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By using the space L of finitely supported functions as a left endpoint on the
interpolation scale of L ,-spaces, we present a new approach to the Lorentz—
Shimogaki and Arazy—Cwikel theorems which covers the whole range of
P, q € (0, oo]. In particular, we show thatfor0 < p <q <r <s < o0,

Int(L,, L,) =Int(L,, L,) NInt(L,, L)

if the underlying space is (0, a), o € (0, oc] equipped with the Lebesgue
measure. As a byproduct of our result, we solve a conjecture of Levitina,
Sukochev and Zanin (2020).

1. Introduction

Descriptions of interpolation spaces for couples of L ,-spaces for 1 < p < oo were
extensively researched from the 1960s to the 80s, providing satisfying answers to
most problems that were considered relevant at the time.

However, new questions arising from noncommutative analysis recently high-
lighted some gaps in our knowledge of this subject, especially for the case of p < 1
of quasi-Banach spaces. In this paper, we revisit some important results of the
literature [1; 21; 27], generalizing them and thus filling some of the holes that
were revealed in the theory. In particular, we answer a question asked by Levitina,
Sukochev and Zanin in [20] and already partially studied in [11] regarding the
interpolation theory of sequence spaces (see Theorem 1.2). Besides this new result,
this paper introduces a general approach that covers the range of all 0 < p < oo
and is self-contained. It emphasizes the use of the space L of all finitely supported
measurable functions. As far as the authors know this space rarely appears in
interpolation theory (however, see [2; 16; 24] and [15]). We provide evidence that
Ly is a suitable “left endpoint” on the interpolation scale of L ,-spaces, despite its
possessing an atypical structure, that of a normed abelian group.

A function space E is an interpolation space for the couple (L, L) if any linear
operator 7" bounded on L, and L, is also bounded on E (see Definition 2.4). This
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notion provides a way of transferring inequalities well known in L ,-spaces to more
exotic ones. To both understand the range of applicability of this technique and be
able to check whether it applies to a given function space E, we are interested in
simple descriptions of interpolation spaces for the couple (L, L;).

This problem has a long history starting with the Calder6n—Mityagin theorem
(see [9; 22]) on the couple (L, L) and followed by Lorentz and Shimogaki’s [21]
results on the couples (L1, L,) and (L, Lo) with 1 < p, g < co. A remarkable
result of Arazy and Cwikel then states that a space E is an interpolation space for
the couple (L), L;), 1 < p < g < oo if and only if it is an interpolation space for
the couples (L1, Ly) and (L), L).

Describing interpolation spaces often comes down to understanding certain
orders. In fact, at a very fundamental level, being an interpolation space can be
understood as a monotonicity property. Indeed, given two compatible quasi-Banach
spaces A, B, denote by C(A, B) the set of operators A + B — A + B that restrict
to contractions on A and B. Consider the following order on A + B:

f<pq8 3T €C(A,B), T(=F

With this definition in mind, E is an interpolation space for the couple (A, B) if
and only if

VfeENVgeL,+L,, g8=<,4f=8¢€kE.

In fact, the fundamental theorem of Calderén and Mityagin precisely describes the
order <y, 1. (from now on denoted by <<pq). It states that for f, g € L1 + Lo,

t t
§=<=<nd f < &=L [ V>0, /M(S,g)dssfu(s, f)ds,
0 0

where 1 (g) :t — u(t, g) denotes the right-continuous decreasing rearrangement of g.
We will call this order head majorization. Moreover, if f, g € Ly and || f|l1 = llgll1,
then we write g <<pq f. Variants of this order allow to describe interpolation spaces
for any couple (L), L), p € (0, 00) (see [21] for the Banach range and [8] for
p<1.

Another phenomenon, this time specific to the study of interpolation theory of
L ,-spaces, is that to guarantee that a space E is an interpolation space for the
couple (L, L;), p < g it is natural to impose two conditions: one which will
impose that E is “on the right of L,” and one that will impose that E is “on the
left of L,”. An example of such a result is the above-mentioned Arazy—Cwikel
theorem but one can think also of convexity/concavity conditions or Boyd indices
(see [18] for an overview and [8, Theorem 1.4]).
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In this spirit, the natural counterpart of head majorization is tail majorization
defined on Lo+ L by

o0 o0
g <<u f & Vi >0, /M(s,g)dSS/ (s, ) ds.
t t

We’ll show later that this order is in fact equivalent to <r, 1,. Moreover, if f, g€ L
and | fl1 = |lgll1, then we write g <y f. Remark that g <q f if and only if f <pq g.
Note that tail majorization coincides with the weak supermajorization of [13].

Let us now state our main theorem. Let X’ be the linear space of all measurable
functions. If not specified otherwise, the underlying measure space we are working
on is (0, oo) equipped with the Lebesgue measure m. We obtain:

Theorem 1.1. Let E C X be a quasi-Banach function space (a priori, not necessar-
ily symmetric). Let p, q € (0, 00) such that p < q. Then:

(a) E is an interpolation space for the couple (L, L) if and only if there exists
¢p,E > 0 such that forany f € E and g € L, + Lo,

1g1? <<na | fIP=>g€E and |glg<cpelflle-

(b) E is an interpolation space for the couple (Lo, Ly) if and only if there exists
¢q,E > 0 such that for any f € E and g € Lo+ L,

gl" <<ulfl"=g€E and |iglle <cqelflE.

(c) E is an interpolation space for the couples (Lo, Ly) and (L, L) if and only
if it is an interpolation space for the couple (L, Lg).

This extends the results of Lorentz—Shimogaki and Arazy—Cwikel to the quasi-
Banach setting and contributes to the two first questions asked by Arazy in [12,
p. 232] in the particular case of L ,-spaces for 0 < p < 0o. As mentioned before,
our approach places L as a left endpoint on the interpolation scale of L ,-spaces,
in sharp contrast to earlier results which focused mostly on Banach spaces and had
L playing this part. An advantage of our approach is that it naturally encompasses
every symmetric quasi-Banach space since they are all interpolation spaces for the
couple (Lo, Loo) (see [2; 16]). On the contrary, there exist some symmetric Banach
spaces which are not interpolation spaces for the couple (L1, L) (see [26]). This
led to some difficulties which were customarily circumvented with the help of
various technical conditions such as the Fatou property (as appears, e.g., in [4]).

Compared to [8] where the first author investigates similar characterizations, the
novelty of this theorem is statement (b) that deals with the space Ly. A deeper
advantage of our new approach is that it no longer relies on Sparr’s K -monotonicity
result [27] for couples of L ,-spaces which was instrumental in [8].

