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Sp(1)-SYMMETRIC HYPERKÄHLER QUANTISATION

JØRGEN ELLEGAARD ANDERSEN,
ALESSANDRO MALUSÀ AND GABRIELE REMBADO

We provide a new general scheme for the geometric quantisation of Sp(1)-
symmetric hyperkähler manifolds, considering Hilbert spaces of holomor-
phic sections with respect to the complex structures in the hyperkähler
2-sphere. Under properness of an associated moment map, or other finite-
ness assumptions, we construct unitary (super) representations of groups
acting by Riemannian isometries preserving the 2-sphere, and we study
their decomposition in irreducible components. We apply this scheme to
hyperkähler vector spaces, the Taub–NUT metric on R4, moduli spaces of
framed SU(r)-instantons on R4, and in part to the Atiyah–Hitchin manifold
of magnetic monopoles in R3.
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1. Introduction

The constructions of geometric quantisation offer a recipe for addressing problems
related to the quantum mechanics of an object moving in an arbitrary, possibly
curved, phase space [42; 89]. The process, abstracting canonical quantisation, is
fundamentally based on the structure of a symplectic manifold. Two of the main
goals are to obtain operators subject to commutation relations prescribed by the
Poisson bracket, and unitary representations of groups associated to Hamiltonian
flows. However, there are strong limitations to the extent to which these can be
achieved in general. One of the most typical problems is the need of a polarisation,
whose existence is generally not guaranteed, nor is its uniqueness ever satisfied.
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Furthermore, the choice of a particular polarisation poses serious constraints on
which functions and Hamiltonian flows can be quantised.

A common approach to this issue consists in considering instead a family of po-
larisations, parametrised by some smooth manifold. One then attempts to assemble
their corresponding quantum Hilbert spaces into a vector bundle and identify them
via the holonomy of some appropriate connection. In this framework, the natural
way to quantise Hamiltonian group actions is by automorphisms of the bundle
as a whole rather than of the individual vector spaces. A group representation is
then usually obtained by considering the space of (projectively) flat sections. The
prototypical example of this is the Hitchin connection [16; 45], further discussed
below. The latter also has a simple yet interesting adaptation to the case of a
symplectic linear space, providing a quantisation of its full symplectic group in the
form of a representation of a double cover of it, the metaplectic representation [89,
Chapter 10].

Because polarisations on a symplectic manifold often arise as compatible complex
structures, it is rather common in geometric quantisation to work with Kähler
manifolds [30; 89]. This approach has been successfully applied to a number
of moduli spaces arising from differential and algebraic geometry, representation
theory, and mathematical physics. Notable examples include unitary flat connec-
tions [16; 45] and vector bundles on Riemann surfaces, compact coadjoint orbits [53],
and polygons [29; 51]. Unitary flat connections in particular are a good example
of the scheme sketched above, as the moduli space comes with a family of Kähler
structures parametrised by the Teichmüller space. The construction of a projectively
flat connection in that setting is due to Hitchin [45] and Axelrod, Della Pietra, and
Witten [16] and was extended to a broader framework in later works [1; 3; 8]. The
role of flat connections in Chern–Simons theory [38; 86] also motivated further
study of the relation between geometric quantisation and other formulations of the
theory, including deformation quantisation [2; 6; 24; 52; 63; 78; 79] and other
approaches [9; 10; 11; 12; 59].

In many cases, spaces similar to those above, and related to interesting quanti-
sation problems, come with natural hyperkähler structures rather than just Kähler.
Some of these may be viewed as complexifications of those already mentioned,
e.g., flat connections for complex groups [5; 7; 63; 73; 87], Higgs bundles [4; 31;
35; 44; 80], semisimple/nilpotent (co)adjoint orbits in (dual) complex Lie alge-
bras [17; 55; 58], hyperpolygons, and Nakajima quiver varieties [41; 70]. Others,
on the other hand, arise independently of an underlying “real” version, including for
instance the Taub–NUT metrics on R4, moduli spaces of framed SU(r)-instantons
and magnetic monopoles, and the Nahm moduli spaces.

Crucially, complex structures on these spaces give rise to families of Kähler forms,
whose parametrising spaces come with their own Kähler structures — isomorphic
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to that of CP1. Unlike in the Kähler case, geometric quantisation does not directly
apply in this situation because no preferred symplectic structure is given in general.
What is more, many interesting symmetries of such spaces act by hyperkähler
rotations, i.e., by permuting the sphere of Kähler structures rather than fixing each
of them individually. If one of the symplectic forms is fixed by the action, one
may focus on that particular structure and apply quantisation with respect to it,
an approach that was carried out by Andersen, Gukov, and Pei [4] in the case of
the Hitchin moduli space. Nonetheless, one may still wish to obtain a version of
quantisation with respect to other Kähler forms, or to the hyperkähler structure as
a whole. In addition, the induced action on the sphere is in many cases transitive,
suggesting again that a more “global” approach should be taken in that situation.

The latter is precisely the setup that we are going to address in this work. Namely,
we shall consider a hyperkähler manifold M acted on by a compact Lie group G
by hyperkähler isometries and assume that the induced action on CP1 is transitive.
We will also assume that a smooth family of prequantum line bundles on M is
given, parametrised by CP1, together with a lifted equivariant G-action. Carrying
out geometric quantisation for each individual symplectic form will give rise to a
family of Hilbert spaces, typically of infinite dimension. We will then attempt to
use representation theory to “break down” these spaces into finite-dimensional com-
ponents and assemble each family into a vector bundle over CP1. We study these
objects explicitly and show that their structure is determined by the combinatorics
of irreducible subrepresentations in the Hilbert spaces. In particular, we construct
natural connections on these bundles and explicitly characterise their curvatures.
While the resulting connection on the overall family fails to be projectively flat, we
notice that it defines a holomorphic structure on it. Based on this, we propose a
definition of the overall quantum Hilbert space as the supercohomology of this object,
thus obtaining a natural G-representation as a space of sections of a bundle over CP1.

1A. Description of the main construction. Let us expand and detail the description
sketched above. Suppose a hyperkähler manifold M is given and that G is a compact
connected Lie group acting on it by hyperkähler rotations — by this we mean that
G acts on M by isometries which permute the Kähler structures on M ; we will
additionally require that the induced action be transitive. Since Kähler forms
are parametrised by CP1, this corresponds to a surjective group homomorphism
G ↠SO(3). As we shall see, this implies that G is covered by a product Sp(1)×G0,
with Sp(1) acting on CP1 in the usual way and G0 fixing all Kähler structures.

Since no preferred symplectic form is given on M , it makes little sense to talk
about a prequantum line bundle over the hyperkähler manifold. Instead, we will
assume that M is equipped with a Hermitian line bundle (L , h) and a prequantum
connection ∇q for each symplectic form ωq , depending smoothly on q ∈ CP1 in
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an appropriate sense (see Section 2B). We will further assume that the G-action
lifts to L in such a way as to permute the connections equivariantly.

If Mq denotes the Kähler manifold corresponding to q ∈ CP1, its geometric
quantisation consists of the Hilbert space Hq of L2 holomorphic sections of the
corresponding prequantum line bundle. The embedding into CP1

× L2(M, L)
defines a Hermitian structure on this family, viewed informally as a vector bundle
over CP1, together with a compatible connection and Sp(1)-equivariant G-action.
We study this object by decomposing each fibre Hq into isotypical components as
a representation of (appropriate subgroups of) Gq := StabG(q). By transitivity of
the Sp(1)-action, all these stabilisers are conjugated, and the respective isotypical
components form constant-rank subfamilies of H. The following is the central
theorem of our work.

Theorem 1.1 (see Theorem 2.11). Suppose that:

• M is a hyperkähler manifold.

• G is a connected compact Lie group acting on M by fixing the metric and
permuting the symplectic forms transitively.

• L → M is a Hermitian line bundle with a family of prequantum connections
as in Section 2B and a G-action covering that on M.

• ρ is an irreducible representation of Gq := StabG(ωq) for ωq one of the
symplectic forms on M.

• ρ has finite multiplicity m(ρ) in the space Hq of L2 holomorphic sections of
L → M with respect to the structure associated to ωq .

For each other symplectic form ωq ′ , denote by H(ρ)

q ′ the isotypical component in Hq ′

corresponding to ρ under the identification Gq ≃ Gq ′ by conjugation in G. Then
the collection of spaces H(ρ) has a canonical structure of Hermitian vector bundle
over CP1 with compatible connection. Moreover, for some integer d = dρ there
exists an isomorphism

(1) H(ρ)
≃ (Ld

⊗ Vρ)⊕mρ

preserving the Hermitian structure and connection, where Vρ = CP1
× Vρ carries

the trivial connection and L → CP1 is the standard degree-1 Sp(1)-equivariant
Hermitian line bundle with connection.

The result implies that, informally speaking, the family H decomposes as a sum
of vector bundles with connections, as long as the appropriate multiplicities are
finite. The holonomies of the various components may then be assembled to form
parallel transport operators on H. However, (1) also determines the curvature of the
connection on each component, which is proportional to the degree d . Consequently,
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the parallel transport operators on H depend essentially on the choice of paths on
the base and fail to unambiguously identify the different Hilbert spaces — even
projectively.

Nonetheless, the components H(ρ) may also be regarded as G-equivariant holo-
morphic bundles over CP1. We then obtain G-representations not as spaces of flat
sections as customary, but as the cohomology of H(ρ) as a super vector space. The
following then descends from Theorem 1.1.

Theorem 1.2 (see Section 2F). In the setting of Theorem 1.1, define

(2) H (ρ)
:= H∗(CP1,H(ρ))

as a super vector space. Then H (ρ) comes with a Hermitian structure and compati-
ble G-action. With d as in Theorem 1.1, it is a direct sum of |d+1|m(ρ) copies of Vρ ,
all in even (resp. odd) degree if d ≥ 0 (resp. d < 0). In particular, the completed
orthogonal sum

(3) H :=

⊕
ρ

H (ρ),

with ρ ranging over all the isomorphism classes of irreducible G-representations,
defines a Hilbert space G-representation, and (3) is the isotypical decomposition.

This viewpoint also lends itself to an approach in terms of rank-generating series
and localisation formulæ, something which we address in Section 2H.

Again, the space H of (3) may informally be thought of as the cohomology of
the sum of all the H(ρ)’s, regarded now as a holomorphic vector bundle over CP1.
It is interesting to note how this is reminiscent of the description of M in terms of
its twistor space, a holomorphic fibration Z → CP1 (plus additional holomorphic
data). It would be an interesting problem to investigate whether our setup can be
obtained in terms of twistor data by purely holomorphic constructions, something
which we would like to address in a separate work.

The most crucial assumptions in our construction, besides the surjectivity of
G → SO(3), is the finite-dimensionality of the isotypical components in Hq . For
that reason, we also investigate sufficient conditions to ensure it. They can be
summarised as follows.

Theorem 1.3 (see Theorems 2.14 and 2.17). Suppose one of the Kähler forms ωq

on M is fixed, S ⊆ StabG(ωq) is a connected Lie subgroup, and ρ is an isomorphism
class of S-representations. Then each of the following is a sufficient condition for
the corresponding S-isotypical component in Hq to have finite dimension.

• The Kostant moment map for S is proper on Mq , and its action extends holo-
morphically to the complexification of S.
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• S is a torus, Mq has the structure of an affine scheme or Stein space, and the
Kostant moment map for S is proper.

• S is a torus, Mq has the structure of an affine scheme or Stein space, and
M//w S, w the weight of ρ, admits a compactification with rational singulari-
ties and boundary of codimension greater than or equal to 2.

A further way to ensure finite dimensionality can be found in the discussion of
meromorphic torus actions in [90].

1B. Applications and further directions. In Section 3 we showcase applications
of the main construction. The first one is a hyperkähler vector space V of real
dimension 4n, with n ∈ Z≥1. In this case

Hk(V )≃ Sp(n) · Sp(1),

identifying V ≃ Hn (see Remark 3.2). Indeed, under this isomorphism, Sp(1) acts
on V via right multiplication of unit-norm imaginary quaternions, and commutes
with the natural Sp(n)-action. Furthermore the norm associated to the hyperkähler
metric provides a hyperkähler potential and we can apply the abstract construction
(see Theorems 3.5 and 3.6).

Importantly, there are many more examples of (nonflat) Sp(1)-symmetric hyper-
kähler manifolds. These include moduli spaces of magnetic monopoles on R3 by
the work of Atiyah and Hitchin [14] or equivalently, by the work of Donaldson [34],
the moduli spaces of based rational maps from CP1 to itself; moduli spaces of
framed SU(r)-instantons on R4, by the work of Maciocia [62]; the hyperkähler
structure on nilpotent orbits, by the work of Kronheimer [57], and more generally
the hyperkähler Swann bundle over any quaternionic Kähler manifold [82]. In four
dimensions a complete classification of Sp(1)-symmetric hyperkähler manifolds is
given (up to finite covers) by the work of Gibbons and Pope [40] and by Atiyah
and Hitchin [14]. The three examples are the flat metric on H, the Taub–NUT
metric, and the hyperkähler metric on the moduli space of charge-2 monopoles, i.e.,
the Atiyah–Hitchin manifold.

We establish in Sections 3B and 3C that the Theorems 1.1, 1.2 and 2.17 (or slight
modifications thereof) apply to some of these examples, producing a quantisation
and corresponding irreducible unitary (super)representations of distinguished groups
of hyperkähler isometries.

2. Abstract Sp(1)-symmetric hyperkähler quantisation

2A. Hyperkähler manifolds and their symmetry groups. Let n be a positive integer
and M a smooth manifold of dimension 4n.
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Definition 2.1. A hyperkähler structure on M consists of a Riemannian metric g
and an ordered triple (I, J, K ) of covariant constant orthogonal automorphism of
TM satisfying the quaternionic identities I 2

= J 2
= K 2

= IJK = − IdTM .

It follows that I, J, K are g-skew-symmetric global sections of End(T M)→ M ,
and we denote by su(2)M the three-dimensional real Lie algebra they span.

The hyperkähler 2-sphere of complex structures of (M, g, I, J, K ) is

(4) SIJK := {Iq = aI +bJ +cK | q = (a, b, c)∈ R3, a2
+b2

+c2
= 1} ⊆ su(2)M .

As customary, the structure on M identifies (4) with the 2-sphere of unit-norm
imaginary quaternions, i.e., with CP1 as a Kähler manifold. In particular for
q ∈ CP1 there is a (real) symplectic form on M defined by

ωq(v,w) := g(Iqv,w) for v,w ∈ TM.

The triple Mq := (M, Iq , ωq) is a Kähler manifold, and for further use we denote
by µq = d vol ∈�top(M) the Liouville volume form — independent of q ∈ CP1 as
it agrees with the Riemannian volume form of (M, g).

Remark 2.2. The above data can be encoded in a fibration πCP1 : Z → CP1 of
Kähler manifolds over the Riemann sphere, the twistor space of (M, g, I, J, K ).
Clearly this family comes with a natural global trivialisation Z ≃ M × CP1 as a
smooth fibre bundle, but not as fibre bundle with symplectic or complex fibres.
Nonetheless the natural complex structure on Z makes Z →CP1 into a holomorphic
fibre bundle [46, pp. 141-142].

Now consider the group Sp(M)= Sp(M, g, I, J, K )⊆ Iso(M, g) of Riemannian
isometries of (M, g) preserving the Kähler forms ωq (or equivalently the complex
structures Iq ) simultaneously for all q ∈ CP1. This group is sometimes referred to
as the hyperunitary group. Denoting Aut0(Z) the group of holomorphic automor-
phisms of Z → CP1 over the identity, there is a natural group homomorphism

(5) Sp(M)→ Aut0(Z),

given by the fibrewise action of Sp(M).
We shall consider a group of isometries that preserve the hyperkähler structure

in a looser sense, relaxing the condition that differentials should commute with
I , J , and K individually.

Definition 2.3. Let Hk(M)⊆ Iso(M, g) be the subgroup stabilising the Lie algebra
su(2)M:

Hk(M)= Hk(M, g, I, J, K ) := {ϕ ∈ Iso(M, g) | Addϕ(su(2)M)= su(2)M}.
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Hence Hk(M) acts on su(2)M, and Sp(M)⊆ Hk(M) is the kernel of this action.
Moreover the adjoint action Ad on su(2)M ≃ R3 is by positive isometries for the
standard Euclidean structure, resulting in a group morphism

Ad : Hk(M)→ SO(3), Ad : ϕ 7→ Addϕ,

and an action on the hyperkähler 2-sphere (4) — simply denoted by q 7→ ϕ.q . The
combination of the actions of Hk(M) on CP1 and M itself naturally extends (5) to
a map

(6) Hk(M)→ Aut(Z),

where Aut(Z) denotes the full group of biholomorphisms of Z compatible with the
fibration map and covering arbitrary Kähler automorphisms of CP1.

Suppose now given a connected compact Lie group G, and a G-action

ρ : G → Hk(M)

on M by transformations in Hk(M). We will sometimes denote by

ρZ
: G → Aut(Z)

the composition of ρ with (6); where unambiguous, we will often denote the G-
action simply by (ρ(g))(p)= gp, and similarly for ρZ . As in the introduction, we
require that the induced G-action on CP1 be transitive, or equivalently that the
corresponding map G → SO(3) be surjective. The kernel G0 of this action is then
also a compact Lie group, and by construction it acts on M by transformations
in Sp(M).

Lemma 2.4. The induced G-action on CP1 factors through a morphism

(7) σ : Sp(1)→ G

from the universal cover Sp(1) of SO(3). This, moreover, arises from a covering
map G0 × Sp(1)→ G.

Proof. By compactness, the Lie algebra g := Lie(G) admits a nondegenerate
invariant pairing. Once such a pairing is fixed, the orthogonal complement of
g0 := Lie(G0) is a Lie subalgebra which maps isomorphically to so(3) ≃ su(2).
This induces a section su(2)→g which integrates to the desired map σ . In fact, since
g0 and g⊥

0 commute with each other, the splitting g≃ g0 ⊕g⊥

0 is an isomorphism of
Lie algebras. In particular, every element of G0 commutes with σ(Sp(1)), resulting
in a map G0 × Sp(1)→ G. □

In other words, for G as above, a G-action by transitive hyperkähler rotations
always comes from an Sp(1)-action, and up to covers it splits as the product with
an action by Sp(M). Henceforth we shall fix a group homomorphism σ as in (7).
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2B. Prequantum data. As already noted, a notion of prequantum line bundle
on M is ill-posed, since a hyperkähler manifold comes with a continuous family of
incompatible prequantum conditions. Instead, we will assume given a Hermitian line
bundle (L , h) on M together with a smooth family of compatible connections ∇q ,
q ∈ CP1, each with curvature Fq = −iωq . The smoothness in q may be expressed
by the condition that, if a section ψ of π∗

M L → Z is smooth, then so is the family
∇qψ |q , as a section of π∗

M(L ⊗ T ∗M). Equivalently, for every local trivialisation
of L , the induced connection potentials should depend smoothly on q ∈ CP1.
Together with the trivial derivative along the directions of CP1 in Z ≃ M × CP1,
these ∇q’s assemble to form a connection on π∗L → Z . Additionally, we will
require that L be equipped with a Hermitian G-action

ρL
: G → Aut(L , h),

which lifts the one on M and permutes the connections equivariantly.
In practice, the G-action may not come with preferred prequantum data as above.

Now we investigate criteria to determine whether such data exist for a given action.
A necessary condition for the existence of a prequantum line bundle on a symplec-

tic manifold is that the symplectic form represent an integral class in cohomology.
Conversely, in that case a prequantum line bundle can be constructed by a diagram
chasing procedure on the Čech–de Rham complex [89].

In our situation, we will require that

[ωq ] ∈ H 2(M,Z) for all q ∈ CP1.

In fact, if the condition holds for at least one q , then by the Sp(1)-action it does for
all q , and it then follows by continuity that [ωq ] is independent of q . The diagram
chasing procedure mentioned above may then be carried out with differential forms
on M depending smoothly on q . Hence a family of prequantum line bundles exists
if and only if [ωq ] is integral for some q .

Suppose such a family is fixed, with underlying Hermitian line bundle (L , h),
and let Lq := (L , h,∇q) for each q . For every g ∈ G, the structure of g∗Lg.q ⊗ L−1

q
defines a family of flat Hermitian connections. Since such objects are classified up
to isomorphism by 0 := H 1

(
M,U(1)

)
, this defines a map

(8) u : G → C∞(CP1, 0), u : g 7→ (q 7→ [g∗Lg.q ⊗ L−1
q ]).

Viewing the abelian group 0′
:= C∞(CP1, 0) as a G-module under the pull-back

action, u defines a cocycle in C1(G, 0′).

Lemma 2.5. Suppose (L , h) is a Hermitian line bundle over M with a family of
prequantum connections ∇q smoothly parametrised by CP1. The cohomology class
of the coycle u from (8) vanishes in H 1(G, 0′) if and only if there exist:
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• a Hermitian line bundle B and

• a family of Hermitian flat connections ∇
B
q smoothly parametrised by CP1

such that, for all q ∈ CP1 and g ∈ G, we have

(9) g∗(Lg.q ⊗ B−1
g.q)≃ Lq ⊗ B−1

q

as Hermitian line bundles with connection, where Bq := (B,∇B
q ).

Proof. Suppose such a family exists. Then (9) is equivalent to

g∗Lg.q ⊗ L−1
q ≃ g∗Bg.q ⊗ B−1

q ,

i.e., u = δ3 for 3(q) := [Bq ] ∈ 0, and therefore [u] = 0.
Conversely, suppose that u = δ3 for some 3 ∈ 0′. It follows from the exact

sequence
H 1(M,R)→ H 1(M,U(1))→ H 2(M,Z)→ H 2(M,R)

that the components of 0 = H 1(M,U(1)) are labelled by the torsion of H 2(M,Z),
while the identity component is covered by H 1(M,R). Since 3 : CP1

→ 0

is a continuous map, we may fix some 30 ∈ 0 so that 3 − 30 takes values
in the identity component. Since CP1 is simply connected, this lifts to a map
3̃ : CP1

→ H 1(M,R). Choose a collection of 1-forms α1, . . . , αn on M whose
de Rham cohomology classes form a basis of H 1(M,R). Expressing 3̃ as

3̃(q)=

n∑
i=1

ci (q)[αi ],

we see that each ci is a smooth function of q and therefore α=
∑n

i=1 ci αi is a smooth
family of 1-forms on M parametrised by CP1. Choosing a representative (B,∇B

0 )

of 30 ∈ H 1(M,U(1)) and setting ∇
B
q := ∇

B
0 +α(q), it follows by construction that

3(q)= [(B,∇B
q )].

Expanding and manipulating the condition u = δ3 leads to (9). □

Lemma 2.5 shows that, if [u] = 0, then L may be replaced by a new family
of prequantum line bundles on which the action of every element of G admits an
equivariant lift. In that case, the action of the group

G ′
:= {ϕ ∈ Aut(L , h) | ϕ covers some g ∈ G}

covers that of G on M surjectively while permuting the connections equivariantly.
Notice moreover that G ′ is also compact and connected, being a central extension of
the image of G in Hk(M), so the discussion from the previous section also applies
to it. In particular, by Lemma 2.4, there exists a map σ L

: Sp(1)→ G ′ lifting the
Sp(1)-action on M . Even though there may not be a lifted G-action on L , we obtain



Sp(1)-SYMMETRIC HYPERKÄHLER QUANTISATION 11

one by replacing the group with G ′, which does not essentially change the action
on M .

The simplest vanishing [u] = 0 is obtained if 0 is trivial (which we will see in
some examples) or by the existence of a hyperkähler potential (which we discuss
in Section 2I).

Up to the necessary replacements, in what follows we thus assume to have fixed
a family of prequantum connections with an equivariant action ρL

: G → L .

2C. Geometric quantisation. Following the prescription of geometric quantisation,
for q ∈ CP1 consider the separable Hilbert space

(10) Hq :=

{
ψ ∈ H 0(Mq , Lq)

∣∣∣∫
M

h(ψ,ψ) d vol<∞

}
⊆ L2(M, L),

using the holomorphic structure ∂q = ∇
0,1
q and the standard L2 Hermitian product:

(11) ⟨ψ | ψ ′
⟩ :=

∫
M

h(ψ,ψ ′) d vol, ψ,ψ ′
∈ Hq .

Let us denote by H the family of Hilbert spaces thus defined over CP1.
By construction there are unitary isomorphisms

ρHg : Hq → Hg.q , q ∈ CP1, g ∈ G,

explicitly given by

(12) (ρHg ψ)(m) := ρL
g (ψ(ρ

Z
g−1m)), m ∈ M.

2D. Decomposition of Hq . We will now consider the decompositions of the
spaces (10) induced by viewing them as representations under the action (12).
For a given q ∈ CP1, restricting ρH to

Gq := StabG(q),

defines a group action on Hq by unitary operators, i.e., a Hilbert space representation.
By the Peter–Weyl theorem [54, Theorem 1.12], Hq decomposes a completed
orthogonal sum of irreducible components. Similarly, denoting by

Tq := StabSp(1)(q)

the maximal torus in Sp(1) fixing q , its action on Hq gives a decomposition

Hq =

⊕
d∈Z

H(d)
q ,

where H(d)
q ⊆ Hq is the isotypical component corresponding to the character

Tq ≃ U(1)→ C×, z 7→ zd ,
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under the natural identification with the standard torus U(1) ⊆ C×. Since Tq

commutes with G0 ⊆ Gq , each component H(d)
q is a representation of G0. Therefore,

we obtain a refinement of the decomposition above as

(13) H(d)
q =

⊕
λ∈3

H(d)
q,λ,

where 3 denotes the set of (analytically) integral weights of G0 and H(d)
q,λ is the

isotypical component in H(d)
q of maximal weight λ. In what follows we shall often

denote by 3(d) ⊆3 the subset of “active” representations.1

Remark 2.6. It is not difficult to see, given that Gq is covered by Tq × G0, that
every irreducible representation of Gq has a single weight for Tq and is also
irreducible for G0. Therefore, every irreducible Gq-representation induces a pair
(d, λ) of weights for Tq and G0, by which the representation itself is unambiguously
determined. In particular, the decomposition (13) is equivalent to the one into
isotypical components under Gq .

In a similar way we may also consider a maximal torus T ⊆ G0 and find

H(d)
q =

⊕
a∈T ∨

H(d)
a,q ,

where H(d)
a,q ⊆H(d)

q is the isotypical component of the character a : T → C×. Again,
the decomposition above is equivalent to the one we would obtain by considering
the action of the maximal torus T ′

q := Tq · T ⊆ Gq on Hq .
We denote H(d), H(d)

a and H(d)
λ the families of Hilbert spaces thus defined over

CP1, so that we have L2-completed orthogonal direct sums

H =

⊕
d∈Z

H(d),
⊕
λ∈3

H(d)
λ = H(d)

=

⊕
a∈T ∨

H(d)
a .

2E. Structure of H(d)
λ . Our main assumption, unless otherwise stated, is as follows:

The spaces H(d)
q,λ are finite-dimensional.

The goal of this section is to make each family H(d)
λ , under the finite-dimension-

ality condition above, into a vector bundle, and equip it with a connection. The
simplest way to define a smooth structure on H(d)

λ is to assume it is a Banach
sumbanifold of the product CP1

× L2(M, L), with G acting smoothly on it. We
shall now investigate the structure induced by this assumption, and later show that
the same data can be obtained canonically from the group structure.

1The subset 3(d) is independent of q ∈ CP1 since the Sp0’(M)-modules H(d)q are isomorphic
under the Sp(1)-action.
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Now let (temporarily, see Remark 2.12 below) the family of Hilbert spaces H(d)
λ

forms a smooth Banach submanifold of the trivial Hilbert bundle L2(M, L)→ CP1.
We can then differentiate smooth local sections ψ of H(d)

λ → CP1, viewed as maps
CP1

→ L2(M, L), along tangent vectors on CP1. Then, since H(d)
q,λ ⊆ L2(M, L)

is a closed subspace, there are orthogonal projections

π
(d)
q,λ : L2(M, L)→ H(d)

q,λ.

Definition 2.7. For any tangent vector X ∈ TqCP1 set

∇
H(d)
λ

X ψ := π
(d)
q,λ(X [ψ]) ∈ H(d)

q,λ.

Remark 2.8. The same definition (of the standard L2-connection) can be given
verbatim in the case where the families H(d)

a ⊆ H(d) also constitute smooth sub-
manifolds.

Remark 2.9. This covariant derivative is characterised by the property that

⟨∇
Hd
λ

X ψ |ψ ′
⟩ = ⟨X [ψ]|ψ ′

⟩

for all X, ψ,ψ ′ as appropriate.

Proposition 2.10. The covariant-derivative operators of Definition 2.7 are compat-
ible with the action ρH of (12) and with the Hermitian structure of H(d)

λ → CP1.

Proof. The operators ∇
H(d)
λ

X satisfy Leibniz and preserve the Hermitian pairing
by construction. We need only show that they are ρH-equivariant. Given g ∈ G,
q ∈ CP1, a section ψ of H(d)

λ → CP1, and a tangent vector X ∈ Tq CP1, we have

X [ρgψ] = ρg((g−1
∗

X)[ψ]),

where the superscripts in the actions were removed for convenience. Combining
the above with a change of variables in (11), one sees that

⟨X [ρgψ]|ψ ′
⟩ = ⟨(g−1

∗
X)[ψ]|ρg−1ψ ′

⟩

for all ψ ′
∈ H(d)

g.q,λ. By Remark 2.9, this shows that ∇X (ρgψ)= ρg(∇g−1
∗ X [ψ]). □

Recall now that for every integer d there exists an Sp(1)-equivariant Hermitian
line bundle of degree d with compatible connection over CP1, unique up to iso-
morphism. This can be characterised as the holomorphic line bundle O(d)→ CP1

together with the standard Hermitian metric and its corresponding Chern connection.
Alternatively, it can also be described as the quotient of an appropriate line bundle
over Sp(1) under the identification CP1

≃ Sp(1)/U(1). More precisely, consider
the d-th character χ (d) :u(1)→ R and its unique AdU(1)-invariant extension to sp(1).
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Denoting by α(d) the corresponding left-invariant 1-form on Sp(1), the connection
d + 2π iα(d) on Sp(1)× C is then invariant under the actions

A · (x, z) := (Ax, z) and (x, z) · h := (xh, h−d z)

for A ∈ Sp(1) and h ∈ U(1). Furthermore, the right U(1)-action is by construction
horizontal for this connection. Therefore, the latter descends to a metric and
Sp(1)-equivariant connection on (Sp(1)× C)/U(1)→ Sp(1)/U(1)≃ CP1.

Uniqueness can be established by noticing that the difference of two such line
bundles comes with a connection whose curvature is Sp(1)-invariant and vanishes
in cohomology, and is therefore zero. The space of flat sections is then a 1-
dimensional Sp(1)-representation, so that choosing one unit element in this space
gives an isomorphism of the line bundles intertwining the Hermitian structures and
connections.

We will refer to this object as Ld .
For each d ∈ Z and λ ∈ 3(d), denote by m(d)

λ the multiplicity of Vλ in H(d)
q .2

Finally, call Vλ → CP1 the trivial Hermitian bundle with fibre Vλ with ∇
Tr the

trivial connection and Sp(1) acting on it trivially on the fibres.

Theorem 2.11. Fix an integer d and a dominant weight λ of G0. Suppose, for some
q ∈ CP1, that the multiplicity m(d)

λ of the corresponding isotypical component in the
Hilbert space Hq is finite. Consider the collection H(d)

λ of corresponding isotypical
components, and suppose it forms a Banach submanifold of CP1

×L2(M, L) acted
on smoothly by G. Then H(d)

λ is a Hermitian vector bundle over CP1 and there
exists a G-invariant isomorphism

H(d)
λ ≃ (Ld

⊗ Vλ)⊕m(d)
λ

of Hermitian vector bundles which intertwines the covariant derivative operators
∇

H(d)
λ of Definition 2.7 with the natural connection on the right-hand side.

Proof. Introducing for simplicity the notation m :=m(d)
λ , fix q ∈CP1, and identify Tq

with U(1) by the orientation defined by q. Consider on Sp(1) the trivial vector
bundle Sp(1)× V ⊕m

λ with the left and right actions

(A, g) · (x, v) := (Ax, gv) and (x, v) · h = (xh, h−dv)

of Sp(1)× G0 and U(1), respectively. Choose an isomorphism ϕ : V (⊕m)
λ → H(d)

q,λ
as G0-modules and define

8 : Sp(1)× V ⊕m
λ → H(d)

λ , 8 : (x, v) 7→ ρH(x)(ϕ(v)).

By construction, 8 is invariant under the right U(1)-action and intertwines the
Sp(1)× G0-actions. It is also a surjective smooth map covering the projection

2The integer m(d) is independent of q ∈ CP1 (see the previous footnote).
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π : Sp(1)→ CP1, π(x) := xq and restricts fibrewise to unitary isomorphisms. It
follows that 8 is a submersion, and therefore the induced bijection

(14) (Sp(1)× V ⊕m
λ )/U(1)→ H(d)

λ

is a diffeomorphism, thus showing that H(d)
λ is a vector bundle as claimed. It then

follows from Proposition 2.10 that ∇
H(d)
λ is a Hermitian G-invariant connection.

The map 8 may also be regarded as a unitary isomorphism

(15) Sp(1)× V ⊕m
λ ≃ π∗H(d)

λ .

Both sides come with Sp(1)× G0- and U(1)-invariant Hermitian connections, both
making the right U(1)-action horizontal. Such a connection, however, is uniquely
characterised by these properties. Indeed, left Sp(1)-invariance implies that such
a connection is determined by the potential over any element of Sp(1). On the
other hand, combining the left and right U(1)-invariance shows that the operation
of lifting elements of TId Sp(1) ≃ sp(1) horizontally is AdU(1)-equivariant. The
condition that the right U(1)-action be horizontal, moreover, determines the lifts of
vectors in u(1), and therefore of those in sp(1) by AdU (1)-invariance. We conclude
that the isomorphism (15) also identifies the connections on the two bundles, which
is to say that the isomorphism (14) is also horizontal. The left-hand side of (14),
however, is clearly isomorphic to Ld

⊗ Vλ⊕m . Finally, since the kernel of the
covering map Sp(1)× G0 → G acts trivially on the right-hand side, it follows that
the group action on the left-hand side descends to G. □

Remark 2.12. Theorem 2.11 yields an alternative definition of the bundles of
isotypical components, without smoothness assumptions. Indeed, a map 8 con-
structed as above uniquely defines a smooth structure on H(d)

λ making it a vector
bundle which comes with an isomorphism with Ld

⊗ Vλm , and therefore inducing
also a connection with the desired properties. Given that the only ambiguity in
the construction of 8 lies in the choice of ϕ, any two such maps are related by
precomposition with a G0-invariant automorphism of V ⊕m

λ . Since this operation
preserves the structure on Sp(1)× V ⊕m

λ , the two choices induce the same data
on H(d)

λ .
This yields finite-rank smooth G-equivariant Hermitian vector bundles over the

Riemann sphere, equipped with Hermitian connections, defined from the combi-
natorial data of the multiplicities of Hq as a representation, as long as the main
assumption that the H(d)

q,λ’s be finite-dimensional is verified.

Together with Remark 2.6, the content of this section proves Theorem 1.1.

2F. Quantum super Hilbert spaces and unitary representations. We now denote
by H (d)

λ the super vector space obtained by taking the holomorphic cohomology of
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the bundles of isotypical components:

H (d)
λ := H∗(CP1,Hd

λ).

By Remark 2.6, the above is equivalent to the space H (ρ) of (2). Since H(d)
λ is

Hermitian and CP1 is Kähler, the L2-pairing on harmonic representatives gives
each of the above a natural Hermitian structure.

If W (d)
= W (d)

+ ⊕ W (d)
− is the unitary super Sp(1)-representation defined by

W (d)
+ := H 0(CP1,Ld), W (d)

− := H 1(CP1,Ld),

then H (d)
λ ≃ W (d)

⊗ V ⊕m(d)
λ

λ as super G-representations, where Vλ is endowed with
the trivial Z2-grading. Moreover, dim W (d)

+ is equal to d+1 if d ≥ 0 and 0 otherwise,
while similarly dim W (d)

− vanishes for d ≥ 0 and is equal to −d − 1 otherwise.
Finally consider the nested L2-completed orthogonal direct sums

H :=

⊕
d∈Z

H (d), H (d)
:=

⊕
λ∈3(d)

H (d)
λ .

This provides a G-representation quantising the G-action on (M, g, I, J, K ),
thus proving Theorem 1.2 from the introduction.

2G. Finite-rank conditions. We shall now consider conditions which entail finite-
dimensionality for the isotypical components of Section 2D.

In general, if K is a compact Lie group with Lie algebra k = Lie(K ), acting on
a Kähler manifold X with a lifted K-action on a prequantum line bundle (L ,∇),
there is a natural moment map µ : X → k∨ defined by Kostant’s formula

(16) 2π i⟨µ, ξ⟩ ∂
∂θ

= ξ H
X − ξL

for every ξ ∈ k, where ξL is the vector field corresponding to ξ on L , ξ H
X the

one on X lifted horizontally, and ∂/∂θ is the fibrewise “angular” vector field. In
this setup, we will make use of the following version of the general principle that
“quantisation commutes with reduction”.

Theorem 2.13 [43; 81]. In the setup above, if the K-action extends holomorphically
to the complexified group K C, and if the moment map (16) is proper, then for every
dominant weight γ of K there is an identification

HomK (Vγ , H 0(X, L))≃ H 0(Xγ , Lγ ),

where Vγ denotes a simple K-module of highest weight γ , Xγ = X//γ K is the
symplectic reduction of X at level γ , and Lγ is the induced (V -)bundle on Xγ .

This result was first established by Guillemin and Sternberg [43] in the case X is
compact, with additional regularity conditions, and then extended by Sjamaar [81].
The statement has been subsequently generalised in various works including those
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of Meinrenken [67; 68], Meinrenken and Sjamaar [69], Vergne [84; 85], Ma [60],
Ma and Zhang [61], and Hochs and Song [48].

We emphasise that this formulation of “quantisation commutes with reduction”
requires no assumptions on γ being a regular value or the K-action being free on
µ−1(γ ). In the statement of Theorem 2.13, Xγ and Lγ are regarded as a complex
analytic space and a coherent sheaf, respectively. See [81] for further detail.

Returning to our setting, for any fixed q and Lie subgroup S ⊂ Gq we have a
moment map

µS : M → Lie(S)∨,

given by Kostant’s formula. Then Theorem 2.13 yields the following.

Theorem 2.14. Fix q ∈ CP1 and a (connected) Lie subgroup S ⊆ Gq , and denote
by µS the Kostant moment map of the S-action on Mq . Assume that µS is proper,
and suppose that the S-action has a holomorphic extension to the complexified
group SC on Mq . Then every S-isotypical component in Hq has finite multiplicity.

Proof. Properness of the moment map implies that, for any dominant weight γ of S,
the symplectic reduction M//γ S is a compact complex analytic space. On the other
hand, Lγ is a coherent sheaf on it by [81, Section 2.2], and by compactness the
space of sections is finite-dimensional [28].

It follows from Theorem 2.13 that the irreducible representation of S of highest
weight γ has finite multiplicity inside H 0(Mq , Lq), so a fortiori inside Hq . □

Remark 2.15. Another way to ensure finite-dimensionality is to assume there
are compactifications of the symplectic reductions, with rational singularities and
boundary of (complex) codimension at least two; then Hartogs’s theorem applies
on the reduction (see, e.g., [83] for such generalisations, and see Theorem 2.17).

As briefly noted in the introduction, another approach to controlling the dimension
of the isotypical components is offered by the results of [90]. Indeed, the cited
work introduces a notion of meromorphicity for certain group actions which, under
appropriate conditions (see Assumption 2.14 of the same work), ensures finite-
dimensionality.

2H. Rank-generating series and localisation formulæ. If either H(d), H(d)
a or H(d)

λ

have finite rank, we consider the (formal) generating series:

(17) H(t)=

∑
d

rk(H(d)) · td ,

and

(18) H ′(t, t̃ )=

∑
d,a

rk(H(d)
a ) · td t̃a,
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as well as

(19) G(t, t̃ )=

∑
d∈Z

∑
λ∈3(d)

m(d)
λ · td t̃λ.

Note that if H(d)
a and H(d)

λ are both finite-rank then (18) can be obtained from (19)
via the substitution t̃λ 7→ χλ(t̃ ), where

χλ(t̃ )=

∑
a∈Eλ

n(λ)a · t̃a,

and where Eλ is the set of weights of Vλ with multiplicities n(λ)a ∈ Z≥0.
If in particular G0 is semisimple then the Weyl character formula yields

χλ(t̃ )=

∑
w∈W ϵ(w) t̃w(λ+ρ)∑
w∈W ϵ(w) t̃w(ρ)

,

where W = N (T )/T is the Weyl group and ρ ∈ t∨ the half-sum of positive roots.
Conversely (19) can be recovered from (18) (when both are defined) as follows.

Fix d ∈ Z and let Hd(t̃ ) be the coefficient of td in (18). Let λ be maximal among
the weights such that t̃λ appears in Hd(t̃ ). In particular, the weight λ(0)d can only
appear in an irreducible component of H(d)

q (as a G0-module) if it is the highest.
Therefore, the coefficient of t̃λ in Hd(t̃ ) is equal to m(d)

λ . One may now consider
Hd(t̃ )− m(d)

λ χλ(t̃ ) and repeat the procedure inductively. Since each step strictly
decreases one of the maximal weights the process terminates — exactly when the
polynomial vanishes. This results in a decomposition

Hd(t̃ )=

∑
λ∈3(d)

m(d)
λ χλ(t̃ ),

recovering all multiplicities and ultimately (19).
Furthermore the generating series (17), (18), and (19) can sometimes be computed

by localisation formulæ. We refer to [49] for general results, and we review here
the simpler versions used in what follows.

Suppose the action of Tq on Mq has a finite number of fixed points |Mq | ⊆ Mq ,
and let R(Tq) be the formal completion of the character ring R(Tq) of Tq .

Since the fixed points p ∈ |Mq | are isolated we see that 3−1(Tp Mq) ∈ R(Tq) is
invertible. Suppose now we have a decomposition

H i (Mq , Lq)=

⊕
d∈Z

H i (Mq , Lq)(d),

such that Tq acts on H i (Mq , Lq)
(d) via the d-th power of the standard representation,

and such that the spaces H i (Mq , Lq)
(d) are finite-dimensional.
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Proposition 2.16 [25; 49]. The following formula holds:

2n∑
i=0

(−1)i dim H i (Mq , Lq)
(d)td

=

∑
p∈|Mq |

Lq,p

3−1(Tp Mq)
.

Hence if H i (Mq , Lq)= (0) for i > 0 then simply

(20) H(t)=

∑
p∈|Mq |

Lq,p

3−1(Tp Mq)
.

Considering the action of T ′
q = Tq ·T on Mq we get an analogous result, provided

T ′
q has finitely many fixed points and all spaces H i (Mq ,Lq)

(d)
a,q are finite-dimensional,

and interpreting the right-hand side as an element of R(T ) ≃ Z[[t±1, t̃±1
i ]]. In

particular,

(21) H ′(t, t̃ )=

∑
p∈|Mq |

Lq,p

3−1(Tp Mq)
.

Now recall that if Mq is a Stein space, or has the structure of an affine scheme,
then Cartan’s theorem yields the vanishing of higher cohomology groups [27]. Thus
putting together the previous results we have established the following.

Theorem 2.17. Suppose there exists q ∈ CP1 such that Mq is a Stein space, or
has the structure of an affine scheme, and that the Tq-action (resp. T ′

q-action) has
finitely many fixed points. Assume further that one of the following holds:

• There is a proper moment map for the Tq -action (resp. T ′
q -action).

• There exists a compactification of the symplectic reductions with rational
singularities, with boundary of codimension at least two (see Remark 2.15).

Then the family H(d) (resp. H(d)
a ) has finite rank, and the associated localisation

formula (20) (resp. (21)) holds for the rank-generating series (17) (resp. (18)).

Remark 2.18. If the higher cohomology groups do not vanish one could replace (10)
by the super space

H̃q = H even(Mq , L)⊕ H odd(Mq , L),

in which case formulæ (20) and (21) hold for the super representations H̃q of Tq

and T ′
q . (In this setup one need not assume that Mq be a Stein space or an affine

scheme.)

Remark 2.19. Alternatively, in the setting of [90], Wu’s localisation results (Theo-
rem 3.14 of the same work) yield the generating series (17) and (18) by an index
computation of the fixed-point locus for the Tq - and T ′

q -action, respectively.
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2I. Sp(1)-symmetric hyperkähler potentials.

Definition 2.20. A hyperkähler potential on the hyperkähler manifold (M,g, I, J,K )
is a smooth map µ : M → R such that ωq = i∂q∂qµ for every q ∈ CP1.

One can also use such potentials to obtain equivariant prequantum data, as
discussed below. Assume further that µ is Sp(1)-invariant and that it generates the
Tq -actions, i.e., iµ : Mq → iR ≃ t∨q is a moment map.

In this case we consider the trivial Hermitian line bundle, and lift the G-action
by the identity on each fibre. Natural symplectic potentials are given by

θq =
1
2(∂qµ− ∂qµ) ∈�1(M),

hence ∇q = d+(θq/ℏ) is a prequantum connection for all q ∈ CP1, and the resulting
prequantum data are G-equivariant since µ is Sp(1)-invariant.

Now if grad(µ) is complete then each Tq -action extends holomorphically to C×,
and if in addition µ is proper then the subspaces H(d)

q are finite-dimensional by
Theorem 2.14.

Proposition 2.21. Suppose that M admits a G-invariant hyperkähler potential µ
which, for every q ∈ CP1, is also an ωq-moment map for the Tq-action. Assume
moreover that µ is bounded below and that it has finitely many critical values.
Then for every q ∈ CP1 the function ψ0 := e−µ/2ℏ is square-integrable, and it is a
holomorphic frame for the prequantum line bundle constructed above.

Proof. Nonvanishing and holomorphicity are a straightforward consequence of the
definition.

On the other hand, the L2-square-norm of ψ0 can be expressed as

(22) ∥ψ0∥
2
L2 =

∫
M

e−µ/ℏ d vol =

∫
∞

B
e−ξ/ℏµ∗(d vol),

where B ∈ R is a lower bound for µ and µ∗(d vol) the push-forward of the Liouville
measure. By the Duistermaat–Heckman theorem [36] the push-forward admits
a density which restricts to a polynomial on every interval I ⊂ R not containing
critical values for µ. Since there are finitely many such values, (22) splits as a finite
sum of converging integrals. □

By construction, the compact torus Tq ≃ U(1) acts on the complex vector space
of holomorphic functions on Mq — by (inverse) pullback. By definition, such a
function is d-homogeneous if it transforms (under the Tq -action) in the irreducible
representation corresponding to the character z 7→ zd

∈ U(1), where d ∈ Z. Under
the assumptions of Proposition 2.21 we thus get an isomorphism

9 : L2 H 0(Mq ,O, e−µ/ℏ d vol)(d) → H(d)
q ,
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given by9( f )= fψ0, where the left-hand side denotes the space of d-homogeneous
holomorphic functions with finite L2-norm with respect to e−µ/ℏ d vol.

3. Examples of applications

3A. Hyperkähler vector spaces. Let n > 0 be integer and V a real vector space of
dimension 4n.

Definition 3.1. A linear hyperkähler structure on V is a scalar product g and an or-
dered triple (I, J, K ) of orthogonal automorphisms of V satisfying the quaternionic
identities I 2

= J 2
= K 2

= IJK = − IdV .

Equivalently, a linear hyperkähler structure on V may be regarded as a Hermitian
representation of the quaternion algebra

H = {q = d + ai + bj + ck | a, b, c, d ∈ R},

on V , where the quaternionic Hermitian form is

h := g − iωI − jωJ − kωK , with ω•(v,w) := g(• v,w) for • ∈ {I, J, K }.

It follows that I, J, K are g-skew-symmetric, and hence they span a real Lie
subalgebra su(2)V ⊆ o(V, g).

Attached to the hyperkähler vector space is the group Sp(V, h) ⊆ O(V, g)
of R-linear endomorphisms of V preserving h — and hence g and each of the
forms ωI , ωJ , ωK . As above we are interested in transformations that preserve the
hyperkähler structure in a looser sense, but here we restrict to linear ones:

Hk(V )= Hk(V, g, I, J, K ) := {A ∈ O(V, g) | AdA(su(2)V)= su(2)V}.

As a subgroup of O(V, g), the above is compact.

Remark 3.2. We are thus slightly abusing the notation from Section 2. Indeed if V
is regarded as a smooth hyperkähler manifold then the group of all transformations
preserving g and su(2)V also contains the translations, and it is in fact generated
by these two kinds of transformations. We shall still denote this subgroup Hk(V )
in the linear case to simplify the notation.

Remark 3.3. In this case the twistor space is a rank-2n holomorphic vector bundle
πCP1 : Z → CP1 isomorphic to C2n

⊗ O(1) (in the straightforward generalisation
of the case n = 1 from [46, Example 2.4, p. 143]).

Lemma 3.4. There is an exact sequence of Lie groups:

1 → Sp(V, h)→ Hk(V ) Ad
−→ SO(3)→ 1,

and an embedding σ : Sp(1) → Hk(V ) such that Ad ◦ σ : Sp(1) → SO(3) is the
natural surjection.
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Proof. The natural Sp(1)-action on H by multiplication on the right induces the
standard Sp(1)-action on the unit sphere of complex structures SIJK . The conclusion
follows from a choice of identification V ≃ H ⊗R Rn as H-module. □

Hence a choice of orthonormal basis for (V, h) (as a left H-module) yields an
identification

Hk(V )= Sp(n) · Sp(1)≃ (Sp(n)× Sp(1))/Z2.

Choosing G = Hk(V ), we see that in the notation of the introduction we have

G0 = Sp(V, h)⊆ Hk(V ).

Geometric quantisation. Geometric quantisation on a Kähler vector space is straight-
forward and essentially unique up to the choice of a symplectic potential, which
corresponds to a gauge choice on the prequantum line bundle. For ℏ ∈ R>0

one considers the triple (L , h,∇q), consisting of the trivial complex line bundle
L := V × C → V with the tautological Hermitian metric h, and the connection
∇q := d −

i
ℏθq defined by the invariant symplectic potential

θq(v)(X)=
1
2ωq(v, X),

for v ∈ V a point and X a tangent vector there. The above yields prequantum data
for (V, ωq) at level ℏ−1. We may denote Lq → V the line bundle to emphasise the
structure we are prequantising on V .

The bundle Lq comes endowed with a natural holomorphic frame

ψ0(q, v) := exp
(

−
1

4ℏ
g(v, v)

)
,

which is manifestly independent of q ∈ CP1. For each q, the resulting quantum
Hilbert space consists of sections ψ = fψ0, with f : V → C an Iq-holomorphic
function with finite L2-norm with respect to the Gaussian measure. This space is
well known to be densely generated by the polynomial functions, which induces a
grading on each Hq — the Fock grading.

This setting is a particular case of the one discussed in Section 2I. Indeed, on a
Kähler vector space, the functionµ(v)= 1

2∥v∥2 is a moment map for the U(1)-action
by scalar multiplication and a Kähler potential, and moreover

−
i
2
(∂ − ∂)µ= θ

is the invariant symplectic potential. Additionally, for each q ∈ CP1 the action
of Tq is the standard one.

Furthermore d-homogeneous holomorphic functions on a complex vector space
are d-homogeneous polynomials, whence the decomposition of Hq into isotypical
components as a Tq-module reduces to the well-known Fock grading. By the
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identification of the space of such homogeneous polynomials with Symd V ∨
q , the

finite-dimensional spaces H(d)
q assemble into finite-rank Hermitian subbundles

H(d)
→ CP1 of the trivial L2(V, L)-bundle, with a natural isomorphism

Symd Z∨
→ H(d)

of vector bundles over the Riemann sphere.

Group action on quantum spaces. The action ρZ
: Hk(V )→ Aut(Z) has a natural

lift to L = Z × C as ρZ
× Id. Since A∗θq = θA.q for A ∈ Hk(V ) and q ∈ CP1, it

follows that this action preserves the structure of L as a family of prequantum line
bundles. This defines an action ρH on sections of H(d) by pull-back, as in (12), and
it is easy to check this is a graded fibrewise unitary Hk(V )-action — covering that
on the hyperkähler 2-sphere.

Theorem 3.5. For q ∈ CP1 there is a canonical isomorphism H(d)
q ≃ Symd(V ) of

simple Sp(V, h)-modules, and the bundle with connection (H(d),∇H(d)
) is Hk(V )-

equivariantly isomorphic to Ld
⊗ Symd(V )→ CP1.

Proof. This follows directly from the above discussion and from Theorem 2.11:
The metric g, and hence the section ψ0, are fixed by Sp(V, h). It is known the
natural action on Symd V ∨

q is irreducible [76]. □

Altogether the statements of this section establish the assumptions needed to
apply Theorem 1.2, which in this particular case yields the following.

Theorem 3.6 (see Theorem 1.2). The Sp(1)-symmetric geometric quantisation of
the hyperkähler vector space V yields the super Hilbert space

H =

⊕
d∈Z≥0

H (d),

in analogy with Section 2F. This carries a unitary Hk(V )-representation preserving
the splitting, and there is an isomorphism H (d)

≃ W (d)
⊗ Symd(V ) of simple

Hk(V )-modules.

For every d ≥ 0 we thus have

dim(W (d)
+ )= (d + 1), dim(W (d)

− )= 0, dim(H (d))= (d + 1)
(2n+d

d

)
.

The generating series (17) and (18) are obtained explicitly from the above:

H(t)=
1

(1 − t)2n , H ′(t, t̃ )=
1∏n

i=1(1 − t t̃i )(1 − t t̃−1
i )

.

On the other hand, since Vq ≃ C2n is a Stein space, and since the actions of Tq

and T ′
q only fix the origin, Theorem 2.17 also applies, and the result from (20)
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and (21) yields the same formulæ. Now by Theorem 3.6 we see that m(d)
Symd (V )

= 1
for d ∈ Z≥0, whence

G(t, t̃ )=

∞∑
d=0

td t̃λSymd (V ) .

3B. Four-dimensional examples. As mentioned in the introduction, in dimension 4
there is a complete classification of Sp(1)-symmetric hyperkähler manifolds up
to finite quotients. Besides H with its flat metric there are the Taub–NUT metrics
on R4, and the hyperkähler metric on the moduli space of charge-2 monopoles, i.e.,
the Atiyah–Hitchin manifold MAH.

Taub–NUT metrics. Consider the case of M = R4 with the Taub–NUT metric ga

corresponding to a positive real parameter a — the case a = 0 corresponds to the
standard flat metric on H, which we already discussed. We will denote ωa

q the
corresponding symplectic structures. It is well known (e.g., [39, Remark 1]) that

Hk(M)≃ (Sp(1)× U(1))/Z2 ≃ U(2).

In particular there is a faithful Sp(1)-action rotating the sphere of hyperkähler
structures, while Sp(M)= U(1) is compact and commutes with Sp(1). Furthermore
there exists, unique up to isomorphism, a family of prequantum line bundles for M ,
since H 2(M,Z)= 0 = H 1(M,U(1)).

The action of T ′
q = (U(1)× U(1))/Z2 ⊆ Hk(M) is studied explicitly by Gaudu-

chon in [39, Section 3.2] for the complex structure J+ corresponding to q = i .
The subgroup is identified in that context with U(1)× U(1) via the isomorphism
(t, s) 7→ (ts, ts−1). From equations (3.10) and (3.19) of the same work one con-
cludes that the action of Tq = U(1)× {1} on Mq is Hamiltonian with moment
map µq = µ+

1 +µ+

2 (borrowing Gauduchon’s notation), which is easily seen to be
proper from the definitions. Finally [39, Proposition 1] provides a biholomorphism
8a

+
=8 : (M, J+)→ C2, and by a straightforward check this map intertwines the

Tq-action on Mq with the standard U(1)-action on C2. In particular the Tq-action
extends holomorphically to C∗, and the hypotheses of Theorem 2.14 are verified.

