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By using the space L0 of finitely supported functions as a left endpoint on the
interpolation scale of L p-spaces, we present a new approach to the Lorentz–
Shimogaki and Arazy–Cwikel theorems which covers the whole range of
p, q ∈ (0, ∞]. In particular, we show that for 0 ≤ p < q < r < s ≤ ∞,

Int(Lq, L r) = Int(L p, L r) ∩ Int(Lq, Ls)

if the underlying space is (0, α), α ∈ (0, ∞] equipped with the Lebesgue
measure. As a byproduct of our result, we solve a conjecture of Levitina,
Sukochev and Zanin (2020).

1. Introduction

Descriptions of interpolation spaces for couples of L p-spaces for 1 ≤ p ≤ ∞ were
extensively researched from the 1960s to the 80s, providing satisfying answers to
most problems that were considered relevant at the time.

However, new questions arising from noncommutative analysis recently high-
lighted some gaps in our knowledge of this subject, especially for the case of p < 1
of quasi-Banach spaces. In this paper, we revisit some important results of the
literature [1; 21; 27], generalizing them and thus filling some of the holes that
were revealed in the theory. In particular, we answer a question asked by Levitina,
Sukochev and Zanin in [20] and already partially studied in [11] regarding the
interpolation theory of sequence spaces (see Theorem 1.2). Besides this new result,
this paper introduces a general approach that covers the range of all 0 ≤ p ≤ ∞

and is self-contained. It emphasizes the use of the space L0 of all finitely supported
measurable functions. As far as the authors know this space rarely appears in
interpolation theory (however, see [2; 16; 24] and [15]). We provide evidence that
L0 is a suitable “left endpoint” on the interpolation scale of L p-spaces, despite its
possessing an atypical structure, that of a normed abelian group.

A function space E is an interpolation space for the couple (L p, Lq) if any linear
operator T bounded on L p and Lq is also bounded on E (see Definition 2.4). This
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notion provides a way of transferring inequalities well known in L p-spaces to more
exotic ones. To both understand the range of applicability of this technique and be
able to check whether it applies to a given function space E , we are interested in
simple descriptions of interpolation spaces for the couple (L p, Lq).

This problem has a long history starting with the Calderón–Mityagin theorem
(see [9; 22]) on the couple (L1, L∞) and followed by Lorentz and Shimogaki’s [21]
results on the couples (L1, Lq) and (L p, L∞) with 1 ≤ p, q ≤ ∞. A remarkable
result of Arazy and Cwikel then states that a space E is an interpolation space for
the couple (L p, Lq), 1 < p < q < ∞ if and only if it is an interpolation space for
the couples (L1, Lq) and (L p, L∞).

Describing interpolation spaces often comes down to understanding certain
orders. In fact, at a very fundamental level, being an interpolation space can be
understood as a monotonicity property. Indeed, given two compatible quasi-Banach
spaces A, B, denote by C(A, B) the set of operators A + B → A + B that restrict
to contractions on A and B. Consider the following order on A + B:

f ≤p,q g ⇔ ∃T ∈ C(A, B), T (g) = f.

With this definition in mind, E is an interpolation space for the couple (A, B) if
and only if

∀ f ∈ E, ∀g ∈ L p + Lq , g ≤p,q f ⇒ g ∈ E .

In fact, the fundamental theorem of Calderón and Mityagin precisely describes the
order ≤L1,L∞

(from now on denoted by ≺≺hd). It states that for f, g ∈ L1 + L∞,

g ≺≺hd f ⇔ g ≤L1,L∞
f ⇔ ∀t > 0,

∫ t

0
µ(s, g) ds ≤

∫ t

0
µ(s, f ) ds,

where µ(g) : t →µ(t, g) denotes the right-continuous decreasing rearrangement of g.
We will call this order head majorization. Moreover, if f, g ∈ L1 and ∥ f ∥1 = ∥g∥1,
then we write g≺≺hd f . Variants of this order allow to describe interpolation spaces
for any couple (L p, L∞), p ∈ (0, ∞) (see [21] for the Banach range and [8] for
p < 1).

Another phenomenon, this time specific to the study of interpolation theory of
L p-spaces, is that to guarantee that a space E is an interpolation space for the
couple (L p, Lq), p < q it is natural to impose two conditions: one which will
impose that E is “on the right of L p” and one that will impose that E is “on the
left of Lq”. An example of such a result is the above-mentioned Arazy–Cwikel
theorem but one can think also of convexity/concavity conditions or Boyd indices
(see [18] for an overview and [8, Theorem 1.4]).



LORENTZ–SHIMOGAKI AND ARAZY–CWIKEL THEOREMS REVISITED 229

In this spirit, the natural counterpart of head majorization is tail majorization
defined on L0 + L1 by

g ≺≺tl f ⇔ ∀t > 0,

∫
∞

t
µ(s, g) ds ≤

∫
∞

t
µ(s, f ) ds.

We’ll show later that this order is in fact equivalent to ≤L0,L1 . Moreover, if f, g ∈ L1

and ∥ f ∥1 = ∥g∥1, then we write g ≺tl f . Remark that g ≺tl f if and only if f ≺hd g.
Note that tail majorization coincides with the weak supermajorization of [13].

Let us now state our main theorem. Let X be the linear space of all measurable
functions. If not specified otherwise, the underlying measure space we are working
on is (0, ∞) equipped with the Lebesgue measure m. We obtain:

Theorem 1.1. Let E ⊂ X be a quasi-Banach function space (a priori, not necessar-
ily symmetric). Let p, q ∈ (0, ∞) such that p < q. Then:

(a) E is an interpolation space for the couple (L p, L∞) if and only if there exists
cp,E > 0 such that for any f ∈ E and g ∈ L p + L∞,

|g|
p
≺≺hd | f |

p
⇒ g ∈ E and ∥g∥E ≤ cp,E∥ f ∥E .

(b) E is an interpolation space for the couple (L0, Lq) if and only if there exists
cq,E > 0 such that for any f ∈ E and g ∈ L0 + Lq ,

|g|
q
≺≺tl | f |

q
⇒ g ∈ E and ∥g∥E ≤ cq,E∥ f ∥E .

(c) E is an interpolation space for the couples (L0, Lq) and (L p, L∞) if and only
if it is an interpolation space for the couple (L p, Lq).

This extends the results of Lorentz–Shimogaki and Arazy–Cwikel to the quasi-
Banach setting and contributes to the two first questions asked by Arazy in [12,
p. 232] in the particular case of L p-spaces for 0 < p < ∞. As mentioned before,
our approach places L0 as a left endpoint on the interpolation scale of L p-spaces,
in sharp contrast to earlier results which focused mostly on Banach spaces and had
L1 playing this part. An advantage of our approach is that it naturally encompasses
every symmetric quasi-Banach space since they are all interpolation spaces for the
couple (L0, L∞) (see [2; 16]). On the contrary, there exist some symmetric Banach
spaces which are not interpolation spaces for the couple (L1, L∞) (see [26]). This
led to some difficulties which were customarily circumvented with the help of
various technical conditions such as the Fatou property (as appears, e.g., in [4]).

Compared to [8] where the first author investigates similar characterizations, the
novelty of this theorem is statement (b) that deals with the space L0. A deeper
advantage of our new approach is that it no longer relies on Sparr’s K -monotonicity
result [27] for couples of L p-spaces which was instrumental in [8].

Indeed, our strategy in this paper is different from the techniques used in [1; 2;
3; 4; 8; 9; 10; 11; 12; 16; 18; 21; 22; 27] and is based on partition lemmas,
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which were originally developed in a deep paper due to Braverman and Mekler [7]
devoted to the study of the symmetric Banach function spaces E such that the set
{ f ∈ E : f ≺≺hd g} coincides with the closure of the convex hull of its extreme
points.

The approach of Braverman and Mekler was subsequently revised and redevel-
oped in [28] and precisely this revision constitutes the core of our approach in this
paper.

We restate partition lemmas based on [28, Proposition 19] in Section 4. These
lemmas allow us to restrict head and tail majorizations to very simple situations
and reduce the problem to functions taking at most two values. Then, we deduce
interpolation results from those structural lemmas.