Indeed, our strategy in this paper is different from the techniques used in [1; 2;
3; 4; 8; 9; 10; 11; 12; 16; 18; 21; 22; 27] and is based on partition lemmas,
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which were originally developed in a deep paper due to Braverman and Mekler [7]
devoted to the study of the symmetric Banach function spaces E such that the set
{f € E: f <<nq g} coincides with the closure of the convex hull of its extreme
points.

The approach of Braverman and Mekler was subsequently revised and redevel-
oped in [28] and precisely this revision constitutes the core of our approach in this
paper.

We restate partition lemmas based on [28, Proposition 19] in Section 4. These
lemmas allow us to restrict head and tail majorizations to very simple situations
and reduce the problem to functions taking at most two values. Then, we deduce
interpolation results from those structural lemmas.

Note that this scheme of proof is quite direct and in particular, does not involve
at any point duality related arguments which apply only to Banach spaces [21] or
more generally to L-convex quasi-Banach spaces [17; 25].

In Section 6, we pursue the same type of investigation, but in the setting of
sequence spaces. The nondiffuse aspect of the underlying measure generates
substantial technical difficulties. In particular, we require a new partition lemma
which is not as efficient as those in Section 4 (compare Lemmas 6.2 and 4.6). This
deficiency has been first pointed out to the authors by Cwikel. However, we are still
able to resolve the conjecture of [20] (in the affirmative) by combining Lemma 6.1
with a Boyd-type argument which we borrow from Montgomery and Smith [23].
In particular, we substantially strengthen the results in [11]. Here is the precise
statement:

Theorem 1.2. Let E C £ be a quasi-Banach sequence space and q > 1. The
following conditions are equivalent:

(a) There exists p < q such that E is an interpolation space for the couple (€7, £9).

(b) There exists ¢ > 0 such that for any u € E and v € {,
V! << lul =veE and |vlg=<clule.
(c) Foranyu € E and v € £,
[v|? <<glul! =>vekE.

In this section, we freely use results of Cwikel [10] and Cadilhac [8] to avoid
repeating too many similar arguments.

Note that Theorem 1.2 was since proved independently in [S] where a deeper
analysis of the interpolation scale of sequence spaces £,,, 0 < p < oo is presented.
In particular, it is shown in [5] that for any 0 < p < g < 0o, E is an interpolation
space for (£, £,) if and only if it is an interpolation space for (£o, £,) and (£, £~),
thus providing a counterpart to our main theorem in the sequence setting.
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2. Preliminaries

Interpolation spaces. The reader is referred to [6] for more details on interpolation
theory and to [19] for an introduction to symmetric spaces. In the remainder of this
section, p and g will denote two nonnegative reals such that p <gq.

Let (2, m) be any measure space (in particular the following definitions apply
to N equipped with the counting measure, i.e., sequence spaces). As previously
mentioned, Lo(£2) C X (£2) denotes the set of functions whose supports have finite
measures, it is naturally equipped with the group norm

Ilfllo=m(supp f), f € Lo($2).
The “norm” of a linear operator 7T : Lo(S2) — Lo(£2), is defined as
m(supp(Tf))
1T gy = SUP i 22
feL, m(supp(f))
Definition 2.1. A linear space E C X' (2) becomes a quasi-Banach function space
when equipped with a complete quasinorm || - || g such that:
o If fe Eand g € X(2) are such that |g| < |f]|,then g € E and ||gllg < | fllE.
Definition 2.2. A quasi-Banach function space £ C X (€2) is called symmetric if
e feFEandge X(2) are such that u(f)=u(g),thenge E and || g|le = | fllE.

Definition 2.3 (bounded operator on a couple of quasi-Banach function spaces).
Let X and Y be quasi-Banach function spaces. We say that a linear operator 7T is
bounded on (X, Y) if T is defined from X + Y to X + Y and restricts to a bounded
operator from X to X and from Y to Y. Set

1Tl x.v)—x.v) =max(|T | x—x, I T ly—>vy)-
Let us recall the precise abstract definition of an interpolation space (see [6; 19]).

Definition 2.4 (interpolation space between function spaces). Let X, Y and Z
be either quasi-Banach function spaces on 2 or Lo(f2). We say that Z is an
interpolation space for the couple (X, Y) if XNY C Z C X 4+ Y and any bounded
operator on (X, Y) restricts to a bounded operator on Z. Denote by Int(X, Y) the
set of interpolation spaces for the couple (X, Y).

For quasi-Banach spaces, the above definition is equivalent to a seemingly
stronger quantitative property.

Proposition 2.5. Let X, Y, Z be quasi-Banach function spaces. If Z is an interpo-
lation space for the couple (X, Y), then there exists a constant c(X, Y, Z) > 0 such
that for any bounded operator T on (X, Y),

ITz-7z <c(X, Y, Z)-IT |l (x,v)—x.,v)-
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The best possible value of c(X, Y, Z) is called interpolation constant of Z with
respect to the couple (X, Y).

Proof. In [19, Lemma 1.4.3], the assertion is proved for Banach spaces. The
argument for quasi-Banach spaces is identical (because it relies on the closed graph
theorem, which holds for F-spaces, and hence for quasi-Banach spaces). (I

K-functional and E-functional. In the remainder of the subsection, X, Y and Z
will denote function spaces which are either quasi-Banach, or L.

Definition 2.6. Let f € X 4+ Y and 7 > 0. Define

K.(f,X,Y):= inf |lgllx +z|hlly and E,(f, X,Y):= inf |f—glly.
gt+h=f lgllx=<t

These two notions are closely related to one another (see [24]) and the K-
functional in particular plays a major role in the study of general interpolation
spaces. Note that

t o0

K,<f,L1,Loo>=f0u<s,f)ds and Et<f,Lo,L1>=/ w(s. f)ds.

t
Thus the head and tail majorizations we consider can be in fact expressed in terms
of K and E functionals. We say that Z is K-monotone with respect to the couple
X, )YifXnyYycZcX+Yandforany feZ, geX+Y,

Vt>0, K[(g’XaY)SKI(f’X,Y):gEZ

Similarly, Z is E-monotone with respect to the couple (X, Y)if XNY CZC X+Y
and forany feZ, ge X+7Y,

Vt>07 Et(g,X,Y)SEt(f,X,Y):gGZ«

Remark 2.7. It is clear from the definitions that if Z is either E-monotone or
K -monotone for the couple (X, Y) then Z is an interpolation space for (X, Y).

