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DEFORMATION OF PAIRS AND SEMIREGULARITY

TAKEO NISHINOU

We study relative deformation of a map into a Kähler manifold whose image
is a divisor. We show that if the map satisfies a condition called semiregularity,
then it allows relative deformations if and only if the cycle class of the
image remains Hodge in the family. This gives a refinement of the so-called
variational Hodge conjecture. We also show that the semiregularity of maps
is related to classical notions such as Cayley–Bacharach conditions and
d-semistability.

1. Introduction

Let π : X → D be a deformation of a compact Kähler manifold X0 of dimension
n ≥ 2 over a disk D in the complex plane. Let C0 be a compact reduced curve
(when n = 2) or a compact smooth complex manifold of dimension n − 1 (when
n > 2). Let ϕ0 : C0 → X0 be a map which is an immersion, that is, for any p ∈ C0,
there is an open neighborhood p ∈ Vp ⊂ C0 such that ϕ0|Vp is an embedding. Then,
the image of ϕ0 determines an integral cohomology class [ϕ0(C0)] of type (1, 1),
that is, a Hodge class which is the Poincaré dual of the cycle ϕ0(C0). Note that the
class [ϕ0(C0)] naturally determines an integral cohomology class of each fiber of π .
Therefore, it makes sense to ask whether this class remains Hodge in these fibers
or not. Clearly, the condition that the class [ϕ0(C0)] remains Hodge is necessary
for the existence of deformations of the map ϕ0 to other fibers.

The notion of semiregularity plays a role in this context, though it was intro-
duced [21] and developed [16] originally for submanifolds of codimension one in a
fixed complex manifold. The main result of these studies is that if a submanifold
of codimension one is semiregular, then the obstruction to deforming it in the
ambient manifold vanishes. Bloch [5] generalized the notion of semiregularity to
subvarieties of any codimension in a projective manifold which are local complete
intersection. He generalized the results of [16; 21] to this case, and also related the
notion of semiregularity to deformation of pairs. Namely, he proved that if C0 is
a subvariety of a projective manifold X0 which is local complete intersection and
semiregular, and if the class [C0] remains Hodge in an algebraic family X → C
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whose central fiber is X0, then there is a deformation of C0 relative to the base. In
other words, a local complete intersection subvariety which is semiregular satisfies
the variational Hodge conjecture. More precisely, the variational Hodge conjecture
asks the existence of a family of cycles of the class [C0] which need not restrict
to C0 on the central fiber. Therefore, Bloch’s theorem in fact shows that the
semiregularity gives a result stronger than the variational Hodge conjecture. We
also note that Ran [20] generalized Bloch’s result to cases where a weaker version
of semiregularity holds. However, although Bloch’s and Ran’s theorems guarantee
the existence of a relative deformation of a cycle on the central fiber X0, it gives
little control of the geometry of the deformed cycle.

More recently, the notion of semiregularity has been generalized to maps between
varieties [6; 11]. In [11], maps between compact Kähler manifolds were investigated,
and it was shown that if the map is semiregular, then it deforms in a fixed target
manifold. In [6], the notion of semiregularity was generalized to a very broad
context using cotangent complexes, and many known results were generalized. The
case of maps was also considered (see [6, Theorem 7.23]), but not in the context
of the variational Hodge conjecture as we will do. See also [2; 3; 12; 17; 19] for
recent developments related to semiregularity.

Our purpose is to show that the semiregularity in fact suffices to control the
geometry of the deformed cycles when the cycle is of codimension one, and also
that we can extend the result to maps to a family of Kähler manifolds. Recall that
ϕ0 : C0 → X0 is an immersion where dim C0 = dim X0 − 1.

Theorem 1. Assume that the map ϕ0 is semiregular in the sense of Definition 4. If
the class [ϕ0(C0)] remains Hodge, then the map ϕ0 deforms to other fibers.

For example, if the image ϕ0(C0) has normal crossing singularity, then there is
a natural map ϕ̃0 : C̃0 → X0, where C̃0 is the normalization of C0 (when n > 2,
C0 = C̃0). Then, if ϕ̃0 is semiregular, Theorem 1 implies that it deforms to a general
fiber and the singularity of the image remains the same (e.g., it gives a relative
equigeneric deformation when n = 2).

On the other hand, if the image ϕ0(C0) has normal crossing singularity, the
semiregularity turns out to be related to some classical notions appeared in different
contexts. Namely, we will prove the following (see Corollary 17).

Theorem 2. Assume that the subvariety ϕ0(C0) is semiregular in the classical sense.
That is, the inclusion of ϕ0(C0) into X0 is semiregular in the sense of Definition 4.
Then, if the map H 0(ϕ0(C0),Nι) → H 0(ϕ0(C0),S) is surjective, the map ϕ0 is
semiregular. In particular, if the class [ϕ0(C0)] remains Hodge on the fibers of X,
the map ϕ0 can be deformed to general fibers of X.

Here, Nι is the normal sheaf of ϕ0(C0) in X0 and S is the infinitesimal normal
sheaf of the variety ϕ0(C0), see Section 6 for the definition. A variety with normal
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crossing singularity is called d-semistable if the infinitesimal normal sheaf is trivial,
see [8]. The notion of d-semistability is known to be related to the existence of
log-smooth deformations (see [13; 14]). By the above theorem, it turns out that it
is also related to deformations of pairs, see Corollary 19.

In the case where n = 2, if X0 is a K3 surface, any immersion ϕ0 is semiregular,
and Theorem 1 can be applied to any such ϕ0. This result is well known and was
proved, for example, using the twistor family associated with the hyperkähler
structure of K3 surfaces. Theorem 1 gives a generalization of it to general surfaces.
In general, we need to check whether a given map ϕ0 is semiregular or not. For
that purpose, Theorem 31 in [18] combined with Theorem 1 above implies the
following. Let ϕ0 : C0 → X0 be an immersion such that the image ϕ0(C0) is a
reduced nodal curve. Let p : C0 → ϕ0(C0) be the natural map (which is a partial
normalization of ϕ0(C0)) and P = {pi } be the set of nodes of ϕ0(C0) whose inverse
image by p consists of two points.

