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COMMUTATIVITY AND (IN)FINITENESS OF IDEMPOTENTS

VLADIMIR MANUILOV

We have shown recently that, given a metric space X , the coarse equivalence
classes of metrics on the two copies of X form an inverse semigroup M(X).
Here we study the property of idempotents in M(X) of being finite or infinite,
which is similar to this property for projections in C∗-algebras. We show
that if X is a free group then the unit of M(X) is infinite, while if X is a free
abelian group then it is finite. As a by-product, we show that the inverse
semigroup M(X) is not a quasiisometry invariant. We also show that M(X)

is commutative if it is Clifford, and give a geometric description of spaces X
for which M(X) is commutative.

1. Introduction

Given metric spaces (X, dX ) and (Y, dY ), a metric d on X⊔Y that extends the metrics
dX on X and dY on Y , depends only on the values d(x, y), x ∈ X , y ∈ Y , and it may
be not easy to check which functions d : X×Y → (0,∞) determine a metric on X⊔Y .
The problem of description of all such metrics is difficult due to the lack of a nice
algebraic structure on the set of metrics, but, passing to coarse equivalence of metrics,
we get an algebraic structure, namely, that of an inverse semigroup [Manuilov 2021a].
Recall that two metrics, b, d , on a space Z are coarsely equivalent, b ∼ d , if there
exist monotone functions ϕ,ψ : [0,∞)→ [0,∞) such that

lim
t→∞

ϕ(t)= lim
t→∞

ψ(t)= ∞

and
ϕ(d(z1, z2))≤ b(z1, z2)≤ ψ(d(z1, z2))

for any z1, z2 ∈ Z . We denote by [d] the coarse equivalence class of a metric d.
Our standard reference on metric spaces is [Burago et al. 2001].

Let M(X, Y ) denote the set of all metrics d on X ⊔ Y such that:

• The restriction of d onto X and Y are dX and dY respectively.

• infx∈X,y∈Y d(x, y) > 0.
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Coarse equivalence classes of metrics in M(X, Y ) can be considered as mor-
phisms from X to Y [Manuilov 2019], where the composition b ◦ d of a metric d
on X ⊔ Y and a metric b on Y ⊔ Z is given by the metric determined by

(b ◦ d)(x, z)= inf
y∈Y

[d(x, y)+ b(y, z)], x ∈ X, z ∈ Z .

When Y = X , we call X ⊔ X the double of X . In what follows we identify the
double of X with X × {0, 1}, and write X for X × {0} (resp., x for (x, 0)) and X ′

for X × {1} (resp., x ′ for (x, 1)). We also write M(X) for M(X, X).
The main result of [Manuilov 2021a] is that the semigroup M(X)= M(X)/∼

(with respect to this composition) of coarse equivalence classes of metrics on the
double of X is an inverse semigroup with the unit element 1 and the zero element 0,
and the unique pseudoinverse for [d] ∈ M(X) is the coarse equivalence class of the
metric d∗ given by d∗(x, y′)= d(x ′, y), x, y ∈ X .

Recall that a semigroup S is an inverse semigroup if for any s ∈ S there exists a
unique t ∈ S (denoted by s∗ and called a pseudoinverse) such that s = sts and t = tst
[Lawson 1998]. Philosophically, inverse semigroups describe local symmetries in a
similar way as groups describe global symmetries, and technically, the construction
of the (reduced) group C∗-algebra of a group generalizes to that of the (reduced)
inverse semigroup C∗-algebra [Paterson 1999]. It is known that any two idempotents
in an inverse semigroup S commute, and that there is a partial order on S defined
by s ≤ t if s = ss∗t . Our standard references for inverse semigroups are [Lawson
1998] and [Howie 1995].

Close relation between inverse semigroups and C∗-algebras allows to use classifi-
cation of projections in C∗-algebras for idempotents in inverse semigroups. Namely,
as in C∗-algebra theory, we call two idempotents, e, f ∈ E(S) von Neumann
equivalent (and write e ∼ f ) if there exists s ∈ S such that s∗s = e, ss∗

= f . An
idempotent e ∈ E(S) is called infinite if there exists f ∈ E(S) such that f ⪯ e,
f ̸= e, and f ∼ e. Otherwise e is finite. An inverse semigroup is finite if every
idempotent is finite, and is weakly finite if it is unital and the unit is finite. A
commutative unital inverse semigroup is patently finite.