Symmetry of interpolation spaces. In this subsection, we show that a quasi-Banach
interpolation space for a couple of symmetric spaces can always be renormed into
a symmetric space. Note that similar results can be found in the literature, see, for
example, [19, Theorem 2.1].

As usual, we will use the term measure preserving for a measurable map w
between measure spaces (€21, Ay, m1) and (£2;, Ay, my) verifying,

VA e A, w(A)e Ay and my(w(A)) =m(A).

Lemma 2.8. Assume that Q2 is (0, 1), (0, 00) or N. Let 0< f, g € Lo(R2) + Lo (R2)
and let ¢ > 0. Assume that u(f) = u(g). There exists a measure preserving map

w : supp(g) — supp(f) such that (1+¢)(f ow) > g.
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Proof. Case 1. Suppose first that u(oo, f) = (oo, g) =0.
Define, for any n € Z,

Fo={t:(1+&)"<f()y<(1+e)""), G,={t:(1+e)"<g<+e)"}.

By assumption, m(F,) = m(G,) forevery n € Z. Let w, : G,, — F,, be an arbitrary
measure preserving bijection.

Define the measure preserving map o : supp(g) — supp(f) by concatenating
w,:G, —~> F,, neZ. Forevery t € G,, we have

flo@)=0+e)", g<d+e)"
Thus,
(I4+¢) f(w(t))>g, tesupp(g).

This completes the proof of Case 1.

Case 2. Let 8 such that (1+8)%2 = (1+¢). Let a = u(oo, f) = u(oo, g) > 0.
Define, for any n > 1,

Fo={t:a(148)" < f(t) <a(1+8)"""}, G,={t:a(1+8)" <g<a(1+8)"™"
and
Fo={t:(1+8)la<f(t)y<(1+8)a}, Go={r:0<g=<+8)a).

By assumption, for any n > 1, m(G,) = m(F,) and m(Go) = m(Fy) = 0o. For
any n > 0, choose a measure preserving bijection w, from G, to F),.

Define the measure preserving map o : supp(g) — supp(f) by concatenating
the w,,’s. For any n > 0 and any ¢t € G,

flo@®)=ad+8)"", g<a(l+8)"".
Thus,
(1+8)2f(w®) =(1+e) f(w(t)>g, tesupp(g). 0

Lemma 2.9. Assume that Q2 is (0, 1), (0,00) or N. Let E, A, B C (Lo 4+ L) (2)
be quasi-Banach function spaces. Assume that A and B are symmetric and that
E is an interpolation space for the couple (A, B). Then E admits an equivalent
symmetric quasinorm.

Proof. Let f € E and g € Lo+ Loo. Assume that ;(g) < u(f). By Lemma 2.8,
there exists a map w : supp(g) — supp(f) such that for any ¢ € supp(g),

2[fow(t)| = |g(@)].
Define, for any & € X (2),
g

T(h) := { Jow
0, elsewhere.

how on supp(g),
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Since w is measure preserving, T is bounded on A and B of norm less than 2. Let
cg be the interpolation constant of E for the couple (A, B) (as in Proposition 2.5).
We know that Tf = g € E and

2-1 gl <2cell f1.

Define, for any f € E,

Ifller= inf igllE.
U n(@=pn(f) §

By 2-D, [l fller = 1 flle = 2cell fllgr and (E, || - [|g7) is a symmetric space. [

Remark 2.10. It is not difficult to see that if the underlying measure space 2
contains both a continuous part and atoms, then Lemma 2.9 is no longer true for
A=L,(Q), B=L,(2) and p < 1. However, one can observe that if A and B are
Sfully symmetric (i.e., interpolation spaces between L1(2) and L, (£2)), Lemma 2.9
remains valid for any . This is reminiscent of the conditions required in [27,
Section 4].

3. Interpolation for the couple (L, L,)

In this section, €2 = (0, co) (for brevity, we omit €2 in the notations). We investigate
some basic properties of the interpolation couple (Lo, L,). First, we provide a
statement analogous to Proposition 2.5 and applicable to L.

Since the closed graph theorem does not apply to Lg (it is not an F-space),
our proof uses concrete constructions that rely on the structure of the underlying
measure space.

For any f € &, denote by My the multiplication operator g — f - g.

Theorem 3.1. Let E be a quasi-Banach function space and q € (0, co]. Assume that
E is an interpolation space for the couple (Lg, Ly). Then, there exists a constant ¢
such that for any contraction T on (Lo, Ly), T |E-E < c.

Proof. Let (A),>1 be a partition of (0, co) such that m(A,) = oo for every n > 1.
Let y, : A, — A}, be a measure preserving bijective transform. Set

x(y,7l @), teAS,
0, teA,.

x(Yu(0), te€A,,

(Unx)(1) = {0’ feAc,

(Vax)(t) = {
Obviously, U, and V), are bounded operators on the couple (Lo, Ly). By assumption,
U,,V,: E— E are bounded mappings.
Note that
ViUpy=My,, n=1l.
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Let us argue by contradiction. For any n > 1, choose an operator 7,, which is a
contraction on (Lo, L,) and such that

(3-D I Tollgse = 4" -max{|Unllg—g, | Valle— £, 1}%
It is immediate that
Ty = My, To My, + My, Tu My, + My, Ty My, + My, Ty My,

= Tl,n + Vn T2,n + T3,n Un + Vn T4,n Una
where

Tl,n=MXAnTn MXAn’ T2,n=UnTn MXA,,’ T3,n=MXAnTnan T4,n=UnTnVn-

By quasitriangle inequality, we have

4
ITlle—E < CF - <Z ||Tk,n||E—>E> -max{[|Unllg— £+ IVallg— £ 1)
k=1

Let k, € {1, 2, 3, 4} be such that
1Tk, nllE—E = max [Ty nllg—E.
1<k<4

We, therefore, have

(3-2) IThllE-E < 4C1%;||Tk,,,n”E—>E -max{||U,|le>E, ||Vn||E—>E-1}2-

Set S, = Tk, ». Note that ||S,|L,—1, <1 and 1SnllL,—L, < 1. A combination
of (3-1) and (3-2) yields

—1 -2
ISillemg >4"1CR% n>1.

Note that S, = My, S, My, . Set
S=> S,
n>1

Since the S,,’s are in direct sum, we have
ISIlzo—Lo =supllSully—r, <1 and |Sll,—z, =suplSullL,~r, < 1.

n>1 n>1

Moreover, E is an interpolation space for the couple (Lo, L), it follows that
S : E — E is bounded.