Thus decomposing Hq with respect to the Tq -action yields

Hq =

⊕
d∈Z≥0

H(d)
q ,

where the subspaces H(d)
q ⊆Hq are finite-dimensional. Then we consider the action

of the commuting compact group Sp0(M)= {1} × U(1) on H(d)
q to refine:

H(d)
q =

⊕
d ′∈3(d)

H(d)
d ′,q ,

where 3(d) ⊆ Z≥0 is finite. In addition, we also have the following statement.
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Proposition 3.7. For q = i , the prequantum line bundle Lq admits a Tq-invariant
holomorphic frame ψq such that 8∗( f ) ·ψq is L2 for every polynomial function f
on C2.

Proof. Recall that, again in the notations of [39], x1, x2, and x3 are three real-
valued functions on M whose span is preserved by Sp(1), which acts on them by
rotations in the standard way. Furthermore, all three functions are fixed by the
action of U(1)= Sp(M). Writing r =

√

x2
1 + x2

2 + x2
3 , it follows from (3.19), (2.11),

and (2.12) of [39] that the aforementioned moment map µ can be expressed as

µ= r + a2(x2
2 + x2

3).

Since µi := µ is a moment map for Ti with respect to ωa
i , it follows that for

every g ∈ Sp(1) the function (g−1)∗µ generates the Tg.i -action with respect to ωa
g.i .

In particular, if g.i = j , then the flow associated to

µj := (g−1)∗µ= r + a2(x2
1 + x2

3)

with respect to ωa
j rotates the circle spanned by ωa

3 and ωa
1 . It is therefore a

Kähler potential for ωa
i [47], and repeating the argument when g.i = k so is

µk := r + a2(x2
1 + x2

2). Therefore the Ti -invariant function

ϕ = ϕi :=
µj +µk

2
= r +

a2

2
(r2

+ x2
1)

is also a Kähler potential. It follows that for every g ∈ Sp(1) the function (g−1)∗ϕi

is completely determined by q = g.i , so that

ϕq := (g−1)∗ϕi

is well defined, and a potential for ωa
q . From this we obtain an explicit realisation

of the family of prequantum line bundles, for which the functions ψ0,q = e−
1

2ℏϕq

define holomorphic frames.
Now note the function µ is bounded below, and its only critical point is the ori-

gin — the only fixed point of the induced action. We may then apply the Duistermaat–
Heckman theorem [36] as in Proposition 2.21 to conclude that e−αµ is integrable
with respect to the Taub–NUT volume d vola for every parameter α ∈ R>0. The
same clearly applies to µj and µk , and from this it is easily deduced that

e−αϕq ∈ L2(M, d vola)

for every q ∈ CP1 and α > 0. In particular, the holomorphic frames constructed
above are L2.

To conclude we recall that the two components of 8 are defined as

w1 = ea2x1 z1, w2 = e−a2x2 z2,
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where z1 and z2 are the standard i-holomorphic coordinates on M = H with respect
to the usual flat metric (see [39, (3.4)]). We need to show that, for every n,m ∈ Z,
the function wn

1 w
m
2 ψ0 is also L2. Expanding the definition of ϕ yields

1
ℏ
ϕ− 2a2(n − m) x1 =

r
ℏ

+
a2

2ℏ
(r2

+ x2
1)− 2a2(n − m) x1

≥
r

2ℏ
+

a2

4ℏ
(r2

+ x2
1)− C =

1
2ℏ
ϕ− C ≥

1
4ℏ
µj − C,

provided C ∈ R>0 is large enough. Furthermore, it is a simple consequence of the
definitions in [39] that |z1|

2
+ |z2|

2
= 2r , whence

|zn
1 zm

2 |
2
≤ (2r)2(n+m)

≤ µ
2(n+m)
j .

Collecting the estimates and using again the Duistermaat–Heckman theorem we
conclude ∫

M
|wn

1 w
m
2 |

2 ψ2
0 d vola ≤ eC

∫
M
µ

2(m+n)
j e−

1
4ℏµj d vola <∞. □

As a consequence of this result we have dimH(d)
d ′ = 1 for all d ∈ Z≥0 and

d ′
= d − 2 j with j ∈ {0, . . . , d}, and we conclude that H(d)

d ′ ≃ Ld for such values
of d and d ′.

Theorem 3.8. The generating series (18) is the same as for the flat metric, namely

H ′(t, t̃ )=
1

(1 − t t̃ )(1 − t t̃−1)
.

We thus have

H =

⊕
d∈Z≥0

H (d), H (d)
=

⊕
d ′∈3(d)

H (d)
d ′ = H 0(CP1,Ld)⊕(d+1).

The Atiyah–Hitchin manifold. Let us consider the Atiyah–Hitchin manifold MAH,
the last four-dimensional case. We shall discuss the extent to which our methods
apply here.

The Atiyah–Hitchin manifold can be realised as the moduli space of charge-2
centred magnetic monopoles in R3, and it comes with a natural Riemannian metric
preserved by the SO(3)-action induced by rotating monopoles. The quaternionic
nature of the Bogomolny equation, of which the monopoles represented by MAH

are a particular class of solutions, induces a family of almost complex structures,
which can be better understood via Donaldson’s description in terms of rational
maps [34]. More precisely, the choice of an oriented line through the origin in R3

induces an identification

M̃AH =

{
S(z)=

uz + v

z2 −w
∈ C(z)

∣∣∣ v2
−wu2

= 1
}

=: R0
2,
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where the left-hand side denotes the (two-fold) universal cover of MAH. The
Atiyah–Hitchin manifold is recovered from the monodromy action, generated by
(u, v, w) 7→ (−u,−v,w). The resulting map is a biholomorphism with respect to
one of the aforementioned almost complex structures, establishing that the latter is
integrable and the former is Kähler. Rotations around the preferred direction induce
a U(1)-action of R0

2 by

(23) t.(u, v, w)= (tu, v, t−2w).

As the preferred direction changes across all possible choices, this results in a
family of Kähler structures parametrised by CP1, which is clearly rotated by the
SO(3)-action (see [15, Chapter 2]).

The above identification is not isometric with respect to the Riemannian embed-
ding R0

2 ⊆ C3; nonetheless, the Riemannian structure on MAH can be described by
studying the SO(3)-orbits [15, Chapters 8–11]. The generic stabiliser of a monopole
is the Klein four-group K4, while orbits are parametrised by k = sin(α) for an angle
α ∈

[
0, π2

]
, resulting in a description of an open dense of MAH as the product

(0, 1)× SO(3)/K4; furthermore, as k → 0 the orbit degenerates to a diffeomorphic
copy of RP2, onto which MAH deformation-retracts.

According to Swann’s work [82, Section 6, Four-manifolds], MAH does not
admit a hyperkähler potential. Furthermore, one sees from (23) that the stabiliser
of each Kähler structure has exactly one fixed point, and since the manifold has
the homotopy type of RP2 there can be no proper moment map. Nonetheless the
above homotopy equivalence yields

H 1(MAH,U(1))≃ H 2(MAH,Z)≃ Z2.

Hence by Section 2B there are exactly two inequivalent SO(3)-equivariant families
of prequantum line bundles. They differ by a twist by a family of flat connections
on the nontrivial complex line bundle on MAH.

The family supported on the trivial bundle can be constructed by means of
the Kähler potentials of Olivier [72]. Namely the metric on the Atiyah–Hitchin
manifold is the completion of

(24) ds2
=

β2γ 2δ2

(4k2(1 − k2)K 2)2
dm2

+β2σ 2
x + γ 2σ 2

y + δ2σ 2
z ,

defined on
(
0, π2

)
×SO(3)/K4. We follow the conventions of [72]. Namely, m = k2

is used as a coordinate in place of k, while (σx , σy, σz) is an orthonormal frame of
T∗SO(3)→ SO(3) and the coefficients β, γ, δ are functions of k determined by

βγ = −EK , γ δ = −EK + K 2, βδ = −EK + (1 − k2)K 2,



28 J. E. ANDERSEN, A. MALUSÀ AND G. REMBADO

where

K := K (k)=

∫ π/2

0

dφ√
1 − k2 sin2 φ

, E := E(k)=

∫ π/2

0

√
1 − k2 sin2 φ dφ

are the complete elliptic integrals of the first and second kind, respectively.
Oliver [72] then uses the Euler angles (ϕ, θ, ψ) as coordinates on SO(3) to give

an explicit Kähler potential� for one of the complex structures, say I3, preserved by
rotations in the angle ϕ. This is given in of [72, (55)] and can be written explicitly
using equations (6), (24), (25) and (36) therein, getting the formula

�=
βγ + γ δ+ δβ

8
+

1
8(γ δ sin2 θ cos2 ψ + δβ sin2 θ sin2 ψ + γβ cos2 θ).

Note for k ∈ (0, 1) this function extends continuously to the whole of SO(3), and
the trigonometric functions of (θ, ψ) descend to the projective space at k = 0;
hence the potential extends to the completion MAH. Finally, we emphasise that this
potential is independent of the variable ϕ, which is to say that it is invariant under
the action of the I3-stabiliser. It follows that � defines an equivariant family of
potentials under the SO(3)-action, whence an equivariant family of prequantum line
bundles by the usual construction, together with a holomorphic frame ψ0 = e−

1
2ℏ�

for I3.

Proposition 3.9. The function e−α� is integrable on MAH for α ∈ R>0.

Proof. From (24) we obtain the following expression for the volume form on (the
complement of a negligible set in) MAH:

d vol =
β2γ 2δ2

4k2(1 − k2)K 2 dmσx σy σz.

We need to show that∫
(0,1)×SO(3)

e−α� β2γ 2δ2

4k2(1 − k2)K 2 dmσx σy σz <∞.

Note that βγ ≤ 0, γ δ ≥ 0, and βδ ≤ 0 yield

�≥
γ δ

8
.

We may then use these bounds and the Fubini–Tonelli theorem to reduce the
statement to ∫ 1

0
e−

α
8 γ δ

β2γ 2δ2

k2(1 − k2)K 2 dm <∞.

We will proceed by studying the asymptotic behaviour of the integrand in the
limit k → 1; the integral is necessarily regular for k → 0. It is well known that

K ∼
1
2 log(1 − k2),
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and since E(1)= 1 we find that

βγ ∼ −
1
2 log(1 − k2), γ δ ∼

1
4 log2(1 − k2), βδ ∼ −

1
2 log(1 − k2),

and hence the integral converges by comparison with∫ 1

0
exp

(
−
α

32
log2(1 − k2)

)
log2(1 − k2)

(1 − k2)
dm =

∫
∞

0
e−

α
32 x2

x2 dx <∞,

which concludes the proof. □

For α = 1/ℏ this implies the holomorphic frame ψ0 is L2, and hence an element
of H(0)

I3
; in principle more L2 holomorphic sections may be found considering

functions of the holomorphic coordinates (u, v, w) on R2
0 . If all the monomials that

descend to MAH are L2, then one concludes that H(d)
q has infinite rank for every

integer d , since uavbwc is (a −2c)-homogeneous and well defined on MAH if a +b
is even. We obtain a partial result in this direction, showing that all powers of w
are L2.

The problem of describing u, v, and w in terms of the setup above is addressed in
[15, Chapter 6-7], by making use of the twistor description and spectral curves [50].
Introducing parameters

k1 =

√
k
√

1 − k2K
2

, k2 =
1 − 2k2

3k
√

1 − k2
,

consider the elliptic curve

y2
= 4k2

1(x
3
− 3k2x2

− x)

and let ℘, ζ be its corresponding Weierstrass functions, η the real period of ζ . Sup-
pose that a, b ∈C are the entries of a matrix in SU(2), thought of as a parametrisation
of SO(3)/K4, and let ξ ∈ C be such that

(25) ℘(ξ)=
b
a

− k2.

Then the corresponding point in MAH has holomorphic coordinates

u =
sinh

(
2k1ζ(ξ)−

ηξ

2 + k1ab℘ ′(ξ)
)

k1a2℘ ′(ξ)
,

v = cosh
(

2k1ζ(ξ)−
ηξ

2
+ k1ab℘ ′(ξ)

)
,

w = k2
1a4℘ ′(ξ)2,

up to the sign ambiguity resulting from the monodromy. Substituting (25) in the
differential equation for ℘, and using g2 and g3 as given in [50], we obtain

w = k2
1a(−12ab2k2 + 4b3

− 4a2b).
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Now since |a|
2
+ |b|

2
= 1 a straightforward check shows that

|w|
2
≤ 16k4

1(9k2
2 + 2)∼ 4K 2

∼ log2(1 − k2)

for k → 1. Adapting the proof of Proposition 3.9 and using (23) we obtain:

Proposition 3.10. For every integer n ≥ 0 the holomorphic section wnψ0 is L2 and
therefore an element of H(−2n)

I3
.

The analysis is more delicate for the functions u and v. Using (25) one can
express ab in terms of ξ and write the argument of the hyperbolic functions as

8(ξ)= 2k1ζ(ξ)−
ηξ

2
+ k1℘

′(ξ)
k2 +℘(ξ)

1 + |k2 +℘(ξ)|2
.

It follows from the definitions and the Legendre relation that this function is periodic
for the real period of ℘ and quasiperiodic for the imaginary period, with step π i ,
whence the sign ambiguity of u and v. Moreover one can show the poles of the
summands cancel out, leaving a nonholomorphic analytic function — hallmark of
the fact that the SO(3)-action does not preserve the complex structure. In particular
its real part is bounded for fixed “k”.

3C. Moduli spaces of framed SU(r)-instantons. Let r ≥ 2 and k ≥ 0 be integers,
and consider the moduli space Mk,r of charge-k framed SU(r)-instantons on R4,
which is a hyperkähler manifold [13; 33]. Each of its complex structures can be de-
scribed in terms of the ADHM construction as follows, after fixing an identification
R4

≃ C2. Consider the product

M := End(Ck)2 × Hom(Ck,Cr )× Hom(Cr ,Ck),

with GL(Ck)-action given by

g.(α0, α1, a, b)= (gα0 g−1, gα1g−1, ga, bg−1).

Remark 3.11. M is a space of representations of a quiver on two nodes and that
the action naturally extends to GL(Ck)× GL(Cr ) (which controls isomorphisms of
representations).

Let M0 denote the set of elements of M satisfying the additional conditions:

(i) [α0, α1] + ab = 0.

(ii) For all λ,µ ∈ C, we have α0 + λ

α1 +µ

a


injective and

(
λ−α0 α1 −µ b

)
surjective.
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Then the restricted U(r)-action is Hamiltonian with moment map

µ(α0, α1, a, b) := [α1, α
∗

1 ] + [α2, α
∗

2 ] + bb∗
− a∗a,

and there is an identification

(26) Mk,r ≃ M0//µ U(k).

The rotation group SO(4) acts on Mk,r , and in particular the subgroup Sp(1), in
the identification R4

≃H, transitively permutes the complex structures. Furthermore,
Maciocia [62] shows that for each q ∈ CP1 the Tq -action has moment map

m2(A)=
1

16π2

∫
R4

∥x∥
2 tr F2

A.

This function is clearly Sp(1)-invariant, and therefore a hyperkähler potential, so
one can construct an Sp(1)-invariant family of prequantum line bundles endowed
with holomorphic frames as in Section 2I.

The function m2 is not, however, a proper map. By [62], under the identifi-
cation (26) it corresponds to the norm-squared function f : M0 → R, which is
U(k)-invariant but not proper, on account of the open condition (ii). However,
Donaldson [33] identifies the symplectic reduction (26) with the GIT quotient
of M0 by GL(k,C), whereupon (ii) translates into a stability condition. One may
then include the semistable points to obtain a partial compactification

Mk,r := M//GIT GL(k,C),

which is smooth by the work of Nakajima and Yoshioka [71, Corollary 2.2]. The
map f descends then to a proper one on Mk,r ; it is also clear that its gradient
is complete on the quotient, showing that geometric quantisation on this space
yields finite-rank isotypical components by Theorem 2.14. On the other hand,
the codimension of the boundary Mk,r \ Mk,r is greater than 2, so that Hartogs’s
theorem allows for the extension of holomorphic functions on Mk,r , which yields
the finite-dimensionality of the isotypic components over this latter space.

4. Outlook and further perspectives

There are more spaces that fit some of the requirements for our quantisation scheme.
By the work of Kronheimer [57] the nilpotent (co)adjoint orbits of complex

semisimple (1-connected) Lie groups are hyperkähler manifolds with transitively
permuting SO(3)-actions, and by Swann’s work [82] they admit hyperkähler poten-
tials. Indeed, Proposition 5.5 of the same work states that such a potential exists on
a hyperkähler manifold if it admits an Sp(1)-action permuting the complex structure
and such that, denoting by Xq the vector field generating the Tq-action for each
q ∈ CP1, the vector field Iq Xq is independent of q. After [82, Proposition 6.5],
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Swann goes on to check that this condition is verified for Kronheimer’s space, thus
establishing the existence of a hyperkähler potential. This is a particular instance
of hyperkähler moduli spaces of solutions of Nahm’s equations, specifically on
a half-line with nilpotent boundary conditions.3 Since Nahm’s equations come
naturally with a quaternionic structure and Sp(1)-action, the resulting manifolds
have symmetries of the kind considered in this paper, and different choices of
domain and boundary conditions give rise to different hyperkähler structures. For
instance, semisimple boundary conditions on a half-line result in orbits of semisim-
ple elements [56], while the study of Nahm’s equations on a compact interval leads
to the cotangent bundle T∗G [32; 58]. By the works of Mayrand [64; 65; 66],
the latter comes with natural Sp(1)-equivariant families of Kähler potentials and
moment maps for the stabilizers Tq , rather than a hyperkähler one, and they enjoy
interesting properties that might lead to a variation of our main construction.

Also, as mentioned in the introduction, many new interesting hyperkähler metrics
can be defined on moduli spaces of irregular singular connections/Higgs bundles
over (wild generalisations of) Riemann surfaces [18; 77; 88], with simple examples
reviewed in [23]: the “multiplicative” versions of the Eguchi–Hanson space and
Calabi’s examples (whose standard “additive” versions are quiver varieties on
two nodes). This fits into a more general (new) multiplicative theory of quiver
varieties [22], involving a “fission” operation generalising the construction of moduli
spaces of flat connections à la TFT [19; 21]; note that conjecturally this produces a
lot more new hyperkähler manifolds [20], beyond (wild) nonabelian Hodge spaces.
See [26; 37; 74; 75] about quantum moduli spaces of meromorphic connections.

Finally the example of Section 3C, i.e., the moduli spaces of framed SU(r)-
instantons, opens the way for further discussion on the relation between the generat-
ing series produced by this new quantisation scheme and the well-known Nekrasov
partition functions.

Appendix: Comparison with the standard approach

In this section we shall correct the family of quantum Hilbert spaces Hq to obtain
finite-rank flat vector bundles of isotypical components (under the main assumption),
as well as unitary equivalences between the quantisation of M with respect to the
given Kähler polarisations.

Based on Theorem 2.11, we do this by a correcting twist of the finite-rank bundles
H(d)
λ → CP1; namely consider the tensor product

H̃(d)
λ := H(d)

λ ⊗L−d , d ∈ Z, λ ∈3(d).

3The hyperkähler metric on general orbits was constructed in [17; 55].



Sp(1)-SYMMETRIC HYPERKÄHLER QUANTISATION 33

This new vector bundle comes with a Hk0’(M)-action, and we denote ∇
H̃(d)
λ the

resulting Hk0’(M)-invariant flat connection.
Since CP1 is simply connected the parallel transport defines canonical unitary

isomorphisms

(27) H̃(d)
q,λ → H̃(d)

q ′,λ, q, q ′
∈ CP1,

satisfying 1-cocycle identities. In analogy with the above we then define⊕
λ∈3(d)

H̃(d)
q,λ =: H̃(d)

q ⊆ H̃q :=

⊕
d∈Z

H̃(d)
q ,

and these families of Hilbert spaces carry a 1-cocycle of unitary isomorphisms
induced from (27): This is the usual geometric quantisation construction.

Now we can introduce super Hilbert spaces H̃ (d)
λ, j in analogy with Section 2F,

taking the holomorphic cohomology of the twisted vector bundles H̃(d)
λ → CP1.

Theorem A.1 (see Theorem 1.2). There is a unitary action Hk0’(M) → U(H̃)
preserving the nested splittings

H̃ :=

⊕
d∈Z

H̃ (d), H̃ (d)
:=

⊕
λ∈3(d)

H̃ (d)
λ , H̃ (d)

λ :=

m(d)
λ⊕

j=1

H̃ (d)
λ, j .

Finally we can compare this representation with the one constructed in Section 2F,
finding that twisting trivializes part of the action. Namely, the present super Hilbert
space H̃ (d)

λ, j ≃ Vλ ⊗ W (0) replaces the original H (d)
λ, j ≃ Vλ ⊗ W (d) as a Hk0’(M)-

module, recalling that W (0) is the trivial one-dimensional Sp(1)-module. This
should be compared with the (more) interesting irreducible representations of
Hk0’(M) obtained from Theorem 1.2.
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The tautological lamination arises in holomorphic dynamics as a combina-
torial model for the geometry of 1-dimensional slices of the shift locus. In
each degree q the tautological lamination defines an iterated sequence of
partitions of 1 (one for each integer n) into numbers of the form 2mq−n.
Denote by Nq(n, m) the number of times 2mq−n arises in the n-th partition.
We prove a recursion formula for Nq(n, 0), and a gap theorem: Nq(n, n) = 1
and Nq(n, m) = 0 for ⌊n/2⌋ < m < n.
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1. Introduction

The tautological lamination, introduced in [Calegari 2022], is a combinatorially
defined object which gives a holomorphic model for certain 1 complex dimensional
slices of the shift locus, a fundamental object in the theory of holomorphic dynamics.
There is a shift locus Sq for each degree q; it is the space of depressed monic
polynomials zq

+ a2zq−2
+ a3zq−3

+ · · · + aq in a complex variable z (thought of
as a subset of Cq−1 with coordinates a j ) for which every critical point is in the
attracting basin of infinity.

There is a tautological lamination 3T (C) for each degree q and for each choice
of critical data C (certain holomorphic parameters which determine the slice
of Sq). For the complex dynamics reader: the tautological lamination records the
combinatorics of the 1 complex dimensional slices of the shift locus where q−2
critical Böttcher coordinates are fixed, and one critical point (with a smaller escape
rate than any of the others) is allowed to vary.
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Each tautological lamination determines a sequence of operations, called pinch-
ing, which cut the unit circle S1 up into pieces and reglue them into a collection
of smaller circles, denoted S1 mod 3T,n(C). Subsequent operations refine the
previous ones, so each component of S1 mod 3T,n(C) is cut up and reglued into a
union of components of S1 mod 3T,n+1(C). The precise cut and paste operations
depend on C , but the set of lengths of the components of 3T,n(C) (counted with
multiplicity) depends only on n and the degree q. These lengths are all of the
form 2mq−n for various nonnegative integers m, and we can define Nq(n, m) to be
the number of components of S1 mod 3T,n(C) of length 2mq−n .

The short components of S1 mod 3T,n(C) are those with length q−n . The
number of short components is Nq(n, 0). Our first main result is an exact recursive
formula for Nq(n, 0) (which can be solved in closed form):

Theorem 3.10 (recursive formula). Nq(n, 0) satisfies the recursion Nq(0, 0) = 1,
Nq(1, 0) = (q − 2) and

Nq(2n, 0) = q Nq(2n − 1, 0) and Nq(2n + 1, 0) = q Nq(2n, 0) − 2Nq(n, 0)

and has the generating function (β(t)−1)/qt , where a closed form for β(t) is given
in Proposition 2.2.

At the other extreme, there is a unique largest component of S1 mod 3T,n(C)

of length 2nq−n . Our second main result is a “gap” theorem:

Theorem 5.11 (gap theorem). Nq(n, m) = 0 for ⌊n/2⌋ < m < n.

Both the recursive formula for Nq(n, 0) and the existence of a gap were observed
experimentally. Our main motivation in writing this paper was to give a rigorous
proof of these observations.

One of the striking things about the tautological lamination is the existence of a
rather mysterious bijection between the components of S1 mod 3T,n(C) and some
seemingly unrelated objects called tree polynomials, introduced in Section 4. This
bijection is a corollary of one of the main theorems of [Calegari 2022], and the proof
there is topological. We know of no direct combinatorial proof of this bijection,
and raise the question of whether one can be found.

2. Unbordered words

Some words end like they begin, such as abra·cad·abra and b·aoba·b. Such words
are said to be bordered. Others (most) are unbordered. A border is a nonempty,
proper suffix of some word which is equal to a prefix.

If a word contains a border, then it contains one of at most half the length (for,
a border of more than half the length will itself be bordered and now we can
apply induction).
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If W is a word, let’s denote its length by |W |. If W is an unbordered word of
even length, we can write it as W = W1W2 where |W1| = |W2|, and then for every
letter c the word W1cW2 is also unbordered. If W is an unbordered word of odd
length, we can write it as W = W1W2 where |W1| + 1 = |W2|, and then for every
letter c the word W1cW2 is unbordered except when W1c = W2. Thus: if an denotes
the number of unbordered words of length n in a q-letter alphabet, then a0 = 1
(there is one empty word) and

a2n+1 = qa2n and a2n = qa2n−1 − an.

Let’s define a generating function α(t) :=
∑

∞

n=0 antn . Then the recurrence
becomes the functional equation

α(t) =
2 − α(t2)

1 − qt
.

Iteratively substituting t2 for t and being careful about convergence, one obtains
the following formula:

α(t) = 1 + q
∞∑
j=0

(−1) j t2 j
j∏

i=0

1
(1 − q · t2i

)
.

These facts are not new. Unbordered words have been studied by many authors.
They are also called bifix-free, and primary (neither of these terms seem very
descriptive to us). As far as we know they were first considered by Silberger [1971];
see also, e.g., [Lothaire 1997, p. 153].

A minor variation on this idea is as follows. Let’s take for our q-letter alphabet the
elements of Z/qZ. If W is a word in the alphabet, let W ′ denote the result of adding 1
to the first letter (digit). Say a word is 1-unbordered if no suffix S is equal to a
prefix P or to P ′ (and say it is 1-bordered otherwise). Then reasoning as above gives:

Proposition 2.1 (recursion). Let bn denote the number of 1-unbordered words of
length n in a q-letter alphabet. Then b0 = 1 and

b2n+1 = qb2n and b2n = qb2n−1 − 2bn.

Define the generating function β(t) :=
∑

∞

n−0 bntn . Then

β(t) =
3 − 2β(t2)

1 − qt
.

The following “closed form” for β(t) (and the argument below) was kindly
provided by Frank Calegari:

Proposition 2.2 (closed form solution). The generating function β(t) converges for
small |t |, and can be meromorphically continued throughout the unit disk with a
simple pole at every 2k-th root of 1/q.
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Define a sequence of integers h(n) by

h(0) := 1 and h(n) := (−q)s(n)(1 − (−2)k(n)) for n > 0,

where 2k(n) is the biggest power of 2 dividing n, and s(n) is the sum of the binary
digits of n. Then throughout the unit disk,

β(t) =

( ∞∑
n=0

h(n)tn
) ∞∏

j=0

1
(1 − qt2 j

)
.

Proof. From the growth rate of the coefficients it’s clear that β(t) has a pole
at q−1 and converges uniformly throughout the open disk of radius q−1. It follows
that β(t2) converges uniformly throughout the open disk of radius q−1/2. Using
the identity (1 − qt)β(t) = 3 − 2β(t2) and induction, the first claim is proved.

Let’s define H(t) :=
∑

∞

n=0 h(n)tn and B(t) := H(t)
∏

∞

j=0(1−qt2 j
)−1. Then the

proposition will follow if we can show that B(t) satisfies B(t)(1−qt) = 3−2B(t2).
First observe that h(n) = 0 if n is odd; and furthermore,

2h(n) + h(2n)

3
=

(−q)s(n)

3

(
3 − 2(−2)k(n)

+ 2(−2)k(n)
)
= (−q)s(n).

The required identity is equivalent to

(1 − qt)B(t)
∞∏

k=1

(1 − qt2k
) = (3 − 2B(t2))

∞∏
k=1

(1 − qt2k
)

or

B(t)
∞∏

k=0

(1 − qt2k
) = (3 − 2B(t2))

∞∏
k=0

(1 − q(t2)2k
)

or
H(t) + 2H(t2) = 3

∞∏
k=0

(1 − q(t2)2k
).

Since h(n) = 0 for n odd this is equivalent to
∞∑

n=0

h(2n)t2n
+

∞∑
n=0

2h(n)t2n
= 3

∞∏
k=0

(1 − q(t2)2k
).

Replacing t2 by t and using h(2n) + 2h(n) = 3(−q)s(n) this is equivalent to
∞∑

n=0

(−q)s(n)tn
=

∞∏
k=0

(1 − qt2k
)

which is clear. □
The definition of 1-unbordered words would seem utterly unmotivated — except

that it just so happens that they arise naturally in an entirely different context which
is the subject of the rest of the paper.
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Figure 1. Pinching a circle along a finite lamination to obtain a
collection of smaller circles.

3. Tautological laminations

3A. Laminations. A leaf is an unordered pair of distinct points in a circle S. Two
leaves in S are linked if they are disjoint (as subsets of S) and each separates the
other in S. A lamination of S is a set of leaves in S, no two of which are linked. A
finite lamination is one with finitely many leaves.

If 3 is a finite lamination of S we may pinch S along 3. This means that we
quotient each leaf to a point, so that S collapses to a “tree” of smaller circles
(sometimes called a cactus), and then split this tree apart into its constituent circles.
We denote the result by S mod 3. See Figure 1.

If there is a Riemannian metric on S then we get a Riemannian metric on
S mod 3, so it makes sense to talk about the length of the components of S mod 3,
and observe that the sum of these lengths is equal to the length of S.

Now suppose 3 is the increasing union of 3n (for n = 1 to ∞) where each 3n

is finite. The depth n leaves are those in 3n − 3n−1 and for each n we can form
S mod 3n for each n and obtain in this way a sequence of increasingly refined
partitions of |S|.

3B. Tautological elaminations and complex dynamics. We are interested in some
naturally occurring laminations called tautological laminations. These objects
were introduced in [Calegari 2022] to study the geometry and topology of the shift
locus — a certain parameter space that arises naturally in holomorphic dynamics. For
example, in degree 2, the shift locus is the complement (in C) of the Mandelbrot set.

The tautological laminations in [Calegari 2022] have some extra structure — they
are actually “extended laminations” or elaminations. If we identify the circle S1 with
the boundary of the closed unit disk D ⊂ C, leaves in a lamination 3 corresponds
to (infinite, unoriented) geodesics in D thought of as the hyperbolic plane in the
Poincaré disk model. The unlinking property of leaves in a lamination corresponds
to the condition that the geodesics in D they span are disjoint (except at their ideal
“endpoints”). In an elamination these geodesics extend beyond S1 to a pair of radial
segments in C − D. An elamination determines a lamination of S1 (or equivalently,
a geodesic lamination of D) by forgetting these “extended” segments.
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Figure 2. A finite elamination approximating the degree 3 tauto-
logical elamination for z = 2, and the result of pinching.

As mentioned in the introduction, the tautological lamination records the combi-
natorics of the 1 complex dimensional slices of the shift locus where q − 2 critical
Böttcher coordinates are fixed, and one critical point (with a smaller escape rate
than any of the others) is allowed to vary. The extra structure of the tautological
elamination records not only the combinatorics, but the holomorphic structure on
these slices.

A finite elamination may be pinched, giving rise to a planar Riemann surface
which may be (partially) compactified by a finite collection of circles, which are
precisely the result of pinching the associated lamination of S1. Figure 2 gives an
example, approximating an infinite (tautological) elamination.

To orient the reader and to motivate the remainder of this paper, let us now
describe the relationship between the tautological elamination and the holomorphic
geometry of the shift locus, in the special case of degree 3. A depressed cubic
polynomial f (z) := z3

+ pz + q is in the shift locus S3 if the critical points c1, c2

(not necessarily distinct) are in the basin of attraction of infinity. These critical
points have canonical Böttcher coordinates C1, C2, whose absolute value is well-
defined and strictly greater than 1, and whose arguments are multivalued, where
different values differ by multiples of 2π/3. For z ∈ C−D let us define the Böttcher
slice B(z) of S3 to be the 1-complex dimensional subset where C1 = {z, e2π i/3z}
and |C1| > |C2|. The open dense subset of S3 for which the critical points are
distinct and their Böttcher coordinates have distinct absolute values is foliated by
such Böttcher slices, and in fact the Böttcher slices form the fibers of a (topological)
fiber bundle over C − D. Associated to each z is a tautological elamination 3T (z),
and the Böttcher slice B(z) is obtained from 3T (z) by pinching.

Figure 2 depicts the tautological elamination 3T (z) for z = 2 and the Riemann
surface obtained from 3T (z) by pinching. The laminations of S1 associated to
3T (z) are the main objects of interest throughout this section; they depend only on
the argument of z. We shall give them a precise definition in Section 3D.
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Figure 3. Part of the degree 3 shift locus (in blue) in a coordinate
slice f (z) = z3

+ pz + 1.

It is computationally difficult to transform from Böttcher coordinates to poly-
nomial coordinates. Fortunately, because the shift locus is more or less foliated
by Böttcher slices, we may obtain a qualitatively reasonable picture of a Böttcher
slice by instead giving (part of) a “coordinate slice” of S3 consisting of polynomials
z3

+ pz + q where the linear term q is fixed, at least in a region where such a
coordinate slice lies close to a Böttcher slice. Figure 3 is (part of) a “coordinate slice”
of S3 parametrizing shift polynomials of the form z3

+ pz + 1. There is one “large”
continent, which resembles a lopsided Mandelbrot, surrounded by a few visible
small islands; and there is a little archipelago to the northeast; compare with Figure 2.

There is a refinement of the tautological elamination (called the completed
tautological elamination) which (conjecturally) parametrizes the cut points on the
components of the complement of Sq in a Böttcher slice. When q = 2 this recovers
Thurston’s combinatorial model for the cut points in the Mandelbrot set. For a
definition see [Calegari 2022, §8.7].

3C. Degree 3, a worked example. Tautological laminations are laminations of the
unit circle, which we normalize as S1

= R/Z so that it has length 1. Tautological
laminations depend on a degree q ≥ 2 and a continuous parameter C (morally, a
vector of q − 2 arguments of Böttcher coordinates) which, for q = 3, is encoded by
a single angle θ ∈ R/Z.

Although the laminations depend on the parameter, the result of pinching the
circle to any finite depth does not. Thus, for each degree q and each depth n we
obtain a partition of 1 into a vector of lengths of the components of S1 mod 3n .
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These lengths are all integer multiples of q−n (in fact, they are of the form 2mq−n

for various m). Our goal is to count the number of components of length exactly q−n

(the short components), and the main result of this section (Theorem 3.10) gives
the generating function for the number of short components in degree n, and shows
that it is related in a rather simple way to the function β(t) from Proposition 2.2.

We shall first give an ad hoc (though precise) definition in the special case q = 3
and work out a few examples by hand. Multiplication by 3 gives a map from S1 to
itself. If λ is the leaf {p, q} for distinct points p, q ∈ S1 then 3λ is the leaf {3p, 3q}.
For any θ ∈ S1 let L(θ) denote the leaf {θ, θ + 1/3}. By abuse of notation we let
L−(θ) be the limit of leaves L(θ −ϵ) as ϵ → 0 from above, and we say that a leaf λ

links L−(θ) if it links L(θ − ϵ) for all sufficiently small positive ϵ. Likewise, we
let L+(θ) be the limit of leaves L(θ + ϵ) as ϵ → 0 from above.

Definition 3.1 (ad hoc definition, degree 3). There will be one depth n leaf of the
tautological lamination 3T for each x ∈ [1/3, 2/3) for which 3nx = 0. We claim
there is a unique y ∈ S1 such that

(1) 3n y = 1/3; and

(2) if λ denotes the leaf {x, y} then 3mλ does not link L−(0) or L+(x) for
m = 0, 1, 2, . . . , n − 1.

Then {3x, 3y} is a depth n leaf of 3T , and all depth n leaves arise this way.

Example 3.2 (depth 1). The only x ∈ [1/3, 2/3) with 3x = 0 is x = 1/3. The only y
with 3y = 1/3 and for which {1/3, y} does not link L−(0) or L+(1/3) is y = 7/9.
Thus {x, y} = {1/3, 7/9} and the leaf 3{x, y} = {0, 1/3} is the unique depth 1 leaf
of 3T . Thus S1 mod 3T to depth 1 has two components of length 1/3 and 2/3
respectively.

Example 3.3 (depth 2). For x ∈ [1/3, 2/3) with 9x = 0 we must have one of
x = 1/3, 4/9, 5/9. For x = 1/3 we may check for λ = {1/3, 19/27} that λ and 3λ

do not link L−(0) or L+(1/3). Likewise for λ = {4/9, 22/27} that λ and 3λ do
not link L−(0) or L+(4/9), and for λ = {5/9, 25/27} that λ and 3λ do not link
L−(0) or L+(5/9). Thus the unique depth 2 leaves of 3T are {0, 1/9}, {1/3, 4/9}

and {2/3, 7/9}. Thus S1 mod 3T to depth 2 has 3 components of length 1/9,
1 component of length 2/9, and 1 component of length 4/9.

Example 3.4 (depth 3). For x ∈ [1/3, 2/3) with 27x = 0 we must have one of
x = 1/3, 10/27, 11/27, . . . , 17/27. Let’s do one example. For x = 11/27 we
want y with 27y = 1/3 so for λ = {11/27, y} that λ, 3λ, 9λ do not link L−(0) or
L+(11/27). One might naively guess (based on the examples in depth 1 and depth 2
in which y = x + 3−1

+ 3−n−1 is always the correct choice) that y = 61/81 would
work, but 9{11/27, 61/81} = {2/3, 7/9} which links L(11/27) = {11/27, 20/27}.
In fact y = 58/81, and 3{11/27, 58/81} = {2/9, 4/27} is a depth 3 leaf of 3T .
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One may check that S1 mod 3T to depth 3 has 7 components of length 1/27,
6 components of length 2/27, and 1 component of length 8/27.

The set of leaves to depth 3 is

(1) {0, 1/3};

(2) {0, 1/9}, {1/3, 4/9}, {2/3, 7/9};

(3) {0, 1/27}, {1/9, 7/27}, {2/9, 4/27}, {1/3, 10/27}, {4/9, 13/27}, {5/9, 16/27},
{2/3, 19/27}, {7/9, 22/27}, {8/9, 25/27}.

See the left side of Figure 2.
Continuing out to greater depth, the number of components of S1 mod 3T to

depth n of length 3−n is 1, 3, 7, 21, 57, 171, 499 and so on.

3D. Tautological laminations. Let us now give a more precise definition. Fix a
degree q which is an integer ≥ 2. Multiplication by q defines a degree q map
from S1 to itself; if λ is a leaf whose points do not differ by a multiple of 1/q
then it makes sense to define the leaf qλ. Let C be a finite lamination C consisting
of q − 2 leaves C1, . . . , Cq−2 such that for each j the points of C j differ by 1/q.
Thus we can write C j = {θ j , θ j +1/q} for some θ j ∈ S1. For simplicity we assume
that C is generic, meaning that the θ j are irrational and irrationally related.

The quotient S1 mod C is a union of q − 1 circles, q − 2 of them of length 1/q
and one of length 2/q; we refer to this as the big circle and denote it B ′. The
preimage of B ′ in S1 is a finite collection of arcs of S1 bounded by points in leaves
of C ; denote this B. Note that the projection from B to B ′ is one-to-one away from
points in leaves of C .

We shall now define the depth n leaves of the tautological lamination 3T (C).
Let x ∈ B be a point for which qnx = θ j ; this x will be a point of a depth n leaf
of type j . Let z ∈ B be the unique point for which the projections x ′, z′

∈ B ′ are
antipodal (i.e., they are distance 1/q apart). Define a finite lamination C(x) to be
the union of C together with the leaf {x, z}.

Now, S1 mod C(x) is a union of q circles, all of length 1/q . Furthermore if we
denote by π : S1

→ S1 mod C(x) the projection (which is well-defined away from
the points of C(x)) the map z → qπ−1z extends from its domain of definition over
the missing points to a homeomorphism from each component of S1 mod C(x)

to S1. By abuse of notation, we denote this map by q : S1 mod C(x) → S1 and
think of it as a q–1 map.

Lemma 3.5 (division by q). If λ := {a, b} is a generic leaf unlinked with C(x), and
a′

∈ S1 satisfies qa′
= a then there is a unique b′ with qb′

= b so that λ′
:= {a′, b′

}

is unlinked with C(x).
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Proof. “Generic” is just to rule out boundary cases where, e.g., a′ or b′ is equal to
a point in C(x). In particular, if a′ maps to a component Si of S1 mod C(x) then
we can pull back λ under the map q : Si → S1 and then take its preimage in S1 to
obtain λ′. □

Given x , we consider the sequence of points xi := q i x for 0 ≤ i ≤ n. By
definition, xn = θ j . Define yn = θ j + 1/q and λn := {xn, yn} so that λn = C j , and
then inductively let λi be obtained from λi+1 as in Lemma 3.5 so that λi := {xi , yi }

where qyi = yi+1 and λi is unlinked from C(x). Finally we obtain the leaf λ0

which, because it depends on x , we should really denote λ0(x).

Definition 3.6. With notation as above, the depth n leaves of 3T (C) are the
leaves qλ0(x) of S1 as x ranges over the points in B with qnx = θ j and j ranges
over 1, . . . , q − 2.

Notice that in this definition every leaf is enumerated exactly twice; if x and z
in B have antipodal image in B ′ then the images of λ0(x) and λ0(z) are antipodal
in B ′ so that qλ0(x) = qλ0(z). So we only need to find a subset A ⊂ B projecting
to half of B ′ and add leaves qλ0(x) for x ∈ A with qnx = θ j . Thus the number of
leaves of depth n is equal to qn−1(q − 2). In particular 3T (C) is empty if q = 2.

Proposition 3.7 (lamination). The leaves of 3T (C) are pairwise unlinked; thus
3T (C) really is a lamination. Furthermore, if 3T,n(C) denotes the leaves of 3T (C)

of depth at most n, the set of lengths of components of S1 mod 3T,n(C) (counted
with multiplicity) is independent of C and depends only on q.

For a proof, see [Calegari 2022, §7]. Tautological laminations for q = 3, 4, 5, 6
(for a rather symmetric choice of C) are displayed in Figure 4.

Since the set of lengths of S1 mod 3T,n(C) (with multiplicity) is independent
of C we can fix a normalization θ j = ( j − 1)/q and suppress C in our notation in
the sequel. This set of values is not generic; so we interpret the values of θ j as
limits as we approach ( j − 1)/q from below. So we should interpret C j as a “leaf”
whose endpoints span the interval [( j −1)/q, j/q), for the purposes of determining
when leaves and their preimages are linked.

Figure 4. Tautological laminations for q = 3, 4, 5, 6.
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Then every depth n leaf is of the form qλ, where λ={x, y}, qnx = ( j −1)/q and
qn y = j/q . It follows that every depth n leaf of 3T consists of a pair of points which
are integer multiples of q−n , and therefore every component of S1 mod 3T,n has
length which is an integer multiple of q−n . What is not obvious, but is nevertheless
true, is that these integer multiples are all powers of 2 (we shall deduce this in the
sequel). Write the length of a component as ℓ · q−n where ℓ is a power of 2, and
define Nq(n, m) to be the number of components of S1 mod 3T,n with ℓ = 2m .

Let’s spell out Definition 3.6 in this normalization. We can take B and A to be
the half-open intervals

B = [(q − 2)/q, 1) and A = [(q − 2)/q, (q − 1)/q).

The base q expansion of x ∈ A with qnx = ( j − 1)/q is a word of length n + 1 in
the alphabet {0, 1, . . . , (q − 1)} starting with the digit (q − 2) and ending with the
digit ( j − 1). If we denote the digits of x as x0 · · · xn then

x := ·(q − 2)x1x2 · · · xn−1( j − 1) and z := ·(q − 1)x1x2 · · · xn−1( j − 1).

Likewise, we denote the digits of y as y0 · · · yn . Then

(1) yn = j ; and recursively,

(2) if xi ̸= q − 2 or q − 1 then yi = xi ; and

(3) if xi = q − 2 or q − 1 then yi is the unique one of q − 1 or q − 2 so that
·xi · · · xn and ·yi · · · yn do not link x and z.

Although we are not able to give a simple formula for Nq(n, m), it turns out
there is a relatively simple formula for Nq(n, 0) — i.e., the number of components
of S1 mod 3T,n of length q−n . These are the short components.

3E. Short components. One of the nice things about our normalization C is that
there is a simple relationship between short components of S1 mod 3T,n and certain
depth n leaves of 3T,n , a relationship which is substantially more complicated for
longer components. Say a short leaf is a depth n leaf of 3T,n whose points differ
by exactly q−n (this is the least it can be). Then:

Lemma 3.8 (short leaf). There is a bijection between short components and short
leaves of any fixed depth.

Proof. Let S be a short component at depth n, and consider the preimage X
in S1. Then X is a union of finitely many disjoint arcs and isolated points bounded
by leaves of depth ≤ n. The total length of X is q−n by the definition of short
component. But leaves of depth k consist of points which are integer multiples
of q−k so the only possibility is that X consists of a single arc Y of S1 together
with finitely many (possibly zero) isolated points joined to the endpoints of Y by a
chain of leaves γ0, . . . , γn , each sharing one endpoint with the next.
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We claim that in fact there are no isolated points, so that X = Y is a single
arc of S1 cut off by a single (necessarily) short leaf. To see this, let’s enlarge
the circle by a factor of qn so that depth k leaves with k < n consist of points
which are divisible by q , and each depth n leaf of type j joins a point congruent to
( j − 1) mod q to a point congruent to j mod q . By the nature of their construction
distinct depth n leaves of type j cannot share an endpoint, so a depth n leaf of
type j must be followed by a depth n leaf of type j + 1, and only a type 1 leaf of
depth n can follow a depth < n leaf and only in the positive (i.e., anticlockwise)
direction around S1 (remember our understanding of θ j as the limit of a sequence
approaching ( j − 1)/q from below). It follows that if there is some intermediate
point, the endpoints of Y differ by at least 2 mod q so that S is not short after all.
This proves the claim. □

Note that this lemma is false for generic C .
Let λ′ be a short leaf of 3T of depth n of the form qλ0(x), where x ∈ A

and qnx = θ j . For this normalization, z = x + 1/q and y = x + q−1−n , where
λ0(x) = {x, y}. The defining property of being a depth n leaf means that λk(x) =

qkλ0(x) does not link C(x) = C ∪{x, z} for any 0 ≤ k ≤ n. Actually, for any integer
m mod qn+1, setting x = mq−1−n and y = (m + 1)q−1−n , the leaf λk(x) does not
link any Ci for 0 ≤ i ≤ (q − 2). So the short leaves are just the x for which λk(x)

does not link {x, z} for 0 ≤ k ≤ n.
Remember that the base q expansion of x is a word of length n+1 in the alphabet

{0, 1, . . . , (q − 1)} starting with the digit (q − 2) and ending with the digit ( j − 1).
The base q expansion of y is the same as that of x with the last digit replaced by j .
Similarly, the base q expansion of z is the same as that of x with the first digit
replaced by (q − 1). We deduce:

Lemma 3.9 (short is 1-unbordered). A word in the alphabet {0, 1, . . . , (q − 1)} of
length (n + 1) starting with (q − 2) and ending with ( j − 1) corresponds to a short
leaf if and only if it is 1-unbordered.

Proof. The leaf λk(x) = {qk x, qk y}, and the base q expansions of qk x and qk y are
obtained from the base q expansions of x and y by the k-fold left shift. This leaf
links {x, z} if and only if the length k-suffix of x is either equal to a prefix of x , or
to a prefix of z. But this is the definition of a 1-unbordered word. □

Since ( j − 1) is allowed to vary from 0 to (q − 3), and since a word that starts
with (q − 2) and ends with (q − 2) or (q − 1) is already 1-bordered, it follows that
Nq(n, 0) is equal to the number of 1-unbordered words of length (n + 1) starting
with (q − 2), which is just q−1 times the number of 1-unbordered words of length
(n + 1). In other words:
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Theorem 3.10 (recursive formula). Nq(n, 0) satisfies the recursion Nq(0, 0) = 1,
Nq(1, 0) = (q − 2) and

Nq(2n, 0) = q Nq(2n − 1, 0) and Nq(2n + 1, 0) = q Nq(2n, 0) − 2Nq(n, 0)

and has the generating function (β(t)−1)/qt where a closed form for β(t) is given
in Proposition 2.2.

4. Tree polynomials

We now discuss a rather different class of objects that turn out to be naturally
in bijection with the components of S1 mod 3T,n . These objects are called tree
polynomials.

We give our definition in terms of rooted trees (with some auxiliary planar
structure) and adopt the standard terminology of parents, children, siblings etc.
Thus for every (nonroot) vertex there is a unique embedded path from that vertex
to the root, and the parent of v is the unique vertex w on that path connected to v

by an edge, and conversely v is the child of w; vertices are siblings if they share a
common parent, and so on.

Definition 4.1. A tree polynomial is a finite rooted tree T together with the following
data:

(1) depth: all leaves have a common depth n; we call this the depth of T ;

(2) critical: all vertices are critical or ordinary;

(a) the root is critical;
(b) every nonleaf critical vertex has exactly one critical child;
(c) every ordinary vertex has no critical children;

(3) order: the children of every vertex are ordered, and the critical child of the
root is first among its siblings;

(4) self-map: there is a simplicial self-map f : T → T such that

(a) f (root) = root;
(b) f (v) = root for all children v of the root; and
(c) for all v with nonroot parent w, the image f (v) is a child of f (w);
(d) if v is ordinary and not a leaf, then f maps the children of v bijectively

and in an order-preserving way to the children of f (v);
(e) if v is critical and not a leaf or the root, then f maps the children of v

in an order nondecreasing way to the children of f (v); this map is onto
and two-to-one except for the critical child of v which is the unique child
mapping to its image;
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(5) length: there is a length function ℓ from the vertices to N;

(a) ℓ(root) = 1;
(b) if v is ordinary, ℓ(v) = ℓ( f (v));
(c) if v is critical, ℓ(v) = 2ℓ( f (v)).

Another way of talking about the order structure on the children of each vertex is
to say that T is a planar tree, and the map f is compatible with the planar structure.

4A. Basic properties.

Definition 4.2 (degree). Let T be a tree polynomial. The root has one critical child
with ℓ = 2 and some nonnegative number of ordinary children with ℓ = 1. All
children map to the root under f . Thus tree polynomials of depth 1 are classified
by the number of children. The degree of a tree polynomial, denoted q(T ), is equal
to the number of children of the root, plus one.

Example 4.3 (degree 2). There is a unique tree polynomial of degree 2 of any
positive depth, since every vertex is critical and all but the leaf have a unique child.

Definition 4.4 (postcritical length). Let T be a tree polynomial and let c be
the unique critical leaf. The postcritical length of T , denoted ℓ(T ), is equal to
ℓ( f (c)) = ℓ(c)/2.

By induction, ℓ(T ) is always a power of 2.
The next proposition explains why we have introduced tree polynomials:

Proposition 4.5 (bijection). There is a natural bijection between the set of degree q
tree polynomials T of depth (n + 1) with ℓ(T ) = ℓ and the set of components
of S1 mod 3n,T of length ℓ · q−n where 3n,T are the leaves of depth ≤ n in the
tautological lamination from Section 3.

Proof. This is a corollary of [Calegari 2022, Theorems 9.20 and 9.21]. The tree
polynomials are combinatorial abstractions of the sausage polynomials defined in
[Calegari 2022, Definition 9.4]. A sausage polynomial is a certain kind of infinite
nodal genus 0 Riemann surface 6 together with a holomorphic self-map of degree q
satisfying a number of properties. A tree polynomial records only the underlying
combinatorics of 6, which is enough to recover ℓ. □

It follows that for each n and each m, the number of degree q tree polynomials T
of depth (n + 1) with ℓ(T ) = 2m is Nq(n, m).

Lemma 4.6 (extension). Let T be a tree polynomial of depth n and let c be the
unique critical leaf. Then tree polynomials T ′ of depth (n + 1) that extend T are in
bijection with the children of f (c).
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Proof. To extend T to T ′ we just add children to each of the leaves of T . For each
ordinary leaf v we add a copy of the children of f (v). For the unique critical leaf c
we must choose a child e of f (c) and then add as children of c one copy of e, and
two copies of every other child of f (c). The copy of e becomes the unique critical
child of c in T ′. The functions f and ℓ extend to these new leaves uniquely. □

The next two lemmas give direct proofs in the language of tree polynomials of the
identities

∑
ℓ Nq(n, m) · 2m

= qn and
∑

ℓ Nq(n, m) = 1 + (q − 2)(qn
− 1)/(q − 1).

Both identities follow immediately from Proposition 4.5 since the first just says that
the sum of the lengths of the components of S1 mod 3T,n is equal to 1, and the
second just says that 3T has (q − 2)qn−1 leaves of depth n, both of which follow
immediately from the definitions.

Lemma 4.7 (multiplication by q). Let T have degree q. For each nonleaf vertex v

with children wi we have q ·ℓ(v)=
∑

i ℓ(wi ). Consequently
∑

ℓ Nq(n, m)·2m
= qn .

Proof. There is a unique tree polynomial of depth 1 and degree d. The root has
ℓ(root) = 1, and it has q −1 children with ℓ = 2, 1, . . . , 1. Thus q ·ℓ(v) =

∑
i ℓ(wi )

is true for the root vertex, and by induction on depth, it is true for each ordinary or
critical nonleaf vertex.

For any T , the extensions T ′ of T are in bijection with the children of the
postcritical vertex, and the formula we just proved shows

∑
ℓ(T ′) = qℓ(T ). □

Lemma 4.8 (number of children). Let T have degree d. For each nonleaf vertex v

the number of children of v is (q − 2)ℓ(v) + 1. Consequently∑
m

Nq(n, m) = 1 + (q − 2)(qn
− 1)/(q − 1).

Proof. First we prove the formula relating ℓ(v) to the number of children of v. The
formula is true for the root vertex. If v is ordinary then ℓ(v)= ℓ( f (v)) and v has the
same number of children as f (v), so if the formula is true for f (v) it is true for v.
If v is critical then ℓ(v) = 2ℓ( f (v)) and if f (v) has (q − 2)ℓ( f (v)) + 1 children
then v has 2(q − 2)ℓ( f (v)) + 1 children. So the formula is true by induction.

Since there are Nq(n −1, m) depth n degree q tree polynomials of length ℓ = 2m ,
and since by Lemma 4.8 each has (q − 2)ℓ(T )+ 1 children, we obtain a recursion∑

m

Nq(n, m)=

∑
m

Nq(n−1, m)((q −2)2m
+1)= (q −2)qn−1

+

∑
m

Nq(n−1, m)

Since
∑

m Nq(0, m) = 1 the lemma follows. □
Lemma 4.9 (length subdoubles). Every child w of v has ℓ(w) ≤ 2ℓ(v) with equality
if and only if every sibling of w has ℓ = 1.

Proof. By Lemmas 4.7 and 4.8 w has (q − 2)ℓ(v) + 1 children, whose lengths
sum to qℓ(v). □
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Remark 4.10. It is worth pointing out a close relationship between tree polynomials
(as defined above) and the polynomial-like tree maps of [DeMarco and McMullen
2008]. The main difference seems to be that the latter objects forget the planar
structure (i.e., the data of the ordering on each set of siblings). One should also
mention that there is a close relationship between the dynamical elaminations (see
[Calegari 2022, §4.4]) and the pictographs of [DeMarco and Pilgrim 2017] which
are in turn closely related to the pattern and tableau of [Branner and Hubbard 1992].
The tautological elaminations we discuss in this article are (roughly speaking)
related to dynamical elaminations as the shift locus is related to individual shift
polynomials.

5. F-sequences

Definition 5.1 (critical vein). Let T be a tree polynomial of depth n. The critical
vein is the segment of T containing all the critical vertices. We denote it by γ and
label the critical points on γ as ci , where c0 is the root and cn is the critical leaf.