In [Manuilov 2021b] we gave a geometric description of idempotents in the
inverse semigroup M(X) (there are two types of idempotents, named type I and type
II) and showed in Lemma 3.3 of [loc. cit.] that the type is invariant under the von Neu-
mann equivalence. In Part I, we study the property of weak finiteness for M(X) (i.e.,
finiteness of the unit element) and discuss its relation to geometric properties of X .

We start with several examples of finite or infinite idempotents, and then show
that if X is a free group then M(X) is not weakly finite, while if X is a free abelian
group then it is weakly finite. We also show that the inverse semigroup M(X) is
not a quasiisometry invariant. The property of being weakly finite is also not a
coarse invariant. We don’t know if it is a quasiisometry invariant.
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In Part II, we give a geometric description of spaces, for which the inverse
semigroup M(X) is commutative, and show that the condition of being a Clifford
inverse semigroup (i.e., that ss∗

= s∗s for any s ∈ S) guarantees that M(X) is
commutative.

Part I. Weak finiteness of M(X)

2. Geometric description of weak finiteness

Two maps f, g : X → X are called equivalent if there exists C > 0 such that
dX ( f (x), g(x)) < C for any x ∈ X . A map f : X → X is an almost isometry if
there exists C > 0 such that:

• |dX ( f (x), f (y))− dX (x, y)|< C for any x, y ∈ X .

• For any y ∈ X there exists x ∈ X such that dX ( f (x), y) < C .

(The latter condition provides existence of an “inverse” map g : X → X such that
f ◦ g and g ◦ f are equivalent to the identity map; this map is also an almost
isometry, but with possibly greater constant C ; if f is surjective then this property
is superfluous.) We call f a C-almost isometry when we need an explicit value of
the constant C .

In a metric space, it makes sense to define equivalence of subsets as follows:
for A, B ⊂ X we say that A ∼ B if there exists C > 0 such that A ⊂ NC(B) and
B ⊂ NC(A), where NC(Y )= {x ∈ X : dX (x, Y ) < C} denotes the C-neighborhood
of Y ⊂ X . In particular, a subset A ⊂ X is equivalent to X if it is a C-net, i.e., if
there exists C > 0 such that for any x ∈ X there exists y ∈ A with dX (x, y) < C .

Theorem 2.1. The following are equivalent:

(1) M(X) is weakly finite.

(2) If there exists an almost isometry X → A ⊂ X then the subset A is equivalent
to X.

Proof. For B ⊂ X , set

d B(x, y′)= inf
u∈B

[dX (x, u)+ 1 + dX (u, y)].

Then dX is a metric on the double of X , and [d B
] is an idempotent in M(X)

[Manuilov 2021a]. It was shown in Lemma 3.3 of [Manuilov 2021b] that if d is a
metric on the double of X and [d∗

][d] = [d B
] then there exists A ⊂ X such that

[d][d∗
] = [d A

].
Suppose that there exists a C-almost isometry f : X → A for some A ⊂ X and

for some C > 0. Then set

d(x, y′)= inf
u∈X

[dX (x, u)+ C + dX ( f (u), y)].
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It was shown in Lemma 3.2 of [Manuilov 2019] that this defines a metric on the
double of X . Then

d∗
◦ d(x, x ′)= inf

y∈X
[d(x, y′)+ d∗(y, x ′)] = 2 inf

y∈X
d(x, y′)

= 2 inf
u,y∈X

[dX (x, u)+ C + dX ( f (u), y)] ≤ 2C

(we might take y = f (u) and u = x), hence [d∗
][d] = 1.

d ◦ d∗(x, x ′)= inf
y∈X

[d∗(x, y′)+ d(y, x ′)] = 2 inf
y∈X

d(y, x ′)

= 2 inf
u,y∈X

[dX (y, u)+ C + dX ( f (u), x)]

= 2C + 2 inf
u∈X

dX (x, f (u))= 2C + 2dX (x, f (X))

(taking u = y), so, using that f (X) is C-dense in A, we see that

|d ◦ d∗(x, x ′)− dX (x, A)| ≤ 4C,

hence [d][d∗
] = [d A

] by Proposition 3.2 of [Manuilov 2021a]. If M(X) is weakly
finite then [d A

] = 1, hence, by Proposition 4.2 of [Manuilov 2021a], X lies in a
C-neighborhood of A for some C > 0.