For any n > 1, choose f,, € E such that || f,||g < 1 and || S, fullE > 4n=2 CEZ.
Recall that S, = S, M, . Hence, we may assume without loss of generality that
fn 1s supported on A,,. Thus, S(f,) = S, (f,) and

IS E = I1Sa(f)lle =472 CL2

This contradicts the boundedness of S. O
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Remark 3.2. Theorem 3.1 above remains true for other underlying measure spaces:

e For sequence spaces. Indeed, in the proof of Theorem 3.1, we only use properties
of the underlying measure space in the first sentence, namely when we consider a
partition of (0, co) into countably many sets, each of them isomorphic to (0, co).
Since a partition satisfying the same property exists for Z, Theorem 3.1 remains
true for interpolation spaces between £ and £,,.

e For (0, 1). The same general idea applies in this case but some modifications
have to be made because the maps y, introduced in the proof cannot be assumed to
be measure-preserving. The details are left to the reader.

Lemma 3.3. Let E, Y C Lo+ L be quasi-Banach function spaces. Assume that
Y is symmetric and that E is an interpolation space for the couple (Lo, Y). Then E
admits an equivalent symmetric quasinorm.

Proof. The argument follows that in Lemma 2.9 mutatis mutandi. ]

The following assertion is a special case of Theorem 1.1 and an important
ingredient in the proof of the latter theorem.

Corollary 3.4. Let X be a quasi-Banach function space and q € (0, 00). Assume
that LoN Ly, C X C Lo+ Ly and that for any f € E and g € Lo+ Ly,
gl" <=<a|fl" = g € E.

Then E is an interpolation space for the couple (Lo, Lg).

Proof. It is clear that the condition on X is equivalent to E-monotonicity with
respect to the couple (Lo, L,) so by Remark 2.7, E is an interpolation space for
the couple (Lo, Ly). O

Corollary 3.4 applies in particular to L ,-spaces, p < g. We decided to add a
more precise statement and to provide a direct proof of the latter.

Corollary 3.5. Let p, q € (0, 00) such that p < q. Then, L, is an interpolation
space for the couple (Lo, Ly). More precisely, if T is a contraction on (Lo, L),
then T is a contraction on L.

Proof. Let us first consider characteristic functions. Let E be a set with finite
measure. Since 7 is a contraction on Lg, the measure of the support of 7'(xg) is
less than m(E). So by Holder’s inequality, setting r = (p~!

IT e < 1T (xe)llg -m(E)Y" < llxely -m(E)Y" = xell -

First, consider the case p < 1. Let f € L, be a step function, i.e.,

f=zaiXE,-,

ieN

— ¢~ H7!, we have
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where a; € C and the sets E; are disjoint sets with finite measure. By the p-triangular
inequality we write

ITAIL <D Mail P IT eIl < Y lail” llxe, 15 = 1 £115
ieN ieN
Since T : L, — L is bounded by Corollary 3.4 and since step functions are dense
in L, it follows that T : L, — L, is a contraction (for p < 1).
Now consider the case p > 1. Since p < g, it follows that ¢ > 1. By the preceding
paragraph, T : L1 — L is a contraction. By complex interpolation, 7 : L, — L,
is also contraction. (]

4. Construction of contractions on (Lg, L) and (L, L)

Let p, g € (0, 00). In this section, we are interested in the following question. Given
functions f and g in Lo+ L, (resp. L, + L), does there exist a bicontraction 7
on (Lo, Ly) (resp. (L, L)) such that T'(f) = g? We show that such an operator
exists provided that |g|? <<q | f|? (resp. |g|” <<ngq | f|P. This directly implies a
necessary condition for a symmetric space to be an interpolation space for the
couple (Lo, L) (resp. (L, L)) which will be exploited in the next section.

Our method of proof is very direct. We construct the bicontraction 7 as direct
sums of very simple operators. This is made possible by two partition lemmas that
enable us to understand the orders <<y and <<pg as direct sums of simple situations.

Partition lemmas. We state our first lemma without proof since it essentially repeats
that of Proposition 19 in [28].

Lemma 4.1. Let f, g € L, be positive decreasing step functions. Assume that
g <nd f. There exists a sequence of intervals {1y, Ji}x>0 of (0, 00) such that:

(1) Forevery k >0, I and Jy are disjoint intervals of finite length.

(i) (LUJ)NUT) =3 fork #1L.
(iii) f and g are constant on Iy and on Jy.

(v) glrug <nd fliug, for every k > 0.

(v) g < f on the complement of Ukzo Iy U Ji.
If furthermore f, g € L1 and g <nq f then f = g on the complement of UkzO Iy U Jg.

Scholium 4.2. Let f, g € X be positive decreasing functions. Let A C (0, 00) be
an arbitrary measurable set.

(1) If f, g € L1+ L are such that

/ g=< / f, t>0,
[0,1NA [0,£]NA

then g xa <<nd f Xa-
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(i) If f, g € Lo+ L are such that

/ g = / fi >0,
(t,00)NA (t,00)NA

then g xa <<u f Xa.

The second partition lemma deals with describing the order <<y in terms of <y
and <.

Lemma 4.3. Let f, g€ Lo+ Ly be such that f = u(f), g =n(g) and g <<u f.
There exists a collection {Ay}x>o of pairwise disjoint sets such that:

(i) fla, <nd &la, forevery k > 0.
(i) g < f on the complement of | J;~q Ax-

Proof. Consider the set {g > f}. Similarly to the previous proof, connected
components of the set {g > f} are intervals (closed or not) not reduced to points.
Let us enumerate these intervals as (ay, by), k > 0.

We have ~ ~ ~
f(f—g)+—/ (f—g>_=f (f—g) >0.
t t t

H(r>=sup{u:/ (f—g)+=/ <f—g>_}.
u t

Obviously, H is a monotone function, H (¢) >t for all > 0 and

Let

(f—g)+=/ (f—9)-.

H(@)

Ay = (ax, bi) U ((H (ax), H(br) N {g < f})-

Set

Note that

; (f—g)+=/ (f—g)+2/ (f—9-

and therefore, H (ay) > by.

We claim that Ay N A; = & for k # [. Indeed, let ay < by < a; < b;. We have
H(ay) < H(by) < H(a;) < H(by). Thus, (H(ax), H (b)) N (H(a;), H(b))) = .
We now have

ANA = ((AN{f <ghN(AIN{Sf <gh)U((Arn{f = ghn(AN{f = g}).
Obviously,

(AN {f <ghNAN{f < g} = (ar, bp) N (ar, b)) = 2,
(AN{f zghN(AN{f =g} = (H(ax), H(bx)N(H (ar), HO)Nf =g} =2.