Theorem 3. Assume that ϕ0(C0) is semiregular in the classical sense and the class
[ϕ0(C0)] remains Hodge on the fibers of X. Then, the map ϕ0 deforms to general
fibers of X if for each pi ∈ P , there is a first-order deformation of ϕ0(C0) which
smooths pi , but does not smooth the other nodes of P. □

The condition in Theorem 20 is related (in a sense opposite) to the classical
Cayley–Bacharach condition, see [4], which requires that if a first-order deformation
does not smooth the nodes P \ {pi }, then it does not smooth pi , either. Using this,
we can also deduce a geometric criterion for the existence of deformations of pairs,
see Corollary 21.

Notation. We will work in the complex analytic category. Later in the paper, we
will study nonconstant maps ϕ0 :C0 → X0 from a variety C0 to a Kähler manifold X0

and their deformations. We denote by X a family of compact Kähler manifolds over
a disk D ⊂ C whose central fiber is X0. A deformation of ϕ0 over Spec C[t]/tk+1

will be written as ϕk : Ck → Xk =X×D Spec C[t]/tk+1. By the image of a map ϕ0

or ϕk , we mean the analytic locally ringed space with the annihilator structure,
see [9, Chapter I, Definition 1.45]. That is, if U is an open subset of Ck with the
induced structure of an analytic locally ringed space, and V is an open subset of Xk

such that ϕk(U ) is closed in V , we associate the structure sheaf

OV /AnnOV ((ϕk)∗OU )

to the image ϕk(U ).

2. Semiregularity for local embeddings

Let n and p be positive integers with p < n. Let M be a complex variety (not
necessarily smooth or reduced) of dimension n − p and X a compact Kähler
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manifold of dimension n. Let ϕ : M → X be a map which is an immersion, that
is, for any p ∈ M , there is an open neighborhood p ∈ Up ⊂ M such that ϕ|Up is
an embedding. We assume that the image is a local complete intersection. Then,
the normal sheaf Nϕ is locally free of rank p. Define the locally free sheaves Kϕ

and ωM on M by

Kϕ = ∧
pN∨

ϕ and ωM = K∨

ϕ ⊗ ϕ∗KX ,

where KX is the canonical sheaf of X .
When ϕ is an inclusion, the natural inclusion

ε : N∨

ϕ → ϕ∗�1
X

gives rise to an element

∧
p−1ε ∈ HomOM (∧p−1N∨

ϕ , ϕ∗�
p−1
X ) = 0

(
M, (ϕ∗�

n−p+1
X )∨⊗ϕ∗KX ⊗K∨

ϕ ⊗N∨

ϕ

)
= HomOX (�

n−p+1
X , ωM ⊗N∨

ϕ ).

This induces a map on cohomology:

∧
p−1ε : H n−p−1(X, �

n−p+1
X ) → H n−p−1(M, ωM ⊗N∨

ϕ ).

When ϕ is not an inclusion, then 0
(
M, (ϕ∗�

n−p+1
X )∨ ⊗ ϕ∗KX ⊗K∨

ϕ ⊗N∨
ϕ

)
is not

necessarily isomorphic to HomOX (�
n−p+1
X , ωM ⊗N∨

ϕ ), but the map

∧
p−1ε : H n−p−1(X, �

n−p+1
X ) → H n−p−1(M, ωM ⊗N∨

ϕ )

is still defined.

Definition 4. We call ϕ semiregular if the natural map ∧
p−1ε is surjective.

In this paper, we are interested in the case where p = 1 and M is reduced when
n = 2, and M is smooth when n > 2. In this case, we have ωM ⊗N∨

ϕ
∼= ϕ∗KX and

the map ∧
p−1ε will be

H n−2(X,KX ) → H n−2(M, ϕ∗KX ).

Remark 5. As we mentioned in the introduction, in [6; 11], Buchweitz–Flenner
and Iacono also considered semiregularity of maps between varieties in broader
contexts. In the case of maps we consider in this paper, their definitions coincide
with ours.

3. Local calculation

Let π : X → D be a deformation of a compact Kähler manifold X0 of dimension
n ≥ 2. Here, D is a disk on the complex plane centered at the origin. Let

{(Ui , (xi,1, . . . , xi,n)}
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be a coordinate system of X0. Taking D small enough, the sets

{Ui = Ui × D, (xi,1, . . . , xi,n, t)}

gives a coordinate system of X. Precisely, we fix an isomorphism between Ui and a
suitable open subset of X which is compatible with π and the inclusion Ui → X0.
Here, t is a coordinate on D pulled back to Ui . The functions xi,l are also pulled
back to Ui from Ui by the natural projection.

Take coordinate neighborhoods Ui ,U j and Uk . On the intersections of these
open subsets, the coordinate functions on one of them can be written in terms of
those on another. Namely, on Ui ∩ U j , xi,l can be written as xi,l(xj , t), here we
write

xj = (xj,1, . . . , xj,n).

Similarly, on U j ∩Uk , we have xj,l = xj,l(xk, t). Then, on Ui ∩U j ∩Uk , we have

xi,l = xi,l(xk, t) = xi,l(xj (xk, t), t).

For simplicity we often write xi,l(xk,t) as xi,l(xk) and xi,l(xj (xk,t),t) as xi,l(xj (xk)).
Let X t = π−1(t) be the fiber of the family π over t ∈ D. Assume that the map

ϕ0 : C0 → X0

exists from a variety C0 of dimension n − 1 to X0, which is an immersion.
We can take an open covering {Vi } of C0 such that the restriction of ϕ0 to Vi is

an embedding, the image ϕ0(Vi ) is contained in Ui and is defined by an equation
fi,0 = 0 for some holomorphic function fi,0. Moreover, we assume that if Vi ∩ Vj

is nonempty, we have

ϕ0(Vi ∪ Vj ) ∩ (Ui ∩ Uj ) = ϕ0(Vi ∩ Vj ).