For each vertex w of T , define F(w) to be equal to f k(w) for the least positive k
so that f k(w) is critical. Thus we can think of F as a map from the critical vein to
itself, and by abuse of notation, for integers i, j we write F(i) = j if F(ci ) = c j

so that we can and do think of F as a function from {0, . . . , n} to itself. We also
write ℓ(i) for ℓ(ci ).

Lemma 5.2 (properties of F). F(0) = 0 and for every positive i , F(i) < i and
F(i + 1) ≤ F(i) + 1. Furthermore, ℓ(i) = 2ℓ(F(i)) for i > 0 so that ℓ(i) = 2k

where k is the least integer so that Fk(i) = 0

Proof. Since f (w) has smaller depth than w unless w is the root, F(i)< i . Moreover,
F(ci+1) is equal to F(w) for some child w of F(ci ), so F(i + 1) ≤ F(i) + 1.

Finally, ℓ(w) = ℓ( f (w)) when w is ordinary or the root, and ℓ(w) = 2ℓ( f (w))

when w is critical and not the root. □

Let γ + denote the union of γ together with the siblings of every critical vertex.
We may think of it as a digraph (i.e., a directed graph), where every edge points
away from the root. Define 0 to be the quotient of γ + obtained by identifying every
sibling w of a critical vertex with its image F(w). Note that 0 is a digraph.

The next proposition gives a characterization of the functions F that can arise
from tree polynomials.

Proposition 5.3 (F-sequence). A function F from {0, 1, . . . , n} to itself arises from
some tree polynomial T of depth n if and only if it satisfies the following properties:

(1) F(0) = 0 and F(1) = 0;
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(2) each j has a finite set of options which are the admissible values of F(i + 1)

when F(i) = j ;
(a) the options of 0 are 0 and 1;
(b) if F(i) = 0 then the options of i are i + 1 and whichever option of 0 is not

equal to F(i + 1);
(c) if F(i) ̸= 0 and F(i + 1) is not equal to F(i)+ 1 then the options of i are

i + 1 together with the options of F(i);
(d) if F(i) ̸= 0 and F(i +1) = F(i)+1 then the options of i are i +1 together

with all the options of F(i) except F(i) + 1.

A function F is an F-sequence if it satisfies these properties.

Proof. Imagine growing a tree T by iterated extensions from a tree of depth 1. The
extensions at each stage are the children of the critical image f (v), which in turn
may be identified with the children of F(v).

When we grow T of depth i to T ′ we grow 0 to 0′ by adding a new edge from i
to a new vertex i +1, and adding two new edges from i to j for each edge from F(i)
to j except for the edge from F(i) to F(i + 1) (outgoing edges at F(i) may be
identified with the options of F(i) as above). The root 0 is joined by a single edge
both to itself and to 1, but every other vertex i is joined by a single edge to i +1 and
by an even number of edges to each of its options (this can be seen by induction).
The proposition follows. □
Remark 5.4. The referee has pointed out that the F-function carries essentially the
same information as the Yoccoz’ τ -function derived from the tableau of Branner–
Hubbard (see, e.g., [Branner and Hubbard 1992, §4.2; DeMarco and McMullen
2008, §11]). Proposition 5.3 is essentially equivalent to [DeMarco and Schiff 2010,
Proposition 2.1].

The map from tree polynomials to F-sequences is many to one, since for every
vertex i of 0 except the root, if there is an edge from i to j ̸= i + 1 then there are
at least two such edges. Nevertheless, if F is an F-sequence corresponding to T of
depth n, the extended sequence defined by F(n +1) = F(n)+1 corresponds to the
unique extension of T for which F(cn+1) is the critical child of F(cn).

Example 5.5. ℓ(T )= 1 if and only if F(n)= 0, where n is the depth of the tree. The
number of depth n tree polynomials with this property is Nq(n −1, 0) by definition.

Example 5.6 (maximal type). There is a unique depth n tree polynomial T of any
degree with 2ℓ(T ) = ℓ(n) = 2n namely the tree polynomial for which F(i) = i − 1
for all positive i . Thus Nq(n, n) = 1. We call these trees of maximal type.

The components of S1 mod 3T,n corresponding to the trees of maximal type
are clearly evident in Figure 4 (they correspond to the large components of
“white space”).
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Example 5.7 (degree 3 maximal component). Consider the tree polynomial se-
quence of maximal type of degree 3. Let’s work, as in Section 3D in the normaliza-
tion C = {0, 1/3}. For each n the result of pinching S1 mod 3T,n(C) has a unique
component of length 2n/3n , and this sequence of components corresponds precisely
to the (degree 3) tree polynomial sequence of maximal type; we call this component,
for each n, the maximal component.

For each n we can let Kn(C) be the preimage of the maximal component in S1.
As a subset of S1 this depends on C , but for the specific normalization C = {0, 1/3}

it does not, and we abbreviate Kn(C) = Kn . It turns out that there is a very explicit
description of Kn: it consists of numbers in [0, 1) whose base 3 expansion is of
two types:

(1) the first n digits contain no 0; or

(2) numbers of the form ·x 0̇ where x is a string of < n digits containing no 0.

In other words:

K1 = 0 ∪ [1/3, 1), K2 = 0 ∪ 1/3 ∪ [4/9, 2/3] ∪ [7/9, 1), etc.

If we denote K := ∩n Kn , then K is the set of numbers in [0, 1] whose base three
expansion either contains no 0s, or is of the form ·x 0̇ for some finite string x
containing no 0s. See Figure 5. Compare with the left side of Figure 2. This
component corresponds to the “lopsided Mandelbrot” in Figure 3.

The “boundary” of the region K consists of a union of 2n−1 short components
of each positive depth n, as follows from Lemma 3.9, and no other components
(because otherwise the length of the maximal component would be strictly less than
2n/3−n for some n).

For each positive k let ik denote the least index (if any) for which ℓ(ik) = 2k .
Note that i0 = 0.

Figure 5. The maximal component K of S1 mod 3T .
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Lemma 5.8 (increments grow). F(ik) = ik−1 for k > 0. Consequently |ik+1 − ik | ≥

|ik − ik−1|.

Proof. By definition F(ik) is some value of j with ℓ( j) = 2k−1. But if j > ik−1

there was some i ′ < ik with F(i ′) = ik−1, contrary to the definition of ik .
The inequality follows from F(i + 1) ≤ F(i) + 1. □

Definition 5.9 (S and B). Let F be an F-sequence. Let S be the set of indices i
such that F(i + 1) = F(i) + 1 and let B be the rest. Note that 0 is in B.

The prior options of i are the options other than i + 1. We denote these by P(i).
Thus, if i ∈ S then P(i) = P(F(i)).

Lemma 5.10 (backslide). Let F be an F-sequence and let i ∈ B. Then F(i + 1) <

F(i) and F(i + 1) ∈ P(b), where b = Fk(i) for some k and b ∈ B.

Proof. Since i ∈ B we must have F(i +1) ∈ P(F(i)) so that necessarily F(i +1) <

F(i). Furthermore, if F(i) ∈ S, then P(F(i)) = P(F2(i)) and so on by induction
until the first k so that Fk(i) ∈ B. □

Using F-sequences we may deduce the following “gap” theorem, that was
observed experimentally.

Theorem 5.11 (gap). Nq(n, m) = 0 for ⌊n/2⌋ < m < n.

Proof. Let T be a tree polynomial of depth n+1. If m < n then T is not of maximal
type, so there is some first positive index k ∈ B. Note that ik = k and in fact i j = j
for all j ≤ k. Since k ∈ B, by Lemma 5.10, F(k + 1) ∈ P(b), where b ∈ B is < k.
But then b = 0 so F(k + 1) = 0. It follows that ik+1 ≥ 2k + 1 and, successively,
ik+ j ≥ k + j (k + 1). From this the desired inequality follows. □

6. Tautological tree

Degree q tree polynomials of various depth can themselves be identified with the
vertices of a (rooted, planar) tautological tree Tq , whose vertices at depth n are the
tree polynomials of degree q and depth n, and for each vertex T of Tq , the children
of T are the extensions of T .

Note that for each vertex T of Tq we can recover ℓ(T ) from the number of
children of T in Tq , since this number is (q − 2)ℓ(T ) + 1. So all the data of
Nq(n, m) can be read off from the abstract underlying tree of Tq (in fact, even the
root can be recovered from the fact that it is the unique vertex of valence q − 1).

The tree T3 up to depth 4 (with vertices labeled by ℓ value, from which one
could easily extend it another row as an unlabeled tree) is depicted in Figure 6

Every vertex labeled 1 has two children labeled 2 and 1. Every vertex labeled 2
has three children, but these might be labeled 4, 1, 1 or 2, 2, 2. Components of the
complement of the shift locus Sq in a 1-dimensional slice are in bijection with the
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Lemma 5.6 (Increments Grow). F (ik) = ik�1 for k > 0. Consequently |ik+1 �
ik| � |ik � ik�1|.
Proof. By definition F (ik) is some value of j with `(j) = 2k�1. But if j > ik�1

there was some i0 < ik with F (i0) = ik�1, contrary to the definition of ik.
The inequality follows from F (i + 1)  F (i) + 1. ⇤

Definition 5.7 (S and B). Let F be an F -sequence. Let S be the set of indices i
such that F (i + 1) = F (i) + 1 and let B be the rest. Note that 0 is in B.

The prior options of i are the options other than i+1. We denote these by P (i).
Thus, if i 2 S then P (i) = P (F (i)).

Lemma 5.8 (Backslide). Let F be an F -sequence and let i 2 B. Then F (i + 1) <
F (i) and F (i + 1) 2 P (b) where b = F k(i) for some k and b 2 B.

Proof. Since i 2 B we must have F (i + 1) 2 P (F (i)) so that necessarily F (i + 1) <
F (i). Furthermore, if F (i) 2 S, then P (F (i)) = P (F 2(i)) and so on by induction
until the first k so that F k(i) 2 B. ⇤

Using F -sequences we may prove the following ‘gap’ theorem, that was observed
experimentally.

Theorem 5.9 (Gap). Nq(n, m) = 0 for bn/2c < m < n.

Proof. Let T be a tree polynomial of depth n+1. If m < n then T is not of maximal
type, so there is some first positive index k 2 B. Note that ik = k. Since k 2 B, by
Lemma 5.8 F (k + 1) 2 P (b) where b 2 B is < k. But then b = 0 so F (k + 1) = 0.
It follows that ik+1 � 2k + 1 and, successively, ik+j � k + j(k + 1). ⇤

6. Tautological Tree

Degree q tree polynomials of various depth can themselves be identified with the
vertices of a (rooted, planar) tautological tree Tq, whose vertices at depth n are the
tree polynomials of degree q and depth n, and for each vertex T of Tq, the children
of T are the extensions of T .

Note that for each vertex T of Tq we can recover `(T ) from the number of children
of T in Tq, since this number is (q � 2)`(T ) + 1. So all the data of Nq(n, m) can
be read o↵ from the abstract underlying tree of Tq (in fact, even the root can be
recovered from the fact that it is the unique vertex of valence q � 1).

The tree T3 up to depth 4 (with vertices labeled by ` value, from which one
could easily extend it another row as an unlabeled tree) is depicted in Figure 3:
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Every vertex labeled 1 has two children labeled 2 and 1. Every vertex labeled 2
has three children, but these might be labeled 4, 1, 1 or 2, 2, 2. Components of the
complement of the shift locus Sq in a 1-dimensional slice are in bijection with the

Figure 6. T3 up to depth 4.

ends of Tq . Each such end gives rise to a sequence ℓ(n) of ℓ-values, and when∑
1/ℓ(n) diverges, the corresponding component consists of a single point. Such

ends are called small; those with
∑

1/ℓ(n) < ∞ are big. Big ends are dense in the
space of ends of Tq :

Proposition 6.1 (big ends dense). Big ends are dense. In other words, every finite
rooted path in Tq can be extended to an infinite path converging to a big end.

Proof. Let T be a tree polynomial of some finite depth n and let F be the associated
F-sequence. Suppose F(n) = i . There is a unique infinite sequence of exten-
sions of T defined recursively by F(m + 1) = F(m) + 1 for all m ≥ n. Then
F(m) = m + i − n for all sufficiently large m, so that ℓ(m) = 2ℓ(m + i − n) and∑

1/ℓ(m) < ∞. □

Let’s call an end type S if the associated F-sequence satisfies F(m+1)= F(m)+1
for all sufficiently large m (i.e., if it is of the sort constructed in Proposition 6.1).
For example, the sequence of maximal type is of type S.

Example 6.2 (littlebrot). The right side of Figure 7 depicts the second biggest
complementary component in a Böttcher’s slice (this is a speck in the northeast
corner in Figure 3). It corresponds to an end of type S with ℓ(n) = 2⌊n/2⌋.

In the normalization C = {0, 1/3} the base 3 decimal expansions of the points
in the subset of S1 associated to this component is a regular language in the
alphabet {0, 1, 2} (whose precise description is somewhat complicated and not very
enlightening). Compare with Example 5.7.

Theorem 9.1 of [Branner and Hubbard 1992] implies (in degree 3, but the same
result should hold in every degree) that every big end is of type S and a component
of the complement of Sq in a slice has positive diameter if and only if it corresponds
to a big end of Tq .

Conjecture 6.3. In the normalization C = {0, 1/3}, every big end corresponds
to a subset of S1 whose base 3 decimal expansion is a regular language in the
alphabet {0, 1, 2}.
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Figure 7. A slice through z3
+ pz + 2 of width 0.0003 centered

at 1.72572 + 3.09778i and the corresponding component of the
tautological lamination.

7. Tables of values

Values of N3(n, m) for 0 ≤ n, m ≤ 12 are contained in Table 1. Values of Nq(n, m)

for 0 ≤ n, m ≤ 11 and q = 4, 5 are in Tables 2 and 3. These tables were computed
with the aid of the program taut, written by Alden Walker.

n m = 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1
1 1 1
2 3 1 1
3 7 6 0 1
4 21 16 3 0 1
5 57 51 13 0 0 1
6 171 149 39 5 0 0 1
7 499 454 117 23 0 0 0 1
8 1497 1348 360 66 9 0 0 0 1
9 4449 4083 1061 207 41 0 0 0 0 1

10 13347 12191 3252 591 126 17 0 0 0 0 1
11 39927 36658 9738 1799 370 81 0 0 0 0 0 1
12 119781 109898 29292 5351 1125 240 33 0 0 0 0 0 1

Table 1. Values of N3(n, m).
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n m = 0 1 2 3 4 5 6 7 8 9 10 11

0 1
1 2 1
2 8 2 1
3 28 14 0 1
4 112 52 6 0 1
5 432 220 30 0 0 1
6 1728 872 120 10 0 0 1
7 6856 3540 472 54 0 0 0 1
8 27424 14120 1924 204 18 0 0 0 1
9 109472 56744 7620 828 98 0 0 0 0 1

10 437888 226768 30752 3212 396 34 0 0 0 0 1
11 1750688 908040 122852 12872 1556 194 0 0 0 0 0 1

Table 2. Values of N4(n, m).

n m = 0 1 2 3 4 5 6 7 8 9 10 11

0 1
1 3 1
2 15 3 1
3 69 24 0 1
4 345 114 9 0 1
5 1695 597 51 0 0 1
6 8475 2973 255 15 0 0 1
7 42237 15018 1245 93 0 0 0 1
8 211185 75012 6306 438 27 0 0 0 1
9 1055235 375951 31287 2199 171 0 0 0 0 1

10 5276175 1879269 157098 10767 858 51 0 0 0 0 1
11 26377485 9400644 784596 53799 4230 339 0 0 0 0 0 1

Table 3. Values of N5(n, m).
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LIMIT THEOREMS AND WRAPPING TRANSFORMS
IN BI-FREE PROBABILITY THEORY

TAKAHIRO HASEBE AND HAO-WEI HUANG

We characterize idempotent distributions with respect to the bi-free multi-
plicative convolution on the bi-torus. The bi-free analogous Lévy triplet of an
infinitely divisible distribution on the bi-torus without nontrivial idempotent
factors is obtained. This triplet is unique and generates a homomorphism
from the bi-free multiplicative semigroup of infinitely divisible distributions
to the classical one. Also, the relevances of the limit theorems associated with
four convolutions, classical and bi-free additive convolutions and classical
and bi-free multiplicative convolutions, are analyzed. The analysis relies
on the convergence criteria for limit theorems and the use of push-forward
measures induced by the wrapping map from the plane to the bi-torus.

1. Introduction

The main aim of the present paper is to build the association among various limit
theorems and their convergence criteria in classical and bi-free probability theories.

Bi-free probability theory, introduced by Voiculescu in [20], is an outspread
research field of free probability theory, which grew out to intend to simultaneously
study the left and right actions of algebras over reduced free product spaces. Since its
creation, a great deal of research work has been conducted to better understand this
theory and its connections to other parts of mathematics [17; 19; 21; 22]. Aside from
the combinatorial means, the utilization of analytic functions as transformations
and the bond to classical probability theory also play crucial roles in the study and
comprehension of this theory [12; 13]. Especially, recent developments of bi-free
harmonic analysis enable one to investigate bi-free limit theorems and other related
topics from the probabilistic point of view [11].

To work in the probabilistic framework, we thereby consider the family PX of
Borel probability measures on a complete separable metric space X and endow
this family with a commutative and associative binary operation ♢. Classical and
bi-free convolutions, respectively denoted by ∗ and ⊞⊞, are two examples of such
operations performed on PR2 . In probabilistic terms, µ1 ∗ µ2 is the probability
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distribution of the sum of two independent bivariate random vectors respectively
having distributions µ1 and µ2. When restricted to compactly supported measures
in PR2 , µ1 ⊞⊞ µ2 is the distribution of the sum of two bi-free bipartite self-adjoint
pairs with distributions µ1 and µ2, respectively [20]. This new notion of convolution
was later extended, without any limitation, to the whole class PR2 by the continuity
theorem of transforms [11]. The product of two independent random vectors
having distributions on the bi-torus T2 gives rise to the classical multiplicative
convolution ⊛, and the bi-free analog of multiplicative convolution ⊠⊠ is defined
in a similar manner [22].

In (noncommutative) probability theory, the limit theorem and its related subject,
the notion of infinite divisibility of distributions, have attracted much attention.
By saying that a distribution in (PX ,♢) is infinitely divisible we mean that it
can be expressed as the operation ♢ of an arbitrary number of copies of identical
distributions from PX . The collection of measures having this infinitely divisible
feature forms a semigroup and will be denoted by ID(X,♢), or simply by ID(♢)

if the identification of the metric space is unnecessary. Any measure satisfying
µ=µ♢µ, known as idempotent, is an instance of infinitely divisible distributions. In
the case of X = R, these topics have been thoroughly studied in classical probability
by the efforts of de Finetti, Kolmogorov, Lévy and Khintchine (see [16]), and the
same themes in the free contexts have also been deeply explored in the literature [5].

Bi-free probability, as expected, also parallels perfectly aspects of classical
and free probability theories [3]. For example, the theory of bi-freely infinitely
divisible distributions generalizes bi-free central limit theorem as they also serve
as the limit laws for sums of bi-freely independent and identically distributed
faces. Specifically, it was shown in [11] that for some infinitesimal triangular array
{µn,k}n≥1,1≤k≤nk ⊂ PR2 and sequence {vn} ⊂ R2, the sequence

(1-1) δvn ∗ µn1 ∗ · · · ∗ µnkn

converges weakly if and only if so does the sequence

(1-2) δvn ⊞⊞ µn1 ⊞⊞ · · · ⊞⊞ µnkn .

The limiting distributions in (1-1) and (1-2) respectively belong to the semigroups
ID(∗) and ID(⊞⊞), and their classical and bi-free Lévy triplets agree. This con-
formity consequently brings out an isomorphism 3 between these two semigroups.

Same tasks are performed in the case of bi-free multiplicative convolution in
this paper. We determine ⊠⊠-idempotent elements and identify measures in PT2

bearing no nontrivial ⊠⊠-idempotent factors. Specifically, we demonstrate that
ν ∈ ID(⊠⊠) has no nontrivial ⊠⊠-idempotent factor if and only if it belongs
to P×

T2 , the subcollection of PT2 with the attributes∫
T2

s j dν(s1, s2) ̸= 0, j = 1, 2.
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Fix an infinitesimal triangular array {νnk}n≥1,1≤k≤kn ⊂ PT2 and a sequence
{ξ n} ⊂ T2. We also manifest that the weak convergence of the sequence

(1-3) δξn ⊠⊠ νn1 ⊠⊠ · · · ⊠⊠ νnkn

to some element in P×

T2 yields the same property of the sequence

(1-4) δξn ⊛ νn1 ⊛ · · ·⊛ νnkn ,

and that their limiting distributions are both infinitely divisible. This is done by
distinct types of equivalent convergence criteria offered in the present paper. As in
the case of addition, there exists a triplet concurrently serving as the classical and bi-
free multiplicative Lévy triplets of the limiting distributions in (1-3) and (1-4). The
consistency of their Lévy triplets, together with the description of ID(⊠⊠)\P×

T2 ,
consequently produces a homomorphism 0 from ID(⊠⊠) to ID(⊛).

Because of the nature of ID(⊠⊠)\P×

T2 and that the limit in (1-4) may generally
not have a unique Lévy measure, the homomorphism stated above is neither surjec-
tive nor injective. However, postulating the uniqueness of the Lévy measure, the
weak convergence of (1-4) derives that of (1-3).

In addition to the previously mentioned conjunctions, what we would like to point
out is that measures in PR2 and PT2 can be linked through the wrapping map W :

R2
→ T2, (x, y) 7→ (ei x , eiy). This wrapping map induces a map W∗ : PR2 → PT2

so that the measure νnk = W∗(µnk) = µnk W −1 enjoys the property: the weak
convergence of (1-1) or (1-2) yields the weak convergence of (1-3) and (1-4) with
ξ n = W (vn). Furthermore, the synchronous convergence allows one to construct
a homomorphism W⊞⊞ : ID(⊞⊞) → ID(⊠⊠) making the following diagram
commute:

(1-5)

ID(∗)
W∗

//

3

��

ID(⊛)

ID(⊞⊞)
W⊞⊞

// ID(⊠⊠)

0

OO

This diagram is a two-dimensional analog of [6, Theorem 1].
The rest of the paper is organized as follows. In Section 2 we provide the

necessary background in classical and noncommutative probability theories. In
Section 3 we characterize ⊠⊠-idempotent distributions. In Section 4 we make
comparisons of the convergence criteria of limit theorems, as well as those through
wrapping transforms. Section 5 is devoted to offering bi-free multiplicative Lévy
triplets of infinitely divisible distributions and investigating the relationships among
limit theorems in additive and multiplicative cases. Section 6 provides the derivation
of the diagram in (1-5).
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2. Preliminary

2A. Convergence of measures. Let BX be the collection of Borel sets on a com-
plete separable metric space (X, d). A point is selected from X and fixed, named
the origin and denoted by x0 in the following. In the present paper, we will be
mostly concerned with the abelian groups X = Rd and X = Td endowed with the
relative topology from Cd , where the origin is chosen to be the unit. They are
respectively the d-dimensional Euclidean metric space and the d-dimensional torus
(or the d-torus for short). The 1-torus is just the unit circle T on the complex plane.
A set contained in {x ∈ X : d(x, x0) ≥ r} for some r > 0 is colloquially said to be
bounded away from the origin.

Next, let us introduce several types of measures on X that will be discussed
later. The first one is the collection MX of finite positive Borel measures on X . We
shall also consider the set M

x0
X of all positive Borel measures that when confined

to any Borel set bounded away from the origin yield a finite measure. Clearly, we
have MX ⊂ M

x0
X . Another assortment concerned herein is the collection PX of

elements in MX having unit total mass.
The set Cb(X) of bounded continuous functions on X induces the weak topology

on MX . Likewise, M
x0
X is equipped with the topology generated by C x0

b (X),
bounded continuous functions having support bounded away from the origin. Con-
cretely, basic neighborhoods of a τ ∈ M

x0
X are of the form⋂

j=1,...,n

{
τ̃ ∈ M

x0
X :

∣∣∣∣∫ f j d τ̃ −

∫
f j dτ

∣∣∣∣ < ϵ

}
,

where ϵ > 0 and each f j ∈ C x0
b (X). Putting it differently, a sequence {τn} ⊂ M

x0
X

converges to some τ in M
x0
X , written as τn ⇒x0 τ , if and only if

lim
n→∞

∫
f dτn =

∫
f dτ, f ∈ C x0

b (X).

We remark that τ is not unique as it may assign arbitrary mass to the origin.
Nevertheless, any weak limit in M

x0
X that comes across in our discussions will serve

as the so-called Lévy measure, which does not charge the origin.
Portmanteau theorem and continuous mapping theorem in the framework of M

x0
X

are presented below (see [1; 14]). The push-forward measure τh−1
:BX ′ →[0, +∞]

of τ ∈ M
x0
X provoked by a measurable mapping h : (X, BX)→ (X ′, BX ′) is defined

as

(2-1) (τh−1)(B ′) = τ({x ∈ X : h(x) ∈ B ′
}), B ′

∈ BX ′ .

Proposition 2.1. The following statements (1)–(3) are equivalent for {τn} and τ

in M
x0
X :
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(1) We have τn ⇒x0 τ .

(2) For any f ∈ Cb(X) and any B ⊂ BX , which is bounded away from the origin
and satisfies τ(∂ B) = 0, we have

lim
n→∞

∫
B

f dτn =

∫
B

f dτ.

(3) For every closed set F and open set G of X that are both bounded away
from x0, we have

lim sup
n→∞

τn(F) ≤ τ(F) and lim inf
n→∞

τn(G) ≥ τ(G).

If h : (X, d) → (X ′, d′) is measurable so that h is continuous at x0, h(x0) = x′

0,
and the set of discontinuities of h has τ -measure zero, then τn ⇒x0 τ implies
τn h−1

⇒x′

0
τh−1.

Finally, let us introduce the subset M̃
x0
X consisting of measures in M

x0
X that do

not charge the origin x0. This set is metrizable and becomes a separable complete
metric space [14, Theorem 2.2]. In particular, the relative compactness of a subset Y
of M̃

x0
X is equivalent to that any sequence of Y has a subsequence convergent in M̃

x0
X .

We refer the reader to [14, Theorem 2.7] for an analog of Prokhorov’s theorem,
which characterizes the relative compactness of subsets in M̃

x0
X .

2B. Notations. Below, we collect notations that will be commonly used in the
sequel. The customary symbol arg s ∈ (−π, π] stands for the principal argument
of a point s ∈ T, while ℜs and ℑs respectively represent the real and imaginary
parts of s. Here and elsewhere, points in a multidimensional space will be written
in bold letters, for instance, s = (s1, . . . , sd) ∈ Td and p = (p1, . . . , pd) ∈ Zd with
each s j ∈ T and p j ∈ Z. For any ϵ > 0, we shall use Vϵ = {x ∈ Rd

: ∥x∥ < ϵ}

and Uϵ = {s ∈ Td
: ∥arg s∥ < ϵ} to respectively express open neighborhoods of

origins 0 ∈ Rd and 1 ∈ Td , where arg s = (arg s1, . . . , arg sd) ∈ Rd . Analogous
expressions also apply to vectors ℜs = (ℜs1, . . . ,ℜsd) and ℑs = (ℑs1, . . . ,ℑsd).
Besides, we adopt the operational conventions in multidimensional spaces in the
sequel, such as s p

= s p1
1 · · · s pd

d , st = (s1 t1, . . . , sd td), s−1
= (1/s1, . . . , 1/sd),

and ei s
= (eis1, . . . , eisd ).

The push-forward probabilities µ( j)
= µπ−1

j , j = 1, . . . , d, on the real line
induced by projections π j : Rd

→ R, x 7→ x j , are called marginals of µ ∈ PRd .
Marginals of probability measures on Td are defined and displayed in the same way.
On T2, we shall also consider the (right) coordinate-flip transform hop : T2

→ T2

defined as hop(s) = (s1, 1/s2). Denote by s⋆
= hop(s) and B⋆

= {s⋆
: s ∈ B} if

s ∈ T2 and B ⊂ T2. By the (right) coordinate-flip measure of ρ ∈ M 1
T2 , we mean

the push-forward measure ρ⋆
= ρh−1

op , alternatively defined as ρ⋆(B) = ρ(B⋆) for
B ∈ BT2 .
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2C. Free probability and bi-free probability. Aside from the classical convolution
on PR2 , we shall also consider the bi-free convolution ⊞⊞, where the bi-free φ-
transform takes the place of Fourier transform [11]: for µ1, µ2 ∈ PR2 , one has
φµ1 ⊞⊞ µ2 = φµ1 +φµ2 . All information about marginals of the bi-free convolution
is carried over to the free convolution: (µ1 ⊞⊞ µ2)

( j)
= µ

( j)
1 ⊞µ

( j)
2 for j = 1, 2.

Now, we turn to probability measures on the d-torus. The sequence

m p(ν) =

∫
Td

s p dν(s), p ∈ Zd ,

is called the d-moment sequence of ν ∈ PTd . In some circumstances, characteristic
function and ν̂( p) are the precise terminology and notation used for this sequence.
Owing to Stone–Weierstrass theorem, we have m p(ν) ≡ m p(ν

′) only when ν = ν ′.
The classical convolution ⊛ of distributions on Td is characterized by m p(ν1⊛ν2)=

m p(ν1) m p(ν2) for ν1, ν2 ∈ PTd .
The bi-free multiplicative convolution of ν1, ν2 ∈ P×

T2 is determined by its
marginals (ν1 ⊠⊠ ν2)

( j)
= ν

( j)
1 ⊠ ν

( j)
2 and the bi-free multiplicative formula

6ν1 ⊠⊠ ν2(z, w) = 6ν1(z, w) · 6ν2(z, w)

for points (z, w) ∈ C2 in a neighborhood of (0, 0) and (0, ∞). Here the free
multiplicative convolution can be rephrased by means of the free 6-transform
6ν

( j)
1 ⊠ν

( j)
2

= 6ν
( j)
1

·6ν
( j)
2

valid in a neighborhood of the origin of the complex plane.
The reader is referred to [4; 5; 12; 13; 17; 19; 21; 22] for more details along with
properties of the transforms in (bi)-free probability theory. We remark that given a
measure ν ∈ P×

T2 , the transform 6ν is the identity map if and only if ν is a product
measure, which leads to

(2-2) (ν
(1)
1 × ν

(2)
1 )⊠⊠ (ν

(1)
2 × ν

(2)
2 ) = (ν

(1)
1 ⊠ ν

(1)
2 ) × (ν

(2)
1 ⊠ ν

(2)
2 ),

whenever ν
(1)
1 ×ν

(2)
1 , ν

(1)
2 ×ν

(2)
2 ∈ P×

T2 . In fact, (2-2) holds for any ν1, ν2 ∈ PT2 by
continuity arguments together with the facts that m p,q(ν1 ⊠⊠ ν2) can be expressed
as a polynomial of mk,l(νi ) for i = 1, 2, |k| ≤ |p|, |l| ≤ |q| and that ν ∈ PT2 is a
product measure if and only if m p,q(ν) = m p(ν

(1)) mq(ν(2)) for any p, q ∈ Z.
Fix ν1, ν2 ∈PT2 , and let ν =ν1 ⊠⊠ ν2. In order to analyze ν, it will be convenient

to treat it as the distribution of a certain bipartite pair (u1u2, v1v2), where (u1, v1)

and (u2, v2) are bi-free bipartite unitary pairs in some C∗-probability space having
distributions ν1 and ν2, respectively. Below, we briefly introduce the construction
of such pairs carrying the mentioned properties. For more information, we refer
the reader to [13; 20; 22]. Associating each ν j with the Hilbert space H j = L2(ν j )

with specified unit vector ξ j , the constant function one in H j , consider the Hilbert
space free product (H, ξ) = ∗ j=1,2(H j , ξ j ). The left and right factorizations of H j

from H can be respectively done via natural isomorphisms Vj : H j ⊗H(ℓ, j) → H
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and W j : H(r, j)⊗H j → H. Then for any T ∈ B(H j ), these isomorphisms induce
the so-called left and right operators

λ j (T ) = Vj (T ⊗ IH(ℓ, j))V −1
j and ρ j (T ) = W j (IH(r, j) ⊗ T )W −1

j on H.

For any Sj , Tj ∈ B(H j ), pairs (λ1(S1), ρ1(T1)) and (λ2(S2), ρ2(T2)) are, by defini-
tion, bi-free in the C∗-probability space (B(H), ϕξ ), where ϕξ ( · ) = ⟨· ξ, ξ⟩. Partic-
ularly, the multiplication operators (Sj f )(s, t) = s f (s, t) and (Tj f )(s, t) = t f (s, t)
for f ∈ H j furnish the desired pairs (u1, v1) and (u2, v2), where u j = λ j (Sj ) and
v j = ρ j (Tj ).

Recall from [13] that one can perform the opposite bi-free multiplicative convo-
lution of ν1 and ν2:

(2-3) ν1 ⊠⊠ opν2 = (ν⋆
1 ⊠⊠ ν⋆

2)
⋆.

Then ν1 ⊠⊠ opν2 is the distribution of (u1u2, v2v1), the pair obtained by performing
the opposite multiplication on the right face (u1, v1) ·

op (u2, v2) = (u1u2, v2v1).
The coordinate-flip map hop gives rise to a homeomorphism from the semigroup
(PT2,⊠⊠) to another (PT2,⊠⊠op) satisfying

(ν1 ⊠⊠ ν2)h−1
op = (ν1 h−1

op )⊠⊠ op(ν2 h−1
op ),

which is the distribution of

hop((u1, v1)(u2, v2)) = (u1u2, v
−1
2 v−1

1 ) = hop((u1, v1)) ·
op hop((u2, v2)).

Passing to the transform

6op
ν (z, w) = 6ν⋆(z, 1/w),

the equation (2-3) is translated into 6
op
ν1⊠⊠opν2

(z, w) = 6
op
ν1 (z, w) · 6

op
ν1 (z, w).

2D. Limit theorem. Either in classical or in (bi-)free probability theory, one is
concerned with the asymptotic behavior of the sequence

(2-4) δxn♢µn1♢ · · ·♢µnkn , n = 1, 2, . . . ,

where δx is the Dirac measure concentrated at x ∈ X and {µnkn }n≥1,1≤k≤kn is an
infinitesimal triangular array in PX . The infinitesimality of {µnk}, by definition,
means that k1 < k2 < · · · and that for any ϵ > 0, we have

lim
n→∞

max
1≤k≤kn

µnk({x ∈ X : d(x, x0) ≥ ϵ}) = 0.

One phenomenon related to equation (2-4) is the concept of infinite divisibility:
µ ∈ (PX ,♢) is said to be infinitely divisible if for any n ∈ N, it coincides with the
n-fold ♢-operation µ♢n

n of some µn ∈ PX .
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Commutative and associative binary operations to be considered throughout the
paper are classical convolutions ∗ and ⊛ on PRd and PTd , respectively, and bi-free
additive and multiplicative convolutions ⊞⊞ and ⊠⊠ on PR2 and PT2 , respectively.
The following convergence criteria play an essential role in the asymptotic analysis
of limit theorems of PRd .

Condition 2.2. Let {τn} be a sequence in M 0
Rd .

(I) For j = 1, . . . , d, the sequence {σnj }n≥1 defined by

dσnj (x) =
x2

j

1 + x2
j

dτn(x)

belongs to MRd and converges weakly to some σ j ∈ MRd .

(II) For j, ℓ = 1, . . . , d , the following limit exists in R:

L jℓ = lim
n→∞

∫
R2

x j xℓ

(1 + x2
j )(1 + x2

ℓ )
dτn(x).

Condition 2.3. Let {τn} be a sequence in M 0
Rd .

(III) There is some τ ∈ M 0
Rd with τ({0}) = 0 (that is τ ∈ M̃ 0

Rd ) so that τn ⇒0 τ .

(IV) For any vector u ∈ Rd , the following limits exist in R:

lim
ϵ→0

lim sup
n→∞

∫
Vϵ

⟨u, x⟩
2 dτn(x) = Q(u) = lim

ϵ→0
lim inf
n→∞

∫
Vϵ

⟨u, x⟩
2 dτn(x).

Although we describe the conditions in a higher dimension setup, the reader can
effortlessly mimic the proof in [11] to obtain the equivalence of Conditions 2.2
and 2.3, and draw the following consequences:

(1) The function Q( · ) = ⟨A · , · ⟩ in (IV) defines a nonnegative quadratic form
on Rd , where the matrix A = (a jℓ) is given by

a jℓ = L jℓ −

∫
Rd

x j xℓ

(1 + x2
j )(1 + x2

ℓ )
dτ(x), j, ℓ = 1, . . . , d.

In particular, a j j = σ j ({0}) for j = 1, . . . , d.

(2) Measures τ and σ1, . . . , σd are uniquely determined by the relations

dσ j (x) =
x2

j

1 + x2
j

dτ(x) + Q(ej ) δ0(dx),

where {ej } is the standard basis of Rd .

(3) The function x 7→ min{1, ∥x∥
2
} is τ -integrable.



LIMIT THEOREMS AND WRAPPING TRANSFORMS 71

Now, let us briefly introduce the limit theorems of (1-1) and (1-2). Throughout
our discussions in the paper,

(2-5) θ ∈ (0, 1)

is an arbitrary but fixed quantity. To meet the purpose, consider the shifted triangular
array

µ̊nk(B) = µnk(B + vnk), B ∈ BRd ,

associated with an infinitesimal triangular array {µnk}n≥1,1≤k≤kn ⊂ PRd and the
vector

(2-6) vnk =

∫
Vθ

x dµnk(x).

Due to limn→∞ maxk≤kn∥vnk∥ = 0, {µ̊nk} so obtained is also infinitesimal. In
conjunction with this centered triangular array, we focus on the positive measures

(2-7) τn =

kn∑
k=1

µ̊nk .

It turns out that the sequence in (1-1) converges weakly to a certain µ∗ ∈ PRd if
and only if τn defined in (2-7) meets Condition 2.3 (as well as Condition 2.2 since
these two conditions are equivalent) and the limit

(2-8) v = lim
n→∞

[
vn +

kn∑
k=1

(
vnk +

∫
Rd

x
1 + ∥x∥2 dµ̊nk(x)

)]
exists in Rd . Additionally, µ∗ is ∗-infinitely divisible and possesses the characteristic
function read as

(2-9) µ̂∗(u) = exp
[
i⟨u, v⟩ −

1
2⟨Au, u⟩ +

∫
Rd

(
ei⟨u,x⟩

− 1 −
i⟨u, x⟩

1 + ∥x∥2

)
dτ(x)

]
,

which is known as the Lévy–Khintchine representation. The limiting distribution is
uniquely determined by the formula (2-9) and denoted by µ

(v,A,τ )
∗ , and (v, A, τ ) is

referred to as its Lévy triplet. The set ID(∗) is completely parameterized by the
triplets (v, A, τ ), where

(2-10) v ∈ Rd , A ∈ Md(R) is positive semidefinite, and τ is a positive measure

on Rd satisfying τ({0}) = 0 and min{1, ∥x∥
2
} ∈ L1(τ ).

As a matter of fact, when d = 2, the same convergence criteria are also necessary
and sufficient to assure the weak convergence of (1-2). Paralleling to the classical
case, the limiting distribution of (1-2) is ⊞⊞-infinitely divisible and owns the bi-free
φ-transform, called bi-free Lévy–Khintchine representation, of the form
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φ(z, w) =
v1

z
+

v2

w
+

(
a11

z2 +
a12

zw
+

a22

w2

)
+

∫
R2

[
zw

(z − x1)(w − x2)
− 1 −

x1z−1
+ x2w

−1

1 + ∥x∥2

]
dτ(x).

Analogically, this limiting distribution is always expressed as µ
(v,A,τ )
⊞⊞ and said to

own the bi-free Lévy triplet (v, A, τ ). Those triplets (v, A, τ ) satisfying (2-10) also
give a complete parametrization of the set ID(⊞⊞), and therefore output a bijective
homomorphism 3 from ID(∗) onto ID(⊞⊞), sending an element µ

(v,A,τ )
∗ in the

first set to the distribution µ
(v,A,τ )
⊞⊞ in the second one. No matter in the classical

or bi-free probability, ∗- and ⊞⊞-infinitely divisible distributions both appear as
limiting distributions in the limit theorem.

Next, we turn our attention to the limit theorem on the d-torus, on which the
Borel probability measures of interest are sometimes imposed the nonvanishing
mean conditions:

(2-11)
∫

Td
s j dν(s) ̸= 0, j = 1, . . . , d.

For convenience, we adopt the symbol P×

Td to signify the collection of probability
measures carrying such features. As will be shown in Theorem 3.12, when d = 2,
these conditions (2-11) turn out to be necessary and sufficient for a ⊠⊠-infinitely
divisible distribution to contain no nontrivial ⊠⊠-idempotent factors. We would
also like to remind the reader that the symbol P×

T2 introduced here is distinct from
that in [13] as Theorem 3.10 of the present paper designates that the requirement
m1,1(ν) ̸= 0 in the limit theorem is redundant.

Given an infinitesimal triangular array {νnk}n≥1,1≤k≤kn in PTd , one works with
the rotated probability measures d ν̊nk(s) = dνnk(bnk s), where

(2-12) bnk = exp
[
i
∫

Uθ

(arg s) dνnk(s)
]
.

Once again, {ν̊nk} is infinitesimal because of limn maxk ∥arg bnk∥ = 0. Given a
sequence {ξ n} ⊂ Td , further define vectors

(2-13) γ n = ξ n exp
[
i

kn∑
k=1

(
arg bnk +

∫
T2
(ℑs) d ν̊nk(s)

)]
∈ Td .

The bi-free multiplicative limit theorem on the bi-torus has been shown in [13,
Theorem 3.4]:

Theorem 2.4. The necessary and sufficient condition for the sequence (1-3) to
converge weakly to a certain ν⊠⊠ ∈ P×

T2 is that the limit

(2-14) lim
n→∞

γ n = γ
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exists and the positive measures

(2-15) ρn =

kn∑
k=1

ν̊nk

satisfy Condition 2.5 stated below with d = 2.

Condition 2.5. Let {ρn} be a sequence in M 1
Td .

(i) For j = 1, . . . , d, the sequence {λnj }n≥1 defined by

dλnj (s) = (1 − ℜs j ) dρn(s)

belongs to MTd and converges weakly to some λ j ∈ MTd .

(ii) For 1 ≤ j, ℓ ≤ d , the following limit exists in R:

L jℓ = lim
n→∞

∫
Td
(ℑs j )(ℑsℓ) dρn(s).

The limiting distribution ν = ν⊠⊠ in Theorem 2.4 is ⊠⊠-infinitely divisible, as
expected, and uniquely determined by the formulas [13]

(2-16) 6ν( j)(ξ) = exp[u j (ξ)] and 6ν(z, w) = exp[u(z, w)].

Here the functions u j , j = 1, 2, are defined on D and given by

u j (ξ) = −i arg γ j +

∫
T2

1 + ξs j

1 − ξs j
dλ j (s),

and for (z, w) ∈ (C\D)2, the function u satisfies

(1 − z)(1 − w)

1 − zw
u(z, w) =

∫
T2

1 + zs1

1 − zs1

1 + ws2

1 − ws2
(1 − ℜs2) dλ1(s)

− i
∫

T2

1 + zs1

1 − zs1
(ℑs2) dλ1(s)

− i
∫

T2

1 + ws2

1 − ws2
(ℑs1) dλ2(s) − L12.

In turn, any measure in ID(⊠⊠)∩ P×

T2 truly arises as a weak-limit point of (1-3).

Remark 2.6. Suppose that ν ∈ ID(⊠⊠)\P×

T2 , and let m j =
∫

s j dν( j) for j = 1, 2.
Then 6ν( j)(0) = 1/m j , arg γ j = arg m j , and λ j (T

2) = − log |m j | ∈ [0, ∞). We
remind the reader that the parameter γ j in u j (ξ) and that appearing in [13] are
conjugate complex numbers. With the help of the equation

(2-17)
1 + ξs
1 − ξs

(1 − ℜs) = iℑs +
(1 − ξ)(1 − s)

1 − ξs
, (ξ, s) ∈ D × T,
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one can see that

u j (ξ) = −i arg γ j + lim
n→∞

∫
T2

1 + ξs j

1 − ξs j
(1 − ℜs j ) dρn(s)

and
u(z, w) = lim

n→∞

∫
T2

(1 − zw)(1 − s1)(1 − s2)

(1 − zs1)(1 − ws2)
dρn(s)

for some sequence {ρn} ⊂ M 1
T2 satisfying Condition 2.5.

3. ⊠⊠-Idempotent distributions

Let µ ∈ PX . A measure µ′
∈ PX is called a ♢-factor of µ if µ = µ′♢µ′′ for some

µ′′
∈ PX . Particularly, µ is said to be ♢-idempotent when µ′

=µ=µ′′. Idempotent
distributions and other related subjects in classical probability have been extensively
studied in [16]. It is to questions of these sorts in the bi-free probability theory that
the present section is devoted.

The normalized Lebesgue measure m = dθ/(2π) on T is the only ⊠-idempotent
element except for the trivial one, the Dirac measure at 1. On T2, the probability
measure

P(B) = m({s ∈ T : (s, s̄) ∈ B}), B ∈ BT2,

is ⊛-idempotent because m p,q(P) = 1 for p = q ∈ Z and zero otherwise. As a
matter of fact, this singularly continuous measure is also ⊠⊠-idempotent proved
below.

The following result is a direct consequence of Voiculescu’s two-bands moment
formula in [21, Lemma 2.1] and we provide its proof and notations for the later use.

Proposition 3.1. A ⊠⊠-idempotent distribution in PT2 is one of five types δ(1,1),
m × δ1, δ1 × m, m × m, and P. A measure in PT2 is ⊠⊠op-idempotent if and only
if it is δ(1,1), m × δ1, δ1 × m, m × m, or P⋆.

Proof. Let ν be ⊠⊠-idempotent. Since each marginal satisfies ν( j)
= ν( j) ⊠ ν( j), it

follows that ν( j) is ⊠-infinitely divisible. If ν( j) has nonzero mean, then 6ν( j)(0)=1,
yielding ν( j)

= δ1 by [4, Lemma 2.7]. Otherwise, we can infer from [4, Lemma 6.1]
that ν( j)

= m. Thus, consideration given to the case ν(1)
= m = ν(2) is sufficient

to complete the proof. To continue the proof, we realize ν = ν1 ⊠⊠ ν2 as the
distribution of (u, v) = (u1u2, v1v2), where (u j , v j ) = (λ j (Sj ), ρ j (Tj )), j = 1, 2,
are bi-free unitary faces respectively following ν j = ν in the C∗-probability space
(B(H), ϕξ ), as constructed in Section 2C.

From ϕξ (u j ) = 0 for j = 1, 2, it follows that S±1
j ξ j ∈ H̊ j = H j ⊖ Cξ j , which

supplies a simplistic representation for u pξ for any p ∈ N, namely,

(3-1) u pξ = ((S1ξ1) ⊗ (S2 ξ2))
⊗p and u−pξ = ((S−1

2 ξ2) ⊗ (S−1
1 ξ1))

⊗p
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lying in spaces (H̊1 ⊗ H̊2)
⊗p and (H̊2 ⊗ H̊1)

⊗p. Similarly, ϕξ (v1) = 0 = ϕξ (v2)

implies that

(3-2) vqξ = ((T2 ξ2) ⊗ (T1ξ1))
⊗q

∈ (H̊2 ⊗ H̊1)
⊗q , q ∈ N.

We consequently arrive at that for (p, q) ∈ (Z\{0}) × (N ∪ {0}),

m p,q(ν) = ϕξ (u pvq) = ⟨vqξ, u−pξ⟩ = δp,q [ϕξ (u1v1) ϕξ (u2v2)]
p
= δp,q m1,1(ν)2p

and that m0,q(ν) = ϕξ (v
q) = δ0,q for q ∈ N∪{0}. If m1,1(ν) = 0, then m p,q(ν) = 0

for any (p, q) ∈ Z2
\{(0, 0)}, which occurs only when ν = m × m. If m1,1(ν) ̸= 0,

then the equation m1,1(ν) = m1,1(ν)2 results in m1,1(ν) = 1, yielding ν = P as they
have a common 2-moment sequence.

The ⊠⊠op-idempotent elements can be easily ascertained by formula (2-3) and
established results. This finishes the proof. □

It is known that for any ν1, ν2 ∈ PT2 , m p,q(ν1 ⊠⊠ ν2) = m p,q(ν1) m p,q(ν2)

holds when (p, q) = (0, 1), (1, 0).

Lemma 3.2. Identities

m1,1(ν1 ⊠⊠ ν2) = m1,1(ν1) m1,1(ν2)

and
m1,−1(ν1 ⊠⊠ opν2) = m1,−1(ν1) m1,−1(ν2)

hold for any ν1, ν2 ∈ PT2 .

Proof. Following the notations in Section 2C, let α j = ⟨S−1
j ξ j , ξ j ⟩, β j = ⟨Tjξ j , ξ j ⟩,

h j = S−1
j ξ j − α jξ j , and k j = Tjξ j − β jξ j for j = 1, 2. Then

m1,1(ν j ) = ⟨Tjξ j , S−1
j ξ j ⟩ = α jβ j + ⟨k j , h j ⟩.

On the other hand, we have u−1
2 u−1

1 ξ = α1α2 ξ + α2 h1 + α1 h2 + h2 ⊗ h1 and
v1v2 ξ = β1 β2 ξ +β2 k1 +β1 k2 +k2 ⊗k1. Thus, the first desired result follows from
the representation of m1,1(ν j ) given above and the computations

m1,1(ν1 ⊠⊠ ν2) = ⟨v1v2 ξ, u−1
2 u−1

1 ξ⟩

= α1α2 β1 β2 + α2 β2⟨k1, h1⟩ +α1 β1⟨k2, h2⟩ + ⟨k1, h1⟩⟨k2, h2⟩.

Thanks to (2-3) and the first result, we obtain

m1,−1(ν1⊠⊠opν2) = m1,1(ν
⋆
1 ⊠⊠ ν⋆

2) = m1,−1(ν1) m1,−1(ν2). □

Remark 3.3. Results in Lemma 3.2 can also be easily derived by the moment-
cumulant formula and vanishing of bi-free mixed cumulants [8].
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In the sequel, except for δ(1,1), the other four ⊠⊠-idempotent distributions are
called nontrivial. The abusing notation 00

= 1 is used in the following proposition
and elsewhere.

Proposition 3.4. Let ν ∈ PT2 .

(1) ν has the ⊠⊠-factor m × δ1 if and only if ν = m × ν(2).

(2) ν has the ⊠⊠-factor δ1 × m if and only if ν = ν(1)
× m.

(3) ν has the ⊠⊠-factor m × m if and only if ν = m × m.

(4) P is a ⊠⊠-factor of ν if and only if

(3-3) m p,q(ν) = δp,q m1,1(ν)p, (p, q) ∈ Z × (N ∪ {0}),

where δp,q is the Kronecker function of p and q.

Statements (1)–(3) remain true if the convolution ⊠⊠ is replaced with ⊠⊠op. More-
over, P⋆ is a ⊠⊠op-factor of ν if and only if

(3-4) m p,q(ν) = δp,−qm1,−1(ν)p, (p, q) ∈ Z × (−N ∪ {0}).

Remark 3.5. For negative integers q , by taking complex conjugate, formula (3-3)
becomes m p,q(ν) = δp,q m−1,−1(ν)−p.

Proof. Write ν =ν1 ⊠⊠ ν2, where neither ν1 nor ν2 is δ(1,1). We shall stay employing
the notations for ν1, ν2 introduced in Section 2C to accomplish the proof.

First, let ν2 = m×δ1. In order to obtain ν = m×ν(2) as desired in (1), it amounts
to proving that m p,q(ν) = 0 for any p ∈ Z×

= Z\{0} and q ∈ Z because a probability
measure on the bi-torus is uniquely determined by its moments. To this end, we take
operator models (u1, v1) and (u2, v2) as in the proof of Proposition 3.1. A conse-
quence of [20, Lemma 5.3] is that m p,q(ν) = ϕξ ((u1u2)

p(v1v2)
q) can be expressed

as a sum of products of quantities from the set {ϕξ (u
mi
i v

ni
i ) : m1, m2, n1, n2 ∈ Z}.

Moreover, since p ̸= 0, each product in the sum contains at least one factor
ϕξ (u

m2
2 v

n2
2 ) with m2 ̸= 0, which vanishes because (u2, v2) follows m × δ1. This

verifies the “only if” part of (1). The “if” part of (1) is a direct consequence of (2-2).
Alternatively, one can obtain the result by considering the measure ν̃ =ν⊠⊠(m×δ1).
Indeed, ν̃ has the ⊠⊠-factor m×δ1, and so ν̃ = m× ν̃(2) by the result proved above.
Since ν̃(2)

= ν(2) ⊠ δ1 = ν(2), it follows that

m p,q(ν) = m p(m) mq(ν(2)) = m p(m) mq(ν̃(2)) = m p,q(ν̃)

for any p, q ∈ Z. Hence we have ν = ν̃, which proves the “if” part.
By similar reasonings, (2) holds. If m × m is a ⊠⊠-factor of ν, then so are

distributions m × δ1 and δ1 × m, from which we see that (3) holds by (1) and (2).
Finally, we suppose ν2 = P and justify (4). In view of P being ⊠⊠-idempotent,

ν1 ⊠⊠ P may take the place of ν1, and we do assume so below, without affecting the
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convolution ν = ν1 ⊠⊠ P . Since m p,q(ν1)=0=m p,q(ν2) for (p, q)= (0, 1), (1, 0),
formulas (3-1) and (3-2), together with Lemma 3.2, allow one to see that

m p,q(ν) = ⟨vqξ, u−pξ⟩ = δp,q⟨S1T1ξ1, ξ1⟩
p
⟨S2T2 ξ2, ξ2⟩

p
= δp,q m1,1(ν)p

for (p, q) ∈ Z × (N ∪ {0}). This furnishes all mixed moments (3-3) of ν.
That ν ⊠⊠ P has the ⊠⊠-factor P and the established result implies that for any

(p, q) ∈ Z × (N ∪ {0}), m p,q(ν ⊠⊠ P) = δp,q m1,1(ν ⊠⊠ P)p
= δp,q m1,1(ν)p by

Lemma 3.2. Thus m p,q(ν ⊠⊠ P) = m p,q(ν) or, equivalently, ν ⊠⊠ P = ν if (3-3)
holds, proving the converse of (4).

All assertions regarding ⊠⊠op-idempotent factors are direct consequences of
statements (1)–(4), equation (2-3), and the formula m p,q(ν⋆) = m p,−q(ν). □

Remark 3.6. From m1,1(m × m) = 0, assertion (4) of Proposition 3.4 can be
strengthened as that P is the only nontrivial ⊠⊠-idempotent factor of ν ∈ PT2 if
and only if m1,1(ν) ̸= 0 and (3-3) holds.

Remark 3.7. The notions of bi-R-diagonality and Haar bi-unitary elements were
first introduced in [18, Example 4.7] and [7, Definition 10.1.2], respectively. A Haar
bi-unitary element is a bipartite pair having distribution P⋆ [15, Definition 2.15].
The opposite multiplication plays a key role when characterizing bi-R-diagonal
pairs in terms of Haar bi-unitary elements [15, Theorem 4.4]. Moreover, measures
ν ∈ PT2 satisfying (3-4) are bi-R-diagonal because of ν = ν ⊠⊠ op P⋆ according to
Proposition 3.4 and because of [15, Theorem 4.4].

For any c ∈ D, define

dκc(s) =
1 − |c|2

|1 − c̄s|2
dm(s),

which is the probability measure on T induced by the Poisson kernel. It is the
normalized Haar measure on T in case c = 0. By taking the weak limit we define
κc = δc for c ∈ T. Alternatively, κc with c ∈ D ∪ T is the unique probability
measure on T determined by the requirement m p(κc) = cp for p ∈ N. Also, we
have m p(κc) = c̄|p| for p ∈ −N.

Observe that for any c, d ∈ D ∪ T, we have

(3-5) ν ⊠⊠ (κc × κd) = ν ⊛ (κc × κd), ν ∈ PT2 .