Note that this scheme of proof is quite direct and in particular, does not involve
at any point duality related arguments which apply only to Banach spaces [21] or
more generally to L-convex quasi-Banach spaces [17; 25].

In Section 6, we pursue the same type of investigation, but in the setting of
sequence spaces. The nondiffuse aspect of the underlying measure generates
substantial technical difficulties. In particular, we require a new partition lemma
which is not as efficient as those in Section 4 (compare Lemmas 6.2 and 4.6). This
deficiency has been first pointed out to the authors by Cwikel. However, we are still
able to resolve the conjecture of [20] (in the affirmative) by combining Lemma 6.1
with a Boyd-type argument which we borrow from Montgomery and Smith [23].
In particular, we substantially strengthen the results in [11]. Here is the precise
statement:

Theorem 1.2. Let E ⊂ ℓ∞ be a quasi-Banach sequence space and q ≥ 1. The
following conditions are equivalent:

(a) There exists p < q such that E is an interpolation space for the couple (ℓp, ℓq).

(b) There exists c > 0 such that for any u ∈ E and v ∈ ℓ∞,

|v|
q
≺≺tl |u|

q
⇒ v ∈ E and ∥v∥E ≤ c∥u∥E .

(c) For any u ∈ E and v ∈ ℓ∞,

|v|
q
≺≺tl |u|

q
⇒ v ∈ E .

In this section, we freely use results of Cwikel [10] and Cadilhac [8] to avoid
repeating too many similar arguments.

Note that Theorem 1.2 was since proved independently in [5] where a deeper
analysis of the interpolation scale of sequence spaces ℓp, 0 ≤ p ≤ ∞ is presented.
In particular, it is shown in [5] that for any 0 < p < q < ∞, E is an interpolation
space for (ℓp, ℓq) if and only if it is an interpolation space for (ℓ0, ℓq) and (ℓp, ℓ∞),
thus providing a counterpart to our main theorem in the sequence setting.
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2. Preliminaries

Interpolation spaces. The reader is referred to [6] for more details on interpolation
theory and to [19] for an introduction to symmetric spaces. In the remainder of this
section, p and q will denote two nonnegative reals such that p ≤ q .

Let (�, m) be any measure space (in particular the following definitions apply
to N equipped with the counting measure, i.e., sequence spaces). As previously
mentioned, L0(�) ⊂ X (�) denotes the set of functions whose supports have finite
measures, it is naturally equipped with the group norm

∥ f ∥0 = m(supp f ), f ∈ L0(�).

The “norm” of a linear operator T : L0(�) → L0(�), is defined as

∥T ∥L0→L0 = sup
f ∈L0

m(supp(T f ))

m(supp( f ))
.

Definition 2.1. A linear space E ⊂ X (�) becomes a quasi-Banach function space
when equipped with a complete quasinorm ∥·∥E such that:

• If f ∈ E and g ∈ X (�) are such that |g| ≤ | f |, then g ∈ E and ∥g∥E ≤ ∥ f ∥E .

Definition 2.2. A quasi-Banach function space E ⊂ X (�) is called symmetric if

• f ∈ E and g ∈X (�) are such that µ( f )=µ(g), then g ∈ E and ∥g∥E =∥ f ∥E .

Definition 2.3 (bounded operator on a couple of quasi-Banach function spaces).
Let X and Y be quasi-Banach function spaces. We say that a linear operator T is
bounded on (X, Y ) if T is defined from X + Y to X + Y and restricts to a bounded
operator from X to X and from Y to Y . Set

∥T ∥(X,Y )→(X,Y ) = max(∥T ∥X→X , ∥T ∥Y→Y ).

Let us recall the precise abstract definition of an interpolation space (see [6; 19]).

Definition 2.4 (interpolation space between function spaces). Let X , Y and Z
be either quasi-Banach function spaces on � or L0(�). We say that Z is an
interpolation space for the couple (X, Y ) if X ∩ Y ⊂ Z ⊂ X + Y and any bounded
operator on (X, Y ) restricts to a bounded operator on Z . Denote by Int(X, Y ) the
set of interpolation spaces for the couple (X, Y ).

For quasi-Banach spaces, the above definition is equivalent to a seemingly
stronger quantitative property.

Proposition 2.5. Let X, Y, Z be quasi-Banach function spaces. If Z is an interpo-
lation space for the couple (X, Y ), then there exists a constant c(X, Y, Z) > 0 such
that for any bounded operator T on (X, Y ),

∥T ∥Z→Z ≤ c(X, Y, Z) · ∥T ∥(X,Y )→(X,Y ).
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The best possible value of c(X, Y, Z) is called interpolation constant of Z with
respect to the couple (X, Y ).

Proof. In [19, Lemma I.4.3], the assertion is proved for Banach spaces. The
argument for quasi-Banach spaces is identical (because it relies on the closed graph
theorem, which holds for F-spaces, and hence for quasi-Banach spaces). □

K-functional and E-functional. In the remainder of the subsection, X, Y and Z
will denote function spaces which are either quasi-Banach, or L0.

Definition 2.6. Let f ∈ X + Y and t > 0. Define

Kt( f, X, Y ) := inf
g+h= f

∥g∥X + t∥h∥Y and Et( f, X, Y ) := inf
∥g∥X ≤t

∥ f − g∥Y .

These two notions are closely related to one another (see [24]) and the K -
functional in particular plays a major role in the study of general interpolation
spaces. Note that

Kt( f, L1, L∞) =

∫ t

0
µ(s, f ) ds and Et( f, L0, L1) =

∫
∞

t
µ(s, f ) ds.

Thus the head and tail majorizations we consider can be in fact expressed in terms
of K and E functionals. We say that Z is K -monotone with respect to the couple
(X, Y ) if X ∩ Y ⊂ Z ⊂ X + Y and for any f ∈ Z , g ∈ X + Y ,

∀t > 0, Kt(g, X, Y ) ≤ Kt( f, X, Y ) ⇒ g ∈ Z .

Similarly, Z is E-monotone with respect to the couple (X, Y ) if X ∩Y ⊂ Z ⊂ X +Y
and for any f ∈ Z , g ∈ X + Y ,

∀t > 0, Et(g, X, Y ) ≤ Et( f, X, Y ) ⇒ g ∈ Z .

Remark 2.7. It is clear from the definitions that if Z is either E-monotone or
K -monotone for the couple (X, Y ) then Z is an interpolation space for (X, Y ).

Symmetry of interpolation spaces. In this subsection, we show that a quasi-Banach
interpolation space for a couple of symmetric spaces can always be renormed into
a symmetric space. Note that similar results can be found in the literature, see, for
example, [19, Theorem 2.1].

As usual, we will use the term measure preserving for a measurable map ω

between measure spaces (�1,A1, m1) and (�2,A2, m2) verifying,

∀A ∈ A1, ω(A) ∈ A2 and m2(ω(A)) = m1(A).

Lemma 2.8. Assume that � is (0, 1), (0, ∞) or N. Let 0 ≤ f, g ∈ L0(�)+L∞(�)

and let ε > 0. Assume that µ( f ) = µ(g). There exists a measure preserving map
ω : supp(g) → supp( f ) such that (1 + ε)( f ◦ ω) ≥ g.
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Proof. Case 1. Suppose first that µ(∞, f ) = µ(∞, g) = 0.
Define, for any n ∈ Z,

Fn = {t : (1 + ε)n < f (t) ≤ (1 + ε)n+1
}, Gn = {t : (1 + ε)n < g ≤ (1 + ε)n+1

}.

By assumption, m(Fn) = m(Gn) for every n ∈ Z. Let ωn : Gn → Fn be an arbitrary
measure preserving bijection.

Define the measure preserving map ω : supp(g) → supp( f ) by concatenating
ωn : Gn → Fn , n ∈ Z. For every t ∈ Gn , we have

f (ω(t)) ≥ (1 + ε)n, g ≤ (1 + ε)n+1.

Thus,
(1 + ε) f (ω(t)) ≥ g, t ∈ supp(g).

This completes the proof of Case 1.

