), we may write $\langle T(h_n \ast f), g \rangle = \langle T(h_n), f \ast g \rangle$. We deduce that
\[\langle T(f), g \rangle = \int_{\mathbb{R}_+^*} (f \ast g)(u) \, dv(u). \]
This implies that $T = H_v$, see (17), which concludes the proof.

Definition 4.3. We say that a function $m : \mathbb{R}_+^* \to \mathbb{C}$ is the symbol of a multiplier on
$\text{Hank}_p(\mathbb{R}_+)$ if there exist a w^*-continuous operator $T_m : \text{Hank}_p(\mathbb{R}_+) \to \text{Hank}_p(\mathbb{R}_+)$
such that for every $u > 0$, $T_m(\theta_u) = m(u)\theta_u$. (Note that such an operator T_m is
necessarily unique.)

Remark 4.4. Suppose that $T_m : \text{Hank}_p(\mathbb{R}_+) \to \text{Hank}_p(\mathbb{R}_+)$ is a multiplier as defined
above. Using Theorem 4.1(2), let $S_m : A_p(\mathbb{R}_+) \to A_p(\mathbb{R}_+)$ be the operator such
that $S_m^* = T_m$. For $f \in L^p(\mathbb{R}_+)$ and $g \in L^{p'}(\mathbb{R}_+)$, we have, by (14),
\[[S_m(f \ast g)](u) = \langle \theta_u, S_m(f \ast g) \rangle \]
\[= \langle T_m(\theta_u), f \ast g \rangle \]
\[= m(u) \langle \theta_u, f \ast g \rangle \]
\[= m(u) (f \ast g)(u). \]
We deduce that $S_m(F) = m \cdot F$, for every $F \in A_p(\mathbb{R}_+)$. Conversely, if $m : \mathbb{R}_+^* \to \mathbb{C}$ is such that $S_m : A_p(\mathbb{R}_+) \to A_p(\mathbb{R}_+)$ given by
$S_m(F) = m \cdot F$ is well-defined and bounded, then S_m^* is a multiplier on $\text{Hank}_p(\mathbb{R}_+)$.

Lemma 4.5. If $m : \mathbb{R}_+^* \to \mathbb{C}$ is the symbol of a multiplier on $\text{Hank}_p(\mathbb{R}_+)$, then m is
continuous and bounded.

Proof. For all $u > 0$, we have $m(u)\theta_u = T_m(\theta_u)$, hence $|m(u)| \leq \|T_m\|$. Thus, m is
bounded. For any $a > 0$, let $\chi_{(0,a)}$ be the indicator function of the interval $(0, a)$. Then
$m \cdot \chi_{(0,a)} \ast \chi_{(0,a)}$ belongs to $A_p(\mathbb{R}_+)$, hence to $C_b(\mathbb{R}_+^*)$, by Remark 4.4. Since
$\chi_{(0,a)} \ast \chi_{(0,a)} > 0$ on $(0, 2a)$, it follows that m is continuous on $(0, 2a)$. Thus, m is
continuous on \mathbb{R}_+^*. \[\square \]

Theorem 4.6. Let $1 < p < \infty$, let $C \geq 0$ be a constant and let $m : \mathbb{R}_+^* \to \mathbb{C}$ be a
function. The following assertions are equivalent.

(i) m is the symbol of a p-completely bounded multiplier on $\text{Hank}_p(\mathbb{R}_+)$, and
\[\|T_m : \text{Hank}_p(\mathbb{R}_+) \to \text{Hank}_p(\mathbb{R}_+)\|_{p\text{-cb}} \leq C. \]
(ii) \(m \) is continuous and there exist a measure space \((Ω, μ) \) and two functions \(α ∈ L^∞(ℝ_+; L^p(Ω)) \) and \(β ∈ L^∞(ℝ_+; L^p(Ω)) \) such that \(||α||_∞ ||β||_∞ ≤ C \) and \(m(s + t) = ⟨α(s), β(t)⟩ \), for almost every \((s, t) ∈ ℝ^2_+ \).

Proof. By homogeneity, we may assume that \(C = 1 \) throughout this proof.