Let Spec C[t]/tm+1 be the m-th order infinitesimal neighborhood of the origin
of D. Note that

{Ui,m = Ui ×D Spec C[t]/tm+1
}

gives a covering by coordinate neighborhoods of Xm = X×D Spec C[t]/tm+1. We
write by xi,l,m the restriction of xi,l to Ui,m . Let us write

xi,m = {xi,1,m, . . . , xi,n,m}.

Assume that we have constructed an m-th order deformation ϕm : Cm → Xm

of ϕ0. Here, m is a nonnegative integer and Cm is an m-th order deformation of C0.
Let Vi,m be the locally ringed space obtained by restricting the structure of a locally
ringed space on Cm to Vi .

Let { fi,m(xi,m, t)} be the set of local defining functions of ϕm(Vi,m) in Ui,m . We
will often write fi,m(xi,m, t) as fi,m(xi,m) for notational simplicity. In particular,
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on the intersection Ui,m ∩ U j,m , there is an invertible function gi j,m which satisfies

fi,m(xi,m(xj,m, t), t) = gi j,m(xj,m, t) f j,m(xj,m, t) mod tm+1.

Define a holomorphic function νi j,m on Ui,m ∩ U j,m by

tm+1 νi j,m(xj,m+1) = tm+1 νi j,m(xj,0)

= fi,m(xi,m+1(xj,m+1)) − gi j,m(xj,m+1) f j,m(xj,m+1),

which is an equality over C[t]/tm+2. Note that νi j,m can be regarded as a function
on Ui ∩ Uj .

Proposition 6. Assume that the intersection Ui ∩ Uj ∩ Uk is nonempty. Then, on
Ui ∩ Uj ∩ Uk ∩ ϕ0(Vi ), the following identities hold:

νik,m(xk,m+1) = νi j,m(xj,m+1(xk,m+1)) + gi j,0(xj,0(xk,0)) ν jk,m(xk,m+1)

and
νi j,m = −gi j,0 ν j i,m .

Remark 7. The equality

Ui ∩ Uj ∩ Uk ∩ ϕ0(Vi ) = Ui ∩ Uj ∩ Uk ∩ ϕ0(Vj ) = Ui ∩ Uj ∩ Uk ∩ ϕ0(Vk)

holds by the way we took {Vi }.

Proof. We have

xi,m+1(xk,m+1) ≡ xi,m+1(xj,m+1(xk,m+1)) mod tm+2,

on Ui,m+1 ∩ U j,m+1 ∩ Uk,m+1. Then,

tm+1 νik,m(xk,m+1)

= fi,m(xi,m+1(xk,m+1)) − gik,m(xk,m+1) fk,m(xk,m+1)

= fi,m
(
xi,m+1(xj,m+1(xk,m+1))

)
− gi j,m(xj,m+1(xk,m+1)) f j,m(xj,m+1(xk,m+1))

+ gi j,m(xj,m+1(xk,m+1)) f j,m(xj,m+1(xk,m+1)) − gik,m(xk,m+1) fk,m(xk,m+1)

= tm+1 νi j,m(xj,m+1(xk,m+1)) + gi j,m(xj,m+1(xk,m+1))( f j,m(xj,m+1(xk,m+1))

− g jk,m(xk,m+1) fk,m(xk,m+1))

+ gi j,m(xj,m+1(xk,m+1)) g jk,m(xk,m+1) fk,m(xk,m+1)

− gik,m(xk,m+1) fk,m(xk,m+1)

= tm+1 νi j,m(xj,m+1(xk,m+1)) + tm+1gi j,m(xj,m+1(xk,m+1)) ν jk,m(xk,m+1)

+ (gi j,m(xj,m+1(xk,m+1)) g jk,m(xk,m+1) − gik,m(xk,m+1)) fk,m(xk,m+1),

mod tm+2. Since

(gi j,m(xj,m+1(xk,m+1)) g jk,m(xk,m+1)−gik,m(xk,m+1)) fk,m(xk,m+1)≡0 mod tm+1,
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we have

gi j,m(xj,m+1(xk,m+1)) g jk,m(xk,m+1) ≡ gik,m(xk,m+1) mod tm+1.

Therefore, we have

(gi j,m(xj,m+1(xk,m+1)) g jk,m(xk,m+1) − gik,m(xk,m+1)) fk,m(xk,m+1)

≡ (gi j,m(xj,m+1(xk,m+1)) g jk,m(xk,m+1) − gik,m(xk,m+1)) fk,0(xk,m+1) mod tm+2.

Since fk,0(xk) = 0 on the image of ϕ0|Vk , we have the first identity. The second
identity follows from this by taking k = i . □

Note that the pull back ϕ∗

0 |Vi ∩Vj gi j,0 of the set of functions {gi j,0} is the set of
transition functions for the normal sheaf of ϕ0. Thus, the proposition shows that
the pull back {ϕ∗

0 |Vi ∩Vj νi j,m+1} of the set of functions {νi j,m+1} behaves as a Čech
1-cocycle with values in the normal sheaf Nϕ0 of ϕ0. Then, the following is a
straightforward generalization of an argument in [16, Section 3], whose proof we
omit.

Lemma 8. The cohomology class of the cocycle {ϕ∗

0 |Vi ∩Vj νi j,m+1} represents the
obstruction to deforming ϕm one step further. □

The assumption that ϕ0 : C0 → X0 is an immersion and dim C0 = dim X0 − 1 is
crucial for this lemma. For simplicity, we will write {ϕ∗

0 |Vi ∩Vj νi j,m+1} as {νi j,m+1}

if no confusion would occur.

4. Explicit description of the Kodaira–Spencer class

Let π : X → D be a deformation of a compact Kähler manifold X0 as before. We
have the exact sequence

0 → π∗�1
D → �1

X → �1
X/D → 0

The Kodaira–Spencer class is, by definition, the corresponding class in

µ ∈ Ext1(�1
X/D, π∗�1

D).

Lemma 9. The class µ is represented by the Čech 1-cocycle

µi j =

n∑
l=1

∂xi,l(xj , t)
∂t

∂xi,l dt.