Case 2. Let δ such that (1 + δ)2
= (1 + ε). Let a = µ(∞, f ) = µ(∞, g) > 0.

Define, for any n ≥ 1,

Fn = {t : a(1+δ)n < f (t) ≤ a(1+δ)n+1
}, Gn = {t : a(1+δ)n < g ≤ a(1+δ)n+1

}

and

F0 = {t : (1 + δ)−1a ≤ f (t) ≤ (1 + δ) a}, G0 = {t : 0 < g ≤ (1 + δ) a}.

By assumption, for any n ≥ 1, m(Gn) = m(Fn) and m(G0) = m(F0) = ∞. For
any n ≥ 0, choose a measure preserving bijection ωn from Gn to Fn .

Define the measure preserving map ω : supp(g) → supp( f ) by concatenating
the ωn’s. For any n ≥ 0 and any t ∈ Gn ,

f (ω(t)) ≥ a(1 + δ)n−1, g ≤ a(1 + δ)n+1.

Thus,
(1 + δ)2 f (ω(t)) = (1 + ε) f (ω(t)) ≥ g, t ∈ supp(g). □

Lemma 2.9. Assume that � is (0, 1), (0, ∞) or N. Let E, A, B ⊂ (L0 + L∞)(�)

be quasi-Banach function spaces. Assume that A and B are symmetric and that
E is an interpolation space for the couple (A, B). Then E admits an equivalent
symmetric quasinorm.

Proof. Let f ∈ E and g ∈ L0 + L∞. Assume that µ(g) ≤ µ( f ). By Lemma 2.8,
there exists a map ω : supp(g) → supp( f ) such that for any t ∈ supp(g),

2| f ◦ ω(t)| ≥ |g(t)|.

Define, for any h ∈ X (�),

T (h) :=

{ g
f ◦ω

h ◦ ω on supp(g),

0, elsewhere.
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Since ω is measure preserving, T is bounded on A and B of norm less than 2. Let
cE be the interpolation constant of E for the couple (A, B) (as in Proposition 2.5).
We know that T f = g ∈ E and

(2-1) ∥g∥ ≤ 2cE∥ f ∥.

Define, for any f ∈ E ,

∥ f ∥E ′ = inf
µ(g)≥µ( f )

∥g∥E .

By (2-1), ∥ f ∥E ′ ≤ ∥ f ∥E ≤ 2cE∥ f ∥E ′ and (E, ∥·∥E ′) is a symmetric space. □

Remark 2.10. It is not difficult to see that if the underlying measure space �

contains both a continuous part and atoms, then Lemma 2.9 is no longer true for
A = L p(�), B = Lq(�) and p < 1. However, one can observe that if A and B are
fully symmetric (i.e., interpolation spaces between L1(�) and L∞(�)), Lemma 2.9
remains valid for any �. This is reminiscent of the conditions required in [27,
Section 4].

3. Interpolation for the couple (L0, Lq)

In this section, � = (0, ∞) (for brevity, we omit � in the notations). We investigate
some basic properties of the interpolation couple (L0, Lq). First, we provide a
statement analogous to Proposition 2.5 and applicable to L0.

Since the closed graph theorem does not apply to L0 (it is not an F-space),
our proof uses concrete constructions that rely on the structure of the underlying
measure space.

For any f ∈ X , denote by M f the multiplication operator g 7→ f · g.

Theorem 3.1. Let E be a quasi-Banach function space and q ∈ (0, ∞]. Assume that
E is an interpolation space for the couple (L0, Lq). Then, there exists a constant c
such that for any contraction T on (L0, Lq), ∥T ∥E→E ≤ c.

Proof. Let (An)n≥1 be a partition of (0, ∞) such that m(An) = ∞ for every n ≥ 1.
Let γn : An → Ac

n be a measure preserving bijective transform. Set

(Unx)(t) =

{
x(γn(t)), t ∈ An,

0, t ∈ Ac
n,

(Vnx)(t) =

{
x(γ −1

n (t)), t ∈ Ac
n,

0, t ∈ An.

Obviously, Un and Vn are bounded operators on the couple (L0, Lq). By assumption,
Un, Vn : E → E are bounded mappings.

Note that
Vn Un = MχAc

n
, n ≥ 1.
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Let us argue by contradiction. For any n ≥ 1, choose an operator Tn which is a
contraction on (L0, Lq) and such that

(3-1) ∥Tn∥E→E ≥ 4n
· max{∥Un∥E→E , ∥Vn∥E→E , 1}

2.

It is immediate that

Tn = MχAn
Tn MχAn

+ MχAc
n
Tn MχAn

+ MχAn
Tn MχAc

n
+ MχAc

n
Tn MχAc

n

= T1,n + Vn T2,n + T3,n Un + Vn T4,n Un,

where

T1,n = MχAn
Tn MχAn

, T2,n =UnTn MχAn
, T3,n = MχAn

TnVn, T4,n =UnTnVn.

By quasitriangle inequality, we have

∥Tn∥E→E ≤ C2
E ·

( 4∑
k=1

∥Tk,n∥E→E

)
· max{∥Un∥E→E , ∥Vn∥E→E .1}

2.

Let kn ∈ {1, 2, 3, 4} be such that

∥Tkn,n∥E→E = max
1≤k≤4

∥Tk,n∥E→E .

We, therefore, have

(3-2) ∥Tn∥E→E ≤ 4C2
E∥Tkn,n∥E→E · max{∥Un∥E→E , ∥Vn∥E→E .1}

2.

Set Sn = Tkn,n . Note that ∥Sn∥L0→L0 ≤ 1 and ∥Sn∥Lq→Lq ≤ 1. A combination
of (3-1) and (3-2) yields

∥Sn∥E→E ≥ 4n−1C−2
E , n ≥ 1.

Note that Sn = MχAn
Sn MχAn

. Set

S =

∑
n≥1

Sn.

Since the Sn’s are in direct sum, we have

∥S∥L0→L0 = sup
n≥1

∥Sn∥L0→L0 ≤ 1 and ∥S∥Lq→Lq = sup
n≥1

∥Sn∥Lq→Lq ≤ 1.

Moreover, E is an interpolation space for the couple (L0, Lq), it follows that
S : E → E is bounded.

For any n ≥ 1, choose fn ∈ E such that ∥ fn∥E ≤ 1 and ∥Sn fn∥E ≥ 4n−2 C−2
E .

Recall that Sn = Sn MχAn
. Hence, we may assume without loss of generality that

fn is supported on An . Thus, S( fn) = Sn( fn) and

∥S( fn)∥E = ∥Sn( fn)∥E ≥ 4n−2 C−2
E .

This contradicts the boundedness of S. □
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Remark 3.2. Theorem 3.1 above remains true for other underlying measure spaces:

• For sequence spaces. Indeed, in the proof of Theorem 3.1, we only use properties
of the underlying measure space in the first sentence, namely when we consider a
partition of (0, ∞) into countably many sets, each of them isomorphic to (0, ∞).
Since a partition satisfying the same property exists for Z+, Theorem 3.1 remains
true for interpolation spaces between ℓ0 and ℓq .

• For (0, 1). The same general idea applies in this case but some modifications
have to be made because the maps γn introduced in the proof cannot be assumed to
be measure-preserving. The details are left to the reader.

Lemma 3.3. Let E, Y ⊂ L0 + L∞ be quasi-Banach function spaces. Assume that
Y is symmetric and that E is an interpolation space for the couple (L0, Y ). Then E
admits an equivalent symmetric quasinorm.

Proof. The argument follows that in Lemma 2.9 mutatis mutandi. □

The following assertion is a special case of Theorem 1.1 and an important
ingredient in the proof of the latter theorem.

Corollary 3.4. Let X be a quasi-Banach function space and q ∈ (0, ∞). Assume
that L0 ∩ Lq ⊂ X ⊂ L0 + Lq and that for any f ∈ E and g ∈ L0 + Lq ,

|g|
q
≺≺tl | f |

q
⇒ g ∈ E .

Then E is an interpolation space for the couple (L0, Lq).