In the opposite direction, let M(X) be not weakly finite. Then there exists a
metric d on the double of X such that [d∗

][d] = 1, but [d][d∗
] ̸= 1. By Lemma 3.3

of [Manuilov 2021b], [d ◦ d∗
] = [d A

], where A ⊂ X is constructed as follows. As
[d∗

][d] = 1, there exists C > 0 such that

d∗
◦ d(x, x ′)= 2d(x, X ′) < 2C

for any x ∈ X , i.e., for any x ∈ X there exists y ∈ X such that d(x, y′) < C . Then
A = {y ∈ X : d(X, y′) < C}.

Given x ∈ X , there may be several y’s such that d(x, y′) < C . Choose one of
them and set f (x)= y. It follows from

d(X, f (x)′)≤ d(x, f (x)′) < C

that f (x) ∈ A. If x1, x2 ∈ X then the triangle inequality for the quadrangle
x1, x2, f (x1)

′, f (x2)
′ gives |dX ( f (x1), f (x2))− dX (x1, x2)| < 2C . If z ∈ A then

d(X, z′) < C , hence there exists x ∈ X such that d(x, z′) < C . Then

dX (z, f (x))= dX (z′, f (x)′)≤ d(z′, x)+ d(x, f (x)′) < 2C,

hence f is a 2C-almost isometry. Finally, the condition [d][d∗
] ̸= 1 implies that A

is not equivalent to X . □
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3. Some examples

The following example shows that in M(X), for an appropriate X , we can imitate
examples of partial isometries and projections in a Hilbert space.

Example 3.1. Let l1(N) be the space of infinite l1 sequences, with the metric given
by the l1-norm, and let

Xn = {(0, . . . , 0, t, 0, . . .) : t ∈ [0,∞)}

with t at the n-th place, n ∈ N. Set

X =

∞⋃
n=1

Xn ⊂ l1(N), A =

∞⋃
n=2

Xn ⊂ l1(N).

The set A is not equivalent to X , and there is an obvious isometry f : X → A that
isometrically maps Xn to Xn+1, n ∈ N. Thus, 1 is infinite. Let d be a metric on
the double of X induced by f . Although d seems similar to a one-sided shift in a
Hilbert space, it behaves differently: h = [d ◦ d∗

] is orthogonally complemented,
i.e., there exists e ∈ E(M(X)) such that e ∨ h = 1, e ∧ h = 0 (recall that E(M(X))
is a lattice [Manuilov 2021b]), but the complement e is not a minimal idempotent,
i.e., there exists a lot of idempotents j ∈ E(M(X)) such that j ≤ e, j ̸= e.

On the other hand, if X ⊂ [0,∞) with the standard metric then the inverse
semigroup M(X) is commutative [Manuilov 2021a, Proposition 7.1], hence any
idempotent can be equivalent only to itself, hence is finite. In Part II, we shall give
a geometric description of all metric spaces with commutative M(X), which is then
patently finite.

The next example shows that the picture may be more complicated.

Proposition 3.2. There exists an amenable space X of bounded geometry and
s ∈ M(X) such that s∗s = 1, but ss∗

̸= 1.

Proof. Consider l∞(N) with sup metric, and let

xn = (log 2, log 3, . . . , log(n − 1), log n, 0, 0, . . . ) ∈ l∞(N),

X = {xn : n ∈ N} ⊂ l∞(N); A = {x2n : n ∈ N}.

Set
f : X → A; f (xn)= x2n, n ∈ N.

Given n < m, we have

dX (xn, xm)= log m, dX ( f (xn), f (xm))= dX (x2n, x2m)= log(2m),
hence

dX ( f (xn), f (xm))− dX (xn, xm)= log(2m)− log m = log 2.

As f is surjective, it is an almost isometry.
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Note that

dX (x2n−1, x2m)=

{
log(2m) if 2n − 1< 2m,
log(2n − 1) if 2n − 1> 2m,

hence
dX (x2n−1, A)= inf

m∈N
dX (x2n−1, x2m)= log(2m),

thus A ⊂ X is not equivalent to X , hence M(X) is not weakly finite.
Note that X is amenable. Set Fn = {x1, . . . , xn} ⊂ X . Let Nr (A) denote the

r-neighborhood of the set A. Then Nr (Fn) \ Fn is empty when log(n + 1) > r ,
hence {Fn}n∈N is a Følner sequence. For r = log m, the ball Br (xn) of radius r
centered at xn contains either no other points besides xn (if n ≥ m +1), or it consists
of the points x1, . . . , xm (if n ≤ m), hence the metric on X is of bounded geometry.
In fact, this space is of asymptotic dimension zero. □

4. Case of free groups

In this section we show that M(X) is not weakly finite for two classes of groups,
both of which include free groups.