This proves the claim.
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We now claim that

/ (f—8 =0.
(t,00)NAg

If t > by, then taking into account that H (ax) > by, we infer that
(t,o0)NAyC{f =g}

and the claim follows immediately. If ¢ € (ag, by), then

bi
/ <f—g>=/ Fege— [ (f-g)-
(t,00)NAg (H (ay),H (by)) t

by
z/ F-i— [ (f-9_=0.
(H

(ar), H (by)) a

This proves the claim.
It follows from the claim and Scholium 4.2 that gxa, <<ua f xa,. Since

/ g=1 f
Ay Ay

it follows that gxa, <ua f xa,, which immediately implies the first assertion.
By construction, (ay, by) C Ag. Thus,

{g> f1=J@ b0 c | J A

k>0 k>0

The second assertion is now obvious. O

Construction of operators. We repeat the same structure as in the previous subsec-
tion, proving four lemmas, each one dealing with a certain order: <pnq, <, <<hd,
and finally <<g.

Lemma 4.4. Let p € (0,00). Let f, g € L,(0, 00), assume that |g|" <na | f1?,
f=u(f)and g = u(g). There exists a linear operator T : X (0, co) — X (0, c0)
such that g =T (f) and

TN, —r, <2377, ITlpuosr, <2-2Y7.

Proof. Step 1. First, let us assume that f and g are step functions.
Apply Lemma 4.1 to the functions f? and g” and let /; and J; be asin Lemma 4.1.
Without loss of generality, the interval /; is located to the left of the interval J.
For every k > 0, let’s define the mapping Sy : X(Iy U Jy) — X (I U Jy) as
below. The construction of this mapping will depend on whether f7|; < % gl

1
or fp|fk > jgplfk-
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If £P], < 58”1y, then
gl -m(Ji) < gPly -m(I) + gy - m(Ji)
= Py -m) + Py -m) < Pl -mU) + 58715 - m(J).
Therefore,
gl -m(J) <2fP(y -m(Iy).
Let [; be a linear bijection from J; to I;. We set

8 | I I
. xX
f|1k fl Ix
Clearly, Sy is a contraction in the uniform norm.
Let x € L,. We have

Skx = “(xoly) xy.-

1Siel? < Bz + 80 oty e
k p_fplk X[A fpl k XJ/( p
8’11 &Pl m(Jy)
< 80 gy + £ T p < 3.
Ian 7l mo

Also, we have
1Sk Xlloo < lIXloo-

If fPl;, > %81y, then we set Sy = M1, Clearly, [|Skxlloo < 27 Ix]loo
and || S x|, < 2V/7||x]l,.
We define S : X — X by

s=EPsi.

k>0

Remark that || S|, = sup;~¢llSklL,—r, for any r € [0, co]. Hence,
ISz, —z, <37, ISlLuors <27

It remains only to note that Sf = g.

Step 2. Now, only assume that f and g are positive and nonincreasing. Define, for
any n € Z,

a, = sup{t € (0, 00) : f(r) >2"?} and b, =sup{t € (0, 0) : g(t) > 2"/?}.
Let A be the o -algebra generated by the intervals (a,, a,+1) and (b, b,+1). Define
fO=Ef" | Al and gl =E[g”| Al

Note that fy and g¢ are step functions such that

g <na f. 27V f < fo<2Y2f and 27'?g <gy<2'?.
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Apply Step 1 to f and go to obtain an operator S and set

T=M 1oSoMgOg71.

Ifo
Clearly, Tf = g and

ITlz,—z, <2080,>2, <2-2Y7, T lorn <2080z, <2227, O

Lemma 4.5. Let f, g € L,(0, 00) be positive nonincreasing functions such that
g9 <y f9. Let d > 1. There exists a linear operator T : X (0, 00) — X (0, 00) such
that g = T(f) and

1Tl g0 <4 1T N1,—r, <2-3'4.

Proof. Following Step 2 of Lemma 4.4, we are reduced to dealing with step
functions.

Apply Lemma 4.1 to the functions g7 and f7 and let (I )r>1 and (Jx)x>1 be as
in Lemma 4.1. Without loss of generality, the intervals I is located to the left of
the intervals Ji.

Let £ > 1. Define the mappings Sy : X (Iy U Jr) — X (I U Ji) as below.

Note that since 9|70z <nd &7|1,u7,, We have

g|1k 2f|1k 2f|.]k Zg|.]k-

The construction of S will depend on whether we have || f x4 < Il f x4 or

Ifxnllg > 1Lf xallg-
N fxullg = I1f xallg, then m(ly) < m(Ji) and

goln -my) <2f9 5, -m(Jy).

Let [ : Iy — Ji be a linear bijection. We set

gls g
C(xoly) xi, + =X X,

S, x =
T f

Let x € L,. We have

m(Iy)
1Sk xllo < lxxsllo+ I1(xolk) xpllo < |1+ llx1lo-
m(Jx)

Thus, | SkllL,—L, < 2. We have

g, g1y,
1Sk x|l = l(x o li) xr Z+ lx x s IZ
1 fq|Jk d fq|Jk +le
g, m(Iy) g1y
<=k Al 4 ===l < 3
[y, m(Jy) [y,

If | fxnllg > I1.f x5 llg» then
gl -m(Iy) <2f;, -m(Ix)
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and therefore, gg < 21/4 fo- We now set Sy = Mgyp-1. Obviously, || Skllzg—r, <1
and ||S¢lz, 1z, <279,
We set

S:@Sk.

Since S : X(0, 0o) — X(0, 00) is defined as a direct sum:

1
1Sl Lo—1Lo = iull)“Sk||Lo—>Lo <2, |ISllL,»L, = iull)”Sk”Lq—)Lq <3,
> >

it remains only to note that Sf = g. ([

Lemma 4.6. Let f, g € (L, + Loo)(0, 00) be such that |g|P <=<na | f17, f = n(f)
and g = u(g). There exists a linear operator T : X — X such that g =T (f) and

TN, >, <237, ITlpoor, <2-2"7.