Proof. It is clear that the condition on X is equivalent to E-monotonicity with
respect to the couple (L0, Lq) so by Remark 2.7, E is an interpolation space for
the couple (L0, Lq). □

Corollary 3.4 applies in particular to L p-spaces, p ≤ q. We decided to add a
more precise statement and to provide a direct proof of the latter.

Corollary 3.5. Let p, q ∈ (0, ∞) such that p < q. Then, L p is an interpolation
space for the couple (L0, Lq). More precisely, if T is a contraction on (L0, Lq),
then T is a contraction on L p.

Proof. Let us first consider characteristic functions. Let E be a set with finite
measure. Since T is a contraction on L0, the measure of the support of T (χE) is
less than m(E). So by Hölder’s inequality, setting r = (p−1

− q−1)−1, we have

∥T (χE)∥p ≤ ∥T (χE)∥q · m(E)1/r
≤ ∥χE∥q · m(E)1/r

= ∥χE∥p.

First, consider the case p ≤ 1. Let f ∈ L p be a step function, i.e.,

f =

∑
i∈N

ai χEi ,
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where ai ∈C and the sets Ei are disjoint sets with finite measure. By the p-triangular
inequality we write

∥T f ∥
p
p ≤

∑
i∈N

|ai |
p
∥T (χEi )∥

p
p ≤

∑
i∈N

|ai |
p
∥χEi ∥

p
p = ∥ f ∥

p
p.

Since T : L p → L p is bounded by Corollary 3.4 and since step functions are dense
in L p, it follows that T : L p → L p is a contraction (for p ≤ 1).

Now consider the case p > 1. Since p <q , it follows that q > 1. By the preceding
paragraph, T : L1 → L1 is a contraction. By complex interpolation, T : L p → L p

is also contraction. □

4. Construction of contractions on (L0, Lq) and (L p, L∞)

Let p, q ∈ (0, ∞). In this section, we are interested in the following question. Given
functions f and g in L0 + Lq (resp. L p + L∞), does there exist a bicontraction T
on (L0, Lq ) (resp. (L p, L∞)) such that T ( f ) = g? We show that such an operator
exists provided that |g|

q
≺≺tl | f |

q (resp. |g|
p
≺≺hd | f |

p. This directly implies a
necessary condition for a symmetric space to be an interpolation space for the
couple (L0, Lq) (resp. (L p, L∞)) which will be exploited in the next section.

Our method of proof is very direct. We construct the bicontraction T as direct
sums of very simple operators. This is made possible by two partition lemmas that
enable us to understand the orders ≺≺tl and ≺≺hd as direct sums of simple situations.

Partition lemmas. We state our first lemma without proof since it essentially repeats
that of Proposition 19 in [28].

Lemma 4.1. Let f, g ∈ L1 be positive decreasing step functions. Assume that
g ≺hd f . There exists a sequence of intervals {Ik, Jk}k≥0 of (0, ∞) such that:

(i) For every k ≥ 0, Ik and Jk are disjoint intervals of finite length.

(ii) (Ik ∪ Jk) ∩ (Il ∪ Jl) = ∅ for k ̸= l.

(iii) f and g are constant on Ik and on Jk .

(iv) g|Ik∪Jk ≺hd f |Ik∪Jk for every k ≥ 0.

(v) g ≤ f on the complement of
⋃

k≥0 Ik ∪ Jk .

If furthermore f, g ∈ L1 and g ≺hd f then f = g on the complement of
⋃

k≥0 Ik ∪ Jk .

Scholium 4.2. Let f, g ∈ X be positive decreasing functions. Let 1 ⊂ (0, ∞) be
an arbitrary measurable set.

(i) If f, g ∈ L1 + L∞ are such that∫
[0,t]∩1

g ≤

∫
[0,t]∩1

f, t > 0,

then gχ1 ≺≺hd f χ1.
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(ii) If f, g ∈ L0 + L1 are such that∫
(t,∞)∩1

g ≤

∫
(t,∞)∩1

f, t > 0,

then gχ1 ≺≺tl f χ1.

The second partition lemma deals with describing the order ≺≺tl in terms of ≺tl

and ≤.

Lemma 4.3. Let f, g ∈ L0 + L1 be such that f = µ( f ), g = µ(g) and g ≺≺tl f .
There exists a collection {1k}k≥0 of pairwise disjoint sets such that:

(i) f |1k ≺hd g|1k for every k ≥ 0.

(ii) g ≤ f on the complement of
⋃

k≥0 1k .

Proof. Consider the set {g > f }. Similarly to the previous proof, connected
components of the set {g > f } are intervals (closed or not) not reduced to points.
Let us enumerate these intervals as (ak, bk), k ≥ 0.

We have ∫
∞

t
( f − g)+ −

∫
∞

t
( f − g)− =

∫
∞

t
( f − g) ≥ 0.

Let
H(t) = sup

{
u :

∫
∞

u
( f − g)+ =

∫
∞

t
( f − g)−

}
.

Obviously, H is a monotone function, H(t) ≥ t for all t > 0 and∫
∞

H(t)
( f − g)+ =

∫
∞

t
( f − g)−.

Set
1k = (ak, bk) ∪

(
(H(ak), H(bk)) ∩ {g ≤ f }

)
.

Note that ∫
∞

bk

( f − g)+ =

∫
∞

ak

( f − g)+ ≥

∫
∞

ak

( f − g)−

and therefore, H(ak) ≥ bk .
We claim that 1k ∩ 1l = ∅ for k ̸= l. Indeed, let ak < bk ≤ al < bl . We have

H(ak) ≤ H(bk) ≤ H(al) ≤ H(bl). Thus, (H(ak), H(bk)) ∩ (H(al), H(bl)) = ∅.
We now have

1k ∩1l =
(
(1k ∩{ f < g})∩ (1l ∩{ f < g})

)
∪

(
(1k ∩{ f ≥ g})∩ (1l ∩{ f ≥ g})

)
.

Obviously,

(1k ∩ { f < g}) ∩ (1l ∩ { f < g}) = (ak, bk) ∩ (al, bl) = ∅,

(1k ∩{ f ≥ g})∩(1l ∩{ f ≥ g})= (H(ak), H(bk))∩(H(al), H(bl))∩{ f ≥ g}=∅.

This proves the claim.
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We now claim that ∫
(t,∞)∩1k

( f − g) ≥ 0.

If t ≥ bk , then taking into account that H(ak) ≥ bk , we infer that

(t, ∞) ∩ 1k ⊂ { f ≥ g}

and the claim follows immediately. If t ∈ (ak, bk), then∫
(t,∞)∩1k

( f − g) =

∫
(H(ak),H(bk))

( f − g)+ −

∫ bk

t
( f − g)−

≥

∫
(H(ak),H(bk))

( f − g)+ −

∫ bk

ak

( f − g)− = 0.

This proves the claim.
It follows from the claim and Scholium 4.2 that gχ1k ≺≺tl f χ1k . Since∫

1k

g =

∫
1k

f,

it follows that gχ1k ≺tl f χ1k , which immediately implies the first assertion.
By construction, (ak, bk) ⊂ 1k . Thus,

{g > f } =

⋃
k≥0

(ak, bk) ⊂

⋃
k≥0

1k .

The second assertion is now obvious. □

Construction of operators. We repeat the same structure as in the previous subsec-
tion, proving four lemmas, each one dealing with a certain order: ≺hd, ≺tl, ≺≺hd,
and finally ≺≺tl.

Lemma 4.4. Let p ∈ (0, ∞). Let f, g ∈ L p(0, ∞), assume that |g|
p

≺hd | f |
p,

f = µ( f ) and g = µ(g). There exists a linear operator T : X (0, ∞) → X (0, ∞)

such that g = T ( f ) and

∥T ∥L p→L p ≤ 2 · 31/p, ∥T ∥L∞→L∞
≤ 2 · 21/p.

Proof. Step 1. First, let us assume that f and g are step functions.
Apply Lemma 4.1 to the functions f p and g p and let Ik and Jk be as in Lemma 4.1.