To see this, consider ν and κc × κd as the distributions of two bi-free commuting
unitary faces (u1, v1) and (u2, v2), respectively, in some C∗-probability space
(B(H), ϕξ ). Observe that both pairs of faces (u2, v2) and (cIB(H), d IB(H)) are
commuting, bi-free from (u1, v1), and have the same (p, q)-moments cpdq for
(p, q) ∈ (N∪{0})2. In view of the universal calculation formula for mixed moments
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[20, Lemma 5.2], we may replace (u2, v2) with (cIB(H), d IB(H)). This entails

ϕξ ((u1u2)
p(v1v2)

q) = cpdqϕξ (u
p
1 v

q
1 ),

and hence m p,q(ν ⊠⊠ (κc × κd)) = m p,q(ν ⊛ (κc × κd)) for (p, q) ∈ (N ∪ {0})2.
Similarly, one can obtain the same identity for (p, q) ∈ (N ∪ {0})× (−N ∪ {0}) by
using that (u2, v2) and (cIB(H), (1/d̄)IB(H)) have the same (p, q)-moments cpd̄ |q|.
Therefore, we justify (3-5).

A special case of (3-5) is the validity of

(κc1 × κd1)⊠⊠ (κc2 × κd2) = κc1c2 × κd1d2 = (κc1 × κd1)⊛ (κc2 × κd2)

for any c1, c2, d1, d2 ∈ D ∪ T, yielding the following results.

Proposition 3.8. The measure κc × κd is both ⊛- and ⊠⊠-infinitely divisible for
any c, d ∈ D ∪ T.

Proposition 3.9. Any ν ∈ PT2 with moments satisfying (3-3) can be expressed as
P ⊛ (κc × δ1), where c = m1,1(ν). In particular, ν is both ⊛- and ⊠⊠-infinitely
divisible.

Proof. Clearly, we have m p,q(P ⊛ (κc × δ1)) = δp,q cp for (p, q) ∈ Z × (N ∪ {0}),
and hence ν = P ⊛ (κc × δ1). The ⊛-infinitely divisibility of P and Proposition 3.8
yield that ν is ⊛-infinitely divisible. Also, the identity ν = P ⊠⊠ (κc ×δ1) obtained
by (3-5) proves the ⊠⊠-infinite divisibility of ν. □

A consequence of (3-5) and Proposition 3.9 is that the following identity holds
for every ν ∈ PT2 :

(3-6) P ⊠⊠ (κm1,1(ν) × δ1) = P ⊠⊠ ν = P ⊛ (κm1,1(ν) × δ1).

The following is a bi-free multiplicative analog of the classical multiplicative
limit theorem.

Theorem 3.10. Let {νnkn }n≥,1≤k≤kn be an infinitesimal triangular array in PT2

and {ξ n} be a sequence in T2. If the sequence in (1-3) has a weak limit ν, then ν is
⊠⊠-infinitely divisible. If m1,0(ν) ̸= 0 ̸= m0,1(ν), then m1,1(ν) ̸= 0. Moreover, if
m1,0(ν) = 0, then ν = m × ν(2) and if m0,1(ν) = 0, then ν = ν(1)

× m.

Proof. We separately consider three possible statuses (i) m1,0(ν) ̸= 0 ̸= m0,1(ν),
(ii) m1,0(ν) = 0 ̸= m0,1(ν) (the case m1,0(ν) ̸= 0 = m0,1(ν) is treated similarly
to (ii)), and (iii) m1,0(ν) = 0 = m0,1(ν).

(i) Once we can prove that m1,1(ν) ̸= 0, then the ⊠⊠-infinite divisibility of ν will
follow from [13, Theorem 4.2]. Assume to the contrary that m1,1(ν) = 0, which
together with Lemma 3.2 implies that as n → ∞,

m1,1(δξn ) m1,1(νn1) · · · m1,1(νnkn ) = m1,1(δξn ⊠⊠ νn1 ⊠⊠ · · · ⊠⊠ νnkn ) → 0.



LIMIT THEOREMS AND WRAPPING TRANSFORMS 79

Then there exists a sequence {ℓn} ⊂ N so that as n → ∞, we have

m1,1(δξn ) m1,1(νn1) · · · m1,1(νnℓn ) → 0 and m1,1(νn,ℓn+1) · · · m1,1(νnkn ) → 0,

namely, one sees from Lemma 3.2 that

m1,1(δξn ⊠⊠ νn1 ⊠⊠ · · · ⊠⊠ νnℓn )→ 0 and m1,1(νn,ℓn+1 ⊠⊠ · · · ⊠⊠ νnkn )→ 0

as n → ∞. To obtain such a sequence {ℓn}, one can select, for example,

ℓn = min
{
k : |m1,1(δξn ⊠⊠ νn1 ⊠⊠ · · · ⊠⊠ νnk)|

≤ |m1,1(δξn ⊠⊠ νn1 ⊠⊠ · · · ⊠⊠ νnkn )|
1/2}.

One may assume, by passing to a subsequence if needed, that

δξn ⊠⊠ νn1 ⊠⊠ · · · ⊠⊠ νnℓn ⇒ ν ′

1 ∈ PT2, νn,ℓn+1 ⊠⊠ · · · ⊠⊠ νnkn ⇒ ν ′′

1 ∈ PT2 .

Then we have ν = ν ′

1 ⊠⊠ ν ′′

1 and m1,1(ν
′

1) = 0 = m1,1(ν
′′

1 ). Also, the formula

m1,0(ν) = m1,0(ν
′

1) m1,0(ν
′′

1 )

indicates that either |m1,0(ν
′

1)| ≥ |m1,0(ν)|1/2 or |m1,0(ν
′′

1 )| ≥ |m1,0(ν)|1/2 must
occur; assume, without loss of generality, that the first inequality is valid. Carrying
out the same arguments on ν ′

1 allows us to obtain ν ′

2, ν
′′

2 ∈PT2 fulfilling requirements
ν ′

1 =ν ′

2 ⊠⊠ ν ′′

2 , m1,1(ν
′

2)=0=m1,1(ν
′′

2 ), and |m1,0(ν
′

2)|≥ |m1,0(ν
′

1)|
1/2. Continuing

this process then results in the existence of sequences {ν ′
n}, {ν

′′
n } ⊂ PT2 for which

ν ′
n = ν ′

n+1 ⊠⊠ ν ′′

n+1, m1,1(ν
′
n) = 0 = m1,1(ν

′′
n ), and |m1,0(ν

′

n+1)| ≥ |m1,0(ν
′
n)|

1/2

hold.
One has ν = ν ′

n ⊠⊠ ν ′′′
n for some ν ′′′

n ∈ PT2 and |m1,0(ν
′
n)| ≥ |m1,0(ν)|1/2n

.
Passing to subsequences if needed again, let ν ′

n ⇒ ν1 ∈ PT2 and ν ′′′
n ⇒ ν2 ∈ PT2 ,

and so ν = ν1 ⊠⊠ ν2, m1,1(ν1)= 0, and |m1,0(ν1)|= 1. The last identity reveals that
ν1 =δα×ν

(2)
1 , α=m1,0(ν1)∈T. Also, using 0 ̸=m0,1(ν)=m0,1(ν1) m0,1(ν2) we get

m0,1(ν1) ̸= 0. However, these discussions would lead to m1,1(ν1) = αm0,1(ν1) ̸= 0,
a contradiction. Hence we must have m1,1(ν) ̸= 0, as desired.

(ii) Note that the marginal ν(2) is ⊠-infinitely divisible by [2, Theorem 2.1]. The ⊠⊠-
infinite divisibility of ν will follow immediately if one can argue that ν = m × ν(2).
The proof, presented below, is basically similar to that of (1).

First, applying the strategy employed in the first paragraph of (1) to m1,0(ν) = 0
indicates the presence of ℓn ∈ N satisfying m1,0(δξn ⊠⊠ νn1 ⊠⊠ · · · ⊠⊠ νnℓn ) → 0
and m1,0(νn,ℓn+1 ⊠⊠ · · · ⊠⊠ νnkn ) → 0 as n → ∞. Assume, dropping a subse-
quence if necessary, that

δξn ⊠⊠ νn1 ⊠⊠ · · · ⊠⊠ νnℓn ⇒ ν ′

1 ∈ PT2, νn,ℓn+1 ⊠⊠ · · · ⊠⊠ νnkn ⇒ ν ′′

1 ∈ PT2 .
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Thus we have ν = ν ′

1 ⊠⊠ ν ′′

1 and m1,0(ν
′

1) = 0 = m1,0(ν
′′

1 ). We may further assume
|m0,1(ν

′

1)| ≥ |m0,1(ν)|1/2. Mimicking the arguments in (1) constructs sequences
{ν ′

n}, {ν
′′
n } ⊂ PT2 meeting conditions ν = ν ′

n ⊠⊠ ν ′′
n , m1,0(ν

′
n) = 0 = m1,0(ν

′′
n ),

and |m0,1(ν
′
n)| ≥ |m0,1(ν)|1/2n

. Passing to subsequences if needed again, assume
that ν ′

n ⇒ ν1 ∈ PT2 and ν ′′
n ⇒ ν2 ∈ PT2 . Then we come to that ν = ν1 ⊠⊠ ν2,

m1,0(ν1) = 0 = m1,0(ν2), and ν
(2)
1 = δα for some α ∈ T. To proceed the proof,

we shall use notations introduced in Section 2C. Since v1 = α IB(H), it follows
that vqξ = αqv

q
2 ξ ∈ Cξ ⊕ H̊2 for any q ∈ Z. Thus, equation (3-1) implies that

m p,q(ν) = ⟨vqξ, u−pξ⟩ = 0 for any (p, q) ∈ N × Z, proving ν = m × ν(2).

(iii) In this case, we have ν(1)
= m = ν(2) by [2, Theorem 2.1] and [4, Lemma 6.1].

Further, one can employ the proof in (ii) to show that there are ν1, ν2 ∈ PT2 so that
ν = ν1 ⊠⊠ ν2 and m1,0(ν1) = 0 = m1,0(ν2). Then m0,1(ν1) m0,1(ν2) = m0,1(ν) = 0.
If m0,1(ν1) = 0 = m0,1(ν2), then (3-1) and (3-2) yield that m p,q(ν) = δp,q m1,1(ν)p

for (p, q) ∈ Z × (N ∪ {0}), whence ν is ⊠⊠-infinitely divisible by Proposition 3.9.
For the other case, say m0,1(ν1) ̸= 0, the established conclusion in (ii) then shows
that ν1 = m × ν

(2)
1 . In such a situation, the measure ν1, as well as ν, has the

⊠⊠-factor m × δ1. Thus, Proposition 3.4 says that ν = m × m, which is clearly
⊠⊠-infinitely divisible. □

Corollary 3.11. The set ID(⊠⊠) is weakly closed.

We are now in a position to characterize distributions in ID(⊠⊠) carrying no
nontrivial ⊠⊠-idempotent factors.

Theorem 3.12. In order that a measure ν ∈ ID(⊠⊠) contains no nontrivial ⊠⊠-
idempotent factor, it is necessary and sufficient that m1,0(ν) ̸= 0 ̸= m0,1(ν), in
which case m1,1(ν) ̸= 0.

Proof. According to Proposition 3.4, only the necessity requires a proof. We merely
prove that ν has a nontrivial ⊠⊠-idempotent factor when m1,0(ν) = 0, because
the case m0,1(ν) = 0 can be handled in the same way. To do so, let m1,0(ν) = 0,
and consider two possible cases (i) m0,1(ν) = 0 and (ii) m0,1(ν) ̸= 0, which are
discussed separately below. Note that m p,0(ν) = 0 for all p ∈ N since ν(1)

= m.

Case (i): Since ν( j)
= m for j = 1, 2, one can mimic the proof of Proposition 3.1,

especially employ equations (3-1) and (3-2), to obtain m p,q(ν) = δp,q m1,1(ν)p for
(p, q) ∈ Z × (N ∪ {0}). Hence P is a ⊠⊠-factor of ν by Proposition 3.4.

Case (ii): To treat this case, let ν ′
n ∈ PT2 be an n-th ⊠⊠-convolution root of ν for

any n ∈ N, i.e., (ν ′
n)

⊠⊠n
= ν. Then we have ν = ν ′

n ⊠⊠ ν ′′
n , where ν ′′

n = (ν ′
n)

⊠⊠(n−1),
m1,0(ν

′
n) = 0 = m1,0(ν

′′
n ) and |m0,1(ν

′
n)| = |m0,1(ν)|1/n . If ν ′ and ν ′′ are any

weak limits of {ν ′
n} and {ν ′′

n }, respectively, then we further obtain ν = ν ′ ⊠⊠ ν ′′,
m1,0(ν

′) = 0 = m1,0(ν
′′), and |m0,1(ν

′)| = 1. This leads to (ν ′)(2)
= δα for some

α ∈ T, which is exactly the situation dealt in the last part of the proof (ii) of
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Theorem 3.10. Thus we conclude that ν = m × ν(2), which has the ⊠⊠-idempotent
factor m × δ1 by Proposition 3.4.

Lastly, we turn to argue that m1,1(ν) ̸= 0 if m1,0(ν) ̸= 0 ̸= m0,1(ν). Any
sequence {νn} satisfying ν = ν⊠⊠2n

n has a subsequence {νn j } converging weakly
to δξ for some ξ ∈ T2 (see (i) of Theorem 3.10). Then Lemma 3.2 implies that
|m1,1(ν)|2

−n j
= |m1,1(νn j )| → |m1,1(δξ )| = 1, leading to the desired result. □

Propositions 3.4 and 3.9, and Theorem 3.12 readily imply the following.

Corollary 3.13. Any measure ν in ID(⊠⊠)\P×

T2 is either ν(1)
× m, m × ν(2),

m × m or P ⊛ (κc × δ1), where ν(1) and ν(2) are in ID(⊠) with nonzero mean and
c ∈ (D ∪ T) \ {0}.

4. Equivalent conditions on limit theorems

This section is devoted to exploring the associations among the conditions introduced
in Section 2D and the following one.

Condition 4.1. Let {ρn} be a sequence in M 1
Td .

(iii) There exists some ρ ∈ M 1
Td with ρ({1}) = 0 (i.e., ρ ∈ M̃ 1

Td ) so that ρn ⇒1 ρ.

(iv) The following limits exist in R for any p ∈ Zd :

lim
ϵ→0

lim sup
n→∞

∫
Uϵ

⟨ p, ℑs⟩2 dρn(s) = Q( p) = lim
ϵ→0

lim inf
n→∞

∫
Uϵ

⟨ p, ℑs⟩2 dρn(s).

Condition 2.5 with d = 2 was used in [13, Theorem 3.4] to prove the limit
theorem for the bi-free multiplicative convolution, while Condition 4.1 is beneficial
for the corresponding classical limit theorem [10]. More properties regarding these
two conditions are presented below.

Proposition 4.2. Condition 2.5 is equivalent to Condition 4.1, in which

dλ j (s) = (1 − ℜs j ) dρ(s) +
Q(ej )

2
δ1(ds), j = 1, . . . , d,(4-1) ∫

Td
∥1 − ℜs∥ dρ(s) < ∞,(4-2)

and the quadratic form Q( · ) = ⟨A · , · ⟩ on Zd is determined by the positive
semidefinitive matrix A = (a jℓ) whose entries are

(4-3) a jℓ = L jℓ −

∫
Td
(ℑs j )(ℑsℓ) dρ(s) ∈ R, j, ℓ = 1, . . . , d.

Moreover, a j j = 2λ j ({1}) for j = 1, . . . , d.
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Proof. Suppose first that Condition 2.5 is satisfied. Then the relation

(1 − ℜs j ) dλℓ = (1 − ℜsℓ) dλ j , j, ℓ = 1, . . . , d,

guaranteed by item (i) of Condition 2.5 ensures that the measure

(4-4) dρ(s) =
1{sj ̸=1}(s)
1 − ℜs j

dλ j (s)

is unambiguous and does not depend on j . In addition, it satisfies requirements
ρ(Td

\Uϵ) < ∞ for any ϵ > 0 and (4-2). Hence the measure ρ that we just
constructed belongs to M 1

Td .
To see ρn ⇒1 ρ, pick a continuous function f on Td with support contained

within Td
\Uδ for some δ > 0. Then this f produces d continuous functions on Td ,

which are
f j (s) =

dist(U j , s)
dist(U1, s) + · · · + dist(Ud , s)

f (s),

where U j ={u∈Td
: |arg u j |<δ/

√
2d} and dist(U j , s)= inf{∥arg s−arg u∥:u∈U j }

for j = 1, . . . , d. Obviously, the relation f = f1 + · · · + fd holds and each
f j/(1 −ℜs j ) is continuous on Td . These observations and the weak convergence
λnj ⇒ λ j then yield that∫

Td
f (s) dρn(s) =

d∑
j=1

∫
Td

f j (s)
1 − ℜs j

dλnj (s) n→∞
−−→

d∑
j=1

∫
Td

f j (s)
1 − ℜs j

dλ j (s)

=

∫
Td

f (s) dρ(s).

Therefore, we have completed the verification of item (iii) of Condition 4.1.
We next demonstrate the validity of the following identities for 1 ≤ j, ℓ ≤ d ,

(4-5) lim
ϵ→0

lim sup
n→∞

∫
Uϵ

(ℑs j )(ℑsℓ) dρn = lim
ϵ→0

lim inf
n→∞

∫
Uϵ

(ℑs j )(ℑsℓ) dρn,

which confirms that of Condition 4.1(iv). To continue, observe that the mapping
s 7→ (ℑs)2/(1 − ℜs) is continuous on T and at the origin, it takes value

(4-6) lim
arg s→0

(ℑs)2

1 − ℜs
= 2.

Then (4-2), (4-6), and the Hölder inequality imply that (ℑs j )(ℑsℓ) ∈ L1(ρ) for
j, ℓ = 1, . . . , d. In order to get results (4-3) and (4-5), we examine the following
differences which are related to them:

Dn(ϵ) =

∫
Td
(ℑs j )(ℑsℓ) dρn −

∫
Td
(ℑs j )(ℑsℓ) dρ −

∫
Uϵ

(ℑs j )(ℑsℓ) dρn,
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which further splits into the sum of

In1(ϵ) =

∫
Td\Uϵ

(ℑs j )(ℑsℓ) dρn −

∫
Td\Uϵ

(ℑs j )(ℑsℓ) dρ

and
I2(ϵ) = −

∫
Uϵ

(ℑs j )(ℑsℓ) dρ.

Apparently, we have limϵ→0 I2(ϵ) = 0 owing to (ℑs j )(ℑsℓ) ∈ L1(ρ). Next,
take an ϵ′

∈ (ϵ, 2ϵ) and an ϵ′′
∈

(
ϵ
2 , ϵ

)
with the attributes that ρ(∂Uϵ′) = 0 and

ρ(∂Uϵ′′) = 0, the presence of which are insured by the finiteness of the measure
1Td\Uϵ/2 ρ on Td . Then applying Proposition 2.1 to the established result ρn ⇒1 ρ

results in
lim

n→∞

∫
Td\Uϵ′

(ℑs j )(ℑsℓ) dρn =

∫
Td\Uϵ′

(ℑs j )(ℑsℓ) dρ.

On the other hand, working with the closed subset Fϵ = {s ∈ Td
: ϵ′′

≤ ∥arg s∥ ≤ ϵ′
}

and employing Proposition 2.1, we come to

(4-7)
(

lim sup
n→∞

∫
Fϵ

|ℑs j | |ℑsℓ| dρn

)2

≤ lim sup
n→∞

∫
Fϵ

(ℑs j )
2 dρn ·

∫
Fϵ

(ℑsℓ)
2 dρn

≤

∫
Fϵ

(ℑs j )
2 dρ ·

∫
Fϵ

(ℑsℓ)
2 dρ → 0

as ϵ →0. With the help of the facts Td
\Uϵ′′ = (Td

\Uϵ)∪(Uϵ\Uϵ′′) and Uϵ\Uϵ′′ ⊂ Fϵ ,
we are able to conclude that limϵ→0 lim supn→∞ |In1(ϵ)| = 0. Consequently, we
have shown limϵ→0 lim supn→∞ |Dn(ϵ)| = 0, which together with Condition 2.5(ii)
accounts for (4-3) and (4-5) with any indices j and ℓ.

If ϵ′ is also chosen so that λ j (∂Uϵ′) = 0, then we draw once again from (4-6)
that a j j = 2λ j ({1}) because

lim sup
n→∞

∫
Uϵ

|2(1 − ℜs j ) − (ℑs j )
2
| dρn ≤ lim sup

n→∞

∫
Uϵ′

∣∣∣∣2 −
(ℑs)2

1 − ℜs

∣∣∣∣ dλnj

=

∫
Uϵ′

∣∣∣∣2 −
(ℑs j )

2

1 − ℜs j

∣∣∣∣ dλ j ϵ→∞
−−→ .

This conclusion and (4-4) give (4-1). It is easy to see that the limits in (iv) of
Condition 4.1 are equal to ⟨Ap, p⟩ for any p ∈ Zd (in fact, for any p ∈ Rd as well)
with A = (a jℓ) and a jℓ the value of the limit given in (4-5). Also, it is clear that
the quadratic form Q extends to Rd and is positive therein. Then the positivity of
A ≥ 0 can be gained by that of Q on Rd .

Next, we elaborate that Condition 4.1 implies Condition 2.5. Define λ j ’s as
in (4-1). These measures thus obtained are all in MTd , and the arguments for this
go as follows. Select a sequence ϵm ↓ 0 as m → ∞ and ρ({∥arg s∥ = ϵm}) = 0
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for each m. Then (iv), along with Proposition 2.1, indicates that for any numbers
m < m′ both large enough, one has∫

{ϵm′<∥arg s∥<ϵm}

(ℑs j )
2 dρ(s) ≤ 1 + Q(ej ).

Thanks to monotone convergence theorem, (4-6), and the assumption ρ({1}) = 0,
one further gets that for m large enough, (1 − ℜs j )1Uϵm

∈ L1(ρ) for any j . This
proves that λ j (T

d) < ∞ and (ℑs j )
2
∈ L1(ρ) for any j .

After the previous preparations, we are in a position to justify the weak conver-
gence λnj ⇒ λ j . Given a continuous function f on Td , the difference∣∣∣∣∫

Td
f dλnj −

∫
Td

f dλ j

∣∣∣∣
is dominated by the sum of the following four terms:

Dn1(m) =

∫
Uϵm

| f (s) − f (1)| dλnj (s),

Dn2(m) = | f (1)|
∣∣λnj (Uϵm ) −

1
2 Q(ej )

∣∣,
D3(m) =

∫
Uϵm \{1}

| f | dλ j (s),

Dn4(m) =

∣∣∣∣∫
Td\Uϵm

f dλnj (s) −

∫
Td\Uϵm

f dλ j (s)
∣∣∣∣.

First, one can show that limm→∞ lim supn→∞ |Dn2(m)| = 0 by applying (4-6) and
item (iv) to

2λnj (Uϵm )−Q(ej )=

∫
Uϵm

[2(1−ℜs j )−(ℑs j )
2
] dρn(s)+

∫
Uϵm

(ℑs j )
2 dρn(s)−Q(ej ).

Similarly, one can show

lim
m→∞

lim sup
n→∞

|Dn1(m)| ≤
1
2 Q(ej ) · lim

m→∞
sup

s∈Uϵm

| f (s) − f (1)| = 0.

On the other hand, the finiteness of λ j (T
d) leads to

lim
m→∞

D3(m) ≤ ∥ f ∥∞ lim
m→∞

λ j (Uϵm \{1}) = 0.

That we have limn→∞ Dn4(m)=0 for all m evidently follows from Condition 4.1(iii)
and Proposition 2.1. Putting all these observations together illustrates λnj ⇒ λ j .

It remains to deal with (ii) of Condition 2.5, in which the integral is rewritten as∫
Uϵm

(ℑs j )(ℑsℓ) dρn +

∫
Td\Uϵm

(ℑs j )(ℑsℓ) dρn.



LIMIT THEOREMS AND WRAPPING TRANSFORMS 85

For any j, ℓ, taking the operations limm→∞ lim supn→∞ and limm→∞ lim infn→∞

of the first integral gives the same value 1
2 [Q(ej +eℓ)−Q(ej )−Q(eℓ)], while doing

the same thing to the second integral yields the value
∫

Td (ℑs j )(ℑsℓ) dρ because of
ρn ⇒1 ρ and (ℑs j )

2
+(ℑsℓ)

2
∈ L1(ρ). This finishes the proof of the proposition. □

An intuitive thought is that measures on Td obtained by rotating measures within
controllable angles maintain the same structural properties, such as Condition 4.1,
as the original ones. The statement and its rigorous proof are given below.

Proposition 4.3. Suppose that {νnk} ⊂ PTd is a triangular array for which the
measure ρn =

∑kn
k=1νnk satisfies Condition 4.1. If an array {θnk} ⊂ (−π, π]

d fulfills
the condition

(4-8) lim
n→∞

kn∑
k=1

(1 − cos θnk) = 0,

then Condition 4.1 is still applicable to measures ρ̃n( · ) =
∑kn

k=1 νnk( · eiθnk ), in
which ρ̃n ⇒1 ρ and ρn and ρ̃n define the same quadratic form in Condition 4.1(iv).

Proof. First of all, (4-8) reveals that limn maxk ∥θnk∥ = 0. We now argue that
ρ̃n ⇒1 ρ as well by using Proposition 2.1. To do so, pick a closed subset F ⊂ Td

\Ur

for some r > 0. Since ρ(F) < ∞, it follows that given any δ > 0, there exists a
closed set F ′

⊂ Td
\Ur/2 such that eiθnk F ⊂ F ′ for all sufficiently large n and for

all 1 ≤ k ≤ kn , and ρ(F ′
\F) < δ. Then

ρ̃n(F) =

∑
k

νnk(eiθnk F) ≤

∑
k

νnk(F ′) = ρn(F ′)

implies that lim supn→∞ ρ̃n(F) ≤ lim supn→∞ ρn(F ′) ≤ ρ(F ′) ≤ ρ(F) + δ. Con-
sequently, we arrive at the inequality lim supn→∞ ρ̃n(F) ≤ ρ(F). In the same vein,
one can show that lim infn→∞ ρ̃n(G) ≥ ρ(G) for any set G which is open and
bounded away from 1. Hence ρ̃n ⇒1 ρ by Proposition 2.1.

Next, we turn to demonstrate that both ρn and ρ̃n bring out the tantamount
quantities in (4-5), which asserts that the quadratic form in (iv) output by them is
unchanged on Zd . Any index n considered below is always sufficiently large. In
the case j = ℓ, we have the estimate∫

Uϵ

(ℑs j )
2 dρ̃n(s) =

kn∑
k=1

∫
eiθnk Uϵ

(ℑ(e−iθnk j s j ))
2 dνnk(s)

≤

kn∑
k=1

∫
U2ϵ

(ℑ(e−iθnk j s j ))
2 dνnk(s),

where we express θnk = (θnk1, . . . , θnkd). The inequality

(4-9) (ℑ(e−iθnk j s j ))
2
≤ (ℑs j )

2
+ 2|sin θnk j | |ℑs j | + sin2(θnk j )
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will help us to continue with the arguments. Consideration given to the first term
on the right-hand side of (4-9) gives

lim
ϵ→0

lim sup
n→∞

kn∑
k=1

∫
U2ϵ

(ℑs j )
2 dνnk(s) = a j j

by the hypothesis, while analyzing the second term results in

kn∑
k=1

|sin θnk j | ·

∫
U2ϵ

|ℑs j | dνnk(s) ≤

( kn∑
k=1

sin2 θnk j

)1/2(∫
U2ϵ

(ℑs j )
2 dρn(s)

)1/2

by the Cauchy–Schwarz inequality. The simple fact sin2 x ≤ 2(1− cos x) for x ∈ R

and the assumption (4-8) immediately yield that

lim
ϵ→0

lim sup
n→∞

kn∑
k=1

∫
U2ϵ

|sin θnk j | |ℑs j | dνnk(s) = 0

and

lim
ϵ→0

lim sup
n→∞

kn∑
k=1

∫
U2ϵ

sin2 θnk j dνnk(s) = 0.

These estimates then lead to limϵ→0 lim supn→∞

∫
Uϵ

(ℑs j )
2 dρ̃n(s) ≤ a j j . Employ-

ing the opposite inclusion Uϵ/2 ⊂ e−iθnk Uϵ and inequality

(ℑ(e−iθnk j s j ))
2
≥ (ℑs j )

2
− 2(1 − cos θnk j ) − 2|sin θnk j | |ℑs j | − sin2 θnk j

allows us to obtain limϵ→0 lim infn→∞

∫
Uϵ

(ℑs j )
2 dρn(s) ≥ a j j .

Now we deal with the situation j ̸= ℓ in (4-5). After careful consideration of all
available information, the focus is only needed on the summand

kn∑
k=1

∫
eiθnk Uϵ

(ℑs j )(ℑsℓ) dνnk(s)

and justifying that

(4-10) lim
ϵ→0

lim sup
n→∞

kn∑
k=1

∫
(eiθnk Uϵ)△Uϵ

|ℑs j | |ℑsℓ| dνnk(s) = 0,

where △ denotes the operation of symmetric difference on sets. Using the fact
(eiθnk Uϵ)△Uϵ ⊂

{
ϵ
2 ≤ ∥arg s∥ ≤ 2ϵ

}
and mimicking the proof of (4-7) allow us to

get (4-10) done. □

Recall from (2-1) that the push-forward measure τW −1
∈M 1

Td of a given τ ∈M 0
Rd

via the wrapping map W (x) = ei x from Rd to Td is defined as

(4-11) (τW −1)(B) = τ({x ∈ Rd
: ei x

∈ B}), B ∈ BTd .
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A useful and frequently used result regarding W is the change-of-variables formula
stating that a Borel function f on Td belongs to L1(τW −1) if and only if the
function x 7→ f (ei x) lies in L1(τ ), and the equation

(4-12)
∫

Td
f (s) d(τW −1)(s) =

∫
Rd

f (ei x) dτ(x)

holds in either case. In the following, we will translate conditions introduced in
Section 2D accordingly via the wrapping map W .

Proposition 4.4. Assume that {τn} and τ are in M 0
Rd satisfying Condition 2.3 (or

Condition 2.2). Then Condition 4.1, as well as Condition 2.5, applies to ρn = τnW −1

and ρ = 1Td\{1}τW −1. Moreover, τn and ρn determine the same quadratic form
on Zd , in particular, the same matrix in (IV) and (iv), respectively.

Proof. Suppose that Condition 2.3 holds for τn and τ , and let A = (a jℓ) represent
the matrix produced by these measures in (IV). According to Proposition 4.2, we
shall only elaborate that Condition 4.1 is applicable to ρn and ρ.

That ρn ⇒1 ρ is clearly valid according to the continuous mapping theorem,
Proposition 2.1. It remains to argue that in Condition 4.1(iv), ρn also outputs A.
The simple observation that ei x

∈ Uϵ if and only if x belongs to the set

(4-13) Ṽϵ =

⋃
p∈Zd

{x + 2π p : x ∈ Vϵ}

and formula (4-12) help us to establish that for j, ℓ = 1, . . . , d ,∫
Uϵ

(ℑs j )(ℑsℓ) dρn(s) =

∫
Td

1Uϵ
(s)(ℑs j )(ℑsℓ) dρn(s)

=

∫
Rd

1Uϵ
(ei x)(ℑei x j )(ℑei xℓ) dτn(x)

=

∫
Ṽϵ

sin(x j ) sin(xℓ) dτn(x).

Observe next that we have Ṽϵ\Vϵ =
⋃d

m=1 Dϵm , where Dϵm = Ṽϵ ∩ {|xm | ≥ π},
provided that ϵ < π . If we temporarily impose the requirement σm(∂Dϵm) = 0 for
some m ∈ {1, . . . , d}, then the weak convergence σnm ⇒ σm implies that

lim sup
n→∞

∫
Dϵm

|sin(x j ) sin(xℓ)| dτn = lim sup
n→∞

∫
Dϵm

|sin(x j ) sin(xℓ)| ·
1 + x2

m

x2
m

dσnm

=

∫
Dϵm

|sin(x j ) sin(xℓ)| ·
1 + x2

m

x2
m

dσm ϵ→∞
−−→ 0.
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This, along with facts x − sin x = o(|x |
2) as |x | → 0 and x2

j ∈ L1(σ j ), leads to

lim
ϵ→0

lim sup
n→∞

∫
Uϵ

(ℑs j )(ℑsℓ) dρn(s) = lim
ϵ→0

lim sup
n→∞

∫
Vϵ

sin(x j ) sin(xℓ) dτn(x)

= lim
ϵ→0

lim sup
n→∞

∫
Vϵ

x j xℓ dτn(x).

The same arguments also elaborate the identity

lim
ϵ→0

lim inf
n→∞

∫
Uϵ

(ℑs j )(ℑsℓ) dρn(s) = lim
ϵ→0

lim inf
n→∞

∫
Vϵ

x j xℓ dτn(x).

Apparently, the selection of ϵ does not vary the validity of these identities, and so
we have established that ρn generates the matrix A in (iv) as well. □

Measures in M 0
Rd can be wrapped either clockwise or counterclockwise (see

equation (4-11)) in all variables, and consequences, such as Proposition 4.4, are not
affected at all by this slight change. As a matter of fact, it is also the case when
one wraps some variables counterclockwise and others clockwise. Without loss
of generality, we shall use the simplest circumstance, the 2-dimensional opposite
wrapping map W ⋆

2 : R2
→ T2, (x1, x2) 7→ (ei x1, e−i x2), to illustrate these features.

The following result is merely an easy consequence of the continuous mapping the-
orem, the relations (τ (W ⋆

2 )−1)(B) = (τW −1
2 )(B⋆) = (τW −1

2 )⋆(B) for any B ∈ BT2 ,
and Proposition 4.4.

Proposition 4.5. If {ρn} and ρ in M 1
T2 fulfill Condition 4.1, then

(1) ρ⋆
n ⇒1 ρ⋆, and

(2) for any p = (p1, p2) ∈ Z2, denoting by p⋆
= (p1, −p2), we have

lim
ϵ→0

lim sup
n→∞

∫
Uϵ

⟨ p, ℑs⟩2 dρ⋆
n(s) = Q( p⋆) = lim

ϵ→0
lim inf
n→∞

∫
Uϵ

⟨ p, ℑs⟩2 dρ⋆
n(s).

Particularly, if {τn} and τ in M 0
R2 satisfy Condition 2.3 (or Condition 2.2), then

statements (1) and (2) above apply to ρ⋆
n = τn(W ⋆

2 )−1 and ρ⋆
= τ(W ⋆

2 )−1.

We add one remark on item (2) of the preceding proposition: if Q( p) = ⟨Ap, p⟩,
then Q( p⋆) = ⟨Aop p, p⟩, where the (i, j)-entry of Aop is (−1)i+ j Ai j .

5. Limit theorems and bi-free multiplicative Lévy triplet

5A. Bi-free multiplicative Lévy–Khintchine representation. Thanks to Proposi-
tion 4.2, one can correlate the quantity L12 and measures λ j given in the formu-
las (2-16) with the matrix A and measure ρ ∈ M 1

T2 determined by (4-1), (4-2),
and (4-3). Therefore, instead of working with the parametrization (γ , λ1, λ2, L12)
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for measures in ID(⊠⊠)∩ P×

T2 , one may take another parametrization (γ , A, ρ)

(with the same γ ) having the following properties with d = 2:

(5-1) γ ∈ Td , A is a positive semidefinite d × d symmetric matrix, and
ρ is a positive measure on Td so that ρ({1}) = 0 and ∥1 − ℜs∥ ∈ L1(ρ).

We shall refer to (γ , A, ρ) as the bi-free multiplicative Lévy triplet of the mea-
sure in ID(⊠⊠) ∩ P×

T2 having (bi-)free 6-transforms presented in (2-16), and
signify this measure by ν

(γ ,A,ρ)

⊠⊠ to comply with the correspondence. This triplet
plays the role of the classical multiplicative Lévy triplet. We will clarify this in
more details in Corollary 5.3, where limit theorems between classical and bi-free
multiplicative convolutions are examined and in Section 6, where the commutativity
of diagram (1-5) is verified.

A measure ν belongs to ID(⊠⊠op)∩P×

T2 if and only if ν⋆
∈ ID(⊠⊠)∩P×

T2 by
(2-3) and Theorem 3.12. Thus, we shall denote by ν

(γ ,A,ρ)

⊠⊠op the measure ν satisfying
ν⋆

= ν
(γ ⋆,Aop,ρ⋆)

⊠⊠ and refer to (γ , A, ρ) as its opposite bi-free multiplicative Lévy
triplet. Passing to analytic transforms, we have

6op
ν (z, w) = 6

ν
(γ ⋆,Aop,ρ⋆)

⊠⊠
(z, 1/w) for (z, w) ∈ D × (T ∪ {0})c.

In terms of notations introduced above, we reformulate the basic limit theorem
[13, Theorem 3.4] on the bi-free multiplicative convolution, including statements
for ⊠⊠op.

Theorem 5.1. Given an infinitesimal array {νnk} ⊂ P×

T2 and a sequence {ξ n} ⊂ T2,
define γ n as in (2-13). The following are equivalent.

(1) The sequence

(5-2) δξn ⊠⊠ νn1 ⊠⊠ · · · ⊠⊠ νnk

converges weakly to some ν⊠⊠ ∈ P×

T2 .

(2) The sequence

(5-3) δξn ⊠⊠ opνn1 ⊠⊠ op
· · · ⊠⊠ opνnk

converges weakly to some ν⊠⊠op ∈ P×

T2 .

(3) The measure ρn =
∑kn

k=1 ν̊nk satisfies Condition 4.1 (or Condition 2.5) with
d = 2 and limn γ n = γ exists.

If (1)–(3) hold, then ν⊠⊠ = ν
(γ ,A,ρ)

⊠⊠ and (ν⊠⊠op)⋆ = ν
(γ ⋆,Aop,ρ⋆)

⊠⊠ , where ρ and A are
as in Condition 4.1 and Proposition 4.2, respectively.

Proof. We only prove (2)⇔(3). With {bnk} defined in (2-12), the equality

exp
[
i
∫

Uθ

(arg s) dν⋆
nk(s)

]
= b⋆

nk
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shows that (ν⋆
nk)

◦(B) = ν⋆
nk(b⋆

nk B) = νnk(bnk B⋆) = ν̊nk(B⋆) = (ν̊nk)
⋆(B) for any

Borel set B on T2. Since the operations ⋆ and ◦ acting on νnk are interchangeable
in order, we adopt the notation ν̊⋆

nk instead of (ν⋆
nk)

◦
= (ν̊nk)

⋆ if no confusions arise.
Item (2) holds if and only if

δξ ⋆
n
⊠⊠ ν⋆

n1 ⊠⊠ · · · ⊠⊠ ν⋆
nk = (δξn ⊠⊠ opνn1 ⊠⊠ op

· · · ⊠⊠ opνnk)
⋆
⇒ (ν⊠⊠op)⋆

according to (2-3). This happens if and only if Condition 4.1 applies to the measure∑n
k=1ν̊

⋆
nk =

(∑n
k=1ν̊nk

)⋆ and the vector

γ ⋆
n = ξ ⋆

n exp
[
i

kn∑
k=1

(
arg b⋆

nk +

∫
T2
(ℑs) d ν̊⋆

nk(s)
)]

has a limit by Theorem 2.4. Then Proposition 4.5 proves the equivalence (2)⇔(3)
and the last assertion. □

Recall from [16] that a measure ν in ID(⊛) has no nontrivial ⊛-idempotent
factor if and only if its characteristic function takes the form

ν̂( p) = γ p exp
(
−

1
2⟨Ap, p⟩ +

∫
Td
(s p

− 1 − i⟨ p, ℑs⟩) dρ(s)
)

, p ∈ Zd

for certain triplet (γ , A, ρ) fulfilling the conditions in (5-1). We shall write ν
(γ ,A,ρ)
⊛

for this measure, and refer to ρ and (γ , A, ρ) as its multiplicative Lévy measure
and multiplicative Lévy triplet, respectively. A known phenomenon is that a ⊛-
infinitely divisible distribution on Td has unique γ and A, but may have various
Lévy measures. For example, it was pointed out in [6] that when d = 1, one has
ν

(1,0,πδi )
⊛ = ν

(1,0,πδ−i )
⊛ . The uniqueness of multiplicative Lévy measures will be more

systematically studied in [10]. This observation leads to the following definition.

Definition 5.2. Let ρ be a multiplicative Lévy measure on Td . The symbol L(ρ)

stands for the collection of those measures serving as multiplicative Lévy measures
for ν

(1,0,ρ)
⊛ .

The following corollary, derived from Theorem 2.4 and [10], supplies the link
between classical and bi-free limit theorems on the bi-torus. The attentive reader
can also notice that the hypothesis L(ρ) = {ρ} is redundant in the implication
(2) ⇒ (1).

Corollary 5.3. Let {νnk} ⊂ PT2 be infinitesimal, {ξ n} ⊂ T2, and (γ , A, ρ) be
a multiplicative Lévy triplet such that L(ρ) = {ρ}. With the notations in (2-13)
and (2-15) for d = 2, the following statements are equivalent:

(1) δξn ⊛ νn1 ⊛ · · ·⊛ νnkn ⇒ ν
(γ ,A,ρ)
⊛ .

(2) δξn ⊠⊠ νn1 ⊠⊠ · · · ⊠⊠ νnkn ⇒ ν
(γ ,A,ρ)

⊠⊠ .
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(3) limn→∞ γ n = γ , ρn ⇒1 ρ, and

lim
ϵ→0

lim sup
n→∞

∫
Uϵ

⟨ p, ℑs⟩2 dρn(s) = ⟨Ap, p⟩

= lim
ϵ→0

lim inf
n→∞

∫
Uϵ

⟨ p, ℑs⟩2 dρn(s), p ∈ Z2.

The one-dimensional multiplicative limit theorem, which was pointed out in the
remark to [23, Corollary 4.2], is a consequence of Corollary 5.3, e.g., by considering
product measures.

Corollary 5.4. Let {νnk} ⊂ PT be infinitesimal, {ξn} ⊂ T, and (γ, a, ρ) be a
multiplicative Lévy triplet such that L(ρ) = {ρ}. With the notations in (2-13)
and (2-15) for d = 1, the following statements are equivalent:

(1) δξn ⊛ νn1 ⊛ · · ·⊛ νnkn ⇒ ν
(γ,a,ρ)
⊛ .

(2) δξn ⊠ νn1 ⊠ · · ·⊠ νnkn ⇒ ν
(γ,a,ρ)

⊠ .

(3) limn→∞ γn = γ , ρn ⇒1 ρ, and

lim
ϵ→0

lim sup
n→∞

∫
Uϵ

(ℑs)2dρn(s) = a = lim
ϵ→0

lim inf
n→∞

∫
Uϵ

(ℑs)2dρn(s).

Apparently, the nonuniqueness of Lévy measures is the exclusive obstruction
for reaching the equivalence of limit theorems, thus complementing the work of
Chistyakov and Götze [9, Theorems 2.3 and 2.4].

The goal of this section is to provide an alternative description for the 6-transform
of a measure in ID(⊠⊠) ∩ P×

T2 in terms of its bi-free multiplicative Lévy triplets.
To achieve this, we need some basics. For any p ∈ N, the function

Kp(s) =
s p

− 1 − i pℑs
1 − ℜs

is continuous on T and equal to −p2 at s = 1.

Lemma 5.5. For any p ∈ N, we have ∥ℑKp∥∞ ≤ p3 and
∫ π

−π
Kp(eiθ ) dθ = −2pπ .

Proof. In the following arguments, we shall make use of the basic formula:

(5-4)
1 − cos(pθ)

1 − cos θ
= ei(1−p)θ

p−1∑
j,k=0

ei( j+k)θ .

Clearly, we have ℑK1 ≡ 0. If ∥ℑKp∥∞ ≤ p3 for some p ≥ 2, then for s ̸= 1, the
inequality |(1 − ℜs p)/(1 − ℜs)| ≤ p2 following from (5-4) implies that

|ℑKp+1(s)| =

∣∣∣∣ℑs p
− ℑKp(s) +

1 − ℜs p

1 − ℜs
· ℑs

∣∣∣∣ ≤ 1 + p3
+ p2

≤ (p + 1)3.
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By induction, this finishes the proof of the first assertion. To prove the second
assertion, it suffices to show

∫ π

−π
(1 − cos(pθ))/(1 − cos θ) dθ = 2pπ , which can

be easily obtained by using (5-4) again. □

Fix a measure ν ∈ P×

T2 ∩ ID(⊠⊠), and suppose that its (bi-)free 6-transforms
are given as in (2-16). Due to the integral representations, both u1 and u2 are
analytic in � = (C\T) ∪ {∞} and u is analytic in �2. Hence the function

Uν(z, w) =
zw

1 − zw
u(z, w)−

z
1 − z

u1(z) −
w

1 − w
u2(w)

is analytic in �2. If ν ∈ ID(⊠⊠op) ∩ P×

T2 , then we define

U op
ν (z, w) = Uν⋆(z, 1/w),

which is also an analytic function in �2.
When ν ∈ID(⊠⊠op)∩P×

T2 , one can obtain an equivalent formula for Uν in terms
of the bi-free multiplicative Lévy triplet, which we call the bi-free multiplicative
Lévy–Khintchine representation. Note that we acquire the following proof with the
help of limit theorems, in spite of the algebraic nature of the statement. Also, it is
simpler even though there exists an algebraic proof.

Theorem 5.6. Letting ν = ν
(γ ,A,ρ)

⊠⊠ , we have

(5-5) Uν(z, w) =
i z

1 − z
arg γ1 +

iw
1 − w

arg γ2 − Nν(z, w)+ Pν(z, w),

where

Nν(z, w) =
a11

2
·

z(1 + z)
(1 − z)2 +

a12 zw
(1 − z)(1 − w)

+
a22

2
·
w(1 + w)

(1 − w)2

and

Pν(z, w) = (1 − z)(1 − w)

∞∑
p=0

[∫
T2
(s p

− 1 − i⟨ p, ℑs⟩) dρ(s)
]

z p1w p2 .

Further, letting ν̃ = ν
(γ ,A,ρ)

⊠⊠op , we have U op
ν̃

(z, w) = U
ν

(γ ⋆,Aop,ρ⋆)

⊠⊠
(z, 1/w).

Proof. First of all, using Remark 2.6 and the function

f (z, w, s) =
zw(1 − s1)(1 − s2)

(1 − zs1)(1 − ws2)
−

z(1 + zs1)(1 − ℜs1)

(1 − z)(1 − zs1)
−

w(1 + ws2)(1 − ℜs2)

(1 − w)(1 − ws2)
,

one can rewrite Uν as

Uν(z, w) =
i z

1 − z
arg γ1 +

iw
1 − w

arg γ2 + lim
n→∞

∫
T2

f (z, w, s) dρn(s).
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Below, r > 0 is taken so that ρ(∂Ur ) = 0. The continuity of s 7→ f (z, w, s)
on T2 for any fixed (z, w) ∈ D2 and Proposition 2.1 imply that

lim
n→∞

∫
T2\Ur

f (z, w, s) dρn =

∫
T2\Ur

f (z, w, s) dρ.

Using dominated convergence theorem, we arrive at

lim
r→0

lim
n→∞

∫
T2\Ur

f (z, w, s) dρn =

∫
T2

f (z, w, s) dρ.

On the other hand, thanks to weak convergence λnj = (1−ℜs j )ρn ⇒λ j , j = 1, 2,
we see that for ξ ∈ D,

lim sup
n→∞

∣∣∣∣∫
Ur

1 + ξs j

1 − ξs j
(1 − ℜs j ) dρn −

a j j

2
·

1 + ξ

1 − ξ

∣∣∣∣
≤ lim sup

n→∞

(∣∣λnj (Ur ) −
1
2a j j

∣∣ ∣∣∣∣1 + ξ

1 − ξ

∣∣∣∣ + ∫
Ur

∣∣∣∣1 + ξs j

1 − ξs j
−

1 + ξ

1 − ξ

∣∣∣∣ dλnj

)
≤

2
(1 − |ξ |)2 lim sup

n→∞

(∣∣λnj (Ur ) −
1
2a j j

∣∣ +∫
Ur

|1 − s j | dλnj

)
r→∞
−−→ 0.

Similarly, one can show that

lim
r→0

lim
n→∞

∫
T2\Ur

(1 − s1)(1 − s2)

(1 − zs1)(1 − ws2)
dρn =

∫
T2

(1 − s1)(1 − s2)

(1 − zs1)(1 − ws2)
dρ

and
lim
r→0

lim sup
n→∞

∣∣∣∣∫
Ur

(1 − s1)(1 − s2)

(1 − zs1)(1 − ws2)
dρn +

a12

(1 − z)(1 − w)

∣∣∣∣ = 0.

Next, we shall make use of the equation (2-17). After some algebraic manipulations,
we come to the result

lim
n→∞

∫
T2

f (z, w, s) dρn(s) = −N (z, w)+ (1 − z)(1 − w)

∫
T2

f̃ (z, w, s) dρ(s),

where

f̃ (z, w, s)
=

1
(1 − zs1)(1 − ws2)

−
1

(1 − z)(1 − w)
−

i zℑs1

(1 − z)2(1 − w)
−

iwℑs2

(1 − z)(1 − w)2 .

Lastly, the use of the power series expansion

ξ j (1 − ξ1)
−2(1 − ξ2)

−1
=

∑
p≥0

p j ξ
p1

1 ξ
p2

2 for ξ1, ξ2 ∈ D,

allows us to get∫
T2

f̃ (z, w, s) dρ(s) =

∫
T2

∑
p≥0

(s p
− 1 − i⟨ p, ℑs⟩) z p1w p2 dρ(s).
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The operations of integration and summation performed above are interchangeable
due to Lemma 5.5. Indeed, one can utilize the uniform convergence of the summands
to obtain∫ ∑

p≥0

(s pj
j − 1 − i p jℑs j ) z p1w p2 dρ =

∑
p≥0

∫
Kpj (s) dλ j z p1w p2

=

∑
p≥0

∫
(s pj

j − 1 − i p jℑs j ) dρ z p1w p2

and similarly∫ ∑
p≥0

(s p1
1 − 1)(s p2

2 − 1) z p1w p2 dρ =

∑
p≥0

∫
(s p1

1 − 1)(s p2
2 − 1) dρ z p1w p2 .

Putting all these findings together yields the desired result.
According to the definition of ν̃, which is characterized by (ν̃)⋆ = ν

(γ ⋆,Aop,ρ⋆)

⊠⊠ ,
the last assertion follows from the definition of U op

ν . □

Performing the power series expansion to Nν(z, w) in Theorem 5.6 further yields
that

Uν(z, w)

(1 − z)(1 − w)

=

∞∑
p=0

[
i⟨ p, arg γ ⟩ −

1
2⟨Ap, p⟩ +

∫
T2
(s p

− 1 − i⟨ p, ℑs⟩) dρ(s)
]

z p1w p2,

which offers the generating series for the exponent of the characteristic function

(5-6) ν̂( p) = γ p exp
[
−

1
2⟨Ap, p⟩ +

∫
T2
(s p

− 1 − i⟨ p, ℑs⟩) dρ(s)
]
, p ∈ Z2

of a measure in ID(T2,⊛) ∩ P×

T2 (cf. Corollary 5.3.)

5B. Limit theorems via wrapping transformations. We next present the limit
theorems through the wrapping transformations.

Theorem 5.7. Let (v, A, τ ) be a triplet satisfying (2-10) with d = 2, and let
{µnk} ⊂ PR2 be an infinitesimal triangular array and {vn} a sequence of vectors
in R2. If the sequence in (1-2) converges weakly to µ

(v,A,τ )
⊞⊞ , then the sequences

in (5-2) and (5-3) generated by νnk = µnk W −1 and ξ n = eivn converge weakly
to ν

(γ ,A,ρ)

⊠⊠ and ν
(γ ,A,ρ)

⊠⊠op , respectively, where

(5-7) ρ = 1T2\{1}(τW −1)
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and

(5-8) γ = exp
[
iv + i

∫
R2

(
sin(x) −

x
1 + ∥x∥2

)
dτ(x)

]
.

Proof. Before carrying out the main proof, let us record some properties instantly
inferred from the hypotheses for the later utilization. Because the index n goes to
infinity ultimately, it is always big enough whenever mentioned in the proof.

Firstly, observe that νnk belongs to P×

T2 and the vector

(5-9) θnk =

∑
p∈Zd\{0}

∫
Vθ

x dµnk(x + 2π p)

satisfies limn→∞ maxk∥θnk∥ = 0 by the infinitesimality of {µnk}. Secondly, follow-
ing the notations in (2-6) and (4-13), an application of (4-12) gives

vnk + θnk =

∫
Rd

1{ei x :x∈Ṽθ }
(ei x) arg(ei x) dµnk(x)

=

∫
Td

1{s:∥arg s∥<θ}(s) arg(s) dνnk(s) =

∫
Uθ

arg(s) dνnk(s).

This and equation (2-12) provide us with the relations arg bnk = vnk + θnk and
d ν̊nk(s) = d(µ̊nk W −1)(eiθnk s) as for any B ∈ BT2 , we have

(µ̊nk W −1)(B) = µnk({ei x
∈ eivnk B}) = νnk(eivnk B) = ν̊nk(e−θnk B).

Except for the beforehand mentioned results, the array {θnk} in (5-9) also fulfills
the condition in (4-8), which will play a dominant role in our arguments. Its proof,
provided below, is based on the convergence τn =

∑
k µ̊nk ⇒0 τ and some estimates.

For convenience, denote θnk = (θnk1, θnk2) and vnk = (vnk1, vnk2), and consider the
positive Borel measure ϱnk( · ) =

∑
p∈Zd\{0}

µ̊nk(·+2π p)1V2θ
on the closure of V2θ .

The infinitesimality of {µ̊nk} indicates that limn→∞ max1≤k≤kn ϱnk(V2θ ) = 0 and
the assumption θ ∈ (0, 1) in (2-5) shows that

ϱnk(Vθ − vnk) ≤

∑
p∈Zd\{0}

µ̊nk(V2θ + 2π p) = µ̊nk(Ṽ2θ\V2θ ).

This, together with Cauchy–Schwarz inequality, enables us to obtain

kn∑
k=1

θ2
nk j =

kn∑
k=1

(∫
Vθ−vnk

(x j + vnk j ) dϱnk(x)

)2

≤

kn∑
k=1

ϱnk(Vθ − vnk)

∫
Vθ−vnk

(x j + vnk j )
2 dϱnk(x)

≤ θ2τn(Ṽ2θ\V2θ ) max
1≤k≤kn

ϱnk(V2θ ).
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Since Ṽ2θ\V2θ is bounded away from 1 ∈ T2, the relation τn ⇒0 τ leads us to
lim supn τn(Ṽ2θ\V2θ ) < ∞. Thus, we are able to conclude that

∑kn
k=1 θ2

nk j → 0 as
n → ∞, yielding (4-8) by the inequality 1 − cos x ≤

x2

2 on R.
After these preparations, we are ready to present the proof of the theorem. Since

(1-2) converges weakly, τn meets Condition 2.3, and thus ρn = τnW −1 satisfies
Condition 2.5 according to Proposition 4.4. Then Proposition 4.3 consequently
yields that Condition 2.5 also applies to ρ̃n =

∑kn
k=1ν̊nk .

To finish the proof, we just need to verify (2-14) due to Theorem 5.1. The
existence of the limit in (2-8) implies that the vector

En = i
[
vn +

kn∑
k=1

(vnk +

∫
sin(x) dµ̊nk)

]
also has a limit when n → ∞. Indeed, the limit −i limn→∞ En disintegrates into
the sum of that in (2-8) and

lim
n→∞

kn∑
k=1

∫
R2

(
sin(x) −

x
1 + ∥x∥2

)
dµ̊nk(x) =

∫
R2

(
sin(x) −

x
1 + ∥x∥2

)
dτ(x).

The validity of the equality displayed above is just because of that the integrand is
O(∥x∥

3) as ∥x∥ → 0 and the function min{1, ∥x∥
2
} is τ -integrable.