Proof. Let (Ay)x>o0 be as in Lemma 4.1 and let A, be the complement of Ukzo Ak.
By Lemma 4.4, there exists Ty : X' (Ax) — X (Ay) such that T (f) = g on Ay and

ITellz, o020 <297, 1Tkl Lo ()= Loo (i) < 2477
Set Too = Mgy r on X (Ax). We now set

T = Tm@(@ Tk).

k>0
Obviously, Tf = g on (0, co) and

”T”Lp_’Lp = 2'91/[7» 1T Lo Loy < 2.44/p, O

Lemma 4.7. Let f, g € (Lo + Ly)(0, 00) be such that |g|? << | f19, f = n(f)
and g = u(g). There exists a linear operator T : X — X such that g =T (f) and

1Tl g0 <4 T N1,—r, <234

Proof. Without loss of generality, g = u(g) and f = u(f). Let (Ag)r>0 be as in
Lemma 4.3 and let Ay be the complement of ( ;.o Ax. By Lemma 4.5, there
exists Ty : X(Ayr) — X (Ayp) such that T (f) = g on Ay and

1Tl Lot Loty <8 ITkll Ly ey ) <294
Set Too = Mgy r on X (Ax). We now set

T = Tm@(@ Tk).

k>0
Obviously, Tf = g on (0, co) and

ITlysro <4 1T NL,—r, <2-3'4. 0
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5. Interpolation spaces for the couple (L,, L,)

In this section, we obtain characterizations of interpolation spaces for the couple
(Lp, Lg), in terms of the majorization notions studied earlier. The necessity of the
condition we consider is a direct consequence of the constructions explained in the
previous section.

Theorem 5.1. Let 0 < p < g < 0. Let E be a quasi-Banach function space such
that E € Int(L ,, Ly). There exist ¢, g and cq g in R.q such that:

(i) Suppose p #0. Forany f € Eand g € L, + L if |g|P <<nd|f|’, then g € E
and ||glle < cp.ell flE-

(ii) Suppose q # oo. Forany f € Eand g € Lo+ Ly if |89 <<u | f|?, then g € E
and ||gllg < cq eIl fllE-

Proof. By Lemma 2.9 (for p > 0) or Lemma 3.3 (for p = 0), we may assume

without loss of generality that E is a symmetric function space.

Assume that p #0. Let f € E and let g € L, + L be such that |g|? <<pq | f]”.

Since E is symmetric, we may assume without loss of generality that f = u(f)

and g = u(g). By Lemma 4.6, there exists an operator 7" such that 7 (f) = g and

1
1T N(Ly Loy~ (Lp Loy <2-3 /p.

Recall that L, is an interpolation space for the couple (L, L) (one can take,
for example, real or complex interpolation method). Let ¢, , be the interpolation
constant of L, for the couple (L, Lo,). We have

1
”T”Lq—)Lq =< Cp,q 2.3 /p-

Let cg be the interpolation constant of E for (L,, L,) (see Proposition 2.5).

Then, 1
ITIE—E < cp-max{l,cp }-2-37.

Thus,
lgle < ITIE=EllfllE <ce-max{l,cp,}-2-3YP| | .

This proves the first assertion. The proof of the second one follows mutatis mutandi
using Corollary 3.5 instead of complex interpolation and (for p = 0) Theorem 3.1
instead of Proposition 2.5. U

Lemma 5.2. Assume that0 < p <q < oo. Let f, g € L, + L, suchthat f = ju(f)
and g = u(g). Suppose that at every t > 0, one of the following inequalities holds:

t t o0 o0
/gpdsfffpds or / qusff flds.
0 0 t t

Then, there exist g1, g» € (L, + Ly)* which satisfies g = g1 + g2, gf <<nd [P
and gg <=<q f4.
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t t
A::t>0:/g(s)pds§/f(s)pds},
0 0

B= {t >0:/00g(s)qu§/00f(s)qu}.

ur(t)=inf{se A:s>t}, u_(t)=sup{seA:s <t},

Proof. Set

Let

vi(t)=inf{se B:s>t}, v_(t)=sup{se B:s <t}.
Note that pr(u_([)’L,+(t)) <hd ng(u_(,)’L,+(t)) for ¢ ¢ A and, therefore,

guy(t) =0) < fuy(r) =0).

Set h(t) = g(uy(t) —0), t > 0. By definition, u (¢) > ¢ for all # > 0. Since g
is decreasing, it follows that 4, < g. Set h, = gxp. Since uy(t) =t fort € A, it
follows that 4y = g on A. Thus, h; +hy > gxa+gx5 > &.

We claim that

/M(S,hl)pds S/f(s)p ds.
0 0

Indeed, for r € A, we have

Q/%@Vdss/gﬂﬁdss/?ﬁﬁd&
0 0 0

Fort ¢ A, we have hi(s) = g(u,(¢)) forall s € (u_(¢), us(¢t)). Thus,

t u_(t) t
fhl(s)pds:/ hl(s)pds—i-/ hi(s)? ds
0 0 u_(t)

u_(t) t
5/ guvw+/ g (1) ds.
0 u_(t)

Since

u_(t) u_(t)
/(; g(s)ds = A f&Pds,  gui@) = fug@)),

it follows that

u_(t) t

/Vn@Vdss F(s)7 ds + fw+unpdss]}%npd&
0 0 u_(t) 0

Since h; = u(hy), the claim follows.
We claim that

fﬂmmwws/?mw&
t t
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For t € B, we have
o0 o0 o0
/ hyo(s)?ds < / g)ds < / f()?ds.
t t t

For t ¢ B, we have
o0 [o,0) oo o0 [o,0)
/ ha(s)lds = / ha(s)lds < / g)ds = f()ds < / f(s)ds.
t v (1) v (1) v (1) t

In either case, we have

/OOM(& h2)?ds < /oohz(S)q ds < /oof(S)q ds.

This proves the claim.

Setting Iy I

h1+h2g’ 2= hi+h;

we complete the proof. O

81 = 8

Theorem 5.3. Let 0 < p < g < oo with either p # 0 or g # 0o. Let E be a
quasi-Banach function space. Assume that there exist ¢, g and cq g in R.o such
that:

(i) Suppose p #0. Forany f € Eand g € Lo+ L, if |g|” <<na | f|’, then g € E
and ||gllg < cpell fllE-

(ii) Suppose q # oo. Forany f € Eand g € Lo+ Ly, if |g|? <<u|f|9,then g € E
and ||glle < cq. eI fllE-

Then E belongs to Int(L ,, L).

Proof. Assume that p # 0. Let us show that the first condition implies E C L, + L.
Indeed, assume the contrary and choose f € E such that u(f) x,1) ¢ L,. Let

S :min{u(%, f), w(f) X(O,l)}» n>1.

Obviously, || full£ < li(f) xo.1lle < I £l £. On contrary, || full X(0.1) <<nd fir - By
the first condition on E, we have || f, 1, | x©0,1)llE < ¢p,ell f1l . However, we have

Il fullp M e (f) x0,1)ll p = oo. This contradiction shows that our initial assumption
was incorrect. Thus, E C L, + L.

A similar argument shows that the second condition implies E C Lo+ L. Thus,
a combination of both conditions implies £ C L, + L.