Without loss of generality, the interval Ik is located to the left of the interval Jk .
For every k ≥ 0, let’s define the mapping Sk : X (Ik ∪ Jk) → X (Ik ∪ Jk) as

below. The construction of this mapping will depend on whether f p
|Jk ≤

1
2 g p

|Jk

or f p
|Jk > 1

2 g p
|Jk .
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If f p
|Jk ≤

1
2 g p

|Jk , then

g p
|Jk · m(Jk) ≤ g p

|Ik · m(Ik) + g p
|Jk · m(Jk)

= f p
|Ik · m(Ik) + f p

|Jk · m(Jk) ≤ f p
|Ik · m(Ik) +

1
2 g p

|Jk · m(Jk).

Therefore,
g p

|Jk · m(Jk) ≤ 2 f p
|Ik · m(Ik).

Let lk be a linear bijection from Jk to Ik . We set

Sk x =
g|Ik

f |Ik

· xχIk +
g|Jk

f |Ik

· (x ◦ lk) χJk .

Clearly, Sk is a contraction in the uniform norm.
Let x ∈ L p. We have

∥Sk x∥
p
p ≤

g p
|Ik

f p|Ik

· ∥xχIk ∥
p
p +

g p
|Jk

f p|Ik

· ∥(x ◦ lk) χJk ∥
p
p

≤
g p

|Ik

f p|Ik

· ∥x∥
p
p +

g p
|Jk

f p|Ik

·
m(Jk)

m(Ik)
· ∥x∥

p
p ≤ 3∥x∥

p
p.

Also, we have
∥Sk x∥∞ ≤ ∥x∥∞.

If f p
|Jk > 1

2 g p
|Jk , then we set Sk = Mg f −1 . Clearly, ∥Sk x∥∞ ≤ 21/p

∥x∥∞

and ∥Sk x∥p ≤ 21/p
∥x∥p.

We define S : X → X by
S =

⊕
k≥0

Sk .

Remark that ∥S∥r→r = supk≥0∥Sk∥Lr →Lr for any r ∈ [0, ∞]. Hence,

∥S∥L p→L p ≤ 31/p, ∥S∥L∞→L∞
≤ 21/p.

It remains only to note that S f = g.

Step 2. Now, only assume that f and g are positive and nonincreasing. Define, for
any n ∈ Z,

an = sup{t ∈ (0, ∞) : f (t) ≥ 2n/2
} and bn = sup{t ∈ (0, ∞) : g(t) ≥ 2n/2

}.

Let A be the σ -algebra generated by the intervals (an, an+1) and (bn, bn+1). Define

f p
0 = E[ f p

| A] and g p
0 = E[g p

| A].

Note that f0 and g0 are step functions such that

g p
0 ≺hd f p

0 , 2−1/2 f ≤ f0 ≤ 21/2 f and 2−1/2 g ≤ g0 ≤ 21/2 g.
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Apply Step 1 to f0 and g0 to obtain an operator S and set

T = M f f −1
0

◦ S ◦ Mg0g−1 .

Clearly, T f = g and

∥T ∥L p→L p ≤ 2∥S∥L p→L p ≤ 2 ·21/p, ∥T ∥L∞→L∞
≤ 2∥S∥L∞→L∞

≤ 22
·21/p. □

Lemma 4.5. Let f, g ∈ Lq(0, ∞) be positive nonincreasing functions such that
gq

≺tl f q . Let d > 1. There exists a linear operator T : X (0, ∞) → X (0, ∞) such
that g = T ( f ) and

∥T ∥L0→L0 ≤ 4, ∥T ∥Lq→Lq ≤ 2 · 31/q .

Proof. Following Step 2 of Lemma 4.4, we are reduced to dealing with step
functions.

Apply Lemma 4.1 to the functions gq and f q and let (Ik)k≥1 and (Jk)k≥1 be as
in Lemma 4.1. Without loss of generality, the intervals Ik is located to the left of
the intervals Jk .

Let k ≥ 1. Define the mappings Sk : X (Ik ∪ Jk) → X (Ik ∪ Jk) as below.
Note that since f q

|Ik∪Jk ≺hd gq
|Ik∪Jk , we have

g|Ik ≥ f |Ik ≥ f |Jk ≥ g|Jk .

The construction of Sk will depend on whether we have ∥ f χIk ∥q ≤ ∥ f χJk ∥q or
∥ f χIk ∥q > ∥ f χJk ∥q .

If ∥ f χIk ∥q ≤ ∥ f χJk ∥q , then m(Ik) ≤ m(Jk) and

gq
0 |Ik · m(Ik) ≤ 2 f q

|Jk · m(Jk).

Let lk : Ik → Jk be a linear bijection. We set

Sk x =
g|Ik

f |Jk

(x ◦ lk) χIk +
g
f

xχJk .

Let x ∈ Lq . We have

∥Sk x∥0 ≤ ∥xχJk ∥0 + ∥(x ◦ lk) χIk ∥0 ≤

(
1 +

m(Ik)

m(Jk)

)
∥x∥0.

Thus, ∥Sk∥L0→L0 ≤ 2. We have

∥Sk x∥
q
q =

gq
|Ik

f q |Jk

∥(x ◦ lk) χIk ∥
q
q +

gq
|Jk

f q |Jk

∥xχJk ∥
q
q

≤
gq

|Ik

f q |Jk

·
m(Ik)

m(Jk)
· ∥x∥

q
q +

gq
|Jk

f q |Jk

∥x∥
q
q ≤ 3∥x∥

q
q .

If ∥ f χIk ∥q > ∥ f χJk ∥q , then

gq
|Ik · m(Ik) ≤ 2 f q

|Ik · m(Ik)
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and therefore, g0 ≤ 21/q f0. We now set Sk = Mg f −1 . Obviously, ∥Sk∥L0→L0 ≤ 1
and ∥Sk∥Lq→Lq ≤ 21/q .

We set
S =

⊕
k≥0

Sk .

Since S : X (0, ∞) → X (0, ∞) is defined as a direct sum:

∥S∥L0→L0 = sup
k≥1

∥Sk∥L0→L0 ≤ 2, ∥S∥Lq→Lq = sup
k≥1

∥Sk∥Lq→Lq ≤ 31/q ,

it remains only to note that S f = g. □

Lemma 4.6. Let f, g ∈ (L p + L∞)(0, ∞) be such that |g|
p
≺≺hd | f |

p, f = µ( f )

and g = µ(g). There exists a linear operator T : X → X such that g = T ( f ) and

∥T ∥L p→L p ≤ 2 · 31/p, ∥T ∥L∞→L∞
≤ 2 · 21/p.

Proof. Let (1k)k≥0 be as in Lemma 4.1 and let 1∞ be the complement of
⋃

k≥0 1k .
By Lemma 4.4, there exists Tk : X (1k) → X (1k) such that Tk( f ) = g on 1k and

∥Tk∥L p(Xk)→L p(Xk) ≤ 2 · 91/p, ∥Tk∥L∞(Xk)→L∞(Xk) ≤ 2 · 41/p.

Set T∞ = Mg/ f on X (1∞). We now set

T = T∞

⊕(⊕
k≥0

Tk

)
.

Obviously, T f = g on (0, ∞) and

∥T ∥L p→L p ≤ 2 · 91/p, ∥T ∥L∞→L∞
≤ 2 · 41/p. □

Lemma 4.7. Let f, g ∈ (L0 + Lq)(0, ∞) be such that |g|
q
≺≺tl | f |

q , f = µ( f )

and g = µ(g). There exists a linear operator T : X → X such that g = T ( f ) and

∥T ∥L0→L0 ≤ 4, ∥T ∥Lq→Lq ≤ 2 · 31/q .

Proof. Without loss of generality, g = µ(g) and f = µ( f ). Let (1k)k≥0 be as in
Lemma 4.3 and let 1∞ be the complement of

⋃
k≥0 1k . By Lemma 4.5, there

exists Tk : X (1k) → X (1k) such that Tk( f ) = g on 1k and

∥Tk∥L0(Xk)→L0(Xk) ≤ 8, ∥Tk∥Lq (Xk)→Lq (Xk) ≤ 2 · 91/q .