Proof. See [10, Section II.1]. □

From now on, we drop dt from these expressions since it plays no role below.
Restricting this to a presentation over C[t]/tm+1, we obtain the Kodaira–Spencer
class for the deformation Xm+1 := X ×D Spec C[t]/tm+2. We denote this class
by µm .
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Assume that we have constructed an m-th order deformation ϕm : Cm → Xm

of ϕ0. Let Nm/D be the relative normal sheaf of ϕm and

pm : ϕ∗

mTXm/D → Nm/D

be the natural map, where TXm/D is the relative tangent sheaf of Xm . Pulling µm

back to Cm and taking the image by pm , we obtain a class µ̄m ∈ H 1(Cm,Nm/D).
As before, let { fi,m(xi,m, t)} be the set of local defining functions of ϕm(Vi,m)

on Ui,m .

Lemma 10. The class µ̄m is represented by the pull back of

ηi j,m =

n∑
l=1

∂xi,l(xj , t)
∂t

∂xi,l fi,m(xi , t)

to Cm .

Proof. We check the cocycle condition. Namely, we have

ηik,m − ηi j,m − gi j,m η jk,m

=

n∑
l=1

∂xi,l(xk, t)
∂t

∂xi,l fi,m(xi , t) −

n∑
l=1

∂xi,l(xj , t)
∂t

∂xi,l fi,m(xi , t)

− gi j,m

n∑
l=1

∂xj,l(xk, t)
∂t

∂xj,l f j,m(xi , t)

=

n∑
l=1

∂xi,l(xk, t)
∂t

∂xi,l fi,m(xi , t) −

n∑
l=1

∂xi,l(xj , t)
∂t

∂xi,l fi,m(xj , t)

− gi j,m

n∑
l=1

∂xj,l(xk, t)
∂t

∂xj,l (g
−1
i j,m fi,m(xi (xj , t), t))

= (µik − µi j − µ jk) fi,m − gi j,m fi,m(xi (xj , t), t)
n∑

l=1

∂xj,l(xk, t)
∂t

∂xj,l (g
−1
i j,m).

Since µik − µi j − µ jk = 0 by the cocycle condition, and fi,m(xi (xj , t), t) is zero
on the image of ϕm , we see that ηik,m = ηi j,m + gi j,m η jk,m on Cm . Also, note that
gi j,m is the transition function of the normal sheaf Nm/D . Then, it is clear that ηi j,m

represents the class µ̄m . □

Recall that a complex analytic cycle of codimension r in a Kähler manifold
determines a cohomology class of type (r, r), which is the Poincaré dual of the
homology class of the cycle. Let ζC0 ∈ H 1(X0, �

1
X0/D) be the class corresponding

to the image of ϕ0. Note that since the family X is differential geometrically trivial,
the class ζC0 determines a cohomology class in H 2(X, C). We denote it by ζ̃C0 .
Then, we have:
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Lemma 11. When ϕ0 is semiregular, the class ζ̃C0 remains Hodge in Xm+1 if and
only if the class µ̄m is zero.

Proof. Since we are assuming we have constructed ϕm : Cm → Xm , the class ζ̃C0 is
Hodge on Xm . That is,

ζ̃C0 |Xm ∈ H 1(Xm, �1
Xm/D).

Bloch [5, Proposition 4.2] showed that ζ̃C0 remains Hodge on Xm+1 if and only if
the cup product

ζ̃C0 |Xm ∪ µm ∈ H 2(Xm,OXm )

is zero. This is the same as the claim that the cup product ζ̃C0 |Xm ∪µm ∪α is zero
for any α ∈ H 2n−2(Xm, C). On the other hand, we have:

Claim 12. The cup product ζ̃C0 |Xm ∪ µm ∪ α is zero for any α ∈ H 2n−2(Xm, C) if
and only if the cup product µ̄m ∪ ϕ∗

m α is zero on Cm .

Proof of Claim 12. By definition of ζ̃C0 |Xm , the class ζ̃C0 |Xm ∪ µm ∪ α is zero
if and only if the class ϕ∗

m µm ∪ ϕ∗
m α is zero. Note that the cohomology group

H 2n−2(Xm, C) decomposes as

H 2n−2(Xm, C) ∼= H n(Xm, �n−2
Xm/D) ⊕ H n−1(Xm, �n−1

Xm/D) ⊕ H n−2(Xm,KXm/D),

here, KXm/D is the relative canonical sheaf. By dimensional reason, the cup product
between ϕ∗

m µm and the pull back of the classes in

H n(Xm, �n−2
Xm/D) ⊕ H n−1(Xm, �n−1

Xm/D)

is zero. Therefore, we can assume that α belongs to H n−2(Xm,KXm/D), and so the
class ϕ∗

m α belongs to H n−2(Cm, ϕ∗
mKXm/D). On the other hand, ϕ∗

m µm belongs to
H 1(Cm, ϕ∗

mTXm/D) and we have the natural map

H 1(Cm, ϕ∗TXm/D) → H 1(Cm,Nm/D).

Here, µ̄m is the image of ϕ∗
m µm by this map. Recall that the dual of H 1(Cm,Nm/D)

is given by H n−2(Cm, ϕ∗
mKXm/D). So, it follows that the cup product ϕ∗

m µm ∪ϕ∗
m α

reduces to µ̄m ∪ ϕ∗
m α. This proves the claim. □

It immediately follows that if µ̄m is zero, then ζ̃C0 remains Hodge in Xm+1. For
the converse, assume that ζ̃C0 remains Hodge in Xm+1. There is a natural map

ι : H 2n−2(Xm, C) → H 1(Cm,Nm/D)∨

as in the proof of the claim. Namely, for a class α of

H 2n−2(Xm, C) = H n(Xm, �n−2
Xm/D) ⊕ H n−1(�n−1

Xm/D) ⊕ H n−2(�n
Xm/D)
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and β ∈ H 1(Cm,Nm/D), let ι(α)(β) be the cup product β∪ϕ∗
m α composed with the

trace map H n−1(Cm, ωCm ) → C. Here, ωCm is the dualizing sheaf of Cm , see [1].
The restriction of this map to X0 is a surjection by the semiregularity of ϕ0. Since
the surjectivity is an open condition, ι is also a surjection. This shows that µ̄m ∪ϕ∗

m α

is zero for any α ∈ H 2n−2(Xm, C) is equivalent to the claim that µ̄m is zero. □

Thus, when the class ζ̃C0 remains Hodge in Xm+1, we can write µ̄m as the
coboundary of a Čech 0-cochain with values in Nm/D on Cm . We choose one such
representative {δi } where δi ∈ 0(Vi,m,Nm/D) such that

δi − gi j,m δj = ηi j,m .