Let T be a contraction on (L, L) and f € E. To conclude the proof, it suffices
to show that 7' f belongs to E. First, note that

K@, Tf, Ly, Ly) <K, f,Lp,Lyg).
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Assume that p > 0and g <oo. Leta™! = % — %. By the Holmstedt formula for the

K -functional (see [14]), there exists a constant ¢, ; > 0 such that for any 7 € R,

“ 1/p 00 1/q
(/ u(s, Tf)pds> —I—t(/ u(s, Tf)? ds)
0 1o
1@ 1/p o 1/q
o[ 0o re))
0 [0(

Hence, for any given ¢ > 0, we have either

1% 1%
/ u(s, TF)P ds < / 15, cpg )P ds
0 0
or

[ns rovas < [t cpanras

o o

By Lemma 5.2, one can write

(5-1) w(TH)=g1+8, & <<na(Cpgnt(fN?, g2 =<=u(Ccpau(f)I.

By assumption, we have

gille <cpellflle, lglle <cq el flE.

By triangle inequality, we have

ITflE <cpgelfle.

Assume now that p > 0 and ¢ = oo. This case is simpler since by the Holmstedt
formula (see [14]), there exists ¢, € R- such that for any # € R.,

P 1/p P 1/p
( | wes Tf)”ds) Scp( i M(s,f)”dS> .
0 0

This means that |7 f|? <<pq |c, f]P so by assumption (1), T f belongs to E and

ITflle <cpepellfle-

The case of p =0 and g < oo is given by Corollary 3.4. O
Theorem 1.1 claimed in the introduction compiles some results of this section.

Proof of Theorem 1.1. Assertion (a) is obtained by combining Theorems 5.1 and 5.3
with g = o0.

Assertion (b) is derived similarly from Theorems 5.1 and 5.3 by applying them
with p =0.

Finally, using assertions (a) and (b) of Theorem 1.1, Theorems 5.1 and 5.3, for
0 < p < g < oo, one obtains Theorem 1.1(c). (]
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Remark 5.4. In the spirit of Corollary 3.4, we could have used a nonquantitative
condition to deal with the case of ¢ = co in Theorem 5.3. Let E be a quasi-Banach
function space and p, g € (0, 0o). This means that the following two conditions
are equivalent:

(i) Forany f € E, g€ L)+ Lo,
81" <<na | fI" =g € E.

(ii) There exists ¢ > 0 such that forany f € E, g € L, + Lo,

8" <<na [f1" =g €E and |gllg <cllflE.
Similarly, the following two conditions are equivalent:
(i) Forany f € E, ge Lo+ Ly,
gl" <<ulfI" =g €E.
(ii) There exists ¢ > 0 such that forany f € E, g € Lo+ Ly,

181 <<u|fl!=g€E and |gle <clfllE.

6. Interpolation spaces for couples of £”-spaces

In this section, we show that our approach to the Lorentz—Shimogaki and Arazy—
Cwikel theorems also applies to sequence spaces. We follow a structure similar
to the previous sections, proving partition lemmas, then constructing bounded
operators on couples (¢7, £7) with suitable properties to finally conclude on the
interpolation spaces of the couple (£7, £9). Additional arguments involving Boyd
indices will be required to prove Theorem 1.2.

We identify sequences with bounded functions on (0, co) which are almost
constant on intervals of the form (k, k + 1), k € Z* by

o0

i: 0% > Lo, (up)kez+ Zuk Lk ety
k=0

An interpolation theorem for the couple (€7, £9). We start with a partition lemma
playing, for sequence spaces, the role of Lemma 4.3.

Lemma 6.1. Let a = (a,)nez+, b = (by)nez+ be two positive decreasing sequences
such that b <<q a. There exists a sequence (Ay),cz+ of subsets of Z+ such that:

(i) Foreveryk € Z,we have |{n € Z* : k € A,}| < 3.

(i) D tea, @ = by foranyneZ™.
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Proof. Define I ={n € Z" :b, > a,}. Forn ¢ I, set A, = {n}.
For any n € Z*, define

n—sup{ k;‘a zi }

andfornel,let A, ={i,, ..., in+1}
From the definition of i,,, we have

Z ajp > E bi.
k>i, k>n
From the definition of i,,4;, we have
Sa< Y b
k>ip41 k>n+1

Taking the difference of these inequalities, we infer that
Sz

This proves the second condition.
Note that since b <<y a, we write i, > n for any n € Z*. Hence, if n € I, then
b, > a, > a;,,. Furthermore, by definition of i, 1, we have

Zak< Zbk, SO Zak<2bk

k>inq1 k=n+1 k=ipt1

Hence, by definition of i,,, we have i,y > i, forn € I.

Let us now check the first condition. Suppose there exist distinct numbers
ni,na,n3 €l suchthatk € Ay, Ay,, A,,. Without loss of generality, n; <ny <ns.
Since k € A,,, it follows that k < i,,41 < iy,. Since k € A,,, it follows that
k >i,, > iy,+1. Hence, iy,+1 <k <i,, and, therefore, i,,+1 =i,,. Since ny € I,
it follows i,,+1 > iy,. This contradiction shows that [{n € [ : k € A,}| <2. By
definition, £ also belongs to at most one set A,, n ¢ I. Consequently,

neZ :keA,) <3. O

From the partition lemma, we deduce an operator lemma similar to Lemma 4.6.
It extends Proposition 2 in [3], which is established there for the special case p =1
by a completely different method.

Lemma 6.2. Let p > 1. Let a, b € £ such that |b|P? <<y |a|P. Then there exists an
operator T : £P — £P such that:

() T(a)=b
(i) IT]lp—p <37 and || Tlo—0 < 3.
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Proof. We can assume that both sequences are nonnegative and decreasing. Apply
Lemma 6.1 to |a|” and |b|?. For every n € Z*, choose a linear form ¢, on £? of
norm less than 1, supported on A, and such that ¢,(a) = ¢,(ala,) = b,. Define

T:xe€ll— (0,(X))nez+.

By construction, T'(a) = b. Let us check the norm estimates. Let x € £7, then

1T =" lea@)I” = lon(xla,l”

neZ+t neZ+t
<3 D Il =) lin k€ Ag}Ixl” < 3)x1h.
neZt keA, keZ+t

The second estimate is clear, using once again the fact that an integer k& belongs to
at most three A,,’s. O

The following remarks were communicated to the authors by Cwikel and Nilsson.

Remark 6.3. A bounded linear operator on ¢”, p <1 extends automatically to a
bounded linear operator on £'.