In order to go further, we analyze the difference(
arg bnk +

∫
T2

ℑs d ν̊nk(s)
)

−

(
vnk +

∫
R2

sin(x) dµ̊nk(x)

)
,

which, along with the help of equation
∫

sin(x) dµ̊nk =
∫
ℑ(eiθnk s) d ν̊nk , becomes

(5-10) (θnk −sin θnk)+sin(θnk)

∫
T2
(1−ℜs) d ν̊nk(s)+(1−cos θnk)

∫
T2

ℑs d ν̊nk(s).

Using the elementary inequality

(5-11) |x − sin x | ≤ 1 − cos x, |x | ≤
π

4
,

we see from the established result that
kn∑

k=1

|θnk j − sin θnk j | ≤

kn∑
k=1

(1 − cos θnk j ) → 0 as n → ∞.

For the second term in (5-10), λnj = (1 − ℜs j )ρ̃n ⇒ λ j ∈ MT2 yields that

kn∑
k=1

∣∣∣∣sin(θnk j )

∫
T2
(1 − ℜs j ) d ν̊nk(s)

∣∣∣∣ ≤

(
max

1≤k≤kn
|sin θnk j |

)
λnj (T

2) n→∞
−−→ 0.
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As for the last term, we then have

kn∑
k=1

(1 − cos θnk j )

∣∣∣∣∫
T2
(ℑs j ) d ν̊nk(s)

∣∣∣∣ ≤

kn∑
k=1

(1 − cos θnk j ) n→∞
−−→ 0.

Consequently, we have arrived at that the limit in (2-14) exists and equals the vector
in (5-8). □

The employment of the wrapping limit theorem with vn = 0 gives the following
identically distributed limit theorem, which is the bi-free version of [6, Theorem 3.9].

Corollary 5.8. Let (v, A, τ ) be a triplet satisfying (2-10) with d = 2, {µn} a
sequence in PR2 , and {kn} a strictly increasing sequence in N. If µ

⊞⊞kn
n ⇒ µ

(v,A,τ )
⊞⊞ ,

then (µnW −1)⊠⊠kn ⇒ ν
(γ ,A,ρ)

⊠⊠ and (µnW −1)⊠⊠opkn ⇒ ν
(γ ,A,ρ)

⊠⊠op , where γ and ρ are
as in Theorem 5.7.

Example 5.9. Given a 2 × 2 real matrix A = (ai j ) ≥ 0 with a11 ≥ a22 > 0,
consider planar probability measures µn =

1
4(δαn + δ−αn + δβn + δ−βn ), where

αn = (
√

2 det A, 0)/
√

na22 and βn = (
√

2a12,
√

2a22)/
√

na22. Clearly, µ̊n = µn

for all n and τn := nµn ⇒0 0 as n → ∞. Furthermore, for any θ > 0, if n is
large enough, then

∫
Vθ

x2
j dτn = a j j and

∫
Vθ

x1x2 dτn = a12. Hence the identically
distributed limit theorem introduced in Section 2D indicates that µ⊞⊞n

n converges
weakly to µ

(0,A,0)
⊞⊞ , which is known as the bi-free Gaussian distribution with bi-free

Lévy triplet (0, A, 0). For the measures

νn = µnW −1
=

1
4(δeiαn + δe−iαn + δeiβn + δe−iβn ) ∈ PT2,

a direct verification or an application of Corollary 5.8 shows that ν⊠⊠n
n ⇒ν

(1,A,0)
⊠⊠ and

ν⊠⊠opn
n ⇒ ν

(1,A,0)

⊠⊠op . Analogically, ν⊠⊠ = ν
(1,A,0)
⊠⊠ is called the bi-free multiplicative

Gaussian distribution with Lévy triplet (1, A, 0). Note that the component Pν⊠⊠ in
the representation (5-5), called the bi-free multiplicative compound Poisson part
(see Example 5.10), vanishes.

Example 5.10. Given any r > 0 and µ ∈ PR2 , let µn = (1− r/n) δ0 + r/nµ, τn =

nµn , and τ = r1R2\{0}µ. A straightforward verification reveals that Condition 2.3
applies to τn , τ , and Q ≡ 0. Hence [11, Theorem 5.6] shows that µ⊞⊞n

n converges
weakly to the so-called bi-free compound Poisson distribution µ

(v,0,τ )
⊞⊞ with rate r

and jump distribution µ, where v = r
∫

x(1 +∥x∥
2)−1dµ. Applying Corollary 5.8

shows that (
(1 − r/n) δ1 + r/n(µW −1)

)⊠⊠n
⇒ ν

(eiu,0,ρ)
⊠⊠ ,

as well as (µnW −1)⊠⊠opn
⇒ ν

(eiu,0,ρ)

⊠⊠op , where

ρ = r1T2\{1}(µW −1) and u = r
∫

sin x dµ.
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Analogous to the planar case, we refer to measures of the form ν⊠⊠ = ν
(eiu,0,rν)
⊠⊠ ,

where r > 0, ν ∈ PT2 with ν({1}) = 0, and u = r
∫
ℑsdν as the bi-free multiplicative

compound Poisson distribution with rate r and jump distribution ν. In (5-5), we
have the bi-free Gaussian component Nν⊠⊠ ≡ 0.

5C. Limit theorems for identically distributed case. The following is a special
case of the limit theorem in the context of identically distributed random vectors on
the bi-torus.

Proposition 5.11. Let ρn =knνn , where {νn}⊂P×

T2 and {kn}⊂N with k1 <k2 <. . . .
If ρn satisfies Condition 4.1 (or Condition 2.5) and the limit

v = lim
n→∞

∫
T2

ℑξ dρn(ξ)

exists, then ν
⊠⊠kn
n ⇒ ν

(eiv,A,ρ)
⊠⊠ and ν

⊠⊠opkn
n ⇒ ν

(eiv,A,ρ)

⊠⊠op , where ρ and A are as in
Condition 4.1 and Proposition 4.2, respectively.

Proof. Let h : T2
→ (−π, π]

2 be the inverse of the wrapping map W (x) = ei x

restricted to (−π, π]
2, namely, h(ξ) = arg ξ . Further let µn = νnh−1

∈ PR2 and
τ = ρh−1

∈ M 0
R2 , whose supports are all contained in [−π, π]

2. Then νn = µnW −1,
and τn = ρn h−1

⇒0 τ by the continuous mapping theorem. Also, (4-2) and (4-12)
show that min{1, ∥x∥

2
} ∈ L1(τ ). One can utilize (5-11) to justify

lim
ϵ→0

lim inf
n→∞

∫
Uϵ

(arg s j )(arg sℓ) dρn(s) = lim
ϵ→0

lim sup
n→∞

∫
Uϵ

(arg s j )(arg sℓ) dρn(s).

On the other hand, one has the equation
∫

Vϵ
x j xℓ dτn =

∫
Uϵ

(arg s j )(arg sℓ) dρn

by the change-of-variables formula (4-12), which implies that τn satisfies (IV) of
Condition 2.3. Ultimately, observe that∫

R2

x
1 + ∥x∥2 dτn(x) =

∫
T2

ℑs dρn(s) +

∫
R2

(
x

1 + ∥x∥2 − sin(x)

)
dτn(x)

has a limit when n → ∞ owing to x/(1 + ∥x∥
2) − sin(x) = O(∥x∥

3) as ∥x∥ → 0
and min{1, ∥x∥

2
} ∈ L1(τ ). Thus, µ

⊞⊞kn
n ⇒ µ

(v,A,τ )
⊞⊞ by [11, Theorem 5.6], and so

we accomplish the proof by Corollary 5.8. □

We shall also consider the rotated probabilities

d ν̃n(s) = dνn(ωn s)

associated with a sequence {νn}⊂P×

T2 , where ωn = (ωn1, ωn2)∈T2 has components

ωnj =

∫
T2

s j dνn(s)
/∣∣∣∣∫

T2
s j dνn(s)

∣∣∣∣.



LIMIT THEOREMS AND WRAPPING TRANSFORMS 99

Through this sort of rotated distributions, we next present the bi-freely identically
distributed limit theorem, which is the bi-free analog of [6, Proposition 3.6].

Theorem 5.12. The following are equivalent for a sequence {νn} in P×

T2 and a
strictly increasing sequence {kn} in N.

(1) The sequence ν
⊠⊠kn
n converges weakly to some ν⊠⊠ ∈ P×

T2 .

(2) The sequence ν
⊠⊠opkn
n converges weakly to some ν⊠⊠op ∈ P×

T2 .

(3) Condition 4.1 holds for ρn = kn ν̃n and the limit γ = limn→∞(ω
kn
n1, ω

kn
n2) exists

in T2.

If (1)–(3) hold, then ν⊠⊠ = ν
(γ ,A,ρ)

⊠⊠ and (ν⊠⊠op)⋆ = ν
(γ ⋆,Aop,ρ⋆)

⊠⊠ , where ρ and A are
respectively as in Condition 4.1 and Proposition 4.2.

Proof. Only the equivalence (1)⇔ (3) needs a proof, which relies on Proposition 4.3.
First of all, the weak convergence of ν

⊠⊠kn
n to ν ∈P×

T2 yields that ν̃n ⇒δ(1,1). Indeed,
m1,0(νn)

kn = 6
ν

(1)
n

(0)−kn → 6ν(1)(0)−1
= m1,0(ν) shows that

ω
kn
n1 → m1,0(ν)/|m1,0(ν)| := ω1.

Since 6
ν̃

(1)
n

(z)kn =ω
kn
n16ν

(1)
n

(z)kn →ω16ν(1)(z)=6ν̃(1)(z) uniformly for z in a neigh-
borhood of zero as n → ∞ by [4, Proposition 2.9], it follows from [4, Lemma 2.7]
that ν̃

(1)
n ⇒ δ1. In the same vein, one can obtain ν̃

(2)
n ⇒ δ1, giving the desired weak

convergence. On other hand, the M 1
T2-weak convergence of ρn = kn ν̃n also implies

ν̃n ⇒ δ1. In other words, ν̃n is infinitesimal if assertion (1) or (3) holds.
Write ν

⊠⊠kn
n = δξn ⊠⊠ ν̃

⊠⊠kn
n and consider measures d ˚̃νn(s) = d ν̃n(b̃n s), where

ξ n = ω
kn
n and b̃n = exp[i

∫
Uθ

(arg s) d ν̃n]. Then as indicated in Theorem 5.1, asser-
tion (1) holds if and only if ρ ′

n = kn ˚̃νn satisfies Condition 2.5 and γ n = ξ n exp(i En)

has a finite limit, where En = kn[arg b̃n +
∫
(ℑs) d ˚̃νn]. The infinitesimality of ν̃n

reveals that θn = (θn1, θn2) → 0 as n → ∞, where

(5-12) θnj = arg b̃nj =

∫
Uθ

arg s j d ν̃n(s).

This simple fact will be often utilized in the following proof, and all the indices
n considered below are sufficiently large. The equivalence of Condition 2.5
and Condition 4.1 is employed below as well. With a view toward applying
Proposition 4.3 to ρn and ρ ′

n , we shall prove that limn→∞ kn∥θn∥
2
= 0.

Now, we argue that ρ ′
n( · ) = kn ˚̃νn( · ) = ρn(eiθn ·) satisfies Condition 2.5 if the

same condition applies to ρn = kn ν̃n . Let λnj = (1 − ℜs j )ρn . Using the fact

(5-13)
∫

T2
ℑs j d ν̃n(s) = 0, j = 1, 2,
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we have

knθnj =

∫
Uθ

arg s j dρn(s) −

∫
T2

ℑs j dρn(s)

=

∫
T2

arg s j − ℑs j

1 − ℜs j
dλnj (s) −

∫
T2\Uθ

arg s j dρn(s).

Then the continuity of s 7→ (arg s − ℑs)/(1 − ℜs) on T implies that

lim sup
n→∞

kn|θnj | < ∞,

and so limn→∞ kn∥θn∥
2
= 0. Thus, ρ ′

n meets Condition 2.5 by Proposition 4.3.
Conversely, suppose that ρ ′

n satisfies Condition 2.5. We first rewrite (5-12) as
arg b̃nj =

∫
b̃−1

n Uθ
(arg s j + arg b̃nj ) d ˚̃νn . On the other hand, the integral in (5-13) can

be decomposed into the sum

ℑb̃nj − (ℑb̃nj )

∫
T2
(1 − ℜs j ) d ˚̃νn(s) − (1 − ℜb̃nj )

∫
T2
(ℑs j ) d ˚̃νn(s) +

∫
T2
(ℑs j ) d ˚̃νn(s).

Since b̃nj = cos θnj + i sin θnj , some simple calculations allow us to obtain

θnj = arg b̃nj −

∫
T2
(ℑs j ) d ν̃n(s) = Bnj + Rnj ,

where
Rnj = (θnj − sin θnj ) + (1 − cos θnj )

∫
(ℑs j ) d ˚̃νn

and

Bnj = −θnj ˚̃νn(T
2
\b̃−1

n Uθ ) −

∫
T2\b̃−1

n Uθ

(arg s j ) d ˚̃νn(s)

+ sin(θnj )

∫
T2
(1 − ℜs j ) d ˚̃νn(s) +

∫
T2

arg s j − ℑs j

1 − ℜs j
d(1 − ℜs j ) ˚̃νn(s).

Note that sets T2
\b̃−1

n Uθ are uniformly bounded away from 1, whence we see
that lim supn→∞ kn|Bnj | < ∞ by the M 1

T2-convergence assumption of ρ ′
n . Then

|Rnj | ≤ |θnj |
3
+ |θnj |

2 leads to

lim sup
n→∞

kn|θnj |[1 − |θnj | − |θnj |
2
] ≤ lim sup

n→∞

kn|Bnj | < ∞.

We thus obtain lim supn kn|θnj | < ∞, and so limn kn∥θn∥
2
= 0. Consequently, ρn

satisfies Condition 2.5 by Proposition 4.3 again.
Finally, by using (5-13), one can express components of En = (En1, En2) as

Enj = knθnj + kn(ℑb̃−1
nj )

∫
T2
(ℜs j ) d ν̃n(s)

= kn(θnj − sin θnj ) + sin(θnj )

∫
T2
(1 − ℜs j ) dρn(s).
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As noted above that ρn meets Condition 2.5 if and only if so does ρ ′
n and that

limn→∞ kn|θnj |
2
= 0 in either case. Consequently, we have shown limn→∞ Enj = 0

for j = 1, 2 and arrived at γ = limn→∞ γ n if (1) or (3) holds. □

Remark 5.13. In spite of δ⊠⊠2n
−1 = δ1, 2nδ−1 fails to converge in M 1

T2 . This example
demonstrates that in Theorem 5.12, the rotated probabilities ν̃n are a necessary
medium in the convergence criteria of the bi-free multiplicative limit theorem. For
the same inference, the converse statement of Proposition 5.11 does not hold, yet it
does in the additive setting [11, Theorem 5.6].

6. Homomorphisms between infinitely divisible distributions

This section will provide explanations for the diagram (1-5). The bijection

3 : ID(∗) → ID(⊞⊞)

was already defined in [11], specifically,

3(µ(v,A,τ )
∗

) = µ
(v,A,τ )
⊞⊞ .

If ν = µ
(v,A,τ )
∗ W −1, then (2-9) and (4-12) show that

ν̂( p) = exp
[
i⟨ p, v⟩ −

1
2⟨Ap, p⟩ +

∫
Rd

(
ei⟨ p,x⟩

− 1 −
i⟨ p, x⟩

1 + ∥x∥2

)
dτ(x)

]
= γ p exp

[
−

1
2⟨Ap, p⟩ +

∫
Td
(s p

− 1 − i⟨ p, ℑs⟩) dρ(s)
]
,

where ρ and γ are respectively given in (5-7) and (5-8). Putting it differently, the
wrapping map induces a homomorphism W∗ : ID(∗) → ID(⊛) satisfying

(6-1) W∗(µ
(v,A,τ )
∗

) = ν
(γ ,A,ρ)
⊛ .

Motivated by (6-1), we analogously define W⊞⊞ : ID(⊞⊞) → ID(⊠⊠) as

W⊞⊞(ν
(v,A,τ )
⊞⊞ ) = ν

(γ ,A,ρ)

⊠⊠ ,

where γ and ρ are given as before. It was shown in Theorem 5.7 that the weak
convergence of (1-2) to some ν

(v,A,τ )
⊞⊞ implies that equation (1-3) converges weakly

to W⊞⊞(ν
(v,A,τ )
⊞⊞ ).

For the last ingredient 0 : ID(⊠⊠) → ID(⊛), recall from Proposition 3.9
that ⊠⊠-idempotent elements also belong to ID(⊛). Also, [6, Definition 3.3]
introduced a homomorphism 01 : ID(T,⊠) → ID(T,⊛) (which was denoted by
0 therein), which leads to the following definition.

Definition 6.1. Let ν ∈ ID(⊠⊠). Define 0(ν) = ν
(γ ,A,ρ)
⊛ if ν = ν

(γ ,A,ρ)

⊠⊠ . For
ν ∈ PT2\P×

T2 , define 0(ν) = ν if ν = P⊠⊠(κc × δ1), and let 0(ν) = m×01(ν
(2))

if ν = m × ν(2) and 0(ν) = 01(ν
(1)) × m if ν = ν(1)

× m.
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One can check that 0 : ID(⊠⊠) → ID(⊛) is a homomorphism and that the
diagram (1-5) commutes. The latter result comes from the definition, while the
former one requires convolution identities in Section 3. For example, if we write
µ = P⊠⊠(κc × δ1) and ν = m × ν(2) with ν(2)

∈ ID(⊠) ∩ P×

T , then we have
µ⊠⊠ ν = P ⊠⊠ (m × ν(2)) = m × m, where the last equality can be confirmed by
the use of (3-6) and computing moments. On the other hand,

0(µ)⊛0(ν) = µ⊛ (m × 01(ν
(2))) = P ⊛ (m × 01(ν

(2))) = m × m,

where the last equality is again obtained by computing moments. Consequently, we
arrive at 0(µ⊠⊠ ν) = 0(µ)⊛0(ν).

This map 0 is neither injective nor surjective as we have

ν
((1,0),0,πδ(i,0))
⊛ = ν

((1,0),0,πδ(−i,0))
⊛

and P⊛(µ×δ1) lies in ID(⊛)\0(ID(⊠⊠)) for any µ∈ID(T,⊛)\{κc : c ∈ D∪T}.
Further, 0 is not weakly continuous. More strongly, we prove the following.

Proposition 6.2. (1) The restriction of 01 to the set ID(⊠)∩ P×

T has no weakly
continuous extension to ID(⊠).

(2) The restriction of 0 to the set ID(⊠⊠) ∩ P×

T2 has no weakly continuous
extension to ID(⊠⊠).

Proof. Since 0(µ(1)
× µ(2)) = 01(µ

(1)) × 01(µ
(2)) for µ(1), µ(2)

∈ ID(⊠) ∩ P×

T ,
assertion (2) follows immediately from (1).

Suppose that 00
1 :=01|ID(⊠)∩P×

T
has a weakly continuous extension 0̃1 to ID(⊠).

Observe that κc ∈ ID(⊠)∩P×

T and 00
1(κc) = κc for any c ∈ (D∪T)\{0}. The latter

identity is shown below. From the moments m p(κc) = cp for p ∈ N, the formula

6κc(z) =
1
c

=
1

c/|c|
exp

[
(− log |c|)

∫
T×

1 + sz
1 − sz

(1 − ℜs)
dm(s)
1 − ℜs

]
yields that κc has (c/|c|, 0, ρ), where ρ(ds) = [− log |c|/(1 − ℜs)] m(ds) on T×,
as its free multiplicative Lévy triplet (also known as ⊠-characteristic triplet in [6,
p. 2437]). On the other hand, Lemma 5.5 says that the same triplet (c/|c|, 0, ρ)

also serves as the classical multiplicative Lévy triplet of κc. Thus we have shown
that 00

1(κc) = κc. That κc ⇒ m as c → 0 allows us to further obtain 0̃1(m) = m.
Next, denote by νn the probability distribution in ID(⊠) ∩ P×

T having the free
multiplicative Lévy triplet (1, 0, nδ−1), and let µn = 00

1(νn). Then (5-6) shows that
for any p ∈ Z,

µ̂n(p) = exp[n((−1)p
− 1)] =

{
1, p is even,

e−2n, p is odd,

which readily implies that µn ⇒
1
2(δ−1 + δ1). However, we will explain in the next

paragraph that νn ⇒ m, which apparently leads to a contradiction.
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To see why νn ⇒m, select a weakly convergent subsequence of {νn} (still denoted
by {νn} in the remaining arguments) and denote the weak limit by ν. Let ν ′

n be
the probability measure having the free multiplicative Lévy triplet

(
1, 0,

( n
2

)
δ−1

)
.

Passing to a further subsequence we may assume that ν ′
n weakly converge to ν ′.

Then letting n →∞ in the identity νn = ν ′
n⊠ν ′

n gives ν = ν ′⊠ν ′. On the other hand,
we see from (2-16) or from [6, Section 2.5] that 6ν′

n
(0)= en , i.e., m1(ν

′
n)= e−n

→ 0
as n → ∞ by Remark 2.6, whence m1(ν

′) = 0. By the definition of freeness, we
can further conclude that m p(ν) = 0 for all p ∈ Z\{0} or, equivalently, ν = m. □

Acknowledgements

Hasebe is granted by JSPS kakenhi (B) 15K17549 and 19K14546, while Huang
is supported by the Ministry of Science and Technology of Taiwan under the
research grant MOST 110-2628-M-110-002-MY4. This research is an outcome
of Joint Seminar supported by JSPS and CNRS under the Japan-France Research
Cooperative Program.

References

[1] M. Barczy and G. Pap, “Portmanteau theorem for unbounded measures”, Statist. Probab. Lett.
76:17 (2006), 1831–1835. MR Zbl
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TAME QUASICONFORMAL MOTIONS AND MONODROMY

YUNPING JIANG, SUDEB MITRA AND ZHE WANG

The concept of tame quasiconformal motions was first introduced by Jiang
et al. (2018). The concept of monodromy of holomorphic motions was first
introduced by Beck et al. (2012). In this paper, we will show that the concept
of monodromy of tame quasiconformal motions can be defined, whereas it
cannot be defined for quasiconformal motions, in the sense of Sullivan and
Thurston (1986). We also study some other properties of tame quasiconfor-
mal motions.

1. Introduction

The concept of quasiconformal motions was first introduced by Sullivan and
Thurston [12]. Theorem 3 of [12] claimed that every quasiconformal motion of any
set over an interval can be extended to the Riemann sphere. Jiang et al. [7] presented
a counterexample to Theorem 3 of [12]. They [7] introduced a new concept, called
tame quasiconformal motions, and showed that Theorem 3 of [12] holds for tame
quasiconformal motions over any simply connected Hausdorff space. They also
showed that this extension can be done in a conformally natural way, for tame
quasiconformal motions. The crucial idea was to show that tame quasiconformal
motions have a certain “universal property” that quasiconformal motions (in the
sense of Sullivan and Thurston) do not have.

Beck et al. [2] introduced the concept of monodromy associated with a holomor-
phic motion of a closed subset of the Riemann sphere over a hyperbolic Riemann
surface. Jiang and Mitra [6] proved that the triviality of the monodromy for this
holomorphic motion is a necessary and sufficient condition for the given holomor-
phic motion to be extended to the whole Riemann sphere over the same hyperbolic
Riemann surface. However, the concept of monodromy cannot be defined for a
quasiconformal motion of a closed subset of the Riemann sphere over a hyperbolic
Riemann surface, due to the counterexample in [7]. In the present paper, we show
that the concept of monodromy can be defined for a tame quasiconformal motion
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of a closed subset of the Riemann sphere over any connected Hausdorff space. We
prove that the triviality of the monodromy for a tame quasiconformal motion of
a closed subset of the Riemann sphere over a path-connected Hausdorff space is
a necessary and sufficient condition for this tame quasiconformal motion to be
extended to a quasiconformal motion of the whole Riemann sphere over the same
path-connected Hausdorff space. We also study some other properties of tame
quasiconformal motions.

This paper is organized as follows. In Section 2, we give all basic definitions
and note the various facts that are needed in this paper, and then state the two main
theorems. In Section 3 we present three lemmas and in Sections 4 and 5, we prove
the two main theorems.

2. Basic definitions and statements of the main theorems

Throughout this paper, C denotes the complex plane, Ĉ := C ∪ {∞} denotes the
Riemann sphere and E ⊂ Ĉ is a closed subset such that 0, 1,∞ ∈ E .

When we write Ṽ or W̃ or X̃ is “simply connected”, we mean that it is a
path-connected topological space and that its fundamental group is trivial.

We begin with some definitions.

Definition 1. Let E ⊂ Ĉ and let X be a connected Hausdorff space with basepoint x0.
A motion of E over X is a map φ : X × E → Ĉ satisfying

(i) φ(x0, z)= z for all z ∈ E , and

(ii) for all x ∈ X , the map φ(x, · ) : E → Ĉ is injective.

We say that X is the parameter space of the motion φ. We will assume that 0, 1,
and ∞ belong to E and that the motion φ is normalized, i.e., 0, 1, and ∞ are fixed
points of the map φ(x, · ) for every x in X .

Let E ⊂ Ê , φ : X × E → Ĉ and φ̂ : X × Ê → Ĉ be two motions. We say that φ̂
extends φ if φ̂(x, z)= φ(x, z) for all (x, z) ∈ X × E .

For any motion φ : X × E → Ĉ, x in X , and any quadruplet of distinct points
a, b, c, d of points in E , let φx(a, b, c, d) denote the cross-ratio of the values
φ(x, a), φ(x, b), φ(x, c) and φ(x, d). We will often write φ(x, z) as φx(z) for x
in X and z in E . So we have

φx(a, b, c, d)=
(φx(a)−φx(c))(φx(b)−φx(d))
(φx(a)−φx(d))(φx(b)−φx(c))

for each x in X .

It is obvious that condition (ii) in Definition 1 holds if and only if φx(a, b, c, d)
is a well-defined point in the thrice-punctured sphere Ĉ \ {0, 1,∞} for all x in X
and all quadruplets a, b, c, d of distinct points in E .

Let ρ be the Poincaré distance on Ĉ \ {0, 1,∞}. Sullivan and Thurston [12]
introduced the following definition.
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Definition 2. A quasiconformal motion is a motion φ : X × E → Ĉ of E over X
with the following additional property:

(iii) Given any x in X and any ϵ > 0, there exists a neighborhood Ux of x such
that for any quadruplet of distinct points a, b, c, d in E , we have

ρ
(
φy(a, b, c, d), φy′(a, b, c, d)

)
< ϵ for all y and y′ in Ux .

Definition 3. A continuous motion of Ĉ over X is a motion φ : X × Ĉ → Ĉ such
that the map φ is continuous.

Remark. If φ is a continuous motion of Ĉ, then each φx , x in X , is a map from Ĉ

to itself that fixes 0, 1, and ∞. Since φx is injective and continuous, it is a
homeomorphism of Ĉ onto itself, by invariance of domain.

Recall that a homeomorphism of Ĉ is called normalized if it fixes the points
0, 1, and ∞. We use M(C) to denote the open unit ball of the complex Banach
space L∞(C). Each µ in M(C) is the Beltrami coefficient of a unique normalized
quasiconformal homeomorphism wµ of Ĉ onto itself. The basepoint of M(C) is
the zero function.

We will need the following properties that were proved in [11].

Proposition 4. A motion φ : X × Ĉ → Ĉ is quasiconformal if and only if it satisfies:

(i) The map φx : Ĉ → Ĉ is quasiconformal for each x in X.

(ii) The map from X to M(C) that sends x to the Beltrami coefficient of φx for each
x in X is continuous.

Part (ii) means that the map x 7→ µx = (φx)z̄/(φx)z , x ∈ X , is continuous.

Proposition 5. Every quasiconformal motion of Ĉ is a continuous motion.

Definition 6. Assume that W is a connected complex manifold with basepoint x0.
A holomorphic motion of E over W is a motion φ : W × E → Ĉ of E over W such
that the map φ( · , z) : W → Ĉ is holomorphic for each z in E .

Definition 7. Let X be a connected Hausdorff space with a basepoint x0, and E be
a set in Ĉ (containing the points 0, 1, and ∞). A tame quasiconformal motion is a
motion φ : X × E → Ĉ of E over X with the following additional property:

(iii) Given any x in X , there exists a quasiconformal map w : Ĉ → Ĉ, a neighbor-
hood N (x), with basepoint x , and a quasiconformal motion ψ : N (x)×Ĉ → Ĉ

over N (x) such that φ(y, z)= ψ(y, w(z)) for all (y, z) ∈ N (x)× E .

The lemma below was proved in [7].

Lemma 8. A motion φ : X × E → Ĉ is a tame quasiconformal motion if and
only if given any x ∈ X , there exists a neighborhood N (x), and a continuous map
gx : N (x)→ M(C) such that φ(y, z)= wgx (y)(z) for all (y, z) ∈ N (x)× E.
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Definition 9. Let X and Y be connected Hausdorff spaces with basepoint, and f be
a continuous basepoint preserving map of X into Y . If φ is a motion of E over Y
its pullback by f is the motion

f ∗(φ)(x, z)= φ( f (x), z) for all (x, z) ∈ X × E

of E over X .

Remark. If the motion φ is continuous, or tame quasiconformal, f ∗(φ) has the
same property. If X and Y are complex manifolds, f holomorphic and φ is a
holomorphic motion, then so is f ∗(φ).

Proposition 10. If φ : X × E → Ĉ is a holomorphic motion where X is a connected
complex Banach manifold with a basepoint x0. Then φ is a tame quasiconformal
motion.

See Proposition 6 in [7].

Remark. In [7] it was shown that holomorphic motions ⇒ tame quasiconformal
motions ⇒ quasiconformal motions ⇒ continuous motions.

Definition 11. Let φ : X × E → Ĉ be a tame quasiconformal motion. Let G be a
group of Möbius transformations, and suppose that E is invariant under G (which
means, g(E)= E for all g in G). We say that φ is G-equivariant if and only if for
each g in G, and x in X , there is a Möbius transformation θx(g) such that

(2-1) φ(x, g(z))= (θx(g))(φ(x, z)) for all z ∈ E .

Definition 12. Let G be a subgroup of PSL(2,C), and suppose that E is invariant
under G. An isomorphism η : G → PSL(2,C) is said to be induced by an injection
f : E → Ĉ if f (g(z))= η(g)( f (z)) for all g ∈ G and for z ∈ E . An isomorphism
induced by a quasiconformal self-map of Ĉ is called a quasiconformal deformation
of G.

Definition 13. Let X be a connected Hausdorff space and let G be a subgroup of
PSL(2,C). A continuous family {θx} of isomorphisms of G is such that:

(i) For each x ∈ X , θx : G → PSL(2,C) is an isomorphism.

(ii) The map x 7→ θx(g) is continuous for each g ∈ G, and for each x ∈ X .

We will need the following result; see Corollaries 1 and 2 of [7].

Theorem 14. Let Ṽ be a simply connected Hausdorff space with a basepoint, and
let φ : Ṽ × E → Ĉ be a G-equivariant tame quasiconformal motion. Then, there
exists a G-equivariant quasiconformal motion φ̃ : Ṽ × Ĉ → Ĉ such that φ̃ extends φ.

This means the following:

(i) For each x in Ṽ , the map φ̃x : Ĉ → Ĉ is a quasiconformal map; let its Beltrami
coefficient be µx .
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(ii) The map x 7→ µx is continuous for x in Ṽ .

(iii) φ̃(x, z)= φ(x, z) for all (x, z) ∈ Ṽ × E .

(iv) φ̃x ◦ g ◦ φ̃−1
x = θx(g) for each g in G.

We also need the following result; see Remark 4 in [7].

Lemma 15. Assume that φ : X × E → Ĉ is a tame quasiconformal motion where
X is a connected Hausdorff space with a basepoint x0. For each z in E , the map
φ( · , z) : X → Ĉ is continuous.

2A. Teichmüller space of a closed set E. Two normalized quasiconformal self-
mappings f and g of Ĉ are said to be E-equivalent if and only if f −1

◦g is isotopic
to the identity rel E . The Teichmüller space T (E) is the set of all E-equivalence
classes of normalized quasiconformal self-mappings of Ĉ. The basepoint of T (E)
is the E-equivalence class of the identity map.

Recall that M(C) denotes the open unit ball of the complex Banach space L∞(C).
Each µ in M(C) is the Beltrami coefficient of a unique normalized quasiconformal
homeomorphism wµ of Ĉ onto itself. The basepoint of M(C) is the zero function.

We can define the quotient map PE : M(C)→ T (E) by setting PE(µ) equal to
the E-equivalence class of wµ, written as [wµ]E . Clearly, PE maps the basepoint
of M(C) to the basepoint of T (E).

G. Lieb [8] proved that T (E) is a complex Banach manifold such that the
projection map PE from M(C) to T (E) is a holomorphic split submersion. (The
result was also proved in [3].)

2B. Changing the basepoint. Let w be a normalized quasiconformal self-mapping
of Ĉ, and let Ê = w(E). By definition, the allowable map g from T (Ê) to T (E)
maps the Ê-equivalence class of f (written as [ f ]Ê ) to the E-equivalence class of
f ◦w (written as [ f ◦w]E ) for every normalized quasiconformal self-mapping f
of Ĉ.

Proposition 16. The allowable map g : T (Ê)→ T (E) is biholomorphic. If µ is
the Beltrami coefficient of w, then g maps the basepoint of T (Ê) to the point PE(µ)

in T (E).

See Proposition 7.20 in [3] or Proposition 6.7 in [9].

2C. Universal holomorphic motion of E. The universal holomorphic motion 9E

of E over T (E) is defined as

9E(PE(µ), z)= wµ(z) for µ ∈ M(C) and z ∈ E .

The definition of PE in Section 2A guarantees that 9E is well defined. It is a
holomorphic motion since PE is a holomorphic split submersion and µ 7→wµ(z) is
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a holomorphic map from M(C) to Ĉ for every fixed z in Ĉ (by Theorem 11 in [1]).
This holomorphic section is “universal” in the following sense.

Theorem 17. Let φ : W̃ × E → Ĉ be a holomorphic motion where W̃ is a simply
connected complex Banach manifold with a basepoint x0, there exists a unique
basepoint preserving holomorphic map f : W̃ → T (E) such that f ∗(9E)= φ.

For a proof, see Section 14 in [9].
By Proposition 10, every holomorphic motion is also a tame quasiconformal

motion. Hence, 9E : T (E)× E → Ĉ is also a tame quasiconformal motion. In [7],
it was proved that this is the universal tame quasiconformal motion of the closed
set E over a simply connected Hausdorff space. Here is the precise statement:

Theorem 18. Let φ : X̃ × E → Ĉ be a tame quasiconformal motion where X̃ is
a simply connected Hausdorff space with a basepoint x0. There exists a unique
basepoint preserving continuous map f : X̃ → T (E) such that f ∗(9E)= φ.

See Theorem II in [7].

2D. Douady–Earle section. Below we present some important facts.

Proposition 19. There is a continuous basepoint preserving map s from T (E)
to M(C) such that PE ◦ s is the identity map on T (E).

See [3] or [5] for a proof. It immediately implies that:

Corollary 20. The Teichmüller space T (E) is contractible.

Definition 21. The map s from T (E) to M(C) is called the Douady–Earle section
of PE for the Teichmüller space T (E).

2E. Monodromy associated with a tame quasiconformal motion. We now discuss
the concept of monodromy of a tame quasiconformal motion. Let φ : X × E → Ĉ

be a tame quasiconformal motion, where X is a connected Hausdorff space with
a basepoint x0. Let π : X̃ → X be a universal covering, with the group of deck
transformations 0. We choose a point x̃0 in X̃ such that π(x̃0)= x0. Let π1(X, x0)

denote the fundamental group of X with basepoint x0.
Let 8 = π∗(φ). Then, 8 : X̃ × E → Ĉ is a tame quasiconformal motion

of E over X̃ with x̃0 as the basepoint. By Theorem 18, there exists a unique
basepoint preserving continuous map f : X̃ → T (E) such that f ∗(9E)= φ. Then
by Proposition 19, there is a continuous basepoint preserving map f̃ = s ◦ f from
X̃ → M(C) such that

8(x, z)= w f̃ (x)(z) for each x ∈ X̃ and each z ∈ E .

For each z ∈ E and each γ ∈ 0, we have

w f̃ ◦γ (x̃0)(z)=8(γ (x̃0), z)= φ(π ◦ γ (x̃0), z)= φ(x0, z)= z.
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Therefore, w f̃ ◦γ (x̃0) keeps every point of E fixed. Since s may not be unique, f̃ is
not necessarily unique. So we need the next lemma.

Lemma 22. The homotopy class of w f̃ ◦γ (x̃0) relative to E does not depend on the
choice of the continuous map f̃ .

Proof. Let f̃1, f̃2 : X̃ → M(C) be basepoint preserving continuous maps which are
obtained from the given tame quasiconformal motion φ : X × E → Ĉ. For each
γ ∈ 0, take a path cγ : [0, 1] → X̃ which connects x̃0 and γ (x̃0) and write

H(z, t) := w f̃1◦γ (x̃0) ◦ {w f̃1◦cγ (t)}−1
◦w f̃2◦cγ (t)(z)

for (z, t) ∈ Ĉ ×[0, 1]. Then, we see that H( · , · ) gives a homotopy from w f̃1◦γ (x̃0)

to w f̃2◦γ (x̃0) relative to E . Hence, we conclude that w f̃1◦γ (x̃0) and w f̃2◦γ (x̃0) belong
to the same homotopy class relative to E , as claimed. □

We now assume that E ′ is a finite set containing n points where n ≥ 4; as usual,
0, 1, and ∞ are in E ′. Let φ : X × E ′

→ Ĉ be a tame quasiconformal motion.
The map w f̃ ◦γ (x̃0) is quasiconformal self-map of the hyperbolic Riemann surface
X ′

E := Ĉ \ E ′. Therefore, it represents a mapping class of X ′

E , and by Lemma 22,
we have a homomorphism ρφ : π1(X, x0)→ Mod(0, n) given by

ρφ(c)= [w f̃ ◦γ (x̃0)],

where Mod(0, n) is the mapping class group of the n-times punctured sphere, γ ∈0

is the element corresponding to c ∈ π1(X, x0), and [w] denotes the mapping class
group of X ′

E for w.

Definition 23. Suppose φ : X × E → Ĉ is a tame quasiconformal motion where X
is a connected Hausdorff space. We say φ has trivial monodromy if for every finite
subset {0, 1,∞} ⊂ E ′

⊆ E , the homomorphism ρφ for the tame quasiconformal
motion φ : X × E ′

→ Ĉ is trivial, that is, it maps every element of π1(X, x0) to the
identity of Mod(0, n).

We now state the two main theorems of this paper.

Theorem A. Let φ : V × E → Ĉ be a tame quasiconformal motion where V is a
path-connected Hausdorff space. Then the following are equivalent.

(i) There exists a continuous motion φ̃ : V × Ĉ → Ĉ such that φ̃ extends φ.

(ii) There exists a quasiconformal motion φ̂ : V × Ĉ → Ĉ such that φ̂ extends φ.

(iii) There exists a unique basepoint preserving continuous map F : V → T (E)
such that F∗(9E)= φ.

(iv) The monodromy of φ is trivial.

Remark. For (ii) ⇔ (iii), X does not have to be path-connected; a connected
Hausdorff space with basepoint is sufficient.
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Theorem B. Let G be a subgroup of PSL(2,C), and suppose E is a closed set
in Ĉ which is invariant under G. Let φ : X × E → Ĉ be a G-equivariant tame
quasiconformal motion where X is a connected Hausdorff space. Then

(i) {θx} is a continuous family of isomorphisms of G, and

(ii) θx is a quasiconformal deformation of G for every x in X.

3. Three lemmas

In what follows, V is a path-connected Hausdorff space with a basepoint x0. Let
H(Ĉ) be the group of homeomorphisms of Ĉ onto itself, with the topology of
uniform convergence in the spherical metric.

Lemma 24. Let h : V → H(Ĉ) be a continuous map such that h(x)(z)= z for all
x in V and for all z in E. If h(x0) is isotopic to the identity rel E for some fixed x0

in V , then h(x) is isotopic to the identity rel E for all x in V .

See Lemma 12.1 in [9].

Lemma 25. Let s : T (E)→ M(C) be the Douady–Earle section, and let ψ : Ĉ → Ĉ

be any homeomorphism. There is at most one point t in T (E) such that ψ is isotopic
to ws(t) rel E.

Proof. If ws(t) and ws(t ′) are both isotopic to ψ rel E , then they are E-equivalent,
and hence t = PE(s(t))= PE(s(t ′))= t ′. □

Lemma 26. If the continuous maps f and g from V into T (E) satisfy

(1) 9E( f (x), z)=9E(g(x), z) for all x in V , and for all z in E , and

(2) f (p)= g(p) for some p in V ,

then f (x)= g(x) for all x in V .

See Lemma 12.2 in [9].

4. Proof of Theorem A

We first prove the following theorem. The proof is similar to that given in [10]
(which was for holomorphic motions). We include the details for the reader’s
convenience, and also to make our paper self-contained.

Theorem 27. Let V be a path-connected Hausdorff space with a basepoint x0, and
let φ : V × E → Ĉ be a tame quasiconformal motion. If there exists a continuous
motion φ̃ : V × Ĉ → Ĉ such that φ̃ extends φ, then there exists a unique basepoint
preserving continuous map F : V → T (E) such that F∗(9E)= φ.
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Proof. Let S be the set of points x in V with the following property: there exists a
neighborhood N of x and a continuous map h : N → T (E) such that ws(h(x ′)) is
isotopic to φ̃x ′ rel E for all x ′ in N . We claim that S = V .

It is clear that S is an open set. We first show that S is nonempty; in fact, x0 ∈ S.
Choose a simply connected neighborhood N of x0 in V , and give N the basepoint x0.
By Theorem 18, there exists a basepoint preserving continuous map h : N → T (E)
such that h∗(9E)= φ on N × E . Define

H(x)= (ws(h(x)))−1
◦ φ̃x for each x in N .

Clearly, H(x0) is the identity. Also, for all x in N , and for all z in E , we have

φ̃x(z)= φ̃(x, z)= φ(x, z)=9E(h(x), z)= ws(h(x))(z).

Hence, for all z in E , H(x)(z) = z. Since H(x) is continuous in x , it follows
from Lemma 24 that H(x) is isotopic to the identity rel E . Hence, for each x in N ,
ws(h(x)) is isotopic to φ̃x rel E . This shows that x0 belongs to S.

Now we shall prove that S is closed. Let y be a limit point of S; choose a simply
connected neighborhood B of y. Since y is a limit point of S, B contains a point p
in S. Choose p to be the basepoint of B. Let

Ê = φp(E)= {φ(p, z) : z ∈ E}

and define φ̂ : B × Ê → Ĉ as

φ̂(x, φp(z))= φ(x, z), (x, z) ∈ B × E .

It is easy to see that φ̂ : B × Ê → Ĉ is a tame quasiconformal motion of Ê over B
with basepoint p. By Theorem 18, there exists a basepoint preserving continuous
map f : B → T (Ê) such that f ∗(9Ê)= φ̂ on B × Ê (where 9Ê : T (Ê)× Ê → Ĉ

is the universal tame quasiconformal motion of Ê).
This means

(4-1) 9Ê( f (x), φp(z))= φ̂(x, φp(z))

for all x in B and for all z in E .
Since p ∈ S, there is a point t in T (E) such that φ̃p is isotopic to ws(t) rel E .

Thus, ws(t) maps E onto Ê ; so it induces a biholomorphic map g : T (Ê)→ T (E)
as in Section 2B. Define ĥ : B → T (E) by ĥ = g ◦ f . We will show that ws(ĥ(x)) is
isotopic to φ̃x rel E for all x in B.

Note that f maps p to the basepoint of T (Ê) and by Proposition 16, g maps f (p)
to the point PE(s(t)) in T (E). So, ĥ(p)= PE(s(t)) and since ĥ(p)= PE

(
s(ĥ(p))

)
,

we have PE(s(t)) = PE
(
s(ĥ(p))

)
. That means, ws(t) is isotopic to ws(ĥ(p)) rel E ;
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so φ̃p is isotopic to ws(ĥ(p)) rel E . Let

(4-2) Ĥ(x)= (ws(ĥ(x)))−1
◦ φ̃x for all x in B.

By the above discussion, Ĥ(p) is isotopic to the identity rel E .
We have the standard projection map

PÊ : M(C)→ T (Ê),

and ŝ : T (Ê)→ M(C) is a continuous basepoint preserving map such that PÊ ◦ ŝ is
the identity map on T (Ê). Since φ̃p is isotopic to ws(t) rel E , and φ̃p(z)= φp(z)
for all z in E , it follows that

(4-3) φp(z)= ws(t)(z)

for all z in E . Furthermore, for all x ∈ B, and z ∈ E , we have

φ̃x(z)= φx(z)= φ̂x(φp(z))=9Ê( f (x), φp(z))
by (4-1). Also,

9Ê( f (x), φp(z))= wŝ( f (x))(φp(z))= wŝ( f (x))(ws(t)(z))

by (4-3). We conclude that

(4-4) φ̃x(z)= wŝ( f (x))(ws(t)(z))

for all x in B, and for all z in E .
For all x in B, we have ĥ(x)=g( f (x)). Also, f (x)= PÊ

(
ŝ( f (x))

)
=[wŝ( f (x))

]Ê
and by Section 2B, we have

g : [wŝ( f (x))
]Ê 7→ [wŝ( f (x))

◦ws(t)
]E .

Therefore,
ĥ(x)= [wŝ( f (x))

◦ws(t)
]E .

We also have ĥ(x) = PE
(
s(ĥ(x))

)
= [ws(ĥ(x))

]E for all x in B. Hence, for all x
in B, and for all z in E , we have

(4-5) wŝ( f (x))(ws(t)(z))= ws(ĥ(x))(z).

Therefore, by (4-4) and (4-5), we get φ̃x(z)=ws(ĥ(x))(z) for all x in B and for all z
in E . Hence, by (4-2), Ĥ(x)(z)= z for all x in B, and for all z in E . Since Ĥ is
continuous in x , it follows from Lemma 24 that Ĥ(x) is isotopic to the identity
rel E for all x in B. Therefore, ws(ĥ(x)) is isotopic to φ̃x rel E for all x in B. Hence
B is contained in S. In particular, y ∈ S, so S is closed. As S is also open and
nonempty, S = V .

We now define a continuous map F : V → T (E) as follows: Given any x in V ,
choose a neighborhood N of x and a continuous map h : N → T (E) such that
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ws(h(x ′)) is isotopic to φ̃x ′ rel E for all x ′ in N . Set F = h in N . By Lemma 25,
F is well defined on all of V . It is obviously continuous, and ws(F(x)) is isotopic to
φ̂x rel E for all x in V .

Finally, for all x in V , and for all z in E , we have

F∗(9E)(x, z)=9E(F(x), z)=9E
(
PE

(
s(F(x))

)
, z

)
= ws(F(x))(z)

and φ(x, z)= φ̃(x, z)= φ̃x(z)= ws(F(x))(z) (since ws(F(x)) is isotopic to φ̃x rel E
for all x in V ). Therefore, F∗(9E)(x, z)= φ(x, z) for all x in V and for all z in E .

The uniqueness of F follows from Lemma 26. This completes the proof. □

Proof of Theorem A. Theorem 27 proved the direction (i)⇒ (iii).
For (iii)⇒ (ii), define F̃ : V → M(C) by F̃ = s ◦ F . Then, F̃ : V → M(C) is a

basepoint preserving continuous map. Define φ̃ : V × Ĉ → Ĉ by

φ̃(x, z)= w F̃(x)(z) for all x in V and for all z in Ĉ.

By Proposition 4, φ̃ : V × Ĉ → Ĉ is a quasiconformal motion, and for all z in E ,

φ(x, z)= F∗(9E)(x, z)=9E(F(x), z)=9E
(
PE

(
s(F(x))

)
, z

)
= ws(F(x))(z)= w F̃(x)(z)= φ̃(x, z).

Hence φ̃ extends φ.
The direction (ii)⇒ (i) is obvious by Proposition 5.
Finally, we prove (i)⇔ (iv).
Let π : Ṽ → V be a universal covering with the group 0 of deck transformations,

so that V = Ṽ/0 and π(x̃0)= x0.
Suppose φ can be extended to a continuous motion φ̃ of Ĉ over V . Then, by

Theorem 27, there exists a continuous map f : V → M(C) such that

φ̃(x, z)= w f (x)(z) for all (x, z) ∈ V × Ĉ.

Let f̃ = f ◦π . Then, for any c ∈ π1(X, x0) with corresponding γ ∈ 0, we have

ρφ(c)= [w f̃ ◦γ (x̃0)] = [w f ◦π◦γ (x̃0)] = [w f (x0)] = [I d].

This shows that the monodromy ρφ is trivial.
Let φ : V × E → Ĉ be a tame quasiconformal motion with trivial monodromy.

Let 8= π∗(φ) be the tame quasiconformal motion of E over Ṽ . By Theorem 18,
there exists a unique basepoint preserving continuous map f̃ : Ṽ → T (E) such that
f̃ ∗(9E)=8. For any element γ ∈ 0, we also have f̃ ◦ γ : Ṽ → T (E). Note that

9E( f̃ ◦ γ (x), z)= ( f̃ ◦ γ )∗(9E)(x, z)

=8(γ (x), z)

= φ(π ◦ γ (x), z)

= φ(π(x), z)=8(x, z)= ( f̃ )∗(9E)(x, z)=9E( f̃ (x), z).
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By the triviality of the monodromy, we have f̃ ◦γ (x0)= f̃ (x0)= [I d] for all γ ∈0.
Lemma 26 implies that f̃ ◦γ = f̃ for all γ ∈0. Thus, f̃ defines a unique basepoint
preserving continuous map f : V → T (E) such that φ= f ∗(9E). Thus there exists
a continuous motion of Ĉ over V that extends φ. □

5. Proof of Theorem B

Part (i). The proof is similar to the one given in [4]. We include the arguments
for reader’s convenience. Since E has at least three points, for each x in X and g
in G, the Möbius transformation θx(g) is completely determined by (2-1). It easily
follows that θx is a homomorphism for each x in X . Also, for x in X , θx is injective.
For θx(g1)= θx(g2), we have φx(g1(z))= φx(g2(z)) which implies g1(z)= g2(z)
for all z in E (by injectivity). We conclude that g1 = g2. Hence, for each x in X ,
the map θx is an isomorphism.

Choose three distinct points z1, z2, z3 in E . For x in X , let hx be the unique
Möbius transformation such that

hx(zi )= φx(zi ) for all i = 1, 2, 3,

θx(g)(hx(zi ))= φx(g(zi )) for all i = 1, 2, 3.

By Lemma 15, for each i , the right-hand sides of the above equations depend
continuously on x . Therefore, x 7→ hx and x 7→ θx(g) ◦ hx are continuous maps.
Hence so is x 7→ θx(g) for each g in G.

Part (ii). Let � be the set of all x in X with the following property: for each x in �,
there exists a neighborhood N (x) such that θt is a quasiconformal deformation
of G for every t in N (x).

Clearly, � is open. Also, � is nonempty, for the basepoint x0 is in �. To see
this, choose a simply connected neighborhood V of x0 and use Theorem 14.

We will show that � is closed. Let k be a limit point of �. Choose a simply
connected neighborhood B of k. Then, B contains a point p in �. So, θp is
a quasiconformal deformation of G. Choose p to be the basepoint of B. Let
θp(G)= Ĝ and φp(E)= Ê .

Define φ̂ : B × Ê → Ĉ as

φ̂x(φp(z))= φx(z) for x ∈ B and z ∈ E .

Since φ : X × E → Ĉ is a tame quasiconformal motion, for p in B, there
exists a neighborhood N (p) and a continuous map f p : N (p)→ M(C) such that
φx(z)=w f p(x)(z) for x in N (p) and z in E (see Lemma 8). Set w=w f p(p). Then,
w : Ĉ → Ĉ is a quasiconformal map and φp(z)= w(z) for all z in E .

Now, assume t ∈ B. There exists a neighborhood N (t) and a continuous map
ft : N (t)→ M(C) such that φx(z)=w ft (x)(z) for x in N (t) and z in E . This means
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there exists a quasiconformal motion w ft : N (x)× Ĉ → Ĉ over N (x) such that

φ̂x(φp(z))= φx(z)= w ft (x)(z)

for all x in N (t) and z in E .
Let φp(z)= ẑ ∈ Ê . Then, we have

φ̂x(ẑ)= w ft (x)(w−1(ẑ)) for all x ∈ N (t).

It follows that φ̂ : B × Ê → Ĉ is a tame quasiconformal motion with basepoint p.
Next, note that Ê is Ĝ-invariant. In fact, for ĝ in Ĝ, we have

ĝ(Ê)= θp(g)(φp(E))= φp(g(E))= φp(E)= Ê .

Recall that φp(z)= ẑ and θp(g)= ĝ. By (2-1), we have

φ̂x
(
θp(g)(φp(z))

)
= φ̂x

(
φp(g(z))

)
= φx(g(z))= θx(g)(φx(z))

=
(
θx(θ

−1
p (ĝ))

)
(φx(z))

=
(
θx(θ

−1
p (ĝ))

)(
φ̂x(φp(z))

)
=

(
θx(θ

−1
p (ĝ))

)
(φ̂x(ẑ)).

It follows that φ̂ : B × Ê → Ĉ is a tame quasiconformal motion with the property

φ̂x(ĝ(ẑ))=
(
θx(θ

−1
p (ĝ))

)
(φ̂(x, ẑ)) for all x in B and ẑ in Ê .

Therefore, by Theorem 14, there exists a quasiconformal motion ˜̂φ : B × Ĉ → Ĉ

such that ˜̂φ extends φ̂, and for each x in B, ˜̂φx : Ĉ → Ĉ is a quasiconformal map.
We also have

˜̂φ(ĝ(z))=
(
θx(θ

−1
p (ĝ))

)
( ˜̂φ(z)) for all x in B and for all z in Ĉ.

This implies that
˜̂φ ◦ ĝ ◦ ˜̂φ

−1
= θx ◦ θ−1

p (ĝ).

Using θp(g)= ĝ, it follows that

˜̂φ ◦ θp(g) ◦ ˜̂φ
−1

= θx(g).

Recall that θp is a quasiconformal deformation of G. Hence, there exists a
quasiconformal map w : Ĉ → Ĉ such that w ◦ g ◦ w−1

= θp(g). By the above
equation, we get

˜̂φ ◦w ◦ g ◦w−1
◦ ˜̂φ

−1
= θx(g) for x ∈ B.

Let f̃x = ˜̂φ ◦w; so, for each x in B, f̃x : Ĉ → Ĉ is a quasiconformal map and

f̃x ◦ g ◦ f̃ −1
x = θx(g) for each x ∈ B.
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Hence, k is in �, and therefore, � is closed. Since X is connected, it follows that
�= X . □

Below is a direct and short proof of part (ii) of Theorem B. We thank one of the
referees for bringing this to our attention.

An alternative proof of Theorem B(ii). Let φ̃ : X̃×E → Ĉ be the lift of φ : X×E → Ĉ

to the universal covering X̃ of X . Namely, φ̃ is defined as

φ̃(x̃, z)= φ(π(x̃), z) (x̃, z) ∈ X̃ × E,

where π : X̃ → X is the canonical projection. It is a tame quasiconformal motion
of E over X̃ because tame quasiconformal motion is a local property. Moreover,
we have

φ̃(x̃, g(z))=φ(π(x̃), g(z))=θπ(x̃)(g)(φ(π(x̃), z))=θπ(x̃)(g)(φ̃(x̃, z)) for g ∈G.