Assume (i). The continuity of \(m \) follows from Lemma 4.5. Let \(T_m : \text{Hank}_p(ℝ_+) → \text{Hank}_p(ℝ_+) \) be the \(p \)-completely contractive multiplier associated with \(m \). Let \(\kappa : L^p(ℝ) → L^p(ℝ) \) be defined by \((κf)(t) = f(−t) \), for all \(f ∈ L^p(ℝ) \). Let \(J : L^p(ℝ_+) → L^p(ℝ) \) be the canonical projection defined by \(Qf = f|_{ℝ^+} \). Let \(q : B(L^p(ℝ)) → B(L^p(ℝ_+)) \) be given by \(q(T) = Qκ T J \), for all \(T ∈ B(L^p(ℝ)) \). Applying the easy implication (ii) \(⇔ \) (i) of Theorem 2.2 we obtain that \(q \) is \(p \)-completely contractive.

Let \(\mathcal{M}_p(ℝ) \subseteq B(L^p(ℝ)) \) denote the subalgebra of bounded Fourier multipliers. Let us show that if \(T ∈ \mathcal{M}_p(ℝ) \), then \(q(T) ∈ \text{Hank}_p(ℝ_+) \). For any \(s ∈ ℝ \), recall \(τ_s ∈ B(L^p(ℝ)) \) given by \(τ_s(f) = f(−s) \). Note that \(τ_s ∈ \mathcal{M}_p(ℝ) \) and that \(\mathcal{M}_p(ℝ) = \text{Span} w^∗ \{τ_s : s ∈ ℝ \} \). For all \(f ∈ L^p(ℝ_+) \), we have

\[
q(τ_s)f = Qτ(f(−s)) = Q(f(−(−s+\bar{s}))) = \{ t ∈ ℝ_+ ↦ f(−t − s) \}.
\]

Hence, if \(s ≥ 0 \), then \(q(τ_s) = 0 \) and if \(s < 0 \), then \(q(τ_s) = τ_{−s} \). It is plain that \(q \) is \(w^∗ \)-continuous. Since \(\text{Hank}_p(ℝ_+) \) is \(w^∗ \)-closed, we deduce that \(q \) maps \(\mathcal{M}_p(ℝ) \) into \(\text{Hank}_p(ℝ_+) \).

Consider the mapping

\[
q_0 := q|_{\mathcal{M}_p(ℝ)} : \mathcal{M}_p(ℝ) → \text{Hank}_p(ℝ_+)
\]

and set

\[
Γ := T_m ◦ q_0 : \mathcal{M}_p(ℝ) → B(L^p(ℝ_+)).
\]

It follows from above that

\[
Γ(τ_{−s}) = m(s)τ_s, \quad s > 0.
\]

Since \(q \) is \(p \)-completely contractive, \(Γ \) is also \(p \)-completely contractive. Applying Theorem 2.2 to \(Γ \), we obtain the existence of an \(SQ_p \)-space \(E \), a unital \(p \)-completely contractive, nondegenerate homomorphism \(π : \mathcal{M}_p(ℝ) → B(E) \) as well as operators \(V : L^p(ℝ_+) → E \) and \(W : E → L^p(ℝ_+) \) such that \(||V|| ||W|| ≤ 1 \) and for every \(x ∈ \mathcal{M}_p(ℝ) \), \(Γ(x) = Wπ(x)V \).

Let \(c : L^1(ℝ) → \mathcal{M}_p(ℝ) \) be defined by \([c(g)](f) = g ∗ f \), for all \(g ∈ L^1(ℝ) \) and \(f ∈ L^p(ℝ) \). Let \(λ : L^1(ℝ) → B(E) \) be given by \(λ = π ◦ c \). Then \(λ \) is a contractive, nondegenerate homomorphism. By [de Pagter and Ricker 2008, Remark 2.5], there exists \(σ : ℝ → B(E) \), a bounded strongly continuous representation such that for all \(g ∈ L^1(ℝ) \), \(λ(g) = \int ℝ g(t)σ(t)dt \) (defined in the strong sense). Let us show that

\[
Γ(τ_{−s}) = Wσ(−s)V, \quad s > 0.
\]
Let \(\eta \in L^1(\mathbb{R}_+) \) be such that \(\int_{\mathbb{R}} \eta(t) \, dt = 1 \). For any \(r > 0 \), let \(\eta_r(t) = r \eta(rt) \).