Proof. Indeed, let (e,),c7+ be the canonical basis of £°°. Let T be a contraction
on £7, p < 1. Then by Hélder’s inequality |7 (e,)|li < T (e)ll, < T llp—p. By
the triangle inequality, for any finite sequence a = (a,)nez+,

IT@)li < Y lanlIT @l < lallili Tl p.

neZ+
Hence, T extends to a contraction on £!. O
Remark 6.4. The condition p > 1 in Lemma 6.2 is necessary.

Proof. Let us show that Lemma 6.2 cannot be true for p < 1. Assume by contradic-
tion that there exists ¢ > 0 such that for any finite sequences a and b in £” such
that |b|? <<y |a|? there exists T with ||T|| ,—, < c and T (a) = b. By Remark 6.3
above, we also have ||T |11 < c. In particular, ||b||; < c|la||;. By considering

b=ejanda = ﬁ Z,N= , ei for N large enough, one obtains a contradiction. []

We will not prove a sequence version of Lemma 4.5 to avoid the repetition of
too many similar arguments. Fortunately, the expected result already appears in the
literature, see [10, Theorem 3].

Lemma 6.5. Let p > 0. Let a, b € £*° such that |b|P <<nq |a|P. Then there exists
an operator T : £P — £P such that:

(i) T(a)=b.
(i) 1T llp—p <8YP and | T [loo—oo <2/

We conclude this subsection with a new interpolation theorem.
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Theorem 6.6. Let p < g € (0, oo] such that ¢ > 1. Let E be a quasi-Banach
sequence space. Then E belongs to Int(£P, £9) if and only if there exists ¢, g
and cy g in R such that:

(i) Foranyu € E and v € £, if |v|’ <<pq |u|?, then v € E and |v|g < cp.ellullE.

(ii) Suppose g < oo. For any u € E and v € £, if |v|?9 <<q |u|?, then v € E
and vl < cq EllullE.

Proof. The proof of the “only if”” implication is identical to the proof of Theorem 5.1
using Lemmas 6.2 and 6.5 instead of Lemmas 4.5 and 4.4. The “if”” implication is
given by [8, Theorem 4.7]. O

Upper Boyd index. Let us now recall the definition of the upper Boyd index, in the
case of sequence spaces. For any n € N define the dilation operator

Dy £ = €%, (ui)kez+ = (U(k/n)kez+-
Let E be a symmetric function space. Define the Boyd index associated to E by

log|| Dl E
Bg = lim —————.
k— 00 logk

Note that since E is a quasi-Banach space, B < oc.
In the next proposition, we relate the upper Boyd index to an interpolation
property. We follow [23, Theorem 2].

Proposition 6.7. Assume that E is a quasi-Banach symmetric sequence space. Let
p < 1/Bg. There exists a constant C such that for any u € E and v € £*°, satisfying
|[v|P <<ng |u|?, we have v € E and ||v||g < Cllu|g.

Define the map V : £, — fo by setting
[o¢]
Vu= Z 27"Don u

n=0
and the map C : €oo — £ by

1
(Cwm=-—— Z Uy
i=0
Lemma 6.8. If p < 1/Bg, then
IV @P)Plle <epelulle, O<uckE.
Proof. Let E, be the p-concavification of E, that is,

E,={f:1fI""€E}, |fllg,=f1"7I%.
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Obviously, E, is a quasi-Banach space. Apply the Aoki—Rolewicz theorem to the
space E, and fix ¢ = g, g > 0 such that

dDox| =CpE ) Il

q

n>0 Ep n>0
For every u € E, we have
o 1 q
IV @YY =1V @) =D 5 (Do w)”
! n=0 2" Ep

1 q
- (D2n l/t)p
2n E,

o0
<Cpr)
n=0

o0
- qp
=Cpre Y 27| Dy ul¥.
n=0

Let r € (p, ,BEI). By the definition of Bg, there exists ¢, g > 0 such that
IDullEsE < cpE n'/" for any n € N. Therefore,

o0
IV @PDIPAP < Cppch o> 2720 w1 8P
n=0

24
e . q . —
=CpE Cp.E 29 — 2qp/r

ull U
Lemma 6.9. If x = pu(x), then Cx <3Vx for every x € {.
Proof. Let k > 0. Since x is decreasing, it follows that
1 k—1 2i+1—1 1 k=1 .
€)@k —1) = §<x(0) +> ) x(j)) < i(x(O) + ZZ’x(Z’)).
i=0

i=0  j=Di

On the other hand, we have

(V) —1) = Zz—"xqﬁj)
2n

n>0

k 00
=Y 2@+ Y 27" x(0)

n=0 n=k+1

k
= %(x(O) +) 2@ - 1)).
i=0
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Again using the fact that x is decreasing, we obtain

k—1 k—2
Zzix(zi):x(1)+22i+1x(2i+1)
i=0 i=0

k=2 k
<x(1)+2 Zz"x(zi“ —1<3 Z 20 x (211 — 1),
i=0 i=0

Combining the three previous inequalities, we have just shown that for any k > 0,
(Cx)(2* = 1) <3(Vx)@H! —1).

Now let n > 0 and choose k such that n € [2F — 1, 2¥*!1 —1]. Since Cx and Vx are
decreasing, we have

(Cx)(n) < (Cx)(2F — 1) <3(Vx)T — 1) <3(Vx)(n). O

Proof of Proposition 6.7. Without loss of generality, u = u(u) and v = p(v). Since
vP <<pq u?, it follows that

[oI” < C(lvl?) < C(Jul”) <3V (|ul”),
where we used Lemma 6.9 to obtain the last inequality. By Lemma 6.8, we have
lolle <3YPIV (ulP ) Plie < cpplullp. O

We are now ready to deliver a complete resolution of the conjecture stated by
Levitina et al. in [20].

Proof of Theorem 1.2. Let E be a quasi-Banach sequence space. Let g > 1. Recall
that Theorem 1.2 states that the following two conditions are equivalent:

(a) There exists p < g such that E is an interpolation space for the couple (€7, £7).

(b) There exists ¢ > 0 such that for any u € E and |v|? <<q |u|?, then v € E
and [[v|lg < cllulle.

Note that by Lemma 2.9, we may assume that E is a symmetric space.
(a) = (b). This is immediate by Theorem 6.6.

(b) = (a). Let p < 1/BEg. By Proposition 6.7, for any sequence u € E and v € £*°,
if [v|? <<pq [u|?, v € E and ||v||g < cp gllullg. Applying Theorem 6.6 for indices
p and g, we obtain that E belongs to Int(¢7, £7). U
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