Hence, it is G-equivariant with isomorphisms θπ(x̃) : G → PSL(2,C) where
x̃ ∈ X̃ . Since X̃ is simply connected, it follows from Theorem 14 that θπ(x̃)(G) is a
quasiconformal deformation of G and so is θx(G). □
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A CHARACTERIZATION AND SOLVABILITY
OF QUASIHOMOGENEOUS SINGULARITIES

GUORUI MA, STEPHEN S.-T. YAU, QIWEI ZHU AND HUAIQING ZUO

Let (V, 0) be an isolated hypersurface singularity defined by the holomorphic
function f : (Cn+1, 0) → (C, 0). A local k-th (0 ≤ k ≤ n + 1) Hessian algebra
Hk(V ) of isolated hypersurface singularity (V, 0) is a finite-dimensional
C-algebra and it depends only on the isomorphism class of the germ (V, 0).
It is a natural question to ask for a necessary and sufficient condition for a
complex analytic isolated hypersurface singularity to be quasihomogeneous
in terms of its local k-th Hessian algebra Hk( f ). Xu and Yau proved that
(V, 0) admits a quasihomogeneous structure if and only if H0( f ) is isomor-
phic to a finite-dimensional nonnegatively graded algebra in the early 1980s.
In this paper, on the one hand, we generalize Xu and Yau’s result to Hn+1( f ).
On the other hand, a new series of finite-dimensional Lie algebras Lk(V )

(resp. Lk(V )) was defined to be the Lie algebra of derivations of the k-th
(0 ≤ k ≤ n+1) Hessian algebra Hk(V ) (resp. Ak(V ) :=On+1/( f, mk J f )) and
is finite-dimensional. We prove that (V, 0) is quasihomogeneous singularity if
Ln+1(V ) (resp. Lk(V ) := Der(Ak(V ))) satisfies certain conditions. Moreover,
we investigate whether the Lie algebras Lk(V ) (resp. Lk(V )) are solvable.

1. Introduction

A polynomial f (z0, . . . , zn) is weighted homogeneous of type (q0, . . . , qn; d),
where q0, . . . , qn and d are fixed positive integers, if it can be expressed as a linear
combination of monomials zi0

0 zi1
1 · · · zin

n for which q0i0 + q1i1 + · · · + qnin = d. In
this case, we say that zi has weight qi and f has weight d . Recall that an isolated
hypersurface singularity (V, 0) = {(z0, . . . , zn) : f (z0, . . . , zn) = 0 ⊂ Cn+1

} is
quasihomogeneous if f is in the Jacobian ideal J f , i.e., f ∈ J f =

(
∂ f
∂z0

, . . . ,
∂ f
∂zn

)
.

By a theorem of Saito [1971], if f is quasihomogeneous with isolated singularity
at 0, then after a biholomorphic change of coordinates, f becomes a weighted
homogeneous polynomial.
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Let (V, 0) be an isolated hypersurface singularity defined by the holomorphic
function f : (Cn+1, 0) → (C, 0). Let On+1 denote the C-algebra of germs of
analytic functions defined at the origin of Cn+1. Recall that the moduli algebra is
A(V ) :=On+1/

(
f, ∂ f

∂z0
, . . . ,

∂ f
∂zn

)
. Mather and Yau [1982] proved that two germs of

complex analytic hypersurfaces of the same dimension with isolated singularities
are contact equivalent if and only if their moduli algebras are isomorphic. Therefore
the moduli algebra A(V ) is important in the study of the complex structures of
(V, 0). In 1983,Yau introduced the Yau algebra L(V ) which was defined as the Lie
algebra of derivations of the moduli algebra A(V ), i.e., L(V ) = Der(A(V ), A(V ))

[Seeley and Yau 1990]. It plays an important role in singularity theory [Chen 1995].
In a beautiful paper, Elashvili and Khimshiashvili [2006] first used it to characterize
ADE singularities. It is known that L(V ) is a finite-dimensional Lie algebra and
its dimension λ(V ) is called Yau number [Khimshiashvili 2006; Yu 1996]. Yau,
Zuo and their collaborators have been systematically studying various Lie algebras
of isolated singularities [Benson and Yau 1990; Chen et al. 1995; 2019; 2020a;
2020b; Hussain et al. 2018; 2020; 2021b; Yau and Zuo 2016a; 2016b]. In this
article, we study two kinds of new derivation Lie algebra arising from the isolated
hypersurface singularity (V, 0) as follows.

Hussain, Yau and Zuo [Hussain et al. 2020; 2021b], introduced the new series of
k-th Yau algebras Lk(V ) which was defined to be the Lie algebra of derivations of
the moduli algebra Ak(V ) =On+1/( f, mk J f ), k ≥ 0, where m is the maximal ideal
of On , i.e., Lk(V ) := Der(Ak(V ), Ak(V )). Its dimension was denoted as λk(V ).
This series of integers λk(V ) are new numerical analytic invariants of singularities.
It is natural to call it the k-th Yau number. In particular, when k =0, these are exactly
the previous Yau algebra and Yau number, i.e., L(V ) = L0(V ), λ0(V ) = λ(V ).

Let Hess( f ) be the Hessian matrix ( fi j ) of the second order partial derivatives
of f , and h( f ) (the Hessian of f ) be the determinant of Hess( f ). More generally,
for each k satisfying 0 ≤ k ≤ n +1 we denote by hk( f ) the ideal in On+1 generated
by all k×k-minors in the matrix Hess( f ). In particular, the ideal hn+1( f ) = (h( f ))

is a principal ideal. For each k as above, consider the graded k-th Hessian algebra
of the polynomial f defined by

Hk( f ) = On+1/(( f ) + J f + hk( f )).

In particular, H0( f ) is exactly the well-known moduli algebra A(V ). It is easy
to check that the isomorphism class of the local k-th Hessian algebra Hk( f ) is a
contact invariant of f , i.e., Hk( f ) depends only on the isomorphism class of the
germ (V, 0) [Dimca and Sticlaru 2015].

Hussain, Yau and Zuo [Hussain et al. 2021a] defined a series of new derivation
Lie algebras

Lk(V ) := Der(Hk( f ), Hk( f )), 0 ≤ k ≤ n + 1.
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Since H0( f ) = A(V ), so Lk(V ) is also a generalization of Yau algebra L(V )

and L0(V ) = L(V ). Lk(V ) is a finite-dimensional Lie algebra and the dimension
of Lk(V ) is denoted by λk(V ) which is new numerical analytic invariant of isolated
hypersurface singularities. It is natural to ask how to use Hk( f ) (resp. Ln+1(V ))
to characterize the quasihomogeneity of an isolated hypersurface singularity. In
this paper, we shall answer this question partially and prove that (V, 0) admits a
quasihomogeneous structure if and only if Hn+1( f ) (resp. Ln+1(V )) is isomorphic
to a finite-dimensional nonnegatively graded algebra (resp. nonnegatively graded
Lie algebra). We propose the following two conjectures.

Conjecture 1.1. Let (V, 0) = {(z0, . . . , zn) ∈ Cn+1
: f (z0, . . . , zn) = 0} be an

isolated hypersurface singularity. Then the following are equivalent:

(1) (V, 0) is quasihomogeneous.

(2) There exists a k, 0 ≤ k ≤ n + 1, such that the k-th Hessian algebra Hk( f ) is
isomorphic to a finite-dimensional graded commutative local algebra

⊕
i≥0 Ai

with A0 = C.

(3) For all k, 0 ≤ k ≤ n + 1, the k-th Hessian algebra Hk( f ) is isomorphic to a
finite-dimensional graded commutative local algebra

⊕
i≥0 Ai with A0 = C.

Conjecture 1.2. Let (V, 0) = {(z0, . . . , zn) ∈ Cn+1
: f (z0, . . . , zn) = 0} be an

isolated hypersurface singularity with n ≥ 1. Then (V, 0) is a quasihomogeneous
singularity if there exists k, 0 ≤ k ≤ n + 1, such that the following conditions
are satisfied:

(1) Lk(V ) (resp. Lk(V )) is isomorphic to a nonnegatively graded Lie algebra⊕ℓ
i=0(Lk(V ))i without center.

(2) There exists E ∈ (Lk(V ))0 (resp. (Lk(V ))0) such that [E, Di ] = i(Di ) for any
Di ∈ (Lk(V ))i .

(3) For any element α ∈ m − m2, where m is the maximal ideal of Hk(V ) (resp.
Ak(V )), αE is not in (Lk(V ))0 (resp. (Lk(V ))0).

Remark 1.1. For Conjecture 1.1, the implication (3) ⇒ (2) is obvious. Meanwhile,
(1) ⇒ (2) and (1) ⇒ (3) are immediate corollaries of the well-known theorem of
Saito [1971]. Thus the key point to prove Conjecture 1.1 is the implication (2) ⇒ (1)
(see Theorem A). Conjectures 1.1 and 1.2 are verified in [Xu and Yau 1996] when
k = 0. One of our main goals in this paper is to verify these two conjectures for the
case of k = n + 1. We obtain the following two main results.

Theorem A. Let (V, 0) = {(z0, . . . , zn) ∈ Cn+1
: f (z0, . . . , zn) = 0} be an iso-

lated hypersurface singularity. Then (V, 0) is quasihomogeneous if and only if its
(n + 1)-th Hessian algebra Hn+1( f ) is isomorphic to a finite-dimensional graded
commutative local algebra

⊕
i≥0 Ai with A0 = C.
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Theorem B. Let (V, 0) = {(z0, . . . , zn) ∈ Cn+1
: f (z0, . . . , zn) = 0} be an isolated

hypersurface singularity with n ≥ 1. Then (V, 0) is a quasihomogeneous singularity
if the following conditions are satisfied:

(1) Ln+1(V ) is isomorphic to a nonnegatively graded Lie algebra
⊕k

i=0 L i without
center.

(2) There exists E ∈ L0 such that [E, Di ] = i Di for any Di ∈ L i .

(3) For any element α ∈ m − m2 where m is the maximal ideal of Hn+1( f ), αE is
not in L0 (For brevity, we use L i to denote (Ln+1(V ))i ).

Remark 1.2. We can only prove Conjectures 1.1 and 1.2 for k = n +1. The reason
is that the proof of Theorem B depends on Theorem A. In our proof of Theorem A,
we use a beautiful result of Saito [1974, Corollary 3.8], which cannot be generalized
to general k. As for Lk(V ), we can only verify the conjectures when k is sufficiently
large (see Theorem C), k = 1 is still a open problem.

Theorem C. Let (V, 0) be an isolated hypersurface singularity defined by f with
multiplicity of at least three. Then (V, 0) is quasihomogeneous if there exists k0 ∈ N

such that for all k ≥ k0:

(1) Lk(V ) ∼=
⊕ j

i=0 L i which is nonnegatively graded and without center.

(2) There exists E ∈ L0 such that [E, Di ] = i Di for all Di ∈ L i .

(3) For any element α ∈ m − m2 where m is the maximal ideal of A(V ), αE is
not in L0.

In [Yau 1991], the Lie algebra L0(V ) = L0(V ) was shown to be solvable. Thus a
necessary condition for a commutative local Artinian algebra to be a moduli algebra
is that its algebra of derivations is a solvable Lie algebra. Naturally one expects
that Lk(V ) and Lk(V ) are also solvable. We prove that Lk(V ) (k ≥ 2) is indeed
solvable for any dimension n, and k = 1 is solvable for some special cases. For
the sake of convenience to the readers, we abuse the notations of x and z. The
subscript of x we shall use in the following theorem begins with 1 instead of 0
which is slightly different with the above two main theorems. We do this in order
to be consistent with the symbols in [Yau 1983; 1986; 1991], so that the reader can
easily refer to them.

Theorem D. Let f be a homogeneous isolated singularity in n variables x1, . . . , xn

of degree d ≥ 4. Then Lk(V ) is solvable for k ≥ 2 or k = 1, n = 4.

Remark 1.3. In Theorem D, the condition d ≥ 4 cannot be omitted. In fact, there
is a counterexample when d = 3.

Let f = x2 y + xy2, then the A1(V ) is O2 module the following relations:

x2 y + xy2
= 0, 2x2 y + xy2

= 0, 2xy2
+ y3

= 0,

2xy2
+ x2 y = 0, 2x2 y + x3

= 0.
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The monomial basis for A1(V ) is

1, x, y, x2, xy, y2.

It is easy to check that x ∂
∂y , y ∂

∂x , x ∂
∂x − y ∂

∂y ∈ L1(V ), Hence L1(V ) is not solvable.

2. The derivation Lie algebra of a graded commutative Artinian algebra

We first state some elementary properties of the derivation Lie algebra of a graded
commutative Artinian local algebra.

Lemma 2.1. Let A =
⊕t

i=0 Ai be a graded commutative Artinian local algebra.
Then the derivation algebra of A denoted by L(A) is a graded Artinian Lie algebra.
(Here Artinian Lie algebra means L(A) is finite dimension as C-vector space.)

Proof. See Lemma 2.1 in [Xu and Yau 1996]. □

Definition 2.1. The socle of a local Artinian algebra A with maximal ideal m is
the complex vector subspace Soc A = {a ∈ A : a · m = 0} in A. The type of A is
the complex dimension of Soc A as a vector space. The algebra A is Gorenstein
when its type is one.

Lemma 2.2. Let A be a commutative Artinian local algebra. Let D ∈ L(A) be
any derivation of A. Then D preserves the m-adic filtration of A, i.e., D(m) ⊂ m,
where m is the maximal ideal of A.

Proof. See Lemma 2.5 in [Xu and Yau 1996]. □

Proposition 2.1. Let A =
⊕k

i=0 Ai be a graded commutative Artinian local algebra
with A0 = C. Suppose the maximal ideal of A is generated by A j for some j > 0.
Then L(A) is a graded Lie algebra without negative weight.

Proof. See Proposition 2.6 in [Xu and Yau 1996]. □

Lemma 2.3. Let f be a weighted homogeneous polynomial with isolated singularity
in z0, . . . , zn variables of type (α0, . . . , αn; d). Assume wt(z0) = α0 ≥ wt(z1) =

α1 ≥ · · · ≥ wt(zn) = αn . Then f must be of either the form

f = zm
0 + a1(z1, . . . , zn)zm−1

0 + · · · + am−1(z1, . . . , zn)z0 + am(z1, . . . , zn),

or

f = zm
0 zi + a(z1, . . . , zn)zm−1

0 + · · · + am−1(z1, . . . , zn)z0 + am(z1, . . . , zn).

Proof. See Lemma 2.1 in [Chen et al. 1995]. □
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3. Proof of Theorems A and B

We first recall the following useful lemma.

Lemma 3.1 (Rossi). Let (V, 0) = {(z0, . . . , zn) : f (z0, . . . , zn) = 0} ⊂ Cn+1 be an
isolated hypersurface singularity. Let θ =

∑n
i=0 ai (z) ∂

∂zi
be a holomorphic vector

field of (V, 0). Then ai (0) = 0 for 0 ≤ i ≤ n.

Proof. See [Rossi 1963]. □

Proof of Theorem A. If (V, 0) is a quasihomogeneous singularity, then by the
theorem of Saito, we can assume that f is a weight homogeneous polynomial after
a biholomorphic change if necessary. So the moduli ideal ( f ) + J f + hn+1( f ) =

J f +h( f ) is a graded ideal and Hn+1( f )=On+1/(( f )+ J f +hn+1( f ))=
⊕

i≥0 Ai

with A0 = C.
On the other side, we assume that Hn+1( f ) =

⊕
i≥0 Ai with A0 = C. Let

m =
⊕

i≥1 Ai be the maximal ideal of Hn+1( f ). It is not difficult to find a C-basis
of m/m2, denoted by {x0, . . . , xn}, with xi ∈ Aqi for 0 ≤ i ≤ n. Let E : Hn+1( f ) →

Hn+1( f ) be the linear map such that the restriction of E on Ai is just multiplication
by i . Then it is easy to see E satisfies Leibniz rule on Hn+1( f ), i.e., E is a
derivation of Hn+1( f ). E can be viewed as a derivation of C[x0, . . . , xn] which
leaves the moduli ideal ( f ) + J f + hn+1( f ) in On+1 invariant. E is of the form∑n

i=0 qi xi
∂

∂xi
. If we let the degree of xi be qi for 0 ≤ i ≤ n, then C[x0, . . . , xn] is

graded and the natural map C[x0, . . . , xn] → Hn+1( f ) is a graded homomorphism
of degree 0. Let

⊕
r>0 Jr be the grading of the moduli ideal ( f )+ J f + h( f ). As

E is a graded derivation of degree 0, E leaves Jr invariant for all r > 0. Since
ker(E |Jr ) = 0 and dimC Jr < ∞, we obtain that E |Jr is surjective for all r > 0.
Hence E : ( f )+ J f + hn+1( f ) → ( f )+ J f + hn+1( f ) is bijective. Let bi , ri and
ai0, ai1, . . . , ain be such that

E
(

∂ f
∂xi

)
= bi f +

n∑
j=0

ai j
∂ f
∂x j

+ ri h( f )

for all 0 ≤ i ≤ n. Let e, h and p j be such that

E(h( f )) = e f +

n∑
j=0

p j
∂ f
∂x j

+ h · h( f ).

By the surjectivity of E : ( f )+ J f +hn+1( f ) → ( f )+ J f +hn+1( f ), there exist
ci , si and di0, di1, . . . , din such that

∂ f
∂xi

= E
(

ci f +

n∑
j=0

di j
∂ f
∂x j

+si h( f )

)
(1)
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= E(ci ) f +ci

n∑
j=0

q j x j
∂ f
∂x j

+

n∑
j=0

E(di j )
∂ f
∂x j

+

n∑
j=0

di j

(
b j f +

n∑
l=0

a jl
∂ f
∂xl

+r j h( f )

)

+E(si )h( f )+si

(
e f +

n∑
j=0

p j
∂ f
∂x j

+h ·h( f )

)

=

(
E(ci )+

n∑
j=0

di j b j +si e
)

f +ci

n∑
j=0

q j x j
∂ f
∂x j

+

n∑
j=0

E(di j )
∂ f
∂x j

+

n∑
j=0

E(di j )
∂ f
∂x j

+

n∑
j=0

di j

n∑
l=0

a jl
∂ f
∂xl

+si

n∑
j=0

p j
∂ f
∂x j

+(E(si )+si h)h( f )

=

(
E(ci )+

n∑
j=0

di j b j +si e
)

f(2)

+

n∑
j=0

[
ci q j x j +E(di j )+

n∑
l=0

dilal j +si p j

]
∂ f
∂x j

+(E(si )+si h)h( f ).

Now we assume that f is not quasihomogeneous. Recall the beautiful result of
Saito [1974, Corollary 3.8]: Let f ∈ On+1 be a germ of a holomorphic func-
tion which defines a hypersurface with an isolated singularity at 0, then f is not
quasihomogeneous, precisely when

h( f ) = det
(

∂2 f
∂xi∂x j

)
0≤i, j≤n

∈ ( f ) + J f .

Without loss of generality, we assume that ri = 0, si = 0 for 0 ≤ i ≤ n and h = 0.
Thus

(3)
∂ f
∂xi

= E
(

ci f +

n∑
j=0

di j
∂ f
∂x j

)

=

(
E(ci ) +

n∑
j=0

di j b j

)
f +

n∑
j=0

[
ci q j x j + E(di j ) +

n∑
l=0

dilal j

]
∂ f
∂x j

.

Let

θi =

n∑
j=0

[
ci q j x j + E(di j ) +

n∑
l=0

dilal j − δi j

]
∂

∂x j
.
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Then θi ( f ) =
(
E(ci ) +

∑n
j=0 di j b j

)
f . So θi is a holomorphic vector field of

{ f (x0, . . . , xn) = 0}. By Lemma 3.1, θi j (0) = 0 for all 0 ≤ j ≤ n, where we write
θi =

∑n
j=0 θi j

∂
∂x j

. Observe that for any g ∈ C[x0, . . . , xn], E(g) vanishes at 0.
Therefore we conclude that ( n∑

l=0

dilal j − δi j

)
(0) = 0

for all 0 ≤ i ≤ n. This means that
d00(0) d01(0) . . . d0n(0)

d10(0) d11(0) . . . d1n(0)

. . . . . . . . . . . .

dn0(0) dn1(0) . . . dnn(0)

 ·


a00(0) a01(0) . . . a0n(0)

a10(0) a11(0) . . . a1n(0)

. . . . . . . . . . . .

an0(0) an1(0) . . . ann(0)

 = I,

where I is the identity matrix. On the other hand, by the surjectivity of

E : ( f ) + J f + h( f ) → ( f ) + J f + h( f ),

there exist c and d0, . . . , dn such that

(4) f = E
(

c f +

n∑
i=0

di
∂ f
∂xi

)

= E(c) f + c
n∑

j=0

q j x j
∂ f
∂x j

+

n∑
i=0

E(di )
∂ f
∂xi

+

n∑
i=0

di

(
bi f +

n∑
j=0

ai j
∂ f
∂x j

)

=

(
E(c) +

n∑
i=0

bi di

)
f +

n∑
j=0

(
cq j x j + E(d j ) +

n∑
i=0

di ai j

)
∂ f
∂x j

.

Let

H =

n∑
j=0

(
cq j x j + E(d j ) +

n∑
i=0

di ai j

)
∂

∂x j
.

Then H( f ) = [1 − E(c) − b0d0 − b1d1 − · · · − bndn] f . So H is a vector field
of { f (x0, . . . , xn) = 0}. By Lemma 3.1, Hi (0) = 0 for 0 ≤ i ≤ n, where H =∑n

i=0 Hi
∂

∂xi
. Since E(di ) vanishes at the origin for i = 0, 1, . . . , n, we conclude that

( n∑
i=0

di ai j

)
(0) = 0
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for all 0 ≤ j ≤ n, i.e.,

[
d0(0) d1(0) · · · dn(0)

]
·


a00(0) a01(0) · · · a0n(0)

a10(0) a11(0) · · · a1n(0)
...

...
. . .

...

an0(0) an1(0) · · · ann(0)

 =
[
0 0 · · · 0

]
.

Since the matrix 
a00(0) a01(0) . . . a0n(0)

a10(0) a11(0) . . . a1n(0)

. . . . . . . . . . . .

an0(0) an1(0) . . . ann(0)


is nonsingular, we deduce that

[
d0(0) d1(0) · · · dn(0)

]
=

[
0 0 · · · 0

]
. It follows

that 1−E(c)−b0d0−b1d1−· · ·−bndn is a unit in On+1 = C{x0, . . . , xn} since E(c)
vanishes at the origin. Because (1 − E(c) − b0d0 − b1d1 − · · · − bndn) f = H( f ),
we conclude that f ∈

(
∂ f
∂x0

, . . . ,
∂ f
∂xn

)
On+1. By definition of quasihomogeneity,

(V, 0) is quasihomogeneous which is contradict to our assumption. Hence f is
quasihomogeneous, i.e., (V, 0) is quasihomogeneous. □

Theorem 3.1. Let (V, 0) be a hypersurface singularity defined by a weighted
homogeneous polynomial f (z0, . . . , zn) which has an isolated singularity at the
origin with multiplicity at least three. Suppose that n ≥ 1. When the multiplicity is
equal to three, we also need to suppose that n > 1. Then the Lie algebra Ln+1(V )

is graded and without center.

Proof. Since f is a weighted homogeneous polynomial, the moduli ideal

( f ) + J f + hn+1( f ) = J f + hn+1( f )

is graded and hence

Hn+1( f ) := C[z0, . . . , zn]/(( f ) + J f + hn+1( f ))

is graded. By Lemma 2.1, Ln+1(V ) is graded. Let D be an element in the center
of Ln+1(V ). Write D =

∑
i Di where Di is a derivation with weight i . Let

E =

n∑
i=0

qi zi
∂

∂zi

be the Euler derivation where qi = wt (zi ). Then

0 = [E, D] =

[
E,

∑
i

Di

]
=

∑
i

i Di

which implies Di = 0 for i ̸= 0. Hence D is a homogeneous element of weight 0.
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If we write
D( fi ) =

∑
c j f j + c · h( f ),

then by comparing weight of both sides, we get c = 0. This shows D( fi )∈ J f . From
now on we consider D as a derivation on On+1/J f . Let D =

∑n
i=0 bi

∂
∂zi

. Then

0 = [zi E, D] = zi [E, D] + [zi , D]E = −bi E .

This implies that bi ∈ Socle of On+1/J f for all 0 ≤ i ≤ n, i.e., z j · bi ∈ J f for any
0 ≤ j ≤ n. By local duality, we know that the socle of On+1/J f is the highest
degree nonzero subspace of On+1/J f . We shall assume without loss of generality
that d ≥ 2q0 ≥ 2q1 ≥ · · · ≥ 2qn . By Lemma 2.1 in [Chen et al. 1995], we obtain
that f must satisfy one of the following two cases:

f =

{
zm

0 + a1(z1, . . . , zn)zm−1
0 + · · · + am(z1, . . . , zn), Case (1),

zm−1
0 zi + a1(z1, . . . , zn)zm−2

0 + · · · + am(z1, . . . , zn). Case (2).

Hence

wt h( f ) = (d − 2q0) + (d − 2q1) + · · · + (d − 2qn)

=

{
m(n + 1)q0 − 2

∑n
j=0 q j , Case (1),

(m − 1)(n + 1)q0 + (n + 1)qi − 2
∑n

j=0 q j , Case (2).

If the multiplicity of f is at least four, we have wt h( f ) > 2q0 and wt
(

∂ f
∂zn

)
≥ · · · ≥

wt
(

∂ f
∂z0

)
> 2q0. The fact that D is a homogeneous element of weight 0 implies that

wt (bi ) = wt (zi ) = qi for all 0 ≤ i ≤ n. Hence wt (z j · bi ) ≤ 2q0. This would lead
to a contradiction unless bi = 0 for all 0 ≤ i ≤ n. Hence D = 0.

Now we consider the case of mult( f ) = 3.

Case (1) f = z3
0 + a1(z1, . . . , zn)z2

0 + a2(z1, . . . , zn)z0 + a3(z1, . . . , zn).

In this case wt h( f ) = 3(n + 1)q0 − 2
∑n

i=0 qi which implies that

wt h( f ) > 3q0 − qn = wt
(

∂ f
∂zn

)
≥ · · · ≥ wt

(
∂ f
∂z0

)
for all n. Since D is a homogeneous element of weight 0, we obtain that D

(
∂ f
∂z j

)
∈ J f

for all 0 ≤ j ≤ n, i.e., D is a derivation of the algebra C[z0, . . . , zn]/(( f ) + J f ).
By Proposition 3.1 in [Xu and Yau 1996], we obtain that D = 0.

Case (2) f = z2
0zi + a1(z1, . . . , zn)z0 + a2(z1, . . . , zn).

In this case wt h( f ) = 2(n + 1)q0 + nqi − 2
∑n

j=0 q j , which implies that

wt h( f ) > 2q0 − qn = wt
(

∂ f
∂zn

)
≥ · · · ≥ wt

(
∂ f
∂z0

)
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when n ≥2. Since D is a homogeneous element of weight 0, we obtain that D
(

∂ f
∂z j

)
∈

J f for all 0 ≤ j ≤ n, i.e., D is a derivation of the algebra C[z0, . . . , zn]/( f ) + J f .
By Proposition 3.1 in [Xu and Yau 1996] we obtain that D = 0. □

Notice that L0 has no center for mult( f ) ≥ 3 and n ≥ 1 [Xu and Yau 1996].
However, for Ln+1, some interesting new phenomena have been discovered, e.g.,
the following remark.

Remark 3.2. A counterexample when mult( f ) = 3 and n = 1 is as follows:

f = z2
0z1 + a1(z1)z0 + a2(z1).

Let q0 = sq1, then a1(z1) = azs+1
1 , a2(z1) = bz2s+1

1 .
If b = 0 and s = 1, then f = z2

0z1 + az0z2
1. Hence ∂ f

∂z0
= 2z0z1 + az2

1,
∂ f
∂z1

= z2
0 + 2az0z1 and h( f ) = −4(z2

0 + az0z1 + a2z2
1). It is obvious that D is

a linear combination of z0
∂

∂z0
, z0

∂
∂z1

, z1
∂

∂z0
and z1

∂
∂z1

.

It is easy to verify that
(

∂ f
∂z0

,
∂ f
∂z1

, h( f )
)
= (z2

0, z2
1, z0z1). Hence for any derivation

D′
= (a0z0 + a1z1)

∂
∂z0

+ (b0z0 + b1z1)
∂

∂z1
, we obtain that[

z0
∂

∂z0
, D′

]
= b0z0

∂

∂z1
− a1z1

∂

∂z0
;[

z1
∂

∂z0
, D′

]
= a0z1

∂

∂z0
+ b0z1

∂

∂z1
− b0z0

∂

∂z0
− b1z1

∂

∂z0
;[

z0
∂

∂z1
, D′

]
= a1z0

∂

∂z0
+ b1z0

∂

∂z1
− a0z0

∂

∂z1
− a1z1

∂

∂z1
;[

z1
∂

∂z1
, D′

]
= a1z1

∂

∂z0
− b0z0

∂

∂z1
.

(5)

Let D = z0
∂

∂z0
+z1

∂
∂z1

, then [D, D′
]= 0 for all derivations D′, i.e., D is in the center.

Proof of Theorem B. By conditions (1) and (2), the adjoint representation of Ln+1(V )

is faithful and ad E is semisimple. Take the Jordan decomposition of E = S + N ,
where S is semisimple and N is nilpotent. In view of the theorem on page 99
of [Humphreys 1975], we know that N = 0. Therefore, there exists a coordinate
x0, . . . , xn such that

E = α0x0
∂

∂x0
+ α1x1

∂

∂x1
+ · · · +αnxn

∂

∂xn
.

Observe that

(6) [E, xi E] = −xi [E, E] + [E, xi ]E = αi xi E .
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Write xi E = D0 + D1 + · · · + Dk where Di ∈ L i for all 0 ≤ i ≤ k. Then

(7) [E, xi E] =

k∑
j=0

[E, D j ] =

k∑
j=0

j D j .

On the other hand, equation (6) says that

(8) [E, xi E] = αi

k∑
j=0

D j .

If αi = 0, equations (7) and (8) imply D j = 0 for all 1 ≤ j ≤ k, i.e., xi E ∈ L0.
This contradicts hypothesis (3) of the Theorem A. Therefore, αi = j for some
positive integer j between 1 and k in the view of equations (7) and (8). Since E
acts on Hn+1( f ), Hn+1( f ) is graded according to the eigenspace of E . Hn+1( f )

is nonnegatively graded because all the αi ’s are positive integers. Notice that the
kernel of E on Hn+1( f ) is precisely C. Hence we can apply Theorem A to conclude
that (V, 0) is a quasihomogeneous singularity. □

For the proof of Theorem C, it is much simpler:

Proof of Theorem C. By the proof of Theorem B, we know there is an Euler
derivation in Lk(V ), written as E =

∑
i αi xi

∂
∂xi

. Notice that

E( f ) =

∑
i

αi xi
∂ f
∂xi

∈ ( f, mk J f ).

Take k0 ∈ N such that mult( f ) − 1 + k0 > deg( f ). For k ≥ k0,

deg(E( f )) = deg
(∑

i

αi xi
∂ f
∂xi

)
< mult(mk J f ).

(Here, mult(mk J f ) := min{mult(g) | g ∈ (mk J f ) and g ̸= 0}, deg( f ) means the
degree of the highest degree monomial in f .) This means E( f ) can only be some
multiple of f :

E( f ) =

∑
i

αi xi
∂ f
∂xi

= a f.

Comparing degrees of both sides shows that a is a nonzero constant. This tells us
that f ∈ (J f ), thus f is quasihomogeneous. □

The following theorem tells us that the condition “without center” is necessary:

Theorem 3.3. Let f be weight homogeneous of multiplicity at least three, with
weights given in Theorem C, then Lk(V ) is without center.
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Proof. Let D be in the center of Lk(V ) written as D =
∑

i Di , where Di is a
derivation of weight i . Let

E =

∑
αi xi

∂

∂xi

be the Euler derivation. Then

0 = [E, D] =

[
E,

∑
i

Di

]
=

∑
i

i Di

which implies only D0 ̸= 0. Hence, D is homogeneous of weight 0. If we write

D =

∑
ai

∂

∂xi
.

Then

0 = [xi E, D] = xi [E, D] + [xi , D]E = −ai E .

This means if we regard ai E as a derivation of C{x0, . . . , xn}, then for all g ∈

C{x0, . . . , xn},

ai E(g) ∈ (mk J f , f ).

Since (ml J f , f )⊃(mk J f , f ) for all l ≤k, we know ai E maps any g ∈C{x0, . . . , xn}

into (ml J f , f ). Let l = 0, therefore ai E can be regarded as a zero derivation of
A0(V ). This leads to ai is in the socle of A0(V ). By Lemma 2.3, we obtain that

d ≥ wt (xn) + 2wt (x0) = αn + 2α0.

Since the socle of A0(V ) is generated by Hess( f ), we have

wt (ai ) = (d − 2α0) + · · · + (d − 2αn) > α0.

However, D with weight 0 means wt (ai ) = wt (xi ) ≤ α0, which is a contradiction.
Hence, D must be zero as a derivation of A0(V ), which implies that ai ∈ J f .
Again, since f is of multiplicity at least three, ai ∈ J f implies that wt (ai ) ≥

wt ( f )−wt (x0) ≥ α0 +αn > wt (xi ). This is a contradiction. Therefore, ai = 0. □

4. Solvability of Lk(V )

Firstly, we recall two classical results given in [Yau 1986; 1991].

Theorem 4.1 [Yau 1991]. Let sl(2, C) act on the formal power series ring
C[[x1, . . . , xn]], preserving the m-adic filtration where m is the maximal ideal
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in C[[x1, . . . , xn]]. Then there exists a coordinate system

x1, x2, . . . , xl1;

xl1+1, xl1+2, . . . , xl1+l2;

...

xl1+l2+···+lr−1+1, . . . , xl1+l2+···+lr ;

xl1+l2+···+lr +1, . . . , xn

(9)

via

H = H1 + · · · + Hr ,

X = X1 + · · · + Xr ,

Y = Y1 + · · · + Yr ,

(10)

where

H j = (l j − 1)xl1+···+l j−1+1
∂

∂xl1+···+l j−1+1
(11)

+ (l j − 3)xl1+···+l j−1+2
∂

∂xl1+···+l j−1+2
+ · · ·

+ (−(l j − 3))xl1+···+l j −1
∂

∂xl1+···+l j −1

+ (−(l j − 1))xl1+···+l j

∂

∂xl1+···+l j

,

X j = (l j − 1)xl1+···+l j−1+1
∂

∂xl1+···+l j−1+2
+ · · ·(12)

+ i(l j − i)xl1+···+l j−1+i
∂

∂xl1+···+l j−1+i+1
+ · · ·

+ (l j − 1)xl1+···+l j −1
∂

∂xl1+···+l j

,

Y j = xl1+···+l j−1+2
∂

∂xl1+···+l j−1+1
+ · · ·(13)

+ xl1+···+l j−1+i
∂

∂xl1+···+l j−1+i−1
+ · · ·

+ xl1+···+l j

∂

∂xl1+···+l j −1
.

with [X j , Y j ] = H j , [H j , X j ] = 2X j , [H j , Y j ] = −2Y j .
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Here we call r the irreducible representation number. A polynomial g is called
of weight j if H(g) = jg for some j ∈ Z. Note that li ≥ 2 for all i = 1, . . . , r .

Theorem 4.2 [Yau 1991]. Let sl(2, C) act on Md
n , the space of homogeneous

polynomial of degree d ≥ 2 as in Theorem 4.1 with l1 ≥ l2 ≥ · · ·≥ lr ≥ 2. Let I be the
complex vector subspace spanned by ∂ f

∂x1
, ∂ f

∂x2
, . . . , ∂ f

∂xn
where f is a homogeneous

polynomial of degree k + 1. If I is a sl(2, C)-submodule, then the singular set of f
contains the x1-axis and the xl1-axis.

The solvability of L0(V ) has been proved in [Yau 1991]. The solvability of Lk(V )

for k ≥2 is proved below while k =1 is much harder. We can only prove A1(V ) does
not admit some special sl(2, C)-action. (This is equivalent that ( f, m J f ) = (m J f )

does not admit certain special sl(2, C)-action, because a derivation D in L1(V ) has
the property D(m J f ) ⊂ (m J f ).)

The key point of the proof for k ≥ 2 is to show f is sl(2, C)-invariant, then
Theorem 4.2 leads to contradiction.

Case 1: k ≥ 2.

Proposition 4.1. Let f be a homogeneous isolated singularity in n variables
x1, . . . , xn of degree d ≥ 4. Then Lk(V ) is solvable for k ≥ 2.

Proof. Let D ∈ Lk(V ) be a derivation, then D( f, mk J f ) ⊂ ( f, mk J f ). By Leibniz
rule, we obtain that D(mk J f )= D(mk)J f +mk D(J f ). Moreover D(mk)J f ⊂mk J f ,
hence D(I ) ⊂ I is equivalent to mk D(J f ) ⊂ ( f, mk J f ) and D( f ) ⊂ ( f, mk J f ).
(Here I = ( f, mk J f ).)

We obtain

(14) D( f ) = aD
· f +

∑
i

bD
i ·

∂ f
∂xi

,

where aD
∈On and bD

i ∈mk . Whenever D = H , X or Y , it preserves the degree of f ,
hence the left-hand side of equation (14) is of degree d . However, deg

(
bD

i ·
∂ f
∂xi

)
>

deg( f ) when k ≥ 2, thus the term
(∑

i bD
i ·

∂ f
∂xi

)
is zero. Equation (14) becomes

D( f ) = aD
· f

for D = H, X or Y . This means that f is sl(2, C)-invariant. Therefore J f is sl(2, C)-
invariant. By Theorem 4.2, f is singular on x1-axis, which is a contradiction. □

Case 2: k = 1.

Now we consider the case of k = 1. The key point is as follows: If L1(V ) is not
solvable, then ( f, m J f ) = (m J f ) admits an action as in Theorem 4.1. Selecting
a generator g ∈ (m J f ), we know that H(g), X (g), Y (g) ∈ (m J f ). Repeating this
procedure, we can find that the number of generators is greater than n2, which leads
to a contradiction.
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Case 2.1: k = 1, n = 2.

Proposition 4.2. Let f be a homogeneous isolated singularity in 2 variables x1, x2

of degree d ≥ 4. Then L1(V ) is solvable.

Proof. In the case n = 2, the action of sl(2, C) is given by

X = x1
∂

∂x2
, Y = x2

∂

∂x1
.

By Lemma 2.3, f is of one of the following two forms:

Form (1): f = xd
1 + a1xd−1

1 x2 + · · · + ad xd
2 .

Form (2): f = xd−1
1 x2 + a2xd−2

1 x2
2 + · · · + ad xd

2 .

If f is of Form (1), then

x1
∂ f
∂x1

= dxd
1 + a1(d − 1)xd−1

1 x2 + · · · + ad−1x1xd−1
2 ∈ (m J f ).

Hence,

XdY d
(

x1
∂ f
∂x1

)
= c · xd

1 ∈ (m J f )

where c is a constant. This implies that

xd
1 , Y (xd

1 ) = xd−1
1 x2, . . . , Y d(xd

1 ) = xd
2

are all in (m J f ). These are d + 1 > 4 monomials. However dimC(m J f ∩ Md
2 ) = 4,

which is a contradiction. (The basis of m J f ∩ Md
2 are xi

∂ f
∂x j

with i, j ∈ {1, 2}.)
If f is of Form (2), then

x1
∂ f
∂x2

= dxd
1 + 2a2(d − 1)xd−1

1 x2 + · · · + dad x1xd−1
2 ∈ (m J f ).

By similar reasoning, we get a contradiction. □

Remark 4.3. The proof for n =2 can be generalized to more variables. However, we
must require the sl(2, C)-action to be irreducible. For general action it is still open.

Recall in Theorem 4.1, for H = H1+· · ·+Hr , we call r the irreducible component
number.

Definition 4.1. The sl(2, C)-action is called irreducible if the irreducible component
number r = 1 and l1 = n.

Case 2.2: k = 1, n ≥ 2, r = 1 and l1 = n.

Theorem 4.4 (weak Theorem D). Let f be a homogeneous isolated singularity
in n variables x1, . . . , xn of degree d ≥ 4. Then (m J f ) does not admit irreducible
sl(2, C)-action.
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Proof. By Theorem 4.1, we obtain that

H = (n − 1)x1
∂

∂x1
+ (n − 3)x2

∂

∂x2

+ · · · + (−(n − 3))xn−1
∂

∂xn−1
+ (−(n − 1))xn

∂

∂xn

X = (n − 1)x1
∂

∂x2
+ 2(n − 2)x2

∂

∂x3
+ · · · + i(n − i)xi

∂

∂xi+1

+ · · · + (n − 1)xn−1
∂

∂xn

Y = x2
∂

∂x1
+ x3

∂

∂x2
+ · · · + xi

∂

∂xi−1
+ · · · + xn

∂

∂xn−1
.

By Lemma 2.3, we obtain f = xd
1 + a1(x2, . . . , xn)xd−1

1 + · · · + ad(x2, . . . , xn)

(Form (1)) or f = xd−1
1 xs + a2(x2, . . . , xn)xd−2

1 +· · ·+ ad(x2, . . . , xn) (Form (2)),
where ai (x2, . . . , xn) is a polynomial of degree i in variable x2, . . . , xn . (We omit
the constant coefficient in later discussion for simplicity.)

If f is of Form (1), then

xi
∂ f
∂x1

= xi xd−1
1 + lower weight terms.

If f is of Form (2), then

xi
∂ f
∂xs

= xi xd−1
1 + lower weight terms.

The following lemma shows that xi xd−1
1 ∈ (m J f ) whenever f is of Form (1) or (2).

Lemma 4.1. Let g =
∑

g j be a homogeneous polynomial in (m J f ), where g j is
weight j component of g, then g j

∈ (m J f ).

By Lemma 4.1, we obtain that these polynomials are in m J f :

xd
1 ;

xd−1
1 x2;

xd−1
1 x3, Y (xd−1

1 x2);

xd−1
1 x4, Y (xd−1

1 x3), . . . , Y 2(xd−1
1 x2);

...

xd−1
1 xn, Y (xd−1

1 xn−1), . . . , Y n−2(xd−1
1 x2);

Y 2(xd−1
1 xn−1), . . . , Y n−1(xd−1

1 x2).
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Here on each row the polynomials are of same weight. We call these polynomials
“Block 1”.

All these polynomials are linear independent. Their weights are greater than or
equal to wt (xd−1

1 xn) − 2 = (d − 2)(n − 1) − 2. A similar discussion shows that

xd
n ;

xd−1
n xn−1;

xd−1
n xn−2, X (xd−1

n xn−1);

xd−1
n xn−3, X (xd−1

n xn−2), . . . , X2(xd−1
n xn−1);

...

xd−1
n x1, X (xd−1

n x2), . . . , Xn−2(xd−1
1 xn−1);

X2(xd−1
n x2), . . . , Xn−1(xd−1

1 xn−1);

are in m J f , with weight less than or equal to −(d − 2)(n − 1)+ 2. We call these
polynomials “Block 2”.

Since d ≥ 4 and n > 2, −(d − 2)(n − 1) + 2 < (d − 2)(n − 1) − 2. Thus
polynomials in Block 1 are of weights greater than those in Block 2, which implies
the polynomials in Block 1 and Block 2 are linearly independent.

In Block 1 and Block 2, there are 2(1+1+2+· · ·+n−1+n−2) = n(n+1)−2
linear independent polynomials of degree d, while dimC(m J f ∩ Md

n ) = n2, which
is a contradiction. □

Observation: In the proof of r = 1, we construct two “blocks”. The first one
starts from xd−1

1 xi , which is constructed by acting with Y . The second one starts
from xd−1

n xi and is constructed by acting with X .
Now for r ̸= 1, firstly we assume l1 + · · · + lr = n. We hope to construct blocks

as above, then comparing the number of generators will lead to contradiction.

Case 3: r > 1, l1 + · · · + lr = n.

We construct the following blocks (here 1 ≤ i, j ≤ r.):

Block 1.1

∂ f
∂x1

x1;

∂ f
∂x1

x2;

∂ f
∂x1

x3, Y
(

∂ f
∂x1

x2

)
;
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∂ f
∂x1

x4, Y
(

∂ f
∂x1

x3

)
, Y 2

(
∂ f
∂x1

x2

)
;

...

∂ f
∂x1

xl1 , Y
(

∂ f
∂x1

xl1−1

)
, . . . , Y l1−2

(
∂ f
∂x1

x2

)
;

Y 2
(

∂ f
∂x1

xl1−1

)
, . . . , Y l1−1

(
∂ f
∂x1

x2

)
.

Block 1.2

∂ f
∂x1

xl1+1;

∂ f
∂x1

xl1+2;

∂ f
∂x1

xl1+3, Y
(

∂ f
∂x1

xl1+2

)
;

...

∂ f
∂x1

xl1+l2 , Y
(

∂ f
∂x1

xl1+l2−1

)
, . . . , Y l2−2

(
∂ f
∂x1

xl1+2

)
;

Y 2
(

∂ f
∂x1

xl1+l2−1

)
, . . . , Y l2−1

(
∂ f
∂x1

xl1+2

)
.

Block 1. r

∂ f
∂x1

xl1+···+lr−1+1;

∂ f
∂x1

xl1+···+lr−1+2;

∂ f
∂x1

xl1+···+lr−1+3, Y
(

∂ f
∂x1

xl1+···+lr−1+2

)
;

...

∂ f
∂x1

xl1+···+lr , Y
(

∂ f
∂x1

xl1+···+lr −1

)
, . . . , Y lr −2

(
∂ f
∂x1

xl1+···+lr−1+2

)
;

Y 2
(

∂ f
∂x1

xl1+···+lr −1

)
, . . . , Y lr −1

(
∂ f
∂x1

xl1+···+lr−1+2

)
.

...



140 GUORUI MA, STEPHEN S.-T. YAU, QIWEI ZHU AND HUAIQING ZUO

Block i. j

∂ f
∂xl1+···+li

xl1+···+l j−1+1;

∂ f
∂xl1+···+li

xl1+···+l j−1+2;

∂ f
∂xl1+···+li

xl1+···+l j−1+3, Y
(

∂ f
∂xl1+···+li

xl1+···+l j−1+2

)
;

...

∂ f
∂xl1+···+li

xl1+···+l j , Y
(

∂ f
∂xl1+···+li

xl1+···+l j −1

)
,

... . . . , Y l j −2
(

∂ f
∂xl1+···+li

xl1+···+l j−1+2

)
;

Y 2
(

∂ f
∂xl1+···+li

xl1+···+l j −1

)
, . . . , Y l j −1

(
∂ f

∂xl1+···+li
xl1+···+l j−1+2

)
.

...

The number of linear independent polynomials in Block i. j is

2(1 + 1 + 2 + · · · + l j − 1 + l j − 2) = 2(l j + 1)l j − 2.

Similar to the construction of Block 1 and Block 2, we can construct another Block
“dual” to Block i. j with 2(l j + 1)l j − 2 polynomials. If all above polynomials
are linear independent, the whole number of linear independent polynomials is
4r(l1(l1 + 1) + · · · + lr (lr + 1) − 2r). However

4r(l1(l1 + 1) + · · · + lr (lr + 1) − 2r) > (l1 + · · · + lr )2
= n2.

This is a contradiction.
The problem arises on the linear independence of different blocks. To be more

precise, there may exist variables in other blocks with same weight, so we cannot
get linear independence by comparing weight. We use an example to explain this
phenomenon.

Example 4.5. In the case n = 4 and l1 = l2 = 2,

H = H1 + H2, X = X1 + X2, Y = Y1 + Y2.

x1 and x3 are of same weight. Let f = (x1 + x3)
4
+ x4

2 + x4
4 + x3

1 x2 + x3
1 x4 which

defines an isolated singularity. The operation of taking highest weight is restricting
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polynomial to x2 = x4 = 0. For example,

∂ f
∂x1

= 4(x1 + x3)
3
+ 3x2

1(x2 + x4).

The highest weight part of ∂ f
∂x1

is 4(x1 + x3)
3. However

∂ f
∂x1

∣∣∣∣
x2=x4=0

=
∂ f
∂x3

.

Thus ∂ f
∂x1

∣∣
x2=x4=0,

∂ f
∂x3

are linear dependent.
In this example, we only need to exchange ∂ f

∂x3
to ∂ f

∂x2

∣∣
x2=x4=0. Then ∂ f

∂x1

∣∣
x2=x4=0,

∂ f
∂x2

∣∣
x2=x4=0 are linear independent. It reminds us that there exists a suitable way to

select linear independent polynomials. This is illustrated in the following lemma:

Lemma 4.2. If r = 2 and l1 = l2, then there exists g1, g2 of weight (d − 1)(l1 − 1)

in (m J f ), such that the following four polynomials are linear independent:

g1x1, g1xl1+1, g2x1, g2xl1+1.

Proof. We first show how to construct g1, g2 from the derivatives of f . Then we
prove the linear independence of above four polynomials. Let us consider the
following polynomials:

∂ f
∂x1

∣∣∣∣
x2=···=xl1=xl1+2=···=xn=0

,
∂ f
∂x2

∣∣∣∣
x2=···=xl1=xl1+2=···=xn=0

,

. . . ,
∂ f
∂xn

∣∣∣∣
x2=···=xl1=xl1+2=···=xn=0

.

These are polynomials in x1, xl1+1 of degree d − 1, for simplicity we write them as

h1, . . . , hn.

Let the common factor of h1, . . . , hn be h. Define

Y := {h = 0} ∩ {x2 = · · · = xl1 = xl1+2 = · · · = xn = 0}.

Here h, x2, . . . , xl1, xl1+2, . . . , xn are n−1 functions, and thus dim Y ≥ 1. However,
by the definition of Y , f |Y = hi |Y = 0 for all i = 1, . . . , n. This contradicts that f
defines an isolated singularity. Thus the common factor of h1, . . . , hn is 1.

We claim there exists a1, . . . , an ∈ C and j ∈ {1, . . . , n}, such that a1h1 + · · ·+

anhn and h j do not have common factor. If the claim holds, then we denote
h j = g1,

∑n
i=1 ai hi = g2.
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Now we prove the linear independence of g1x1, g1xl1+1, g2x1, g2xl1+1. Assume
the contrary. Then there exists b1, b2, b3, b4 which are not all zero such that

g1(b1x1 + b3xl1+1) = g2(b2x1 + b4xl1+1).

Without loss of generality, we assume that b1, b4 ̸= 0. b1x1 + b3xl1+1 and b2x1 +

b4xl1+1 are coprime, otherwise g1, g2 have common factor. Thus the above equality
implies

(b1x1 + b3xl1+1) | g2, (b2x1 + b4xl1+1) | g1.

Observe that g1, g2 have degree d − 1 ≥ 3 > 1 = deg(b1x1 + b3xl1+1); hence
deg(g2/(b1x1 +b3xl1+1)) ≥ 2. This means g2/(b1x1 +b3xl1+1) is a nontrivial poly-
nomial, and is a factor of g1, which contradicts that g1, g2 have no common factor.

At last we prove the claim. For j such that h j ̸= 0, we express h j as product of
irreducible polynomials:

h j = sr1
1 sr2

2 · · · srl
l .

If hi0 and h j do not have common factor then we are done. So we assume each hi

and h j have a common factor for any i = 1, . . . , n. Since the common factor of
h1, . . . , hn is 1, there exists two polynomials, say h1, h2, such that they have a
different common factor with h j . Without loss of generality, we assume s1 | h1,
s2 | h2, s1 ∤ h2, s2 ∤ h1. Then s1, s2 ∤ (h1 + h2). If h1 + h2 does not have common
factor with h j , then we are done. So we assume s3 | (h1 + h2). If s3 | h1, then
s3 | (h1 + h2 − h1), which contradicts that h1, h2 have a different common factor
with h j . Thus s3 ∤ h1, h2. Then s1, s2, s3 ∤ ((h1 + h2)+ h1), by the same induction
we know s4 | (2h1+h2) or 2h1+h2 has no common factor with h j . Since rl is finite,
this implies that the induction procedure must terminate, and so finally we can find
a linear combination of h1, h2 such that it has no common factor with h j . □

Case 3.1: r = 2.

The following proposition follows from Lemma 4.2 immediately.

Proposition 4.3. Let f be homogeneous isolated singularity of degree d. Then
(m J f ) does not admit an sl(2, C)-action when r = 2, l1 + l2 = n.

Proof. We divide it into two cases:

Case 1: l1 = l2.

Choose g1, g2 as in Lemma 4.2. Then we consider the following four blocks:

Block 1.1
g1x1;

g1x2;

g1x3, Y (g1x2);
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g1x4, Y (g1x3), Y 2(g1x2);

...

g1xl1, Y (g1xl1−1), Y l1−2(g1x2);

Y 2(g1xl1−1), Y l1−1(g1x2);

Block 1.2
g2x1;

g2x2;

g2x3, Y (g2x2);

g2x4, Y (g2x3), Y 2(g2x2);

...

g2xl1, Y (g2xl1−1), Y l1−2(g2x2);

Y 2(g2xl1−1), Y l1−1(g2x2);

Block 2.1
g1xl1+1;

g1xl1+2;

g1xl1+3, Y (g1xl1+2);

g1xl1+4, Y (g1xl1+3), Y 2(g1xl1+2);

...

g1xl1+l2, Y (g1xl1+l2−1), Y l2−2(g1xl1+2);

Y 2(g1xl1+l2−1), . . . , Y l2−1(g1xl1+2);

Block 2.2
g2xl1+1;

g2xl1+2;

g2xl1+3, Y (g2xl1+2);

g2xl1+4, Y (g2xl1+3), Y 2(g2xl1+2);

...

g2xl1+l2, Y (g2xl1+l2−1), Y l2−2(g2xl1+2);

Y 2(g2xl1+l2−1), . . . , Y l2−1(g2xl1+2).
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The number of polynomials in all the blocks is 2(l1(l1 + 1) − 2 + l2(l2 + 1) − 2).
Replacing x1, xl1+1 by xl1, xn and Y by X , we can get another 2(l1(l1 + 1) +

l2(l2 + 1) − 4) polynomials. However 4(l2
1 + l2

2 + l1 + l2 − 4) > n2, which is a
contradiction.

Case 2: l1 > l2.

In this case we can use same argument as in the irreducible case that

xd−1
1 xi ∈ (m J f ) for all i.

And the block can be constructed as follows:
In Block 1.1, 2.1, we choose g1 to be xd−1

1 . In Block 1.2, 2.2, we choose g2 to
be xd−1

l1+1 + g3(x1, . . . , xl1), where g3 is a polynomial of weight (d − 1)(l2 − 1) such
that (xd−1

l1+1 + g3) ∈ J f . Then it leads to a contradiction similarly. □

Proof of Theorem D. When k ≥ 2, the theorem follows immediately from
Proposition 4.1. In the case of n = 4, k = 1, r has to be 1 or 2. If r = 2, we obtain
that l1 + l2 = 4 by Theorem 4.1. And the result follows from Proposition 4.3. If
r = 1, l1 = 4, the result follows from Theorem 4.4. We only have to consider the
cases r = 1, l1 = 2 or 3.

Case 1: r = 1, l1 = 2. The sl(2, C)-action is as follows:

H = x1
∂

∂x1
− x2

∂

∂x2
, X = x1

∂

∂x2
, Y = x2

∂

∂x1
.

By Lemma 4.1, xd−1
1 xi ∈ m J f . By the discussion in Proposition 4.2, xd−1

1 , xd−1
3 ,

xd−1
4 are in J f . Thus

xd
1 , Y (xd

1 ) = xd−1
1 x2, . . . , Y d(xd

1 ) = xd
2 ;

xd−1
1 x3, Y (xd−1

1 x3), . . . , Y d−1(xd−1
1 x3) = xd−1

2 x3;

xd−1
1 x4, Y (xd−1

1 x4), . . . , Y d−1(xd−1
1 x4) = xd−1

2 x4;

xd
3 ; xd

4 ;

xd−1
3 x1, xd−1

3 x2; xd−1
4 x1, xd−1

4 x2;

are in m J f . The number of linear independent polynomials of degree d are 3d +6 >

16, which is a contradiction.

Case 2: r =1, l1 =3. By the discussion in Theorem 4.4, we can find 3(3+1)−2=10
linear independent polynomials in x1, x2, x3. Thus we only need to find more than 6
polynomials. xd

4 , xd−1
4 x1, xd−1

4 x2, xd−1
4 x3, xd−1

1 x4, xd−1
2 x4, xd−1

3 x4 are satisfied.
□
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STABLE VALUE OF DEPTH OF SYMBOLIC POWERS
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Let G be a simple graph on n vertices. We introduce the notion of bipartite
connectivity of G, denoted by bc(G) and prove that

lim
s→∞

depth(S/I (G)(s)) ≤ bc(G),

where I (G) denotes the edge ideal of G and S = k[x1, . . . , xn] is a standard
graded polynomial ring over a field k. We further compute the depth of
symbolic powers of edge ideals of several classes of graphs, including odd
cycles and whisker graphs of complete graphs to illustrate the cases where
the above inequality becomes equality.