Let X =0 be a finitely generated group with the word length metric dX . Consider
the following Property (I):

(i1) X = Y ⊔ Z , and for any D > 0 there exists z ∈ Z such that dX (z, Y ) > D.

(i2) There exist g, h ∈ 0 such that gY ⊂ Y , h Z ⊂ Y and gY ∩ h Z = ∅.

(i3) There exists C > 0 such that |dX (gy, hz)−dX (y, z)|<C for any y ∈ Y , z ∈ Z .

Property (I) looks similar to nonamenability, but, at least formally, is neither
stronger nor weaker than nonamenability.

Lemma 4.1. The free group F2 on two generators satisfies Property (I).

Proof. Let a and b be the generating elements of F2, and let Y ⊂ X be the set of
all reduced words in a, a−1, b and b−1 that begin with a or a−1, Z = X \ Y . Let
g = ab, h = a2. Clearly, gY ⊂ Y and h Z ⊂ Y .

If z begins with an , n > D, then dX (z, Y )≥ n.
If y ∈ Y , z ∈ Z then

dX (aby, a2z)= |y−1b−1a−1a2z| = |y−1b−1az| = |y−1z| + 2 = dX (y, z)+ 2,

as the word y−1b−1az cannot be reduced any further (y−1 ends with a±, and z
either begins with b±, or is an empty word). □

Theorem 4.2. Let X = 0 be a group with Property (I). Then X is not weakly finite.

Proof. We shall prove that there exists an almost isometry f : X → A ⊂ X , where
A is not equivalent to X .
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Let X = Y ⊔ Z , g, h ∈ 0 satisfy the conditions of Property (I). Define a map
f : X → X by setting

f (x)=

{
gx if x ∈ Y ;

hx if x ∈ Z .

The maps f |Y and f |Z are left multiplications by g and h, respectively, hence
are isometries. If y ∈ Y , z ∈ Z then (i3) holds for some C > 0, hence

|dX ( f (x), f (y))− dX (x, y)|< C

holds for any x, y ∈ X . Set A = f (X), then f is an almost isometry from X to A.
By (i1), A is not equivalent to X . □

Our next argument also works for free groups, but refers to non-co-Hopfian
groups, i.e., groups isomorphic to a proper subgroup.

Theorem 4.3. Let X = G be a finitely generated group with the word length metric,
and let A = H ⊂ G be an infinite index subgroup. Suppose that there exists a map
f : G → H that is both an isomorphism and an almost isometry. Then X is not
weakly finite.

Proof. We need only to check that A is not equivalent to X . Suppose it is, i.e.,
there exists C > 0 such that for any x ∈ X there exists y ∈ H with dX (x, y) < C .
As H is of infinite index, there are infinitely many different cosets Hgi , gi ∈ G,
i ∈ N. Let hi ∈ H satisfy dX (gi , hi ) < C , i ∈ N, which means that |g−1

i hi | < C .
As G is finitely generated, the set of group elements g with |g| < C is finite, so
there exist i ̸= j such that g−1

i hi = g−1
j h j , or, equivalently, h−1

i gi = h−1
j g j , hence

Hgi = Hg j — a contradiction. □

Remark 4.4. It is easy to find examples of isomorphisms that are also almost
isometries. Indeed, if γ ∈ G then the map f (g)= γ−1gγ is an example: it follows
from dX ( f (g1), f (g2))= |γ−1g−1

1 g2γ | and dX (g1, g2)= |g−1
1 g2| that

|dX ( f (g1), f (g2))− dX (g1, g2)| ≤ 2|γ |

for any g1, g2 ∈ G. There are many examples when the subgroup H = γ−1Gγ is
of infinite index in G, e.g., if G is a free group, and γ is not a generator.

5. Case of abelian groups

A positive result is given by the following theorem.

Theorem 5.1. Let X = Rn , with a norm ∥·∥, and let the metric dX be determined
by the norm ∥·∥. Then M(X) is weakly stable.
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Proof. We have to show that if f : X → X is a C-almost isometry for some C > 0
then f (X) is equivalent to X . Suppose the contrary: for any n ∈ N there exists
xn ∈ X such that dX (xn, f (X)) > n.