Here, {ηi j,m} is a representative of µ̄m (see Lemma 10). Also, note that by the exact
sequence

0 → OUi,m → OUi,m (ϕm(Vi,m)) → Nm/D|Vi,m → 0,

there is a section δ̃i of OUi,m (ϕm(Vi,m)) which maps to δi . Then, we have a lift
of ηi j,m to an open subset of X0 as follows.

Lemma 13. When the class ζ̃C0 remains Hodge in Xm+1, the section

η̃i j,m = δ̃i (xi (xj , t), t) − gi j,m(xj , t) δ̃j (xj , t)

of OUi,m∩U j,m (ϕm(Vi,m ∩ V j,m)) coincides with ηi j,m when restricted to Vi,m . □

5. Proof of Theorem 1

As we mentioned in the introduction, in [16], it was shown that if C0 ⊂ X0 is
a submanifold of codimension one that is semiregular, then the obstruction to
deforming C0 in X0 vanishes. The point of their proof is to construct a Čech
1-cocycle on X0 with values in the sheaf OX (C0), whose restriction to C0 is the
relevant obstruction class. Then, the vanishing of such a class in cohomology
is a straightforward consequence of the definition of semiregularity. Thus, it is
important to represent the obstruction as a restriction of a Čech cocycle on the
ambient space. In the case which was studied in [16], the construction of such a
cocycle on the ambient space can be done by a direct calculation. In our case of
maps where ϕ0(C0) may be singular, we need an additional argument which is a
variant of that in [18]. Also, we need to take account of the effect of the deformation
of the ambient space, but it is covered by Lemma 13. In this section, we unify these
arguments and complete the proof of the main theorem.

Recall that the obstruction to deforming ϕm is given by a cocycle

{ϕ∗

0 |Vi ∩Vj νi j,m+1} on C0,
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where νi j,m is defined by

tm+1 νi j,m(xj ) = fi,m(xi (xj , t), t) − gi j,m(xj , t) f j,m(xj , t).

For the explicit calculation of the obstruction, we eliminate gi j,m(xj , t) from this
expression as follows.

Lemma 14. On Ui,m ∩ U j,m , we have

(∗) (m + 1) tm νi j,m(xj )

fi,m(xi , t)

=
1

fi,m(xi , t)

(
∂ fi,m(xi , t)

∂t
+ δ̃i

)
−

1
f j,m(xi , t)

(
∂ f j,m(xj , t)

∂t
+ δ̃j

)
,

modulo functions holomorphic on the image of ϕm |Vi,m∩V j,m .

Proof. First, by differentiating the equation

tm+1 νi j,m(xj ) = fi,m(xi (xj , t), t) − gi j,m(xj , t) f j,m(xj , t)

with respect to t , we have

(m + 1) tm νi j,m(xj )

=
∂ fi,m(xi , t)

∂t
+

n∑
l=1

∂xi,l(xj , t)
∂t

∂ fi,m(xi , t)
∂xi,l

− gi j,m(xj , t)
∂ f j,m(xj , t)

∂t
−

∂gi j,m(xj , t)
∂t

f j,m(xj , t)

=
∂ fi,m(xi , t)

∂t
− gi j,m(xj , t)

∂ f j,m(xj , t)
∂t

+ ηi j,m −
∂gi j,m(xj , t)

∂t
f j,m(xj , t)

on Vi,m ∩ V j,m . Since f j,m is zero on the image of ϕm |V j,m , we can ignore the last
term. By the same reason, we can replace ηi j,m by η̃i j,m introduced in Lemma 13,
and we can regard the above equation as an equation on Ui,m ∩ U j,m .

Dividing this by fi,m(xi , t), we have

(∗) (m+1) tm νi j,m(xj )

fi,m(xi , t)

=
1

fi,m(xi , t)
∂ fi,m(xi , t)

∂t
−

gi j,m(xj , t)
fi,m(xi , t)

∂ f j,m(xj , t)
∂t

+
ηi j,m

fi,m(xi , t)

=
1

fi,m(xi , t)
∂ fi,m(xi , t)

∂t
−

gi j,m(xj , t)
fi,m(xi , t)

∂ f j,m(xj , t)
∂t

+
δ̃i

fi,m(xi , t)
−

gi j,m δ̃ j

fi,m(xi , t)

=
1

fi,m(xi , t)

(
∂ fi,m(xi , t)

∂t
+δ̃i

)
−

1
f j,m(xi , t)

(
∂ f j,m(xj , t)

∂t
+δ̃j

)
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modulo functions holomorphic on Cm . Note that this is an equation over C[t]/tm+1,
and so we have gi j,m(xj , t) f j,m(xj , t)

fi,m(xi , t)
= 1. □

Let [
1

fi,m(xi , t)

(
∂ fi,m(xi , t)

∂t
+ δ̃i

)]
m

be the coefficient of tm in
1

fi,m(xi , t)

(
∂ fi,m(xi , t)

∂t
+ δ̃i

)
.

Note that the above equation still holds when we replace

1
fi,m(xi , t)

(
∂ fi,m(xi , t)

∂t
+ δ̃i

)
and

1
f j,m(xi , t)

(
∂ f j,m(xj , t)

∂t
+ δ̃j

)
by[

1
fi,m(xi , t)

(
∂ fi,m(xi , t)

∂t
+ δ̃i

)]
m

and
[

1
f j,m(xi , t)

(
∂ f j,m(xj , t)

∂t
+ δ̃j

)]
m
,

respectively. Also, we can think of[
1

fi,m(xi , t)

(
∂ fi,m(xi , t)

∂t
+ δ̃i

)]
m

as a function on Ui by forgetting tm .
Now, introduce any Riemannian metric on X0. Recall that we fixed an open

covering {Vi } of C0. If Vi does not contain a singular point of C0, we write V̊i = Vi .
If Vi contains a singular point of C0, we write by V̊i the complement of a small
closed disk around the singular point in Vi . For each V̊i , let Nϕ0 |V̊i

be the normal
bundle of ϕ0 restricted to V̊i . Let Sδ|V̊i

be the circle bundle of radius δ in Nϕ0 |V̊i
.