Since \(\sigma : \mathbb{R} \to B(E) \) is strongly continuous, the function \(t \mapsto \langle \sigma(t)x, x^* \rangle \) is continuous and we have

\[
(21) \quad \int_{\mathbb{R}} \eta_r(-(s-t)) \langle \sigma(t)x, x^* \rangle \, dt \xrightarrow{t \to \infty} \langle \sigma(-s)x, x^* \rangle,
\]

for all \(x \in E \) and \(x^* \in E^* \). Since the left-hand side in (21) is equal to

\[
\langle \pi(c(\eta_r(-(s-\cdot))))x, x^* \rangle,
\]

we obtain, by Lemma 2.1, that \(\pi(c(\eta_r(-(s-\cdot)))) \to \sigma(-s) \) in the \(w^* \)-topology of \(B(E) \). This implies that \(W \pi(c(\eta_r(-(s-\cdot))))V \to W \sigma(-s)V \) in the \(w^* \)-topology of \(B(L^p(\mathbb{R}_+)) \). We next show that \(W \pi(c(\eta_r(-(s-\cdot))))V \to \Gamma(t_s) \) in the \(w^* \)-topology of \(B(L^p(\mathbb{R}_+)) \), which will complete the proof of (20). Since

\[
W \pi(c(\eta_r(-(s-\cdot))))V = \Gamma(c(\eta_r(-(s-\cdot))))
\]

and \(\Gamma \) is \(w^* \)-continuous, it suffices to show that \(c(\eta_r(-(s-\cdot))) \to \tau_{-s} \) in the \(w^* \)-topology of \(B(L^p(\mathbb{R})) \). To see this, let \(f \in L^p(\mathbb{R}) \) and \(g \in L^{p'}(\mathbb{R}) \). We have that

\[
\langle c(\eta_r(-(s-\cdot)))f, g \rangle = \langle \eta_r(-(s-\cdot)) \ast f, g \rangle = \langle \delta_{-s} \ast \eta_r \ast f, g \rangle \to \langle \delta_{-s} \ast f, g \rangle = \langle \tau_{-s}f, g \rangle.
\]

By Lemma 2.1 again, this proves that \(c(\eta_r(-(s-\cdot))) \to \tau_{-s} \) in the \(w^* \)-topology, as expected.

Given any \(\epsilon > 0 \), let \(m_\epsilon : \mathbb{R}_+^* \to \mathbb{C} \) be defined by

\[
m_\epsilon(t) = m(t + \epsilon), \quad t > 0.
\]

Let \(f \in L^p(\mathbb{R}_+) \) be given by \(f = \epsilon^{-1/p} \chi_{(0, \epsilon)} \) and let \(g \in L^{p'}(\mathbb{R}_+) \) be given by \(g = \epsilon^{-1/p'} \chi_{(0, \epsilon)} \). For any \(s, t > 0 \), set

\[
\alpha_\epsilon(s) := \sigma(-s - \frac{\epsilon}{2})V(t_s f) \quad \text{and} \quad \beta_\epsilon(t) := \sigma(-t - \frac{\epsilon}{2})W^*(\tau_t g).
\]

Since \(\sigma \) is strongly continuous, \(\alpha_\epsilon \) and \(\beta_\epsilon \) are continuous. By (19) and (20), we have that

\[
\langle \alpha_\epsilon(s), \beta_\epsilon(t) \rangle_{E, E^*} = \langle \sigma(-s - \frac{\epsilon}{2})V(t_s f), \sigma(-t - \frac{\epsilon}{2})W^*(\tau_t g) \rangle
\]

\[
= \langle W \sigma(-s - t - \epsilon)V(t_s f), \tau_t g \rangle
\]

\[
= \langle (\Gamma(t_{-s-t-\epsilon})(t_s f), \tau_t g \rangle
\]

\[
= m(s + t + \epsilon)\langle \theta_{s+t+\epsilon}(t_s f), \tau_t g \rangle
\]