First, note that we can replace f by another almost isometry g, which is continu-
ous and close to f . Namely, choose a triangulation of X by simplices with length
of edges greater than C and with a uniform lower bound for their volumes. Then set
g(v)= f (v) for all vertices and extend this map to the inner points of the simplices
by linearity. Then g : X → X is continuous and there exists C ′> 0 depending on the
dimension of X and on the norm ∥·∥, such that dX ( f (x), g(x)) <C ′ for any x ∈ X .
As f was a C-almost isometry, g is a D-almost isometry, where D = 2C ′

+ C .
Let x0 denote the origin of X . Without loss of generality, we may assume that

f (x0)= x0 (we may compose f with a translation).
Denote by SR the sphere of radius R centered at x0. Then g(x) lies between

SR−D and SR+D for any x ∈ SR . Let dX (x0, xn)= Rn . Clearly, limn→∞ Rn = ∞.
Passing to a subsequence, we may assume that limn→∞ Rn+1 − Rn = ∞. Then,
once again, we can replace g by a continuous D′-almost isometry h : X → X with
supx∈X dX ( f (x), h(x)) < D′ for some D′ > 0 such that h(SRn )⊂ SRn .

As dX (xn, f (X)) > n, dX (xn, h(X)) > n − D′, hence xn /∈ h(SRn ) when n > D′.
Thus, the map h|SRn

: SRn → SRn is not surjective. Then, by the Borsuk–Ulam
theorem, there exists a pair of antipodal points y1, y2 ∈ SRn such that h(y1) =

h(y2)= z. But this contradicts the almost isometricity of h:

|dX (h(y1), h(y2))− dX (y1, y2)| = |dX (z, z)− dX (y1, y2)| = |0 − 2Rn| = 2Rn

is not bounded. □

Corollary 5.2. Let X = Zn with an lp-metric, 1 ≤ p ≤ ∞. Then M(X) is weakly
finite.

Proof. By Proposition 9.2 of [Manuilov 2021a], M(Zn)= M(Rn). □

Corollary 5.3. M(X) is weakly finite for any finitely generated free abelian group
X with a word length metric with respect to any finite set of generators.

6. M(X) doesn’t respect equivalences

Proposition 6.1. The inverse semigroup M(X) is not a coarse invariant.

Proof. The space X from Proposition 3.2 is coarsely equivalent to the space
Y = {n2

: n ∈ N} with the standard metric, which we denote by bX . Indeed,
for n < m, we have bX (xn, xm) = m2

− n2 and dX (xn, xm) = log(m + 1). As
m2

− (m − 1)2 = 2m − 1 > log(m + 1) for m > 1, we have dX (x, y) ≤ bX (x, y)
for any x, y ∈ X , and taking f (t)= 2et , we have bX (x, y)≤ f (dX (x, y)) for any
x, y ∈ X .
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For the metric dX from Proposition 3.2, the inverse semigroup M(X, dX ) is not
commutative ([d∗d] ̸= [dd∗

]), while the inverse semigroup M(X, bX ) is commuta-
tive by Proposition 7.1 of [Manuilov 2021b]. □

Theorem 6.2. The inverse semigroup M(X) is not a quasiisometry invariant.

Proof. Let X = N be endowed with the metric bX given by bX (n,m)= |2n
− 2m

|,
n,m ∈ N, and let yn = s(n)4[n/2], where s(n)= (−1)[(n−1)/2] and [t] is the greatest
integer not exceeding t . Let dX be the metric on X given by dX (n,m)= |yn − ym |,
n,m ∈ N. The two metrics are quasiisometric. Indeed, suppose that n > m. If
s(n)= −s(m) then

dX (n,m)= 4[n/2]
+ 4[m/2]

≤ 4n/2+1
+ 4m/2+1

= 4(2n
+ 2m)≤ 12bX (n,m);

dX (n,m)= 4[n/2]
+ 4[m/2]

≥ 4n/2
+ 4m/2

≥ 2n
− 2m

= bX (n,m).

We use here that (2r
+ 1)/(2r

− 1)≤ 3 for any r = n − m ∈ N. If s(n)= s(m) then

dX (n,m)= 4[n/2]
− 4[m/2]

≤ 4n/2+1
− 4m/2

= 4 · 2n
− 2m

≤ 7bX (n,m).