Here, δ is a small positive real number. If δ is small enough, the exponential map
gives an embedding of Sδ|V̊i

into a small neighborhood of the image ϕ0(V̊i ). We
can assume that the image of Sδ|V̊i

is disjoint from ϕ0(Vi ) even if Vi contains a
singular point of C0. Note that the bundles Sδ|V̊i

on each V̊i glue and give a circle
bundle Sδ on the open subset

⋃
i V̊i of C0. When n ≥ 3, this is actually a bundle

over C0.
Note that the obstruction class

[ϕ∗

0 |Vi ∩Vj νi j,m+1] ∈ H 1(C0,Nϕ0)

is zero if and only if the pairing of it with any class in H n−2(C0, ϕ
∗KX0) is zero.

By semiregularity, any class in H n−2(C0, ϕ
∗KX0) is a restriction of an element



DEFORMATION OF PAIRS AND SEMIREGULARITY 373

of H n−2(X0,KX0). Let 2 be any closed C∞ (2n − 2)-form on X0. In particular,
2 represents a class in

H 2n−2(X0, C) = H n−2(X0,KX0) ⊕ H n−1(X0, �
n−1
X0

) ⊕ H n(X0, �
n−2
X0

).

Here, �i
X0

is the sheaf of holomorphic i-forms on X0. Integrating the restriction of
the singular (2n − 2)-form[

1
fi,m(xi , t)

(
∂ fi,m(xi , t)

∂t
+ δ̃i

)]
m
2

to the circle bundle along the fibers, we obtain a closed (2n − 3)-forms γi on V̊i .
Then, we have:

Lemma 15. On V̊i ∩ V̊j , the limit limδ→0 γi − γj exists, and is m + 1 times the
fiberwise pairing between ϕ∗

0 |Vi ∩Vj νi j,m(xj ) and ϕ∗

02.

Proof. Note that νi j,m(xj ) is a local section of the normal sheaf Nϕ0 of ϕ0 : C0 → X0.
Thus, it naturally pairs with the pull back of 2 and gives a (2n −3)-form on V̊i ∩ V̊j .
Then, the claim is a consequence of the equation (∗) and standard estimates of
integrations.

Now, if C0 is nonsingular (in particular if n ≥ 3), let C2n−3(C0) be the sheaf of
smooth closed (2n − 3)-forms on C0. It has a resolution

0 → C2n−3(C0) → A2n−3(C0) → A2n−2(C0) → 0

by flabby sheaves. Here, Ai (C0) is the sheaf of complex valued smooth i-forms
on C0. Thus, the cohomology group H 1(C0, C2n−3) is naturally isomorphic to
H 2n−2(C0, C) ∼= H n−1(C0,KC0).

By Lemma 15, as the radius δ goes to zero, the Čech 1-cocycle {γi j } with
values in closed (2n − 3)-forms obtained as the differences of {γi } converges to the
obstruction class [νi j,m] paired with the pull back of 2 by ϕ0, considered as a class
in H 1(C0, C2n−3). However, by the above isomorphism between H 1(C0, C2n−3)

and H n−1(C0,KC0), this class is the same as the obstruction class paired with ϕ∗

02.
Thus, the obstruction to deforming ϕm vanishes if and only if the limit class in
Lemma 15 vanishes for any 2 ∈ H n−2(X0,KX0).

If C0 is nonsingular, {γi } is defined on a genuine open covering of C0. Thus, the
Čech cocycle {γi j } vanishes for all δ. So, the limit also vanishes. This finishes the
proof of Theorem 1 for C0 nonsingular.

When n = 2 and C0 is singular,
⋃

i V̊i covers only an open subset of C0. However,
one can show that the Čech 1-cocycle defined by γi j = γi −γj still does not depend
on the radius δ, and limδ→0 γi − γj gives the obstruction class paired with ϕ∗

02.
Thus, it suffices to prove the vanishing of the class [γi j ] for a small δ. This can be
reduced to an application of the Stokes theorem. See [18] for full details. □
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6. Criterion for semiregularity

In this section, we give necessary conditions for a map ϕ0 : C0 → X0 to be
semiregular. It turns out that some classical notions which appeared in different
contexts such as Cayley–Bacharach condition and d-semistability are related to
relative deformations of maps.

The case n > 2. First, we consider the case n > 2. Let π : X → D be a family
of n-dimensional Kähler manifolds. Let ϕ0 : C0 → X0 be a map from a compact
smooth complex manifold of dimension n − 1 which is an immersion. We also
assume that the image ϕ0(C0) has normal crossing singularity.

Consider the exact sequence on ϕ0(C0) given by

0 → ι∗KX0 → p∗ ϕ∗

0 KX0 → Q → 0,

where ι : ϕ0(C0) → X0 is the inclusion, and p : C0 → ϕ0(C0) is the normalization.
The sheaf Q is defined by this sequence. It is supported on the singular locus
sing(ϕ0(C0)) of ϕ0(C0). We have an associated exact sequence of cohomology
groups

(1) · · · → H n−2(ϕ0(C0), ι
∗KX0) → H n−2(ϕ0(C0), p∗ ϕ∗

0 KX0)

→ H n−2(ϕ0(C0),Q)

→ H n−1(ϕ0(C0), ι
∗KX0)

→ H n−1(ϕ0(C0), p∗ ϕ∗

0 KX0)

→ H n−1(ϕ0(C0),Q).