\[
= m_\epsilon(s + t)\langle \epsilon^{-1/p} \chi_{(t,t+\epsilon)}, \epsilon^{-1/p'} \chi_{(t,t+\epsilon)} \rangle
\]

\[
= m_\epsilon(s + t),
\]
for all s, $t > 0$. Moreover, $\|\alpha_\epsilon(s)\| \leq \|V\|$ and $\|\beta_\epsilon(t)\| \leq \|W\|$ for all t, $s > 0$. Since α_ϵ and β_ϵ are continuous, this implies that $\alpha_\epsilon \in L^\infty(\mathbb{R}_+; E)$, $\beta_\epsilon \in L^\infty(\mathbb{R}_+; E^*)$ and $\|\alpha_\epsilon\|_\infty \|\beta_\epsilon\|_\infty \leq \|V\| \|W\| \leq 1$.

We now show that the SQ_p-space E can be replaced by an L^p-space in the above factorisation property of m_ϵ. Following Remark 2.3, assume that $E = E_1/E_2$, with $E_2 \subseteq E_1 \subseteq L^p(\Omega)$, and for all $f \in E_1$, let $\hat{f} \in E$ denote the class of f. Recall (5) and for all $g \in E_2^\perp$, let $\hat{g} \in E^*$ denote the class of g. Since E is a quotient of E_1, we have an isometric embedding $E^* \subseteq E_1^*$. More precisely,

$$E^* = \frac{E_2^\perp}{E_1^\perp} \hookrightarrow \frac{L^p(\Omega)}{E_1^\perp} = E_1^*.$$

This induces an isometric embedding

$$L^1(\mathbb{R}_+; E^*) \subseteq L^1(\mathbb{R}_+; E_1^*).$$

Since E^* and E_1^* are reflexive, we may apply the identifications

$$L^1(\mathbb{R}_+; E^*)^* \simeq L^\infty(\mathbb{R}_+; E) \quad \text{and} \quad L^1(\mathbb{R}_+; E_1^*)^* \simeq L^\infty(\mathbb{R}_+; E_1)$$

provided by (7). By the Hahn–Banach theorem, we deduce the existence of $\tilde{\alpha}_\epsilon \in L^\infty(\mathbb{R}_+; E_1)$ such that $\|\tilde{\alpha}_\epsilon\|_\infty = \|\alpha_\epsilon\|_\infty$ and the functional $L^1(\mathbb{R}_+; E_1^*) \to \mathbb{C}$ induced by $\tilde{\alpha}_\epsilon$ extends the functional $L^1(\mathbb{R}_+; E^*) \to \mathbb{C}$ induced by α_ϵ. It is easy to check that the latter means that $\tilde{\alpha}_\epsilon(s) = \alpha_\epsilon(s)$ almost everywhere on \mathbb{R}_+. Likewise, there exist $\tilde{\beta}_\epsilon \in L^\infty(\mathbb{R}_+; E_2^\perp)$ such that $\|\tilde{\beta}_\epsilon\|_\infty = \|\beta_\epsilon\|_\infty$ and $\tilde{\beta}_\epsilon(t) = \beta_\epsilon(t)$ almost everywhere on \mathbb{R}_+. Regard $\tilde{\alpha}_\epsilon$ as an element of $L^\infty(\mathbb{R}_+, L^p(\Omega))$ and $\tilde{\beta}_\epsilon$ as an element of $L^\infty(\mathbb{R}_+, L^p(\Omega'))$. By (6), we then have

$$\langle \alpha_\epsilon(s), \beta_\epsilon(t) \rangle_{E,E^*} = \langle \tilde{\alpha}_\epsilon(s), \tilde{\beta}_\epsilon(t) \rangle_{L^p, L^p'}$$

for almost every $(s, t) \in \mathbb{R}^2_+$.

We therefore obtain that $m_\epsilon : \mathbb{R}_+^2 \to \mathbb{C}$ satisfies condition (ii) of the theorem (with $C = 1$).