We use here that (4 · 2r
− 1)/(2r

− 1) ≤ 7 for any r = n − m ∈ N. To obtain an
estimate in other direction, note that s(n)= s(m) implies that [n/2] ≥ [m/2] + 1,
and that n − m ̸= 2. If n = m + 1 then

dX (m + 1,m)= 3 · 4[m/2]
≥

3
2 · 2m

=
3
2 bX (m + 1,m),

If n ≥ m + 3 then

dX (n,m)= 4[n/2]
− 4[m/2]

≥ 4n/2
− 4m/2+1

= 2n
− 4 · 2m

≥
4
7 bX (n,m).

We use here that (2r
− 4)/(2r

− 1)≥
4
7 for any r = n − m ≥ 3. Thus,

3
7 bX (n,m)≤ dX (n,m)≤ 12 · bX (n,m)

for any n,m ∈ N, so the two metrics are quasiisometric.
We already know that M(X, bX ) is commutative, so it remains to expose two

noncommuting elements in M(X, dX ).
Let

X = {(yn, 0) : n ∈ N}, X ′
= {(−yn, 1) : n ∈ N},

and let d be the metric on X ⊔ X ′ induced from the standard metric on the plane R2,
s = [d]. Note that −yn = yn−1 if yn > 0 and n > 1, and −yn = yn+1 if yn < 0.
Hence, d∗

= d and s2
= 1.

Let

A+ = {yn : n ∈ N; yn > 0}, A− = {yn : n ∈ N; yn < 0},
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X = A+ ⊔ A−, and let the metrics d+ and d− on X ⊔ X ′ be given by

d±(n,m′)= inf
k∈A±

[dX (n, k)+ 1 + dX (k,m)],

e = [d+], f = [d−]. Then es = 0, while se = f , i.e., e and s do not commute. □

Note that, unlike M(X), the set E(M(X)) of idempotents of M(X) is a coarse
invariant. This follows from the geometric description of idempotents in [Manuilov
2021b].

Part II. When M(X) is commutative

7. R-spaces

Definition 7.1. A metric space X is an R-space (R for rigid) if, for any C > 0 and
any two sequences {xn}n∈N, {yn}n∈N of points in X satisfying

(7-1) |dX (xn, xm)− dX (yn, ym)|< C for any n,m ∈ N

there exists D > 0 such that dX (xn, yn) < D for any n ∈ N.

Example 7.2. As M(X) is commutative for any X ⊂ [0,∞), it would follow from
Theorem 8.2 below that such X is an R-space. A less trivial example is a planar
spiral X given by r = eϕ in polar coordinates with the metric induced from the
standard metric on the plane. Indeed, take any two sequences {xn}n∈N, {yn}n∈N,
in X . Without loss of generality we may assume that x1 = y1 = 0 is the origin. If
these sequences satisfy (7-1) then

|dX (0, xn)− dX (0, yn)|< C

for some fixed C > 0 (we take m = 1). If xn = (rn, ϕn), yn = (sn, ψn) then
dX (0, xn)= rn , dX (0, yn)= sn , and we have |rn − sn|< C . Then xn and yn lie in a
ring of width C , say R ≤ r ≤ R + C . If R is sufficiently great then

dX (xn, yn)≤ (log(R + C)− log R)(R + C),

which is bounded as a function of R.

Consider the set AI (X) of all equivalence classes of almost isometries of X . It
is easy to see that it is a group with respect to the composition. A metric space X
is called AI-rigid [Kar et al. 2016] if the group AI (X) is trivial.

Proposition 7.3. A countable R-space X is AI-rigid.

Proof. Let {xn}n∈N be a sequence of all points of X , and let f : X → X be an almost
isometry. Set yn = f (xn). Then there exists C > 0 such that

|dX ( f (xn), f (xm))− dX (xn, xm)|< C
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for any n,m ∈ N, hence there exists D > 0 such that

dX (xn, f (xn))= dX (xn, yn) < D

for any n ∈ N, i.e., f is equivalent to the identity map, hence X is AI-rigid. □

Example 7.4. Euclidean spaces Rn , n ≥1, are not R-spaces, as they have a nontrivial
symmetry. The Archimedean spiral r = ϕ is not an R-space, as it is π -dense in R2.

8. Criterion of commutativity

Let a, b : T → [0,∞) be two functions on a set T . We say that a ⪯ b if there exists
a monotone increasing function ϕ : [0,∞)→ [0,∞) with lims→∞ ϕ(s)= ∞ (we
call such functions reparametrizations) such that a(t)≤ ϕ(b(t)) for any t ∈ T .

The following lemma should be known, but we could not find a reference.