By dimensional reason, we have H n−1(ϕ0(C0),Q) = 0. Also, note that

H i (ϕ0(C0), p∗ ϕ∗

0 KX0)
∼= H i (C0, ϕ

∗

0 KX0)

for i = n − 2, n − 1, by the Leray spectral sequence. Therefore, if ϕ0(C0) is
semiregular in the classical sense, that is, the natural map

H n−2(X0,KX0) → H n−2(ϕ0(C0), ι
∗KX0)

is surjective, then the map ϕ0 is semiregular if and only if the map

H n−2(ϕ0(C0), ι
∗KX0) → H n−2(ϕ0(C0), p∗ ϕ∗

0 KX0)

is surjective.

Corollary 16. Assume that ϕ0(C0) is semiregular in the classical sense and the
class [ϕ0(C0)] remains Hodge on the fibers of X. Then, if the map

H n−2(ϕ0(C0), ι
∗KX0) → H n−2(ϕ0(C0), p∗ ϕ∗

0 KX0)

is surjective, ϕ0 can be deformed to general fibers of X. □
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On the other hand, consider the exact sequence

0 → p∗ Nϕ0 → Nι → S → 0,

of sheaves on ϕ0(C0), where S is defined by this sequence. The associated exact
sequence of cohomology groups is

(2) 0 → H 0(ϕ0(C0), p∗ Nϕ0) → H 0(ϕ0(C0),Nι)

→ H 0(ϕ0(C0),S)

→ H 1(ϕ0(C0), p∗ Nϕ0)

→ H 1(ϕ0(C0),Nι) → · · ·

We have
H i (ϕ0(C0), p∗ Nϕ0)

∼= H i (C0,Nϕ0)

again by the Leray spectral sequence. Note that the group H i (C0,Nϕ0) is isomorphic
to the dual of H n−1−i (C0, ϕ

∗

0 KX0), i = 0, 1. Similarly, the group H i (ϕ0(C0),Nι)

is isomorphic to the dual of H n−1−i (ϕ0(C0), ι
∗KX0), i = 0, 1.

Comparing the dual of the cohomology exact sequence (1) with (2), we obtain
H n−2(ϕ0(C0),Q)∨ ∼= H 0(ϕ0(C0),S). In particular, we can restate Corollary 16 as
follows.

Corollary 17. Assume that ϕ0(C0) is semiregular in the classical sense and the
class [ϕ0(C0)] remains Hodge on the fibers of X. Then, if the map

H 0(ϕ0(C0),Nι) → H 0(ϕ0(C0),S)

is surjective, ϕ0 can be deformed to general fibers of X. □

The sheaf S is the infinitesimal normal sheaf of the singular locus of ϕ0(C0),
as we will see below. Recall that we assume that the image ϕ0(C0) has normal
crossing singularity. Then, for any point p ∈ ϕ0(C0), we can take a coordinate
system (z1, . . . , zn) on a neighborhood U of p in X0 so that U ∩ ϕ0(C0) is given
by x1 · · · xk = 0, 1 ≤ k ≤ n. Let Ij be the ideal of OU generated by xj and let I be
the ideal defining ϕ0(C0) ∩ U in U . Then,

I1/I1I ⊗ · · · ⊗ Ik/Ik I

gives an invertible sheaf on the singular locus of ϕ0(C0) ∩ U . Globalizing this
construction, we obtain an invertible sheaf on the singular locus of ϕ0(C0). Then,
the dual invertible sheaf of this is called the infinitesimal normal sheaf of the singular
locus of ϕ0(C0), see [8]. We note that the infinitesimal normal sheaf is canonically
isomorphic to the sheaf (see [8, Proposition 2.3])

Ext1Oϕ0(C0)
(�1

ϕ0(C0)
,Oϕ0(C0)).
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Lemma 18. The sheaf S is isomorphic to the infinitesimal normal sheaf.

Proof. Note that the sheaf I1/I1I ⊗ · · · ⊗ Ik/Ik I is generated by the element
x1 ⊗ · · · ⊗ xk . The sheaf p∗ Nϕ0 is given by

k⊕
i=1

Hom(Ii/I2
i ,OU ) on U.

The sheaf Nι is given by Hom(I/I2,OU ). The sheaf Nι is an invertible sheaf
and generated by the morphism which maps x1 · · · xk to 1 ∈ OU . In particular,
by multiplying any x1 · · · x̌i · · · xk , the generator is mapped into the image of
p∗ Nϕ0 → Nι, namely, the image of the generator of Hom(Ii/I2

i ,OU ). Also,
note that the ideal of the singular locus of ϕ0(C0) is generated by x1 · · · x̌i · · · xk ,
i = 1, . . . , k. From these, it is easy to see that the cokernel of the map p∗ Nϕ0 →Nι

is isomorphic to the dual of I1/I1I ⊗ · · · ⊗ Ik/Ik I. □

Recall that the infinitesimal normal sheaf is related to deformations of ϕ0(C0)

which smooth the singular locus, see [8]. In particular, ϕ0(C0) is called d-semistable
if the infinitesimal normal sheaf is trivial, and d-semistable variety carries a log
structure log smooth over a standard log point, so that one can study its deformations
via log smooth deformation theory [13; 14; 15].

By Corollary 17, the infinitesimal normal sheaf plays a crucial in the deformation
theory even if it is not d-semistable.

On the other hand, the notion of d-semistability gives a sufficient condition for
the existence of deformations in this situation, too, as follows.

Corollary 19. Let the image ϕ0(C0) be very ample and H 1
(
X0,OX0(ϕ0(C0))

)
= 0.

Let ϕ0(C0) be d-semistable and the singular locus of ϕ0(C0) is connected. Then,
the map ϕ0 is semiregular.

Proof. First, we note that the subvariety ϕ0(C0) is semiregular in the classical sense.
Namely, consider the cohomology exact sequence

· · · → H 1(X0,OX0(ϕ0(C0))
)
→ H 1(ϕ0(C0),Nι) → H 2(X0,OX0) → · · · ,

here ι : ϕ0(C0) → X0 is the inclusion and Nι is the normal sheaf of it. When
H 1

(
X0,OX0(ϕ0(C0))

)
= 0, the map H 1(ϕ0(C0),Nι) → H 2(X0,OX0) is injective.