Define $\varphi : \mathbb{R}_+^2 \to \mathbb{C}$ by $\varphi(s, t) = m(s + t)$. Likewise, for any $\epsilon > 0$, define $\varphi_\epsilon : \mathbb{R}_+^2 \to \mathbb{C}$ by $\varphi_\epsilon(s, t) = m_\epsilon(s + t)$. Since m is continuous, the functions φ and φ_ϵ are continuous. It follows from above that for all $\epsilon > 0$, φ_ϵ satisfies condition (ii) in Theorem 2.5, with $C = 1$. The latter theorem therefore implies that the family $\{\varphi_\epsilon(s, t)\}_{(s, t) \in \mathbb{R}^2_+}$ is a bounded Schur multiplier on $B(\ell^p_\mathbb{R}_+)$, with norm less than one. Thus for all $[a_{ij}]_{1 \leq i, j \leq n}$ in M_n and for all $t_1, \ldots, t_n, s_1, \ldots, s_n$ in \mathbb{R}_+^*, we have $\|[\varphi_\epsilon(s, t) a_{ij}]\|_{B(\ell^p_\mathbb{R}_+)} \leq \|[a_{ij}]\|_{B(\ell^p_\mathbb{R}_+)}$. Since m is continuous, $\varphi_\epsilon \to \varphi$ pointwise when $\epsilon \to 0$. We deduce that φ satisfies (8) with $C = 1$ for all $[a_{ij}]_{1 \leq i, j \leq n}$ in M_n and all $t_1, \ldots, t_n, s_1, \ldots, s_n$ in \mathbb{R}_+^*. Consequently, the family $\{\varphi(s, t)\}_{(s, t) \in \mathbb{R}^2_+}$ is a bounded Schur multiplier on $B(\ell^p_\mathbb{R}_+)$, with norm less than one. Applying the implication $(i) \implies (ii)$ in Theorem 2.5, we deduce the assertion (ii) of Theorem 4.6.
Conversely, assume (ii). Following Lemma 2.4, let
\[\pi : B(L^p(\mathbb{R}_+)) \to B(L^p(\mathbb{R}_+ \times \Omega)) \]
be the \(p \)-completely isometric homomorphism defined by \(\pi(T) = T \otimes I_{L^p(\Omega)} \). This map is \(w^* \)-continuous. Indeed, let \((T_i) \) be a bounded net of \(B(L^p(\mathbb{R}_+)) \) converging to some \(T \in B(L^p(\mathbb{R}_+)) \) in the \(w^* \)-topology. For any \(f, g \in L^p(\mathbb{R}_+), \varphi \in L^p(\Omega) \) and \(\psi \in L^{p'}(\Omega) \), we have
\[
\langle \pi(T_i), (f \otimes \varphi) \otimes (g \otimes \psi) \rangle = \langle T_i f, g \rangle_{L^p(\mathbb{R}_+), L^{p'}(\mathbb{R}_+)} \langle \varphi, \psi \rangle_{L^p(\Omega), L^{p'}(\Omega)},
\]
where the duality pairing in the left-hand side refers to the identification
\[
(L^p(\mathbb{R}_+ \times \Omega) \otimes L^{p'}(\mathbb{R}_+ \times \Omega))^* \simeq B(L^p(\mathbb{R}_+ \times \Omega)).
\]
Since \(\langle T_i f, g \rangle \to \langle Tf, g \rangle \), we deduce that
\[
\langle \pi(T_i), (f \otimes \varphi) \otimes (g \otimes \psi) \rangle \to \langle \pi(T), (f \otimes \varphi) \otimes (g \otimes \psi) \rangle.
\]
Since \(L^p(\mathbb{R}_+) \otimes L^p(\Omega) \) and \(L^{p'}(\mathbb{R}_+) \otimes L^{p'}(\Omega) \) are dense in \(L^p(\mathbb{R}_+ \times \Omega) \) and \(L^{p'}(\mathbb{R}_+ \times \Omega) \), respectively, we deduce that \(\pi(T_i) \to \pi(T) \) in the \(w^* \)-topology, by Lemma 2.1. This proves that \(\pi \) is \(w^* \)-continuous.