Lemma 8.1. Let a, b : T → [0,∞) be two functions. If a ⪯ b is not true then there
exists C > 0 and a sequence (tn)n∈N of points in T such that b(tn) < C for any
n ∈ N and limn→∞ a(tn)= ∞.

Proof. If a ⪯ b is not true then for any reparametrization ϕ there exists t ∈ T such
that a(t) > ϕ(b(t)). Suppose that for any C > 0, the value max{a(t) : b(t)≤ C} is
finite. Then set

f (C)= max(max{a(t) : b(t)≤ C},C).

This gives a reparametrization f . If b(t) = C then a(t) ≤ f (C) = f (b(t))— a
contradiction. Thus, there exists C > 0 such that max{a(t) : b(t) ≤ C} = ∞.
It remains to choose a sequence (tn)n∈N in the set {t ∈ T : b(t) ≤ C} such that
a(tn) > n. □

Theorem 8.2. X is an R-space if and only if M(X) is commutative.

Proof. Let X be an R-space. We shall show that any s ∈ M(X) is a projection. It
would follow that M(X) is commutative. First, we shall show that any s ∈ M(X)
is selfadjoint. Let d ∈ M(X), [d] = s. Suppose that [d∗

] ̸= [d]. This means that
either d∗

⪯ d or d ⪯ d∗ is not true, where d and d∗ are considered as functions
on T = X × X ′. Without loss of generality we may assume that d∗

⪯ d is not
true. Then there exist sequences (xn)n∈N in X and (y′)n∈N in X ′ and L > 0
such that d(xn, y′

n) < L for any n ∈ N and limn→∞ d(yn, x ′
n) = ∞ (recall that

d∗(x, y′) := d(y, x ′)).
Take n,m ∈ N. Since d(xn, y′

n) < L , d(xm, y′
m) < L , we have

|dX (xn, xm)− dX (yn, ym)| = |dX (xn, xm)− dX (y′

n, y′

m)|< 2L ,

and, since X is an R-space, there exists D > 0 such that dX (xn, yn) < D for any
n ∈ N.
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Then, using the triangle inequality for the quadrangle xn ynx ′
n y′

n , we get

d(yn, x ′

n)≤ dX (yn, xn)+ d(xn, y′

n)+ dX (y′

n, x ′

n)

= dX (yn, xn)+ d(xn, y′

n)+ dX (yn, xn) < D + L + D,

which contradicts the condition limn→∞ d(yn, x ′
n)= ∞.

Now, let us show that [d] ∈ M(X) is idempotent if X is an R-space. Let
a(x)= d(x, X ′), b(x)= d(x, x ′). It was shown in [Manuilov 2021a, Theorem 3.1
and remark at the end of Section 11] that if [d] is selfadjoint then it is idempotent
if and only if b ⪯ a. Suppose that the latter is not true. Then there exists L > 0
and a sequence {xn}n∈N of points in X such that d(xn, X ′) < L for any n ∈ N

and limn→∞ d(xn, x ′
n)= ∞. In particular, this means that there exists a sequence

{yn}n∈N of points in X such that d(xn, y′
n)< L for any n ∈N. Since [d] is selfadjoint,

for any L > 0 there exists R > 0 such that if d(x, y′) < L then d(x ′, y) < R.
It follows from the triangle inequality for the quadrangle xnxm y′

n y′
m that

|dX (xn, xm)−dX (yn, ym)|= |dX (xn, xm)−dX (y′

n, y′

m)|≤d(xn, y′

n)+d(xm, y′

m)<2L

for any n,m ∈ N, hence, the property of being an R-space implies that there exists
D > 0 such that dX (xn, yn) < D for any n ∈ N. Therefore,

d(xn, x ′

n)≤ dX (xn, yn)+ d(yn, x ′

n) < D + R

for any n ∈ N — a contradiction with limn→∞ d(xn, x ′
n)= ∞.

In the opposite direction, suppose that X is not an R-space. i.e., that there exists
C > 0 and sequences {xn}n∈N, {yn}n∈N of points in X such that (7-1) holds and
limn→∞ dX (xn, yn)= ∞.