Set T∞ = Mg/ f on X (1∞). We now set

T = T∞

⊕(⊕
k≥0

Tk

)
.

Obviously, T f = g on (0, ∞) and

∥T ∥L0→L0 ≤ 4, ∥T ∥Lq→Lq ≤ 2 · 31/q . □
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5. Interpolation spaces for the couple (L p, Lq)

In this section, we obtain characterizations of interpolation spaces for the couple
(L p, Lq), in terms of the majorization notions studied earlier. The necessity of the
condition we consider is a direct consequence of the constructions explained in the
previous section.

Theorem 5.1. Let 0 ≤ p < q ≤ ∞. Let E be a quasi-Banach function space such
that E ∈ Int(L p, Lq). There exist cp,E and cq,E in R>0 such that:

(i) Suppose p ̸= 0. For any f ∈ E and g ∈ L p + L∞ if |g|
p
≺≺hd | f |

p, then g ∈ E
and ∥g∥E ≤ cp,E∥ f ∥E .

(ii) Suppose q ̸= ∞. For any f ∈ E and g ∈ L0 + Lq if |g|
q
≺≺tl | f |

q , then g ∈ E
and ∥g∥E ≤ cq,E∥ f ∥E .

Proof. By Lemma 2.9 (for p > 0) or Lemma 3.3 (for p = 0), we may assume
without loss of generality that E is a symmetric function space.

Assume that p ̸= 0. Let f ∈ E and let g ∈ L p + L∞ be such that |g|
p
≺≺hd | f |

p.
Since E is symmetric, we may assume without loss of generality that f = µ( f )

and g = µ(g). By Lemma 4.6, there exists an operator T such that T ( f ) = g and

∥T ∥(L p,L∞)→(L p,L∞) ≤ 2 · 31/p.

Recall that Lq is an interpolation space for the couple (L p, L∞) (one can take,
for example, real or complex interpolation method). Let cp,q be the interpolation
constant of Lq for the couple (L p, L∞). We have

∥T ∥Lq→Lq ≤ cp,q · 2 · 31/p.

Let cE be the interpolation constant of E for (L p, Lq) (see Proposition 2.5).
Then,

∥T ∥E→E ≤ cE · max{1, cp,q} · 2 · 31/p.

Thus,
∥g∥E ≤ ∥T ∥E→E∥ f ∥E ≤ cE · max{1, cp,q} · 2 · 31/p

∥ f ∥E .

This proves the first assertion. The proof of the second one follows mutatis mutandi
using Corollary 3.5 instead of complex interpolation and (for p = 0) Theorem 3.1
instead of Proposition 2.5. □

Lemma 5.2. Assume that 0 < p < q < ∞. Let f, g ∈ L p + Lq such that f = µ( f )

and g = µ(g). Suppose that at every t > 0, one of the following inequalities holds:∫ t

0
g p ds ≤

∫ t

0
f p ds or

∫
∞

t
gq ds ≤

∫
∞

t
f q ds.

Then, there exist g1, g2 ∈ (L p + Lq)+ which satisfies g = g1 + g2, g p
1 ≺≺hd f p

and gq
2 ≺≺tl f q .
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Proof. Set

A =

{
t > 0 :

∫ t

0
g(s)p ds ≤

∫ t

0
f (s)p ds

}
,

B =

{
t > 0 :

∫
∞

t
g(s)q ds ≤

∫
∞

t
f (s)q ds

}
.

Let
u+(t) = inf{s ∈ A : s ≥ t}, u−(t) = sup{s ∈ A : s ≤ t},

v+(t) = inf{s ∈ B : s ≥ t}, v−(t) = sup{s ∈ B : s ≤ t}.

Note that f pχ(u−(t),u+(t)) ≺hd g pχ(u−(t),u+(t)) for t /∈ A and, therefore,

g(u+(t) − 0) ≤ f (u+(t) − 0).

Set h1(t) = g(u+(t) − 0), t > 0. By definition, u+(t) ≥ t for all t > 0. Since g
is decreasing, it follows that h1 ≤ g. Set h2 = gχB . Since u+(t) = t for t ∈ A, it
follows that h1 = g on A. Thus, h1 + h2 ≥ gχA + gχB ≥ g.

We claim that ∫ t

0
µ(s, h1)

p ds ≤

∫ t

0
f (s)p ds.

Indeed, for t ∈ A, we have∫ t

0
h1(s)p ds ≤

∫ t

0
g(s)p ds ≤

∫ t

0
f (s)p ds.

For t /∈ A, we have h1(s) = g(u+(t)) for all s ∈ (u−(t), u+(t)). Thus,∫ t

0
h1(s)p ds =

∫ u−(t)

0
h1(s)p ds +

∫ t

u−(t)
h1(s)p ds

≤

∫ u−(t)

0
g(s)p ds +

∫ t

u−(t)
g(u+(t))p ds.

Since ∫ u−(t)

0
g(s)p ds =

∫ u−(t)

0
f (s)p ds, g(u+(t)) ≤ f (u+(t)),

it follows that∫ t

0
h1(s)p ds ≤

∫ u−(t)

0
f (s)p ds +

∫ t

u−(t)
f (u+(t))p ds ≤

∫ t

0
f (s)p ds.

Since h1 = µ(h1), the claim follows.
We claim that ∫

∞

t
µ(s, h2)

q ds ≤

∫
∞

t
f (s)q ds.
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For t ∈ B, we have∫
∞

t
h2(s)q ds ≤

∫
∞

t
g(s)q ds ≤

∫
∞

t
f (s)q ds.

For t /∈ B, we have∫
∞

t
h2(s)q ds =

∫
∞

v+(t)
h2(s)q ds ≤

∫
∞

v+(t)
g(s)q ds =

∫
∞

v+(t)
f (s)q ds ≤

∫
∞

t
f (s)q ds.

In either case, we have∫
∞

t
µ(s, h2)

q ds ≤

∫
∞

t
h2(s)q ds ≤

∫
∞

t
f (s)q ds.

This proves the claim.
Setting

g1 =
h1

h1 + h2
g, g2 =

h2

h1 + h2
g,

we complete the proof. □

Theorem 5.3. Let 0 ≤ p < q ≤ ∞ with either p ̸= 0 or q ̸= ∞. Let E be a
quasi-Banach function space. Assume that there exist cp,E and cq,E in R>0 such
that:

(i) Suppose p ̸= 0. For any f ∈ E and g ∈ L0 + L p, if |g|
p
≺≺hd | f |

p, then g ∈ E
and ∥g∥E ≤ cp,E∥ f ∥E .

(ii) Suppose q ̸= ∞. For any f ∈ E and g ∈ L0 + Lq , if |g|
q
≺≺tl | f |

q , then g ∈ E
and ∥g∥E ≤ cq,E∥ f ∥E .

Then E belongs to Int(L p, Lq).

Proof. Assume that p ̸= 0. Let us show that the first condition implies E ⊂ L p +L∞.
Indeed, assume the contrary and choose f ∈ E such that µ( f ) χ(0,1) /∈ L p. Let

fn = min
{
µ

(
1
n
, f

)
, µ( f ) χ(0,1)

}
, n ≥ 1.

Obviously, ∥ fn∥E ≤∥µ( f ) χ(0,1)∥E ≤∥ f ∥E . On contrary, ∥ fn∥
p
pχ(0,1)≺≺hd f p

n . By
the first condition on E , we have ∥ fn∥p∥χ(0,1)∥E ≤ cp,E∥ f ∥E . However, we have
∥ fn∥p ↑ ∥µ( f ) χ(0,1)∥p = ∞. This contradiction shows that our initial assumption
was incorrect. Thus, E ⊂ L p + L∞.

A similar argument shows that the second condition implies E ⊂ L0 + Lq . Thus,
a combination of both conditions implies E ⊂ L p + Lq .