Let \(V : L^p(\mathbb{R}_+) \to L^p(\mathbb{R}_+; L^p(\Omega)) \simeq L^p(\mathbb{R}_+ \times \Omega) \) be defined by
\[V(f) = f \alpha, \quad f \in L^p(\mathbb{R}_+). \]
This is a well-defined contraction. Likewise we define a contraction
\[W : L^p(\mathbb{R}_+ \times \Omega) \to L^p(\mathbb{R}_+) \]
by setting
\[W^*(g) = g \beta, \quad g \in L^{p'}(\mathbb{R}_+). \]
It follows from above and from the implication (ii) \(\Rightarrow \) (i) of Theorem 2.2 that the mapping
\[w : B(L^p(\mathbb{R}_+)) \to B(L^p(\mathbb{R}_+)), \quad w(T) = W \pi(T) V \]
is a \(w^* \)-continuous \(p \)-complete contraction.

We claim that for all \(u > 0 \), we have
\[
w(\theta_u) = m(u) \theta_u.
\]
To prove this, consider \(f \in L^p(\mathbb{R}_+) \) and \(g \in L^{p'}(\mathbb{R}_+) \). For all \(u > 0 \), we have
\[
\langle w(\theta_u)f, g \rangle = \langle \pi(\theta_u)V(f), W^*(g) \rangle = \langle \pi(\theta_u)(f \alpha), (g \beta) \rangle.
\]
By the definitions of \(\pi \) and \(\theta_u \), we have \(\pi(\theta_u)(f \alpha) = (f \alpha)(u \cdot \cdot) \). Consequently,
\[
\langle w(\theta_u)f, g \rangle = \int_0^u f(u - t) g(t) \alpha(u - t), \beta(t) \ dt, \quad u > 0.
\]

HANKEL OPERATORS ON \(L^p(\mathbb{R}_+) \)
Let $h \in L^1(\mathbb{R}_+)$ be an auxiliary function. Then using Fubini’s theorem and setting $s = u - t$ in due place, we obtain that
\[
\int_0^\infty \langle w(\theta_u) f, g \rangle h(u) \, du = \int_0^\infty \int_t^\infty h(u) f(u-t) g(t) \langle \alpha(u-t), \beta(t) \rangle \, dudt = \int_0^\infty \int_0^s h(s+t) f(s) g(t) \langle \alpha(s), \beta(t) \rangle \, dsdt.
\]
Applying the a.e. equality $m(s + t) = \langle \alpha(s), \beta(t) \rangle$ and reversing this computation, we deduce that
\[
\int_0^\infty \langle w(\theta_u) f, g \rangle h(u) \, du = \int_0^\infty m(u)(f * g)(u)h(u) \, du.
\]
Since h is arbitrary, this implies that $\langle w(\theta_u) f, g \rangle = m(u)(f * g)(u)$ for a.e. $u > 0$. Equivalently, $\langle w(\theta_u) f, g \rangle = m(u)\langle \theta_u f, g \rangle$ for a.e. $u > 0$. It is plain that $u \mapsto \theta_u$ is w^*-continuous on $B(L^p(\mathbb{R}_+))$. Since w is w^*-continuous, the function $u \mapsto \langle w(\theta_u) f, g \rangle$ is continuous as well. Since m is assumed continuous, we deduce that $\langle w(\theta_u) f, g \rangle = m(u)\langle \theta_u f, g \rangle$ for all $u > 0$. This yields (22), for all $u > 0$.

By part (1) of Theorem 4.1 and the w^*-continuity of w, the identity (22) implies that $\text{Hank}_p(\mathbb{R}_+)$ is an invariant subspace of w. Further the restriction of w to $\text{Hank}_p(\mathbb{R}_+)$ is the multiplier associated to m. The assertion (i) follows.