Note that these sequences cannot be bounded. Indeed, if there exists R > 0 such
that dX (x1, xn) < R for any n ∈ N then

dX (y1, yn)≤ dX (x1, xn)+ C = R + C

for any n ∈ N, but then

dX (xn, yn)≤ dX (xn, x1)+ dX (x1, y1)+ dX (y1, yn) < R + dX (x1, y1)+ R + C,

which contradicts limn→∞ dX (xn, yn) = ∞. Passing to a subsequence, we may
assume that

dX (xk, xn) > k, dX (xk, yn) > k, dX (yk, xn) > k, dX (yk, yn) > k

for any n < k, and dX (xk, yk) > k for any k ∈ N. In particular, this means that

(8-1) dX (xk, yn) > k for any k, n ∈ N.

Let us define two metrics on the double of X and show that they don’t commute.
For x, y ∈ X set

d1(x, y′)= min
n∈N

[dX (x, xn)+ C + dX (yn, y)];

d2(x, y′)= min
n∈N

[dX (x, yn)+ C + dX (xn, y)]
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(it is clear that the minimum is attained on some n ∈ N as xn, yn → ∞). Let us
show that d1 is a metric on X ⊔ X ′ (the case of d2 is similar).

Due to symmetry, it suffices to check the two triangle inequalities for the triangle
xzy′, z ∈ X :

d1(x, y′)+ d1(z, y′)

= min
n∈N

[dX (x, xn)+ C + dX (yn, y)] + min
m∈N

[dX (z, xm)+ C + dX (ym, y)]

= dX (x, xnx )+ dX (ynx , y)+ dX (y, ynz )+ dX (z, xnz )+ 2C

≥ dX (x, xnx )+ dX (ynx , ynz )+ dX (z, xnz )+ 2C

≥ dX (x, xnx )+ (dX (xnx , xnz )− C)+ dX (z, xnz )+ 2C

= dX (x, xnx )+ dX (xnx , xnz + dX (z, xnz )+ C

≥ dX (x, z)+ C ≥ dX (x, z).

and

d1(x, y′)= min
n∈N

[dX (x, xn)+ C + dX (yn, y)]

≤ dX (x, xnz )+ dX (ynz , y)+ C

≤ dX (x, z)+ dX (z, xnz )+ dX (ynz , y)+ C = dX (x, z)+ d1(z, y′).

Let us evaluate (d2 ◦ d1)(xk, x ′

k) and (d1 ◦ d2)(xk, x ′

k).
Taking fixed values n = m = k, u = yk , we get

(d2 ◦ d1)(xk, x ′

k)

= inf
u∈X

{min
n∈N

[dX (xk, xn)+ C + dX (yn, u)] + min
m∈N

[dX (u, ym)+ C + dX (xm, xk)]}

≤ inf
u∈X

{[dX (xk, xk)+ C + dX (yk, u)] + [dX (u, yk)+ C + dX (xk, xk)]}

= [dX (xk, xk)+ C] + [C + dX (xk, xk)]

= 2C.

Using the triangle inequality for the triangle xnxmu and (8-1), we get

(d1 ◦ d2)(xk, x ′

k)

= inf
u∈X

{min
n∈N

[dX (xk, yn)+ C + dX (xn, u)] + min
m∈N

[dX (u, xm)+ C + dX (ym, xk)]}

≥ inf
u∈X

{min
n∈N

[dX (xk, yn)+ dX (xn, u)] + min
m∈N

[dX (u, xm)+ dX (ym, xk)]}

≥ min
n,m∈N

[dX (xk, yn)+ dX (xn, xm)+ dX (ym, xk)]> k + dX (xn, xm)+ k > 2k.

Thus, for the sequence {xk}k∈N of points in X , the distances (d2 ◦ d1)(xk, x ′

k) are
uniformly bounded, while limk→∞(d1 ◦ d2)(xk, x ′

k)= ∞, hence the metrics d2 ◦ d1

and d1 ◦ d2 are not equivalent, i.e., [d2][d1] ̸= [d1][d2]. □



338 VLADIMIR MANUILOV

Recall that an inverse semigroup S is Clifford (see [Howie 1995], Theorem 4.2.1)
if s∗s = ss∗ for any s ∈ S. If S is commutative then it is patently Clifford, but not
the other way. Nevertheless, for inverse semigroups of the form M(X) these two
properties are the same.

Corollary 8.3. If M(X) is Clifford then X is an R-space (and M(X) is commuta-
tive).

Proof. Let {xn}n∈N and {yn}n∈N are sequences in X satisfying (7-1), and let d1, d2

are metrics on the double of X defined above. Note that d∗

1 = d2, and let s = [d1].
We have s∗s ̸= ss∗, which contradicts that M(X) is Clifford. □
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