Let T be a contraction on (L p, Lq) and f ∈ E . To conclude the proof, it suffices
to show that T f belongs to E . First, note that

K (t, T f, L p, Lq) ≤ K (t, f, L p, Lq).
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Assume that p > 0 and q < ∞. Let α−1
=

1
p −

1
q . By the Holmstedt formula for the

K -functional (see [14]), there exists a constant cp,q > 0 such that for any t ∈ R>0,(∫ tα

0
µ(s, T f )p ds

)1/p

+ t
(∫

∞

tα
µ(s, T f )q ds

)1/q

≤ cp,q

((∫ tα

0
µ(s, f )p ds

)1/p

+ t
(∫

∞

tα
µ(s, f )q ds

)1/q )
.

Hence, for any given t > 0, we have either∫ tα

0
µ(s, T f )p ds ≤

∫ tα

0
µ(s, cp,q f )p ds

or ∫
∞

tα
µ(s, T f )q ds ≤

∫
∞

tα
µ(s, cp,q f )q ds.

By Lemma 5.2, one can write

(5-1) µ(T f ) = g1 + g2, g p
1 ≺≺hd (cp,qµ( f ))p, g2 ≺≺tl (cp,qµ( f ))q .

By assumption, we have

∥g1∥E ≤ cp,E∥ f ∥E , ∥g2∥E ≤ cq,E∥ f ∥E .

By triangle inequality, we have

∥T f ∥E ≤ cp,q,E∥ f ∥E .

Assume now that p > 0 and q = ∞. This case is simpler since by the Holmstedt
formula (see [14]), there exists cp ∈ R>0 such that for any t ∈ R>0,(∫ t p

0
µ(s, T f )p ds

)1/p

≤ cp

(∫ t p

0
µ(s, f )p ds

)1/p

.

This means that |T f |
p
≺≺hd |cp f |

p so by assumption (1), T f belongs to E and

∥T f ∥E ≤ cp cp,E∥ f ∥E .

The case of p = 0 and q < ∞ is given by Corollary 3.4. □

Theorem 1.1 claimed in the introduction compiles some results of this section.

Proof of Theorem 1.1. Assertion (a) is obtained by combining Theorems 5.1 and 5.3
with q = ∞.

Assertion (b) is derived similarly from Theorems 5.1 and 5.3 by applying them
with p = 0.

Finally, using assertions (a) and (b) of Theorem 1.1, Theorems 5.1 and 5.3, for
0 < p < q < ∞, one obtains Theorem 1.1(c). □
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Remark 5.4. In the spirit of Corollary 3.4, we could have used a nonquantitative
condition to deal with the case of q = ∞ in Theorem 5.3. Let E be a quasi-Banach
function space and p, q ∈ (0, ∞). This means that the following two conditions
are equivalent:

(i) For any f ∈ E , g ∈ L p + L∞,

|g|
p
≺≺hd | f |

p
⇒ g ∈ E .

(ii) There exists c > 0 such that for any f ∈ E , g ∈ L p + L∞,

|g|
p
≺≺hd | f |

p
⇒ g ∈ E and ∥g∥E ≤ c∥ f ∥E .

Similarly, the following two conditions are equivalent:

(i) For any f ∈ E , g ∈ L0 + Lq ,

|g|
q
≺≺tl | f |

q
⇒ g ∈ E .

(ii) There exists c > 0 such that for any f ∈ E , g ∈ L0 + Lq ,

|g|
q
≺≺tl | f |

q
⇒ g ∈ E and ∥g∥E ≤ c∥ f ∥E .

6. Interpolation spaces for couples of ℓ p-spaces

In this section, we show that our approach to the Lorentz–Shimogaki and Arazy–
Cwikel theorems also applies to sequence spaces. We follow a structure similar
to the previous sections, proving partition lemmas, then constructing bounded
operators on couples (ℓp, ℓq) with suitable properties to finally conclude on the
interpolation spaces of the couple (ℓp, ℓq). Additional arguments involving Boyd
indices will be required to prove Theorem 1.2.

We identify sequences with bounded functions on (0, ∞) which are almost
constant on intervals of the form (k, k + 1), k ∈ Z+ by

i : ℓ∞
→ L∞, (uk)k∈Z+ 7→

∞∑
k=0

uk 1(k,k+1).

An interpolation theorem for the couple (ℓ p, ℓq). We start with a partition lemma
playing, for sequence spaces, the role of Lemma 4.3.

Lemma 6.1. Let a = (an)n∈Z+ , b = (bn)n∈Z+ be two positive decreasing sequences
such that b ≺≺tl a. There exists a sequence (1n)n∈Z+ of subsets of Z+ such that:

(i) For every k ∈ Z+, we have |{n ∈ Z+
: k ∈ 1n}| ≤ 3.

(ii)
∑

k∈1n
ak ≥ bn for any n ∈ Z+.
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Proof. Define I = {n ∈ Z+
: bn > an}. For n /∈ I , set 1n = {n}.

For any n ∈ Z+, define

in = sup
{

i :

∞∑
k=i

ak ≥

∞∑
k=n

bk

}
and for n ∈ I , let 1n = {in, . . . , in+1}.

From the definition of in , we have∑
k≥in

ak ≥

∑
k≥n

bk .

From the definition of in+1, we have∑
k>in+1

ak <
∑

k≥n+1

bk .

Taking the difference of these inequalities, we infer that∑
k∈1n

ak ≥ bn.

This proves the second condition.
Note that since b ≺≺tl a, we write in ≥ n for any n ∈ Z+. Hence, if n ∈ I , then

bn > an ≥ ain+1 . Furthermore, by definition of in+1, we have∑
k>in+1

ak <

∞∑
k=n+1

bk, so
∞∑

k=in+1

ak <

∞∑
k=n

bk .

Hence, by definition of in , we have in+1 > in for n ∈ I .
Let us now check the first condition. Suppose there exist distinct numbers

n1, n2, n3 ∈ I such that k ∈ 1n1, 1n2, 1n3 . Without loss of generality, n1 < n2 < n3.
Since k ∈ 1n1 , it follows that k ≤ in1+1 ≤ in2 . Since k ∈ 1n3 , it follows that
k ≥ in3 ≥ in2+1. Hence, in2+1 ≤ k ≤ in2 and, therefore, in2+1 = in2 . Since n2 ∈ I ,
it follows in2+1 > in2 . This contradiction shows that |{n ∈ I : k ∈ 1n}| ≤ 2. By
definition, k also belongs to at most one set 1n , n /∈ I . Consequently,

|{n ∈ Z+
: k ∈ 1n}| ≤ 3. □

From the partition lemma, we deduce an operator lemma similar to Lemma 4.6.
It extends Proposition 2 in [3], which is established there for the special case p = 1
by a completely different method.

Lemma 6.2. Let p ≥ 1. Let a, b ∈ ℓp such that |b|
p
≺≺tl |a|

p. Then there exists an
operator T : ℓp

→ ℓp such that:

(i) T (a) = b.

(ii) ∥T ∥p→p ≤ 31/p and ∥T ∥0→0 ≤ 3.
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Proof. We can assume that both sequences are nonnegative and decreasing. Apply
Lemma 6.1 to |a|

p and |b|
p. For every n ∈ Z+, choose a linear form ϕn on ℓp of

norm less than 1, supported on 1n and such that ϕn(a) = ϕn(a11n ) = bn . Define

T : x ∈ ℓp
7→ (ϕn(x))n∈Z+ .

By construction, T (a) = b. Let us check the norm estimates. Let x ∈ ℓp, then

∥T (x)∥p
p =

∑
n∈Z+

|ϕn(x)|p
=

∑
n∈Z+

|ϕn(x11n)|
p

≤

∑
n∈Z+

∑
k∈1n

|xk |
p
=

∑
k∈Z+

|{n : k ∈ 1n}||xk |
p
≤ 3∥x∥

p
p.

The second estimate is clear, using once again the fact that an integer k belongs to
at most three 1n’s. □

The following remarks were communicated to the authors by Cwikel and Nilsson.

Remark 6.3. A bounded linear operator on ℓp, p ≤ 1 extends automatically to a
bounded linear operator on ℓ1.