1. Introduction

Let I be a homogeneous ideal in a standard graded polynomial ring S =k[x1, . . . , xn]

over a field k. While the depth function of powers of I is convergent by the result
of Brodmann [1979], the depth function of symbolic powers of I is more exotic.
Nguyen and N. V. Trung [2019] proved that for every positive eventually periodic
function f : N → N there exists an ideal I such that depth S/I (s)

= f (s) for all
s ≥ 1, where I (s) denotes the s-th symbolic power of I . On the other hand, when I is
a squarefree monomial ideal, by the result of Hoa et al. [2017] and Varbaro [2011],

lim
s→∞

depth S/I (s)
= min{depth S/I (s)

| s ≥ 1} = n − ℓs(I ),

where ℓs(I ) is the symbolic analytic spread of I . Nonetheless, given a squarefree
monomial ideal I , computing the stable value of depth of symbolic powers of I is
a difficult problem even in the case of edge ideals of graphs.

Let us now recall the notion of the edge ideals of graphs. Let G be a simple graph
with the vertex set V (G) = {1, . . . , n} and edge set E(G). The edge ideal of G,
denoted by I (G), is the squarefree monomial ideal generated by xi xj where {i, j} is
an edge of G. Trung [2016] showed that lims→∞ depth S/I (G)s equals the number

MSC2020: primary 13D02; secondary 05E40, 13F55.
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of bipartite connected components of G, and that depth S/I (G)s stabilizes when it
reaches the limit depth. By the results in [Nguyen and Vu 2019; Hà et al. 2020], we
may assume that G is a connected graph when considering the depth of (symbolic)
powers of the edge ideal of G. In this case, the result of Trung [2016] can be written
as

(1-1) lim
s→∞

depth S/I (G)s
=

{
1 if G is bipartite,
0, otherwise,

and the stabilization index of depth of powers of I (G), denoted by dstab(I (G)), is
the smallest exponent s such that depth S/I (G)s equals the limit depth of powers.
Since we expect that the depth functions of symbolic powers of edge ideals are
nonincreasing, this property should hold for symbolic powers of I (G) as well. Hien,
Lam, and Trung [2024] characterized graphs for which lims→∞ depth S/I (G)(s) =1
and proved that the stabilization index of depth of symbolic powers in this case is also
the smallest exponent s such that depth S/I (G)(s) = 1. For a general nonbipartite
graph G, we do not know the value lims→∞ depth S/I (G)(s).

In this paper, we introduce the notion of bipartite connectivity of G and show that
this is tightly connected to the stable value of depth of symbolic powers of I (G).
Let B(G) denote the set of maximal induced bipartite subgraphs H of G, i.e., for
any v ∈ V (G) \ V (H), the induced subgraph of G on V (H)∪ {v} is not bipartite.
Note that H might contain isolated vertices. Since H is maximal, it contains
at least one edge. Then we define bc(G) = min{c(H) | H ∈ B(G)} and call it
the bipartite connectivity number of G, where c(H) is the number of connected
components of H . With this notation, the result of Hien et al. [2024] can be stated as
lims→∞ depth S/I (G)(s) = 1 if and only if bc(G) = 1, i.e., there exists an induced
connected bipartite subgraph H of G such that H dominates G. In this paper, we
generalize this result and prove:

Theorem 1.1. Let G be a simple graph. Then

lim
s→∞

depth S/I (G)(s) ≤ bc(G).

In contrast to (1-1), we show that the limit depth of symbolic powers of I (G)

could be any positive number even when G is a connected graph.

Proposition 1.2. Let n ≥ 2 be a positive number and Wn = W (Kn) be the whisker
graph on the complete graph on n vertices. Then, bc(Wn) = n − 1 and

depth S/I (Wn)
(s)

=

{
n if s = 1,

n − 1 if s ≥ 2.

We also note that the inequality in Theorem 1.1 could be strict as given in the
following example.
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Example 1.3. Let W be the graph obtained by gluing two whiskers at the vertices
of a 3-cycle. Then bc(W ) = 3 while

depth S/I (W )(s) =


7 if s = 1,

4 if s = 2,

2 if s ≥ 3.

Nonetheless, if we cluster the isolated points in a maximal bipartite subgraph H
of G by the bouquets in G then we obtain a finer invariant of G that gives the stable
value of depth of symbolic powers. More precisely, assume that

H = H1 ∪ · · · ∪ Hc ∪ {p1, . . . , pt },

where Hi are connected components of H with at least one edge and p1, . . . , pt

are isolated points in H . We say that pi1, . . . , piu are clustered if there exists a
v ∈ V (G) \ V (H) such that the induced subgraph of G on {v, pi1, . . . , piu } is a
bouquet. Let bouG(H) be the smallest number b such that the set {p1, . . . , pt } can
be clustered into b bouquets in G. We call c′(H) = c + bouG(H) the number of
restricted connected components of H . We then define

bc′(G) = min{c′(H) | H ∈ B(G)},

the restricted bipartite connectivity number of G. It is easy to see that for the
graph W in Example 1.3, we have bc′(W ) = 2. We conjecture that:

Conjecture 1.4. Let G be a simple graph. Then

lim
s→∞

depth S/I (G)(s) = bc′(G).

We verify this conjecture for whisker graphs of complete graphs.

Theorem 1.5. Let a = (a1, . . . , an)∈ Nn and Wa be the graph obtained by gluing ai

leaves to the vertex i of a complete graph Kn . Assume that ai ≥1 for all i =1, . . . , n.
Then bc′(Wa) = n − 1 and

lim
s→∞

depth S/I (Wa)
(s)

= n − 1.

Finally, we compute the depth of symbolic powers of edge ideals of odd cycles
by extending our argument in [Minh et al. 2023]. This shows that the bound for the
index of depth stability of symbolic powers of I given in [Hien et al. 2024] is sharp.

Theorem 1.6. Let I (Cn) be the edge ideal of a cycle of length n = 2k +1 ≥ 5. Then

depth S/I (Cn)
(s)

=

{⌈ n−1
3

⌉
if s = 1,

max
(
1,

⌈ n−s+1
3

⌉)
if s ≥ 2.

In particular, sdstab(I (Cn)) = n −2, where sdstab(I ) is the index of depth stability
of symbolic powers of I .
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We structure the paper as follows. In Section 2, we set up the notation and
provide some background. In Section 3, we prove Theorem 1.1 and compute the
depth of symbolic powers of edge ideals of whisker graphs of complete graphs. In
Section 4, we prove Theorem 1.6.

2. Preliminaries

In this section, we recall some definitions and properties concerning depth, graphs
and their edge ideals, and the symbolic powers of squarefree monomial ideals. The
interested readers are referred to [Bruns and Herzog 1993] for more details.

Throughout the paper, we denote by S = k[x1, . . . , xn] a standard graded polyno-
mial ring over a field k. Let m = (x1, . . . , xn) be the maximal homogeneous ideal
of S.

Depth. For a finitely generated graded S-module L , the depth of L is defined to be

depth(L) = min{i | H i
m(L) ̸= 0},

where H i
m(L) denotes the i-th local cohomology module of L with respect to m.

We have the following estimates on depth along short exact sequences (see [Bruns
and Herzog 1993, Proposition 1.2.9]).

Lemma 2.1. Let 0 → L → M → N → 0 be a short exact sequence of finitely
generated graded S-modules. Then:

(1) depth M ≥ min{depth L , depth N }.

(2) depth L ≥ min{depth M, depth N + 1}.

We make repeated use of the following two results in the sequence. The first one
is [Rauf 2010, Corollary 1.3]. The second one is [Caviglia et al. 2019, Theorem 4.3].

Lemma 2.2. Let I be a monomial ideal and f a monomial such that f /∈ I . Then

depth S/I ≤ depth S/(I : f ).

Lemma 2.3. Let I be a monomial ideal and f a monomial. Then

depth S/I ∈ {depth(S/I : f ), depth(S/(I, f ))}.

Finally, we also use the following simple result.

Lemma 2.4. Let S = k[x1, . . . , xn], R1 = k[x1, . . . , xa], and R2 = k[xa+1, . . . , xn]

for some natural number a such that 1 ≤ a < n. Let I and J be homogeneous ideals
of R1 and R2, respectively. Then:

(1) depth(S/(I + J )) = depth(R1/I ) + depth(R2/J ).

(2) Let P = I + (xa+1, . . . , xb). Then depth(S/P) = depth(R1/I ) + (n − b).
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Proof. (1) The proof is standard; see, e.g., [Nguyen and Vu 2019, Lemma 2.3].

(2) It follows from (1) and the fact that depth(R2/(xa+1, . . . , xb)) = (n − b). □

Depth of Stanley–Reisner rings. Let 1 be a simplicial complex on the vertex set
V (1) = [n] = {1, . . . , n}. For a face F ∈ 1, the link of F in 1 is the subsimplicial
complex of 1 defined by

lk1 F = {G ∈ 1 | F ∪ G ∈ 1, F ∩ G = ∅}.

For each subset F of [n], let xF =
∏

i∈F xi be a squarefree monomial in S. We
now recall the Stanley–Reisner correspondence.

Definition 2.5. For a squarefree monomial ideal I , the Stanley–Reisner complex
of I is defined by

1(I ) = {F ⊆ [n] | xF /∈ I }.

For a simplicial complex 1, the Stanley–Reisner ideal of 1 is defined by

I1 = (xF | F /∈ 1).

The Stanley–Reisner ring of 1 is k[1] = S/I1.

Definition 2.6. The q-th reduced homology group of 1 with coefficients over k,
denoted H̃q(1; k) is defined to be the q-th homology group of the augmented
oriented chain complex of 1 over k.

From the Hochster’s formula, we deduce that:

Lemma 2.7. Let 1 be a simplicial complex. Then

depth(k[1]) = min{|F | + i | H̃i−1(lk1 F; k) ̸= 0, F ∈ 1}.

Proof. By definition, depth(k[1]) = min{i | H i
m(k[1]) ̸= 0}. By Hochster’s formula

[Bruns and Herzog 1993, Theorem 5.3.8], the conclusion follows. □

We will also use the following nerve theorem from [Borsuk 1948]. First, we
recall the definition of the nerve complex. Assume that the set of maximal facets
of 1 is A = {A1, . . . , Ar }. The nerve complex of 1, denoted by N (1) is the
simplicial complex on the vertex set [r ] = {1, . . . , r} such that F ⊆ [r ] is a face
of N (1) if and only if ⋂

j∈F

Aj ̸= ∅.

Theorem 2.8. Let 1 be a simplicial complex. Then for all integer i , we have

H̃i (N (1); k) ∼= H̃i (1; k).
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Graphs and their edge ideals. Let G denote a finite simple graph over the vertex
set V (G) = [n] = {1, 2, . . . , n} and the edge set E(G). The edge ideal of G is
defined to be

I (G) = (xi xj | {i, j} ∈ E(G)) ⊆ S.

For simplicity, we often write i ∈ G (resp. i j ∈ G) instead of i ∈ V (G) (resp.
{i, j} ∈ E(G)). By abuse of notation, we also call xi a vertex of G and xi xj ∈ I (G)

an edge of G.
A path Pn of length n − 1 is the graph on [n] whose edges are {i, i + 1} for

i = 1, . . . , n − 1. A cycle Cn of length n ≥ 3 is the graph on [n] whose edges are
{i, i + 1} for i = 1, . . . , n − 1 and {1, n}.

A clique in G is a complete subgraph of G of size at least 2.
A graph H on [n] is called bipartite if there exists a partition [n] = X ∪ Y ,

X ∩Y =∅ such that E(H) ⊆ X ×Y . When E(H) = X ×Y , H is called a complete
bipartite graph, denoted by K X,Y . A bouquet is a complete bipartite graph with
|X | = 1.

For a vertex x ∈ V (G), let the neighborhood of x be the subset

NG(x) = {y ∈ V (G) | {x, y} ∈ E(G)}

and set NG[x] = NG(x)∪{x}. The degree of a vertex x , denoted by degG(x) is the
number of neighbors of x . A leaf is a vertex of degree 1. The unique edge attached to
a leaf is called a leaf edge. Denote dG(x) the number of nonleaf edges incident to x .

Projective dimension of edge ideals of weakly chordal graphs. A graph G is
called weakly chordal if G and its complement do not contain an induced cycle of
length at least 5. The projective dimension of edge ideals of weakly chordal graphs
can be computed via the notion of strongly disjoint families of complete bipartite
subgraphs, introduced in [Kimura 2016]. For a graph G, we consider all families of
(noninduced) subgraphs B1, . . . , Bg of G such that:

(1) Each Bi is a complete bipartite graph for 1 ≤ i ≤ g.

(2) The graphs B1, . . . , Bg have pairwise disjoint vertex sets.

(3) There exist an induced matching e1, . . . , eg of G for each ei ∈ E(Bi ) for
1 ≤ i ≤ g.

Such a family is termed a strongly disjoint family of complete bipartite subgraphs.
We define

d(G) = max
( g∑

1

|V (Bi )| − g
)

,

where the maximum is taken over all the strongly disjoint families of complete
bipartite subgraphs B1, . . . , Bg of G. We have the following result of Nguyen and
Vu [Nguyen and Vu 2016, Theorem 7.7].
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Theorem 2.9. Let G be a weakly chordal graph with at least one edge. Then

pd(S/I (G)) = d(G).

We now use it to compute the depth of the edge ideals of whisker graphs of
complete graphs.

Lemma 2.10. Let a = (a1, . . . , an)∈ Nn and Wa be the graph obtained by gluing ai

leaves to the vertex i of a complete graph Kn . Assume that

a1 ≥ . . . ≥ ak > 0 = ak+1 = · · · = an.

Then
depth(S/I (Wa)) = 1 + a2 + · · · + ak .

Proof. From the definition of Wa, it is clear that Wa is a chordal graph. For
simplicity of notation, we assume that

V (G) = {x1, . . . , xn} ∪ {yi, j | i = 1, . . . , k, j = 1, . . . , ai },

E(G) = {{xi , xj } | i ̸= j ∈ [n]} ∪ {{xi , yi, j } | i = 1, . . . , k, j = 1, . . . , ai }.

For any edges e1, e2 of Wa, we have NWa [e1] ∩ e2 ̸= ∅. Hence, the induced
matching number of Wa is 1. Now, let B be a complete bipartite subgraph of Wa
with bipartition V (B) = U1 ∪ U2. Let

X = {x1, . . . , xn} and Y = {yi, j | i = 1, . . . , k, j = 1, . . . , ai }.

If V (B)∩Y =∅ then |V (B)| ≤ n. Now, assume that yi, j ∈ U1 for some i, j . Then
xi ∈ U2 and yk,l /∈ V (B) for any k ̸= i since B is a complete bipartite graph. Hence,
|V (B)| ≤ n +ai . Therefore, for any complete bipartite subgraph B of Wa, we have

|V (B)| ≤ n + max{ai | i = 1, . . . , n} = n + a1.

Furthermore, let U1 = {x1}, U2 = {x2, . . . , xn, y1,1, . . . , y1,a1} and B = KU1,U2 then
B is a complete bipartite subgraph of Wa with |V (B)| = n + a1. By Theorem 2.9,
we deduce that

pd(S/I (Wa)) = n + a1 − 1.

The conclusion follows from the Auslander–Buchsbaum formula. □

Symbolic powers of edge ideals. Let I be a squarefree monomial ideal in S with
the irreducible decomposition

I = p1 ∩ · · · ∩ pm .

The s-th symbolic power of I is defined by

I (s)
= ps

1 ∩ · · · ∩ ps
m .

By the proof of [Kimura et al. 2018, Theorem 5.2], we have:
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Lemma 2.11. Assume that e is a leaf edge of G. Then for all s ≥ 2 we have
I (G)(s) : e = I (G)(s−1). In particular, depth S/I (G)(s) is a nonincreasing function.

We also have the following simple result that will be used later.

Lemma 2.12. Assume that n ≥ 2 be an integer. Let Kn be the complete graph on n
vertices. Then I (Kn)

(n)
: (x1 · · · xn) = I (Kn).

Proof. For each i = 1, . . . , n, let pi = (x1, . . . , xi−1, xi+1, . . . , xn). Then, we have
I (Kn) = p1 ∩ · · · ∩ pn . Since xi /∈ pi , we deduce that pn

i : (x1 · · · xn) = pi . Hence,

I (Kn)
(n)

: (x1 · · · xn) = (pn
1 ∩ · · · ∩ pn

n) : (x1 · · · xn)

= (pn
1 : (x1 · · · xn)) ∩ · · · ∩ (pn

n : (x1 · · · xn))

= p1 ∩ · · · ∩ pn = I (Kn).

The conclusion follows. □

3. Stable value of depth of symbolic powers of edge ideals

In this section, we prove that the stable value of depth of symbolic powers of
edge ideals is at most the bipartite connectivity number of G. We assume that
S = k[x1, . . . , xn] and G is a simple graph on V (G) = {1, . . . , n}. For an exponent
a = (a1, . . . , an) ∈ Nn , we set x a

= xa1
1 · · · xan

n and |a| = a1 + · · · + an .
We first introduce some notation. Let H be a connected bipartite graph with

the partition V (H) = X ∪ Y . The bipartite completion of H , denoted by H̃ is the
complete bipartite graph K X,Y . Now, assume that H = H1 ∪· · ·∪ Hc ∪{p1, . . . , pt }

where H1, . . . , Hc are connected components of H with at least one edge, and
p1, . . . , pt are isolated points of H . Then the bipartite completion of H is defined
by H̃ = H̃1 ∪ · · · ∪ H̃c ∪ {p1, . . . , pt }. We have:

Lemma 3.1. Let H be a bipartite graph. Let a = d(H)= (dH (1), . . . , dH (n))∈ Nn

and s =
|a|

2 . Then √
I (H)s+1 : x a = I (H̃),

where H̃ is the bipartite completion of H.

Proof. Since variables corresponding to isolated points do not appear in I (H), we
may assume that H does not have isolated points. Assume that H = H1 ∪ · · · ∪ Hc

where Hi are connected components of H with at least one edge. Let ai = d(Hi ).
Note that x ai is equal to the product of nonleaf edges of Hi , hence |ai | is even for
all i . Let si =

|ai |
2 . Now assume that f ∈

√
I (H)s+1 : x a with f = f1 · · · fc and

supp fi ⊆ V (Hi ). Then we have f m x a
∈ I (H)s+1 for some m > 0. Thus, we must

have f m
i x ai ∈ I (Hi )

si +1 for some i . Hence, we may assume that H is connected.
The conclusion then follows from [Trung 2016, Lemma 3.1] and [Minh et al. 2022,
Lemma 2.19]. □
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Now, assume that H is a maximal induced bipartite subgraph of G, that is, for
any v ∈ V (G) \ V (H) the induced subgraph of G on V (H) ∪ {v} is not bipartite.
In particular, H contains at least one edge. Let H = H1 ∪ · · · ∪ Hc ∪ {p1, . . . , pt }

where Hi are connected components of H with at least one edge and p1, . . . , pt are
isolated points of H . Then c(H) = c + t is the number of connected components
of H . We have

Lemma 3.2. Let H be a maximal induced bipartite subgraph of G. Then

depth(S/(I (G)(s)) ≤ c(H)

for all s ≥ |E(H)| + 1, where c(H) is the number of connected components of H.

Proof. Assume that H = H1 ∪ · · · ∪ Hc ∪ {p1, . . . , pt } where H1, . . . , Hc are
connected components of H with at least one edge and p1, . . . , pt are isolated
points of H . Let b= d(H) and x a

= x b
·
∏

(e | e is a leaf edge of H). Then x a is the
product of edges of H . Let s =

|a|

2 = |E(H)|. By [Minh et al. 2022, Corollary 2.7],
x a /∈ I (G)(s+1). We claim that

(3-1)
√

I (G)(s+1) : x a = I (H̃) + (xj | j ∈ V (G) \ V (H)).

By Lemma 3.1, it is sufficient if we prove that xj ∈

√
I (G)(s+1) : x a for all

j ∈ V (G)\V (H). Since the induced subgraph of G on { j}∪H is not bipartite, there
must exist a connected component, say H1 of H such that the induced subgraph of G
on V (H1)∪{ j} has an odd cycle. Let G1 be the induced subgraph of G on H1 ∪{ j}.
Let j, 1, . . . , 2k be an induced odd cycle in G1. Then xj x1 · · · x2k ∈ I (G1)

(k+1).
Furthermore, x1 · · · x2k =

∏k
j=1 ej is a product of k edges of H1. By the definition

of a, we have x a1 equals the products of all edges of H1. In other words, we have
x a1 = x1 · · · x2k · h with h ∈ I (H1)

|E(H1)|−k . Hence, xj x a1 ∈ I (G1)
(s1+1) where

s1 = |E(H1)|. Equation (3-1) follows.
By Lemma 2.2 and equation (3-1), we deduce that

depth S/I (G)(s+1)
≤ depth S/(I (G)(s+1)

: x a)≤ depth S/
√

I (G)(s+1) : x a = c(H).

For any t ≥ s+1, let x c
= x a

·et−s−1 where e is an arbitrary edge of H . Then we have
x c /∈ I (G)(t) and

√
I (G)(t) : x c ⊇

√
I (G)(s+1) : x a. Hence, depth S/I (G)(t) ≤ c(H)

for all t ≥ s + 1. The conclusion follows. □

Definition 3.3. Let G be a simple graph. Denote by B(G) the set of all maximal
induced bipartite subgraphs of G. The bipartite connectivity number of G is defined
by

bc(G) = min{c(H) | H ∈ B(G)}.

We are now ready for the proof of Theorem 1.1.

Proof of Theorem 1.1. The conclusion follows immediately from the definition and
Lemma 3.2. □
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We now prove Proposition 1.2 giving an example of connected graphs for which
the above inequality is equality and that the limit depth of symbolic powers of I (G)

could be any positive number.

Proof of Proposition 1.2. We may assume that

V (Wn) = {x1, . . . , xn, y1, . . . , yn} and

E(Wn) = {{xi , xj }, {xi , yi } | 1 ≤ i ̸= j ≤ n}.

Let H be a maximal bipartite subgraph of Wn . Then y1, . . . , yn ∈ H and H
contains at most two vertices in {x1, . . . , xn}. By the maximality of H , we deduce
that H must be the induced subgraph of Wn on {y1, . . . , yn} ∪ {xi , xj } for some
i ̸= j . Hence, c(H) = n − 1. Thus, bc(Wn) = n − 1.

By Lemma 2.11, depth S/I (Wn)
(s) is nonincreasing. Furthermore, we have

I (Wn)
(2)

: (x1 x2) = (x1 y1, x2 y2, x1 x2, y1 y2, x3, . . . , xn).

Hence, depth S/I (Wn)
(2)

≤ n − 1.
It remains to prove that depth S/I (Wn)

(s)
≥ n − 1 for all s ≥ 2. We prove by

induction on n and s the following statement. Let Ik = I (Kn)+ (x1 y1, . . . , xk yk)

and Sk = k[x1, . . . , xn, y1, . . . , yk]. Then depth Sk/I (s)
k ≥ k − 1 for all 2 ≤ k ≤ n

and all s ≥ 1.
Note that Ik = I (Gk) where Gk = Kn ∪{{xi , yi } | i = 1, . . . , k}. By Lemma 2.10,

depth Sk/Ik = k.
Since mk , the maximal homogeneous ideal of Sk , is not an associated prime

of Ik , depth Sk/I (s)
k ≥ 1 for all k. Thus, we may assume that s ≥ 2 and n ≥ k ≥ 3.

By Lemma 2.3,

depth Sk/I (s)
k ∈ {depth(Sk/(I (s)

k , xk yk)), depth(Sk/I (s)
k : xk yk)}.

By Lemma 2.11, I (s)
k : xk yk = I (s−1)

k . Thus, by induction, it suffices to prove that

depth Sk/(I (s)
k , xk yk) ≥ k − 1.

We have J = (I (s)
k , xk yk)= (J, xk)∩(J, yk). The conclusion follows from induction

on k and Lemma 2.1. □

The inequality in Theorem 1.1 might be strict. We will now define a finer
invariant of G which we conjecture to be equal to the stable value of depth of
symbolic powers of I (G). Let H = H1 ∪ · · · ∪ Hc ∪ {p1, . . . , pt } be a maximal
induced bipartite subgraph of G where H1, . . . , Hc are connected components of H
with at least one edge and p1, . . . , pt are isolated points. We say that {pi1, . . . , piu }

are clustered if there exists v ∈ V (G) \ V (H) such that the induced subgraph
of G on {v, pi1, . . . , piu } is a bouquet. Let bouG(H) be the smallest number b
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such that the set {p1, . . . , pt } can be clustered into b bouquets in G. We call
c′(H) = c + bouG(H) the number of restricted connected components of H .

Definition 3.4. Let G be a simple graph. The restricted bipartite connectivity
number of G is defined by

bc′(G) = min{c′(H) | H ∈ B(G)}.

We need a preparation lemma to prove Theorem 1.5.

Lemma 3.5. Let a = (a1, . . . , an) ∈ Nn be such that ai ≥ 1 for all i = 1, . . . , n. Let
Wa be a graph whose vertex set and edge set are

V (Wa) = {x1, . . . , xn, y1,1, . . . , y1,a1, . . . , yn,1, . . . , yn,an },

E(Wa) = {{xi , xj }, {xi , yi,ℓ} | for all i, j, ℓ such that 1 ≤ i ̸= j ≤ n, 1 ≤ ℓ ≤ ai }.

Then

I (Wa)
(n)

: (x1 · · · xn)

= I (Wa) + (y1,1, . . . , y1,a1)(y2,1, . . . , y2,a2) · · · (yn,1, . . . , yn,an ).

Proof. For simplicity of notation, we set

X = {x1, . . . , xn} and Y = {yi, j | i = 1, . . . , n, j = 1, . . . , ai }.

We also denote I = I (Wa) and

J = I (Wa) + (y1,1, . . . , y1,a1)(y2,1, . . . , y2,a2) · · · (yn,1, . . . , yn,an ).

For each C ⊆ V (Wa), let mC =
∏

x∈C x be a monomial in

S = k[x1, . . . , xn, y1,1, . . . , y1,a1, . . . , yn,1, . . . , yn,an ].

Since Wa is a chordal graph, by [Sullivant 2008, Theorem 3.10], we have

(3-2) I (n)
=

(
mC1 · · · mCt |C1, . . . , Ct are cliques of Wa and

t∑
i=1

(|Ci |−1)=n
)

.

The cliques C1, . . . , Ct are not necessarily distinct. In Wa, C ⊆ V (Wa) is a clique if
and only if either C ={xi , yi, j } for some i = 1, . . . , t and j = 1, . . . , ai or C ⊆ X . In
particular, (x1 · · · xn)e ∈ I (n) for all edges e of Wa and (x1 y1, j1) · · · (xn yn, jn ) ∈ I (n)

for all j1, . . . , jn such that 1 ≤ jℓ ≤ aℓ. Hence,

(3-3) J ⊆ I (Wa)
(n)

: (x1 · · · xn).

We now prove by induction on n the reverse containment

(3-4) I (Wa)
(n)

: (x1 · · · xn) ⊆ J.
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The base case n = 2 is clear. Thus, assume that n ≥ 3. Let C1, . . . , Ct be cliques
of Wa such that

∑t
i=1(|Ci | − 1) = n. Let M = mC1 · · · mCt and f = x1 · · · xn . It

suffices to prove that M/gcd(M, f ) ∈ J . Since |Ci | ≤ n for all i = 1, . . . , t , we
must have t ≥ 2. We have two cases.

Case 1. Ci ∩ Y = ∅ for all i = 1, . . . , t . In this case, we have M ∈ I (Kn)
(n). By

Lemma 2.12, we deduce that M/gcd(M, f ) ∈ I (Kn) ⊆ I (Wa).

Case 2. Ci ∩ Y ̸= ∅ for some i ∈ {1, . . . , t}. Since Y is the set of leaves, we
deduce that |Ci | = 2. For simplicity, we assume that C1 = {x1, y1,1}. If there
exists a clique Ci for some i = 2, . . . , t such that C1 ∩ Ci ̸= ∅, then we must
have x1 ∈ C1 ∩ Ci . In particular, we deduce that x1 y1,1 | M/gcd(M, f ). Hence,
M/gcd(M, f ) ∈ J . Thus, we may assume that Ci ∩ C1 = ∅ for all i = 2, . . . , t . In
other words, Ci ⊆ X ′

∪ Y ′ where

X ′
= {x2, . . . , xn} and Y ′

= {yi, j | i = 2, . . . , n, j = 1, . . . , ai }.

Furthermore, we have
∑t

i=2(|Ci | − 1) = n − 1. By equation (3-2), we deduce that
M ′

= mC2 · · · mCt ∈ I (Wa′)(n−1), where a′
= (a2, . . . , an) and Wa′ is the whisker

graph obtained by gluing ai leaves to the vertex i of the complete graph on {2, . . . , n}.
Since y1,1 does not divide f , we deduce that y1,1(M ′/gcd(M ′, f ′)) | M/gcd(M, f ),
where f ′

= x2 · · · xn . By induction on n, the conclusion follows. □

Proof of Theorem 1.5. We may assume that a1 ≥ a2 ≥ · · · ≥ an ≥ 1. We keep the
notations as in Lemma 3.5.

For ease of reading, we divide the proof into several steps.

Step 1. bc′(Wa) = n − 1. As in the proof of Proposition 1.2, we deduce that a
maximal induced bipartite subgraph H of Wa is an induced subgraph of Wa on
Y ∪ {xi , xj } for some i ̸= j . For such H , we have c(H) = |a| − (ai + aj ) + 1
but c′(H) = n − 1 as {yℓ,1, . . . , yℓ,aℓ

} can be clustered into a bouquet in G for all
ℓ = 1, . . . , n. Thus, bc(Wa) = a3 + · · · + an + 1 and bc′(Wa) = n − 1.

Step 2. depth S/I (Wa)
(s)

≥ n − 1 for all s ≥ 1 and all a such that ai ≥ 1 for
i = 1, . . . , n.

First, assume that s = 1. By Lemma 2.10, depth S/I (Wa) = a2 + · · · + an + 1.
When a1 = · · · = an = 1, the conclusion follows from Proposition 1.2. Thus, we
may assume that s ≥ 2 and a1 ≥ 2. By induction, Lemmas 2.3 and 2.11, it suffices
to prove that

depth S/(I (Wa)
(s), x1 y1,a1) ≥ n − 1.

Let J = I (Wa)
(s). Then (J, x1 y1,a1) = (J, x1)∩(J, y1,a1). Let a′

= (a2, . . . , an)

and Wa′ the whisker graph obtained by gluing ai leaves to the vertex i of the
complete graph on {2, . . . , n}. We have

(J, x1) = (I (Wa′)(s), x1) and (J, x1, y1,a1) = (I (Wa′)(s), x1, y1,a1).
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By Lemma 2.4,

depth S/(J, x1) = a1 + depth R/I (Wa′)(s),

depth S/(J, x1, y1,a1) = a1 − 1 + depth R/I (Wa′)(s),

where R = k[x2, . . . , xn, y2,1, . . . , y2,a2, . . . , yn,1, . . . , yn,an ]. By induction, both
terms are at least n − 1. Finally, we have

(J, y1,a1) = (I (Wa′′ )(s), y1,a1),

where a′′

= (a1 − 1, a2, . . . , an). Hence,

depth S/(J, y1,a1) = depth T/I (Wa′′ )(s),

where T = k[x1, . . . , xn, y1,1, . . . , y1,a1−1, . . . , yn,1, . . . , yn,an ]. Thus, the conclu-
sion of Step 2 follows from induction and Lemma 2.1.

Step 3. depth S/I (Wa)
(s)

≤ n − 1 for all s ≥ n.
By Lemmas 2.2 and 2.11, it suffices to prove that

depth S/I (Wa)
(n)

: (x1 · · · xn) ≤ n − 1.

Let J = I (Wa)
(n)

: (x1 · · · xn). By Lemma 3.5, we have that

J = I (Wa) + (y1,1, . . . , y1,a1)(y2,1, . . . , y2,a2) · · · (yn,1, . . . , yn,an ).

Therefore, the Stanley–Reisner complex 1(J ) of J has exactly n facets

Fi = {xi } ∪ {y j,ℓ | j ̸= i, ℓ = 1, . . . , aj }.

Hence, F1 ∩ · · · ∩ Fn = ∅ and for any j , we have

F1 ∩ · · · ∩ F j−1 ∩ F j+1 ∩ · · · ∩ Fn = {y j,1, . . . , y j,aj }.

Therefore, the nerve complex of 1(J ) is isomorphic to the n − 2-sphere. By
Theorem 2.8, H̃n−2(1(J ); k) ̸= 0. By Lemma 2.7, the conclusion follows. □

Remark 3.6. (1) The notion of maximal bipartite subgraphs of a graph has been
studied by many researchers as early as in [Erdős 1965; Malle 1982]. They are
interested in finding the maximum number of edges of a maximal bipartite subgraph
of G.

(2) In general, the problem of finding a maximum induced bipartite subgraph of a
graph is NP-complete [Lewis and Yannakakis 1980]. Nonetheless, we do not know
if the problem of computing the bipartite connectivity number or restricted bipartite
connectivity number is NP-complete.
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Remark 3.7. (1) The Cohen–Macaulay property, or depth of the edge ideal of a
graph might depend on the characteristic of the base field. For example, consider
the following ideal in [Villarreal 2015, Exercise 5.3.31]:

I = (x1 x3, x1 x4, x1 x7, x1 x10, x1 x11, x2 x4, x2 x5, x2 x8, x2 x10, x2 x11,

x3 x5, x3 x6, x3 x8, x3 x11, x4 x6, x4 x9, x4 x11,

x5 x7, x5 x9, x5 x11, x6 x8, x6 x9, x7 x9, x7 x10, x8 x10).

Then
depth S/I =

{
2 if char k = 2,

3, otherwise.

But depth S/I (s)
= 1 for all s ≥ 2, regardless of the characteristic of the base field k.

(2) By the result of Trung [2016], the stable value of depth of powers of edge ideals
of graphs does not depend on the characteristic of the base field k. If Conjecture 1.4
holds, the stable value of depth of symbolic powers of edge ideals also does not
depend on the characteristic of the base field k. This is in contrast to the asymptotic
behavior of the regularity of (symbolic) powers of edge ideals as [Minh and Vu
2022, Corollary 5.3] shows that the linearity constant of the regularity function of
(symbolic) powers of edge ideals of graphs might depend on the characteristic of
the base field k.

4. Depth of symbolic powers of edge ideals of cycles

In this section, we compute the depth of symbolic powers of edge ideals of cycles.
The purpose of this is twofold. First, together with Proposition 1.2, this gives the
first classes of nonbipartite graphs where one computes explicitly the depth of
symbolic powers of their edge ideals. Second, this shows that the stabilization index
of depth of symbolic powers of G is tightly connected to the stabilization index of
depth of powers of maximal induced bipartite subgraphs of G.

We fix the following notation. Let S = k[x1, . . . , xn] and Cn be a cycle of
length n. For each i = 1, . . . , n − 1, we denote ei = xi xi+1. Let

ϕ(n, t) =

⌈
n−t+1

3

⌉
.

We recall the following results (Lemmas 3.4, 3.10, 3.11, and Theorem 1.1) from
[Minh et al. 2023].

Lemma 4.1. Let H be any subgraph of Pn . Then, for any positive integer t with
t < n, we have that

depth
(
S/(I (Pn)

t
+ I (H))

)
≥ ϕ(n, t).

Lemma 4.2. Let H be a nonempty subgraph of Cn . Then for t ≥ 2, we have that

depth
(
S/(I (Cn)

t
+ I (H))

)
≥ ϕ(n, t).
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Lemma 4.3. Assume that I = I (Cn) and t ≤ n − 2. Then

depth
(
S/(I t

: (e2 · · · et))
)
≤ ϕ(n, t).

Theorem 4.4. Let I (Cn) be the edge ideal of a cycle of length n ≥ 5. Then

depth(S/I (Cn)
t) =


⌈n−1

3

⌉
if t = 1,⌈n−t+1

3

⌉
if 2 ≤ t <

⌈ n+1
2

⌉
,

1 if n is even and t ≥
n
2 + 1,

0 if n is odd and t ≥
n+1

2 .

Now, assume that n = 2k + 1 where k ≥ 2 is a positive integer. For a positive
integer s ∈ N, we write s = a(k + 1) + b for some a, b ∈ N and 0 ≤ b ≤ k. Let
f = x1 · · · xn . By [Gu et al. 2020, Theorem 3.4], we have

(4-1) I (Cn)
(s)

=

a∑
j=0

I (Cn)
s− j (k+1) f j .

We now establish some preparation results.

Lemma 4.5. Assume that I = I (Cn), ei = xi xi+1 for all i = 1, . . . , n − 1. Then
for all s ≤ n − 2, we have

depth S/I (s)
≤ depth S/(I (s)

: e2 · · · es−1) ≤ ϕ(n, s).

Proof. Let f = x1 · · · xn . By (4-1), we have that I (s)
= I s when s ≤ k. Now, assume

that k + 1 ≤ s ≤ n − 2 = 2k − 1. By (4-1), we have that

I (s)
= I s

+ f I s−k−1.

Since f/gcd( f, e2 · · · es−1) ∈ I ⊆ I s
: (e2 · · · es−1), we deduce that

I (s)
: (e2 · · · es−1) = I s

: (e2 · · · es−1).

The conclusion follows from Lemma 4.3. □

Lemma 4.6. Let f = x1 · · · xn . Then for all integer s such that k + 1 ≤ s ≤ n − 2,

I (s)
: f = I s−k−1.

Proof. Let p1, . . . , pt be the associated primes of I . Then

I (s)
= ps

1 ∩ · · · ∩ ps
t .

Since pi is generated by k +1 variables for all i = 1, . . . , t , we have ps
i : f = ps−k−1

i .
Hence, I (s)

: f = I (s−k−1)
= I s−k−1 since s ≤ 2k − 1. □

We are now ready for the proof of Theorem 1.6.
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Proof of Theorem 1.6. By (4-1) and Theorem 4.4, it remains to consider the cases
where k + 1 ≤ s ≤ 2k − 1. Let f = x1 · · · xn . By Lemmas 2.3, 4.5, 4.6, and
Theorem 4.4, it suffices to prove that

(4-2) depth(S/(I (s)
+ f )) ≥ ϕ(n, s).

Write f = e1 f1 where f1 = x3 · · · xn . We have I (s)
+ f = (I (s), e1)∩(I (s), f1). For

each i = 1, . . . , k −1, we can write fi = e2i+1 fi+1. By repeated use of Lemma 2.1
and the fact that for any subgraph H of Cn we have

I (s)
+ I (H) + fi = (I (s)

+ I (H) + (e2i+1)) ∩ (I (s)
+ I (H) + ( fi+1)).

It suffices to prove the following two claims.

Claim 1. For any nonempty subgraph H of Cn , we have

depth S/(I (s)
+ I (H)) ≥ ϕ(n, s).

Claim 2. For any (possibly empty) subgraph H of Cn , we have

depth
(
S/(I (s)

+ I (H) + (xn−2xn−1xn))
)
≥ ϕ(n, s).

Proof of Claim 1. Since k + 1 ≤ s ≤ 2k − 1, by (4-1), we have that

I (s)
= I s

+ f I s−k−1.

For any nonempty subgraph H of Cn , we have f ∈ I (H). Therefore, we have
I (s)

+ I (H) = I s
+ I (H). The conclusion follows from Lemma 4.2.

Proof of Claim 2. Let J = I (s)
+ I (H) + (xn−2 xn−1 xn) and e = xn−2 xn−1. Note

that J + (e) can be expressed as I (s)
+ I (H1) for some subgraph H1 of Cn and

J : e = I (Pn−1)
s−1

+ I (H ′) + (xn) where H ′ is a subgraph of Pn−1. The claim
follows from Lemma 2.3, Claim 1, and Lemma 4.1. The conclusion follows. □

Remark 4.7. For cycles C2k of even length, by the result of Simis, Vasconcelos,
and Villarreal [1994], I (C2k)

(s)
= I (C2k)

s for all s ≥ 1. The depth of powers of
the edge ideal of C2k has been computed in [Minh et al. 2023, Theorem 1.1].
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COLLAPSED LIMITS OF
COMPACT HEISENBERG MANIFOLDS

WITH SUB-RIEMANNIAN METRICS

KENSHIRO TASHIRO

We show that every collapsed Gromov–Hausdorff limit of compact Heisenberg
manifolds endowed with left-invariant Riemannian/sub-Riemannian metrics is
isometric to a flat torus. We say that a sequence of sub-Riemannian manifolds
collapses if their total measure with respect to Popp’s volume converges to zero.

1. Introduction

A sub-Riemannian manifold is a triple (M,D, g), where M is a smooth manifold,
D is a subbundle of the tangent bundle, and g is a metric on D. In the same way to
Riemannian manifolds, we can put a length structure and the associated distance
function on bracket generating sub-Riemannian manifolds (see Definition 2.2).
Sub-Riemannian manifolds appear as Gromov–Hausdorff limits of sequences of
Riemannian manifolds. In general their sectional, Ricci and scalar curvature diverge
as they converge to (non-Riemannian) sub-Riemannian manifolds. However some
sub-Riemannian manifolds have the measure contraction property which reflects
the Ricci curvature lower bound in a sense [Juillet 2009; Rifford 2013; Rizzi 2016;
Barilari and Rizzi 2018]. These results lead us to study sub-Riemannian manifolds
as examples of the singular Gromov–Hausdorff limit spaces.

In [Tashiro 2020], the author began to study the topological type of the Gromov–
Hausdorff limit space of a sequence of (sub-)Riemannian manifolds. Here we use the
notation (sub-)Riemannian metrics to cover both Riemannian and (non-Riemannian)
sub-Riemannian metrics. Let Hn be the n-Heisenberg Lie group, hn the associated
Lie algebra, and 0 a lattice in Hn . A quotient space 0\Hn is called a compact
Heisenberg manifold. Let v be a subspace in hn and ⟨ ·, · ⟩ a scalar product on v.
It induces the left-invariant sub-Riemannian structure on Hn . Since the induced
geodesic distance on Hn has the isometric action 0 from the left, we obtain a quotient
distance on 0\Hn . We also call such a quotient distance on 0\Hn left-invariant.
The author studied noncollapsed limits of compact Heisenberg manifolds with left-
invariant (sub-)Riemannian metrics. Here we say that a sequence is noncollapsed if
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the total measure with respect to Popp’s volume have a strictly positive lower bound.
Popp’s volume is a generalization of a canonical volume form of a Riemannian
manifold (see Section 2C). We showed that the noncollapsed limit of a sequence of
compact Heisenberg manifolds with left-invariant (sub-)Riemannian metrics are
again diffeomorphic to a compact Heisenberg manifold of the same dimension.

In this paper, we study collapsed Gromov–Hausdorff limits of compact Heisenberg
manifolds with left-invariant (sub-)Riemannian metrics. We say that a sequence of
(sub-)Riemannian manifolds collapses if the total measure with respect to Popp’s
volume converges to zero. It complements our previous result [Tashiro 2020].

Theorem 1.1 (Main result). Let {(0k\Hn, distk)}k∈N be a sequence of compact
Heisenberg manifolds endowed with left-invariant (sub-)Riemannian metrics. As-
sume that this sequence converges in the Gromov–Hausdorff topology with a di-
ameter upper bound D > 0 and the total measure with respect to Popp’s measure
converges to zero. Then the limit space is isometric to a flat torus of lower dimension.

The idea of the proof is the following. It is well known that a compact Heisenberg
manifold has a circle bundle structure S1

→ 0\Hn → T2n . We show that if a
sequence collapses, then the circle fiber also collapses to a point. Once we show
that the fibers collapse, then the Gromov–Hausdorff limit is isometric to the limit
of the base tori with the quotient distances. It is also known that a Gromov–
Hausdorff limit of tori with flat metrics is isometric to a flat torus [Bettiol et al.
2018, Proposition 3.1]. This concludes the theorem.

2. Preliminaries from sub-Riemannian Lie group

In this section we prepare notation on sub-Riemannian metrics on Lie groups.

2A. Sub-Riemannian structure. Let G be a connected Lie group, g the associated
Lie algebra, v ⊂ g a subspace and ⟨ ·, · ⟩ a scalar product on v. For x ∈ G, denote
by L x : G → G the left translation by x . Define a sub-Riemannian metric on G by

Dx = L x∗v, gx(u, v) = ⟨L−1
x∗

u, L−1
x∗

v⟩.

Such a sub-Riemannian metric (D, g) is called left-invariant. We sometimes write
a left-invariant sub-Riemannian metric by (v, ⟨ ·, · ⟩). Moreover, if dim(g/v) = k,
we say that a sub-Riemannian metric (v, ⟨ ·, · ⟩) is corank k. Notice that if v = g,
i.e., corank 0, then (g, ⟨ ·, · ⟩) is a Riemannian metric.

Remark 2.1. From now on we shall declare the corank of sub-Riemannian metrics.
If we do not declare the corank, then the word “sub-Riemannian metric” cover
sub-Riemannian metrics of all corank.
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For simplicity, we shall consider a Lie group with a left-invariant sub-Riemannian
metric (G, v, ⟨ ·, · ⟩). The associated distance function is given as follows. We say
that an absolutely continuous path c : [0, 1] → G is admissible if ċ(t) ∈ Lc(t)∗v a.e.
t ∈ [0, 1]. We define the length of an admissible path by

length(c) =

∫ 1

0

√
⟨ċ(t), ċ(t)⟩ dt.

For x, y ∈ G, define the distance function by

dist(x, y) = inf{length(c) | c(0) = x, c(1) = y, c is admissible}.

In general not every pair of points in G is joined by an admissible path. This
implies that the value of the function dist may be the infinity. The following bracket
generating condition ensures that any two points are joined by an admissible path.

Definition 2.2 (bracket generating distribution). For a sub-Riemannian Lie group
(G, v, ⟨ ·, · ⟩) and an integer i ∈ N, let vi be the subspace in g inductively defined by

v1
= v, vi+1

= v+ [v, vi
].

We say that a subspace v is bracket generating if there is r ∈ N such that vr
= g.

We say (G, v, ⟨ ·, · ⟩) is r -step if vr−1 ⊊ vr
= g.

Theorem 2.3 (See, e.g., Theorem 3.31 in [Agrachev et al. 2020]). Let (G, v, ⟨ ·, · ⟩)

be a sub-Riemannian Lie group with a bracket generating distribution. Then the
following two assertions hold:

(1) (G, dist) is a metric space.

(2) The topology induced by dist is equivalent to the manifold topology.

In particular, dist : G × G → R is continuous.

Remark 2.4. Since the sub-Riemannian structure is left-invariant, the distance
function is also left-invariant, that is, dist(hx, hy) = dist(x, y) for all h, x, y ∈ G.

2B. Length minimizer. In sub-Riemannian geometry, there are two types of length
minimizers; normal geodesics and abnormal geodesics. Normal geodesics are
characterized as solutions to a specific differential equation, called the Hamiltonian
equation. On the other hand, abnormal geodesics are not solutions to that equation.
It sometimes appear in sub-Riemannian geometry, however, it is known that there
is no nontrivial (i.e., nonconstant) abnormal geodesic if v is fat (see [Montgomery
2002]). Here we say that a bracket generating subspace v ⊂ hn is fat if for all
U ∈ v \ {0}, we have v+[U, v] = g. In the next section, we shall check that if G is
the Heisenberg group, then every bracket generating subspace is fat. Therefore we
omit the explanation of abnormal geodesics.
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We say that a basis {U1, . . . , Un} of g is adapted if {U1, . . . , Um} is an orthonor-
mal basis of a sub-Riemannian metric (v, ⟨ ·, · ⟩). Let H : T ∗G → R be the function
defined by

H(λ) =
1
2

m∑
i=1

p(L x∗Ui )
2 (λ = (x, p) ∈ T ∗G).

This function is called the sub-Riemannian Hamiltonian.
We say that a Lipschitz curve λ = (x, p) : [0, T ] → T ∗G is a solution to the

Hamiltonian equation if it satisfies

(1) ẋ(t) =
∂ H
∂p

, ṗ(t) = −
∂ H
∂x

.

Such a curve λ(t) is called a normal extremal, and its projection x(t) is called a
normal geodesic. It is known that every minimizer in sub-Riemannian manifold is
either normal or abnormal geodesic. In particular, if a subspace v is fat, then any
length minimizer is a normal geodesic.

2C. Popp’s volume. On a Riemannian Lie group (G, g), one has a canonical
volume form defined by

dvolR = ν1 ∧ · · · ∧ νn,

where {ν1, · · · νn} is a dual coframe of an orthonormal basis. The induced measure
m(�) :=

∣∣∫
�

dvolR
∣∣ (� ⊂ G) is called the volume measure.

In sub-Riemannian geometry, we also have a canonical volume form, called
Popp’s volume introduced in [Montgomery 2002]. For simplicity, we only consider
the 2-step case.

We do not introduce the original definition of Popp’s volume, however, we define
it with local coordinates given in [Barilari and Rizzi 2013]. Let U1, . . . , Un be an
adapted frame. Define the constant cl

i j by

[Ui , U j ] =

n∑
l=1

cl
i jUl .

We call them the structure constants. We define the (n − m) square matrix B by

Bhl =

m∑
i, j=1

ch
i j c

l
i j .

Theorem 2.5 [Barilari and Rizzi 2013, Theorem 1]. Let U1, . . . , Un be a local
adapted frame, and ν1, . . . , νn the dual coframe. Then Popp’s volume dvols R is
locally written by

dvols R = (det B)−
1
2 ν1

∧ · · · ∧ νn.

The induced measure m(�) :=
∣∣∫

�
dvols R

∣∣ (� ⊂ G) is called Popp’s measure.
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Remark 2.6. If a sub-Riemannian metric is corank 0, i.e., 1-step, then Popp’s
volume coincides with the canonical volume form. Indeed, an adapted frame of
corank 0 sub-Riemannian metric is an orthonormal basis.

3. Compact Heisenberg manifolds

In this section, we recall fundamental properties on compact Heisenberg manifolds.

3A. Heisenberg groups. For n ∈ N, the n-Heisenberg group Hn is the (2n+1)-
dimensional Lie group diffeomorphic to Cn

× R with the group product law

(w, z)(w′, z′) =
(
w + w′, z + z′

+
1
2Im(w · w′)

)
,

where w · w′ is the Hermitian product on Cn and Im denotes the imaginary part.
We shall denote the associated Lie algebra by hn .

We fix the coordinates of Hn ≃ Cn
× R by

(w, z) = (x1, . . . , xn, y1, . . . , yn, z),

where w = x⃗ + y⃗
√

−1. We also fix the basis {X1, . . . , Xn, Y1, . . . , Yn, Z} of the
Lie algebra hn by

X i = ∂xi −
1
2 yi∂z, Yi = ∂yi +

1
2 xi∂z, Z = ∂z.

A straightforward computation shows that [X i , Yi ] = Z for all i = 1, . . . , n and the
other brackets are zero.

For U ∈ hn , let φt
U : Hn → Hn be the flow of the vector field U at time t . The

exponential map exp : hn → Hn is defined by exp(U ) := φ1
U (e), where e is the

identity element. It is well defined since a left-invariant vector field is complete. It is
well known that the exponential map on the Heisenberg group is a diffeomorphism.
This fact allows us to identify the Heisenberg group Hn to its Lie algebra hn by

exp : hn ∋

n∑
i=1

(xi X i + yi Yi ) + zZ ∼
7−→ (x1, . . . , xn, y1, . . . , yn, z) ∈ Hn.

Let (v, ⟨ ·, · ⟩) be a left-invariant sub-Riemannian metric on Hn . A subspace v is
bracket generating if and only if

(2) v+ Span(Z) = hn.

In particular, the corank of a bracket generating subspace is 0 or 1. From now on
we always assume the bracket generating condition (2). Moreover, by (2), we can
easily check that if a subspace v ⊂ hn satisfies bracket generating condition, then it
is fat. Therefore the sub-Riemannian Heisenberg group does not have nontrivial
abnormal minimizers.
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Let 0 < Hn be a lattice in Hn , that is, a discrete cocompact subgroup. Since a sub-
Riemannian metric (v, ⟨ ·, · ⟩) is left-invariant, the left multiplication by 0 induces
an isometric action on Hn . Therefore we can define the sub-Riemannian metric
on 0\Hn via the quotient map. We shall denote such a quotient sub-Riemannian
metric on 0\Hn by dist.

3B. Isometry classes of compact Heisenberg manifolds. In this section, we con-
sider isometry classes of left-invariant sub-Riemannian metrics on a compact
Heisenberg manifold 0\Hn . The detail is in [Tashiro 2020].

First of all, we recall the isomorphism classes of compact Heisenberg manifolds.
Let Dn be the set of n-tuples of integers r = (r1, . . . , rn) such that ri divides ri+1

for all i = 1, . . . , n. For r ∈ Dn , let 0r < Hn be the discrete subgroup defined by

0r = ⟨r1 X1, . . . , rn Xn, Y1, . . . , Yn, Z⟩.

This gives a classification of lattices in the Heisenberg Lie group.

Theorem 3.1 [Gordon and Wilson 1986, Theorem 2.4]. For any uniform lattice
0 < Hn , there is an automorphism of Hn which sends 0 onto 0r for some r ∈ Dn .
Moreover, 0r is isomorphic to 0s if and only if r = s.

Next we consider isometry classes of 0r\Hn for a fixed lattice 0r . Fix a scalar
product ⟨ ·, · ⟩0 on hn such that its orthonormal basis is {X1, . . . , Yn, Z}. Let A be a
matrix of the form

A =

(
Ã 0
0 ρA

)
,

where Ã ∈GL2n(R) and ρA ∈ R. Moreover let Jn ∈Skew2n(R) be a skew-symmetric
matrix given by

Jn =

(
O In

−In O

)
,

where In is the identity matrix of size n. We say that a matrix A is of canonical
form if

t Ã Jn Ã =

(
O diag(d1(A), . . . , dn(A))

− diag(d1(A), . . . , dn(A)) O

)
,

where d1(A), . . . , dn(A) are nondecreasing positive numbers such that the imaginary
numbers ±

√
−1d1, . . . , ±

√
−1dn are the eigenvalues of tÃ Jn Ã.

For a matrix A of canonical form, define the scalar product ⟨ ·, · ⟩A on Im(A) by
the norm

∥u∥A := min{∥w∥0 | u = Aw}.
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It is equivalent to the following definition: ⟨ ·, · ⟩A is the scalar product which has
an orthonormal basis { ÃX1, . . . , ÃYn, ρA Z}. A pair (Im(A), ⟨ ·, · ⟩A) gives a sub-
Riemannian metric on Hn of corank 0 (resp. corank 1) if ρA ̸= 0 (resp. ρA = 0). If
ρA = 0, then the subspace Im(A) is v0, where

v0 := Span{X1, . . . , Xn, Y1, . . . , Yn}.

These types of metrics cover all isometry classes of left invariant (sub-)Riemannian
metrics on compact Heisenberg manifolds.

Theorem 3.2 [Tashiro 2020, Theorem 3.4]. For any compact Heisenberg manifold
with a bracket generating left-invariant sub-Riemannian metric (0\Hn, v, ⟨ ·, · ⟩),
there exists an n-tuple r ∈ Dn and a matrix A of canonical form such that
(0r\Hn, Im(A), ⟨ ·, · ⟩A) is isometric to (0\Hn, v, ⟨ ·, · ⟩).

We shall denote the induced left-invariant distance function on Hn by distA and
a quotient distance on 0\Hn by distA.

3C. j -operator. We recall the j-operator which plays an important role in the
study of nilpotent Lie groups. Let Z∗

∈ h∗
n be the dual covector of the vector

Z ∈ [hn, hn] ⊂ hn . For a matrix A of canonical form, define a skew symmetric
operator j (A) : v0 → v0 by

⟨ j (A)(X), Y ⟩A = Z∗([X, Y ]).