Since this map is the dual of the semiregularity map

H n−2(X0,KX0) → H n−2(ϕ0(C0), ι
∗KX0),

it follows that ϕ0(C0) is semiregular.
To prove that ϕ0 is semiregular, it suffices to show the map

H 0(ϕ0(C0),Nι) → H 0(ϕ0(C0),S)
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is surjective. When ϕ0(C0) is d-semistable, the sheaf S is the trivial line bundle on
the singular locus of ϕ0(C0). Since we assume that the singular locus is connected,
it suffices to show that the map H 0(ϕ0(C0),Nι) → H 0(ϕ0(C0),S) is not the zero
map. This in turn is equivalent to the claim that the injection

H 0(ϕ0(C0), p∗ Nϕ0) → H 0(ϕ0(C0),Nι)

is not an isomorphism. Since ϕ0(C0) is very ample, there is a section s of
OX (ϕ0(C0)) which does not entirely vanish on the singular locus of ϕ0(C0). Then,
if σ is a section of OX (ϕ0(C0)) defining ϕ0(C0), the sections σ + τ s, where τ ∈ C

is a parameter, deforms ϕ0(C0), and the nonvanishing of s on the singular locus
of ϕ0(C0) implies that this smooths a part of the singular locus of ϕ0(C0). Since
the sections of H 0(ϕ0(C0), p∗ Nϕ0) give first-order deformations which does not
smooth the singular locus, it follows that the map

H 0(ϕ0(C0), p∗ Nϕ0) → H 0(ϕ0(C0),Nι)

is not an isomorphism. This proves the claim. □

The case n = 2. Now, let us consider the case n = 2. Although we can work in a
more general situation, we assume ϕ0(C0) is a reduced nodal curve for simplicity.
However C0 need not be smooth. Let p : C0 → ϕ0(C0) be the natural map, which
is a partial normalization. In this case, we can deduce very explicit criterion for the
semiregularity. Again, we have the exact sequence

0 → H 0(ϕ0(C0), p∗ Nϕ0) → H 0(ϕ0(C0),Nι)

→ H 0(ϕ0(C0),S)

→ H 1(ϕ0(C0), p∗ Nϕ0) → H 1(ϕ0(C0),Nι) → · · · ,

and if ϕ0(C0) is semiregular in the classical sense, then ϕ0 is semiregular if and
only if the map H 0(ϕ0(C0),Nι) → H 0(ϕ0(C0),S) is surjective. Let P = {pi } be
the set of nodes of ϕ0(C0) whose inverse image by p consists of two points. Then,
the sheaf S is isomorphic to ⊕i Cpi , where Cpi is the skyscraper sheaf at pi . By
an argument similar to the one in the previous subsection, we proved Theorem 20
below in [18].

Theorem 20. Assume that ϕ0(C0) is semiregular in the classical sense. Then,
the map ϕ0 is semiregular if and only if for each pi ∈ P , there is a first-order
deformation of ϕ0(C0) which smooths pi , but does not smooth the other nodes
of P. □

For applications, it will be convenient to write this in a geometric form. Consider
the exact sequence

0 → OX0 → OX0(ϕ0(C0)) → Nι → 0
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of sheaves on X0 and the associated cohomology sequence

0 → H 0(X0,OX0) → H 0(X0,OX0(ϕ0(C0))
)

→ H 0(ϕ0(C0),Nι) → H 1(X0,OX0) → · · · .

Let V be the image of the map H 0(ϕ(C0),Nι) → H 1(X0,OX0). Since we are
working in the analytic category, we have the exact sequence

0 → Z → OX0 → O∗

X0
→ 0

of sheaves on X . Let V be the image of V in Pic0(X0) = H 1(X0,O∗

X0
). In [18],

we proved the following.

Corollary 21. In the situation of Theorem 20, the map ϕ0 is unobstructed if for
each pi ∈ P , there is an effective divisor D such that OX (ϕ0(C0) − D) ∈ V which
avoids pi but passes through all points in P \ {pi }.

A particularly nice case is when the map H 0(ϕ0(C0),Nι) → H 1(X0,OX0) is
surjective. This is the case when ϕ0(C0) is sufficiently ample. Then, if for each
pi ∈ P there is an effective divisor D which is algebraically equivalent to ϕ0(C0)

which avoids pi but passes through all points in P \ {pi }, the map ϕ0 is semiregular.
This is, in a sense, the opposite to the classical Cayley–Bacharach property, see,
for example, [4].

Combined with Theorem 1, we have:

Corollary 22. Assume that ϕ0(C0) is reduced, nodal and semiregular in the classi-
cal sense and the class [ϕ0(C0)] remains Hodge on the fibers of X. Then, the map ϕ0

deforms to general fibers of X if the condition in Theorem 20 or Corollary 21 is
satisfied. □

In the case of n = 2, the original exact sequence

· · · → H 0(ϕ0(C0), ι
∗KX0) → H 0(ϕ0(C0), p∗ ϕ∗

0 KX0)

→ H 0(ϕ0(C0),Q)

→ H 1(ϕ0(C0), ι
∗KX0)

→ H 1(ϕ0(C0), p∗ ϕ∗

0 KX0) → H 1(ϕ0(C0),Q)

before taking the dual is sometimes also useful. In this case, if ϕ0(C0) is semiregular
in the classical sense, then ϕ0 is semiregular if and only if the map

H 0(ϕ0(C0), ι
∗KX0) → H 0(ϕ0(C0), p∗ ϕ∗

0 KX0)
∼= H 0(C0, ϕ

∗

0 KX )

is surjective. For example, when the canonical sheaf KX0 is trivial, then it is clear
that this map is surjective and also ϕ0(C0) is semiregular in the classical sense. In
fact, in this case it is not necessary to assume that the image ϕ0(C0) is nodal or
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reduced, and any immersion ϕ0 from a reduced curve C0 is semiregular. It is known
that when X0 is a K3 surface and the image ϕ0(C0) is reduced, then the map ϕ0

deforms to general fibers if the class [ϕ0(C0)] remains Hodge. This claim is proved
using the twistor family associated with the hyperkähler structure of K3 surfaces,
see, for example, [7]. Corollary 22 gives a generalization of this fact to general
surfaces.
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