Remark 4.7. We proved in [Arnold et al. 2022, Theorem 3.1] that a continuous function $m : \mathbb{R}_+^* \to \mathbb{C}$ is the symbol of an S^1-bounded Fourier multiplier on $H^1(\mathbb{R})$, with S^1-bounded norm $\leq C$, if and only if there exist a Hilbert space \mathcal{H} and two functions $\alpha, \beta \in L^\infty(\mathbb{R}_+; \mathcal{H})$ such that $\|\alpha\|_{\infty}\|\beta\|_{\infty} \leq C$ and $m(s+t) = \langle \alpha(t), \beta(s) \rangle_{\mathcal{H}}$ for almost every $(s, t) \in \mathbb{R}_+^2$. It turns out that using (1), a mapping $S : H^1(\mathbb{R}) \to H^1(\mathbb{R})$ is an S^1-bounded Fourier multiplier with S^1-bounded norm $\leq C$ if and only if $S^* : \text{Hank}_2(\mathbb{R}_+) \to \text{Hank}_2(\mathbb{R}_+)$ is a completely bounded multiplier with completely bounded norm $\leq C$. See [Arnold et al. 2022, Remark 3.4] for more on this. Thus the statement in [Arnold et al. 2022, Theorem 3.1] is equivalent to the case $p = 2$ of Theorem 4.6. In this regard, Theorem 4.6 can be regarded as a p-analogue of [Arnold et al. 2022, Theorem 3.1].

Remark 4.8. Let $f \in L^p(\mathbb{R}_+)$ and $g \in L^{p'}(\mathbb{R}_+)$. For any $s, t > 0$, we may write
\[
(f * g)(s + t) = \int_\mathbb{R} f(s + r) g(t - r) \, dr.
\]
Equivalently,
\[
(f * g)(s + t) = \langle \tau_{-s} f, \tau_t \gamma \rangle_{L^p(\mathbb{R}_+), L^{p'}(\mathbb{R}_+)}.\]
According to the implication (ii) \implies (i) of Theorem 4.6 and Remark 4.4, $f * g$ is therefore a pointwise multiplier of $A_p(\mathbb{R}_+)$, with norm less than or equal to $\|f\|_p \|g\|_{p'}$. We deduce that every $F \in A_p(\mathbb{R}_+)$ is a pointwise multiplier of $A_p(\mathbb{R}_+)$, with norm less than or equal to $\|F\|_{A_p}$. This means that $A_p(\mathbb{R}_+)$ is a Banach algebra for the pointwise product.
Acknowledgements

Le Merdy was supported by the ANR project *Noncommutative analysis on groups and quantum groups* (No. ANR-19-CE40-0002). Zadeh was supported by Projet I-SITE MultiStructure *Harmonic Analysis of noncommutative Fourier and Schur multipliers over operator spaces*. The authors gratefully thank the Heilbronn Institute for Mathematical Research and the UKRI/EPSRC Additional Funding Program for Mathematical Sciences for the financial support through Heilbronn Grant R102688-101.

References

Received February 3, 2023.

LORIS ARNOLD
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
WARSAW
POLAND
larnold@impan.pl

CHRISTIAN LE MERDY
LABORATOIRE DE MATHEMATIQUES DE BESANÇON, UMR CNRS 6623
UNIVERSITÉ DE FRANCHE-COMTÉ
BESANÇON
FRANCE
clemery@univ-fcomte.fr

SAFOURA ZADEH
LABORATOIRE DE MATHEMATIQUES BLAISE PASCAL, UMR 6620
UNIVERSITÉ CLERMONT AUVERGNE
FRANCE
and
SCHOOL OF MATHEMATICS
UNIVERSITY OF BRISTOL
BRISTOL
UNITED KINGDOM
and
INSTITUT DES HAUTES ÉTUDES SCIENTIFIQUES
BURES-SUR-YVETTE
FRANCE
jsafoora@gmail.com
Hankel operators on $L^p(\mathbb{R}_+)$ and their p-completely bounded multipliers

Loris Arnold, Christian Le Merdy and Safoura Zadeh

Stable functorial equivalence of blocks

Serge Bouc and Deniz Yılmaz

Lorentz–Shimogaki and Arazy–Cwikel theorems revisited

Léonard Cadilhac, Fedor Sukochev and Dmitriy Zanin

Finite axiomatizability of the rank and the dimension of a pro-π group

Martina Conte and Benjamin Klopsch

Elliptic genus and string cobordism at dimension 24

Fei Han and Ruizhi Huang

The domination monoid in henselian valued fields

Martin Hils and Rosario Mennuni

Inverse semigroup from metrics on doubles, III: Commutativity and (in)finiteness of idempotents

Vladimir Manuilov

The number of \mathbb{F}_q-points on diagonal hypersurfaces with monomial deformation

Dermot McCarthy

Deformation of pairs and semiregularity

Takeo Nishinou