Lemma 3.3 [Tashiro 2020, Lemma 4.1]. The operator j (A) : v0 → v0 has a matrix
representation tÃ Jn Ã in the basis {AX1, . . . , AXn, AY1, . . . , AYn}.

The positive number dn can be regarded as the ℓ∞-norm of the matrix tÃ Jn Ã
as an element in the Euclidean space R4n2

. We also mention its ℓ2-norm, the
Hilbert–Schmidt norm of matrices.

Definition 3.4. For a matrix A of canonical form, we define δ(A) = ∥
tÃ Jn Ã∥H S .

The following lemma is useful for later calculations.

Lemma 3.5 [Tashiro 2020, Lemma 5.1]. For a matrix A of canonical form, we have

(1) δ(A) =

√
2

∑n
i=1 di (A)2,

(2) |det( Ã)| =
∏n

i=1 di (A).

3D. Geodesics on Heisenberg groups. Let A be a matrix of canonical form. For
i = 1, . . . , n, define the functions hxi , h yi , hz : T ∗Hn → R by

hxi (λ) = p(Lg∗ AX i ), h yi (λ) = p(Lg∗ AYi ), hz(p) = p(Lg∗Z)
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for λ = (g, p) ∈ T ∗Hn . Suppose that an admissible path

γ (t) =

n∑
i=1

xi (t)AX i + yi (t)AYi + z(t)Z

is length minimizing. By the Hamiltonian equation (1) with a linear modification,
there is a lift λ(t) of γ (t) such that

ḣxi = di (A)hzh yi (i = 1, . . . , n),

ḣ yi = −di (A)hzhxi (i = 1, . . . , n),

ḣz = 0,

ẋi = hxi (i = 1, . . . , n),

ẏi = h yi (i = 1, . . . , n),

ż =
1
2

∑n
i=1 di (A)(xi h yi − yi hxi ) + ρ2

A pz,

where we write

hxi (t) = hxi ◦ λ(t), h yi (t) = h yi ◦ λ(t), hz(t) = hz ◦ λ(t).

By proving this equation, we obtain the following parametrization of length mini-
mizers.

Lemma 3.6 ([Eberlein 1994, Proposition 3.5] for corank 0 and [Rizzi 2016,
Lemma 14] for corank 1 cases). Let A be a matrix of canonical form and λ : [0, T ]→

T ∗Hn be the normal extremal with the initial data

(hx1(0), . . . , h yn (0), hz(0)) = (px1, . . . , pyn , pz) ∈ T ∗

e Hn = h∗

n.

Then the associated normal geodesic γ is given as follows.
If pz ̸= 0, then(

xi (t)
yi (t)

)
=

1
pzdi (A)

(
sin(pzdi (A)t) cos(pzdi (A)t) − 1

− cos(pzdi (A)t) + 1 sin(pzdi (A)t)

) (
pxi

pyi

)
,

z(t) = ρ2
A pzt +

1
2pz

n∑
i=1

(
t −

1
pzdi (A)

sin(pzdi (A)t)
)

(p2
xi

+ p2
yi
).

Moreover, the normal geodesic fails to be length minimizing over the time

T =
2π

|pz|dim (A)
,

where im ∈ {1, . . . , n} is the minimum integer such that (pxi , pyi ) ̸= (0, 0).
If pz = 0, then (

xi (t)
yi (t)

)
=

(
pxi

pyi

)
t, z(t) ≡ 0.
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Remark 3.7. The initial data (px1, . . . , pyn ) is identified with the projection of
initial vector into v0 ⊂ hn = TeHn via the identification

R2n
∋ (px1, . . . , pyn ) ≃

n∑
i=1

(pxi AX i + pyi AYi ) ∈ v0.

For later arguments, we give an explicit distance from the identity to points in
the horizontal direction and the vertical direction.

Lemma 3.8 ([Eberlein 1994, Proposition 3.11] for corank 0 and [Tashiro 2020,
Lemma 5.2] for corank 1 cases). For U ∈ v0 and V ∈ [hn, hn], we have

distA(e, U + V ) ≥ ∥U∥A.

Moreover, the equality holds if and only if V = 0.

Lemma 3.9. For z0 ∈ R, the distance from e to z0 Z = (0, . . . , 0, z0)∈ Hn is given by

distA(e, z0 Z) = min
{∣∣∣∣ z

ρA

∣∣∣∣ , 2
dn(A)

√
|z0|πdn(A) − π2ρ2

A

}
,

with the convention
∣∣∣ z0

ρA

∣∣∣ = +∞ if ρA = 0,

2
dn(A)

√
|z0|πdn(A) − π2ρ2

A = +∞ if |z0|πdn(A) − π2ρ2
A < 0.

Proof. For the simplicity we assume z0 > 0. First let us consider a unit speed
geodesic of the initial data (0, . . . , 0, pz). Then a unit speed normal geodesic
γ : [0, T ] → Hn with γ (T ) = z0 Z needs to satisfy{

z(T ) = ρ2
A pzT = z0,

|pzρA| = 1

Then the length is equal to the time T = |z0/ρA| with the convention |z0/ρA| = +∞

if ρA = 0, i.e., sub-Riemannian metric of corank 1.
Next we consider geodesics of the initial data (px1, . . . , pyn ) ̸= 0. Since the

endpoint z0 Z is in the center [hn, hn], the initial data (px1, . . . , pyn ) ∈ R2q
≃ v0

need to be inside the eigenspace of ±
√

di (A) of jA (with the multiplicity), where
we use the identification

R2n
∋ (px1, . . . , pyn ) ≃

n∑
i=1

(pxi AX i + pyi AYi ) ∈ v0.

Indeed, by the parametrization of xi (t), yi (t) in Lemma 3.6, the geodesic ends at
[hn, hn] only if the frequency of the trigonometric function is the same. Moreover,
its length T = 2π/(|pz|di (A)) is independent of the choice of the initial data
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(px1, . . . , pyn ) as long as it belongs to the same eigenspace. Therefore we can
assume that the initial covector is (0, . . . , 0, pyi , 0, . . . , 0, pz). If such a normal
geodesic is unit speed and its endpoint is z0 Z , then it needs to satisfyz(T ) =

2πρ2
A

di (A)
+

π

p2
z di (A)

p2
yi

= z0,

p2
yi

+ (ρA pz)
2
= 1.

This equation has a solution only if z0 ≥ 2πρ2
A/di (A) with

pyi =

√
z0di (A) − 2πρ2

A

z0di (A) − πρ2
A

, pz =

√
π

z0di (A) − πρ2
A
.

Its length is
2π

pzdi (A)
=

2
√

π

di (A)

√
z0di (A) − πρ2

A.

Therefore the distance from e to z0 Z = (0, . . . , 0, z0) is the minimum of two values

min
{∣∣∣∣ z0

ρA

∣∣∣∣ , 2
√

π

d1(A)

√
z0d1(A) − πρ2

A, . . . ,
2
√

π

dn(A)

√
z0dn(A) − πρ2

A

}
= min

{∣∣∣∣ z0

ρA

∣∣∣∣ , 2
√

π

dn(A)

√
z0dn(A) − πρ2

A

}
,

where we use d1(A) ≤ · · · ≤ dn(A). □

3E. Popp’s volume form on Heisenberg group. In this section, we discuss Popp’s
volume form on the Heisenberg Lie group.

For a matrix A of canonical form with ρA ̸= 0, denote by dvolR(A) the canon-
ical Riemannian volume form. Since it is the wedge of the dual coframe of an
orthonormal frame, we have

dvolR(A) = ρ−1
A (det Ã)−1 X∗

1 ∧ · · · ∧ Y ∗

n ∧ Z∗.

In particular, the total measure of a Riemannian compact Heisenberg manifold
(0r\Hn, ⟨ ·, · ⟩A) is

(3) meas(0r\Hn, ⟨ ·, · ⟩A) :=

∣∣∣∣∫
0r\Hn

dvolR(A)

∣∣∣∣ =

n∏
i=1

ri |ρ
−1
A (det Ã)−1

|.

Next let A be a matrix of canonical form with ρA = 0. Denote by dvols R(A) Popp’s
volume associated to the sub-Riemannian metric (v0, ⟨ ·, · ⟩A).
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By the definition, the (i, j)-th entry of the matrix t Ã Jn Ã is the structure con-
stant ci j of the basis {AX1, . . . , AYn}, that is(

Z∗([AX i , AX j ]) Z∗([AX i , AY j−n])

Z∗([AYi−n, AX j ]) Z∗([AYi−n, AY j−n])

)
= (ci j ) =

t Ã Jn Ã =

(
O diag(d1(A), . . . , dn(A))

− diag(d1(A), . . . , dn(A)) O

)
.

By Theorem 2.5, Popp’s volume dvols R(A) is written by

dvols R(A) = δ(A)−1(det Ã)−1 X∗

1 ∧ · · · ∧ Y ∗

n ∧ Z∗.

In particular, the total measure of a sub-Riemannian compact Heisenberg
manifold (0r\Hn, v0, ⟨ ·, · ⟩A) is

(4) meas(0r\Hn, v0, ⟨ ·, · ⟩A) :=

∣∣∣∣∫
0r\Hn

dvols R(A)

∣∣∣∣ =

n∏
i=1

ri |δ(A)−1(det Ã)−1
|.

3F. The circle bundle structure. Fix a n-tuple of numbers r ∈ Dn . We recall a circle
bundle structure of a compact Heisenberg manifold 0r\Hn . Let P : Hn → hn → v0

be the composition of the logarithm map and the projection. Denote the image
of the lattice 0r by zr , which is again a lattice in v0 isomorphic to Z2n . Then one
obtains a surjective map P : 0r\Hn → zr\v0 such that the following diagram is
commutative:

Hn
P //

P0r

��

v0

Pzr

��

0r\Hn
P // zr\v0

Here the vertical arrows are the quotient map. The compact Heisenberg manifold
0r\Hn has a circle bundle structure by this map P . For each b ∈ zr\v0, we denote
by Fb the fiber over b.

Remark 3.10. Since a sub-Riemannian metric ⟨ ·, · ⟩A is left-invariant, the diameter
of a fiber is independent of the choice of a base point b. We shall denote the
diameter of a fiber by diam(FA).

The quotient metric on v0 has an orthonormal basis { ÃX1, . . . , ÃX2n}. Therefore
we shall denote the induced distance on v0 by dist Ã, and the quotient distance
on zr\v0 by dist Ã. In the next section, we use the circle bundle structure to show
that the Gromov–Hausdorff limit of compact Heisenberg manifolds is isometric to
that of the base flat tori.
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4. Gromov–Hausdorff limits of compact Heisenberg manifolds

4A. Collapse of the circle fiber. We say that a sequence of compact metric spaces
{Mk} converges to a compact metric space N if the Gromov–Hausdorff distance
dG H (Mk, N ) converges to 0. We do not use the original definition of dG H since it
is complicated. Instead of the original definition, we use the ϵ-approximation map
which is easier to compute.

Definition 4.1 [Fukaya 1990, Definition 1.1]. Let (M, dM), (N , dN ) be a compact
path metric spaces. For ϵ > 0, we say a map φ : M → N is an ϵ-Hausdorff
approximation if it satisfies the following:

(i) The ϵ neighborhood of φ(M) in N is N .

(ii) For u, v ∈ M . we have

|dM(u, v)− dN (φ(u), φ(v))| < ϵ.

It is known that if there is ϵ-Hausdorff approximation map between M, N , then
dG H (M, N ) < 2ϵ. Therefore if a metric space Mk has an ϵk-approximation to N
such that ϵk → 0, then the sequence {Mk} converges to N in the Gromov–Hausdorff
topology.

We can check that the quotient map P is an ϵ-approximation with ϵ equal to the
diameter of the fiber.

Lemma 4.2. The quotient map P : (0r\Hn, distA)→ zr\(v0, dist Ã) is a 2 diam(FA)-
approximation map.

Proof. Since the map P is surjective, we only need to check the almost isometric
embeddability (Definition 4.1(ii)).

Let u1, u2 ∈ 0r\Hn be points in the compact Heisenberg manifold. By definition
of the distance on the quotient space, there are v1, v2 ∈ 0r\Hn such that

distA(v1, v2) = dist Ã(P(u1), P(u2)).

By the triangle inequality, we have

|distA(u1, u2) − dist Ã(P(u1), P(u2))| ≤ distA(u1, v1) + distA(u2, v2)

≤ 2 diam(F).

This proves almost isometric embeddability. □

Proposition 4.3. Let (0r(k)\Hn, distAk ) be a sequence of compact Heisenberg mani-
folds which has a uniform upper bound of the diameter. Assume that the diameter of
the fibers diam(FAk ) converges to 0. Then its Gromov–Hausdorff limit is isometric
to that of base flat tori (zr\v0, dist Ãk

).
In particular, the limit is isometric to a flat torus of lower dimension.



COLLAPSED LIMITS OF HEISENBERG COMPACT MANIFOLDS 177

Proof. Since the diameter of the base flat tori is also uniformly bounded, we
can assume that the sequence of base flat tori subconverges to a flat torus (N , d)

(possibly a point). It is a consequence of [Bettiol et al. 2018, Proposition 3.1]. Then
there are ϵk-approximation map ϕk : (zr\v0, dist Ãk

) → (N , d). By Lemma 4.2, the
composition ϕk ◦ P is (2 diam(FAk ) + ϵk)-approximation. By the assumption, the
Gromov–Hausdorff limit of (0r(k)\Hn, distAk ) is isometric to (N , d). □

4B. Collapse of the fiber. Let {(0r(k)\Hn, distAk )} be a sequence of compact sub-
Riemannian Heisenberg manifolds with the diameter upper bound by D > 0. In
this section, we show that if the sequence collapses, then the diameter of the circle
fibers converge to zero.

The fiber over b ∈ zr\v0 is written by Fb = {0r(k)z0 Z · hb | z0 ∈ R}, where we
fix hb ∈ P−1

0r(k)
(P−1(b)) ⊂ Hn . In particular, the subset {z0 Z · hb | z0 ∈ [0, 1)} ⊂ Hn

is a representative of Fb. By the left-invariance of the restricted distance on Fb, its
diameter is the distance from hb to 1

2 Z · hb and is independent of the choice of hb.
The above argument shows the following lemma.

Lemma 4.4. The diameter of the fibers diam(FAk ) is given by

diam(FAk ) = distAk

(
e, 1

2 Z
)
.

Let us pass to the estimate of the diameter. First we consider a sequence
{0r(k)}k∈N such that r(k1) ̸= r(k2) for any k1 ̸= k2. This implies that the sequence
of numbers {rn(k)} diverges.

Proposition 4.5. Assume that diam(0r(k)\Hn, ⟨ ·, · ⟩Ak ) ≤ D and rn(k) diverge to
the infinity. Then the diameter of the fibers diam(FAk ) converge to zero.

Proof. Let γn,k =
1
2rn(k)Xn ∈ Hn . Since γn,k is on the plane v0, by Lemma 3.8,

a length minimizer from e to γn,k in Hn is the straight segment ℓ(t) := t Xn ,
t ∈

[
0, 1

2rn(k)
]
. Moreover its projection by P0r(k)

is a length minimizer from
0r(k)e to 0r(k)γn,k . Indeed, any element in 0r(k)γn,k is written by

rn(k)
(
m +

1
2

)
Xn + E,

where m ∈ Z and E is an element in hn ≃ Hn transverse to Xn . Clearly a length
minimizer from 0r(k)e to 0r(k)γn,k is realized when

m = 0, −1 and E = 0.

This shows that the projection of the straight segment ℓ(t) is length minimizing
in 0r\Hn .

Since the length of the straight segment ℓ(t) is
∥∥1

2rn(k)Xn
∥∥

Ak
, we obtain

(5)
∥∥1

2rn(k)Xn
∥∥

Ak
= distAk (e, γn,k) = distAk (0r(k)e, 0r(k)γn,k)

≤ diam(0r(k)\Hn, distAk ) ≤ D.
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By the same argument we also show that

(6)
∥∥1

2 Yn
∥∥

Ak
≤ D.

On the other hand, let c : [0, 4] → Hn be a path inductively defined by

c(t) =



−t
√

rn(k)

2
Xn for t ∈ [0, 1],

c(1) ·

(
−(t − 1)

1
√

2rn(k)
Yn

)
for t ∈ [1, 2],

c(2) ·

(
(t − 2)

√
rn(k)

2
Xn

)
for t ∈ [2, 3],

c(3) ·

(
(t − 3)

1
√

2rn(k)
Yn

)
for t ∈ [3, 4].

The endpoint of c is c(4) =
1
2 Z , and the length is

length(c) = ∥

√
2rn(k)Xn∥Ak +

∥∥∥∥√
2

rn(k)
Yn

∥∥∥∥
Ak

=

√
2rn(k)∥Xn∥Ak +

√
2

rn(k)
∥Yn∥Ak

≤

√
2rn(k)

2D
rn(k)

+

√
2

rn(k)
2D

=
4
√

2D
√

rn(k)
.

Here the third inequality follows from (5) and (6). Hence we obtain

diam(FAk ) = distAk

(
e, 1

2 Z
)
≤ length(c) ≤

4
√

2D
√

rn(k)
.

Since rn(k) diverges to the infinity, the diameters of the fibers converge to zero. □

Next we consider a sequence consisting of a fixed isomorphism type 0r\Hn . We
start from Riemannian case.

Proposition 4.6. Let {0r\Hn, distAk } be a sequence of compact Heisenberg man-
ifolds with left-invariant Riemannian metrics with the diameter upper bound. If
the total measure in the canonical Riemannian volume converges to zero, then the
diameter of the fibers diam(FAk ) converges to zero.

Proof. By (3), if the total measure converges to zero, then either/both of the
following two cases holds:

(a) |ρAk |
−1

→ 0, or

(b) |det( Ãk)|
−1

→ 0.
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In the case (a), by using Lemmas 3.9 and 4.4, we have

diam(FAk ) = distAk

(
e, 1

2 Z
)
= min

{∣∣∣∣ 1
2ρAk

∣∣∣∣ , 2
dn(Ak)

√
πdn(Ak)

2
− π2ρ2

Ak

}
≤

∣∣∣∣ 1
2ρAk

∣∣∣∣ → 0 (k → ∞).

In the case (b), by using Lemmas 3.5, 3.9 and 4.4, we have

diam(FAk ) = min
{∣∣∣∣ 1

2ρAk

∣∣∣∣ , 2
dn(Ak)

√
πdn(Ak)

2
− π2ρ2

Ak

}
≤

√
2π

dn(Ak)

≤

√
2π

n
√

|det( Ãk)|
→ 0 (k → ∞).

In both cases, the diameter of the fiber diam(FAk ) converges to zero. This
concludes the proposition. □

A similar argument follows also for sub-Riemannian metrics of corank 1.

Proposition 4.7. Let {0r\Hn, distAk } be a sequence of compact Heisenberg mani-
folds with left-invariant sub-Riemannian metrics of corank 1. If the total measure in
Popp’s volume converges to zero, then the diameter of the fibers converges to zero.

Proof. By (4), if the total measure converges to zero, then either/both of the
following two cases holds:

(a) δ(Ak)
−1

→ 0, or

(b) |det( Ãk)|
−1

→ 0.

In the case (a), by using Lemmas 3.5, 3.9 and 4.4, we have

diam(FAk ) = distAk

(
e, 1

2 Z
)
= min

{
+∞,

2
dn(Ak)

√
πdn(Ak)

2

}

=

√
2π

dn(Ak)
≤

2
√

nπ

δ(Ak)
→ 0 (k → ∞).

In the case (b), again by using Lemmas 3.5, 3.9 and 4.4, we have

diam(FAk ) =

√
2π

dn(Ak)
≤

√
2π

n
√

|det( Ãk)|
→ 0 (k → ∞).

In both cases, the diameter of the fiber diam(FAk ) converges to zero. This
concludes the proposition. □

Now we are prepared to prove the main theorem.
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Proof of Theorem 1.1. Suppose that there are infinitely many isomorphic classes
of lattices 0rk in the sequence. Then by Proposition 4.5, the diameter of the fibers
converges to 0, and by Proposition 4.3, the Gromov–Hausdorff limit is isometric to
a flat torus of lower dimension.

Assume there are finitely many isomorphic classes of lattices in the sequence.
By taking a subsequence, we can assume that the lattices are isomorphism to 0r
for a fixed r in Dn . By Propositions 4.6 and 4.7, if the total measure converges
to 0, then the diameter of the fiber converges to 0. Again by Proposition 4.3, the
Gromov–Hausdorff limit is isometric to a flat torus of lower dimension. □
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ON THE COEFFICIENT INEQUALITIES
FOR SOME CLASSES OF HOLOMORPHIC MAPPINGS

IN COMPLEX BANACH SPACES

QINGHUA XU, XIAOHUA YANG AND TAISHUN LIU

Let C be the familiar class of normalized close-to-convex functions in the
unit disk. Koepf (1987) proved that for a function f (z) = z +

∑∞

k=2 ak zk in
the class C,

|a3 − λa2
2| ≤


3 − 4λ, λ ∈

[
0, 1

3

]
,

1
3 +

4
9λ

, λ ∈
[ 1

3 , 2
3

]
,

1, λ ∈
[ 2

3 , 1
] and

∣∣|a3| − |a2|
∣∣ ≤ 1.

Recently, Xu et al. (2023) generalized the above results to a subclass of close-
to-quasiconvex mappings of type B defined on the open unit polydisc in Cn,
and to a subclass of close-to-starlike mappings defined on the open unit ball
of a complex Banach space, respectively. In the first part of this paper, by
using different methods, we obtain the corresponding results of norm type
and functional type on the open unit ball in a complex Banach space. We
next give the coefficient inequalities for a subclass of g-starlike mappings
of complex order λ on the open unit ball of a complex Banach space, which
generalize many known results. Moreover, the proofs presented here are
simpler than those given in the related papers.

1. Introduction

Let S be the class of functions of the form

(1-1) f (ξ) = ξ +

∞∑
m=2

am ξm,

which are univalent in the open unit disk

U = {ξ ∈ C : |ξ | < 1}.
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Let X be a complex Banach space with norm ∥ · ∥, B be the open unit ball of X .
Let L(X, Y ) denote the set of continuous linear operators from X into a complex

Banach space Y . Let I be the identity in L(X, X). For each x ∈ X \ {0}, we define

T (x) = {Tx ∈ L(X, C) : ∥Tx∥ = 1, Tx(x) = ∥x∥}.

According to the Hahn–Banach theorem, T (x) is nonempty.
Let H(B) denote the set of all holomorphic mappings from B into X . It is well

known that if f ∈ H(B), then

f (y) =

∞∑
m=0

1
m!

Dm f (x)((y − x)m)

for all y in some neighborhood of x ∈ B, where Dm f (x) is the m-th Fréchet
derivative of f at x , and for m ≥ 1,

Dm f (x)((y − x)m) = Dm f (x)(y − x, . . . , y − x︸ ︷︷ ︸
m

).

Furthermore, Dm f (x) is a bounded symmetric m-linear mapping from

Xm
= X × · · · × X︸ ︷︷ ︸

m

into X.

A holomorphic mapping f : B → X is said to be biholomorphic if the inverse f −1

exists and is holomorphic on the open set f (B). A mapping f ∈ H(B) is called
locally biholomorphic if the Fréchet derivative D f (x) has a bounded inverse for
each x ∈ B. If f : B → X is a holomorphic mapping, then f is called normalized if
f (0) = 0 and D f (0) = I , where I represents the identity operator from X into X .

A mapping f ∈ H(B) is called starlike if f is biholomorphic on B and f (B) is a
starlike domain. Let S∗(B) denote the class of normalized starlike mappings on B,
when X = C, B = U, the class S∗(U) is denoted by S∗. Suppose f, g ∈ H(U). If
there exists a Schwarz function ϕ (i.e., ϕ ∈ H(U), ϕ(0) = 0, ϕ(U) ⊆ U) such that
f = g ◦ ϕ, then we say that f is subordinate to g(written f ≺ g).

Now, we introduce the class of quasiconvex mappings of type B on B in X ,
which has been introduced by Roper and Suffridge [31] on the unit ball B ⊂ Cn .

Definition 1.1. Let h : B → X be a normalized locally biholomorphic mapping. If

(1-2) ℜe
{
Tx

[
(Dh(x))−1(D2h(x)(x2)+Dh(x) x

)]}
>0, x ∈B\{0}, Tx ∈ T (x),

then h is called a quasiconvex mapping of type B on B.
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Let QB(B) denote the class of quasiconvex mappings of type B on B. When
X = C, B = U, we deduce easily that relation (1-2) is equivalent to

ℜe
(

1 +
ξh′′(ξ)

h′(ξ)

)
> 0, ξ ∈ U,

which is the well-known criterion of convex functions on U. Let K denote the class
of normalized convex functions on U.

Xu et al. [35] introduced the following class of mappings on the open unit ball
of a complex Banach space.

Definition 1.2 [35]. Suppose that f : B → X is a normalized holomorphic mapping.
If there exists a mapping h ∈ QB(B) such that

(1-3) ℜe{Tx [(Dh(x))−1 D f (x) x]} > 0, x ∈ B \ {0}, Tx ∈ T (x),

then f is called a close-to-quasiconvex mapping of type B on B.

If X = Cn , B = Un , then it is obvious that the relation (1-3) is equivalent to

ℜe
p j (z)

z j
> 0, z ∈ Un

\ {0},

where p(z) = (p1(z), . . . , pn(z))′ = (Dh(z))−1 D f (z) z is a column vector in Cn ,
and j satisfies |z j | = ∥z∥ = max1≤k≤n{|zk |}.

The following definition has been introduced by Pfaltzgraff and Suffridge [29]
on the unit ball with respect to an arbitrary norm in Cn .

Definition 1.3. Suppose that f : B → X is a normalized locally biholomorphic
mapping. If there exists a mapping h ∈ S∗(B) such that

(1-4) ℜe{Tx [(D f (x))−1h(x)]} > 0, x ∈ B \ {0}, Tx ∈ T (x),

then f is called a close-to-starlike mapping on B.

Remark 1.4. Clearly, if X = C, B = U, then the relation (1-3) (respectively,
the relation (1-4)) is equivalent to ℜe f ′(ξ)

h′(ξ)
> 0, ξ ∈ U, here h ∈ K (respectively,

ℜe ξ f ′(ξ)

h(ξ)
> 0, ξ ∈ U, here h ∈ S∗), which is the usual definition of close-to-convex

functions on U.

Koepf [23] obtained the following Fekete and Szegő inequality for the class C.

Theorem 1.5 [23]. Let the function f (ξ) be defined by (1-1). If f ∈ C, then

|a3 − λa2
2 | ≤


3 − 4λ, λ ∈

[
0, 1

3

]
,

1
3 +

4
9λ

, λ ∈
[ 1

3 , 2
3

]
,

1, λ ∈
[ 2

3 , 1
]
.
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As an interesting application of Theorem 1.5, it was proved that
∣∣|a3|− |a2|

∣∣ ≤ 1
for the class C.

In recent years, the Fekete and Szegő inequality for subclass of biholomorphic
mappings in several complex variables has been studied by some authors (see [3; 4;
5; 6; 7; 15; 20; 21; 32; 36; 38]).

Xu et al. [39] obtained the following Fekete and Szegő inequality for the subclass
of close-to-quasiconvex mappings of type B on the open unit polydisk Un in Cn with
respect to H ∈QB(Un), which could be regarded as a generalization of Theorem 1.5
to several complex variables.

Theorem 1.6 [39]. Let f : Un
→ C, h : Un

→ C be holomorphic functions, and
H(z) = zh(z) ∈ QB(Un). Suppose that F(z) = z f (z) is a close-to-quasiconvex
mapping of type B with respect to H(z). Then, for λ ∈ [0, 1], z ∈ Un , we have

∥∥∥∥ 1
3!

D3 F(0)(z3)−λ 1
2!

D2 F(0)

(
z,

D2 F(0)(z2)

2!

)∥∥∥∥ ≤


(3 − 4λ)∥z∥3, λ ∈

[
0, 1

3

]
,( 1

3 +
4

9λ

)
∥z∥3, λ ∈

[ 1
3 , 2

3

]
,

∥z∥3, λ ∈
[ 2

3 , 1
]

and ∣∣∣∣∥∥∥∥ D3 F(0)(z3))

3!

∥∥∥∥ −

∥∥∥∥ D2 F(0)(z2)∥z∥
2!

∥∥∥∥∣∣∣∣ ≤ ∥z∥3.

The above estimates are sharp.

Hamada [15] generalized Theorem 1.6 to the open unit ball of a complex Banach
space under weaker assumptions than in Theorem 1.6. Moreover, in the same paper,
Hamada also obtained the Fekete and Szegő inequality of functional type for the
subclasses of close-to-quasiconvex mappings of type B on the open unit ball B in a
complex Banach space.

Theorem 1.7 [15]. Let G be a quasiconvex mapping of type B on B such that

1
2!

D2G(0)(x2) = LG(x) x, x ∈ X,

where LG( · ) ∈ L(X, C). Let F be a close-to-quasiconvex mapping of type B on B

with respect to G such that

1
2!

D2 F(0)(x2) = L F (x) x, x ∈ X,

where L F ( · ) ∈ L(X, C) and

1
3!

D3 F(0)(x3) = QF (x) x, x ∈ X,
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where QF (x) is a homogeneous polynomial of degree 2 with values in C. Let x0 ∈ X
with ∥x0∥ = 1. Then, for λ ∈ [0, 1], it holds that∥∥∥∥ 1

3!
D3 F(0)(x3

0) − λ 1
2!

D2 F(0)

(
x0,

D2 F(0)(x2
0)

2!

)∥∥∥∥ ≤


3 − 4λ, λ ∈

[
0, 1

3

]
,

1
3 +

4
9λ

, λ ∈
[1

3 , 2
3

]
,

1, λ ∈
[2

3 , 1
]
.

The above estimates are sharp.

More recently, Xu et al. [37] gave another extension of Theorem 1.5 to higher
dimensions, and established the following Fekete and Szegő inequality for the
subclass of close-to-starlike mappings on the open unit ball B in a complex Banach
space with respect to H ∈ S∗(B).

Theorem 1.8 [37]. Let f : B → C, h : B → C be holomorphic functions, and
H(x) = xh(x) ∈ S∗(B). Suppose that F(x) = x f (x) is a close-to-starlike mapping
with respect to H(x). Then, for x ∈ B \ {0}, Tx ∈ T (x), λ ∈ [0, 1], we have∣∣∣∣Tx(D3 F(0)(x3))

3! ∥x∥3 − λ

(
Tx(D2 F(0)(x2))

2! ∥x∥2

)2∣∣∣∣ ≤


3 − 4λ, λ ∈

[
0, 1

3

]
,

1
3 +

4
9λ

, λ ∈
[1

3 , 2
3

]
,

1, λ ∈
[2

3 , 1
]

and ∣∣∣∣∣∣∣∣Tx(D3 F(0)(x3))

3! ∥x∥3

∣∣∣∣ − ∣∣∣∣Tx(D2 F(0)(x2))

2! ∥x∥2

∣∣∣∣∣∣∣∣ ≤ 1.

The above estimates are sharp.

Zhang et al. [40] introduced the following class of g-starlike mapping of complex
order λ on B in X , which has been introduced by Hu et al. [22] on Bn .

Definition 1.9 [40]. Let g : U → C be a biholomorphic function such that g(0) = 1,
ℜeg(ξ) > 0 on U. Let λ ∈ C with ℜeλ ≤ 0 and let f : B → X be a normalized
locally biholomorphic mapping. If

(1 − λ)
∥x∥

Tx(D f (x))−1 f (x))
+ λ ∈ g(U), x ∈ B \ {0}, Tx ∈ T (x),

then f is called a g-starlike mapping of complex order λ.
Let S∗

g,λ(B) denote the class of g-starlike mapping of complex order λ on B. In
particular, when X = C, B = U, the above relation implies that

f ∈ S∗

g,λ(U) if and only if (1 − λ)
ξ f ′(ξ)

f (ξ)
+ λ ≺ g, ξ ∈ U.

In view of Remark 2.4 of [40], we know that some important subclasses of S(B)

coincide with the classes of S∗

g,λ(B) for certain choices of g and λ.
Since the authors [37; 39] used Definitions 1.2 and 1.3 directly, the proofs of

Theorems 1.6 and 1.8 are long and rather complicated. In Section 3, under the same
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conditions as in Theorems 1.6 and 1.8, we will establish the corresponding inequal-
ities of norm type and functional type for the subclasses of close-to-quasiconvex
mappings of type B and close-to-starlike mappings on the open unit ball of a Banach
space, respectively. Next, In Section 4, we obtain the coefficient inequalities for
a subclass of g-starlike mappings of complex order λ on the open unit ball of a
complex Banach space. The various results of this paper would generalize many
known results. Moreover, the proof methods presented here simplify those appeared
in some earlier papers [25; 26; 28; 33; 36; 37; 39].

Some investigations concerning the coefficient estimates for subclasses of holo-
morphic mappings in several variables have been obtained by Bracci et al. [1; 2],
Graham et al. [8; 9; 10; 11; 12; 13; 14], Hamada et al. [16; 18; 19], Kohr [24], Liu
and Wu [27], Liu et al. [28], and Xu et al. [34; 35].

2. Some lemmas

In order to prove the desired results, we need to provide the following lemmas.

Lemma 2.1 [17]. Let h : B → X be a normalized locally biholomorphic mapping.
Then h is a starlike mapping on B if and only if

ℜe
(
Tx(Dh(x)−1h(x))

)
> 0, x ∈ B \ {0}, Tx ∈ T (x).

Comparing Lemma 2.1 with Definition 1.3, we remark that any normalized
starlike mapping on B is close-to-starlike (with respect to itself).

Lemma 2.2. Let g : U → C satisfy the conditions of Definition 1.9, f ∈ H(B, C),
f (0)=1, F(x)= x f (x). Fix x ∈B\{0} and denote x0 =

x
∥x∥

. Let l(ξ)=Tx(F(ξ x0)),
ξ ∈ U. Then

l ∈ S∗

g,λ(U) ⇔ F ∈ S∗

g,λ(B).

Proof. Since F ∈ S∗

g,λ(B), we deduce from Definition 1.9 that

(1 − λ)
∥x∥

Tx((DF(x))−1 F(x))
+ λ ∈ g(U), x ∈ B \ {0}, Tx ∈ T (x).

It follows that F is locally biholomorphic on B, and thus f (x) ̸= 0, x ∈ B. Using
a similar method to that in [8] (also see [9, Theorem 7.1.14]), we have

(2-1) [DF(x)]−1
=

1
f (x)

(
I −

x D f (x)

f (x)

1 +
D f (x) x

f (x)

)
.

Hence,

(DF(x))−1 F(x) = x
(

1

1 +
D f (x) x

f (x)

)
=

x f (x)

f (x) + D f (x) x
, x ∈ B.
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We find from the above equality that

(2-2) (1 − λ)
∥x∥

Tx((DF(x))−1 F(x))
+ λ = (1 − λ)

f (x) + D f (x) x
f (x)

+ λ ∈ g(U).

Since l(ξ) = Tx(F(ξ x0)) = Tx(ξ x0 f (ξ x0)) = ξ f (ξ x0), we have

l ′(ξ) = f (ξ x0) + D f (ξ x0) ξ x0

and

(2-3) (1 − λ)
ξ l ′(ξ)

l(ξ)
+ λ = (1 − λ)

f (ξ x0) + D f (ξ x0) ξ x0

f (ξ x0)
+ λ ∈ g(U),

which implies that l ∈ S∗

g,λ(U).

Conversely, we assume l ∈ S∗

g,λ(U). Then it is clear that ξ l ′(ξ)
l(ξ)

̸= 0, ξ ∈ U. Hence
we have

1 +
D f (x) x

f (x)
̸= 0, x ∈ B.

It is not hard to deduce from this and (2-1) that F is locally biholomorphic on B.
On the other hand, in view of (2-2) and (2-3), we can conclude that

(1 − λ)
ξ

Tξ x0((DF(ξ x0))−1 F(ξ x0))
+ λ = (1 − λ)

ξ l ′(ξ)

l(ξ)
+ λ ∈ g(U).

Taking ξ = ∥x∥ in the above relation, we obtain

(1 − λ)
∥x∥

Tx((DF(x))−1 F(x))
+ λ ∈ g(U),

as desired. □

Lemma 2.3 [20]. Let g(ξ) = 1+ g′(0) ξ +
g′′(0)

2 ξ 2
+ . . . be a holomorphic function

on U such that g′(0) ̸= 0. Let s(ξ) = 1 + s ′(0) ξ +
s′′(0)

2 ξ 2
+ . . . be a holomorphic

function on U such that s ≺ g. Then for every µ ∈ C, it holds that∣∣∣∣s ′′(0)

2
− µ(s ′(0))2

∣∣∣∣ ≤ max
{
|g′(0)|,

∣∣∣∣g′′(0)

2
− µ(g′(0))2

∣∣∣∣}.

This estimate is sharp.

Lemma 2.4. Let g : U → C satisfy the conditions of Definition 1.9 and

l(ξ) = ξ +

∞∑
m=2

lm ξm
∈ S∗

g,λ(U).

Then

|l3 − νl2
2 | ≤

|g′(0)|

2|1 − λ|
max

{
1,

∣∣∣∣ 1
2

g′′(0)

g′(0)
+

1 − 2ν

1 − λ
g′(0)

∣∣∣∣}, ν ∈ C.
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The above estimate is sharp for the function

l(ξ) = ξ exp
1

1 − λ

∫ ξ

0
(g(t) − 1)

1
t

dt

if
∣∣ 1

2
g′′(0)

g′(0)
+

1−2ν
1−λ

g′(0)
∣∣ ≥ 1, and for

l(ξ) = ξ exp
1

1 − λ

∫ ξ

0
(g(t2) − 1)

1
t

dt

if
∣∣ 1

2
g′′(0)

g′(0)
+

1−2ν
1−λ

g′(0)
∣∣ ≤ 1.

Proof. Since l ∈ S∗

g,λ(U), we have

b(ξ) = (1 − λ)
ξ l ′(ξ)

l(ξ)
+ λ ∈ g(U), ξ ∈ U, b ≺ g.

A computation shows that

b′(0) = (1 − λ) l2,
b′′(0)

2
= 2(1 − λ) l3 − (1 − λ) l2

2 .

By using Lemma 2.3, we have∣∣∣∣b′′(0)

2
− µ(b′(0))2

∣∣∣∣ ≤ max
{
|g′(0)|,

∣∣∣∣g′′(0)

2
− µ(g′(0))2

∣∣∣∣}, µ ∈ C.

From the above relations, we obtain that

|l3 − νl2
2 | ≤

|g′(0)|

2|1 − λ|
max

{
1,

∣∣∣∣ 1
2

g′′(0)

g′(0)
+

1 − 2ν

1 − λ
g′(0)

∣∣∣∣}, ν ∈ C. □

Remark 2.5. Lemma 2.4 generalizes Theorem 3.1 of [36], when λ = 0, Lemma 2.4
obtained by Xu et al. [36]. Moreover, the proof presented here is simpler than that
in [36, Theorem 3.1].

Lemma 2.6. Let g : U → C be a convex function which satisfies the conditions of
Definition 1.9 and

l(ξ) = ξ +

∞∑
m=2

lm ξm
∈ S∗

g,λ(U).

Then

|lm | ≤
1

(m − 1)!

m∏
k=2

(
(k − 2) +

|g′(0)|

|1 − λ|

)
, m = 2, 3, 4, . . . .

Proof. Since l ∈ S∗

g,λ(U), the function p is defined by

p(ξ) = (1 − λ)
ξ l ′(ξ)

l(ξ)
+ λ, ξ ∈ U,

in view of Definition 1.9, we have p ≺ g. If

p(ξ) = 1 + p1 ξ + p2 ξ 2
+ · · · + pm ξm

+ . . . , ξ ∈ U,
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then from Rogosinski’s theorem [30], we obtain that |pm |≤ |g′(0)|, m = 1, 2, 3, . . . .
Comparing the coefficients in the power series of l(ξ)p(ξ) = (1−λ) ξ l ′(ξ)+λl(ξ),
we deduce that (1 − λ) l2 = p1 and

(1−λ)(m −1) lm = pm−1 + l2 pm−2 + l3 pm−3 +· · ·+ lm−1 p1, m = 2, 3, 4, . . . .

Thus by the mathematical induction, we obtain

|lm | ≤
1

(m − 1)!

m∏
k=2

(
(k − 2) +

|g′(0)|

|1 − λ|

)
, m = 2, 3, 4, . . . ,

as desired. □

3. Simplified proofs of Fekete–Szegő inequalities for close-to-quasiconvex
mappings of type B and close-to-starlike mappings

In this section, by using the proof methods different from those appeared in [39]
and [37], we obtain the corresponding results of norm type and functional type for
subclasses of close-to-quasiconvex mappings of type B and close-to-starlike map-
pings defined on the open unit ball in a complex Banach space (see Theorem 1.7).

Theorem 3.1. Let f : B → C, h : B → C be holomorphic functions, and let
H(x) = xh(x) ∈ QB(B). Suppose that F(x) = x f (x) is a close-to-quasiconvex
mapping of type B with respect to H(x). Then, for x ∈ X \ {0}, Tx ∈ T (x) and
λ ∈ [0, 1], we have∥∥∥∥ D3 F(0)(x3)

3! ∥x∥3 − λ
1

2∥x∥3 D2 F(0)

(
x,

D2 F(0)(x2)

2!

)∥∥∥∥ ≤


3 − 4λ, λ ∈

[
0, 1

3

]
,

1
3 +

4
9λ

, λ ∈
[1

3 , 2
3

]
,

1, λ ∈
[2

3 , 1
]
,

∣∣∣∣Tx(D3 F(0)(x3))

3! ∥x∥3 − λ

(
Tx(D2 F(0)(x2))

2! ∥x∥2

)2∣∣∣∣ ≤


3 − 4λ, λ ∈

[
0, 1

3

]
,

1
3 +

4
9λ

, λ ∈
[1

3 , 2
3

]
,

1, λ ∈
[2

3 , 1
]
,∣∣∣∣∣∣∣∣Tx(D3 F(0)(x3))

3! ∥x∥3

∣∣∣∣ − ∣∣∣∣Tx(D2 F(0)(x2))

2! ∥x∥2

∣∣∣∣∣∣∣∣ ≤ 1

and ∣∣∣∣∥∥∥∥ D3 F(0)(x3))

3! ∥x∥3

∥∥∥∥ −

∥∥∥∥ D2 F(0)(x2)

2! ∥x∥2

∥∥∥∥∣∣∣∣ ≤ 1.

The above estimates are sharp.

Proof. Fix x ∈ X \ {0} and denote x0 =
x

∥x∥
. Let p : U → C be given by

p(ξ) =

{ Tx ((DH(ξ x0))
−1(D2 H(ξ x0)(ξ x0)

2
+DH(ξ x0)(ξ x0))

ξ
, ξ ̸= 0,

1, ξ = 0.
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Then p ∈ H(U), p(0) = 1, and

p(ξ) =
Tx((DH(ξ x0))

−1(D2 H(ξ x0)(ξ x0)
2
+ DH(ξ x0)(ξ x0))

ξ

=
Tξ x0((DH(ξ x0))

−1(D2 H(ξ x0)(ξ x0)
2
+ DH(ξ x0)(ξ x0))

∥ξ x0∥
, ξ ∈ U \ {0}.

Since H ∈ QB(B), using Definition 1.1, we obtain

(3-1) ℜe(p(ξ)) > 0, ξ ∈ U.

On the other hand, by using an elementary computation, we have

(DH(x))−1
=

1
h(x)

(
I −

x Dh(x)
h(x)

1 +
Dh(x) x

h(x)

)
and

(DH(x))−1(D2 H(x)(x2) + DH(x) x) =
D2h(x)(x2) + 3Dh(x) x + h(x)

h(x) + Dh(x) x
x .

This allows us to rewrite p in the form

(3-2) p(ξ) =
D2h(ξ x0)((ξ x0)

2) + 3Dh(ξ x0)(ξ x0) + h(ξ x0)

h(ξ x0) + Dh(ξ x0)(ξ x0)
, ξ ∈ U.

Let k(ξ) = Tx(H(ξ x0)) = ξh(ξ x0) for ξ ∈ U. Elementary computations using
this inequality yield that

(3-3) k ′(ξ) = h(ξ x0) + Dh(ξ x0)(ξ x0)

and

(3-4) 1 +
ξk ′′(ξ)

k ′(ξ)
=

D2h(ξ x0)((ξ x0)
2) + 3Dh(ξ x0)(ξ x0) + h(ξ x0)

h(ξ x0) + Dh(ξ x0)(ξ x0)
.

Using (3-1), (3-2) and (3-4), we obtain k ∈ K.
Let s(x) = (DH(x))−1 DF(x) x , and let

r(ξ) =

{ Tx (s(ξ x0))
ξ

, ξ ∈ U \ {0},

1, ξ = 0.

Then r is holomorphic on U, r(0) = 1 and

r(ξ) =
Tx(s(ξ x0))

ξ
=

Tx0(s(ξ x0))

ξ
=

Tξ x0(s(ξ x0))

∥ξ x0∥
, ξ ∈ U \ {0}.

Since F(x) is a close-to-quasiconvex mapping of type B with respect to H(x),
from Definition 1.2, we obtain

(3-5) ℜe(r(ξ)) > 0, ξ ∈ U.
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A simple computation shows that

(3-6) r(ξ) =
Tx(s(ξ x0))

ξ
=

Tx((DH(ξ x0))
−1 DF(ξ x0) ξ x0)

ξ

=
f (ξ x0) + D f (ξ x0) ξ x0

h(ξ x0) + Dh(ξ x0) ξ x0
, ξ ∈ U \ {0}.

Letting l(ξ) = Tx(F(ξ x0)), ξ ∈ U, we have

(3-7) l ′(ξ) = Tx(DF(ξ x0) x0) = f (ξ x0) + D f (ξ x0) ξ x0.

Hence from (3-3), (3-5), (3-6) and (3-7), we obtain

ℜe
(

l ′(ξ)

k ′(ξ)

)
= ℜe

(
f (ξ x0) + D f (ξ x0) ξ x0

h(ξ x0) + Dh(ξ x0) ξ x0

)
> 0,

which means that l ∈ C. Thus from Theorem 1.5, we have

(3-8)
∣∣∣∣ l ′′′(0)

3!
− λ

(
l ′′(0)

2!

)2∣∣∣∣ ≤


3 − 4λ, λ ∈

[
0, 1

3

]
,

1
3 +

4
9λ

, λ ∈
[1

3 , 2
3

]
,

1, λ ∈
[2

3 , 1
]

and

(3-9)
∣∣∣∣∣∣∣∣ l ′′′(0)

3!

∣∣∣∣ − ∣∣∣∣ l ′′(0)

2!

∣∣∣∣∣∣∣∣ ≤ 1.

Furthermore, since l(ξ) = Tx(F(ξ x0)) = Tx(ξ x0 f (ξ x0)) = ξ f (ξ x0) for ξ ∈ U, a
simple computation yields that

l ′′′(0)

3!
=

Tx(D3 F(0)(x3
0))

3!
=

D2 f (0)(x2
0)

2
,(

l ′′(0)

2!

)2

=

(
Tx(D2 F(0)(x2

0))

2!

)2

= (D f (0)(x0))
2,

and

D3 F(0)(x3
0)

3!
=

D2 f (0)(x2
0)

2!
x0,

1
2 D2 F(0)

(
x0,

D2 F(0)(x2
0)

2!

)
=(D f (0)(x0))

2x0.

Using the above equalities, (3-8) and (3-9), we obtain all of the desired conclusions
about Theorems 3.1. The example which shows the sharpness of Theorem 3.1 is the
same as the mapping defined in [37]. This completes the proof of Theorem 3.1. □

Theorem 3.2. Let f : B → C, h : B → C be holomorphic functions, and let
H(x) = xh(x) ∈ S∗(B). Suppose that F(x) = x f (x) is a close-to-starlike mapping
with respect to H(x). Then, for x ∈ X \ {0}, Tx ∈ T (x) and λ ∈ [0, 1], we have the
same conclusions as in Theorem 3.1.
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Proof. Fix x ∈ X\{0} and denote x0 =
x

∥x∥
. Let p : U → C be given by

p(ξ) =

{ Tx ((DH(ξ x0))
−1 H(ξ x0))

ξ
, ξ ̸= 0,

1, ξ = 0.

Then p ∈ H(U), p(0) = 1, and

p(ξ) =
Tx((DH(ξ x0))

−1 H(ξ x0))

ξ
=

Tξ x0((DH(ξ x0))
−1 H(ξ x0))

∥ξ x0∥
, ξ ∈ U \ {0}.

Since H ∈ S∗(B), by Lemma 2.1, we have

(3-10) ℜe(p(ξ)) > 0, ξ ∈ U.

At the same time, a short computation yields the relation

(DH(x))−1 H(x) =
h(x)

h(x) + Dh(x) x
x .

Hence the above relations imply that

(3-11) p(ξ) =
h(ξ x0)

h(ξ x0) + Dh(ξ x0)(ξ x0)
, ξ ∈ U.

Let
k(ξ) = Tx(H(ξ x0)) = ξh(ξ x0), ξ ∈ U.

Then, we have
k ′(ξ) = h(ξ x0) + Dh(ξ x0)(ξ x0)

and

(3-12)
ξk ′(ξ)

k(ξ)
=

h(ξ x0) + Dh(ξ x0)(ξ x0)

h(ξ x0)
.

By using (3-10), (3-11) and (3-12), we obtain k ∈ S∗.
Let s(x) = (DF(x))−1 H(x), and let

r(ξ) =

{ Tx (s(ξ x0))
ξ

, ξ ∈ U \ {0},

1, ξ = 0.

Then r is holomorphic on U, r(0) = 1 and

r(ξ) =
Tx(s(ξ x0))

ξ
=

Tx0(s(ξ x0))

ξ
=

Tξ x0(s(ξ x0))

∥ξ x0∥
, ξ ∈ U \ {0}.

Since F(x) is a close-to-starlike mapping with respect to H(x), from Definition 1.3,
we obtain

ℜe(r(ξ)) > 0, ξ ∈ U.
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A simple computation shows that

r(ξ) =
Tx(s(ξ x0))

ξ
=

Tx((DF(ξ x0))
−1 H(ξ x0))

ξ

=
h(ξ x0)

f (ξ x0) + D f (ξ x0) ξ x0
, ξ ∈ U \ {0}.

Letting l(ξ) = Tx(F(ξ x0)), ξ ∈ U again, we obtain

l ′(ξ) = Tx(DF(ξ x0) x0) = f (ξ x0) + D f (ξ x0) ξ x0.

Consequently, combining this observation with the preceding relations, we have

ℜe
(

ξ l ′(ξ)

k(ξ)

)
= ℜe

(
f (ξ x0) + D f (ξ x0) ξ x0

h(ξ x0)

)
> 0,

which implies that l ∈ C. The remaining part of the proof of Theorem 3.2 is similar
to that in the proof of Theorem 3.1, so we omit the details. □

4. Simplified proofs of coefficient inequalities for a subclass of g-starlike
mappings of complex order λ

By using Lemmas 2.2, 2.4 and 2.6, we establish bounds of all terms of homogeneous
expansions and the Fekete–Szegő inequality for a subclass of g-starlike mappings of
complex order λ on the open unit ball of a complex Banach space, which generalize
the corresponding results appeared in [25; 26; 28; 33; 36].

Theorem 4.1. Let g : U → C be a convex function which satisfies the conditions of
Definition 1.9, and f ∈ H(B, C), f (0) = 1. Suppose that F(x) = x f (x) ∈ S∗

g,λ(B).
Then for x ∈ B, we have

∥Dm F(0)(xm)∥

m!
≤

∏m
r=2

[
r − 2 +

1
1−λ

|g′(0)|
]

(m − 1)!
∥x∥

m, m = 2, 3, 4, . . . .

Proof. Fix x ∈ B \ {0} and denote x0 =
x

∥x∥
. Let l(ξ) = Tx(F(ξ x0)), ξ ∈ U. In

view of Lemma 2.2, we have l ∈ S∗

g,λ(U). Since l(ξ) = Tx(F(ξ x0)) = ξ f (ξ x0), we
obtain

Dm F(0)(xm
0 )

m!
= x0

Dm−1 f (0)(xm−1
0 )

(m − 1)!
=

l(m)(0)

m!
.

By using Lemma 2.6, we have

∥Dm F(0)(xm)∥

m!
≤

∏m
r=2

[
r − 2 +

1
1−λ

|g′(0)|
]

(m − 1)!
∥x∥

m, m = 2, 3, 4, . . . ,

as desired. □
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Remark 4.2. Theorem 4.1 generalizes many known results. In Theorem 4.3 if we
set λ = 0 and g(ξ) =

1+ξ
1−ξ

, ξ ∈ U, λ = 0 and λ = −
α

1−α
, 0 ≤ α < 1, we can readily

deduce the corresponding results of [28], [26] and [33], respectively. Moreover, the
proofs presented here are simpler than those given in [28], [26] and [33].

Theorem 4.3. Let g : U → C satisfy the conditions of Definition 1.9, and let
f ∈ H(B, C), f (0) = 1. Suppose that F(x) = x f (x) ∈ S∗

g,λ(B). Then for ν ∈ C,
x ∈ B \ {0}, we have∥∥∥∥ D3 F(0)(x3)

3! ∥x∥3 − ν
1

2∥x∥3 D2 F(0)

(
x,

D2 F(0)(x2)

2!

)∥∥∥∥
≤

|g′(0)|

2|1 − λ|
max

{
1,

∣∣∣∣1
2

g′′(0)

g′(0)
+

1 − 2ν

1 − λ
g′(0)

∣∣∣∣}
and∣∣∣∣Tx(D3 F(0)(x3))

3! ∥x∥3 − ν

(
Tx(D2 F(0)(x2))

2! ∥x∥2

)2∣∣∣∣
≤

|g′(0)|

2|1 − λ|
max

{
1,

∣∣∣∣1
2

g′′(0)

g′(0)
+

1 − 2ν

1 − λ
g′(0)

∣∣∣∣}.

The above estimates are sharp.

Proof. Fix x ∈ B \ {0} and denote x0 =
x

∥x∥
. Let l(ξ) = Tx(F(ξ x0)), ξ ∈ U. From

Lemma 2.2, we have l ∈ S∗

g,λ(U). Since l(ξ) = Tx(F(ξ x0)) = ξ f (ξ x0), we have

l ′′′(0)

3!
=

Tx(D3 F(0)(x3
0))

3!
=

D2 f (0)(x2
0)

2
,(

l ′′(0)

2!

)2

=

(
Tx(D2 F(0)(x2

0))

2!

)2

= (D f (0)(x0))
2,

and

D3 F(0)(x3
0)

3!
=

D2 f (0)(x2
0)

2!
x0,

1
2 D2 F(0)

(
x0,

D2 F(0)(x2
0)

2!

)
=(D f (0)(x0))

2x0.

Using the above equalities and Lemma 2.4, we obtain the desired conclusion.
In order to prove that the estimates of Theorem 4.3 are sharp, it suffices to

consider the following examples.
If

∣∣ 1
2

g′′(0)

g′(0)
+

1−2ν
1−λ

g′(0)
∣∣ ≥ 1, we consider the example

F(x) = x exp
1

1 − λ

∫ Tu(x)

0
(g(t) − 1)

dt
t

, x ∈ B, ∥u∥ = 1.

If
∣∣ 1

2
g′′(0)

g′(0)
+

1−2ν
1−λ

g′(0)
∣∣ ≤ 1, we consider the example

F(x) = x exp
1

1 − λ

∫ Tu(x)

0
(g(t2) − 1)

dt
t

, x ∈ B, ∥u∥ = 1. □
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Remark 4.4. If we set λ = −i tan β, −
π
2 < β < π

2 and λ = 0 in Theorem 4.3, we
obtain the corresponding results of [25] and [36], respectively. Moreover, the proofs
presented here are simpler than those given in [25] and [36].
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[36] Q. Xu, T. Liu, and X. Liu, “Fekete and Szegő problem in one and higher dimensions”, Sci. China
Math. 61:10 (2018), 1775–1788. MR Zbl

[37] Q. Xu, W. Fang, W. Feng, and T. Liu, “The Fekete–Szegő inequality and successive coefficients
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