Proof. Indeed, let (en)n∈Z+ be the canonical basis of ℓ∞. Let T be a contraction
on ℓp, p < 1. Then by Hölder’s inequality ∥T (en)∥1 ≤ ∥T (en)∥p ≤ ∥T ∥p→p. By
the triangle inequality, for any finite sequence a = (an)n∈Z+ ,

∥T (an)∥1 ≤

∑
n∈Z+

|an|∥T (en)∥1 ≤ ∥a∥1∥T ∥p→p.

Hence, T extends to a contraction on ℓ1. □

Remark 6.4. The condition p ≥ 1 in Lemma 6.2 is necessary.

Proof. Let us show that Lemma 6.2 cannot be true for p < 1. Assume by contradic-
tion that there exists c > 0 such that for any finite sequences a and b in ℓp such
that |b|

p
≺≺tl |a|

p there exists T with ∥T ∥p→p ≤ c and T (a) = b. By Remark 6.3
above, we also have ∥T ∥1→1 ≤ c. In particular, ∥b∥1 ≤ c∥a∥1. By considering
b = e1 and a =

1
N 1/p

∑N
i=1 ei for N large enough, one obtains a contradiction. □

We will not prove a sequence version of Lemma 4.5 to avoid the repetition of
too many similar arguments. Fortunately, the expected result already appears in the
literature, see [10, Theorem 3].

Lemma 6.5. Let p > 0. Let a, b ∈ ℓ∞ such that |b|
p
≺≺hd |a|

p. Then there exists
an operator T : ℓp

→ ℓp such that:

(i) T (a) = b.

(ii) ∥T ∥p→p ≤ 81/p and ∥T ∥∞→∞ ≤ 21/p.

We conclude this subsection with a new interpolation theorem.
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Theorem 6.6. Let p < q ∈ (0, ∞] such that q ≥ 1. Let E be a quasi-Banach
sequence space. Then E belongs to Int(ℓp, ℓq) if and only if there exists cp,E

and cq,E in R>0 such that:

(i) For any u ∈ E and v ∈ ℓ∞, if |v|
p
≺≺hd |u|

p, then v ∈ E and ∥v∥E ≤ cp,E∥u∥E .

(ii) Suppose q < ∞. For any u ∈ E and v ∈ ℓ∞, if |v|
q

≺≺tl |u|
q , then v ∈ E

and ∥v∥E ≤ cq,E∥u∥E .

Proof. The proof of the “only if” implication is identical to the proof of Theorem 5.1
using Lemmas 6.2 and 6.5 instead of Lemmas 4.5 and 4.4. The “if” implication is
given by [8, Theorem 4.7]. □

Upper Boyd index. Let us now recall the definition of the upper Boyd index, in the
case of sequence spaces. For any n ∈ N define the dilation operator

Dn : ℓ∞
→ ℓ∞, (uk)k∈Z+ 7→ (u⌊k/n⌋)k∈Z+ .

Let E be a symmetric function space. Define the Boyd index associated to E by

βE = lim
k→∞

log∥Dk∥E→E

log k
.

Note that since E is a quasi-Banach space, βE < ∞.
In the next proposition, we relate the upper Boyd index to an interpolation

property. We follow [23, Theorem 2].

Proposition 6.7. Assume that E is a quasi-Banach symmetric sequence space. Let
p < 1/βE . There exists a constant C such that for any u ∈ E and v ∈ ℓ∞, satisfying
|v|

p
≺≺hd |u|

p, we have v ∈ E and ∥v∥E ≤ C∥u∥E .

Define the map V : ℓ∞ → ℓ∞ by setting

V u =

∞∑
n=0

2−n D2n u

and the map C : ℓ∞ → ℓ∞ by

(Cu)(n) =
1

n + 1

n∑
i=0

un.

Lemma 6.8. If p < 1/βE , then

∥(V (u p))1/p
∥E ≤ cp,E∥u∥E , 0 ≤ u ∈ E .

Proof. Let E p be the p-concavification of E , that is,

E p = { f : | f |
1/p

∈ E}, ∥ f ∥E p = ∥| f |
1/p

∥
p
E .
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Obviously, E p is a quasi-Banach space. Apply the Aoki–Rolewicz theorem to the
space E p and fix q = qp,E > 0 such that∥∥∥∥∑

n≥0

xn

∥∥∥∥q

E p

≤ C p,E

∑
n≥0

∥xn∥
q
E p

.

For every u ∈ E , we have

∥(V (u p))1/p
∥

qp
E = ∥V (u p)∥

q
E p

=

∥∥∥∥ ∞∑
n=0

1
2n (D2n u)p

∥∥∥∥q

E p

≤ C p,E

∞∑
n=0

∥∥∥∥ 1
2n (D2n u)p

∥∥∥∥q

E p

= C p,E

∞∑
n=0

2−nq
∥D2n u∥

qp
E .

Let r ∈ (p, β−1
E ). By the definition of βE , there exists cp,E > 0 such that

∥Dn∥E→E ≤ cp,E n1/r for any n ∈ N. Therefore,

∥(V (u p))1/p
∥

qp
E ≤ C p,E · cq

p,E ·

∞∑
n=0

2−nq 2nqp/r
∥u∥

qp
E

= C p,E · cq
p,E ·

2q

2q − 2qp/r · ∥u∥
qp
E . □

Lemma 6.9. If x = µ(x), then Cx ≤ 3V x for every x ∈ ℓ∞.

Proof. Let k ≥ 0. Since x is decreasing, it follows that

(Cx)(2k
− 1) =

1
2k

(
x(0) +

k−1∑
i=0

2i+1
−1∑

j=2i

x( j)
)

≤
1
2k

(
x(0) +

k−1∑
i=0

2i x(2i )

)
.

On the other hand, we have

(V x)(2k+1
− 1) =

∑
n≥0

2−n x
(⌊

2k+1
− 1

2n

⌋)

=

k∑
n=0

2−nx(2k+1−n
− 1) +

∞∑
n=k+1

2−n x(0)

=
1
2k

(
x(0) +

k∑
i=0

2i x(2i+1
− 1)

)
.
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Again using the fact that x is decreasing, we obtain

k−1∑
i=0

2i x(2i ) = x(1) +

k−2∑
i=0

2i+1 x(2i+1)

≤ x(1) + 2
k−2∑
i=0

2i x(2i+1
− 1) ≤ 3

k∑
i=0

2i x(2i+1
− 1).

Combining the three previous inequalities, we have just shown that for any k ≥ 0,

(Cx)(2k
− 1) ≤ 3(V x)(2k+1

− 1).

Now let n ≥ 0 and choose k such that n ∈ [2k
− 1, 2k+1

− 1]. Since Cx and V x are
decreasing, we have

(Cx)(n) ≤ (Cx)(2k
− 1) ≤ 3(V x)(2k+1

− 1) ≤ 3(V x)(n). □

Proof of Proposition 6.7. Without loss of generality, u = µ(u) and v = µ(v). Since
v p

≺≺hd u p, it follows that

|v|
p
≤ C(|v|

p) ≤ C(|u|
p) ≤ 3V (|u|

p),

where we used Lemma 6.9 to obtain the last inequality. By Lemma 6.8, we have

∥v∥E ≤ 31/p
∥(V (|u|

p))1/p
∥E ≤ cp,E∥u∥p. □

We are now ready to deliver a complete resolution of the conjecture stated by
Levitina et al. in [20].

Proof of Theorem 1.2. Let E be a quasi-Banach sequence space. Let q ≥ 1. Recall
that Theorem 1.2 states that the following two conditions are equivalent:

(a) There exists p < q such that E is an interpolation space for the couple (ℓp, ℓq).

(b) There exists c > 0 such that for any u ∈ E and |v|
q

≺≺tl |u|
q , then v ∈ E

and ∥v∥E ≤ c∥u∥E .

Note that by Lemma 2.9, we may assume that E is a symmetric space.

(a) ⇒ (b). This is immediate by Theorem 6.6.

(b) ⇒ (a). Let p < 1/βE . By Proposition 6.7, for any sequence u ∈ E and v ∈ ℓ∞,
if |v|

p
≺≺hd |u|

p, v ∈ E and ∥v∥E ≤ cp,E∥u∥E . Applying Theorem 6.6 for indices
p and q , we obtain that E belongs to Int(ℓp, ℓq). □
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